
A WSDL-based type system for WS-BPEL?

Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi

Dipartimento di Sistemi e Informatica Università degli Studi di Firenze

Abstract. We tackle the problem of providing rigorous formal foundations to
current software engineering technologies for web services. We focus on two of
the most used XML-based languages for web services: WSDL and WS-BPEL.
To this aim, first we select an expressive subset of WS-BPEL, with special con-
cern for modeling the interactions among web service instances in a network
context, and define its operational semantics. We call - the result-
ing formalism. Then, we put forward a rigorous typing discipline that formalizes
the relationship existing between - terms and the associated WSDL
documents and supports verification of their compliance. We prove that the type
system and the operational semantics of - are ‘sound’ and apply our
approach to an example application involving three interacting web services.

1 Introduction

Service-Oriented Computing (SOC) has recently put forward as a promising computing
paradigm for developing massively distributed, interoperable, evolvable systems and
applications that exploit the pervasiveness of the Internet and its related technologies.
The SOC paradigm advocates the use of ‘services’, to be understood as autonomous,
platform-independent computational entities that can be described, published, discov-
ered, and dynamically assembled, as the basic blocks for building applications. Web
services (WS), along with grid computing, are the present most successful instantia-
tion of the SOC paradigm, as it is demonstrated by the fact that companies like IBM,
Microsoft and Sun invested a lot of efforts and resources to promote their deployment.

A web service is basically a set of operations that can be invoked through the Web
via XML messages complying with given standard formats. To support the WS ap-
proach, many new languages, most of which based on XML, have been designed, like
e.g. business coordination languages (such as WS-BPEL, WSFL, WSCI, and XLANG),
contract languages (such as WSDL and SWS), and query languages (such as XPath and
XQuery). However, current software engineering technologies for WS still lack rigor-
ous formal foundations. The challenges come from the necessity of dealing at once
with issues like communication, co-operation, resource usage, failures, security, etc. in
a setting where demands and guarantees can be very different for the many components.

In this paper we focus on two of the most used XML-based languages for WS: Web
Services Description Language (WSDL [CCMW01]) and Web Services Business Pro-
cess Execution Language (WS-BPEL [BCG+05]). The former is a W3C standard that

? Supported by EU within the FP6-2004-IST-FET Proactive project SENSORIA proposal con-
tract number 016004.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IMT Institutional Repository

https://core.ac.uk/display/12096374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

permits to express the functionalities offered and required by web services by defining,
akin object interfaces in Object-Oriented Programming, the signatures of operations
and the structure of the documents for invoking them and returned by them. The latter,
currently under evaluation to become a standard by OASIS, permits to describe the ac-
tivities to be executed for completing the service as a reaction to a service invocation.
WSDL declarations can be exploited to verify the possibility of connecting different
services, while WS-BPEL descriptions can be used to define new services by appropri-
ately composing other existing ones.

We aim at formalizing the relationship existing between WS-BPEL processes and
the associated WSDL documents by putting forward a rigorous typing discipline. In
general, the WSDL document associated to a WS-BPEL process does not contain the
declarations of all the operations provided and required by the process, together with
the structure of the messages exchanged. In fact, some of these declarations usually are
in the WSDL documents of the orchestrated services. Moreover, WSDL provides four
different types of operations, but only two of them are really supported by WS-BPEL:
(synchronous) request-response and one-way. There is another interaction pattern that
is largely used in WS-BPEL (see, e.g., the example 16.1 in [BCG+05]) but it is not
provided by WSDL: asynchronous request-response. This last pattern is implemented
through a partner link connecting two one-way operations but no constraint is imposed
on which process must declare the type of the operations. Finally, WS-BPEL provides
many redundant programming constructs and suggest a quite liberal programming style.
For example, it is possible for a programmer to write parallel activities that have strict
implicit dependencies so that they are sequentially (rather than concurrently) executed.

To achieve our goal, we first define a semantic model for WS-BPEL because the
semantics of the language, as presented in [BCG+05], is informal and, sometimes, am-
biguous. Hence, as a first contribution of this paper, we introduce a process language,
that we call - (web services calculus), that formalizes the semantics of an ex-
pressive subset of WS-BPEL, with special concern for modeling the interactions among
web services, be them WS-BPEL processes or not, in a network context. This allows us
to tackle those problems arising when executing WS-BPEL processes, such as multiple
start activities, receive conflicts, routing of messages, while avoiding the intricacies of
dealing with any, possibly redundant, WS-BPEL construct.

As a second contribution, we define a type system for - terms and show
that the type system and the operational semantics are ‘sound’, in the sense that -
 terms reached along any reduction sequence starting from well-typed terms
are still well-typed and, thus, do not generate runtime errors. The type system enforces
many of the constraints imposed by WSDL/WS-BPEL, e.g. it prevents programs from
passing links that have been implicitly initialized and from invoking callback opera-
tions that do not have previous triggering receive operations. However, in some cases
it is even further restrictive so to enforce a more disciplined programming style. Thus,
for example, the type system deems as ill-typed those programs containing flow activi-
ties that have strict implicit dependencies. Moreover, in case of asynchronous request-
response, it forces the WSDL document associated to the process providing the service
to contain the declaration of both the two operations, that for invoking the service and
that for sending the reply back to the client. This last choice is dictated by the need to

2

preserve two important properties of web services, namely compositionality and loose
coupling. Indeed, should each client contain the declaration for the reply, then, if the
service provider wants to modify such a declaration, all clients should be updated.

The rest of the paper is organized as follows. Syntax and operational semantics of
- are defined in Section 2, while the type system and the soundness results
are presented in Section 3. Section 4 illustrates an application of our framework to mod-
elling an example of web services composition. In Section 5 we touch upon directions
for future work and comparisons with related work. We refer the interested reader to the
full paper [LPT06] for a complete semantic account of WS-BPEL, for further examples
and for the proofs of all results stated in this paper.

2 -

- (web services calculus) permits to express web services in a primitive
form with special concern for modeling the interactions among web service instances
in a network context. Although - can directly model the semantics of an
expressive subset of WS-BPEL, we refer the interested reader to [LPT06] for a more
complete account of this topic. Indeed, due to lack of space, here we do not deal with
many features such as, e.g., flow graphs, timed activities, scopes and compensation han-
dling, that should be considered for modeling the semantics of full-blown orchestration
languages.

