500 research outputs found

    Eigenbeamforming array systems for sound source localization

    Get PDF

    Plate-Like Structure Damage Acoustic Emission Beamforming Array Technique and Probability-Based Diagnostic Imaging Method

    Get PDF
    A novel beamforming array technique and probability-based diagnostic imaging method are proposed to determine the acoustic emission (AE) source in plate-like structures. The technique that differs from common beamforming array techniques, in particular a sensor network, is used instead of a linear sensor array, to highlight information on the AE source location in one coordinate system as energy distribution. To reduce the uncertainty, avoid the boundary reflection effect, and ensure the rationality of the signal superposition, a Hilbert transform-based signal processing is applied before the delay-and-sum algorithm and a probability-based diagnostic imaging method is developed for AE source localization. The finite element numerical simulation method and the pencil-lead-broken experiment on aluminum plate are also conducted, and a thin-walled cylinder pipe-like structure is also tested by the pencil-lead-broken experiment to develop the application of the proposed method in various fields. The results indicate that this method is efficient and capable of visually showing the localization results highlighted in the probability images

    Uncertainties in the Estimation of the Shear-Wave Velocity and the Small-Strain Damping Ratio from Surface Wave Analysis

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Lamb: a simulation tool for air-coupled lamb wave based ultrasonic NDE systems

    Get PDF
    La técnica de las ondas de Lamb acopladas por aire representa un importante avance en el área de los Ensayos No Destructivos (END) de materiales laminares.Sin embargo la compleja naturaleza de las vibraciones mecánicas encontradas en acústica, hacen que el análisis y el estudio de esta área del conocimiento sea un tema muy complejo. De allí que la posibilidad de contar con una herramienta de simulación de software que permita la evaluación y prueba de diferentes configuraciones de excitación y recepción acústica utilizando la flexibilidad de un modelo de computadora sea de una gran utilidad y ayuda.El objetivo de la presente tesis es proveer al área de los END con un software de simulación gratuito: The LAMB Matlab® toolbox basado en el modelo del software libre de la GNU.El software es capaz de simular el comportamiento de sistemas de END basados en ondas de Lamb acopladas por aire en láminas isótropas simples utilizando transductores tipo array.El programa se basa en un arreglo tipo C-scan de un sistema de END y está compuesto por tres bloques principales: 1) Excitación, 2) Propagación y 3) Recepción.La verificación individual del funcionamiento de dichos módulos se presenta a lo largo de la tesis mediante una serie de comparaciones entre simulaciones y datos experimentales provenientes de diferentes pruebas. Por otro lado, la validación del programa completo se llevo a cabo por medio de experimentos en láminas de cobre y aluminio; utilizando un sistema real de END por ondas de Lamb acopladas en aire mediante arrays cóncavos.La influencia negativa en el desempeño general de dicho sistema de END real basado en este tipo de transductores se comprobó efectivamente mediante el simulador desarrollado. Esto se debió fundamentalmente al efecto de directividad de los sensores individuales en los transductores y a la simetría cóncava de los arrays.Para emular este comportamiento la tesis presenta un modelo geométrico bidimensional simple de un filtro espacial, junto a las simulaciones de un nuevo tipo de array plano propuesto.El programa desarrollado comprobó así mismo la naturaleza coherente de los campos acústicos emitidos en aire por las láminas sujetas a vibraciones de Lamb. Esto se realizó mediante la implementación de un conformador de haz simple de suma y demora; constituyéndose así la etapa inicial de procesamiento de señal del bloque de recepción del programa.El objetivo principal del presente trabajo fue contribuir con un modelo operativo de simulación y prueba de nuevos diseños de arrays e implementación de estrategias de procesado de señal útiles en sistemas de END basados en ondas de Lamb acopladas por aire.Finalmente, si bien el objetivo de la calibración del programa no se pudo conseguir; si se logró efectivamente un notable grado de similitud con un sistema de END real.Air-coupled ultrasonic Lamb waves represent an important advance in Non- Destructive Testing and Evaluation (NDT & NDE) techniques of plate materials and structures. Examples of these advances are the characterization and quality assessment of laminate materials in manufacturing processes, the location of damaged parts in aircrafts and structure monitoring in the aerospace industry.However the rich and complex nature of mechanical vibrations encountered in acoustics make the subject of analysis and study of these systems a very complex task. Therefore a simulation tool that permits the evaluation and testing of different configuration scenarios using the flexibility of a computer model is an invaluable aid and advantage.The objective of this thesis is to provide the field of NDT with free open source software i.e. the LAMB Matlabrtoolbox. The toolbox is capable of simulating the behaviour of Lamb wave based NDE systems for single ideal isotropic laminates using air-coupled ultrasonic arrays. The programme usesa pitch-catch type of a Cscan NDE arrangement and is composed of three integrated sections each individually modelling a feature in the system: 1) Excitation, 2) Propagation, and 3) Reception.For assessment of the individual modules of the toolbox the thesis presents comparisons between each section simulations and the data obtained from different acoustic experiments. The validation of the complete simulator was carried out by evaluation tests on the copper and aluminium plates by use of a real hardware prototype of a Lamb wave based NDE system with aircoupled concave arrays.The negative impact on the performance of the real air-coupled NDE systembased on concave arrays was effectively confirmed by the programme. This was produced by the inherent directivity of the individual sensors as well as their concave arrangement. To emulate this behaviour the thesis introduces a simple two-dimensional geometric model for the inclusion of the spatial filtering effect of the sensors plus a group of simulations for a new proposed air-coupled plane array transducer.The software also verified the spatial coherent nature of the Lamb wave fields emitted by a plate in air. This was demonstrated by the implementation of a delay and sum beamformer to constitute an initial signal processing stage in the reception section

