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Abstract

Microphone array technology has been widely used for the localization of sound

sources. In particular, beamforming is a well-established signal processing method that

maps the position of acoustic sources by steering the array transducers toward different

directions electronically.

The present PhD study aims at enhancing the performance of uniform circular ar-

rays, and to a lesser extent, spherical arrays, for two- and three-dimensional localization

problems, respectively. These array geometries allow to perform eigenbeamforming,

beamforming based on the decomposition of the sound field in a series of orthogonal

functions. In this work, eigenbeamforming is particularly developed to improve the

performance of circular arrays at low frequencies. Compared to conventional delay-

and-sum beamforming, the proposed technique, named circular harmonics beamform-

ing, provides a better resolution at the expense of being more vulnerable to noise. A

simple way to further improve the array performance is to flush-mount the transducers

on a rigid scatterer. For a circular array, an ideal solution is a rigid cylindrical scat-

terer of infinite length. Due to its impracticality, the use of a rigid spherical scatterer is

recommended instead.

A better visualization in the entire frequency range can be achieved with deconvo-

lution methods, as they allow the recovery of the sound source distribution from a given

beamformed map. Three efficient methods based on spectral procedures, originally

conceived for planar-sparse arrays, are adapted to circular arrays. They rely on the fact

that uniform circular arrays present an azimuthal response that is rather independent on

the focusing direction.

Finally, a method based on the combination of beamforming and acoustic holog-

raphy is introduced for both circular and spherical arrays. This new approach, also

expressible in terms of eigenbeamforming, extends the frequency range of operation of

conventional delay-and-sum beamforming toward the low frequencies.

Keywords: uniform circular arrays, spherical arrays, circular harmonics beamforming,

deconvolution methods, spherical harmonics beamforming, holographic virtual arrays
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Resumé

Mikrofon-array-teknologi har været meget anvendt til lokalisering af lydkilder. Navnlig

beamforming er en veletableret signalbehandlingsmetode, som kortlægger placeringen

af akustiske kilder ved elektronisk at styre array transducere mod forskellige retninger.

Dette Ph.d.-projekt stræber efter at forbedre præstationen af ensartede cirkulære

array-systemer, og i mindre grad sfæriske arrays, for hhv. to- og tredimensionale

lokaliseringsproblemer. Disse array-geometrier giver mulighed for at udføre eigen-

beamforming, dvs. beamforming baseret på dekompositionen af lydfeltet i en række

ortogonale funktioner. I dette arbejde er eigenbeamforming specielt udviklet for at

forbedre præstationen af cirkulære arrays ved lave frekvenser. Sammenlignet med kon-

ventionel delay-and-sum beamforming giver den foreslåede teknik, kaldet circular har-

monics beamformning, en bedre opløsning på bekostning af at være mere sårbar over

for støj. En enkel måde til yderligere at forbedre array-præstationen er at placering

mikrofonerne på overfladen af en hård scatterer. For et cirkulært array er en ideel

løsning en hård cylindrisk scatterer af uendelig længde. På grund af vanskeligheder

ved implementeringen anbefales en hård sfærisk scatterer i stedet for.

En bedre visualisering i hele frekvensområdet kan opnås med deconvolution-

metoder, da de tillader gendannelse af lydkilders distribution fra et givet beamformed

kort. Tre effektive metoder, baseret på spektrale procedurer, der oprindeligt er udtænkt

til plane, sparse arrays, er tilpasset cirkulære arrays. De er afhængige af det faktum,

at ensartede cirkulære arrays viser et azimut respons, der er temmelig uafhængig af

fokuseringen retning.

Endelig indføres en metode, der bygger på en kombination af beamforming og

akustisk holografi, for både cirkulære og sfæriske arrays. Denne nye fremgangsmåde,

som også kan udtrykkes i form af eigenbeamforming, udvider frekvensområdet for bru-

gen af konventionel delay-and-sum beamforming mod de lave frekvenser.

Nøgleord: ensartede cirkulære arrays, sfæriske arrays, circular harmonics beamform-

ing, spherical harmonics beamforming, deconvolution-metoder, holografiske virtuelle

arrays
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Chapter 1

Introduction

A problem of practical importance when dealing with acoustic measurements is to esti-

mate the directions from which sound waves arrive to the measurement point. While a

single microphone cannot provide this information, as microphones are only capable of

measuring the sound pressure at that specific point, combination of simultaneous sig-

nals from an array of microphones makes it possible to filter the sound in space and,

thus, achieve directionality. With proper signal processing, array systems can focus into

a particular direction, to enhance the signals arriving from there, and attenuate those

from other directions. This idea was explored for the first time in 1976, when Billings-

ley and Kinns introduced the acoustic telescope, a system that was able to localize the

main contributions of jet engines in real-time [1]. This work laid the foundations of

beamforming, which soon became popular among the acoustic community, giving rise

to numerous studies not only for sound source localization purposes, but also for signal

enhancement and spatial filtering. Nowadays beamforming is an essential tool widely

used in the industry for all sorts of applications, such as vehicle assessment, computer

games and surveillance, among others. Depending on the application, the most ad-

equate processing techniques and array geometries vary. Generally, beamforming is

based on measurements in the far field of the sources so that the waves have become

planar at the array position. However, it should be noticed that near-field beamforming

is also possible. Readers interested in the history of beamforming are addressed to the

concise monograph by Michel, Ref. [2].

An ideal sound source localization system should present a delta function on the

focusing direction and nulls elsewhere. However, beamforming presents two inher-

ent limitations; firstly, an imperfect resolution on the focusing direction, due to a main
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2 1. Introduction

beam instead of a delta function, and secondly, the appearance of sidelobes in directions

other than the focusing direction. Moreover, the array response is frequency dependent.

The frequency range of operation of an array is determined, at low frequencies, by

the dimensions of the array, and by the microphone spacing, at high frequencies. The

larger the array, the better the performance at low frequencies, whereas the closer the

microphones, the better at high frequencies. However, the dimensions of the array and

the number of microphones are usually limited by practical issues, such as the maneu-

verability of the array and the overall cost of the equipment. Therefore, dealing with

broadband sources poses some challenges. In the almost 40 years of development of

acoustic array technology, numerous beamforming algorithms, as well as array geome-

tries, have been suggested to improve the overall performance of array systems.

1.1 Scope of the thesis

The present thesis deals with circular and spherical arrays of microphones, to a lesser

extent, for localization of sound sources in 2-dimensional (2D) and 3-dimensional (3D)

sound fields, respectively. While spherical arrays have been examined widely in the

last decade for speech enhancement and sound source localization purposes, less liter-

ature has been devoted to circular arrays. This geometry is particularly interesting for

scenarios where sources placed in the far field are distributed 360◦ around the array.

That is, for instance, the case of many outdoor measurements for environmental noise

identification, in which reflections from the ground are sufficiently attenuated, and also

the case of measurements in rooms where floors and ceilings are acoustically treated

to reduce reflections. One of the main applications involving rooms is conferencing,

a scenario that requires beamforming in real-time; see, e.g., Ref. [3]. By contrast,

for environmental noise purposes, measurements can be often post-processed at a later

stage, which allows the application of more sophisticated algorithms that require a high

computational load. The primary goal of the present thesis is to suggest and examine

alternatives to the traditional methods for enhancing the performance of these array

geometries for sound source localization purposes.

It should be noticed that, throughout this dissertation, it is assumed that the acoustic

sources are static, placed in the far field of the array, and not coherent. It is also assumed

that all the array transducers have the same characteristics and are omnidirectional.
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1.2 A brief overview on acoustic array systems

1.2.1 Beamforming techniques

Beamforming techniques are generally classified in two groups: fixed beamforming

and adaptive beamforming. Fixed beamforming algorithms are data-independent, that

is, all signals are treated in the same manner without taking into account their individual

properties. The simplest method is delay-and-sum beamforming, which is addressed in

Chapter 2. Another example is filter-and-sum beamforming, based on linearly filtering

the signals prior to applying delay-and-sum; see, e.g., Ref. [4]. Filtering helps removing

disturbances, such as out-of-band noise. A new and specially attractive technique for

its simplicity is functional beamforming [5]. This method that results from modifying

delay-and-sum beamforming in the frequency domain offers a much higher dynamic

range than other beamforming techniques. However, it is very sensitive to microphone

positioning errors.

On the other hand, adaptive beamforming methods are data-dependent, that is, their

parameters follow from statistical observations in the captured signals. As a result,

their performance exceeds that of fixed beamforming techniques, at the expense of be-

ing more complex to implement and more sensitive to sensor calibration errors [4].

Furthermore, in the presence of coherent sources, most methods fail dramatically. Usu-

ally, adaptive techniques rely on narrow-band signals. Several methods are based on

solving a constrained mean-squared optimization problem. That is, for instance, the

case of the generalized sidelobe canceler (GSC) [6], which basically consists of a fixed

beamformer, a blocking matrix, and an interference canceler. The fixed beamformer

is steered to the desired direction, while the blocking matrix blocks any signal coming

from that direction so that only noise signals from undesired directions pass through. By

means of an adaptive algorithm the unwanted signals are emphasized and finally they

are subtracted from the fixed beamformer output. Another type of adaptive techniques,

the so-called high-resolution spectral estimation techniques, are derived from parame-

ter estimation theory. One such method is the multiple signal classification (MUSIC),

which, based on eigenanalysis, relies on the orthogonality between the signals subspace

and the noise subspace to improve the quality of the signals [7]. Adaptive methods are

out of the scope in this dissertation. Readers interested in adaptive beamforming are,

for instance, referred to Chapter 7 in Ref. [4] and Chapter 5 in Ref. [8].

Although most beamforming techniques are in essence independent of the array
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geometry, there is a group of methods conceived for ‘closed’ arrays, such as circular

and spherical arrays, known as eigenbeamforming. Eignebeamforming relies on the

decomposition of the sound field captured with the array in a series of harmonics, which

adds more features compared to traditional beamforming. Fixed eigenbeamforming

methods are addressed in Chapter 3.

In the last decade, a group of inverse methods, generally referred to as deconvo-

lution methods, has become of interest, as they allow to visualize sound sources with

more accuracy than beamforming methods, and even determine their levels. However,

the main limitation is that they are computationally expensive, as they are based on

iterative algorithms. An overview of these methods is given in Chapter 4.

It should be noted that beamforming can be applied also to moving sources. Since

in the present study only static sources are considered, the reader is addressed to,

e.g., Chapter 8 in Ref. [4] for a basic introduction to tracking problems.

1.2.2 Other array techniques

Besides beamforming, there are other sound visualization techniques that rely on ar-

ray measurements. The most relevant one is acoustic holography, a well-established

method that aims at reconstructing sound fields quantitatively. By means of measure-

ments in a 2D surface (the array), the entire sound field, sound pressure, particle ve-

locity, and sound intensity, can be reconstructed in a 3D space. Acoustic holography

and beamforming are complementary techniques, as acoustic holography is generally

preferred for near-field measurements, such as in near-field acoustic holography (NAH)

[9, 10], whereas beamforming is more adequate for the far-field case. Moreover, acous-

tic holography handles better coherent than incoherent sources, which contrasts with the

opposite behavior of beamforming. In most applications, acoustic holography serves to

describe the radiation characteristics of the source under analysis.

Array technology is also used for blind source separation, although an array layout

is not strictly necessary. As the name suggests, blind source separation is a sound source

identification method that intends to simultaneously recover signals from independent

sources without requiring any information on their locations. The main limitation of the

method is that it fails when there are more sources than sensors. Blind source separation

is not addressed in this thesis. Readers interested in a thorough comparison between
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blind source separation and beamforming in the time-domain (for speech purposes) are

referred to Ref. [11].

1.2.3 Array layouts

Traditionally, beamforming has been carried out mostly with planar-sparse arrays. The

simplest configuration is the rectangular grid of elements. However, due to the peri-

odical placement of the sensors, severe sampling error, in the form of aliasing, occurs

above the frequency where the spatial Nyquist sampling criterion is not fulfilled. This

causes a sudden increase in level of the sidelobes, which become replicas of the main

lobe in unwanted directions in the worst case. This is addressed in Chapter 2. This

characteristic prevents this geometry from being generally used for beamforming pur-

poses. Contrarily, rectangular arrays, with one or two parallel layers, are typically used

for NAH.

Planar irregular arrays are usually preferred for beamforming over regular arrays,

because they do not exhibit an abrupt aliasing pattern. The effect of an aperiodical spa-

tial sampling is a smooth increase in the level of the sidelobes, which leads to a wider

frequency range of operation toward high frequencies [12]. Typical irregular arrays

used for aeroacoustic purposes are based on spirals, such as the equiangular or loga-

rithmic spiral array with one or more arms [13, 14]. Some other irregular layouts result

from optimization processes that determine the position of the sensors that ensures the

best possible level of the sidelobes for the frequency range of interest [12]. For some

applications, such as wind tunnel measurements, it is convenient to flush-mount the

array microphones on a wall or a baffle so that the array structure does not alter the

aerodynamic environment. References [12] and [15] examine various planar irregular

arrays in detail.

Spherical arrays are also widely used for beamforming [16], as well as for acoustic

holography [17], whereas circular arrays are less common [18], especially for holog-

raphy. Generally, spherical and circular arrays used for sound source localization are

shift-invariant, that is, the output pattern is independent of the focusing direction so that

the system is equally fair in all directions. One way to achieve this characteristic is by

keeping a constant microphone spacing all over the array. That is, for instance, the case

of a uniform circular array [19]. This interesting feature cannot be achieved with linear

or planar-sparse arrays.
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On the other hand, spherical arrays with non-uniform spacing have also been inves-

tigated, e.g., in Ref. [20]. That is, for instance, the case of a rigid spherical array with

the sensors placed in horizontal rings with a higher density of sensors on the equator

of the sphere suggested in Refs. [21–23] to enhance the horizontal spatial resolution

over other directions. This array is suitable for 3D recordings that can afterwards be

used to create virtual environments for hearing instrument testing and psychoacoustic

purposes via a high-order or a mixed-order Ambisonics loudspeaker system [24]. Cir-

cular arrays with a non-uniform spacing are rather unusual. An example can though be

found in Ref. [25], where the angular position of the array sensors is determined by the

golden-ratio.

Variations of the circular and spherical geometries are also found in the literature.

For example, Refs. [26, 27] suggest a dual-radius spherical array for beamforming and

for NAH that consists of an open spherical array with a smaller spherical array mounted

on a baffle in its interior, whereas Ref. [28] introduces an open dual-radius spherical

array. Similarly, Refs. [29, 30] examine systems that consist of concentric uniform

circular arrays of different radius. For beamforming purposes on a half 3D acoustic

scenario, Ref. [31] suggests a baffled hemispherical microphone array that makes use

of the image source principle.

To achieve a rather constant pattern in the entire frequency range of interest, some

arrays are conformed by subarrays, each being responsible for a certain frequency band.

Usually, this is approached with planar-sparse arrays [8, 32], although other configura-

tions are applicable to, such as the previous mentioned concentric circular and spherical

arrays. A wise solution to reduce the overall cost of the system is to share, when pos-

sible, array elements between different subarrays, giving rise to the concept of nested

arrays. The idea of using nested arrays, is, in fact, the essence of constant directiv-

ity beamforming, a fixed beamforming method based on applying filter-and-sum to the

the different nested arrays [8, 32]. The main drawback of this technique is that it is

impractical at low frequencies, as it requires extremely large arrays.

In the presence of stationary signals, ‘scanning arrays’ are alternatives to conven-

tional arrays. The procedure only requires two transducers: while one is kept at a

position that serves as a reference, the other is moved along a grid [33]. The main ad-

vantage is that the equipment required is obviously cheaper than a that of a conventional

array system. Besides, the method offers more flexibility in the sense that the scanning

area is not limited to a predefined grid of points. The main drawback, though, is that
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measurements are more time consuming. Based on this principle, a scanning array con-

sisting of a rotating microphone set-up is suggested to capture the acoustic behavior

of auditoriums in Ref. [34]. The data measured with the array, a large set of impulse

responses, is later used for creating virtual acoustic scenes with a 2D or 3D Ambisonics

loudspeaker system.

Most array systems assume that the sensors are completely omnidirectional. How-

ever, microphones with well-defined directivity patterns can also be used, provided that

all of them are of the same type and are oriented identically. In such a case, the transfer

function of the directive microphones must be taken into account for the beamform-

ing procedure [32]. Besides conventional microphones, pressure-velocity transducers,

e.g., Microflown PU probes [35], are progressively attracting interest. These transduc-

ers provide simultaneous measurements of pressure and particle velocity, which make

them particularly suitable for acoustic holography [36]. In fact, some NAH methods

rely on the combination of the two quantities to achieve an enhanced performance [37–

39].

Recently, a completely new approach for beamforming based on the acousto-optic

effect, i.e., the interaction between sound and light, has been introduced in Ref. [40].

Instead of using a discrete number of sensors as in conventional arrays, the proposed

acousto-optic beamformer senses the sound field with a laser beam in a continuous

manner so that spatial aliasing is totally avoided. So far, only an optical linear aperture

has been examined [41]. At the moment, the main drawback of this technique is that

the beamformer requires manual steering. However, this problem could be overcome

by developing an optical array.

1.3 Structure of the thesis

The present PhD thesis follows a paper-based format, that is, the main findings of the

PhD project are presented in a collection of articles elaborated in the course of the

project. It is important to emphasize that the articles represent the core of the thesis.

The dissertation is structured as follows: Chapter 2, Basic beamforming methods,

gives the basic concepts of beamforming required to follow the contributing papers.

Readers familiar with the topic can skip this chapter. Chapter 3, Eigenbeamforming,

Chapter 4, Deconvolution methods, and Chapter 5, Beamforming with holographic vir-

tual arrays, are devoted to the findings of the contributing articles. These chapters share
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the same structure: they begin with an introduction that intends to supplement, when

possible, the articles, followed by a synopsis of the articles, a survey on related work,

and a discussion of the findings. Unlike Chapter 2, Chapters 3 to 5 are kept deliber-

ately concise to minimize the repetition in content with the contributing papers. Since

these chapters are understood as a complement to the papers, the reader is advised to

read the papers before proceeding to the final chapter, Conclusions, which concludes

the work and suggests further investigations for the future. The thesis also includes two

appendices that supplement Chapter 3 and 5, respectively.

The contributing papers, five in total, are appended at the end. Three of them are

published in the Journal of the Acoustical Society of America, and the rest are published

in the proceedings of two relevant congresses. They are listed in the following:

Paper A E. Tiana-Roig, F. Jacobsen, and E. Fernandez-Grande, “Beamforming with

a circular microphone array for localization of environmental noise sources,” J.

Acoust. Soc. Am., vol. 128, no. 6, pp. 3535–3542, 2010.∗

Paper B E. Tiana-Roig, F. Jacobsen, and E. Fernandez-Grande, “Beamforming with

a circular array of microphones mounted on a rigid sphere (L),” J. Acoust. Soc.

Am., vol. 130, no. 3, pp. 1095–1098, 2011.

Paper C E. Tiana-Roig and F. Jacobsen, “Deconvolution for the localization of sound

sources using a circular microphone array”, J. Acoust. Soc. Am., vol. 134, no. 3,

pp. 2078–2089, 2013.

Paper D E. Tiana-Roig, A. Torras-Rosell, E. Fernandez-Grande, C.-H. Jeong, and

F. T. Agerkvist, “Towards an enhanced performance of uniform circular arrays

at low frequencies,” in Proc. of Inter-Noise 2013, Innsbruck, Austria, 2013.

Paper E E. Tiana-Roig, A. Torras-Rosell, E. Fernandez-Grande, C.-H. Jeong, and

F. T. Agerkvist, “Enhancing the beamforming map of spherical arrays at low fre-

quencies using acoustic holography,” in Proc. of BeBeC 2014, Berlin, Germany,

2014.

∗Paper A is based on the Master’s thesis by Elisabet Tiana Roig “Beamforming Techniques for environ-

mental noise”, Technical University of Denmark, 2009. The paper, written in 2010 during the application

process of the PhD project, is included as part of this PhD thesis as it led to the research topic of the project.
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Besides the aforementioned articles, the following articles were also produced in

the course of the PhD project:

1 E. Tiana-Roig and F. Jacobsen, “Acoustical source mapping based on deconvolution

approaches for circular microphone arrays,” in Proc. of Inter-Noise 2011, Osaka,

Japan, 2011.

2 Fernandez-Comesaña, E. Fernandez-Grande, and E. Tiana-Roig, “A novel deconvo-

lution beamforming algorithm for virtual phased arrays”, in Proc. of Inter-Noise

2013, Innsbruck, Austria, 2013.

However, these articles are not explicitly mentioned in the thesis, as the contents of

Paper 1 overlap with Paper C and Paper 2 does not directly relate to the work done in

eigenbeamforming.
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Chapter 2

Basic beamforming methods

This chapter provides the basic knowledge required to comprehend the main contribu-

tions of the PhD project. The chapter begins with an introduction to classical beam-

forming theory. Two array geometries are examined in detail, the uniform linear array,

which serves to explain the basic concepts of beamforming, and the uniform circular

array as most contributing papers (Papers A to D) elaborate on this array configuration.

In addition, the case of a spherical array is touched upon, as paper E deals with this ge-

ometry. The chapter ends with a description of the measures of performance commonly

used to evaluate beamforming systems.

2.1 Delay-and-sum beamforming

Delay-and-sum beamforming is the oldest and simplest array signal processing algo-

rithm [4]. The principle behind this technique is shown in Fig. 2.1: in the presence of

a propagating wave, the signals captured by the microphones are delayed by a proper

amount before being added together, to strengthen the resulting signal with respect to

noise or waves propagating in other directions. The delays required to reinforce the

output signal correspond to the time it takes for the wave to propagate between micro-

phones so that, after applying the delays, the microphone signals are aligned in time.

Mathematically, delay-and-sum is formulated as

b(t, κ̂) =

M−1∑
m=0

wmpm(t− τm(κ̂)), (2.1)

11
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Figure 2.1: Sketch of a delay-and-sum beamformer. The signals captured by the sensors are delayed (and

weighted) before adding them together.

origin
array

rm
κ̂

Figure 2.2: Array focused in the direction given by κ̂.

where M is the number of microphones, pm is the pressure measured with the mth

microphone, wm is its associated amplitude weighting, and τm(κ̂) is the delay applied

to the mth microphone required to focus the array in the direction given by κ̂ depicted

in Fig. 2.2. The delays are given by

τm(κ̂) =
κ̂ · rm

c
, (2.2)

where rm is the position vector of the mth microphone and c is the speed of sound in

the medium of propagation (approximately 343 m/s in air at 23◦C).

Assuming a plane wave that impinges on the array, the pressure captured by the

mth array microphone, expressed in complex notation, is

pm(t) = Aej(ki · rm−ωt), (2.3)
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Figure 2.3: Plane wave impinging on an array. The beamformer response presents a main beam when steered

in the direction of the impinging wave, whereas other directions are partially or totally attenuated.

where A is the amplitude, ω represents the angular frequency, related to the frequency

f by ω = 2πf , and ki is the wavenumber vector, with magnitude |ki| = k = ω/c. It

can be shown that the beamformer output, Eq. (2.1), results in

b(t, κ̂) = Ae−jωt
M−1∑
m=0

wmej(ki+kκ̂) · rm . (2.4)

A close inspection of this equation reveals that when the array is steered in the precise

direction κ̂ that satisfies ki = −kκ̂, the beamformer response presents its maximum

value. When focused toward other directions, the response is partially or totally attenu-

ated. If the array scans all possible directions with the appropriate associated delays, the

resulting beamformed map will present a main lobe around its maximum and sidelobes

elsewhere. This is illustrated in Fig. 2.3.

The weightings wm, often referred to as shading, influence the shape of the main-
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and sidelobes. They act as spatial windows and their effect is analogous to that observed

with temporal windows in conventional signal processing. In fact, Eq. (2.4) can be

rewritten as

b(t,k) = Ae−jωtW (k− ki), (2.5)

where k = −kκ̂, and W (k) is the spatial discrete Fourier Transform of the weightings

W (k) =
M−1∑
m=0

wme−jk · rm . (2.6)

This function is usually known as array pattern. When the weightings follow a uniform

distribution, the array pattern exhibits the narrowest possible main lobe, whereas ta-

pered distributions, such as the triangular and the Hann windows, yield lower sidelobes

at the expense of a wider main lobe [42]. Furthermore, the location of the nulls in the

pattern also depends on the weightings.

In real case scenarios, the pressure captured by the microphones is contaminated

by noise, e.g., background noise and electronic noise. In case of a single plane wave,

the pressure is (cf. Eq. (2.3))

pm(t) = Aej(ki · rm−ωt) + nm(t), (2.7)

where nm(t) is uncorrelated noise present at the mth microphone. Obviously, the pres-

ence of noise influences the response of beamforming systems. However, compared to

a measurement with a single microphone, the combination of many measurements, as

in the case of using a microphone array, leads to a better signal-to-noise ratio (SNR).

Amongst all techniques, it can be shown that delay-and-sum is the most robust against

noise and has, moreover, the ability to suppress uncorrelated noise equally at all fre-

quencies [8].

For broadband signals, it is convenient to implement delay-and-sum beamforming

in the frequency domain. The signal is decomposed in a set of monochromatic plane

waves (i.e., single-frequency waves), each treated independently in the beamforming
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procedure so that the applied phase shifts correspond to the desired delays. That is

b(ω, κ̂) =

M−1∑
m=0

wmpm(ω)ejωτm(κ̂), (2.8)

where pm(ω) is the discrete Fourier Transform of the signal measured with the mth

sensor. The time domain version can be simply obtained with the inverse discrete

Fourier Transform of b(ω, κ̂).

A common practice when dealing with stationary sound fields is to formulate delay-

and-sum beamforming in the frequency domain using the averaged cross-spectra of the

input signals. From Eq. (2.8), the power output can be written as

|b(ω,κ)|2 =
M−1∑
m=0

M−1∑
n=0

wmw∗
npm(ω)p∗n(ω)e

jω(τm(κ̂)−τn(κ̂)), (2.9)

where ( · )∗ denotes complex conjugation. For the sake of simplicity, the weightings are

set to unity in the following. Let us now consider the averaged cross-spectral matrix∗

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c00 c01 c02 · · · c0(M−1)

c11 c11 c12 · · · c1(M−1)

c20 c21 c22 · · · c2(M−1)

...
...