The syntax of -, given in Table 1, is parameterized with respect to the
following syntactic sets, which we assume to be countable and pairwise disjoint: prop-
erties (sorts of late bound constants storing some relevant values within service in-
stances, ranged over by p), basic values (integers Int, strings Str, and booleans) and
corresponding variables (ranged over by b), addresses (ranged over by a) and partner
links (namely variables storing addresses used to identify service partners within an in-
teraction, ranged over by l), and service identifiers (ranged over by A) each with a fixed
nonnegative arity. The language is also parametric with respect to a set of operations,
ranged over by o, which we do not specify, and expressions, ranged over by e, whose
exact syntax is deliberately omitted; we just assume that expressions contain, at least,
basic values and variables, partner links, addresses and properties. Notationally, we will
use u to range over values (i.e. basic values and addresses), v to range over variables
(i.e. basic variables and partner links), w to range over operation parameters (i.e. vari-
ables and properties), c to range over correlation patterns (i.e. values and properties),
and r to range over addresses and partner links. Addresses may be underlined to de-
note that they cannot be transmitted as operation parameters, while partner links may
be subject to the operator p· q that forces them to be already initialized.

Notation ·̄ denotes tuples of objects. E.g. v̄ is a tuple of variables; this will sometimes
be written as v̄i∈I , for an appropriate index-set I, and vi denotes the i-th element. We
assume that variables in the same tuple are pairwise distinct. When convenient, we
shall regard a tuple simply as a set writing e.g. a ∈ ū to mean that a is an element of ū.
All notations shall extend to tuples component-wise.

A - node can be thought of as a WS-BPEL process web service. Nodes,
written as a ::Op,L C, are uniquely identified by an address a and have a declarative part

3

n ::= a ::Op,L C (nodes)
C ::= ∗s | m � s | 〈a, o, ū〉 | C | C (components)
m ::= ∅ | {p = u} | m ∪ m (correlation constraints)
s ::= (services)

0 (null)
| exit (exit)
| ass (w̄, ē) (assign)
| inv (r, o, w̄) (invoke)
| rec (r, o, w̄) (receive)
| if (e) then {s} else {s} (switch)
| s; s (sequence)
| s | s (flow)
| ∑

i∈I rec (ri, oi, w̄i) ; si (pick)
| A(w̄) (call)

Table 1. - syntax (The syntax of types Op, L is in Table 4)

Op, L, i.e. its type, and a behavioural part C. Finite sets of nodes are called nets and
are ranged over by N,N′,N1, The type of a node collects all the information about
the format of the messages exchanged by the operations available at the node, Op, and
the local declarations, L, like the WSDL document associated to the corresponding
WS-BPEL process web service. Since we are interested in describing asynchronous in-
teractions, we model each communication pattern by connecting one or more one-way
operations. In the simplest interaction, a single one-way operation suffices; the service
provider process, which is the one that performs the receive activity, holds the type def-
inition of the requested operation. The more complex asynchronous request-response
interaction pattern is expressed by connecting two one-way operations (request and
callback); in this case, the provider holds the type definitions of both operations (the
rationale for this choice has been explained in the Introduction). We defer syntax of
types and comments on them to Section 3.

Components C may be service specifications, instances or requests. The behavioural
specification of a service s is written ∗s, while m � s′ represents a service instance that
behaves according to s′ and whose properties evaluate according to the (possibly empty)
set m of correlation constraints. A correlation constraint is a pair, written p = u, record-
ing the value u assigned to the property p. Properties are used to store values that are
important to identify service instances. For example, one might use a property named
purchase-order-id to uniquely identify instances of a service that handles purchase or-
ders. A service request 〈a, o, ū〉 represents an operation invocation that must still be
processed and contains the invoker address a, the operation name o and the data ū for
operation execution. - operation names represent WS-BPEL pairs ‘partner
link – operation’ (instead, WS-BPEL partner links are not explicitly modeled), thus
pairs ‘a – o’, that are the first two components of service requests, represent endpoints
between two interacting process web services.

4

Services are structured activities built from basic activities, i.e. instance forced ter-
mination exit, assignment ass (·, ·), service invocation inv (·, ·, ·) and service request pro-
cessing rec (·, ·, ·), by exploiting operators for conditional choice if (·) then {·} else {·}
(switch), sequential composition ·; · (sequence), parallel composition · | · (flow), ex-
ternal choice1 ∑

i∈I rec (·, ·, ·) ; · (pick) and service call A(w1, · · · ,wn) where n is the
arity of A. Every service identifier A with arity n has a unique definition of the form
A(v̄i∈{1,..,n} : τ̄?i∈{1,..,n})

de f
= s, where the vi must be fresh and pairwise distinct. Notably,

parameters of a service definition are typed (see the next section).
The - binding constructs are ass (w̄, ē) and rec (r, o, w̄) that bind the vari-

ables and the properties in w̄. The latter also binds r if it is a partner link and is not
subject to the operator p· q; we will say that r is implicitly initialized (conversely, we
will say that a partner link is explicitly initialized in all other cases). This means that
pl q represents a free occurrence of l (e.g. a callback address) that must have been bound
previously. The scope of the bindings extends to the whole component where the binder
occurs (namely, like in WS-BPEL, variables and properties are global to the instance).
A variable occurrence is free if it is not under the scope of a binder. We assume that
all bound partner links are pairwise distinct, but for those occurring within alternative
branches of switch and pick constructs. Thus, the following fragment of service is well-
defined:

. . . if (e) then {. . . rec (l, . . . , . . .) . . .} else {. . . rec (l, . . . , . . .) . . .}; inv (l, . . . , . . .) . . .

In general, we use f v(s) (resp. bv(s)) to denote the set of variables which occur free
(resp. bound) in s. In particular, variables of w̄ are free in A(w̄). In a definition A(v̄ :
τ̄?) de f

= s we assume f v(s) ⊆ v̄.
In the sequel we shall only consider nets that are well-formed in the sense that they

comply with the following syntactic constraints. First, pairwise distinct nodes must have
different addresses. Then, if we call start activities of a service s all those activities that
are not syntactically preceded by other ones (as formalized by function eR() whose
inductive definition can be found in [LPT06]), then at least one start activity of ∗s must
be a rec (·, ·, ·) and, if multiple rec (·, ·, ·) are enabled concurrently, then they must use
the same non-empty set of properties.

The operational semantics of - is given in terms of a structural congru-
ence and of a reduction relation over nets. Due to space limitations, here we only present
the major ingredients and refer the interested reader to [LPT06] for the details. For in-
stance, we omit the rules for fault throwing and handling, and model taking place of
errors (e.g. when the premises of reduction rules are not satisfied) simply as deadlock.

The semantics of nets will be defined over an enriched set of nets that also includes
those auxiliary nets resulting from replacing (free occurrences of) variables with values
in nets produced by the syntax of Table 1. Therefore, we will let free occurrences of v
(and w) to also denote corresponding values.