    ACOUSTIC LOCALIZATION TECHNIQUES FOR APPLICATION IN NEAR-SHORE ARCTIC ENVIRONMENTS

    Get PDF
    The Arctic environment has undergone significant change in recent years. Multi-year ice is no longer prevalent in the Arctic. Instead, Arctic ice melts during summer months and re-freezes each winter. First-year ice, in comparison to multi-year ice, is different in terms of its acoustic properties. Therefore, acoustic propagation models of the Arctic may no longer be valid. The open water in the Arctic for longer time periods during the year invites anthropogenic traffic such as civilian tourism, industrial shipping, natural resource exploration, and military exercises. It is important to understand sound propagation in the first-year ice environment, especially in near-shore and shallow-water regions, where anthropogenic sources may be prevalent. It is also important to understand how to detect, identify, and track the anthropogenic sources in these environments in the absence of large acoustic sensory arrays. The goals of this dissertation are twofold: 1) Provide experimental transmission loss (TL) data for the Arctic environment as it now exists, that it may be used to validate new propagation models, and 2) Develop improved understanding of acoustic vector sensor (AVS) performance in real-world applications such as the first-year Arctic environment. Underwater and atmospheric acoustic TL have been measured in the Arctic environment. Ray tracing and parabolic equation simulations have been used for comparison to the TL data. Generally good agreement is observed between the experimental data and simulations, with some discrepancies. These discrepancies may be eliminated in the future with the development of improved models. Experiments have been conducted with underwater pa and atmospheric pp AVS to track mechanical noise sources in real-world environments with various frequency content and signal to noise ratio (SNR). A moving standard deviation (MSD) processing routine has been developed for use with AVS. The MSD processing routine is shown to be superior to direct integration or averaging of intensity spectra for direction of arrival (DOA) estimation. DOA error has been shown to be dependent on ground-reflected paths for pp AVS with analytical models. Underwater AVS have been shown to be feasible to track on-ice sources and atmospheric AVS have been shown feasible to track ground vehicle sources

    Real-time Microphone Array Processing for Sound-field Analysis and Perceptually Motivated Reproduction

    Get PDF
    This thesis details real-time implementations of sound-field analysis and perceptually motivated reproduction methods for visualisation and auralisation purposes. For the former, various methods for visualising the relative distribution of sound energy from one point in space are investigated and contrasted; including a novel reformulation of the cross-pattern coherence (CroPaC) algorithm, which integrates a new side-lobe suppression technique. Whereas for auralisation applications, listening tests were conducted to compare ambisonics reproduction with a novel headphone formulation of the directional audio coding (DirAC) method. The results indicate that the side-lobe suppressed CroPaC method offers greater spatial selectivity in reverberant conditions compared with other popular approaches, and that the new DirAC formulation yields higher perceived spatial accuracy when compared to the ambisonics method

    Multimodal methods for blind source separation of audio sources

    Get PDF
    The enhancement of the performance of frequency domain convolutive blind source separation (FDCBSS) techniques when applied to the problem of separating audio sources recorded in a room environment is the focus of this thesis. This challenging application is termed the cocktail party problem and the ultimate aim would be to build a machine which matches the ability of a human being to solve this task. Human beings exploit both their eyes and their ears in solving this task and hence they adopt a multimodal approach, i.e. they exploit both audio and video modalities. New multimodal methods for blind source separation of audio sources are therefore proposed in this work as a step towards realizing such a machine. The geometry of the room environment is initially exploited to improve the separation performance of a FDCBSS algorithm. The positions of the human speakers are monitored by video cameras and this information is incorporated within the FDCBSS algorithm in the form of constraints added to the underlying cross-power spectral density matrix-based cost function which measures separation performance. [Continues.

    Beamforming Techniques for Environmental Noise

    Get PDF
    Projecte final de carrera realitzat en col.laboració amb la Technical University of Denmark i Brüel & KjaerA problem of practical interest when dealing with outdoor acoustic measurements is to estimate the noise contributions from di erent directions around the measurement point. This estimation can be done by means of microphone arrays. More speci - cally, circular arrays are suitable for this purpose as, in combination with proper signal processing techniques, they are capable of mapping the sound eld in a plane over 360 . Two processing techniques meant to be used with circular arrays are implemented: the `classical' Delay-and-Sum beamforming and a novel technique called Circular Harmonics beamforming. The latter is based on the decomposition of the sound eld in series of circular harmonics. The performance of these beamforming techniques is analyzed by means of simulations and evaluated by two parameters, the resolution and the maximum side lobe level. Making use of the results of the simulations, a circular array has been designed for the localization of environmental noise sources around a measurement point. Finally, a prototype implemented in accordance with the design has been tested in anechoic conditions. The results, which agree very well with the simulations, reveal that the array is suitable for the purpose of concern
    corecore