...
. . .

...

c(M−1)0 c(M−1)1 c(M−1)2 · · · c(M−1)(M−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.10)

where

cmn(ω) = pm(ω)p∗n(ω), (2.11)

is the averaged cross-spectrum between the signals captured at the mth and nth sensors,

being

cmn(ω) = c∗nm(ω). (2.12)

By using the cross-spectral matrix, the output power of the beamformer can be rewritten

∗Note that the frequency dependence in the matrix is omitted.
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as

|b(ω, κ̂)|2 =
M−1∑
m=0

cmm(ω) +
M−1∑
m=0

M−1∑
n=0
n �=m

cmn(ω)e
jω(τm(κ̂)−τn(κ̂)). (2.13)

As can be seen, the first sum of this expression involves the diagonal elements, i.e., the

auto-spectral terms, cmm(ω), whereas the second sum accounts for off-diagonal terms,

cmn(ω). Note that the diagonal elements contain amplitude information plus self-noise.

However, they do not carry phase information, and therefore, do not help in determining

the source location. That is not the case for the cross-spectra elements; they contain the

relative phase between each pair of sensors, and thus are essential for the beamforming

process. Furthermore, self-noise is not present in these terms, as it is uncorrelated

across channels. Therefore, it seems reasonable to remove the diagonal elements. This

procedure, known as diagonal removal, decreases the level of the sidelobes, resulting

in a clearer beamformed map [43]. However, the price to pay for this operation is that

the resulting levels are biased.

The sound field at the array position can be generically described as the superposition

of waves created by different sources so that waves arrive from different directions.

When waves are incoherent, the beamformer output is equivalent to the superposition

of outputs for each wave [12]. If the sources are sufficiently far from each other, they

can be successfully identified. However, in the presence of coherent waves most beam-

formers fail. This problem, which appears, for instance, when dealing with (coherent)

reflections, is often disregarded in the modern literature [2]. However, some studies

have elaborated on this aspect, e.g., Refs.[44, 45].

Until now only sources in the far field, and thus, plane waves at the array posi-

tion, have been assumed. In this situation only the (angular) direction of the sources

can be identified. Their distance to the array cannot be determined, as, in fact, the

beamformer is focused toward an infinite distance. In contrast, to localize sources

in the near field, a finite focus distance has to be considered, together with spherical

wavefronts. This is illustrated in Fig. 2.4, where the array is steered toward a point

located at r. Geometrical considerations show that, in order to align the signals at the

sensor positions, the delays required for delay-and-sum beamforming are given by
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Figure 2.4: Beamformer focused toward a point in the near field. Spherical waves are expected at the array

position.

τm =
|r| − |r− rm|

c
. (2.14)

Since the amplitude of spherical waves decays with the distance, it is possible to com-

pensate for it by including amplitude corrections in the beamforming algorithm [46].

In what follows, only sources in the far field of the array, and thus, planar wave-

fronts at the array position, are considered.

2.1.1 Uniform linear array

A uniform linear array, the simplest array geometry, serves to illustrate the performance

of a delay-and-sum beamformer. This array consists of a number of sensors placed in a

line with uniform spacing, as shown in Fig. 2.5.

x

z

0 1 M − 1

ϑs

ki

d d

κ̂

ϑ

Figure 2.5: Plane wave impinging on a uniform linear array with M sensors.



18 2. Basic beamforming methods

From the geometrical considerations given in Fig. 2.5, the mth array sensor is

located at

rm =

⎡
⎢⎣

md

0

0

⎤
⎥⎦ , m = 0, . . . ,M − 1, (2.15)

where d is the spacing between sensors. Moreover, when the system is steered toward

the direction given by the polar angle ϑ, here defined from −180◦ to 180◦, the steering

vector κ̂ becomes

κ̂ =

⎡
⎢⎣

sinϑ

0

cosϑ

⎤
⎥⎦ . (2.16)

Let us assume that the array captures a plane wave with amplitude A and wavenumber

vector

ki = −k

⎡
⎢⎣

sinϑs

0

cosϑs

⎤
⎥⎦ , (2.17)

where ϑs is the angular position of the source. Expressed in these terms, delay-and-sum

beamforming, Eq. (2.4), becomes

b(t, ϑ) = Ae−jωt
M−1∑
m=0

wme−jk(sinϑs−sinϑ)md. (2.18)

Notice that this expression does not depend on the azimuth angle ϕ, which implies

that a linear array cannot discriminate between waves arriving from different azimuthal

directions.

Considering a uniform amplitude weighting wm = 1, the output reduces to

b(t, ϑ) = Ae−jωt 1− e−jk(sinϑs−sinϑ)Md

1− e−jk(sinϑs−sinϑ)d
. (2.19)

After some rearrangement, the corresponding directivity pattern (or beam pattern) re-

sults in

|b(ϑ)| = |A|
∣∣∣∣ sin(π(sinϑs − sinϑ)Md/λ)

sin(π(sinϑs − sinϑ)d/λ)

∣∣∣∣ , (2.20)

where λ is the wavelength, λ = c/f . As an example, the directivity pattern of a uniform

linear array with 10 microphones is shown in Fig. 2.6, when A = 2, d/λ = 0.3 and
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Figure 2.6: Directivity pattern of a uniform linear array with 10 sensors, when d/λ = 0.3 and a plane wave

with amplitude 2 impinges on the array from 0◦ .

the impinging wave comes from ϑs = 0◦. As can be seen the curve presents a main

lobe around 0◦ as the present wave propagates in this direction. The value of the main

beam peak is 20, which corresponds to A × M . However, another main lobe appears

around 180◦. This is a consequence of the line array geometry, as the delays applied

at the microphones for both 0◦ and 180◦ are exactly the same. Hence, the uniform

linear array presents a front-back ambiguity. This is inherent to all types of linear

arrays. From this example, it is worth mentioning that the same directivity pattern can

be achieved at all frequencies, as long as d varies according to the frequency to keep

the ratio d/λ constant. This implies that at low frequencies, larger inter-spacings, and

thus larger array dimensions, are needed in order to keep d/λ constant. In fact, this is

a very important property as it suggests that the lowest frequencies that a beamformer

can resolve properly are determined by the total size of the array.

Besides the two main lobes, the pattern also presents sidelobes with significantly

lower amplitudes in the other directions. By adding more transducers and keeping d/λ

constant, the main lobes become narrower and the number of sidelobes increases, but

their overall amplitude decreases. This is illustrated in Fig. 2.7, where the patterns for

three different number of sensors are shown in polar plots. This feature has two possible

interpretations: 1) considering a fixed array length, having more sensors results in a

smaller inter-spacing, which implies that the pattern becomes more directive toward
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Figure 2.7: Influence of the number of transducers on the beamforming pattern of a uniform linear array. The

magnitude is expressed in dB and normalized to A×M . A plane wave approaches the array from 0◦. In all

cases d/λ = 0.3

high frequencies (a smaller wavelength is needed in order to keep d/λ constant.) And

2) assuming a constant space between sensors, increasing the number of sensors is

equivalent to extending the array, which implies that for a given frequency, the larger the

array, the more directive the pattern. This agrees with the previous discussion regarding

array size and low frequencies.

Similarly to the effect of increasing the number of sensors, the pattern becomes

more directive with increasing the ratio d/λ, as can be seen in Fig. 2.8. However,

the case d/λ = 1.2 shows replicas of the main lobe in unexpected directions. These

replicas, usually called grating lobes, are caused by the aliasing effect, which is a con-

sequence of undersampling the space with a finite number of transducers. The aliased

replicas occur when d/λ > 0.5, which corresponds to the Nyquist sampling criterion

in space. In fact, this criterion determines the highest frequency the array can capture

without sampling error. The aliasing effect can be pushed beyond the Nyquist criterion,

and thus, toward higher frequencies, by using irregular arrays. With an irregular layout,

the level of the sidelobes is kept relatively low for a wider frequency range, and aliasing

occurs at those frequencies where the average element spacing is several wavelengths;

up to about 4λ according to Ref. [47], which is significantly above the Nyquist criterion

(λ/2). Ideally, aliasing can only be totally avoided in the hypothetical case of using

an array of sensors placed infinitely close to each other, or alternatively, by means of

scanning the sound field in a continuous manner. Recent studies have shown that this is

possible with a laser beam, as in the acousto-optic beamformer [40].
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(b) d/λ = 0.5
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(c) d/λ = 1.2

Figure 2.8: Influence of the ratio d/λ on the beamforming pattern of a uniform linear array with 10 sensors.

The magnitude is expressed in dB and normalized to A×M . A plane wave approaches the array from 0◦.
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(b) ϑs = 45◦
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Figure 2.9: Influence of the direction of an incident plane wave on the beamforming pattern of a uniform

linear array with 10 sensors. The magnitude is expressed in dB and normalized to A × M . In all cases

d/λ = 0.3

When an incident wave comes from directions other than 0◦ and 180◦, the resulting

main lobe becomes progressively wider toward ±90◦. This can be seen in Fig. 2.9, for

waves arriving from 0◦, 45◦, and 90◦. Due to the front-back ambiguity, a replica of the

main lobe always appears at (180◦ − ϑs) if ϑs ≥ 0, or at (−180◦ − ϑs) if ϑs < 0. A

pattern that depends on the focusing direction is usually referred to as shift-variant.

2.1.2 Uniform circular array

Two of the main weaknesses that uniform linear arrays exhibit, namely the front-back

ambiguity and the pattern dependency on the steering direction, can be solved if uniform
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Figure 2.10: Plane wave impinging on a uniform circular array with M sensors.

circular arrays are used instead. This array geometry is characterized by having M

sensors uniformly distributed in a circle, as illustrated in Fig. 2.10. The position of the

mth sensor is in this case given by

rm = R

⎡
⎢⎣

cos (2πm/M)

sin (2πm/M)

0

⎤
⎥⎦ , m = 0, . . . ,M − 1, (2.21)

where R is the radius of the circle. According to geometrical model given in Fig. 2.10,

the array steering vector, and the wavenumber vector of a wave arriving from (θs, ϕs),

are

κ̂ =

⎡
⎢⎣

sin θ cosϕ

sin θ sinϕ

cos θ

⎤
⎥⎦ , (2.22)

and

ki = −k

⎡
⎢⎣

sin θs cosϕs

sin θs sinϕs

cos θs

⎤
⎥⎦ . (2.23)

Using the three previous expressions, the delay-and-sum output can be easily obtained
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Figure 2.11: Influence of the direction of an incident plane wave on the beamforming pattern of a uniform

circular array with 10 sensors. The magnitude is expressed in dB and normalized to A × M . In all cases

d/λ = 0.3 and θs = θ = 90◦.

using Eq. (2.4). In a compact form, this can be expressed as [48]

b(θ, ϕ) =

M−1∑
m=0

wmejkρ cos(ξ− 2πm
M ), (2.24)

where

ρ = R
√

(sin θ cosϕ− sin θs cosϕs)2 + (sin θ sinϕ− sin θs sinϕs)2, (2.25)

and

cos ξ = R
sin θ cosϕ− sin θs cosϕs

ρ
. (2.26)

In order to obtain a shift-invariant pattern, the weightings wm must be uniform. In what

follows, they are set to unity.

Let us consider a uniform circular array with 10 sensors that captures a plane wave

with frequency such that d/λ = 0.3. It is assumed that the wave propagates in the

plane of the array and that the beamformer also looks into this plane. Looking at the

right panel of Fig. 2.10, this implies that θs = θ = 90◦. The delay-and-sum response

for three different azimuth angles ϕs of the incident wave, 0◦, 130◦, and 250◦, is shown

in Fig. 2.11. At first sight, it can be clearly seen that the circular geometry does not

exhibit the front-back ambiguity and that the directivity pattern has practically the same

shape regardless the direction of incidence of the wave. However, for a given d/λ and



24 2. Basic beamforming methods

0◦
30◦

60◦

90◦

120◦

150◦
180◦

210◦

240◦

270◦

300◦

330◦

-30-20-10 0

(a) d/λ = 0.3
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Figure 2.12: Influence of the ratio d/λ on the beamforming pattern of a uniform circular array with 10

sensors. The magnitude is expressed in dB and normalized to A×M . In all cases a plane wave arrives from

(θs, ϕs) = (0◦, 90◦) and θ = 90◦.

a fixed number of sensors the main lobe is in general wider to that of a uniform linear

array; compare, for instance, panels (a) and (b) in Fig. 2.9 with Fig. 2.11.

As can be seen in Fig. 2.12, with increasing d/λ the circular array behaves similarly

to a uniform linear array: the main beam becomes more directive and the sidelobes

increase in number. Due to the regular geometry of a uniform circular array, aliasing

occurs at about d/λ = 0.5. However, aliasing does not take the form of replicas of

the main lobe (grating lobes) as in the case of a uniform linear array, yet in a dramatic

increase in level of the sidelobes. It is worth mentioning at this point that the distance

between consecutive sensors d does not follow the curvature of the circular geometry,

but the straight line between consecutive sensors. Geometrical considerations show that

d = 2R sin(π/M). (2.27)

Although a uniform circular array is shift-invariant in the azimuthal direction (ϕ),

it should be emphasized that this property is not valid with respect to the polar angle

(θ). For this reason, uniform circular arrays are normally steered toward directions con-

tained in the plane of the array, by fixing θ = 90◦, and considering 2D sound fields,

i.e., only waves propagating in that plane. This is a good assumption as long as waves

from other directions are sufficiently attenuated. If that is not the case, but the beam-

former still expects a 2D sound field, the resulting map becomes gradually ambiguous

to such an extent that the pattern is totally omnidirectional for waves propagating from
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(b) θs = 30◦ and θs = 150◦
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Figure 2.13: Influence of the polar angle of an incident plane wave on the beamforming pattern of a uniform

circular array with 10 sensors. The magnitude is expressed in dB and normalized to A × M . In all cases

d/λ = 0.3, ϕs = 0◦ and θ = 90◦.

θs = 0◦ and θs = 180◦. This can be seen in Fig. 2.13. In practice, waves with polar

angles θs up to ±30◦ off-plane are generally detected successfully.

2.1.3 Spherical array

Spherical arrays consist of a number of sensors distributed over the surface of a sphere,

which can be open (or transparent) or not. Unlike circular arrays, which have difficulties

with waves propagating out-of-plane, spherical arrays have the ability to map 3D sound

fields effectively. Furthermore, some layouts can provide a shift-invariant pattern for

the entire 3D space. This will be later addressed in Sec. 3.1.2. The geometrical model

assumed for a spherical array is shown in Fig. 2.14. In this case, the position of the mth

microphone is given by
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Figure 2.14: Plane wave impinging on a spherical array with M sensors.

rm = R

⎡
⎢⎣

sin θm cosϕm

sin θm sinϕm

cos θm

⎤
⎥⎦ , m = 0, . . . ,M − 1, (2.28)

where R is the radius of the sphere, and θm and ϕm are the polar and the azimuth angles

of the mth transducer. The focus direction κ̂ and the wavenumer vector of an incident

plane wave are given by Eqs. (2.22) and (2.23), respectively.

2.2 Performance indicators

It is apparent from the previous section that several aspects, for instance, geometry,

number of transducers, and spacing, influence the beamformer response. It is therefore

necessary to make use of performance indicators to assess and compare beamforming

systems. Most measures of performance found in the literature are often adapted from

other fields, such as electromagnetism (antenna theory) and optics. A brief description

of the most relevant ones is given in the following.
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Measures of beam pattern

Resolution: Defined as the −3 dB width of the main lobe of the directivity pattern

and measured in degrees or radians. It is also known as the 3 dB beamwidth,

the half-power beamwidth, and the angular resolution. This measure, which is

adapted from antenna theory (see, e.g., Ref. [49]) gives the minimum angle at

which two incoherent sources can be resolved. Moreover, it is an indicator of

directivity. The lower the value, the more directive the beamformer is.

Maximum sidelobe level (MSL): Given by the difference in level in dB between

the peak of the highest sidelobe in the beam pattern to the peak of the main

lobe [12]. This measure is also adapted from antenna theory and in the antenna

community it is commonly referred to as SLL (sidelobe level) [50]. The MSL

is complementary to the resolution, as it is not about directivity, yet a descriptor

of how sensitive the beamformer is toward unwanted directions. Obviously, the

larger the level difference between main- and maximum sidelobe, the better. It

can be shown that this measure is more sensitive to noise than the resolution.

Peak-to-zero distance or Rayleigh resolution limit: Given by the angular difference

between the position of the peak of the main lobe of the beam pattern and the

position of its closest null. It determines the ability of the array to resolve two

incoherent plane waves based on the Rayleigh criterion [51], adapted from optics

theory. This criterion states that two plane waves are resolved when the main

peak of the beam pattern of one falls on the null closest to the main peak of the

beam pattern of the other one. This measure is an alternative to the resolution

based on the −3 dB width, as half the beamwidth between the nulls of the main

lobe is approximately equal to the −3 dB beamwidth [52].

Figure 2.15 illustrates how the resolution, the MSL, and the peak-to-zero distance

can be extracted from a given beam pattern.

Other measures

Directivity index (DI): Defined as the ratio of the beamformer response in the looking

direction to the average response over all directions. Expressed on logarithmic
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Figure 2.15: Calculation of the resolution (RES), the MSL, and the peak-to-zero (PTZ) distance from a given

beam pattern.

scale [52, 53], the DI can be written as

DI = 10 log

(
|b(θs, ϕs)|2

1
4π

∫ 2π

0

∫ π

0
|b(θ, ϕ)|2 sin θ dθ dϕ

)
. (2.29)

This measure can be regarded as the array gain against isotropic noise (noise

distributed uniformly over a sphere) [42]. The higher the DI, the better.

Array gain: Reflects the improvement in SNR achieved by using an array. It is defined

as the ratio of the SNR at the array output to the SNR at a single sensor subject to

different types of noise [4]. Usually isotropic acoustical noise is considered [8].

White noise gain (WNG): Measured as the array gain, but considering that the SNR

at every sensor is due to spatially uncorrelated white noise [8]. It can also be

regarded as the ratio of the signal power at the output of the beamformer to the

sensor self-noise power assuming a unity variance noise [54]. The WNG is an

indicator of the robustness of the array against deviations in the practical imple-

mentation, such as sensor self-noise, positioning errors, and amplitude and phase

variations. The higher the WNG, the more robust the array is. It can be shown

that the optimal WNG equals the number of microphones, for frequencies below
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the Nyquist frequency, and is achieved with delay-and-sum beamforming with a

uniform weighting [42].

Usually, the resolution and the MSL are examined together as they provide direct

values related to the beam pattern that complement each other to give an idea of its

shape. These two indicators can be seen in Fig. 2.16 as a function of frequency for a

delay-and-sum beamformer based on a uniform circular array with 12 sensors and 11.9

cm of radius.†. A uniform weighting, a focusing direction of 180◦, and ideal (noise

free) conditions are assumed. As can be seen, the resolution improves with increasing

frequency, which means that the main beam becomes narrower. On the other hand,

the MSL indicates that at low frequencies the sidelobes are non-existent, but they arise

with increasing frequency. Inspection of these two performance indicators together

suggest that the beamformer response is omnidirectional at the lowest frequencies, but

with increasing frequency the directivity increases, although this is accompanied by an

increase in level of sidelobes, which stagnates at a certain frequency.

The DI of the array previously examined is showed in Fig. 2.17, together with the

WNG. In this case, the DI at the lowest frequencies is 0 dB, which means that the beam

pattern is omnidirectional. With increasing frequency, the DI increases progressively,

indicating, thus, that the array becomes more and more directive. In contrast to the

resolution, the DI provides a value related to the array directivity that considers not

only the width of the main lobe, but also the sidelobes. This makes it impossible to

predict a beam pattern via the DI, as becomes apparent from the inspection of Fig. 2.17.

On the other hand, the WNG is constant across frequency, being equal to 10.8 dB,

i.e., 12 in a linear scale, corresponding to the number of array microphones, as expected

from the fact that delay-and-sum with uniform weighting provides the optimal WNG.

It should be noted that while the resolution, the MSL, and the DI can be extracted from

experimental results, this is not possible with the WNG, as this is a theoretical measure.

In the microphone array community, the DI and the WNG are typically preferred

for the numerical analysis of array designs, see, e.g., Refs. [8, 19, 54, 55]. The res-

olution and the MSL are less used, but nevertheless they have proven to be a useful

evaluation tool, e.g., in Refs. [12, 56–58]. While the resolution can be related to the

DI, as both are measures of directivity, the MSL can be used to examine the robustness

†An array with these characteristics is used in Paper A. Its Nyquist frequency is about 2.7 kHz.
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Figure 2.16: Resolution and MSL obtained with a delay-and-sum beamformer based on a uniform circular

array with 12 sensors and 11.9 cm of radius. The array is focused toward 180◦.
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Figure 2.17: DI and WNG obtained with a delay-and-sum beamformer based on a uniform circular array with

12 sensors and 11.9 cm of radius. The array is focused toward 180◦.
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of the system, although this is not a direct measure as the WNG is. Since the noise

captured by the system affects basically the level of the sidelobes of the beamforming

response, this makes the resulting MSL deviate from the MSL that would be obtained

in the absence of noise. The higher the deviation, the less robust the system is.

In the contributing papers of this thesis, the performance of the suggested methods

is examined basically by means of the resolution and the MSL for the following main

reasons:

1. For sound source localization purposes the spatial sensitivity of the array is a very

important factor. In this sense, the resolution is a very appropriate parameter.

In combination with the MSL, these measures provide a better picture of the

behavior of the beam pattern than DI and WNG.

2. Both resolution and MSL can be extracted from experimental data and not only

from numerical data as in the case of the WNG‡, which is crucial for the valida-

tion of the methods suggested in the papers.

3. For the reader not familiar with microphone arrays, the resolution and the MSL

are simpler to interpret than the DI and the WNG.

‡Note that although the DI can also be extracted from experimental measurements, this is rarely seen in

the literature.



Chapter 3

Eigenbeamforming

3.1 Introduction

Eigenbeamforming, also known as eigenbeam beamforming, is a rather new category

of methods that rely on ‘closed’ geometries, such as a sphere or a circle. The sound

field captured by arrays that fulfill this condition can be decomposed into a sum of

orthogonal terms that satisfy the wave equation in the coordinate system that best suits

the array geometry. Combination of these orthogonal terms, known as harmonics or

phase modes, makes it possible to form a detection beam. An eigenbeamforming system

consists of two stages, see Fig. 3.1; in the first stage, the pressure measured with the

array is decomposed in a set of harmonics, and in the second stage, usually referred

to as modal beamformer, the coefficients of the harmonics are weighted and added

together to provide the final beamforming output [32]. The fundamental difference

from traditional beamforming lays on the fact that the latter is based on applying the

signal processing algorithms directly to the signals captured by the microphones. It

should be noted that the concept of using phase modes had been already explored in the

past in the field of electromagnetism, for antenna design; see, e.g., Refs. [59–68].

Although in principle many array shapes are possible for eigenbeamforming, only

those that have a well-defined geometry in the conventional coordinate systems are used

in practice. The most popular geometry is the spherical one [69–75], followed by the

circular [19, 55, 76–79] and the spheroidal [80].

33
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Figure 3.1: Eigenbeamforming procedure. The sound field captured by the array sensors is decomposed in

a series of orthogonal functions, whose coefficients are weighted in the modal beamformer stage to yield the

final output b.

3.1.1 Eigenbeamforming for circular arrays

The concepts behind eigenbeamforming are here briefly described assuming an open

uniform circular array, as the one shown in Fig. 2.10 on page 22. Given the circular

symmetry, the sound field can be decomposed in a Fourier series in the azimuth coor-

dinate, ϕ, so that, at the array radius, the sound pressure can be written in the spatial

frequency domain as [10]

p(kR, ϕ) =

∞∑
n=−∞

Cn(kR)ejnϕ, (3.1)

where the terms ejnϕ, often referred to as circular harmonics, form a set of orthogonal

functions,
1

2π

∫ 2π

0

ejnϕ(ejνϕ)∗dϕ = δnν , (3.2)

where δnν is the Kronecker delta function, which equals unity when n = ν and zero

otherwise, and Cn(kR) is the nth order Fourier coefficient,

Cn(kR) =
1

2π

∫ 2π

0

p(kR, ϕ)e−jnϕdϕ. (3.3)
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If a plane wave with amplitude A, created at ϕs, is present in the sound field, it can be

shown that the coefficients become [81]

Cn(kR) = AQn(kR)e−jnϕs , (3.4)

where Qn(kR) is a function that depends on the boundary conditions of the uniform

circular array, that is, for example, whether the array is mounted on a baffle or not, as

will be seen later. In the case of a uniform circular array suspended in free-space,

Qn(kR) = (−j)nJn(kR), (3.5)

where Jn(kR) is a Bessel function of the first kind and order n.

In theory, the sound pressure is represented by infinitely many Fourier coefficients.

In practice, it can be shown that the contribution of those orders higher in magnitude

than kR is very small [42]. Therefore, the representation of the sound field is often

limited, or truncated, to a maximum order N that satisfies

N ≈ kR. (3.6)

It is worth noting that less orders are required for representing the low frequencies

compared to the high frequencies.

With an array of transducers, the sound pressure is sampled at discrete positions,

rather than in a continuous circle. This implies that the coefficients defined in Eq. (3.3)

need to be approximated by

C̃n(kR) ≈
M−1∑
m=0

αmp(kR, ϕm)e−jnϕm , (3.7)

where the term αm is an integration factor that ensures the discrete orthogonality prop-

erty of the circular harmonics

M−1∑
m=0

αmejnϕm
(
ejνϕm

)∗ ≈ δnν . (3.8)

Given the constant sensor spacing of a uniform circular array, αm = 1/M . An ad-

ditional consequence of the sampling theorem in space is that the number of array



36 3. Eigenbeamforming

sensors required to capture the sound field up to order N must be larger than 2N

(M > 2N) [42]. The error due to sampling a continuous circle with a limited number

of sensors and the error for considering a finite number of harmonics for representing

the sound field are analyzed thoroughly in Refs. [18, 81].