The structural congruence, denoted by ≡, identifies syntactically different terms
which intuitively represent the same term. At the level of services, the structural con-
gruence states that: the sequence operator is associative and has 0 as identity element

1 Whenever the external choice is between two activities, we shall simply write s1 + s2.

5

(thus we have the law 0; s ≡ s, which is exploited to enable a new activity when a
syntactically preceding one terminates); the flow operator is commutative, associative
and has 0 as identity element; the pick operator enjoys the same properties and, ad-
ditionally, is idempotent; services only differing for the bound variables are the same
(alpha-conversion). The structural congruence is extended to components and nets in
the obvious way. In particular, components composition is commutative and associative,
and has m � 0 as identity element (i.e. instances of this form are terminated instances
and, thus, can be removed).

The reduction relation over nets, written �−→, relies on a labelled transition relation
α−−→ over service instances, where α is generated by the following production:

α ::= \ | w̄ := ū | i(a, o, ū) | r(r, o, w̄)

The meaning of labels is as follows: \ denotes forced termination of a service instance,
w̄ := ū denotes execution of a multiple assignment, i(a, o, ū) denotes invocation of
operation o located at a with data ū and r(r, o, w̄) denotes launching of o with operation
parameters w̄ on request of a web service instance located at r.

To define the operational semantics, we exploit a few auxiliary functions. First, we
define a function for evaluating expressions: it takes an expression and returns a basic
value or an address. We write m B e such a function, but we do not explicitly define
it because the exact syntax of expressions is deliberately not specified (recall that -
 is parameterized wrt the syntax of expressions). Expressions to be evaluated
can contain properties; thus, evaluation of e takes place wrt a set of correlation con-
straints m storing the values of the properties that may occur within e. On the contrary,
expressions to be evaluated cannot contain (free) variables because these occurrences
are replaced with the corresponding values as soon as the variables are bound. Indeed,
execution of a binding construct generates a substitution (ranged over by σ), i.e. a map
from basic variables to basic values and from partner links to addresses, that is applied
to the whole instance where the binder occurs. A substitution σ will be sometimes writ-
ten as (v̄ 7→ σ(v̄)) for v̄ = dom(σ). Application of substitution σ to s is written s ·σ. The
effect of s · σ is that, for each x ∈ dom(σ), every free occurrence of x in s is replaced
with σ(x).

Another ingredient we need to define the semantics is a mechanism for checking if
the assignments of ui to wi, for any index i in a given set I, comply with the correlation
constraints in m. We will write m B (w̄i∈I := ūi∈I) such a mechanism. In case the check
succeeds, to take care of the effect of the assignments, a pair 〈m′, σ〉 is returned where
m′ is the set of the correlation constraints for the properties in w̄i∈I and σ is the substi-
tution for the variables in w̄i∈I . The function is defined inductively on the syntax of w̄ as
follows:

m B (v := u) = 〈∅, (v 7→ u)〉

m B (p := u) =


〈∅, ∅〉 if p = u ∈ m
〈{p = u}, ∅〉 if it does not exists u′ s.t. p = u′ ∈ m
undef otherwise

m B (w, w̄ := u, ū) = 〈m′ ∪ m′′, σ ◦ σ′〉
{

if m B (w := u) = 〈m′, σ〉 and
m ∪ m′ B (w̄ := ū) = 〈m′′, σ′〉

6

m ` exit
\−→ 0 (Exit) m ` ass (w̄, ē)

w̄:= mBē−−−−−−→ 0 (Assign)

m ` inv (a, o, c̄)
i(a,o,mBc̄)−−−−−−−−→ 0 (Invoke)

r , pl q

m ` rec (r, o, w̄)
r(r,o,w̄)−−−−−−→ 0

(Receive)

m B e = false m ` s2
α−−→ s′2

m ` if (e) then {s1} else {s2} α−−→ s′2
(Ifff)

m B e = true m ` s1
α−−→ s′1

m ` if (e) then {s1} else {s2} α−−→ s′1
(Iftt)

m ` s1
α−−→ s′1

m ` s1; s2
α−−→ s′1; s2

(Sequence)
m ` s1

α−−→ s′1 α , r(·, ·, ·)
m ` s1 | s2

α−−→ s′1 | s2

(Flow)

m ` s1
r(r,o,w̄)−−−−−−→ s′1 @ rec (r, o, w̄′) ∈ eR(s2) . P(w̄) = P(w̄′)

m ` s1 | s2
r(r,o,w̄)−−−−−−→ s′1 | s2

(FlowRec)

m ` rec (r, o, w̄) ; s
r(r,o,w̄)−−−−−−→ s′ @ i ∈ I . ri = r ∧ oi = o ∧ P(w̄i) = P(w̄)

m ` rec (r, o, w̄) ; s +
∑

i∈I

rec (ri, oi, w̄i) ; si
r(r,o,w̄)−−−−−−→ s′

(Pick)

m ` s · (v̄ 7→ m B c̄)
α−−→ s′

m ` A(c̄)
α−−→ s′

A(v̄ : τ̄?)
de f
= s (Call)

Table 2. - operational semantics: instances

Finally, the last two auxiliary functions we need are:

– P(w̄) returns the set of properties contained in the set of operation parameters w̄.
– eR(C) returns the set of activities rec (·, ·, ·) that are start activities of instances in C

(it is defined inductively on the syntax of C, see [LPT06]).

The labelled transition
α−−→ is the least relation over service instances induced by the

rules in Table 2. For the sake of simplicity, we explicitly write only those entities that are
necessary for a transition to occur or are modified by it. For example, since correlation
constraints are sometimes necessary but are never modified by a transition, we write the
relation as m ` s

α−−→ s′ instead of m � s
α−−→m � s′. The most of the rules are obvious,

we only remark a few points. Rule (Receive) states that a rec (·, ·, ·) cannot be performed
when the address of the sender of a request is unknown and cannot be learned (i.e. the
first argument is neither an address nor a link). Rules (Flow) and (FlowRec) state that, in
case no receive conflict occurs2 (i.e. there aren’t two or more receive activities simul-

2 Sets of correlation constraints are exploited precisely to deal with receive conflicts: they
prevent loss of correlation information (which would be lost if properties are simply re-

7

m ` s
w̄:= ū−−−−→ s′ m B (w̄ := ū) = 〈m′, σ〉

{a :: m � s | C} �−→ {a :: (m ∪ m′) � s′ · σ | C}
(Assign)

m ` s
i(a2 ,o,ū)−−−−−−→ s′ a′ < ū

{a1 :: m � s | C1, a2 :: C2} �−→ {a1 :: m � s′ | C1, a2 :: 〈a1, o, ū〉 | C2}
(Invoke)

m ` s
r(a′ ,o,w̄)−−−−−−→ s′ m B (w̄ := ū) = 〈m′, σ〉 m , ∅

{a :: m � s | 〈a′, o, ū〉 | C} �−→ {a :: (m ∪ m′) � s′ · σ | C}
(ReceiveaI)

m ` s
r(l,o,w̄)−−−−−−→ s′ m B (l, w̄ := a′, ū) = 〈m′, σ〉 m , ∅

{a :: m � s | 〈a′, o, ū〉 | C} �−→ {a :: (m ∪ m′) � s′ · σ | C}
(ReceivelI)

∅ ` s
r(a′ ,o,w̄)−−−−−−→ s′ ∅ B (w̄ := ū) = 〈m, σ〉 rec (a′, o, w̄) < eR(C)

{a :: ∗s | 〈a′, o, ū〉 | C} �−→ {a :: ∗s | m � s′ · σ | C}
(ReceiveaS)

∅ ` s
r(l,o,w̄)−−−−−−→ s′ ∅ B (l, w̄ := a′, ū) = 〈m, σ〉 rec (l, o, w̄) < eR(C)

{a :: ∗s | 〈a′, o, ū〉 | C} �−→ {a :: ∗s | m � s′ · σ | C}
(ReceivelS)

m ` s
\−→ s′

{a :: m � s | C} �−→ {a :: C}
(Terminate)

N1 �−→ N′1

N1 ∪ N2 �−→ N′1 ∪ N2

(Part)

N ≡ N1 N1 �−→ N2 N2 ≡ N′

N �−→ N′
(Cong)

Table 3. - operational semantics: nets

taneously enabled for the same combination of partner link, operation and correlation
set), executions of the two argument services are interleaved. Rule (Pick) states that, in
case no receive conflict occurs, the pick activity can execute any of its receive activities
and then proceed accordingly.

The reduction relation �−→ is the least relation over nets induced by the rules in Ta-
ble 3. Types of nodes are omitted because they play no role in the operational semantics
of -. Let us now comment on the rules. Rule (Assign) states that the effect of

placed by the corresponding values). For example, if properties are dealt with as basic vari-
ables, by applying the substitution (p 7→ 5) to the service instance (. . . rec (r, o, 〈pp q, v〉) |
rec (r, o, 〈pp q, v′〉) . . .) we would obtain (. . . rec (r, o, 〈5, v〉) | rec (r, o, 〈5, v′〉) . . .) that does
not permit to establish if the receive activities are in conflict. Indeed, we would obtain
the same term by applying the substitution (p 7→ 5, v′′ 7→ 5) to (. . . rec (r, o, 〈pp q, v〉) |
rec (r, o, 〈v′′, v′〉) . . .), where no conflict occurs.

8

an assignment is global wrt the instance and consists of replacing the free occurrences
of the variables bound by the assignment with the corresponding values and of extend-
ing the set of correlation constraints identifying the instance with the pairs resulting
from the assignment. Rule (Invoke) states that service invocation corresponds to adding
a service request to the dataspace of the invoked service provided that no address im-
plicitly received is exported as operation parameter. The request is a tuple, containing
the address a1 of the invoker, the name of the invoked operation o and the message ū
(i.e. the arguments to be passed to o). Hence, the invocation of a remote service is asyn-
chronous because the invoker can proceed before its request is processed. WS-BPEL
also provides a synchronous invocation that forces the invoker to wait for an answer by
the invoked service, which indeed performs a pair of activities receive – reply. In -
, this behaviour is rendered as execution of a pair of activities invoke – receive
by the invoker and of a pair of activities receive – invoke by the invoked service. Rule
(ReceiveaI) states that activity receive cannot progress until a matching request has been
received. Thus, differently from activity invoke, it is blocking. Requests are routed to
the correct service instance by exploiting the partner link and the operation contained
in the request, which must coincide with those in the label of the transition performed
by the service instance, and the correlation constraints identifying the instance, which
must enable the assignment of the values contained in the request to the parameters
contained in the receive. The correlation set identifying the instance must not be empty
otherwise it could not be possible to determine the correct instance to which the request
must be delivered. When the reduction takes place, the matching request is consumed
and the effect on the instance is the same as that of the corresponding assignment. Rule
(ReceivelI) differs only because in this case the address of the invoker is not known
in advance. After the reduction, the address contained in the request is marked as not
further transmissible and is used to replace the partner link occurring in the receive.
The last two rules for the activity receive, (ReceiveaS) and (ReceivelS), permit to create
a new service instance on receipt of a request that cannot be routed to an existing in-
stance. The additional premise prevents interferences with the first two rules for receive
in case of multiple start activities, as illustrated by the example

{a :: ∗(rec (l, o, 〈p〉) | rec
(
l′, o′, 〈p〉)) | {p = 10} � rec (l, o, 〈p〉) | 〈a′, o, 〈10〉〉}

where only the service instance can evolve. Rule (Terminate) states that the whole ser-
vice instance performing a transition labelled \ immediately terminates. Rule (Part)
states that if a part of a larger net evolves, the whole net evolves accordingly. Rule
(Cong) is standard and states that structural congruent nets have the same reductions.

3 Types

The syntax of types is defined in Table 4. An operation type set Op is a collection of type
definitions of operations o : τ̄, where τ̄ is a tuple of message types that characterizes the
format of the arguments that an operation requires. We assume that the type definition
of a given operation only occurs at a single node within a net. Local declarations L
consist of type definitions of basic variables and properties, which have basic types bt

9

Op ::= ∅ | {o : τ̄} | Op ∪ Op (operation type sets)
L ::= ∅ | {b : bt} | {p : bt} | L ∪ L (local declarations)
bt ::= I | S | B (basic types)
τ ::= bt | Op (message types)
t ::= τ̄ |  |  (generic types)

Table 4. Type syntax

(for simplicity sake, we only consider I, S and B). Types  and  are
those of (well-typed) nets and services, respectively.

In the sequel, we will use the symbol ? to type partner links that are implicitly
initialized (i.e. they are bound as first argument of a rec (, ,)). Notation τ?, which is
used to type the parameters of service definitions (see the previous section), stands for
a message type τ or for ?. Typing a parameter with ? means that it is a partner link
that should have been bound implicitly by a receive activity that syntactically precedes
the service call. Moreover, notation s shall denote both service specifications (∗s) and
service instances (m � s).

Type inference. Type environments, ranged over by Γ, map addresses and partner links
to sets of operation types Op or to ?, and service identifiers to . If x < dom(Γ),
we write Γ, x : t for the type environment obtained by extending Γ with the binding of
x to t (the notation generalizes to Γ, {xi : ti}i∈I with the obvious meaning). We write ∅
to denote the type environment with empty domain. Type environments are ordered by
the standard preorder over functions, thus we write Γ 6 Γ′ when dom(Γ) ⊇ dom(Γ′)
and Γ(x) = Γ′(x) for each x ∈ dom(Γ′).