The output of an eigenbeamforming system based on a circular array results from

weighting and combining the Fourier coefficients obtained with the decomposition of

the sound field, that is,

b(kR) =
N∑

n=−N

wn(kR)C̃n(kR), (3.9)

where wn(kR) is the weighting associated to the nth order Fourier coefficient Cn(kR).

Analogous to the influence on the weighting observed in Chapter 2 for delay-and-sum

beamforming, the output of the eigenbeamformer strongly depends on the these param-

eters. When the weightings take the form

wn(kR) =
1

Qn(kR)
ejnϕl , (3.10)

where ϕl is the looking direction of the array, the beamforming technique is referred

to as circular harmonics beamforming. This method, described and examined in Pa-

pers A and B, provides a response rotationally symmetric around the azimuthal looking

direction, i.e., the resulting pattern is shift-invariant. When using these weightings it

is particularly important to limit the orders in the beamforming algorithm to a value

N close to that given in Eq. (3.6) to avoid amplification of noise. Usually, the maxi-

mum number of orders is chosen as N = �kR�, where � · � is the ceiling function [81].

If higher orders are considered, the value Qn(kR) in the denominator tends to zero,

boosting, in this way, noise captured in the measurements. Therefore, the truncation

of orders can be regarded as a regularization method. The main characteristic of this

technique is that the output depends on the number of harmonics taken into account in

the algorithm; see Appendix A for further details.

Interestingly, delay-and-sum beamforming can also be characterized in terms of

eigenbeamforming, making use of the weightings

wn(kR) = Q∗
n(kR)ejnϕl . (3.11)
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These weightings also ensure a shift-invariant pattern [16].

Besides circular harmonics beamforming and delay-and-sum beamforming, other

methods based on eigenbeam processing with a uniform circular array of microphones

can be found in the literature. For instance, Ref. [18] adapts various adaptive methods,

such as MUSIC and ESPRIT∗, to the circular geometry.

Eigenbeamforming makes it easier to deal with baffled arrays, arrays whose ele-

ments are flushed-mounted on the surface of an object or a scatterer. By simply modify-

ing the function Qn(kR) of Eq. (3.4) according to the baffle type, the scattering effect

can be taken into account in the beamforming algorithm. Common baffles suitable

for uniform circular arrays are rigid spheres [19, 55] and cylinders [76]. Less popu-

lar are rigid baffles with a spheroidal shape [79], which can be oblate or prolate, and

baffles with a certain surface impedance [55]. While the scattering effects of spheres,

spheroids, and infinitely-long cylinders, have an exact analytical solution, and so does

the corresponding Fourier coefficients, that is not the case with the scattering from a

finite cylinder.

Arrays with rigid baffles are usually preferred over open arrays for the following

two reasons; firstly, the boundary conditions of a baffle are well defined compared to

open arrays, which in practice are far from being transparent (their structure, preampli-

fiers, cables, etc., obviously alter the sound field [82]). Secondly, baffled arrays provide

a better response than open arrays; in particular, this is noticeable with delay-and-sum

beamforming toward low frequencies, as due to the presence of the baffle, waves need

to travel longer distances before reaching the microphones, which results in an effec-

tive larger array aperture [78]. Of all common types of rigid baffles for circular arrays,

delay-and-sum beamforming performs best with cylinders. The behavior with oblate

and prolate spheroidal baffles lies between those of an open array and a sphere, and a

sphere and an infinite cylinder, respectively [79]. With circular harmonics beamform-

ing, the performance with scatterers is very similar to that with open arrays. The only

difference is that with open arrays the output presents singularities at those frequen-

cies that coincide with the zero-crossings of the Bessel functions in the denominator

of the algorithm; see Eqs. (3.5) and (3.10). With this technique, there is no significant

difference between different types of baffles.

∗ESPRIT stands for ‘estimation of signal parameters via rotational invariance techniques’.
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3.1.2 Eigenbeamforming for spherical arrays

Spherical arrays are suitable for decomposing a 3D sound field into a series of orthog-

onal terms of the form [10]

Y m
n (θ, ϕ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)ejmϕ, (3.12)

where Pn
m(cos θ) is the associated Legendre function of order m and degree n. These

terms are commonly referred to as spherical harmonics. In the case of a spherical array

of radius R, the pressure at the sphere is given by the Helmholtz equation in spherical

coordinates [16],

p(kR, θ, ϕ) =

∞∑
n=0

n∑
m=−n

Cmn(kR)Y m
n (θ, ϕ), (3.13)

where the terms Cmn(kR) follow

Cmn(kR) =

∫ 2π

0

∫ π

0

p(kR, θ, ϕ)Y m
n (θ, ϕ)∗ sin θdθdϕ. (3.14)

Since with an array the pressure is captured at the sensor positions, the coefficients that

result from the decomposition of the sound field are in practice approximated by

C̃mn(kR) =

M−1∑
i=0

αip(kR, θi, ϕi)Y
m
n (θi, ϕi)

∗, (3.15)

where θi and ϕi are angular coordinates of the ith microphone and αi is an integration

factor associated to the ith microphone. This parameter enforces the orthogonality

of the spherical harmonics up to order N , such that the resulting coefficients are free

of error up to that order [20]. By analogy to the case of eigenbeamforming with a

circular sphere, it can be shown that the coefficients C̃mn(kR) can be weighted before

adding them together to form a beam in a particular direction. Eigenbeamforming with

spherical arrays is well documented in the literature. The reader interested in this topic

is addressed to, e.g., Ref. [16, 54].
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A note on the design of spherical arrays for eigenbeamforming

The position of the microphones in a spherical array is not as trivial as in the case of

a uniform circular array. There are several strategies to sample a sphere so that the

discrete orthogonality property of the spherical harmonics, that is

M−1∑
i=0

αiY
m
n (θi, ϕi)Y

μ
ν

∗(θi, ϕi) = δnνδmμ, (3.16)

is fulfilled. The integration factor of the ith microphone αi, as well as the relationship

between the number of transducers M and the maximum order N that can be cap-

tured without error, depends on the sampling scheme. An overview of several sampling

schemes is given in details in Ref. [20]. By analogy to the uniform circular array, the

most intuitive way to satisfy the orthogonality relationship is by sampling the sphere

uniformly so that the transducers are equidistant. In such a case, αi reduces to a con-

stant. However, a uniform distribution of sensors is only possible with a limited set

of arrangements based on regular polyhedra (also called platonic solids) that allow a

sphere to fit in; specifically, the tetrahedron (4 faces), the cube (6 faces), the octahedron

(8 faces), the dodecahedron (12 faces) and the icosahedron (20 faces). By placing the

sensors at the center or at the vertices of each face, the resulting distribution of sen-

sors is uniform. An alternative that presents a distribution close to being uniform is

the truncated icosahedron†, which has 32 faces [69]. Yet another solution is the com-

bination of a non-equidistant sampling with a non-uniform weighting αi. That is, for

instance, the case of the nearly uniform [83], the equiangle [20, 71], and the Gaus-

sian [20, 71, 73, 74, 76] sampling schemes. The equiangle distribution relies on equally

spaced samples on θ and ϕ, whereas the Gaussian sampling scheme is similar, but only

half of the samples are considered on θ.

The orthogonality property of the spherical harmonics ensures that the decomposi-

tion is independent of the microphone positions, allowing, thus, a shift-invariant beam

pattern due to the spherical symmetry.

†An example of a truncated icosahedron is a football. It consists of 12 pentagonal faces and 20 hexagonal

faces.
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3.2 Papers A and B

3.2.1 Synopsis

Paper A suggests an eigenbeamforming technique for a uniform circular array, called

circular harmonics beamforming. The technique, conceived for mapping sources dis-

tributed from 0 to 360◦, is particularly suitable for environmental noise problems. Cir-

cular harmonics beamforming is compared numerically to delay-and-sum beamform-

ing for both an open array and an array mounted on an infinitely-long rigid cylinder, by

means of the resolution and the MSL. The method is also validated experimentally with

an open array.

Paper B extends the investigation carried out in Paper A to the case of a uniform

circular array mounted on the equator of a rigid sphere, and validates it numerically and

experimentally.

3.2.2 Related work

In 2001, Meyer presented in Ref. [19] a method for beam pattern synthesis based on

the decomposition of the sound field into a series of (circular) harmonics that relied

on a uniform circular array mounted on a rigid sphere. Although the concept was ini-

tially developed for uniform circular arrays, it triggered a series of research projects

involving spherical arrays of microphones, pioneered by Meyer and Elko, Ref. [69],

and Abhayapala and Ward, Ref. [70], in 2002. Their investigations set the foundations

of eigenbeamforming for spherical arrays. In the following years, Rafaely published

several articles on the matter, e.g., Refs. [16, 20, 71, 75]. In particular, the principles of

eigenbeamforming (in that case referred to as phase-mode processing) were described

in Ref. [72], following the approach used in Sec. 3 for the circular geometry, also under

the plane wave assumption. In particular, Rafaely analyzed the response of an eigen-

beamformer whose weightings provided the so-called regular beam pattern, the most

directive pattern (for fixed beamforming) [16], and compared it to delay-and-sum ex-

pressed in eigenbeamforming terms. The results of that study showed that the directiv-

ity achieved with the regular beam pattern exceeds that of delay-and-sum beamforming,

specially at low frequencies, at the expense of robustness to noise. That work was later

supplemented in Ref. [75] with an overview of various eigenbeamforming methods.

Oddly enough, contemporary to Rafaely’s research, Pedersen in Ref. [84] and Song
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in Ref. [85], following an approach different from Rafaely’s, arrived to the expres-

sion for eigenbeamforming with a regular beam pattern, considering, though, spherical

waves. They called the method spherical harmonics beamforming. A year after Song’s

work was published, Haddad and Hald, in Ref. [86], added a scale factor into spherical

harmonics beamforming so that in case of having a rigid sphere, the pressure contribu-

tion would be determined correctly, i.e., without the influence of the scattering effect.

This version of spherical harmonics beamforming was referred to as spherical harmon-

ics angularly resolved pressure (SHARP). This method has been recently extended in

Ref. [57] to provide a smoother response, by means of adding regularization filters.

Similarly to Rafaely’s article on decomposition of sound fields with spherical ar-

rays, Ref. [71], Teutsch and Kellerman in Ref. [76]‡ presented a theoretical analysis of

plane wave decomposition with circular arrays, unbaffled, mounted on a rigid infinitely-

long cylindrical baffle, and mounted on a rigid cylinder of finite-length. In addition,

they derived eigenbeamforming based on the circular geometry, assuming a continuous

aperture instead of the sampled version, i.e., a microphone array. Also, they expressed

two adaptive beamforming algorithms ESPRIT and DETECT, in terms of eigenbeam-

forming and evaluated them with an array mounted on a rigid cylinder, numerically and

experimentally.

3.2.3 Discussion

Inspired by the literature on eigenbeamforming with spherical arrays, Paper A adapts

the theory behind spherical harmonics beamforming to the 2D case with a circular array,

assuming, in this case, plane waves impinging on the array. The proposed beamforming

technique, referred to as circular harmonics beamforming, was originally conceived

in Paper A for localization of environmental noise sources, but it can obviously be

applied to other scenarios where sound sources are distributed over the array azimuth.

It should be noted that 1) the approach followed in Paper A to derive circular harmonics

beamforming is different from the synthesized derivation given in Sec. 3.1.1; and 2) the

article does not include the insight into the technique concerning the influence on the

number of orders given in Appendix A.

While delay-and-sum is omnidirectional at low frequencies, circular harmonics

beamforming presents a certain directivity, namely a resolution of about 112◦ in the

‡This work is also presented in the PhD Thesis by Teutsch, Ref. [18].
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worst case. Indeed, the response of circular harmonics beamforming in terms of di-

rectivity is better at the lower frequency range than that of delay-and-sum. At high

frequencies, both methods perform similarly. The main drawback of circular harmon-

ics beamforming in comparison with delay-and-sum is its vulnerability to noise, which

essentially affects the sidelobe levels. Circular harmonics beamforming implemented

with an open uniform circular array presents singularities at a few (single) frequencies,

which can be resolved when the array is mounted on a rigid infinitely-long cylinder. In

general terms, though, the overall output pattern with the two array configurations is the

same. By contrast, the pattern of delay-and-sum with the cylindrical scatterer improves

toward low frequencies, as the scatterer makes the array appear larger. Interestingly,

with this configuration both the resolution and the MSL at high frequencies is similar

for both beamforming techniques. However, at low frequencies, the performance with

circular harmonics beamforming still exceeds that of delay-and-sum.

The results of the investigation carried out in Paper A showed that the performance

with a rigid infinitely-long cylindrical scatterer was better over that of an open array,

especially for delay-and-sum beamforming. Since infinitely-long cylinders are not fea-

sible, they are in practice approximated by finite length cylinders. With regard to that,

Teutsch and Kellerman showed in Ref. [76] that a finite cylinder whose length is 1.4

times its radius is enough to approximate an infinitely long cylinder, as its modal re-

sponse becomes fairly similar. This result was later ratified by Granados in Ref. [87].

As an alternative to cylindrical scatterers of finite-length, Paper B suggests to flush-

mount the array on the equator of a rigid sphere, and repeat the comparison carried out

in Paper A. The main advantage of this configuration is that the scattering produced by

this geometry has an exact analytical solution, in contrast to the finite-length cylinder.

With a spherical baffle, circular harmonics beamforming performs in the same manner

as in the infinitely-long cylinder case. However, for delay-and-sum the improvement

is not as good as with the cylinder, because the effective aperture achieved with the

spherical scatterer is smaller.

The novelty of circular harmonics beamforming cannot be entirely attributed to

the author of this thesis as Zhang et al. in Ref. [88] also derived the same technique

under another name and compared it to delay-and-sum for a circular array mounted on

a rigid sphere. Their work, thus, resembles the study presented in Paper B, although

they assessed the beamforming techniques using DI and WNG, and the analysis was

restricted to numerical simulations. In any case, their findings agree in general terms
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with those of Paper B. It should be emphasized that Ref. [88] is not cited in Papers A

and B as the author of this thesis was not aware of the existence of this work at the time

of writing the papers.

The results in Paper B concerning delay-and-sum also agree with those shown by

Daigle et al., in Ref. [55], where the performance of delay-and-sum was analyzed for

circular arrays mounted on spherical baffles using the DI.
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Chapter 4

Deconvolution methods

4.1 Introduction

Beamforming systems cause unavoidable effects, namely the frequency dependence of

the array resolution and the appearance of sidelobes, which result in beamformed maps

that appear blurred and often difficult to interpret, particularly when several acoustic

sources need to be detected simultaneously. Deconvolution methods intend to deblur

them by removing the artifacts introduced by the array system itself and thereby restor-

ing the original data. These methods rely on the fact that the beamformer output is

a linear combination of the spatial distribution of acoustic sources and the so-called

point-spread function, defined as the beamformer’s response to a point source∗. Math-

ematically, the deconvolution problem can be formulated in the frequency domain as

follows

|b(r)|2 =
∑
r′∈G

s(r′) ·H(r|r′), (4.1)

where s(r′) is the source power distribution at a position r′ that belongs to the grid of

points G, and H(r|r′) is the point-spread function at r due to a source at r′. It should

be emphasized that the source power distribution is non-negative. In matrix notation,

the previous expression can be written as

b = Hs, (4.2)

∗The point-spread function and the beamformed map are sometimes referred to as the ‘dirty beam’ and

the ‘dirty map’, respectively.

45
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Figure 4.1: Beamformed map (left) and clean map after deconvolution (right). Measurement of two uncorre-

lated sources located at 2.7 m from the array. The stars in the beamformed map indicate the position of the

sources. The level of the right source is 10 dB higher. With beamforming the left source is masked, whereas

it becomes visible after deconvolution. Adapted from Ref. [90].

where b is a vector with the power response of the beamformer, H is a matrix that

in each column contains the point-spread functions of each grid point, and s is the

unknown source power distribution vector. The deconvolution methods try, thus, to

compensate for the ‘blurring’ effect of the point-spread function to recover the original

source distribution. Notice that this a discrete inverse problem, and must be treated

carefully to avoid an abrupt amplification of noise, which can often lead to a meaning-

less solution [89]. Deconvolution methods approach this problem by means of iterative

algorithms. The resulting plot of the estimated source distribution is a ‘clean’ version

of the beamformed map: the resolution is improved, and the sidelobes are reduced, or

even suppressed. This is illustrated in Fig. 4.1.

Deconvolution methods are relevant in many fields that involve image restoration.

This problem was first approached for seismology purposes by Robinson [91, 92] back

in 1954, inspired by the previous work done by Wiener in that field [93]. Since then,

deconvolution has been applied to many other research areas, such as radio astron-

omy [94], optical microscopy [95] and image processing [96]. It was not until the

late nineties, that the aeroacoustic community adapted some of the existing decon-

volution methods to deal with sound field visualization problems. That is the case

of CLEAN [97] and Richardson-Lucy [98, 99], both originally developed for astron-

omy and modified for acoustical purposes in Refs. [13] and [100], respectively. While

CLEAN acts directly on the beamformed map, i.e., on the image itself, Richardson-
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Lucy solves the inverse problem posed in Eq. (4.2) using Bayes’ theorem on condi-

tional probabilities. Other algorithms, adapted from classical non-negative least squares

(NNLS) procedures [101], seek to solve the following optimization problem

minimize 1
2 ‖Hs− b‖22 , (4.3)

subject to q ≥ 0. (4.4)

That is the case of gradient projection methods, such as the fast Fourier transform-non-

negative least squares method (FFT-NNLS) [100], the gradient projection method with

Barzilai & Borwein steps [102], and the fast iterative shrinkage-thresholding algorithm

(FISTA) [103], examined in Ref. [104] for sound source localization purposes.

Alternatively, there are methods specifically conceived for acoustic purposes. A

number of methods are devoted to static incoherent sound fields. The first method devel-

oped, called the deconvolution approach for the mapping of acoustic sources (DAMAS)

[105, 106], had the main disadvantage that was computationally very heavy. Seeking

for efficiency, other algorithms, such as DAMAS2 [107], SC-DAMAS [108], CLEAN-

SC [109], the covariance matrix fitting (CMF) [108], and the iterative sidelobe cleaner

(ISCA) [110], were implemented based on some assumptions. For example, DAMAS2

relies on a shift-invariant point-spread function, whereas SC-DAMAS, CLEAN-SC and

CMF assume source sparsity. Moreover, DAMAS, DAMAS2, CLEAN, and CLEAN-

SC have been extended in Ref. [111] to deal with moving sources. There are far less

methods capable to deal with coherent sound fields. Examples are DAMAS-C [112],

CMF-C [108], the mapping of acoustic sources (MACS) [113], and the wavespace-

based coherent deconvolution [114]. In this case, CMF-C and MACS rely on spar-

sity, whereas the wavespace coherent deconvolution algorithm assumes a shift-invariant

point-spread function.

The main drawback of deconvolution procedures is that they are in general com-

putationally challenging. It is therefore necessary to find a compromise between the

degree of accuracy, given by the size of the grid and the number of iterations, and

the computational run time. Certain techniques, such as DAMAS2, FFT-NNLS, and

Richardson-Lucy, rely on a shift-invariant beamformer’s point-spread function in order

to use spectral procedures (Fourier-based) to reduce the complexity of the calculations,

and thus, improve efficiency. Since a shift-invariant point-spread function only depends
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on the distance between the source position and the observer position,

H(r|r′) = H(r− r′), (4.5)

the beamformer output, Eq. (4.1), results in a convolution

|b(r)|2 = s(r′) ∗H(r− r′). (4.6)

This relationship makes it possible to tackle the problem in the frequency domain, by

means of expressing the convolution as a multiplication, and, thereby, speed up the

process,

|b(r)|2 = F−1 [F [s(r′)]F [H(r)]] , (4.7)

where F and F−1 are the direct and the inverse FFT.

In general, the assumption of a shift-invariant point-spread function is not valid

with 2D imaging using planar-sparse arrays, such as spiral and pseudo-random arrays,

unless the source region is small compared to the distance between the array and the

source. Therefore, Fourier-based deconvolution approaches are restricted to small re-

gions in space. Otherwise, errors occur. This is examined thoroughly in Ref. [104].

To extend these approaches to a larger, and 3D region, Refs. [107, 115, 116] suggest to

make use of a coordinate transformation.

The comparison of deconvolution methods is a cumbersome task because it can

be done as function of many different parameters, such as convergence, resolution,

computational load, number of iterations, etc. In addition their performance strongly

depends on the case under analysis. Readers interested in the comparison of various

methods are addressed to Refs. [100, 104, 108, 117, 118].

4.2 Paper C

4.2.1 Synopsis

Paper C adapts three deconvolution methods conceived for planar-sparse arrays,

DAMAS2, FFT-NNLS, and Richardson-Lucy, to the circular geometry. The main char-

acteristic of these methods is that they rely on a shift-invariant point-spread function,

which has the advantage that the deconvolution can be approached with spectral pro-
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cedures to improve computational efficiency. The algorithms are examined via simu-

lations and experimental data with a uniform circular array mounted on a rigid sphere.

Their performance is analyzed through the beam patterns obtained with both delay-

and-sum beamforming and circular harmonics beamforming as a starting point for the

deconvolution process.

4.2.2 Related work

Deconvolution methods have become popular in the recent years as they are capable to

provide more accurate maps than beamforming. Initially, they were implemented for

planar-sparse arrays, and therefore, most of the existing literature assumes this layout.

Although the methods can obviously be applied to eigenbeamforming arrays, they have

been rather overlooked. To the author’s best knowledge, there is a lack of literature

for the circular geometry, and only three references are available for the spherical one,

Refs. [119–121]. Pascal and Li in Ref. [119] explore the benefits of using DAMAS and

Richardson-Lucy with a uniform spherical array, whereas Schmitt et al. in Ref. [120]

suggest an NNLS algorithm for a spherical array with a pseudo-random distribution of

microphones. On the other hand, Legg and Bradley in Ref. [121] analyze the perfor-

mance of CLEAN-SC, although they do not specify the array configuration. Surpris-

ingly, none of these works consider eigenbeamforming algorithms, such as spherical

harmonics beamforming, as a starting point for the deconvolution process; they sim-

ply make use of delay-and-sum. Moreover, only one of the mentioned techniques,

Richardson-Lucy, makes use of a shift-invariant array pattern to base the computations

on spectral procedures, thereby, lowering the computational running time. Precisely,

Richardson-Lucy, together with two other methods that rely on shift-invariant point-

spread functions, DAMAS2, and FFT-NNLS, are adapted in Paper C to uniform circular

arrays.

4.2.3 Discussion

Paper C introduces for the first time the use of deconvolution methods to circular arrays,

and, in addition to it, the use eigenbeamforming as starting point of the deconvolution

process.

The results of Paper C indicate that the beamformed maps improve significantly

after the deconvolution process in the entire frequency range of interest. In particular,
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the resulting maps present a very fine resolution, and the sidelobes are reduced and in

some cases even removed.

For a given number of iterations, the maps obtained with the different deconvo-

lution techniques do not present significant differences. In all cases, the main beam

becomes narrower with increasing frequency. This actually implies that more iterations

are needed at low frequencies in order to achieve the same resolution at all frequencies.

In this respect, since circular harmonics beamforming presents a better resolution at

low frequencies than delay-and-sum, the deconvolved maps also present a better reso-

lution at these frequencies with this technique. At high frequencies the maps are rather

independent on the beamforming technique used prior to deconvolution. However, the

sidelobes are more noticeable, though much reduced compared to plain beamforming,

with circular harmonics beamforming, as this technique is less robust to noise than

delay-and-sum. All in all deconvolution methods are particularly useful when there is

more than one source present in the sound field.

Interestingly, if only one source is present in the sound field, the aliasing effect

above Nyquist frequencies is removed from the map. This can be explained by the fact

that the point-spread function used for the deconvolution is contaminated with aliasing,

in such a way that during the deconvolution process the point-spread function matches

the beamforming response, which is affected in the same way by aliasing.

Paper C also shows that, apart from providing a better localization of the sound

sources present in the sound field, deconvolution methods also give a good estimate of

the level of the sources via an integration process. The levels retrieved with the three

deconvolution methods under analysis are very similar. However, the levels obtained

from the delay-and-sum beamformed map present a better agreement with the average

level captured directly with the microphones than the levels estimated with the circular

harmonics beamformed map.

During the research on deconvolution methods for the circular geometry, it was

observed that the performance of the different methods (DAMAS2, FFT-NNLS, and

Richardson-Lucy) depends on the case under analysis. In the examples given in Pa-

per C, Richardson-Lucy converged faster than the other two methods, but this was not

systematic; it varied depending on several parameters such as the amplitude of the im-

pinging wave, the frequency, and the angle. It was not the goal of Paper C to judge

which method was best, but this could certainly be done in a future study where all the

parameters that play a role on the methods where analyzed thoroughly.
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The shortcoming of deconvolution methods is that they are time consuming, espe-

cially when the frequency range of analysis is broad, as they can only deal with one

frequency at a time. With the current computers, these methods are generally restricted

to those situations where measurements can be postprocessed at a later stage.

In any case, the results of Paper C indicate a great potential of these methods with

other eigenbeamforming systems, e.g., based on spherical arrays.
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Chapter 5

Beamforming with
holographic virtual arrays

5.1 Introduction

As seen in Chapter 2, for a given number of sensors, an array with larger dimensions

benefits the response at low frequencies compared to a smaller array, at the expense

of limiting the upper frequency range of operation of the array system. However, the

dimensions of the array are usually given by manufacturers, and users cannot do much

about that. Motivated by that, beamforming with virtual arrays emerges as an alter-

native for eigenbeamforming arrays with the aim to improve their performance at low

frequencies. The principle behind it is the following: the pressure captured with an

array of microphones is used to predict the pressure at a larger and virtual concentric

array of the same type, by means of acoustic holography. The predicted pressure is then

used to conduct beamforming. It should be noticed that this method assumes sources

in the far field of the array, which contrasts with most acoustic holography problems

where sources are placed in the near field.

The details of beamforming combined with acoustic holography are given in Papers

D and E, for an open circular array and a spherical array mounted on a rigid baffle,

respectively. Additionally, Appendix B gives the expressions for acoustic holography

for circular arrays both open and mounted on a rigid cylinder of infite length.