Type environments hold the types of nodes and of partner links. This information
is exploited to properly deal with address passing (indeed, invoke and receive activities
can use partner links as parameters to exchange node addresses). The type of a partner
link is a set of operation types Op stating that the partner link can be bound only to
addresses holding a type Op′ such that Op ⊆ Op′. During the type checking wrt Γ,
we can easily determine if a partner link l has been implicitly or explicitly initialized
according to the fact that Γ(l) is ? or Op, respectively. When a partner link is implicitly
initialized, the type system checks that the associated address is never transmitted (the
example in Section 4 shows that this limitation does not affect the expressive power
of the calculus), as required by WSDL / WS-BPEL. When a partner link is explicitly
initialized, the type system checks that the link is not reassigned (in fact, this control is
done implicitly because if l ∈ dom(Γ) then Γ, l : Op is undefined). Type environments
also hold service identifiers: this information is exploited when typing recursive service
definitions.

The judgment Γ ` N : , defined by the inference rules of Table 5, says that a
net N is well-typed under the type environment Γ. The initial type environment used
to typecheck a net does not contain type associations for partner links; this kind of
associations may be added to the environment during the type checking of services,

10

∀ i ∈ I Γ, {a j : Op j | j ∈ I} ` ai ::Opi ,Li Ci : 

Γ ` {ai ::Opi ,Li Ci | i ∈ I} : 
(net)

Γ `L
a C : 

Γ ` a ::Op,L C : 

(netToServ)
Γ′ ` N :  Γ 6 Γ′

Γ ` N : 

(netWeak)

Table 5. Inference rules for Γ ` N : 

by means of the function envExt·,·(·). Rule (net) says that a net is well-typed under a
type environment, if each node is well-typed under the environment extended with type
information extracted from all nodes. Rule (netToServ) says that a node is well-typed
if its components are well-typed. Rule (netWeak) says that a type environment can be
replaced with a stronger one (i.e. one making more assumptions).

The judgment Γ `L
a S : t, defined by the set of inference rules shown in Tables

6 and 7, says that S has type t, where S is a metavariable denoting values, variables,
properties, requests and services, wrt a type environment Γ and a pair a–L made of the
address of a node and a set of local declarations. The symbol v denotes the subtyping
preorder over τ induced by letting Op v Op′ if Op ⊆ Op′. The preorder extends to
tuples of message types by letting 〈τ1, . . . , τn〉 v 〈τ′1, . . . , τ′n〉 if τi v τ′i for i = 1..n.
To distinguish partner links within a tuple of variables and properties, we exploit the
auxiliary function pl(·) that, given a tuple w̄i∈I , returns the set of indexes of the partner
links therein. The function is defined inductively on the syntax of w̄i∈I as follows:

pl(bi) = ∅ pl(pi) = ∅ pl(li) = {i} pl(w̄i∈I) =
⋃

i∈I

pl(wi)

We comment on the most significant rules in Table 7, since the rules in Table 6 are
standard. Rule (inv) is applied when an invoke activity is performed by a client in a
one-way interaction or to start a request-response interaction. In these cases, indeed,
the address of the provider (holding the type definition of the operation) is given by r.
Of course, the parameters of the invoked operation must conform to the correspond-
ing operation type. In particular, when an invoke transmits an address, e.g. w̄ = w̄i∈I ,
wk = r′ and τk = Op′′, then it must be that Op′′ ⊆ Op′ where Op′ is the operation
type set associated to r′ in Γ (i.e. Γ `L

a r′ : Op′). This is indeed what the condition
τ̄ v τ̄′ checks. Rule (inv cb) is applied to an invoke activity performed as a callback
in a request-response interaction. The local node is the operation provider. The only
difference with the previous rule is that, in case the first argument of the activity is a
partner link l, it is additionally checked that a triggering receive activity which initial-
izes l logically precedes the invoke (this is expressed by the premise Γ `L

a l : ?). Rule
(rec cb) is applied when a client performs a receive activity to obtain a callback in a
request-response interaction. Similarly to rule (inv), the type of the operation must be
retrieved from the provider node whose address is given by r. In case the first argument
of the operation is a free occurrence of a link it is checked that the link is not transmit-

11

u ∈ Int
∅ `L

a u : I
(int)

u ∈ Str
∅ `L

a u : S
(str)

u ∈ {true, false}
∅ `L

a u : B
(bool)

r : Op `L
a r : Op (ref)

b : τ ∈ L

∅ `L
a b : τ

(var)
p : τ ∈ L

∅ `L
a p : τ

(prop)

l : Op `L
a pl q : Op (ref2)

Γ `L
a w1 : τ1 . . . Γ `L

a wn : τn

Γ `L
a 〈w1, . . . ,wn〉 : 〈τ1, . . . , τn〉

(w̄)

Γ′ `L
a S : t Γ 6 Γ′

Γ `L
a S : t

(weak)
Γ `L

a e1 : τ1 . . . Γ `L
a en : τn

Γ `L
a 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉

(ē)

Table 6. Inference rules for Γ `L
a S : t

ted. Rule (rec) is similar but is applied when the local node is the provider of the receive
activity. Rule (seq) says that a sequence of services s1; s2 is well-typed under Γ if s1
is well-typed under Γ and s2 is well-typed under Γ extended with the type associations
for the partner links bound by s1 (notably, the extension is possible only if such part-
ner links are not reassigned). The set of new associations is returned by the auxiliary
function envExt·,·(·), that can be defined inductively on the syntax of services. The most
significant cases, i.e. those for the binding constructs, are defined as follows:

envExtΓ,a(rec (r, o, w̄)) =

{l : τi | ∃ i . wi = l ∧ τi ∩ Op = ∅} ∪ {l′ : ? | r = l′} if Γ `∅a a : Op ∧ o : τ̄ ∈ Op

{l : τi | ∃ i . wi = l ∧ Γ `∅a r : Op′ ∧ o : τ̄ ∈ Op′ ∧ otherwise
Γ `∅a a : Op ∧ τi ∩ Op = ∅}

envExtΓ,a(ass (w̄, ē)) = {l : τi | ∃ i . wi = l ∧ Γ `∅a ē : τ̄ ∧ Γ `∅a a : Op ∧ τi ∩ Op = ∅}

Condition τi ∩ Op = ∅ avoids that the service executing the activity can receive its
same address as an argument. Finally, rule (flow) forces the two component services to
type check in the same environment. This control prevents implicit flow of addresses
from one component to the other (recall that partner link declarations are global to the
instance) which would force a strict execution ordering of the components (thus, e.g.,
the service instance rec (l, o,w) | inv (l, o′, 5) does not type check).

Type soundness. The major property of our type system is that if a net typechecks then
it does never generate runtime errors (Corollary 1). The proof proceeds in the style
of [WF94] by first proving subject reduction, namely that nets well-typedness is an
invariant of the reduction relation (Theorem 1), and then proving type safety, namely
that well-typed nets do not immediately generate errors (Theorem 2). Due to lack of

12

Γ `L
a C1 :  Γ `L

a C2 : 

Γ `L
a C1 | C2 : 

(par)
Γ `L

a s : 

Γ `L
a s : 

(serv)

Γ `L
a a : Op Γ `L

a a′ : Op′ o : τ̄ ∈ Op ∪ Op′ Γ `L
a ū : τ̄′ τ̄ v τ̄′

Γ `L
a 〈a′, o, ū〉 : 

(req)

∅ `L
a 0 :  (nil) ∅ `L

a exit :  (exit) A :  `L
a A :  (def2)

Γ `L
a ēi∈I : τ̄i∈I Γ `L

a w̄i∈(I\J) : τ̄i∈(I\J)

Γ `L
a ass (w̄i∈I , ēi∈I) : 

J = pl(w̄i∈I) (ass)

Γ `L
a r : Op o : τ̄ ∈ Op Γ `L

a w̄ : τ̄′ τ̄ v τ̄′

Γ `L
a inv (r, o, w̄) : 

(inv)

Γ `L
a a : Op o : τ̄ ∈ Op Γ `L

a w̄ : τ̄′ τ̄ v τ̄′ r = l⇒ Γ `L
a l : ?

Γ `L
a inv (r, o, w̄) : 

(inv cb)

Γ `L
a r : Op o : τ̄i∈I ∈ Op Γ `L

a w̄ j∈(I\J) : τ̄ j∈(I\J)

r , l r = pl q⇒ ∀ i ∈ J wi , l

Γ `L
a rec (r, o, w̄i∈I) : 

J = pl(w̄i∈I) (rec cb)

Γ `L
a a : Op o : τ̄i∈I ∈ Op Γ `L

a w̄ j∈(I\J) : τ̄ j∈(I\J)

r = pl q⇒ ∀ i ∈ J wi , l ∧ Γ `L
a l : ?

Γ `L
a rec (r, o, w̄i∈I) : 

J = pl(w̄i∈I) (rec)

Γ `L
a e : B Γ `L

a s1 :  Γ `L
a s2 : 

Γ `L
a if (e) then {s1} else {s2} : 

(if)

Γ `L
a s1 :  Γ, envExtΓ,a(s1) `L

a s2 : 

Γ `L
a s1; s2 : 

(seq)

Γ `L
a s1 :  Γ `L

a s2 : 

Γ `L
a s1 | s2 : 

(flow)
∀ i ∈ I Γ `L

a rec (ri, oi, w̄i) ; si : 

Γ `L
a

∑

i∈I

rec (ri, oi, w̄i) ; si : 
(pick)

Γ `L
a A :  Γ `L

a w̄ : τ̄?1 τ̄? v τ̄?1
Γ `L

a A(w̄) : 
A(v̄ : τ̄?)

de f
= s (call)

Γ, A : , v̄ j∈J : τ̄?j∈J `
L ∪ {v̄i∈(I\J) : τ̄?i∈(I\J)}
a s : 

Γ `L
a A : 

A(v̄i∈I : τ̄?i∈I)
de f
= s , J = pl(v̄i∈I) (def1)

Table 7. Inference rules for Γ `L
a S : t (cont.)

13

space, we omit the proofs of the results presented in this section (they are quite standard
and can be found in [LPT06]).

First, we introduce some auxiliary definitions. A (generic) context Cg is a service
with one subterm replaced by a hole, denoted [·]. Formally, Cg is defined as follows:

Cg ::= [·] | Cg | s | Cg; s | s;Cg | rec (r, o, w̄) ;Cg +
∑

i∈I rec (ri, oi, w̄i) ; si

| if (e) then {s} else {Cg} | if (e) then {Cg} else {s} | A(c̄)

where the body of the service definition is a context, i.e. A(v̄ : τ̄?) de f
= Cg. Notably, terms

of the form [·] ; s +
∑

i∈I rec (ri, oi, w̄i) ; si are not considered (for the moment). Notation
Cg[s] denotes the service resulting from filling the hole of Cg with service s.

An execution context C is a context such that, once the hole is filled with a ser-
vice s, the resulting service C[s] is capable of immediately performing an activity of s.
Formally, C is defined by the following grammar:

C ::= [·] | C | s | C; s | if (e) then {C} else {s} |
if (e) then {s} else {C} | A(c̄)

where A(v̄ : τ̄?) de f
= C. Whenever, we only consider basic receive activities, we can

extend the set of possible execution contexts as follows:

Cr ::= C | [·] ; s +
∑

i∈I rec (ri, oi, w̄i) ; si

The subject reduction theorem exploits the following two auxiliary lemmas. The
former is the key for showing type preservation for reductions involving substitutions,
the latter states that if a service is well-typed then its continuation after a transition is
well-typed too.

Lemma 1. Suppose Γ `L
a s : . If Γ `L

a v : τ, Γ `L
a u : τ′ and τ v τ′, then

Γ `L
a s · (v 7→ u) : .

Lemma 2. If Γ `L
a s :  and m ` s

α−−→ s′ then Γ′ `L
a s′ :  with Γ′ such that3:

– Γ′ 6 Γ in case of α = \, i(a′, o, ū);
– Γ′ 6 Γ, envExtΓ,a(rec (r, o, w̄)) in case of α = r(r, o, w̄);
– Γ′ 6 Γ, envExtΓ,a(ass (w̄, ē)) in case of α = (w̄ := ū) and s ≡ C[ass (w̄, ē)].

Theorem 1 (Subject Reduction). If Γ ` N :  and N �−→ N′ then Γ′ ` N′ : 

for some Γ′.

The errors that our type system can capture, are characterized by predicate �→err

that holds true when a net can immediately generate a runtime error. The most sig-
nificant rules defining �→err are in Table 8 (the remaining of rules can be found in
[LPT06]).

Rule (opDefError1) raises an error when an operation is invoked whose type dec-
laration is neither in the type of the caller nor in that of the callee. Rule (opDefError2)

3 Notably, wrt the type environment on the right of 6 , Γ′ can additionally contain further asso-
ciations due to service calls. This explains the use of 6 instead of =.