In addition to the derivation given in the contributing papers, this method is ex-

pressed in eigenbeamforming terms in the following for the case of uniform circular

arrays. It is assumed that plane waves traveling perpendicularly to the z-axis impinge

53
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on a (physical) uniform circular array that rests on the xy-plane. The eigenbeamformer

output using a holographic virtual circular array with radius Rv is

b(kRv) =

Nv∑
n=−Nv

wn(kRv)C̃n(kRv), (5.1)

where this expression follows from Eq. (3.9), but with the limits of the summation set

to −Nv and Nv , where Nv ≈ kRv . Making use of the acoustic holography expressions

given in Appendix B, it can be shown that the weightings for a virtual array when

performing delay-and-sum result in

wn(kRv) =
|Qn(kRv)|2
Qn(kR)

ejnϕl . (5.2)

As can be seen, these weightings differ from those corresponding to the normal expres-

sion of delay-and-sum beamforming (for a physical array); see Eq. (3.11). It should

be noted that this derivation is valid for open arrays and for arrays mounted on a rigid

cylinder, but not for the case of spherical baffles, as the reconstruction with acoustic

holography cannot be expressed in these terms; see the discussion given in Sec. B.3 on

page 70.

When circular harmonics beamforming is performed with the virtual array, the

weightings become

wn(kRv) =
1

Qn(kR)
ejnϕl . (5.3)

Inspection of this expression, independent of Rv , reveals that it totally coincides with

the weightings of circular harmonics beamforming performed directly with a physical

array; see Eq. (3.10). The only difference in the beamforming algorithm lies in the lim-

its of the summations in Eqs. (5.1) and (3.9), ±Nv and ±N , respectively. As mentioned

in Sec. 3, circular harmonics beamforming requires the truncation of orders higher than

about kR to avoid regularization error. Accounting for orders up to about Nv ≈ kRv ,

which is unavoidably higher than kR, will obviously cause a larger error. This shows

that computing circular harmonics beamforming with holographic virtual arrays does

not present any advantage compared to doing it directly from physical arrays. This also

occurs in the case of a spherical array, i.e., the principle works for delay-and-sum, but

not for spherical harmonic beamforming.
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5.2 Papers D and E

5.2.1 Synopsis

Paper D introduces for the first time the concept of beamforming with holographic vir-

tual arrays. An open uniform circular array is chosen for this purpose. The performance

of this method is analyzed by means of simulations and experimental results, making

use of the resolution and the MSL.

Paper E adapts the principles given in Paper D to a rigid spherical array, and goes

one step beyond with the investigation of the performance as a function of the radius of

the virtual array.

5.2.2 Related work

The combination of acoustic holography and beamforming has been examined recently

by Fu et al. in Ref. [122] for visualization of sound sources with high temperatures.

Their method consists of, at a first stage, conducting near-field beamforming with a

planar array placed at a (known) distance from the source that prevents the system

from being damaged due to the high temperatures. At a second stage, the beamformed

map serves as input to acoustic holography, to reconstruct the sound field closer to the

source. Both the procedure and the final goal of this work differ fundamentally from

beamforming based on holographic virtual arrays for sound source localization.

During the preparation of the work presented in Paper D, it was found out that there

was a lack on literature about acoustic holography for circular arrays. This method,

introduced in Refs. [9, 123, 124] in the beginning of the 1980’s, was conceived for array

measurements in the near-field of a source to predict the sound field closer to it, with

the aim to visualize the source radiation characteristics. In the first years, planar NAH,

based on measurements with planar arrays, was the main focus. However, already in

the paper by Maynard et al. from 1985, Ref. [9], the method was expressed in spherical

and cylindrical coordinates, in addition to the Cartesian. The possibilities that spherical

arrays offered for spherical NAH became soon of interest; see, e.g., Refs. [17, 82, 125,

126]. A peculiarity of spherical NAH that contrasts with planar NAH is that, due to the

closed surface of spherical arrays, the sound field can be reconstructed in the entire 3D

space without restrictions, as long as the reconstruction field is free of sources [127].

The principles of spherical NAH can easily be adapted to the circular geometry.
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Since this geometry has one less dimension than the spherical one, circular arrays can

predict an entire 2D sound field from measurements in a closed curve (a ring). Al-

though acoustic holography with circular arrays can be regarded as a particular case of

cylindrical acoustic holography, the circular geometry has not been much examined. In

particular, Cho et al. in Ref. [128] and Lee and Bolton in Ref. [129] made use of an

open circular array for statistical optimized near-field acoustic holography (SONAH)

and for patch near-field acoustic holography, respectively. The goal of both studies was

to measure sources placed in the interior of the array. However, beamforming with vir-

tual arrays, as described in Paper D, assumes sources outside the array. Moreover, with

this technique both the measurement and the reconstruction with acoustic holography

are carried out in the far field of the sources.

5.2.3 Discussion

The combination of acoustic holography and beamforming, by means of using virtual

arrays for the beamforming procedure, has been examined in this PhD project for the

first time. It should be noticed that due to a lack of literature in acoustic holography for

interior problems with circular arrays, the expressions for this reconstruction technique

had to be derived explicitly for Paper D.

The results of Papers D and E have shown that when the method is implemented

with delay-and-sum, the performance at low frequencies exceeds that obtained with

conventional delay-and-sum beamforming, to the detriment of the high frequencies, as

the spacing between the ‘sensors’ of the virtual array is larger. It is thus recommended

to perform beamforming directly from the physical array at high frequencies, while

taking advantage of holographic virtual arrays at low frequencies. The success of the

method depends on the dimensions of the virtual array, as the reconstruction process

outside the physical array is an ill-posed problem that leads to an error in the estimated

sound field that increases with increasing the distance from the array to the reconstruc-

tion point [126]. This implies that with increasing radius of the virtual array, noise is

amplified progressively. As a consequence, the value of the radius of the virtual array

is crucial for the success of the proposed beamforming technique. This is analyzed in

Paper E for a virtual spherical array.

In contrast to the positive effect of the suggested technique on delay-and-sum, this

new method does not exhibit any improvement when circular harmonics and spherical
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harmonic beamforming are used for its implementation, as seen in Sec. 5.1 for circular

arrays. This indicates that the method is not general, and therefore, it should be tested

with other beamforming algorithms. On the other hand, delay-and-sum beamform-

ing with holographic virtual arrays should be compared to circular/spherical harmonics

beamforming in a future follow up study. Some preliminary results not shown in this

dissemination suggest that this technique can be more robust and present a better reso-

lution and MSL than circular/spherical harmonics beamforming at certain frequencies.

In a future investigation it could be helpful to address this question using other well-

known performance indicators, such as the DI and the WNG, besides the resolution and

the MSL.

As shown in Sec. 5.1, beamforming with holographic virtual arrays can be ex-

pressed in eigenbeamforming terms. However, in the case of circular arrays, this is

only possible when they are either open or mounted on an infinitely-long cylinder, due

to some limitations imposed by the implementation of acoustic holography for this ge-

ometry; see Appendix B.

Despite the intrinsic limitations of acoustic holography, and the fact that this tech-

nique does not benefit circular harmonics beamforming, the implementation of beam-

forming using holographic virtual arrays is a new concept that at the moment has

showed positive results for delay-and-sum. The findings during the PhD project aim

at setting the ground for future research.
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Chapter 6

Conclusions

6.1 Summary and conclusions

This dissertation has examined the use of uniform circular arrays for sound source lo-

calization purposes using beamforming. Uniform circular arrays are suitable for 2D

sound fields in which waves propagate along the array plane, as they provide a 360◦ az-

imuthal coverage. That is often the need in many environmental noise problems where

sound sources are placed in the far field. A fundamental characteristic of beamforming

based on uniform circular arrays is that the output pattern is rotationally symmetric in

the azimuthal direction, and thus, the system can be equally fair in all looking directions

from 0 to 360◦.

Traditionally, sound source localization problems have been approached mainly

with planar-sparse arrays, and to some extent, with spherical arrays. Surprisingly, the

use of circular arrays for this purpose has not been explored much in the literature.

The work carried out during the present PhD project contributes to fill this gap. Tak-

ing delay-and-sum beamforming as a reference, the present study has suggested several

options to improve the performance of uniform circular arrays and extend their opera-

tive frequency range in order to cope with broadband sources. In all cases, it has been

assumed that the acoustic sources where incoherent, static, and located in the far field.

The goal of Papers A to D is to improve the performance of uniform circular arrays in

two different ways: by means of designing new processing techniques (Papers A, C,

and D), and by means of changing the physical characteristics of the array (Paper B).

The progress and findings of the PhD project can be seen as a journey toward the

improvement of uniform circular arrays. Curiously, the existing literature on spherical
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arrays inspired the initial work on uniform circular arrays reflected in Papers A and B,

while the outcome of Papers C and D showed to have potential with spherical arrays.

In fact, Paper E closes this circle, by adapting the results of Paper D to the spherical

geometry.

The first contribution of this thesis, presented in Paper A and complemented by

Sec. 3 and Appendix A, is the derivation and examination of an eigenbeamforming

method, circular harmonics beamforming, that results from adapting spherical harmon-

ics beamforming, a method for spherical arrays, to the circular geometry. The outcome

of this study shows that a slightly better performance can be achieved when the ar-

ray is mounted on a rigid cylinder of infinite length compared to the case where the

microphones are simply suspended in the free space. Inspired by the properties of a

theoretical rigid cylindrical scatterer of infinite length, and motivated by the difficulty

of its practical implementation, Paper B suggests the use of a rigid spherical baffle,

as its scattering behavior is, unlike the case of a rigid finite cylinder, well described

analytically.

On the other hand, Paper C suggests the use of deconvolution methods to improve

the visualization of the beamformed maps and recover the levels of the impinging waves

with accuracy. From a given map, these methods make use of iterative procedures to

estimate the sound sources present in the sound field. Since uniform circular arrays are

shift-invariant, they can benefit from those deconvolution methods that rely on a shift-

invariant point-spread function, thereby handling the inverse problem in the (spatial)

Fourier domain to achieve a lower computational load. Paper C adapts, for the first

time, three methods originally conceived for planar-sparse arrays, namely, DAMAS2,

FFT-NNLS, and Richardson-Lucy, to the circular geometry, and shows the potential

of using eigenbeamforming, such as circular harmonics beamforming, as input to the

deconvolution process.

Finally, Papers D and E contribute to the current literature by suggesting a new

method adequate for circular (Paper D) and spherical arrays (Paper E), based on the

combination of beamforming with acoustic holography. Its principle relies on applying

beamforming to a holographic virtual array with larger dimensions than the physical

array to improve the performance at low frequencies.
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The main contributions of this thesis to the existing literature are highlighted in the

following:

• Development, examination, and validation of circular harmonics beamforming,

an eigenbeamforming technique for uniform circular arrays.

• Extension of circular harmonics beamforming to uniform circular arrays mounted

on a rigid spherical scatterer.

• Adaptation of three deconvolution methods, namely DAMAS2, FFT-NNLS, and

Richardson-Lucy, to uniform circular arrays, and examination and validation us-

ing both delay-and-sum and circular harmonics beamforming prior to the decon-

volution process.

• Development, examination, and validation of delay-and-sum beamforming with

holographic virtual arrays for the improvement of the performance at low fre-

quencies, for both circular and spherical arrays.

• Derivation of the equations governing acoustic holography for circular arrays for

interior domain problems.

6.2 Future work

The findings of the PhD project have given rise to some questions and challenges that

should be addressed in the near future.

Deconvolution methods

A natural continuation of the work done in the project on deconvolution methods is

the extension of Fourier-based algorithms to the 3D case, using spherical arrays (with

shift-invariant point-spread functions). The main challenge is to implement the decon-

volution problem as a function of both the azimuth and the polar angle.

Beamforming with holographic virtual arrays

The study on beamforming using holographic virtual arrays has revealed that delay-

and-sum beamforming benefits from using this method, but that is not the case of
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circular harmonics and spherical harmonics beamforming. Therefore, the method

should be implemented with other beamforming techniques and examined to prove its

generalization.

Some preliminary studies not shown in this dissertation suggest that delay-and-sum

implemented with holographic virtual arrays is more robust to noise than circular

harmonics and spherical harmonics beamforming. Furthermore, it seems that at some

frequencies, both the resolution and the MSL are better. It is therefore necessary to

compare the methods thoroughly, making use of the usual performance indicators.

New technology

The findings of the thesis have been focused toward the enhancement of beamform-

ing at low frequencies. However, if the aim was to improve the performance at high

frequencies, this could be achieved by adding more transducers, as this would lower

the spacing between transducers, and hence, increase the Nyquist frequency. However,

with conventional microphones, this solution is usually not viable, as systems become

way too expensive. One alternative would be to use microelectromechanical (MEMS)

microphones, as they are small, and, more importantly, cheap. Despite the fact that, at

the moment, MEMS microphones are far from being as stable as conventional micro-

phones, this technology is still developing and has very good prospects. Advances in

MEMS technology will, for sure, lead to very attractive array systems.

A completely different approach could make use of acoustic fibers∗, as these allow

to measure the sound field in all the points of the fiber. This technology is based on

sending an optical pulse into the fiber, and awaiting the reflections scattered back from

the fiber glass walls. By measuring the time lag between the signal sent and the reflec-

tions received, the acoustic signal is extracted. Although at the moment acoustic fibers

are only used for measuring sound pressures, they also seem adequate for beamforming

purposes. Since fibers allow to scan a sound field in a continuous manner, beamformers

that made use of this technology would be able to provide maps free of aliasing. In this

sense, a single fiber shaped in the form of a ring would be enough to build a continuous

circular beamformer.

∗Such as the iDASTM (‘intelligent distributed acoustic sensor’), manufactured by the British company

Silixa.



Appendix A

Insight into circular
harmonics beamforming

According to Paper A, the starting point to develop circular harmonics beamforming is

that, in the presence of a single source in the far field, the ideal beamforming output

should be a delta function located at the angular position of the source ϕs

bideal(ϕ,ϕs) = Bδ(ϕ− ϕs), (A.1)

where B is a scale factor. Due to the circular geometry, the beamforemer output is

expansible in a set of circular harmonics,

bideal(ϕ,ϕs) =

∞∑
n=−∞

Ine
jnϕ, (A.2)

where In is the nth Fourier coefficient obtained with an ideal beamformer due to a

source located at ϕs. The Fourier coefficients are given by the inverse Fourier series

In =
1

2π

∫ 2π

0

bideal(ϕ,ϕs)e
−jnϕdϕ = Be−jnϕs . (A.3)

Insertion of Eq. (A.3) into Eq. (A.2) yields

bideal(ϕ,ϕs) = B

∞∑
n=−∞

ejn(ϕ−ϕs). (A.4)
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In order to implement this expression, the number of modes of the Fourier series needs

to be truncated at N ,

b(ϕ,ϕs) = B

N∑
n=−N

ejn(ϕ−ϕs). (A.5)

By making use of trigonometric identities, this equation can be rewritten as

b(ϕ,ϕs) = B
sin ((N + 1/2)(ϕ− ϕs))

sin ((ϕ− ϕs)/2)
. (A.6)

Inspection of this expression reveals that when N → ∞ the output becomes a delta

function, as [130]

lim
N→∞

1

2π

sin((N + 1/2)x)

sin(x/2)
= δ(x), (A.7)

which, in effect, agrees with the starting point of this derivation.

Alternatively, the expression given in Eq. (A.6) can be expressed using the Cheby-

shev polynomial of second kind,

Un(cos θ) =
sin ((n+ 1)θ)

sin θ
. (A.8)

Therefore, with n = 2N and θ = (ϕ− ϕs)/2,

b(ϕ,ϕs) = BU2N (cos((ϕ− ϕs)/2)). (A.9)

One of the main characteristics of circular harmonics beamforming is that the out-

put depends on the number of harmonics taken into account in the calculation. In addi-

tion, for a given number of harmonics, the output is rather independent of whether the

circular array is mounted or not into a rigid baffle. Note that the number of harmonics

used in the algorithm depends on the frequency and the radius of the array, R, as well

as the number of microphones, M , as N = �kR� up to a maximum order equal to

M/2− 1 [77, 78]. Figure A.1 shows the normalized beamforming output for different

values of N . In this case, a source is simulated at 180◦. As can be seen, the main lobe

becomes narrower with increasing N , which agrees with the fact that, when N tends to

infinity, the output approaches a delta function centered at the angular position of the

source. On the other hand, the resolution and the MSL decrease with increasing the

number of orders, as shown in Figs. A.2 and A.3 as a function of the number of orders.
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harmonics beamforming.
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Acoustic holography with
uniform circular arrays

B.1 Open array

Let us consider a uniform circular array of microphones placed at the xy−plane (z = 0)

that captures a plane wave that travels perpendicularly to the z−axis, i.e., the wavefronts

are parallel to to the z−axis. In what follows the time dependency e−jωt is omitted.

After solving the Helmholtz equation in cylindrical coordinates and applying the

boundary conditions (basically that the sound field at the origin must be finite), the

sound pressure results in

p(kr, ϕ) =

∞∑
n=−∞

AnJn(kr)e
jnϕ, (B.1)

where An is an expansion coefficient of order n. This expression can be used to deter-

mine the sound pressure at an arbitrary point of the sound field by means of acoustic

holography. For this purpose the values of the coefficients An are needed. Since the

pressure at the uniform circular array (at r = R) is known,

p(kR, ϕ) =

∞∑
n=−∞

AnJn(kR)ejnϕ. (B.2)

The coefficients can be computed making use of the continuous orthogonality property

of the circular harmonics given in Eq. (3.2) on page 34. After some rearranging, they
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result in

An =

∫ 2π

0
p(kR, ϕ)e−jnϕdϕ

2πJn(kR)
. (B.3)

This expression implies a continuous integral of the sound pressure. However, the

pressure is known at a number of discrete positions, as the sound field is sampled with

M microphones. Using the discrete orthogonality relationship of the circular harmonics

given in Eq. (3.8) on page 35 the coefficients An result in

An =
1
M

∑M−1
i=0 p(kR, ϕi)e

−jnϕi

Jn(kR)
. (B.4)

B.2 Rigid cylindrical scatterer of infinite length

Let us now consider that the circular array is mounted on a rigid cylinder of infinite

length. The total pressure will present the contributions of the incident pressure and the

scattered pressure: pt = pi+ ps [131]. The incident sound pressure corresponds to that

that would occur if the cylinder was not present, i.e., the pressure given in Eq. (B.1). Its

associated radial velocity follows

vkr,i(r, ϕ) ∝ dpi(kr, ϕ)

dr
=

∞∑
n=−∞

An
dJn(kr)

dr
ejnϕ. (B.5)

On the other hand, the scattered pressure follows from solving the Helmholtz equa-

tion in cylindrical coordinates considering an exterior boundary problem (applying the

Sommerfeld radiation condition),

ps(kr, ϕ) =

∞∑
n=−∞

BnH
(1)
n (kr)ejnϕ, (B.6)

where Bn is an expansion coefficient and H
(1)
n (kr) is a Hankel function of the first kind

and order n. The associated radial velocity follows

vkr,s(r, ϕ) ∝ dps(kr, ϕ)

dr
=

∞∑
n=−∞

Bn
dH

(1)
n (kr)

dr
ejnϕ. (B.7)
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Imposing the boundary condition at the surface of the cylinder, that is, the total radial

velocity is zero at r = R provides the relationship between An and Bn,

∞∑
n=−∞

[
An

dJn(kr)

dr

∣∣∣∣
r=R

+ Bn
dH

(1)
n (kr)

dr

∣∣∣∣∣
r=R

]
ejnϕ = 0. (B.8)

From this expression it follows that

Bn = −An
J ′
n(kR)

H
′(1)
n (kR)

, (B.9)

where J ′
n(kR) and H

′(1)
n (kR) are the derivatives of the Bessel function and the Bessel

function evaluated at r = R, respectively. Insertion of this relationship into the expres-

sion of the scattered pressure, Eq. (B.6), yields

ps(kr, ϕ) = −
∞∑

n=−∞
An

J ′
n(kR)

H
′(1)
n (kR)

H(1)
n (kr)ejnϕ. (B.10)

Finally the total pressure is

p(kr, ϕ) =
∞∑

n=−∞
An

[
Jn(kr)− J ′

n(kR)

H
′(1)
n (kR)

H(1)
n (kr)

]
ejnϕ. (B.11)

Following the same procedure carried out in the previous section to determine the

coefficients An we obtain the following relationship:

An =
1
M

∑M−1
i=0 p(kR, ϕi)e

−jnϕi

Jn(kR)− J ′
n(kR)

H
′(1)
n (kR)

H
(1)
n (kR)

. (B.12)

Inserting this expression into the total pressure provides the sound pressure at any other

position. It should be emphasized that this solution is only valid if the plane waves

propagate perpendicularly to the cylinder so that the pressure along the z-axis is con-

stant and the wavefronts match perfectly the symmetry of the scatterer.
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B.3 Rigid spherical scatterer

In this section we consider a uniform circular array mounted on a rigid sphere. It can be

shown that the pressure due to the incident waves and the scattered ones can be written

in spherical coordinates as follows [82]

p(kr, θ, ϕ) =

∞∑
n=0

n∑
m=−n

Amn

(
jn(kr)− j′n(kR)

h
′(1)
n (kR)

h(1)
n (kr)

)
Y m
n (θ, ϕ), (B.13)

where Amn is an expansion coefficient of order mnth, jn(kr) and h
(1)
n (kr) are the

spherical Bessel and the spherical Hankel function of the first kind and order n, and

j′n(kR) and h
′(1)
n (kR) their derivatives with respect to r, evaluated at r = R.

The total sound pressure on the surface of the sphere, i.e., at r = R, is

p(kR, θ, ϕ) =
∞∑

n=0

n∑
m=−n

Amn

(
jn(kR)− j′n(kR)

h
′(1)
n (kR)

h(1)
n (kR)

)
Y m
n (θ, ϕ). (B.14)

The coefficients Amn can be found making use of the continuous orthogonality property

of the spherical harmonics,

∫ 2π

0

∫ π

0

Y m
n (θ, ϕ)Y μ∗

ν (θ, ϕ) sin θdθdϕ = δnνδmμ. (B.15)

Following a similar procedure as in the case of the array mounted on an infinitely-long

baffle, they result in

Amn =

∫ 2π

0

∫ π

0
p(kR, θ, ϕ)Y m∗

n (θ, ϕ) sin θdθdϕ

jn(kR)− j′n(kR)

h
′(1)
n (kR)

h
(1)
n (kR)

. (B.16)

Inspection of this equation reveals that the pressure in the entire sphere is needed for

the computation of the coefficients. This implies that the microphones are required to

be distributed over the entire sphere, and not only on the equator, as in the case of the

circular array. By analogy to the case of the cylindrical scatterer derived in the previous

section, where the pressure along the z-axis was constant as plane waves propagating

perpendicularly to the cylinder were assumed, the approach for the circular array on

the sphere given in Eq. (B.16) has a solution only when the pressure is constant on θ.
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However, this corresponds to a very particular sound field, far from being planar. To

overcome this limitation, the reconstruction with a circular array mounted on a sphere

can be achieved by solving a system of equations based on an elementary wave expan-

sion [132], similarly to the approach given in Ref. [133] for spherical arrays. This topic,

though, is out of the scope of this dissertation.
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Errata list

The following typos have been detected in the contributing articles after publication:

Paper A The index q in the second sum of Eq. (14) should read h.

Paper B The function bn(kR) in Eq. (7) should read bq(kR).

Paper D The parameter wi in Eq. (8) should read wm.

Paper E The function p(kR, θi, ϕi) in Eq. (17) should read p̃(kR, θi, ϕi).
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It is often enough to localize environmental sources of noise from different directions in a plane.

This can be accomplished with a circular microphone array, which can be designed to have practi-

cally the same resolution over 360�. The microphones can be suspended in free space or they can

be mounted on a solid cylinder. This investigation examines and compares two techniques based on

such arrays, the classical delay-and-sum beamforming and an alternative method called circular

harmonics beamforming. The latter is based on decomposing the sound field into a series of circular

harmonics. The performance of the two signal processing techniques is examined using computer

simulations, and the results are validated experimentally.VC 2010 Acoustical Society of America.
[DOI: 10.1121/1.3500669]

PACS number(s): 43.60.Fg, 43.50.Rq [EJS] Pages: 3535–3542

I. INTRODUCTION

Acoustical beamforming is a signal processing technique

used to localize sound sources using microphone arrays.

Unlike other array techniques such as statistically optimized

near-field acoustical holography (SONAH), which are based

on near-field measurements,1,2 beamforming is based on far-

field measurements, i.e., the array must be placed relatively

far from the sources in order to determine their “position” by

processing the signals captured by the microphones.3

The goal of the present work is the design of beamform-

ers for localization of environmental noise sources. In out-

doors measurements, the sound field is basically generated

by sources placed far from the measurement point, in the far

field. At the measurement point, the direction of propagation

of the waves can be considered essentially parallel to the

ground, which implies that the sound field can be assumed to

be two-dimensional. For such purposes, it is suitable to use

circular arrays as these are able to map the sound field over

360�.
The techniques developed for the circular geometry

are delay-and-sum beamforming (DSB) and circular har-

monics beamforming (CHB). The first technique is the

classical beamforming technique, which is widely used

since it is very robust in the presence of background noise.4

By contrast, CHB is a novel technique that belongs to a

more recent category called eigenbeamforming. All techni-

ques in this group are based on decomposing the sound

field into a summation of harmonics.5–8 CHB has been

developed by adapting the theory of spherical harmonics

beamforming to the two-dimensional case using circular

harmonics (CH).