14

s ≡ C[inv (a′, o, w̄)] o : τ̄ < Op o : τ̄ < Op′

{a ::Op,L s | C, a′ ::Op′ ,L′ C′} �→err
(opDefError1)

s ≡ Cr[rec (l, o, w̄)] o : τ̄ < Op

{a ::Op,L s | C} �→err
(opDefError2)

s ≡ Cr[rec (a′, o, w̄)] o : τ̄ < Op o : τ̄ < Op′

{a ::Op,L s | C, a′ ::Op′ ,L′ C′} �→err
(opDefError3)

s ≡ Cr[rec (l, o, w̄) ;Cg[inv (l′, o′, w̄′)]] ∃ i . w′i = l

{a ::Op,L s | C} �→err
(linkError)

s ≡ C[inv (l, o, w̄)] o : τ̄ ∈ Op

{a ::Op,L s | C} �→err
(rrError1)

s ≡ C[ass (w̄, ū) ;Cg[inv (l, o, w̄′)]] o : τ̄ ∈ Op ∃ i . wi = l

{a ::Op,L s | C} �→err
(rrError2)

Table 8. Runtime errors (selected rules)

raises an error if the type declaration of the requested operation is not found in the type
of the local node. Indeed, the service must be the provider since the activity first ar-
gument is a link. If the first argument of the activity is an address, there is no way to
tell if the service is a client or a provider. Therefore, rule (opDefError3) raises an error
only if the type declaration of the requested operation is neither in the type of the callee
nor in that of the caller. Rule (linkError) raises an error when a partner link implicitly
initialized is going to be passed in a communication. Rule (rrError1) raises an error if
a callback invoke is going to be executed that does not have a previous triggering re-
ceive (indeed, its first argument is uninitialized). Finally, rule (rrError2) raises an error
if the first argument of a callback invoke is initialized by an assignment rather than by
a triggering receive.

Theorem 2 (Type Safety). Γ ` N :  implies that N �→err holds false.

To conclude, we have (�−→∗ denotes the reflexive and transitive closure of �−→)

Corollary 1 (Type Soundness). Let Γ ` N : . Then N′ �→err holds false for every
net N′ such that N �−→∗ N′.

4 A brokerage scenario

In this section we show an application of our framework. Suppose a client process
invokes a process that acts as a broker for a third process. The latter process, once

15

received a message with an integer value and the client address, increases the value by
one (of course, this can be replaced with any complex operation) and sends the response
back to the client by exploiting the received address. This scenario is modelled by the
net (we write Z , W to assign a symbolic name Z to the term W)

N , {ac ::Opc,Lc ∗sc | 〈ac, oinit, 10〉 , ab ::Opb,Lb ∗sb , ar ::Opr ,Lr ∗sr} (1)

where ac, ab and ar are the addresses of client, broker and responder, respectively.
The client service is defined as follows:

sc , rec (linit, oinit, p) ; inv (ab, o, 〈p, ac〉) ; rec (lr, ocb, 〈p, res〉)

The first receive creates a client instance by consuming the initialization tuple
〈ac, oinit, 10〉. Since multiple client instances can wait a response along the same part-
ner link and operation, we use a correlation set to route each incoming message to
the correct instance. At instantiation time, a correlation set consisting of the prop-
erty p is initialized. When the client process invokes the broker, it must send an in-
teger value and its address to allow the responder process to send back the reply.
After this invocation, the client waits the callback. The client type declarations are
Opc = {oinit : 〈I〉, ocb : 〈I, I〉} and Lc = {p : I, res : I}. Notice that, in
this communication pattern, differently from asynchronous request-response, the client
has the provider role for the callback operation.

The broker service is defined as follows:

sb , rec (l, o, 〈b, lc〉) ; inv (ar, o′, 〈b, lc〉)

When invoked, the broker creates an instance (by using the receive activity) that will
forward the client request to the responder and then terminate. Since no session with
multiple interactions is started, the broker does not use a correlation mechanism. The
broker type declarations are Opb = {o : τ̄} with τ̄ = 〈I, {ocb : 〈I, I〉}〉 and Lb =

{b : I}. Of course, the broker has the provider role for the operation invoked by the
client. In the message type of the operation, the second field is an operation type set and
identifies the client operations that are visible to the broker.

Finally, the responder service is defined as follows:

sr , rec (l, o′, 〈b, lcb〉) ; ass (b′, b + 1) ; inv (lcb, ocb, 〈b, b′〉)

When invoked, the responder creates an instance that will process the received value
and send the response back to the client. Also this process does not need a correlation
mechanism. The responder type declarations are Opr = {o′ : τ̄} and Lr = {b : I, b′ :
I}. Notice that, since the responder receives the client address from the broker, its
view of client operations along the partner link lcb agrees with that of the broker.

According to our framework, to ensure that N will never generate errors, it suffices
to prove that N is well-typed wrt the empty environment, i.e. ∅ ` N : . This, by
rule (net), means that each node of N must be well-typed wrt the type environment Γ =

{ac : Opc, ab : Opb, ar : Opr}. Now, by the rule (netToServ), (par) and (serv) this holds
if all components 〈ac, oinit, 10〉, sc, sb and sr are well-typed wrt Γ and appropriate local

16

type declarations. Formally, we must check that judgements Γ `Lc
ac 〈ac, oinit, 10〉 : ,

Γ `Lc
ac sc : , Γ `Lb

ab sb :  and Γ `Lr
ar sr :  hold. The second inference is

fully shown in Table 9 (the remaining inferences can be found in [LPT06]). For the sake
of presentation, the inferences are split in a few parts with references between them.

Notably, for both receive activities we must apply rule (rec), because the type en-
vironment does not store type information for the partner links linit and lr. Indeed, the
client has provider role for both the operations oinit and ocb and we check if their type
definitions are in the set of operation types of the client Opc, which is obtained by infer-
ring Γ `Lc

ac ac : Opc. Instead, to check the invoke activity, we apply rule (inv), because in
this case the service has client role. Opb contains the type definition of the invoked oper-
ation o and is obtained by the inference of Γc `Lc

ac ab : Opb, where ab is the target of the
invoke activity. Notice that the type associated to o is a subtype of the type associated
to the operation parameters (i.e. τ̄ v 〈I,Opc〉), because {ocb : 〈I, I〉} ⊆ Opc.

We have thus proved that the net N defined in 1 behaves correctly. Now, we
smoothly modify N so that its execution would eventually generate a runtime error
and show that our type system can statically point out this situation. Indeed, suppose
that ocb : 〈I, I〉 < Opc. This could take place, for example, in case the client tries
a request-response interaction with the broker (which would be the provider of both
operations). The modified net N′ would behave as follows (we omit the responder node
because it plays no role):

N′ �−→ {ac ::Opc ,Lc ∗sc | 〈ac, oinit, 10〉 , ab ::Opb ,Lb ∗sb}
�−→ {ac ::Opc ,Lc ∗sc | {p = 10} � s′c , ab ::Opb ,Lb ∗sb}
�−→ {ac ::Opc ,Lc ∗sc | {p = 10} � rec (lr, ocb, 〈p, res〉) , ab ::Opb ,Lb ∗sb | 〈ac, o, 〈10, ac〉〉}
�→err

where the runtime error is generated by rule (opDefError2). This situation can be cap-
tured in advance, since N′ is not well-typed because, in the inference for the client
service, Γc `Lc

ac rec (lr, ocb, 〈p, res〉) :  cannot be inferred.

5 Concluding remarks

We have set a formal semantics framework for web services orchestration languages,
and particularly for WS-BPEL. We have introduced -, a foundational lan-
guage specifically designed for modelling interactions among web services, and a type
system that permits to formalize the relationship between WS-BPEL processes and the
associated WSDL documents. The type system forces a neat programming discipline
for communicating processes. We have shown that the type system and the operational
semantics of - are ‘sound’ and presented an illustrative example.

We are currently extending the typing system, and the related results, to the enriched
language described in [LPT06]. We also plan to enrich the type system to enforce more
rigorous type disciplines. For example, partner links could have assigned more sophisti-
cated types that would correspond to complex interaction patterns, such as, e.g., ‘one re-
quest – multiple responses’ or ‘one request – one of two possible responses’. Moreover,
by exploiting some form of ‘behavioural’ types, such dynamic aspects of -

processes could be captured as, e.g., ‘an operation parameter may determine whether

17

(r
ef

)
a c

:O
p c
`L

c a c
a c

:O
p c

(w
ea

k)
Γ

c
`L

c a c
a c

:O
p c

o c
b

:〈
I


,I



〉∈

O
p c

p
:I



∈L

c
(p

ro
p)

∅`
L c a c

p
:I




(w
ea

k)
Γ

c
`L

c a c
p

:I



re
s

:I


∈L

c
(v

ar
)

∅`
L c a c

re
s

:I



(w
ea

k)
Γ

c
`L

c a c
re

s
:I




(w̄
)

Γ
c
`L

c a c
〈p
,r

es
〉:
〈I


,I



〉 (r

ec
)

(2
)Γ

c
`L

c a c
re

c(
l r
,o

cb
,〈

p,
re

s〉)
:





(r
ef

)
a b

:O
p b
`L

c a c
a b

:O
p b

(w
ea

k)
Γ

c
`L

c a c
a b

:O
p b

o
:τ̄
∈O

p b

p
:I



∈L

c
(p

ro
p)

∅`
L c a c

p
:I




(w
ea

k)
Γ

c
`L

c a c
p

:I



(r
ef

)
a c

:O
p c
`L

c a c
a c

:O
p c

(w
ea

k)
Γ

c
`L

c a c
a c

:O
p c

(w̄
)

Γ
c
`L

c a c
〈p
,a

c〉
:〈

I

,O

p c
〉

τ̄
v
〈I


,O

p c
〉 (i

nv
)

(1
)Γ

c
`L

c a c
in

v
(a

b,
o,
〈p
,a

c〉)
:





(r
ef

)
a c

:O
p c
`L

c a c
a c

:O
p c

(w
ea

k)
Γ
`L

c a c
a c

:O
p c

o i
ni

t
:〈

I

〉∈

O
p c

p
:I



∈L

c
(p

ro
p)

∅`
L c a c

p
:I




(w
ea

k)
Γ
`L

c a c
p

:I



(r
ec

)
Γ
`L

c a c
re

c(
l in

it
,o

in
it
,
p)

:





(1
)Γ

c
`L

c a c
in

v
(a

b,
o,
〈p
,a

c〉)
:





(2
)Γ

c
`L

c a c
re

c(
l r
,o

cb
,〈

p,
re

s〉)
:





(s
eq

)
Γ

c
`L

c a c
in

v
(a

b,
o,
〈p
,a

c〉)
;r

ec
(l

r,
o c

b,
〈p
,r

es
〉)

:





(s
eq

)
Γ
`L c a c

re
c(

l in
it
,o

in
it
,
p)

;i
nv

(a
b,

o,
〈p
,a

c〉)
;r

ec
(l

r,
o c

b,
〈p
,r

es
〉)

:





Table 9. Type inference for the client service sc (Γc is (Γ, linit : ?))

18

a callback uses operation A vs. operation B’ or ‘the invocation of a service of type X
must be preceded by the invocation of a service of type Y’.

One major contribution of our work is the formal modelling of different aspects
of WS-BPEL, such as multiple start activities, receive conflicts, routing of correlated
messages, interactions among different web services, that have not been tackled at once
in the literature. The mechanism of correlation sets was first investigated in [Vir04],
that however only consider interaction of different instances of a single business pro-
cess. Other works take the opposite route, and enrich some well-known process calculus
with constructs inspired by those of WS-BPEL. The most of them deal with issues of
web transactions such as interruptible processes, failure handlers and time. This is, for
instance, the case of [LZ05a,LZ05b] that present a timed extension of the π-calculus,
called webπ, tailored to study a simplified version of the scope construct of WS-BPEL.
We have focused on service orchestration rather than on service choreography (that pro-
vides a means to describe service interactions in a top-view way) because we wanted to
study those problems arising when executing WS-BPEL processes. In [BGG+05] both
aspects are studied. Following [MB03], we have pushed forward the use of a type sys-
tem to define basic contracts for web services. In [CL06,HSS05], alternative approaches
are proposed that are based on the use of schema languages and Petri nets, respectively.

Acknowledgements. We thank the anonymous referees for their useful comments.

References
[BCG+05] B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu, S. Thatte, P. Yendluri, and

A. Yiu. Web services business process execution language version 2.0. Technical
report, WS-BPEL TC OASIS, 2005. http://www.oasis-open.org/.

[BGG+05] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
orchestration: A synergic approach for system design. In ICSOC, pages 228–240,
2005.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
services description language (wsdl) 1.1. Technical report, W3C, 2001.
http://www.w3.org/TR/wsdl/.

[CL06] S. Carpineti and C. Laneve. A basic contract language for web services. In Proceed-
ings of ESOP 06, LNCS, 2006.

[HSS05] S. Hinz, K. Schmidt, and C. Stahl. Transforming bpel to petri nets. In Business
Process Management, pages 220–235, 2005.

[LPT06] A. Lapadula, R. Pugliese, and F. Tiezzi. A WSDL-based type system for WS-
BPEL. Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze, 2006.
http://www.dsi.unifi.it/∼pugliese/DOWNLOAD/wsc-full.ps.

[LZ05a] C. Laneve and G. Zavattaro. Foundations of web transactions. Fossacs’05,
LNCS(3441):282–298, 2005.

[LZ05b] C. Laneve and G. Zavattaro. Webπ at work. In TGC’05, 2005.
[MB03] L. G. Meredith and S. Bjorg. Contracts and types. Commun. ACM, 46(10):41–47,

2003.
[Vir04] M. Viroli. Towards a formal foundational to orchestration languages. Electronic

Notes in Theoretical Computer Science, 105:51–71, 2004.
[WF94] A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Information

and Computation, 115(1):38–94, 1994.

19