II. DECOMPOSITION OF THE SOUND FIELD
USING CH

A. Circular apertures

Consider a circular aperture of radius R in the xy-plane
and a plane wave with amplitude P0 that impinges on the

aperture in a direction perpendicular to the z-axis in free

space. The incident pressure at any point of the aperture can

be written in polar coordinates,

pðkR;uÞ ¼ P0e
jki�r��

r¼R
¼ P0e

jkR cosðu�uiÞ; (1)

where ki and ui are the wave number vector and the angle of

the incident wave. The temporal term e�jxt has been sup-

pressed. This expression can be expanded in series of circu-

lar waves,9

ejkR cosðu�uiÞ ¼ J0ðkRÞ þ
X1
n¼1

2jn cosðnðu� uiÞÞ JnðkRÞ;

(2)

where Jn is a Bessel function of order n. Developing this

expression further, the pressure of the incident plane wave

becomes

pðkR;uÞ ¼ P0

X1
n¼�1

jnJnðkRÞejnðu�uiÞ: (3)

The pressure can now be represented by an infinite number

of CH ejnu (or modes) using the principle of a Fourier series.

The pressure on the (unbaffled) aperture can be expressed as

a function of the angle of the source us using the relationship

ui ¼ us þ p,

pðkR;uÞ ¼ P0

X1
n¼�1

ð�jÞnJnðkRÞejnðu�usÞ: (4)b)Author to whom correspondence should be addressed. Electronic mail:

etr@elektro.dtu.dk

a)Portions of this work were presented in “Beamforming with a circular

microphone array for localization of environmental sources of noise,” Pro-

ceedings of Inter-Noise 2010, Lisbon, Portugal, June 2010.
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When the same aperture is mounted on a rigid, infinite

cylinder, the incident wave is scattered by the cylinder. The

pressure on the baffled aperture is the superposition of

the incident pressure and the scattered pressure, p ¼ pi þ ps.
The scattered pressure at positions on the aperture becomes10

psðkR;uÞ ¼
X1
n¼0

An cosðnuÞðJnðkRÞ þ jYnðkRÞÞ; (5)

where the terms An are a set of coefficients and Yn is a Neu-
mann function of order n. Making use of the Hankel func-

tions of first kind, Hn(�) ¼ Jn(�) þ jYn(�), the previous

expression can be rewritten as

psðkR;uÞ ¼
X1

n¼�1
BnHnðkRÞejnu: (6)

The terms Bn are obtained by imposing that the total velocity

in the radial direction vanishes on the surface of the rigid

cylinder, ui,r þ us,r ¼ 0,

Bn ¼ �P0ð�jÞn J
0
nðkRÞ

H0
nðkRÞ

e�jnus ; (7)

where J0n and H0
n are the derivatives of the Bessel and Hankel

functions with respect to the radial dimension. Using the expres-

sions given in Eqs. (4) and (6) for the incident and the scattered

wave, together with the coefficients obtained in Eq. (7), the total

pressure at the surface of the rigid cylinder becomes

pðkR;uÞ ¼ P0

X1
n¼�1

ð�jÞn

� JnðkRÞ � J0nðkRÞHnðkRÞ
H0

nðkRÞ
� �

ejnðu�usÞ: (8)

Comparing Eqs. (3) and (8) with a Fourier series in the

exponential form11 shows that the pressure on the baffled or

the unbaffled apertures can be represented as

pðkR;uÞ ¼
X1
n¼�1

Cne
jnu; (9)

where the Fourier coefficients Cn for the two cases are

CnðkR;usÞ ¼ P0QnðkRÞe�jnus ; (10)

with

QnðkRÞ¼
ð�jÞnJnðkRÞ unbaffled;

ð�jÞn JnðkRÞ� J0nðkRÞHnðkRÞ
H0

nðkRÞ
� �

baffled:

8<
: (11)

The modulus of the first four coefficients Cn is shown in

Fig. 1, for baffled and unbaffled apertures. At low values of

kR, the zero order mode is constant and equals 0 dB in both

cases, whereas all the other modes have a slope of 10 � n dB

per decade. When the aperture is baffled, the response is

offset by 6 dB compared with the unbaffled case. With

increasing values of kR, more and more harmonics gain

strength. However, for the unbaffled aperture the response

exhibits some dips that imply that signals that have compo-

nents around these dips cannot be totally resolved. This prob-

lem disappears when the cylindrical baffle is used.

Since the curves of the Fourier coefficients are functions

of kR, variation of R implies that the curves are scaled in fre-

quency (or wave number), and vice-versa. For instance,

when R is increased, the response is shifted toward low fre-

quencies, whereas a decrease of R results in a shift toward

high frequencies.

B. Implementation using microphone arrays

In principle, infinitely many Fourier terms are needed to

represent the sound pressure. However, in practice the num-

ber of harmonics must be truncated to a maximum order, N.
As a rule of thumb,

N � kR (12)

is usually chosen as a first approximation.8,12,13 The reason

for this is that the amplitude of the Bessel functions in the

Fourier coefficients [see Eqs. (10) and (11)] is small when

the order of the Bessel functions n exceeds its argument

(kR). Thus, the overall contribution of modes jnj > kR is

very small.

Besides, microphone arrays rather than “ideal” continu-

ous apertures are used in real-life applications, which implies

FIG. 1. (Color online) Normalized modulus of the four lowest Fourier coef-

ficients of the pressure on an unbaffled circular aperture (top) and on a circu-

lar aperture mounted on a rigid cylindrical baffle of infinite length (bottom).
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that apertures are sampled at discrete points. Assuming that

an aperture is sampled with M omnidirectional microphones

placed equidistantly, the Fourier coefficients become

~Cn ¼ 1

M

XM
m¼1

~pðkR;umÞe�jnum ; (13)

where ~p is the measured pressure at the mth microphone

placed at an angle um.

The sampling procedure introduces an error in the Fou-

rier coefficients. For example, it can be shown that in the

case of an unbaffled circular array, the Fourier coefficients

resulting after the sampling are, theoretically,12–14

~CnðkRÞ ¼ P0ð�jÞnJnðkRÞe�jnus

þ P0

X1
q¼1

ð�jÞgJgðkRÞejgus

þ P0

X1
q¼1

ð�jÞhJhðkRÞejhus ; (14)

where g ¼ Mq � n and h ¼ Mq þ n. Note that the first term
is identical to the Fourier coefficient of the continuous aper-

ture; see Eq. (10), whereas the remaining terms are residuals

caused by the sampling. Further examination of Eq. (14)

reveals that the first term is the dominant one when M
> 2jnj. Since the highest mode excited is N,

M > 2N: (15)

In fact, inserting the approximation for N given in Eq.

(12) into Eq. (15) yields the Nyquist sampling criterion:

M > 2kR ) M > 2
2p
k
R ) k

2
> d; (16)

where k is the wavelength and d is the distance between two

consecutive microphones. Hence, by fulfilling the relation-

ship between M and N given in Eq. (15), the Nyquist crite-

rion is satisfied.14

III. BEAMFORMING TECHNIQUES

A. CHB

The beamformer response is the output of the beam-

former as a function of the steering angle, i.e., the angle at

which the main beam of the beamformer is pointing. Ideally,

the beamformer response should assume a maximum when

the beamformer is steered toward the source at us, and

should be zero in all other directions; that is,

bidealðuÞ ¼ Adðu� usÞ; (17)

where A is a scale factor. This can be described in terms of a

Fourier series,

bidealðuÞ ¼
X1
n¼�1

Ine
jnu; (18)

In ¼ 1

2p

ð2p
0

bidealðuÞe�jnu du ¼ Ae�jnus : (19)

It follows that

bidealðuÞ ¼ A
X1
n¼�1

e�jnus ejnu: (20)

Using Eq. (10), the output of the ideal beamformer

becomes

bidealðkR;uÞ ¼ A
X1

n¼�1

CnðkR;usÞ
P0QnðkRÞ e

jnu: (21)

In real implementations, the number of modes must be

truncated at a reasonable value, N, and the aperture must be

sampled by a number of microphones, M. Thus

bN;CHðkR;uÞ ¼ A
XN
n¼�N

~CnðkR;usÞ
P0QnðkRÞ e

jnu: (22)

Comparing with Eq. (10), Eq. (22) be rewritten as

bN;CHðkR;uÞ ¼ A
XN
n¼�N

~CnðkR;usÞ
CnðkR;uÞ : (23)

When the beamformer is steered toward the position of

the source, u equals us, so the quotients approximate unity

and the output assumes a maximum. Note that, when using

unbaffled arrays, Eq. (23) has singularities at the frequencies

where the Fourier coefficients have dips; see Fig. 1. At such

frequencies, the CH beamformer is not capable of resolving

the location of the source properly.

Inserting the approximated coefficients given by Eq.

(13) into Eq. (22), the CH beamformer output becomes

bN;CHðkR;uÞ

¼ A

MP0

XM
m¼1

~pðkR;umÞ
XN
n¼�N

1

QnðkRÞ e
�jnðum�uÞ

 !
: (24)

Ideally, this should be zero at all angles different from

us. However, since a limited number of microphones are

used, the response exhibits a main lobe around us and side

lobes at other angles.

B. DSB

The delay-and-sum (DS) technique aligns the signals

from the microphones of the array by introducing appropri-

ate delays and finally adds them together.3,15,16 The delays

are determined by the steering direction of the array. The

output assumes its maximum when the focusing direction

coincides with the position of the source.

In this investigation, the output of a DS beamformer is

implemented in the frequency domain using matched field
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processing. This method uses phase shifts to align the signals

in phase. Assuming that the beamformer is steered toward

the direction u, the beamformer output is

bDSðkR;uÞ ¼ A
XM
m¼1

wm~pðkR;umÞ � p�ðkR;um;uÞ; (25)

where

(1) wm is the weighting coefficient of the mth microphone;

(2) ~pðkR;umÞ is the pressure measured at the mth micro-

phone position due to a plane wave generated by a

source at us; and

(3) p�(kR,um,u) is the theoretical complex conjugated pres-

sure that would be captured at the mth microphone due

to plane wave generated at u. Note that the argument u
is used to emphasize that this is the variable that defines

the focusing direction of the beamformer.

In general, the source position is unknown, and there-

fore the beamformer must map over all possible source posi-

tions, i.e., 0 � u < 2p. The key point is that when the

beamformer is focused toward the position of the source us,

the second and the third terms of Eq. (25) become equal in

magnitude but opposite in phase. In these circumstances, the

microphone signals are aligned in time, and therefore the

maximum output of the beamformer is reached.

In the case of an unbaffled array, the theoretical pressure

is simply the closed form for a plane wave, so the beam-

former output is

bDSðkR;uÞ ¼ A
XM
m¼1

wm~pðkR;umÞP0e
�jki�r

�����
r¼R

¼ AP0

M

XM
m¼1

~pðkR;umÞejkR cosðum�uÞ: (26)

Since all microphones have equal “importance,” the

weights wm have been set to 1/M. For the baffled array, the

output of the beamformer is obtained by introducing Eq. (9)

into Eq. (25), and taking into account that the number of

modes used for the processing is truncated at a number N,

bN;DSðkR;uÞ

¼ AP0

M

XM
m¼1

~pðkR;umÞ
XN
n¼�N

Q�
nðkRÞe�jnðum�uÞ

 !
: (27)

This expression is also valid for the unbaffled case,

although it is not as precise as Eq. (26) because of the

truncation.

Further analysis of Eq. (27) reveals that the beamformer

output can be written, according to Eqs. (10) and (13), as

bN;DSðkR;uÞ ¼ A
XN
n¼�N

~CnðkR;usÞ � C�
nðkR;uÞ: (28)

As opposed to CHB, where the beamformer output could

be expressed as the ratio of the approximated coefficients to

the theoretical ones [see Eq. (23)], the output of the DS

beamformer is a multiplication of these terms. Therefore, in

the case of unbaffled arrays, the singularities that can be pres-

ent in CHB because of the dips of the Fourier coefficients are

totally resolved with a DS beamformer.

C. Beamformer performance—Resolution and
maximum side lobe level (MSL)

The resolution of a beamformer is defined as the �3 dB

width of the main lobe of the beampattern. This parameter is

of interest because it gives an approximation to the minimum

angular difference between two incoherent sources that is

necessary in order to distinguish them from each other.

The beamformer output will usually exhibit side lobes.

This is an unwanted effect as the beamformer seems to be

sensitive not only in the focusing direction but also in the

direction of the side lobes. Therefore, it is convenient to

evaluate the beamformer response by means of the MSL.

This parameter is the difference in level between the peak of

the highest side lobe and the peak of the main lobe.

IV. SIMULATIONS

The performance of circular arrays with CHB and DSB

has been evaluated by means of simulations. The circular

arrays have radii of 10 and 20 cm and 10 and 20 microphones,

respectively. The number of microphones and the radius of

each array were chosen by setting the same maximum fre-

quency that could be represented without any sampling error

(around 2.7 kHz); see Sec. II B. The simulations were carried

out under ideal conditions, i.e., without background noise.

The source was placed at 180�, but the source position has a

very limited influence on the results. The amplitude of the

waves impinging on the array was the same at all frequencies.

A. Simulations with CHB

The resolution and the MSL obtained with CHB and an

unbaffled circular array are shown in Fig. 2, for the range

from 50 Hz to 3.5 kHz. The number of orders used in the

CHB algorithm given in Eq. (24) followed N ¼ dkRe, where
d�e is the ceiling function. The maximum value of N was

M/2 � 1 in order to fulfill Eq. (15).

As can be seen, the resolution and the MSL are constant

for a certain interval. This depends on the number of orders

N used for the processing. The fact that the main lobe

becomes narrower from interval to interval indicates an

improvement in the resolution. More intervals, i.e., more

orders, result in a better resolution, which is the case of the

array of largest radius. The MSL follows the same behavior

as the resolution, improving when the number of orders is

increased. The staircase pattern in these two measures is also

obtained with spherical harmonics beamforming.

At some frequencies an “unexpected” response occurs,

e.g., around 2.1 kHz for the array of 10 cm and 2.8 kHz for

the array of 20 cm. This phenomenon is due to the dips

in the Fourier coefficients obtained with unbaffled arrays.

The frequencies where this phenomenon occurs cannot be

resolved as precisely as the neighboring frequencies. This

3538 J. Acoust. Soc. Am., Vol. 128, No. 6, December 2010 Tiana-Roig et al.: Beamforming with a circular microphone array

A
ut

ho
r's

 c
om

pl
im

en
ta

ry
 c

op
y



effect is avoided when the array is mounted on a rigid cylin-

drical baffle. The overall behavior of the CH beamformers

when baffled arrays are used is very similar to the unbaffled

case but without the problem of unresolved frequencies.

The arrays can be used up to a maximum frequency

without any sampling error. For the arrays under analysis,

this occurs at about 2.7 kHz. Above this frequency, the effect

of the sampling error can be seen especially in the MSL (the

magnitude of the side lobes is higher than in the previous

interval of frequencies).

B. Simulations with DSB

The resolution and the MSL obtained under ideal condi-

tions using DSB are shown in Fig. 3 for both baffled and

unbaffled arrays. In the case of baffled arrays, the number of

orders used in the DSB algorithm, stated in Eq. (27), was N
¼ dkRe þ 1, up to a maximum N ¼ M/2 � 1 according to

Eq. (15).

It is apparent that the resolution is 360� at low frequen-

cies in all cases, and the MSL is non-existent, meaning that

the beamformer is omnidirectional. From a certain frequency

depending on the radius of the array, the resolution improves

continuously until high frequencies. The curves decay in a

similar way for both kinds of arrays, but in the baffled case

they exhibit small smooth fluctuations. The MSL curves

begin at a certain frequency and grow progressively until a

maximum level is reached. In the case of unbaffled arrays,

this level remains constant, whereas for baffled arrays the

MSL exhibits ripples while it increases toward high frequen-

cies. Nevertheless, the MSL is better for baffled arrays than

for unbaffled.

In both cases, the performance improves with increasing

radius of the array and is better in the case of baffled arrays.

Furthermore, it can be seen that the baffled array of 10 cm of

radius has resolution and MSL similar to the unbaffled array

of radius 20 cm. Thus it can be concluded that mounting an

array on an infinite baffle makes it seem to be “larger” than

in the unbaffled case. Similar characteristics are found when

DSB is applied to spherical arrays.

In general the resolution obtained with DSB is much

worse than the resolution obtained with CHB. At high fre-

quencies, the MSL with DSB is worse than with CHB for

unbaffled arrays; but the opposite is the case for baffled arrays.

V. EXPERIMENTAL RESULTS

A prototype array with a radius of 11.9 cm has been

tested in an anechoic room with a volume of about 1000 m3.

The array was constructed by mounting twelve 1/4 in. micro-

phones, Brüel & Kjær (B&K) Type 4935, on a circular

frame, corresponding to a microphone for every 30�. The
implemented prototype is shown in Fig. 4.

The array and the source, a loudspeaker, were controlled

by a B&K PULSE Analyzer. In all the measurements the

loudspeaker was driven by a signal from the generator, pseu-

dorandom noise of 1 s of period, 3.2 kHz of bandwidth, and

1 Hz of resolution. The microphones signals were recorded

with the analyzer and postprocessed with the beamforming

algorithms DSB and CHB.

The normalized outputs obtained with both CHB and

DSB are shown on top of Fig. 5, whereas the simulated out-

puts are provided in the bottom. To account for the back-

ground noise introduced in the measurements, the

simulations were carried out with a signal-to-noise ratio

(SNR) of 30 dB at the input of each microphone due to uni-

formly distributed noise.

FIG. 2. Resolution and MSL using CHB and unbaffled arrays of radii 10

and 20 cm and 10 and 20 microphones, respectively. The source is placed

at 180�.

FIG. 3. Resolution and MSL using DSB and circular arrays of radius 10 and

20 cm and 10 and 20 microphones, respectively. Solid lines: Unbaffled

arrays; dashed lines: Baffled arrays. The source is placed at 180�.
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The results agree very well with the theoretical ones for

both techniques. A few differences deserve to be mentioned

in the case of CHB. The side lobes are somewhat deformed

and blurred compared with the simulations. The output is not

only distorted at the frequencies that coincide with the dips

in the Fourier coefficients, but also at frequencies in their

vicinity. This phenomenon is particularly pronounced around

1.7 kHz. These differences are suspected to be caused by the

CH beamformer algorithm itself, because of the fact that

the approximated Fourier coefficients are compared with the

theoretical ones in a ratio. When the approximate coefficients

match the theoretical ones, the beamformer output is similar

to the pattern expected under ideal conditions.

The agreement between measurements and simulations

can be further examined by studying the resolution and the

MSL. These quantities are shown in Fig. 6. The resolution

using CHB is very similar to the one obtained with the simu-

lation. The response follows the simulation curve rather

accurately even at the frequencies where singularities occur.

Some small deviations can be observed at the lowest fre-

quencies, which are attributed to the influence of background

noise. In contrast to the resolution, the MSL deviates some-

what from the simulation. In general, this measure is slightly

higher than the expected one and worsens near singularities.

At frequencies below 100 Hz a significant influence of back-

ground noise in the measurement becomes apparent.

For DSB, there are only a few differences compared

with the simulations. The first is that the resolution equals

360� up to a frequency 20 Hz higher than expected. The sec-

ond difference is that the first side lobe appears at 634 Hz

instead of 556 Hz as obtained in the simulation. Yet another

difference is that MSL is better than expected in the range

from 1950 Hz to about 2300 Hz. These differences are again

mainly attributed to the differences between the measured

pressure and the theoretical one. However, the beampattern as

well as the resolution and the MSL are not as much affected

by these differences as in the case of CHB. This characteristic

FIG. 4. (Color online) Circular array with radius of 11.9 cm and 12 micro-

phones. Prototype by Brüel & Kjær.

FIG. 5. Normalized output using CHB [(a), (b)] and DSB [(c), (d)] and an unbaffled array with a radius of 11.9 cm with 12 microphones. The source is placed

at 180�. The top panels (a) and (c) show the measurements performed with a prototype, whereas the corresponding simulation is presented in the bottom panels

(b) and (d). For the simulation, an SNR of 30 dB in each microphone is considered.
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and the fact that the influence of background noise is lower

than CHB demonstrate that DSB is a more robust algorithm.

VI. CONCLUSIONS

Two different beamforming techniques based on circu-

lar arrays have been examined theoretically and experimen-

tally, CHB and the well-known DSB. CHB is an adaptation

of the spherical harmonics beamforming technique to a cir-

cular geometry.

The prototype used for the experimental investigation

gave very satisfactory results: The beampatterns, the resolu-

tion, and the MSL were found to be in extremely good agree-

ment with simulations for both CHB and DSB.

For a given array, CHB has better resolution and lower

MSL in a wider frequency range than DSB has. Regardless

of the technique, these quantities improve with increasing

frequency. The frequency range is limited at low frequencies

by the influence of background noise in the case of CHB and

by the fact that the output becomes omnidirectional for DSB.

At high frequencies, the limitation is in both cases given by

the increase of the sampling error.

Keeping the number of microphones constant, the beam-

former response is scaled in frequency when the radius of the

array is modified. However, when the radius of the array is

kept constant but the number of microphones is increased,

the response improves toward higher frequencies since the

spacing between the microphones becomes smaller. In fact,

by increasing the number of microphones, the array behaves

more similarly to a continuous aperture.

A given ratio between the number of microphones and

the radius of the array determines the upper frequency above

which a sampling error occurs. In such case, the overall per-

formance improves considerably toward lower frequencies

when increasing the radius. However, the number of micro-

phones should be increased accordingly, otherwise the upper

limit frequency would be reduced.

In the presence of background noise, DSB is more robust

than CHB, and CH beamformers exhibit singularities, i.e., fre-

quencies that cannot properly be resolved, when unbaffled cir-

cular arrays are used. This problem would be solved if it were

feasible to mount the arrays on rigid cylindrical baffles of infi-

nite length. The performance of DS beamformers would also

improve substantially by mounting the arrays on rigid cylin-

drical baffles of infinite length, but this is not realistic.

CHB can be used in the entire frequency range except at

the frequencies that cannot be properly resolved due to the

nature of this technique. At such frequencies, it is convenient

to use DSB instead. In addition to this, DSB should not be

underestimated in environments with a poor SNR because of

its robustness.
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Beamforming with uniform circular microphone arrays can be used for localizing sound sources

over 360�. Typically, the array microphones are suspended in free space or they are mounted on a

solid cylinder. However, the cylinder is often considered to be infinitely long because the scattering

problem has no exact solution for a finite cylinder. Alternatively one can use a solid sphere. This

investigation compares the performance of a circular array mounded on a rigid sphere with that of

such an array in free space and mounted on an infinite cylinder, using computer simulations. The

examined techniques are delay-and-sum and circular harmonics beamforming, and the results are

validated experimentally.VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3621294]

PACS number(s): 43.60.Fg [EJS] Pages: 1095–1098

I. INTRODUCTION

During the past decade, studies on the performance of

circular arrays of microphones for localizing sound sources

over 360� have been reported. For example, Meyer1 utilized

modal beamforming to generate a desired beampattern for a

circular microphone array mounted around a rigid sphere.

Daigle et al.2 considered delay-and-sum beamforming with

circular arrays mounted on the surface of sound absorbing

spheres and cylinders and showed that the achieved beam-

width improved over that of arrays mounted on hard spheres

and cylinders. Instead of delay-and-sum beamforming,

Teutsch and Kellermann3 analyzed various algorithms based

on decomposing the sound field into a series of modes for a

circular array mounted on a cylinder. Still in the field of

modal beamforming Tiana-Roig et al.4 adapted the theory of

spherical harmonics beamforming to the two-dimensional

case using circular harmonics. The resulting circular har-

monics beamformer was compared to the classical delay-

and-sum beamformer using both a circular array suspended

in free space and one mounted on a rigid, infinite cylinder.

This letter to the editor repeats the comparison for the case

of a circular array mounted on a rigid sphere.

II. PLANE WAVE DECOMPOSITION

Consider a plane wave, ejki�r, generated by a source

placed in the far field, at a polar angle hs and azimuth angle

us, that impinges on a rigid sphere with radius R. The pres-

sure on the surface of the sphere, at a point with spherical

coordinates ½R; h;u	, can be written as5,6

pðkR; h;uÞ ¼ 4p
X1
q¼0

bqðkRÞ
Xq
n¼�q

Yn
qðh;uÞYn

qðhs;usÞ�; (1)

where

bqðkRÞ ¼ ð�jÞq jqðkRÞ �
j0qðkRÞ
h0qðkRÞ

hqðkRÞ
 !

; (2)

Yn
qðh;uÞ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2qþ 1Þ

4p
ðq� nÞ!
ðqþ nÞ!

s
Pn
qðcos hÞejnu: (3)

In the function bn, which accounts for the effect of the rigid

scatterer, jq is a spherical Bessel function of order q, hq is a

spherical Hankel function of first kind and order q, and j0q
and h0q are their derivatives. On the other hand, Yn

q is a spher-

ical harmonic, in which Pn
q is a Legendre function of degree

q and order n. Note that in Eq. (1) the temporal term e�jxt is

omitted; and the angles of the position of the source ½hs;us	
are used instead of the angles of the incident wave ½hi;ui	,
these being related by hs ¼ p� hi and us ¼ ui þ p because

the unit vector of the incident wave k̂i is opposite to the unit

vector of the position of the source r̂s, k̂i ¼ �r̂s.
Now a circular aperture of radius R is mounted at the

equator of the rigid sphere, in the xy plane. Because the polar
angle at all positions of the aperture is constant, i.e.,

h ¼ p=2, its pressure can be represented in a Fourier series

in the u coordinate.5 The resulting Fourier coefficients are

Cn ¼ 1

2p

ð2p
0

pðkR; p=2;uÞe�jnudu: (4)

Inserting Eq. (1), it can be shown that the coefficients

become

CnðkRÞ ¼
X1
q¼ nj j

ð2qþ 1ÞbnðkRÞ

� ðq� nj jÞ!
ðqþ nj jÞ!P

nj j
q ð0ÞP nj j

q ðcos hsÞe�jnus : (5)

Figure 1 shows the magnitude of the first four coefficients

assuming a source located in the plane of the aperture, i.e., at

hs ¼ p=2. The advantage of this configuration is that its

behavior resembles the one of a circular aperture mounted

a)Author to whom correspondence should be addressed. Electronic mail:

etr@elektro. dtu.dk
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on a rigid cylinder of infinite length,4 for which all frequen-

cies can be resolved by means of beamforming procedures.

III. BEAMFORMING ALGORITHMS

Circular harmonics beamforming (CHB) is a technique

implemented specifically for circular arrays of microphones

based on the decomposition of the sound field using the prin-

ciples of a Fourier series. The beamformer output is4

bN;CHBðkR;uÞ ¼ A

M

XM
m¼1

~pðkR;umÞ
XN
n¼�N

1

QnðkRÞ e
�jnðum�uÞ;

(6)

where A is a scale factor, M is the number of microphones, ~p
and um are the measured pressure and the azimuth angle of

the mth microphone, and N is the maximum order taken into

account. QnðkRÞ, which is related to the Fourier coefficients

as QnðkRÞ ¼ CnðkRÞ=e�jnus , depends on the configuration of

the array:

QnðkRÞ¼

ð�jÞnJnðkRÞ Freespace

ð�jÞn JnðkRÞ�J0nðkRÞHnðkRÞ
H0

nðkRÞ
� �

Rigidcylinder

of infinite lengthX1
q¼ nj j

ð2qþ1ÞbnðkRÞðq� nj jÞ!
ðqþ nj jÞ! Equatorof a

�P
nj j
q ð0ÞP nj j

q ð0Þ rigidsphere

8>>>>>>>>>>><
>>>>>>>>>>>:

(7)

Whereas the expressions for the array suspended in free field

and mounted on an infinitely long cylinder are taken from

Ref. 4, the value for the array on the sphere follows from Eq.

(5). Note that in all cases the sound sources are assumed to

be in the plane of the array, i.e., hs ¼ p=2.
Another technique that can be implemented for the cir-

cular geometry is delay-and-sum beamforming (DSB). This

technique aligns the signals of the microphones by introduc-

ing appropriate delays and finally adds the signals together.7

Implemented in the frequency domain using matched field

processing, the beamformer output is4

bN;DSBðkR;uÞ ¼ A

M

XM
m¼1

~pðkR;umÞ
XN
n¼�N

Q�
nðkRÞe�jnðum�uÞ:

(8)

The output of the unbaffled array can be also written as

bDSBðkR;uÞ ¼ A

M

XM
m¼1

~pðkR;umÞejkR cosðum�uÞ; (9)

which is more precise than Eq. (8) because it does not imply

a truncation at an order N.
Ideally, the beamformers output should be zero at all

angles u different from the angle of the sound source, us.

However, because a limited number of microphones is used,

rather than a continuous aperture, the response exhibits a

main lobe around us and side lobes at other angles. There-

fore, it is convenient to evaluate the performance of the

beamformer in terms of resolution, defined as the �3 dB

width of the main lobe, and maximum side lobe level

(MSL), which is given by the difference in level between the

peaks of the highest side lobe and the main lobe.

IV. SIMULATION STUDY

The performance of CHB and DSB using a circular array

mounted on the equator of a rigid sphere has been compared

to other configurations such as a circular array suspended in

free space or a circular array mounted on a rigid cylinder of

infinite length by means of computer simulations. The im-

pinging plane waves were perpendicular to the plane of the

array and were created by a source placed at hs ¼ 90� and

us ¼ 180�. (Note, however, that the azimuth angle has a very

limited influence on the results.) The maximum order of the

algorithms followed N � kR for CHB and N � kRþ 1 for

DSB,4 up to a maximum N ¼ M=2� 1 to satisfy the Nyquist

criterion: k=2 > d, where d is the distance between the

microphones, or equivalently, M > 2kR.8,9 An array with 10

cm of radius and 10 microphones was considered.

The left panels of Fig. 2 show the performances of the

unbaffled array and the array mounted on a sphere using CHB

and considering ideal conditions, i.e., without background

noise. The behavior of the array mounted on a rigid cylinder

is not depicted because the curves coincide with the ones of

the array on the sphere in the frequency range of interest. As

can be seen, by mounting the array on the sphere, the perform-

ance is very similar to the one of the unbaffled array but

improves particularly at those frequencies where the unbaffled

array presents peaks. Note that from 2.7 kHz on the MSL wor-

sens dramatically because in this range the Nyquist criterion

is no longer fulfilled and consequently aliasing occurs.

The resolution and the MSL with DSB can be seen in

the right column of Fig. 2. In this case, the response of the

array mounted on a cylinder of infinite length is also shown.

With this technique, the performance of the array mounted

on the sphere is better than the one with an unbaffled array,

especially toward low frequencies. However, it is not as

good as in the case of the array mounted on an infinitely

long cylinder. Actually, by mounting the array on a cylinder

or on a sphere, the apparent distance between microphones

increases, and this improves the performance of DSB at low

frequencies. This is in agreement with the observations of

Daigle et al., although they claimed that the array has an

effectively larger aperture when mounted on a physical

FIG. 1. Magnitude of the Fourier coefficients of the pressure on a circular

aperture mounted on the equator of a rigid sphere.
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structure independently of the beamforming technique,2

whereas the present study has revealed that this is not the

case with CHB.

V. EXPERIMENTAL RESULTS

A circular array mounted on a rigid sphere has been

tested in an anechoic room. The prototype array consisted of

16 1/4 in. microphones, Brüel & Kjær (B&K) type 4958,

mounted on the equator of a rigid sphere with a radius of

9.75 cm, corresponding to a microphone for every 22:5�.
With this configuration, the array can operate free of aliasing

up to about 4.5 kHz.

The array and the source, a loudspeaker, were controlled

by a B&K PULSE analyzer. The loudspeaker was driven by a

signal from the generator, pseudorandom noise of 1 s of pe-

riod, 6.4 kHz of bandwidth, and 1 Hz of resolution. The

microphone signals were recorded with the analyzer and post-

processed with the beamforming algorithms CHB and DSB.

Figure 3 shows the output of the array using CHB and

DSB when a source is located 4 m away but at the very same

height and at an azimuth angle us ¼ 180�. It can be seen that

with the two techniques, the array is capable of localizing

the sound source in the frequency range of interest with

exception of DSB at the frequencies below about 300 Hz

due to the fact that this technique behaves omnidirectionally

at such values.

The performance of the array is also illustrated in Fig. 4,

where the resolution and the MSL for both CHB and DSB

are shown. The predictions made with computer simulations

are also depicted. To account for the background noise intro-

duced in the measurements, the simulations were carried out

with a signal-to-noise ratio (SNR) of 30 dB at the input of

each microphone due to uniformly distributed noise.

FIG. 2. Resolution and MSL using CHB (left) and DSB (right) and a circular array of radius 10 cm and 10 microphones when the microphones are suspended

in free space, mounted on the equator of a rigid sphere, and mounted on a rigid cylinder of infinite length. For ease of comparison, the case of the cylinder

with CHB is not plotted because it coincides with the case of the sphere. In all cases, the source is in the far field at ½hs;us	 ¼ ½90�; 180�	.

FIG. 3. Normalized output with CHB (left) and DSB (right) using a circular array with 16 microphones mounted on the equator of a rigid sphere with radius

of 9.75 cm. The source is in the far field at ½hs;us	 ¼ ½90�; 180�	.
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For CHB, the simulations and the measurements agree

in terms of resolution in most of the frequency range. Small

deviations from the expected values are observed at the low-

est frequencies and around 500 Hz. In terms of MSL, the

measurements oscillate around the expected values as occurs

with circular arrays suspended in free space.4 The differen-

ces detected in the resolution at low frequencies and about

500 Hz also appear in the MSL. At low frequencies, the dif-

ference is attributed to a presence of background noise

higher than expected. At about 500 Hz, the performance is

better than expected because the MSL is much lower than

the predictions. The good agreement with the simulations is

also found in the case of DSB. Just in the range from 400 to

600 Hz, the MSL differs from the expected value.

Other measurements with the source placed at different

positions revealed that the behavior of the array is practically

independent of its azimuth angle. Because the beamforming

algorithms given in Sec. III expect a source placed at a polar

hs ¼ 90�, i.e., at the plane of the array, the performance is opti-

mal when this happens. However, it can be shown that sources

placed in the range hs ¼ 90�645� can still be localized.

VI. CONCLUSIONS

A beamformer consisting of a uniform circular array of

microphones mounted on the equator of a rigid sphere has

been examined using CHB and DSB. A simulation study has

revealed that this configuration is an improved version of a

circular array suspended in free space. Particularly, with

CHB, the array mounted on the sphere behaves identically to

the unrealistic case of an array with the same dimensions

mounted on a rigid cylinder of infinite length. Therefore, the

array on the sphere is a simple solution of special interest as

alternative to beamformers based on cylinders of finite

length because these are often approximated by infinitely

long cylinders to overcome the problem that an exact analyt-

ical expression for such cylinders does not exist.

Various experiments using a prototype array have

proved the validity of the model.
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FIG. 4. Resolution and MSL with CHB (left) and DSB (right) using a circular array of radius 9.75 cm and 16 microphones mounted on the equator of a rigid

sphere. The source is in the far field at ½hs;us	 ¼ ½90�; 180�	. For the simulation, the SNR in each microphone is 30 dB.
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During the last decade, the aeroacoustic community has examined various methods based on

deconvolution to improve the visualization of acoustic fields scanned with planar sparse arrays of

microphones. These methods assume that the beamforming map in an observation plane can be

approximated by a convolution of the distribution of the actual sources and the beamformer’s

point-spread function, defined as the beamformer’s response to a point source. By deconvolving the

resulting map, the resolution is improved, and the side-lobes effect is reduced or even eliminated

compared to conventional beamforming. Even though these methods were originally designed for

planar sparse arrays, in the present study, they are adapted to uniform circular arrays for mapping

the sound over 360�. This geometry has the advantage that the beamforming output is practically

independent of the focusing direction, meaning that the beamformer’s point-spread function is

shift-invariant. This makes it possible to apply computationally efficient deconvolution algorithms

that consist of spectral procedures in the entire region of interest, such as the deconvolution

approach for the mapping of the acoustic sources 2, the Fourier-based non-negative least squares,

and the Richardson–Lucy. This investigation examines the matter with computer simulations and

measurements.VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4816545]

PACS number(s): 43.60.Fg [BEA] Pages: 2078–2089

I. INTRODUCTION

Beamforming with phased arrays of microphones is a

well established method for visualization of sound fields.

However, because the sound field is mapped with a discrete

number of microphones, beamforming techniques present

intrinsic limitations, specifically the frequency dependence

of the array resolution and the appearance of side lobes that

contaminate the beamforming map with sometimes unex-

pected results.1 These two factors make it difficult to inter-

pret the map and therefore to visualize the actual sound field

accurately.

The focus of the present investigation is on the improve-

ment of the performance of uniform circular arrays (UCAs)

for mapping the sound field over 360� around the array to

localize sound sources in the far field. This array geometry

has lately been of interest in various studies about environ-

mental noise localization, conferencing, and measurements

in ducts among others; see, for instance, Refs. 2–9. It has

been shown that a better performance in terms of resolution

and level of the side lobes can be achieved by mounting the

array on a scatterer such as a sphere or a cylinder3,4,6 or by

designing other techniques than delay-and-sum (DS) beam-

forming, for example, circular harmonics (CH) beamform-

ing.5 Nevertheless these solutions are not sufficient to result

in a clear and unambiguous beamforming map.

In the recent years, the aeroacoustic community has sug-

gested various methods to improve the beamforming map in

two-dimensional (2D) imaging using planar sparse arrays to

map the sound field in a region parallel to the plane of the

array. These methods rely on the fact that the map is a convo-

lution of the acoustic sources and the beamformer’s point-

spread function (PSF), which is defined as the response of the

beamformer to a point source. By means of deconvolution,

the distribution of the sources can be recovered presenting a

better resolution and reduced (or even suppressed) side lobes

in comparison with direct beamforming. Examples of decon-

volution methods can be found in Refs. 10–12 for static

uncorrelated noise sources, in Refs. 13–15 for correlated

noise sources, and in Ref. 16 for moving sources. The main

problem is that these methods require a high computational

effort due to the fact that they are based on iterative algo-

rithms. To improve the efficiency, certain techniques use

spectral (Fourier-based) procedures for the deconvolution,

but these can only be applied when the beamformer’s PSF is

shift-invariant, that is, when the response of the beamformer

to a point source depends only on the distance between the

focusing point of the beamformer and the position of the

point source. However, for 2D imaging, the assumption that

the PSF is shift-invariant is only a good approximation when

the source region is small compared with the distance

between the array and the source. Therefore the use of such

deconvolution approaches is restricted to a small region in

space unless it is expanded to a larger (and 3D) region by

making use of a coordinate transformation.10,17,18

Interestingly, one could think of adapting the existing

deconvolution methods to a UCA to improve its perform-

ance. Contrary to the case of planar sparse arrays for which

a)Portions of this work were presented in “Acoustical source mapping based

on deconvolution approaches for circular microphone arrays,” Proceedings

of Inter-Noise 2011, Osaka, Japan, September 2011.
b)Author to whom correspondence should be addressed. Electronic address:

etr@elektro.dtu.dk
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the PSF is shift-variant per se, beamformers based on UCAs

have a practically shift-invariant PSF along the region of

interest,2,19 i.e., 360�, and consequently this scenario seems

particularly adequate for the use of Fourier-based deconvolu-

tion methods. In the following, the main deconvolution

methods that rely on a shift-invariant PSF, namely, the

deconvolution approach for the mapping of the acoustic

sources 2 (DAMAS2), the Fourier-based non-negative least

squares (FFT-NNLS), and the Richardson–Lucy (RL) will

be reformulated for the case of plane waves impinging on a

UCA. The first method, DAMAS2, introduced by Dougherty

in Ref. 10, is an extension of DAMAS of Brooks and

Humphreys (Ref. 13). The second algorithm, FFT-NNLS,

was adapted from the classical NNLS procedures20 by

Ehrenfried and Koop in Ref. 11. Finally RL, which was ini-

tially developed by Richardson and Lucy (Refs. 21 and 22)

for image restoration in astronomy, was also adapted for

acoustical purposes in Ref. 11. All these methods will be

examined by means of computer simulations and experimen-

tal results.

II. CONVOLUTIONAL FORMULATION FOR UNIFORM
CIRCULAR ARRAYS

A beamformer based on a UCA of microphones is capa-

ble of mapping the sound field over 360� in the plane of the

array to find the direction of sound sources located in that

plane. By electronically steering the beamformer, the sound

field is scanned in a grid of azimuth angles u, from 0 to

360�, to detect the propagating acoustic waves that impinge

on the array and thereby to identify the direction of the

sound sources that emit them. When a single source is pres-

ent, the beamformer output exhibits a main lobe around the

azimuth of the source, whereas other directions are contami-

nated with side lobes; see Fig. 1.

The characteristics of the beampattern, i.e., the shape of

the main lobe and the side lobes, are given by the beamform-

er’s PSF. This function was originally defined as the beam-

former response to a point source with unit strength at an

arbitrary position of a grid located in a plane parallel to the

array plane.10–12 However, this definition needs to be

reformulated for a UCA because the goal is to look into all

possible azimuth angles around a UCA beamformer instead

of looking to a plane parallel to the array.

In the current study, the sources are considered to be

sufficiently far from the array position, and therefore waves

captured by the array can be regarded to be planar. This

assumption implies that the direction of the waves can be

identified, although the distance to the sources that emit

them cannot be estimated—this would require a near-field

scenario. Under the plane wave assumption, the PSF can be

redefined as the beamformer response to a plane wave of

unit amplitude created by a source in the far field of the

array. Then in the presence of incoherent sources, the beam-

former output is related to the PSF as

bðuÞ ¼
X
u02G

sðu0ÞHðuju0Þ; (1)

where sðu0Þ contains information regarding the direction and

the strength (at the array position) of a plane wave created

by a source located at an azimuth angle u0 contained on the

grid G, whereas Hðu ju0Þ is the PSF at u due to a source at

u0. From now on s will be referred to as the source

distribution.

From this expression, it becomes apparent that the infor-

mation regarding sound sources can be recovered from the

measured beamformer map and the beamformer’s PSF. This

is done by means of a deconvolution procedure, imposing

that the distribution of sound sources must be non-negative

[sðu0Þ � 0]. This is an inverse problem, which in matrix

notation can be rewritten as

b ¼ Hs; (2)

where the vectors b and s contain the information about the

beamformer output and the source distribution, respectively,

and H is a matrix that in each column contains the PSF for

one source located at an angle u0 of the grid. Often the ma-

trix H can be singular, which implies that there may be infin-

itely many solutions for s.11

For a beamformer based on a UCA, the focusing direc-

tion can be steered to any position in the plane where the

array lies without changing the beampattern significantly

due to the symmetry of the array.2,19 This implies that the

overall shape of the beamformer’s PSF remains practically

the same independently of its looking direction as shown in

Fig. 2. A PSF that satisfies this condition is called to be

shift-invariant because it depends only on the difference of

the actual focus point u and the azimuth of a source u0,

Hðuju0Þ ¼ Hðu� u0Þ: (3)

Inserting this property into Eq. (1) leads to

bðuÞ ¼
X
u02G

sðu0ÞHðu� u0Þ; (4)

which corresponds to a discrete circular convolution of sðuÞ
and HðuÞ. Making use of the convolution theorem, Eq. (3)

can be expressed with the discrete Fourier transform,
FIG. 1. Illustration of beamforming with a UCA for detecting the location

of a distant sound source.
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and thus one can take advantage of the computational effi-

ciency of this operation,

bðuÞ ¼ F�1½F ½sðuÞ	 F ½HðuÞ		; (5)

where the operators F and F�1 stand for the direct and the

inverse Fourier transforms, respectively. This relationship is

a key issue for deconvolution methods based on spectral

approaches. Note that this equation requires that the PSF

used for the calculation of the beamformer output, HðuÞ,
considers a source placed at an azimuth u0 ¼ 0, according to

Eq. (3).

III. DECONVOLUTION METHODS

From the mid 2000s the aeroacoustic array community

has suggested various deconvolution methods, such as the

DAMAS family of algorithms10–16 or the NNLS algorithms,11

to visualize sound sources with accuracy from a given beam-

forming map. These methods use iterative procedures to solve

the inverse problem expressed by Eqs. (1) and (2).

Among the the existing methods, DAMAS210 and FFT-

NNLS,11 appear to be especially attractive for a UCA to map

the sound field over 360�, because they rely on a shift-

invariant PSF to solve the deconvolution problem as formu-

lated in Eq. (5).

Yet another method that can be adapted to a UCA for

localizing sound sources is RL, even though this was initially

conceived for deconvolution problems in statistical astron-

omy.21,22 Unlike DAMAS2 and FFT-NNLS, this method

solves the inverse problem given by Eq. (5) from a statistical

point of view following from Bayes’ theorem on conditional

probabilities.

In any case, the three methods aim to find an estimate of

the source distribution s, ~s, that convolved with the PSF

gives an estimate of the beamformer output, ~b, as similar as

possible to the real beamformer output.

An overview and a comparison of the performances of

RL, DAMAS2, and FFT-NNLS for planar sparse arrays for

localizing sound sources in a small region of a plane parallel

to the array plane can be found in Ref. 11.

In what follows DAMAS2, FFT-NNLS, and RL are

adapted for the case of UCAs when sources in the far field of

the array are assumed. In this sense, the estimate of the source

distribution, ~s, will provide information about the direction of

the impinging waves and their level at the array position.

A. DAMAS2

DAMAS2 addresses the inverse problem formulated in

Sec. II directly as stated in Eq. (5), which follows from Eqs.

(1) and (2) considering a shift-invariant PSF. The algorithm

consists of the following steps:

1. Step 0

Initialize the iteration index, n¼ 0, and use an estimate

of s, ~sð0Þ to start. Typically this value is set to zero for the

entire region of interest, i.e.,

~sð0ÞðuÞ :¼ 0; 8u 2 G: (6)

Compute the value a, which is given by the discrete integral

of the PSF,

a ¼
X
u2G

Hðu� u0Þ; (7)

for a source located at an angle u0, e.g., u0 ¼ 0�.
Calculate the FFT of HðuÞ,
FH ¼ F½HðuÞ	: (8)

2. Step 1

Compute the estimate of the beamformer map b as

~b
ðnÞðuÞ :¼ F�1½F ½~sðnÞðuÞ	FH	: (9)

Note that this expression follows from Eq. (5). In the original

algorithm implemented for planar sparse arrays given by

Dougherty in Ref. 10, the preceding expression is scaled by

a Gaussian filter to smooth the retrieved sound distribution

FIG. 2. PSF of a particular UCA focused to different directions (0�, 110�,
and 230�).
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and to minimize the influence of high wave-number noise,

i.e., background noise induced by sources outside the region

of interest.11 However, for the case of UCAs, this filter is not

necessary as all sources are placed inside the entire region of

interest, between 0� and 360�.

3. Step 2

Apply a non-negativity constraint to update the value of ~s

~sðnþ1ÞðuÞ :¼ max ~sðnÞðuÞ þ bðuÞ � ~b
ðnÞðuÞ

a
; 0

 !
:

4. Step 3

Increment the iteration index, n ¼ n þ 1.

5. Remaining steps

Repeat steps 1–3 until the standard deviation of the re-

sidual r(n) converges to zero. The residual is defined as the

difference between the estimated beamforming map and the

actual map

rðnÞðuÞ :¼ ~b
ðnÞðuÞ � bðuÞ: (10)

B. FFT-NNLS

Unlike DAMAS2, FFT-NNLS tries to minimize the

square sum of the residuals, that is

minkHs2bk2: (11)

This can be solved by a gradient-type minimization proce-

dure as suggested in Ref. 11. The steps are the following:

1. Step 0

Initialize the iteration index, n¼ 0, and ~sð0Þ before start-
ing the iterative procedure. As in DAMAS2, ~sð0Þ is usually

set to zero; see Eq. (6). Besides, compute FH as in Eq. (8).

2. Step 1

Compute the residual vector r(n) from a given solution

~sðnÞ as follows:

rðnÞðuÞ :¼ F�1½F ½~sðnÞðuÞ	FH	 � bðuÞ:
Note that the first term of this difference is the estimate of the

beamformer output at the nth iteration, ~b
ðnÞ
, as in Eq. (9).

3. Step 2

Calculate the gradient w(n) as

wðnÞðuÞ :¼ �F�1½F ½rðnÞðuÞ	FH	:

4. Step 3

Use the following projection of the gradient

�wðnÞðuÞ :¼ 0 if wðnÞðuÞ < 0 and ~sðnÞðuÞ ¼ 0;

wðnÞðuÞ otherwise:

�

5. Step 4

Compute the auxiliary value g(n) as

gðnÞðuÞ :¼ F�1½F ½�wðnÞðuÞ	FH	:

6. Step 5

Calculate an optimal step factor k as

k :¼ �

X
u

gðnÞðuÞrðnÞðuÞ
X
u

ðgðnÞðuÞÞ2 :

7. Step 6

Update the solution ~sðnþ1Þ using the non-negativity con-

strain as follows

~sðnþ1ÞðuÞ :¼ maxð~sðnÞðuÞ þ k �wðnÞðuÞ; 0Þ:

8. Step 7

Increment the iteration index, n ¼ n þ 1.

9. Remaining steps

Repeat steps 1–7 until the standard deviation of the re-

sidual r(n) converges to zero.

C. RL

For imaging deblurring purposes, RL assumes a shift-

invariant PSF. One iteration cycle of the algorithm can be

written as

~sðnþ1ÞðuÞ ¼ 1

a
~sðnÞðuÞ b

~sðnÞðuÞ � HðuÞ � HðuÞ
" #

; (12)

where the initial value is

~sð0ÞðuÞ ¼ 1

a
bðuÞ: (13)

If the initial value ~sð0Þ is non-negative (so the non-negativity

constraint is fulfilled), RL guarantees that all generated solu-

tions ~sðnÞ will be non-negative. Note that the scaling factor a
given in the two previous expressions was not present in the

original formulation. The reason for this is that normalized

data was of concern, so that a¼ 1. However, for the current

investigation, the data is not normalized, and this value must

represent the discrete integral of the PSF,11 given in Eq. (7).

Making use of the Fourier transform to compute the

convolutions the method consists of the following steps:

1. Step 0

Initialize the iteration index, n¼ 0, set the initial value

of ~s, ~sð0Þ, using Eq. (13) and compute FH as in Eq. (8).

2. Step 1

Compute an estimate of the beamformer output as

~b
ðnÞðuÞ :¼ F�1½F ½~sðnÞðuÞ	FH	:
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3. Step 2

Calculate the ratio between the actual beamformer out-

put and the estimated one,

xðnÞðuÞ :¼ bðuÞ
~b
ðnÞðuÞ

:

4. Step 3

Update the value ~s according to the following expression

~sðnþ1ÞðuÞ :¼ 1

a
~sðnÞðuÞF�1½F ½xðnÞðuÞ	FH	:

5. Step 4

Increment the iteration index, n ¼ n þ 1.

6. Remaining steps

Repeat steps 1–4 until the standard deviation of the re-

sidual r(n) [defined as in Eq. (10)] converges to zero.

IV. SIMULATION AND MEASUREMENT RESULTS

In this section DAMAS2, FFT-NNLS, and RL are

examined by means of computer simulations and measure-

ments. The beamforming techniques used prior to the men-

tioned deconvolution algorithms will be introduced briefly

before presenting the results.

A. Beamforming techniques for a UCA

DS beamforming and a more recent technique called

CH beamforming, which is especially conceived for

UCAs,5,6 are the techniques selected to test the deconvolu-

tion algorithms. DS beamforming is based on delaying the

signals captured at each array microphone by a certain

amount and adding them up to focus the system to a specific

direction in space that depends on the applied delay. Instead

CH beamforming is based on decomposing the sound field

into a summation of harmonics (as in a Fourier series) and

comparing the resulting coefficients with the ones obtained

from decomposing the expected sound field in the looking

direction of the array. These techniques are implemented to

localize the direction of sound sources that lay in the plane

of the array, or close to it, but sufficiently far so that the gen-

erated waves are regarded as planar at the array position; see

Fig. 1. Obviously beamforming procedures with such array

geometry for mapping the sound field over 360� provide in-

formation about the azimuth of the source, u0, but do not

account for its polar angle, h0, which means that those sour-

ces with a certain elevation are always projected in the plane

of the array. For the present investigation, a UCA with the

microphones flush-mounted on a rigid sphere as the one

shown in Fig. 3 is assumed. This configuration provides bet-

ter results than a UCA in which the microphones are sus-

pended in free space in terms of both width of the main

beam (resolution) and level of the largest secondary lobe

(the so-called maximum side lobe level).6

Assuming a UCA of radius R and M microphones, the

output of a CH beamformer focused toward u is given in the

Fourier transform domain (spatial frequency domain) by

bCHðkR; uÞ ¼ A
XM
m¼1

~pmðkRÞ
XN
n¼�N

1

QnðkRÞ e
�jnðum�uÞ

�����
�����
2

;

(14)

where k is the wave number of the frequency of interest, A is a

scaling factor, ~pm is the sound pressure captured by the mth
microphone placed at an angle um, and N is the maximum

number of harmonics used for the algorithm. This value should

follow N ¼ dkRe, where d�e refers to the ceiling function, up

to a maximum equal to M=2� 1, to obtain the optimal map

(higher orders would amplify the influence of noise dramati-

cally).5,6 The function Qn(kR) depends on the geometry of the

UCA. For a UCA mounted on the equator of a rigid sphere,

QnðkRÞ ¼
X1
q¼jnj

ð2qþ 1Þð�jÞq jqðkRÞ � j0qðkRÞ
hqðkRÞ
h0qðkRÞ

 !

� ðq� jnjÞ!
ðqþ jnjÞ! ðP

jnj
q ð0ÞÞ2; (15)

where jq and hq are spherical Bessel and spherical Hankel

functions of order q, j0q and h0q are their derivatives with

respect to the radial direction r evaluated at r ¼ R, and P
jnj
q is

a Legendre function of degree q and order n.
On the other hand, the output of a DS beamformer is

expressed by

FIG. 3. (Color online) UCA mounted on a rigid sphere.
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bDSðkR; uÞ ¼ B
XM
m¼1

~pmðkRÞ
XN
n¼�N

Q�
nðkRÞe�jnðum�uÞ

�����
�����
2

;

(16)

where B is a scaling factor and the parameter QnðkRÞ is again
given by Eq. (15). The value of N should be in this case at

least N ¼ dkRe þ 1, up to a maximum equal to M/2�1 as for

CH beamforming.

The scaling factors of CH and DS beamforming can be

chosen such as the maximum value of the beamformer out-

put is equal to one when a plane wave with amplitude unity

is detected. To accomplish this A and B need to be

A¼ 1/(M(2N þ1)) and B ¼PM
m¼1 pmðkRÞpmðkRÞ�, where pm

is the sound pressure of a plane wave of amplitude unity cre-

ated at, e.g., 0�.
Regardless of the beamforming technique, it should be

kept in mind that because the sound field is sampled at dis-

crete positions with the array microphones, modal aliasing

occurs at those frequencies the wavelength of which is less

than twice the distance between two consecutive micro-

phones. When aliasing occurs side lobes increase dramati-

cally, becoming replicas of the main lobe in the worst case

(the so-called aliased lobes).

From the given beamforming techniques, the PSF corre-

sponding to each of them can be obtained assuming that a

plane wave of amplitude unity is captured at the array. A

detailed description of the calculation of the PSF can be

found in the Appendix.

B. Test case using computer simulations

Let us assume a plane wave with frequency 1.6 kHz and

amplitude a¼ 2 captured by a CH beamformer that consists

of a UCA with radius 9.75 cm and 16 microphones mounted

on the equator of a rigid sphere (corresponding to a micro-

phone at every 22.5�). With this configuration, the array is

capable of operating up to about 4.5 kHz without aliasing.

The wave is generated by a source placed at an azimuth

angle of 60�. The PSF of such beamformer and the beam-

former output are shown in Fig. 4. As can be seen, the beam-

forming process successfully detects the wave because a

main beam is visualized around 60�. However, the main

beam is rather broad, and the map presents side lobes else-

where, which can lead to confusion.

The beamformer map is then postprocessed with

DAMAS2, FFT-NNLS, and RL. For these processes, a grid

of azimuth angles from 0� to 359� with a resolution of 1� has
been used. Note that besides the direction of the sources, the

retrieved value s gives the information of the squared ampli-

tude of the plane waves at the array position emitted by them

because both the beamforming output and the PSF (given in

the Appendix) correspond to magnitude squared functions.

The top row of Fig. 5 shows the source distribution

recovered with DAMAS2, FFT-NNLS, and RL after 500

iterations. The three algorithms produce a clean map com-

pared to the beamformer response; the direction of the

source is pointed out with a narrow main lobe, and the effect

of side lobes is practically removed. Theoretically the recov-

ered sources should be represented by a delta function with

its maximum being the squared amplitude of the plane wave

(a2), 4 in this case. However, none of the methods provides

this result after 500 iterations.

An estimate of the squared amplitude of each impinging

wave, ~a2, can be obtained with an integration method that

consists of summing the values ~sðuÞ inside the region of in-

terest, G0 (Ref. 12),

~a2 ¼
X
u2G0

~sðuÞ: (17)

The resulting level estimates obtained with DAMAS2, FFT-

NNLS, and RL are 4.13, 4.04, and 4.00, respectively, which

agree with the value of the squared amplitude of the plane

wave under consideration.

The convergence of the algorithms given by the stand-

ard deviation of the residual (i.e., the difference between the

estimated beamformer output and the actual one) as a func-

tion of the number of iterations n is shown in Fig. 6. For all

the algorithms, the standard deviation of the residuals con-

verges to a value close to zero when the number of iterations

increases as expected. For this particular example, it can be

seen that from about 5000 iterations, the standard deviation

of the residuals is practically zero. Therefore ideally one

FIG. 4. PSF (left) and output (right) of a CH beamformer that consists of a UCA with 16 microphones mounted on the equator of a rigid sphere with radius of

9.75 cm. A source in the far field at u0 ¼ 60� is assumed for the simulations.
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would expect a recovered source distribution represented by

a delta function with a level of 4 at 60�. However, even after

1� 106 iterations, the retrieved source distribution with

DAMAS2 and FFT-NNLS differs from a delta function as

can be seen in the bottom row of Fig. 5. In the case of RL,

the result is much closer to the ideal response, but a close-up

of the figure reveals that there is still some spreading (the

peak is not exactly 4 and the neighboring values are not

zero). This means that more iterations are needed to get a

response as close as possible to the ideal response.

The deconvolution processes are particularly useful

when more than one source are present in the sound field

because they make it possible to locate the different sources

even when they are not visible in the beamformer output.

Let us consider that besides the source at 60� responsible for
the previous plane wave with frequency 1.6 kHz, there is

another source at 90� that creates a plane wave with unity

amplitude at the same frequency. The two sources are inco-

herent. The beamformer map obtained with CH beamform-

ing is shown in Fig. 7. As can be seen, the beamforming map

reveals only a source located at about 60� (the maximum is

actually at 63�). Although the main beam presents an asym-

metric shape that can indicate that there is another source

present, it is not possible to state that this is placed at 90� as
assumed.

After applying deconvolution the maps shown in Fig. 8

are achieved with 5000 iterations. The three methods reveal

FIG. 5. Maps retrieved with DAMAS2 (left column), FFT-NNLS (middle column), and RL (right column) after 500 iterations (top row), and after 1� 106 iter-

ations (bottom row). A source in the far field at u0 ¼ 60� is considered. CH beamforming is used prior to the deconvolution algorithms.

FIG. 6. Standard deviation of the residual as a function of the number of

iterations n, for DAMAS2, FFT-NNLS, and RL.

FIG. 7. Map obtained with CH beamforming. Two plane waves are present

in the sound field, one with amplitude 2 created at 60� and another one with

amplitude 1 created at 90�.
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two sources, the strongest being located at 60� as expected.

However, the other source is not exactly located at 90� but

close to it: at 94� with DAMAS2, at 92� with FFT-NNLS,

and at 91� with RL. The estimates of the squared amplitude

of the sources are very close to the expected level of the two

waves (22 and 12); 4.2 and 0.8 with DAMAS2, 4.1 and 0.9

with FFT-NNLS, and 4.0 and 0.9 with RL. As in the case of

having only one source, it can be shown that with the

increase of the number of iterations the maps become

clearer, and moreover the source with less energy is located

at an azimuth angle that tends to the actual value.

Although not shown similar results are obtained with

DS beamforming.

C. Simulated and experimental data results

The deconvolution methods DAMAS2, FFT-NNLS, and

RL have been tested experimentally and compared to com-

puter simulations. For this purpose, measurements with the

UCA shown in Fig. 3 were carried out in an anechoic room

with a volume of about 1000 m3. The array consisted of 16

1/4 in. microphones, Br€uel and Kjær (B&K) type 4958,

mounted on the equator of a rigid sphere with a radius of

9.75 cm. The array and the source, a loudspeaker, were con-

trolled by a B&K PULSE analyzer. The loudspeaker was

placed at 4m from the array center but at the very same

height at an azimuth angle of 180�. It was driven by a signal

from the generator, pseudorandom noise of 1 s of period,

6.4 kHz of bandwidth, and 1Hz of resolution. The signal had

a duration of 5 s. The microphone signals were recorded

with the analyzer, and after averaging for each channel, they

were postprocessed with CH beamforming and DS beam-

forming in the frequency range from 50 Hz to 5.5 kHz.

These procedures scanned directions from 0� to 359� with a

resolution of 1�. Subsequently the obtained beamforming

maps were processed with DAMAS2, FFT-NNLS, and RL,

using 500 iterations.

1. Sound source localization

To analyze the performance of the deconvolution meth-

ods in terms of localization of sound sources, the beamform-

ing maps prior to the deconvolution algorithms were

normalized for simplicity.

The left side of Fig. 9 shows the normalized output

obtained with CH beamforming and the source distribution

maps obtained with deconvolution as a function of fre-

quency. The predictions made with computer simulations are

also depicted on the right side of the figure.

To account for the background noise present in the

measurements, the simulations were carried out with a sig-

nal-to-noise ratio (SNR) of 30 dB at the input of each micro-

phone due to uniformly distributed noise.

At first sight, it can be seen that measurements and simu-

lations yield very similar results. The beamformer procedure

(top row) reveals the direction of the main source at 180� in

all the frequency range, but the main lobe is rather broad, spe-

cially at low frequencies, and side lobes appear along the map.

However, the map is satisfactorily improved after applying

DAMAS2 (second row), FFT-NNLS (third row), and RL (bot-

tom row) because the main lobe becomes more directive and

side lobes are reduced significantly. Interestingly, these proce-

dures can still visualize the direction of the source clearly at

those frequencies where aliasing in the beamforming map

occurs, this is, above 4.5 kHz approximately. This effect could

be important for those applications dealing with broadband

sources. However, it has been observed that the retrieved map

is free of aliasing just when a single source is present.

The results obtained with DS beamforming as well as

the recovered maps after deconvolution are shown in

Fig. 10. In this case, there is also a very good agreement

between measurements and simulations. Similar to the

results obtained with CH beamforming, the deconvolution

algorithms yield an improved version of the beamforming

map. Furthermore, they are capable of unveiling the direc-

tion of the source at very low frequencies where the DS

beamformer is omnidirectional.

For both techniques, it can be seen that in the case under

analysis 500 iterations are sufficient to demonstrate a clear

improvement of the maps after deconvolution. However, the

width of the main beam is not constant after the deconvolu-

tion processes; it becomes narrower with increasing fre-

quency. This implies that to obtain better results at the lower

frequencies, the deconvolution algorithms should include

more iterations.

Although a comparison of the three techniques could be

done at this point, this is out of the scope of the present study

FIG. 8. Maps retrieved with DAMAS2, FFT-NNLS, and RL after 5000 iterations. Two sources in the far field at 60� and 90� are considered. CH beamforming

is used prior to the deconvolution algorithms.
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because it has been observed that their performance depends

strongly on the case under analysis.

2. Estimated sound pressure level

The sound pressure level of the impinging waves at the

array can be estimated after deconvolution by means of the

estimated squared amplitude, see Eq. (17). As mentioned in

Sec. II, the level of the sources cannot be estimated because

these are assumed to be in the far field of the array, and

therefore the wave fronts at the array position are practically

planar.

The estimated sound pressure level obtained after

deconvolution is similar to the sound pressure level captured

FIG. 9. (Color online) Normalized output obtained with CH beamforming (top row) and resulting maps after applying DAMAS2 (second row), FFT-NNLS

(third row), and RL (bottom row). The left column shows experimental results and the right column computer simulations.
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by the array microphones. To show this, in Fig. 11 the

sound pressure level averaged across the array microphone

signals is plotted together with the estimated sound pressure

level retrieved with DAMAS2 when CH and DS

beamforming are used prior to the deconvolution process.

Note that for this analysis, the beamforming maps were not

normalized, so that the recovered sound pressure level is

comparable to the averaged sound pressure level captured by

microphones.

The agreement between the estimated sound pressure

level obtained after deconvolution and the averaged sound

pressure level of the microphone signals is particularly good

at lower frequencies. In fact, the curves are totally over-

lapped at these frequencies in the case of DS beamforming

FIG. 10. (Color online) Normalized output obtained with DS beamforming (top row) and resulting maps after applying DAMAS2 (second row), FFT-NNLS

(third row), and RL (bottom row). The left column shows experimental results and the right column computer simulations.
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prior to the deconvolution process, probably due to the

robustness of this technique. With increasing frequency, the

retrieved level with deconvolution becomes lower than the

mean level of the microphones. The difference between low

and high frequencies is given by the fact that at low frequen-

cies, the rigid sphere does not affect the sound field, whereas

at high frequencies, it acts as a scatterer. The averaged pres-

sure at the microphones is amplified due to the scattering effect

at these frequencies. However, with deconvolution, the effect

of the scatterer is removed because this is accounted for in the

beamforming algorithms given in Eqs. (14) and (16).

Although not shown, very similar results were obtained

with FFT-NNLS and RL.

V. CONCLUSIONS

A UCA can be used for scanning the sound field over

360� to detect sound sources located in the array plane. By

means of beamforming procedures, the direction of the exist-

ing incoherent sound sources can be found, but these proce-

dures give rise to a blurred map. An investigation for

improving the visualization of the beamforming map has

been carried out by applying deconvolution procedures,

which are capable of recovering the location of the actual

sources with improved precision. The resulting maps present

better resolution and are practically free from effects of side

lobes. The deconvolution methods methods initially sug-

gested for planar sparse arrays have been adapted to the cir-

cular geometry, which has the advantage that beamforming

maps can be deblurred very efficiently with those deconvolu-

tion methods based on spectral procedures, namely,

DAMAS2, FFT-NNLS, and RL. The performance of these

methods has been examined for two beamforming techni-

ques, DS and CH beamforming, with computer simulations

and experimental results. For the three deconvolution meth-

ods, the resulting maps are improved by applying the decon-

volution algorithms in comparison with the conventional

beamforming maps.

APPENDIX: CALCULATION OF THE BEAMFORMER’S
PSF

Consider a plane wave of amplitude a created by a source
in the far field of a UCA, aejk�r

0
. When the array is mounted

on a sphere, the pressure captured at the surface of the sphere,

at a point with spherical coordinates ½R; h; u	, is23,24

pðkR; h; u; h0; u0Þ

¼ 4pa
X1
q¼0

bqðkRÞ
Xq
v¼�q

Yv
qðh; uÞYv

qðh0; u0Þ�; (A1)

where

bqðkRÞ ¼ ð�jÞq jqðkRÞ �
j0qðkRÞ
h0qðkRÞ

hqðkRÞ
 !

; (A2)

Yv
qðh; uÞ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2qþ 1Þ

4p
ðq� vÞ!
ðqþ vÞ!

s
Pv
qðcos hÞejvu: (A3)

Note that in Eq. (A1), the temporal term e�jxt is omitted;

and the angles of the position of the source ½h0; u0	 are used

instead of the angles of the incident wave ½hk; uk	; these
being related by h0 ¼ p� hk and u0 ¼ uk þ p because the

unit vector of the incident wave k̂ is opposite to the unit vec-

tor of the position of the source r̂0, k̂ ¼ �r̂0.
At the position of each microphone, ½R; p=2; um	, the

pressure is

~pmðkRÞ ¼ pðkR; p=2; um; h
0;u0Þ: (A4)

In the present study, the PSF is defined as the beam-

former response to a plane wave of unit amplitude created

by a source placed in the far field of the array, but at its very

same plane, i.e., at an inclination angle h0 ¼ p/2 and azimuth

angle u0. The PSF is then obtained when the expression

given in Eq. (A4) for a plane wave with amplitude a¼ 1 is

inserted into the beamformers output given in Eqs. (14) and

(16) for CH and DS beamforming, respectively. It should be

emphasized that the PSF considered in the deconvolution

methods presented in Sec. III requires that the source used

for its calculation is placed at an angle u0 ¼ 0; see Eq. (5).

With these considerations the expressions of the PSF for CH

and DS beamforming result in

FIG. 11. Averaged sound pressure level captured by the array microphones

and estimated sound pressure level obtained with DAMAS2. Maps with CH

beamforming (top) and DS beamforming (bottom) are obtained prior to

deconvolution.
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; (A5)

and

HDSðkR;uÞ ¼
���� 4pM

XM
m¼1

XC
q¼0

bqðkRÞ

�
Xq
v¼�q

Yv
qðp=2;umÞYv

qðp=2; 0Þ�

�
XN
n¼�N

Q�
nðkRÞe�jnðum�uÞ

����
2

; (A6)

where the coefficients Qn are given in Eq. (15). Although the

upper limit of the second summation operator of each tech-

nique, C, should be ideally infinity, it has to be truncated for

implementation purposes. In the present study, the value

used for C followed dkRe þ 5 because this guaranteed that

all the coefficients bq that were left out of the summation

had a value very close to zero.
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ABSTRACT
Beamforming using uniform circular arrays of microphones can be used, e.g., for localization of environmen-
tal noise sources and for conferencing. The performance depends strongly on the characteristics of the array,
for instance the number of transducers, the radius and whether the microphones are mounted on a scatterer
such as a rigid cylinder or a sphere. The beamforming output improves with increasing frequency, up to a
certain frequency where spatial aliasing occurs. At low frequencies the performance is limited by the radius
of the array; in other words, given a certain number of microphones, an array with a larger radius will perform
better than a smaller array. The aim of this study is to improve the performance of the array at low frequencies
without modifying its physical characteristics. This is done by predicting the sound pressure at a virtual and
larger concentric array. The propagation of the acoustic information captured by the microphones to the vir-
tual array is based on acoustic holography. The predicted pressure is then used as input of the beamforming
procedure. The combination of holography and beamforming for enhancing the beamforming output at low
frequencies is examined with computer simulations and experimental results.
Keywords: Uniform circular array, Beamforming, Holography

1. INTRODUCTION
Beamforming based on a uniform circular array of microphones (UCA) is a well-known method to

localize sound sources around the array from 0 to 360◦. In the present paper, the main concern is the im-
provement of the performance at low frequencies. In the recent years, various strategies have been suggested
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4 chj@elektro.dtu.dk
5 fa@elektro.dtu.dk



in this matter, such as the design of beamforming techniques other than delay-and-sum. For instance, circu-
lar harmonics beamforming is a clear example of how a beamforming technique can be designed to suit a
particular geometry, in this case, the circular geometry. This technique is based on the decomposition of the
sound field in a series of coefficients by means of a Fourier series.1 With this technique most of the frequency
range is improved. Another possibility is to flush-mount the microphones on a rigid baffle, such as a rigid
sphere or a spherical cylinder. The effect of the scatterer has proved to be beneficial compared to the case
where the array microphones are suspended in the free space.2–4 Yet another alternative is the use of de-
convolution methods, which clean the beamforming map by means of iterative algorithms to finally recover
the distribution of the sources present in the sound field. These methods are very effective, but require high
computational effort, in particular at low frequencies. Methods such as the Deconvolution Approach for the
Mapping of Acoustic Sources 2 (DAMAS2), the Fourier-based Non-Negative Least Squares (FFT-NNLS)
and the Richardson-Lucy (RL) have already been adapted to the circular geometry.5,6

In all cases the performance improves with increasing frequency, up to a frequency where spatial alias-
ing occurs. The poor performance at the lowest frequencies is especially of concern with delay-and-sum
because this presents an omnidirectional pattern, and therefore sources in this frequency range cannot be
localized. Although the use of a scatterer improves its performance, it does not completely eliminate this
problem. With deconvolution methods the low frequency problems can be resolved, even with beamform-
ing patterns obtained originally with delay-and-sum. However if the same resolution is to be achieved in
the entire frequency range, the lower the frequency the more the iterations needed. Or in other words, the
deconvolution methods are less efficient at low frequencies.

In this article we suggest a simple method to improve the performance of UCAs at low frequencies,
which does not imply the design of new beamforming techniques or a modification of the geometry of the
array. The basic idea is that for a specific number of microphones, a UCA with a larger radius will perform
better at low frequencies than an array with a smaller radius, because the distance between the microphones
will be larger, and the wavelengths corresponding to the low frequencies will be better captured. Inspired by
this concept, one could measure the sound field with a UCA, and by means of acoustic holography predict
the sound pressure at a larger and virtual radius. The estimated pressure could be then used as input to the
beamforming algorithm. A sketch of the procedure can be seen in Fig. 1.

virtual array

physical array

acoustical

holography beamforming

beamforming map

Fig. 1 – Sketch of the procedure for the calculation of the beamforming map. The pressure captured by a
UCA is used for the prediction of the pressure at a larger and virtual array by means of acoustical

holography. The predicted pressure is used as input of the beamforming procedure.

The combination of holography and beamforming for the improvement of the performance at low fre-
quencies is the subject of study in the present work, and this is examined by means of computer simulations
and experiments.

2. BACKGROUND THEORY
2.1. Acoustic Holography

Acoustic holography is a sound visualization technique that makes it possible to reconstruct the sound
field over a three-dimensional space based on a two dimensional measurement. Often, the measurement is
performed close to the source, as in near-field acoustic holography (NAH) to capture the evanescent waves
for an enhanced spatial resolution.7,8 However, in the present study we are concerned with the reconstruction
of the sound field in the far field, prior to the beamforming processing.



In acoustic holography, the measured sound field is typically expanded into a series of basis functions
from which the entire acoustic field can be reconstructed. In this paper we focus on a circular space, making
use of the fact that the sound field can be predicted on different radii by means of the Bessel functions
that account for the propagation in the radial direction. This approach is in a sense analogous to the one
commonly used for NAH in spherical coordinates,9–11 but in this case the radial functions are conventional
Bessel functions, and the angular dependency is reduced to the azimuth only, as it follows from a circular
harmonic expansion. It is worth noting that the inverse holographic reconstruction, i.e., when propagating
towards the source, is an ill-posed problem that requires regularization. It has been shown that in the case of
spherical NAH, truncation is an appropriate regularization procedure.12 Similarly, truncation is adequate for
the circular geometry.

Let us consider that a plane wave that travels perpendicularly to the z-axis (i.e., the wavefronts are
parallel to the z-axis) is captured by a UCA of radius R placed at the xy-plane, at z = 0. The sound pressure
at the array can be represented in terms of solutions of the Helmholtz equation in a cylindrical coordinate
system with origin at the center of the UCA. After applying the boundary conditions (basically that the sound
field at the origin must be finite), the pressure can be expressed as7

p(kr, ϕ) =
∞∑

n=−∞
AnJn(kr)e

jnϕ, (1)

where k is the wavenumber and An is the coefficient of the n’th term. As can be seen the angular dependency
of the pressure is given by the circular harmonics ejnϕ, whereas the radial dependency is given by the Bessel
functions Jn. Note that the time dependency e−jωt is omitted. The previous expression can be ideally used
to determine a particular sound field at any point by means of acoustic holography. For this purpose we need
to determine the values of the coefficients An. The pressure at the UCA, at r = R is

p(kR, ϕ) =
∞∑

n=−∞
AnJn(kR)ejnϕ. (2)

Making use of the orthogonality of the circular harmonics,

1

2π

∫ 2π

0

ejnϕe−jmϕdϕ = δmn, (3)

the coefficients An can be retrieved by multiplying each side of Eq. (2) by a complex conjugated circular
harmonic and integrating over the entire circle, from 0 to 2π. The resulting expression follows

An =
1
2π

∫ 2π

0
p(kR, ϕ)e−jnϕdϕ

Jn(kR)
. (4)

This expression implies a continuous integral of the sound pressure. However the pressure is known at
discrete positions, because the sound field is sampled with M microphones. Therefore, the integral must be
approximated by means of a finite summation:∫ 2π

0

p(kR, ϕ)e−jnϕdϕ ⇒
M∑
i=1

αip(kR, ϕi)e
−jnϕi , (5)

where the coefficients αi must equal 2π/M to keep the orthogonality properties of the circular harmonics
given in Eq. (3) in discrete notation. Finally the coefficients An are calculated as

Ân =
1
M

∑M
i=1 p(kR, ϕi)e

−jnϕi

Jn(kR)
. (6)

By inserting this expression into Eq. (1), the sound pressure can be, in principle, predicted anywhere. As
mentioned earlier, regularization is needed in practice. This is done by truncating the limits of the summation
presented in Eq. (2) to certain values −N and N ,

p(kr, ϕ) =

N∑
n=−N

ÂnJn(kr)e
jnϕ. (7)

It can be shown that a reasonable value of N follows N = �kr�+ 1, where �·� is the ceiling function, up to
a maximum value M/2− 1.



2.2. Beamforming
Beamforming is a signal processing technique commonly used in acoustics to localize sound sources.

The beamforming technique used in the present study is the classical delay-and-sum beamforming, which
is a very simple, but robust, method. It is based on delaying the signals of each array microphone by a
certain amount and adding them together, to reinforce the resulting signal. Depending on the delay applied to
the different microphones the array is steered to a particular direction.13 Expressed in the spatial frequency
domain the beamforming output follows

b(kR, ϕ) = A
M∑

m=1

wip̃(kR, ϕm)p∗(kR, ϕm), (8)

where wm is the weighting coefficient of the m’th microphone, p̃(kR, ϕm) is the pressure measured at the
m’th microphone, and p∗(kR, ϕm) is the theoretical complex conjugated pressure due to a plane wave with
origin at ϕ. In the presence of a single source, when the beamformer is focused to the direction of the actual
source, the maximum output is achieved. Ideally the beamformer would present a peak at the direction of the
source and zeros elsewhere, but this is not the case due to the fact that the sound field is captured at discrete
positions with the microphones. This implies that the beamforming map presents a main lobe around the
direction of the source and side lobes elsewhere.

In case of an unbaffled UCA, the theoretical pressure is simply the closed form for a plane wave, ejk·r,
at the array microphones, so the beamformer output is

b(kR, ϕ) =
1

M

M∑
m=1

p̃(kR, ϕm)ejkR cos(ϕm−ϕ). (9)

Note that the weights wm have been set to 1 and A = 1/M , in order to have a maximum beamformer output
equal to one when a plane wave of amplitude unity is present.

Although the focus of the current study is the improvement of the performance at low frequencies, it
should be mentioned that the operation of a beamformer is limited at high frequencies when the Nyquist
sampling criterion is not fulfilled, i.e., at those frequencies whose corresponding wavelengths are less than
twice the distance between two adjacent microphones. When aliasing occurs side lobes increase dramatically,
becoming replicas of the main lobe in the worst case (the so-called aliased lobes).

2.3. Combining acoustic holography with beamforming
The aim of this study is to combine acoustic holography and beamforming to improve the beamforming

output at low frequencies. As shown in Fig. 1 the pressure is measured with a UCA of radius R and M
microphones placed at ϕi. By means of holography the pressure is predicted at a larger and virtual array of
radius Rv. In the present study the number of virtual microphones and their azimuth angles are the same as for
the actual array. In fact, by means of simulations it has been observed that the position of the microphones is
not that relevant as long as the distance between microphones remains constant. This makes sense since UCAs
are practically shift-invariant, i.e., the beamforming pattern is the same regardless the focusing direction.14

The pressure predicted with acoustic holography, which follows from evaluating Eq. (1) at (Rv, ϕi), is

then used as input of the beamforming procedure. The coefficients Ân given in Eq. (6) are obtained with
the pressure measured with the actual array microphones. Then the beamforming algorithm follows from
inserting Eqs. (6) and (7) into Eq. (9),

b(kRv, ϕ) =
1

M2

M∑
m=1

N∑
n=−N

M∑
i=1

p̃(kR, ϕi)
Jn(kRv)

Jn(kR)
ej(n(ϕm−ϕi)+kRv cos(ϕm−ϕ)), (10)

where N = �kRv�+ 1, up to a maximum value M/2− 1.

3. RESULTS AND DISCUSSION
3.1. Computer simulations

The effect of combining beamforming and holography is analyzed in this section by means of computer
simulations. A UCA like the one shown in Fig. 2 has been assumed. The array radius is R = 11.9 cm and it
has 12 microphones. The array used for the simulations coincides with the array used for the measurements



Fig. 2 – Prototype UCA of radius 11.9 cm and 12 microphones used for the measurements.

presented in the next section. Following from the Nyquist sampling theorem, this array will present spatial
aliasing from ca. 2.8 kHz.

A plane wave generated at 180◦ is considered. The frequency range of interest is from 50 Hz to 2 kHz. A
signal-to-noise ratio (SNR) of 30 dB at each array microphone due to uniformly distributed noise is assumed
for the simulations to account for background noise.

Beamforming has been performed in the usual way with the pressure at the array microphones following
from Sec. 2.2. Besides this, by means of holography, the simulated pressure has been used to predict the
pressure at a larger and virtual radius, twice the size of the actual array radius (2R) at the same azimuth
angles. The predicted pressure at the virtual array has been used for the beamforming procedure as indicated
in Sec. 2.3. In parallel, beamforming has been performed in ideal conditions (in absence of noise) with a
UCA of radius 2R and 12 microphones. Note that for this case, as well as for the case of the virtual array,
aliasing is expected from about 1.4 kHz; i.e., the operating frequency range is half the range of the array of
radius R.

For ease of understanding the resulting normalized beamforming outputs for a single frequency, in this
case 400 Hz, are shown in Fig. 3. It can be seen that in all cases a main lobe around 180◦ is present, which
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Fig. 3 – Normalized beamforming outputs at 400 Hz obtained with three UCAs with 12 microphones: a real
array of radius R = 11.9 cm, a virtual array of radius 2R and a real array of radius 2R.

indicates that there is a source in this direction, as expected. However the main lobe obtained with the array
with radius R is very wide, which can lead to confusion, whereas the virtual array and the array with radius
2R present a narrower main lobe, which makes the interpretation of the map clearer.

The maps obtained for all frequencies are shown in Fig. 4. Note that Fig. 3 corresponds to a vertical cut



of the beamforming maps at 400 Hz.

Fig. 4 – Normalized beamforming maps obtained with three UCAs with 12 microphones. (Top) map
obtained with an array of radius R = 11.9 cm, (middle) map obtained with a virtual array of radius
2R by means of combining holography and beamforming, and (bottom) ideal map obtained with an
array of radius 2R. A source at 180◦ is assumed. For the small and the virtual array a SNR of 30

dB is accounted for.

In all the cases the maps are omnidirectional at the lowest frequencies. With increasing frequency the
patterns become more directive, unveiling a source at 180◦. For the virtual array and the array of radius 2R
aliasing is observed at about 1.4 kHz as expected.

The virtual array is more directive at low frequencies compared to the actual array of radius R as ex-
pected from the theory. In fact the virtual array is omnidirectional in a narrower frequency range (half the
range of the actual array) and from the upper frequency limit of the omnidirectional range it becomes more
and more directive. Regarding the level of the side lobes, it can be seen that in both cases the levels are
similar.

The performance of the virtual array is very similar to the ideal performance of the array of radius 2R, up
to the Nyquist sampling frequency where differences are observed. This shows that the virtual array behaves
in this range as a real array with the same radius. The most apparent difference is the vertical line at 1103 Hz,
which shows that for that frequency the beamforming is rather omnidirectional. This is caused by the fact



that the Bessel function in the denominator of Eq. (10) is zero for n = 0 at that frequency.
Alternatively to the beamforming maps, the performance of the array can be analyzed by means of two

measures: the resolution and the maximum side lobe level (MSL). The resolution is the −3 dB width of the
main lobe, whereas the MSL is the difference between the highest secondary lobe and the main lobe. In both
cases, the smaller the values, the better. The resolution and the MSL are shown in Fig. 5.
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Fig. 5 – Resolution (left) and MSL (right) obtained with UCA of radius R = 11.9 cm and 12 microphones, a
virtual UCA with radius 2R, and an ideal UCA of radius 2R. A plane wave created by a source at

180◦ is assumed. For the small array and the virtual array a SNR of 30 dB is considered.

These two measures confirm that the virtual array behaves like a real array with the same dimensions,
especially in terms of resolution, up to the frequencies where sampling error occurs. However, in terms of
MSL the levels are slightly higher for the virtual array from about 800 Hz. The peak at 1103 Hz seen in
both the resolution and MSL with the virtual array corresponds to the singularity observed previously in the
beamforming map.

3.2. Experimental results
Measurements with the prototype array with radius 11.9 cm and 12 microphones shown in Fig. 2 were

carried out in an anechoic room of dimensions 12.1 m × 9.7 m × 8.5 m. The array microphones were 1/4 in.
microphones Brüel & Kjær (B&K) Type 4935.

A picture of the set-up is shown in Fig. 6. The array and the source placed in the far-field of the array
were controlled by a B&K PULSE analyzer. The loudspeaker was driven with a signal from the generator,
pseudorandom noise of 1 s of period, 3.2 kHz of bandwidth, and 1 Hz of resolution. Each microphone signal
was recorded with the analyzer, and after Fourier transforming they were postprocessed with beamforming.
The resulting map can be seen in the top panel of Fig. 7.

The data from the microphones were used to predict the pressure by means of acoustical holography at
a virtual UCA with twice the radius of the array used for the measurements. With the predicted pressure used
as input of the beamforming algorithm, the normalized map shown in the bottom of Fig. 7 was obtained. As
can be seen the beamforming maps are very similar to the maps obtained with simulations in the previous
section, although they appear slightly more blurry.

The resolution and the MSL for the actual and the virtual arrays can be seen in Fig. 8. These two
measures resemble the curves obtained with simulations. In terms of the resolution, the major differences are
observed in the peak at 1103 Hz, which is more abrupt, and in the region where aliasing occurs, although
this region is not of interest. For the MSL it can be seen that the curves appear slightly shifted towards high
frequencies compared with the simulations, and that the MSL of the virtual array is a bit higher than expected
in the range between 800 Hz and 1 kHz.

In any case, the results prove that at the low frequencies the actual (and small) array benefits from using
holography to predict the pressure at a larger and virtual radius and combine it with beamforming.

4. FINAL REMARKS AND FUTURE WORK
In this article it has been shown that the performance of delay-and-sum beamforming improves at low

frequencies by combining acoustic holography with beamforming. The procedure is the following: the pres-
sure captured by a UCA is used to predict the pressure at a virtual array with a larger radius by means of



Fig. 6 – Measurement set-up.

Fig. 7 – (Top) Normalized beamforming map obtained with a UCA with 12 microphones and radius 11.9
cm. The pressure captured by the array microphones is used to predict the pressure at a virtual

UCA with twice the radius of the original array by means of acoustical holography. The predicted
pressure is used to compute the normalized beamfroming map (bottom).
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Fig. 8 – Resolution (left) and MSL (right) obtained with UCA of radius R = 11.9 cm and 12 microphones
and a virtual UCA with radius 2R. A plane wave was created by a source at 180◦.

acoustical holography. The predicted pressure is then used as input to the delay-and-sum beamforming al-
gorithm. The benefits of using a virtual array have been proven by means of simulations and experimental
results.

The combination of holography and beamforming adds new features to UCAs without any additional
cost. Specifically the array gains more flexibility, for example at high frequencies the array measurements
could be used directly for the beamforming procedure in the usual way, whereas at low frequencies acoustic
holography could be used prior to beamforming to enhance the beamforming map at those frequencies.

There are still some questions that need to be examined further, e.g., the effect of using other beam-
forming techniques different from delay-and-sum beamforming, the applicability of the method in noisier
conditions, and how large the virtual array can be. In this sense virtual arrays with radius larger than twice
the radius of the actual array have been tested. The results, which are not included in the article, reveal that
both resolution and MSL become worse than expected with increasing the radius. However this statement
needs additional investigation.

The idea presented in the present study can be applied to other UCAs mounted on a scatterer such as a
rigid cylinder, or to spherical arrays to map a three dimensional sound field.
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ABSTRACT

Recent studies have shown that the localization of acoustic sources based on circular ar-

rays can be improved at low frequencies by combining beamforming with acoustic holog-

raphy. This paper extends this technique to the three dimensional case by making use of

spherical arrays. The pressure captured by a rigid spherical array under free-field condi-

tions is used to compute the expected pressure on a virtual and larger sphere by means of

acoustic holography. Beamforming is then applied with the pressure predicted at the virtual

array. Since the virtual array has a larger radius compared to the one of the physical array,

the low frequencies (the ones with larger wavelength) are better captured by the virtual

array, and therefore, the performance of the resulting beamforming system is expected to

improve at these frequencies. The proposed method is examined with simulations based on

delay-and-sum beamforming. In addition, the principle is validated with experiments.

1 INTRODUCTION

Spherical arrays of microphones have been of interest in the last decade, because of the ability
to measure in a three-dimensional sound field [1, 2]. Typically, these arrays are suitable for
sound source localization using beamforming [3–6] and for sound recording in higher order
reproduction systems such as Ambisonics [7–9].
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Several strategies to improve the performance of beamforming systems have been suggested
in the recent years. For example, it has been shown that arrays with flushed-mounted mi-
crophones on a rigid sphere perform better compared to open (or transparent) spherical ar-
rays [2, 10, 11]. Besides this, different beamforming techniques have been designed for this
geometry [6]. Among them, phase-mode (or spherical harmonics) beamforming is of particular
interest, because it exploits the spherical geometry by decomposing the sound field in a series
of spherical harmonics. Compared to the classical delay-and-sum beamforming, phase-mode
beamforming presents a better directivity, at the expense of being more sensitive to noise [5].
In fact, delay-and-sum beamforming is a very robust technique, but it performs poorly at low
frequencies, being omnidirectional in the worse case.

Inspired by an article on uniform circular arrays presented recently in Ref. [12], the present
article examines the possibility of enhancing the localization of noise sources with spherical
arrays at low frequencies by combining spherical acoustic holography [13–15] and delay-and-
sum beamforming. The idea behind this concept is that for a given number of transducers,
an array with a larger radius will perform better at low frequencies than a smaller array [2].
However, if one cannot change the geometry of the array, a simple solution to obtain a virtually
larger array is illustrated in Fig. 1: the sound pressure is captured with a spherical array (rigid or
transparent), and by means of acoustic holography the pressure is predicted at a virtual spherical
array with larger radius. Finally the pressure at this virtual array is used for the beamforming
process. The theory presented in this work is supplemented with simulations and measurements.

virtual array

physical array

acoustical
holography beamforming

Figure 1: Procedure to obtain the beamforming map: the pressure captured by a spherical array
is used to predict the pressure at a larger and virtual array with acoustic holography,
and from this beamforming is carried out.
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2 ACOUSTIC HOLOGRAPHY AND BEAMFORMING WITH A SPHERICAL
ARRAY

2.1 Acoustic holography

Acoustic holography with a spherical array of transducers is a sound visualization technique that
enables the reconstruction of a sound field over the three-dimensional space, based only on the
sound pressure or particle velocity captured with the array. Acoustic holography measurements
are usually performed very close to the source and the reconstruction lies somewhere between
the measurement position and the source, as in near-field acoustic holography (NAH). However,
in the present study, measurements in the far field of the sound source are of concern.

Let us consider a rigid spherical array with radius R centered at the origin of the coordinate
system. The pressure at a point outside the array is given by the sum of the incident sound
pressure and the scattered pressure due to the presence of the sphere,

p = pinc + psca. (1)

Given the spherical geometry, it makes sense to describe both pressures in terms of solutions
of the Helmholtz equation in spherical coordinates (r,θ ,ϕ) (θ being the inclination angle with
respect to the z−axis and ϕ being the azimuth). The incident pressure, which is the one that
would be measured if the scatterer was not present, must be described by means of spherical
Bessel functions, because these are finite (even at the origin) [15, 16],

pinc(kr,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

Amn jn(kr)Y m
n (θ ,ϕ), (2)

where jn is the spherical Bessel function of order n, and the terms Y m
n are the so-called spherical

harmonics,

Y m
n (θ ,ϕ) =

√
2n+1

4π
(n−m)!

(n+m)!
Pm

n (cosθ)e jmϕ , (3)

in which Pm
n is the associated Legendre function. Note that the time dependence e− jωt is omit-

ted. The scattered pressure must be described as outgoing waves, represented in this case by the
spherical Hankel functions of the first kind [17],

psca(kr,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

Bmnh(1)n (kr)Y m
n (θ ,ϕ), (4)

where h(1)n is the Hankel function of the first kind and order n.
The relationship between the coefficients Amn and Bmn is given by the fact that the total radial

velocity at the surface of the rigid sphere (r = R) is zero. From this condition it follows that

Bmn =−Amn
j′n(kR)

h′(1)n (kR)
, (5)

3
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where j′n and h′(1)n are the radial derivatives of jn and h(1)n . Therefore, the total pressure is

p(kr,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

Amn

(
jn(kr)− j′n(kR)

h′(1)n (kR)
h(1)n (kr)

)
Y m

n (θ ,ϕ). (6)

Since the pressure at the array is known, the coefficients Amn can be retrieved by making use of
the orthogonality relationship of the spherical harmonics,

∫ 2π

0

∫ π

0
Y m

n (θ ,ϕ)Y μ
ν (θ ,ϕ)∗ sinθdθdϕ = δnνδmμ , (7)

where δnν is the Kronecker delta function. Then, it can be shown that the coefficients Amn are

Amn =

∫ 2π
0

∫ π
0 p(kR,θ ,ϕ)Y m

n (θ ,ϕ)∗ sinθdθdϕ

jn(kR)− j′n(kR)

h′(1)n (kR)
h(1)n (kR)

. (8)

To implement this equation in practice, the integrals must be substituted by discrete summa-
tions, capable of fulfilling the discrete orthogonality relationship of the spherical harmonics,
which has to be accounted for in the design of the array,

M

∑
i=0

αiY m
n (θi,ϕi)Y

μ
ν (θi,ϕi)

∗ = δnνδmμ for ν ≤ Nhol, n ≤ Nhol, (9)

where i represents the ith microphone at position (R,θi,ϕi), M is the number of sensors, and
αi is an associated integration weight factor that guarantees orthogonality up to a certain order
Nhol . Using the discrete orthogonality, the expression for the expansion coefficients Amn results
in [15]

Amn =
∑M

i=1 αi p(kR,θi,ϕi)Y m
n (θi,ϕi)

∗

jn(kR)− j′n(kR)

h′(1)n (kR)
h(1)n (kR)

. (10)

This relationship assumes that the highest order of spherical harmonics included in the sound
pressure is lower or equal to Nhol . This is a reasonable assumption as long as the value kR is
about Nhol . When this requirement is not met aliasing occurs in the coefficients.

The coefficients Amn can be used to compute the incident pressure and the scattered pressure
separately (see Eqs. (2) and (4)) and the total pressure (see Eq. (6)) at a point (r,θ ,ϕ).

2.2 Beamforming

Beamforming is a signal processing technique well used for localization of sound sources.
There are several beamforming methods, but in the present study, delay-and-sum beamforming
is chosen. Although this method is the oldest one, it is still widely used due to its robustness.
It consists of delaying the signals of each array microphone by a certain amount and adding
them together, to reinforce the resulting signal. Depending on the delay applied to the different
microphones, the array is steered to a particular direction, whereas other directions are totally
or partially attenuated [18]. Since in the current study the array is mounted on a rigid sphere,
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it is simpler to express the beamforming output in the spatial frequency domain, because this
allows us to compensate for the effect of the scatterer. In this domain the output is

b(kR,θ ,ϕ) = B
M

∑
i=1

wi p̃(kR,θi,ϕi)p(kR,θi,ϕi|θ ,ϕ)∗, (11)

where B is a scaling factor, wi is a weighting factor, p̃ is the measured pressure at the ith
microphone, while p corresponds to the theoretical pressure at the ith microphone due to a
source in the far-field at (θ ,ϕ). It can be shown that the pressure at (R,θi,ϕi) due to a plane
wave created by a source at (θ ,ϕ) is [4]

p(R,θi,ϕi) =
∞

∑
n=0

n

∑
m=−n

Qn(kR)Y m
n (θi,ϕi)Y m

n (θ ,ϕ)∗, (12)

where Qn is

Qn(kR) = 4π(− j)n

(
jn(kR)− j′n(kR)

h′(1)n (kR)
h(1)n (kR)

)
. (13)

Making use of this expression the output of the delay-and-sum beamformer is

b(kR,θ ,ϕ) = B
M

∑
i=1

wi p̃(kR,θi,ϕi)
N

∑
n=0

(
Qn(kR)

n

∑
m=−n

Y m
n (θi,ϕi)Y m

n (θ ,ϕ)∗
)∗

. (14)

Note that the second summation has to be truncated at N for the real implementation. A reason-
able value is N ≈ kR+1. By making use of the addition theorem [19] that states that

Pn(cosψq) =
4π

2n+1

n

∑
m=−n

Y m
n (θ ,ϕ)Y m

n (θq,ϕq)
∗, (15)

where
cos(ψq) = cosθ cosθq + sinθ sinθq cos(ϕ −ϕq), (16)

the beamformer output can be simplified:

bN(kR,θ ,ϕ) = B
M

∑
i=1

wi p(kR,θi,ϕi)
N

∑
n=0

2n+1

4π
Qn(kR)∗Pn(cosψi). (17)

To have an output equal to one when a plane wave with amplitude unity is measured at the array,
it is easy to show that the value of B should be

B =
1

∑M
i=0 wi |p(kR,θi,ϕi|θ0,ϕ0)|2

, (18)

where θ0 and ϕ0 can be any angle, because with the spherical array the shape of the beampattern
is independent of the steering direction, as it is practically shift-invariant [2].
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2.3 Beamforming with a virtual array

As mentioned in the introduction, the goal of this study is to combine acoustic holography
together with beamforming to improve the beamforming map at the low frequencies. To do
this, the concept of virtual array has been presented; see Fig. 1. The pressure captured with a
rigid spherical array is used to predict the pressure at a virtual spherical array with larger radius
Rv, with virtual sensors placed at (Rv,θi,ϕi). The number of virtual sensors and their azimuth
and inclination is kept the same as in the physical array. At this point we can consider two
possibilities: 1) A virtual transparent array or 2) a virtual rigid array. For the virtual transparent
array the expression is simply the incident pressure given in Eq. (2), evaluated at r = Rv. For
the case of the virtual rigid array we should create a virtual spherical scatterer at Rv. To do that
the incident pressure with coefficients Amn (the ones obtained with the physical array) would
impinge on the virtual sphere creating a virtual scattered pressure distributed at the surface of
the virtual array. In accordance with Eqs. (4) and (5), the scattered pressure at the virtual
transducers would be

psca(Rv,θi,ϕi) =−
∞

∑
n=0

n

∑
m=−n

Amn
j′n(kRv)

h′(1)n (kRv)
h(1)n (kRv)Y m

n (θi,ϕi). (19)

Then, the total pressure at the virtual rigid array (at r = Rv) would be

p(Rv,θi,ϕi) =
Nhol

∑
n=0

n

∑
m=−n

Amn

(
jn(kRv)− j′n(kRv)

h′(1)n (kRv)
h(1)n (kRv)

)
Y m

n (θi,ϕi). (20)

Since a rigid array has benefits compared to the transparent array, a virtual rigid spherical
array is chosen for the current study.

To sum up, the procedure for combining holography and beamforming is the following one:

1. With a rigid spherical array measure the pressure at the microphones, p(R,θi,ϕi), where
i = 1, . . . ,M.

2. Insert p(R,θi,ϕi) into Eq. (10) to retrieve the coefficients Amn to be used for acoustic
holography.

3. Insert Amn into Eq. (20) to obtain the predicted pressure at the virtual rigid array,
p(Rv,θi,ϕi).

4. Use p(Rv,θi,ϕi) as input of the beamforming process, given in Eq. (17), but substituting
R by Rv and using N = kRv + 1. In the present study, the chosen weighting factor, wi,
equals the integration factor of the acoustic holography process, αi.

3 SIMULATION STUDY

The focus of this section is to analyze the outcome of combining acoustic holography and
beamforming by means of simulations. A rigid spherical array with radius R = 9.75 cm and
50 flush-mounted microphones has been assumed. The characteristics of the array used for the
simulations are the same of that used for the measurements (which will be presented in Sec. 4).
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A picture of the array can be seen in Fig. 2. The location of the microphones and their associated
integration weights result from an optimization procedure inspired by Ref. [20]. This procedure
guarantees that the discrete orthogonality relation across microphone positions given in Eq (9)
is valid up to order Nhol = 5, if kR≤Nhol . When this condition is not met, that is, above 2.8 kHz,
aliasing occurs.

Figure 2: Prototype of spherical array used in the measurements.

The simulations assume a plane wave created at coordinates (θ ,ϕ) = (90◦,90◦). However,
the origin of the plane wave is not important because the array is practically shift-invariant.
The frequency range of analysis contains the low frequencies up to 2 kHz. To account for the
background noise, a signal-to-noise ratio (SNR) of 30 dB at each microphone due to uniformly
distributed noise is considered.

Following the procedure described in the previous section, acoustic holography is performed
prior to beamforming, considering a virtual array with a radius 4 times larger than the radius of
the physical array used to measure the actual sound field. The normalized beamformer output
obtained with the physical array using conventional beamforming and the output of the virtual
array are shown in Fig. 3 for a frequency of 210 Hz. For ease of reference, the ideal beamformer
output that would be obtained in absence of noise with a physical array of the same radius is
also shown.

As can be seen in the leftmost subfigure in Fig. 3, the output for the physical array is rather
omnidirectional (the level is quite uniform). However the map is significantly improved when
using the pressures at the virtual array as the source located at (90◦,90◦) is successfully identi-
fied. Moreover, the beamformer map resembles the map of the physical array of the same radius
under ideal conditions to a high extent. The discrepancies are caused by the noise assumed for
the virtual array simulation.

The performance is also quantified by two measures: the resolution and the maximum side
lobe level (MSL). The resolution is the −3 dB width of the main lobe, whereas the MSL is
the difference between the highest secondary lobe and the main lobe. For both measures, the
smaller the values, the better. The resulting resolution for the azimuth and inclination angles, as
well as the MSL, can be seen in Fig. 4, along the entire frequency range of interest. This figure
includes the results with the physical array with radius R (black curve) and the ones obtained
at four virtual arrays with radii 2R (continuous blue curve), 3R (continuous green curve), 4R
(continuous red curve), and 5R (continuous cyan curve). The ideal curves obtained with arrays

7



5th Berlin Beamforming Conference 2014 Tiana-Roig et al.

Figure 3: Normalized beamforming outputs at 210 Hz obtained with three rigid spherical ar-
rays: one with radius R = 9.75 cm (left), a virtual array with radius 4R (middle) that
results from the pressure at the physical array with radius R via acoustic holography,
and an array of radius 4R with absence of noise (right). A SNR of 30 dB was assumed
at each microphone of the physical array with radius R.

with radii 2R (dashed blue curve), 3R (dashed green curve), 4R (dashed red), and 5R (dashed
cyan) for a SNR of infinity are also depicted.

In all cases it can be seen that both the resolution and the MSL are non-existent at low fre-
quencies, meaning that the beamforming map is omnidirectional. From a particular frequency
that depends on the array characteristics, the resolution improves, and sidelobes arise resulting
in a certain MSL.

The resolution for both azimuth and inclination angles is improved towards the low frequen-
cies with increasing radius of the virtual array, in comparison with the physical array of radius
R used to capture the signals. Interestingly the curves of the virtual arrays are very similar to
the ones of the arrays with the same radius under ideal conditions, although some deviations
that become stronger with increasing virtual radius are observed for the virtual arrays of radii
3R, 4R and 5R.

On the other hand, the MSL of the virtual arrays is progressively shifted towards the low
frequencies with increasing virtual radius. However, the MSL is more sensitive to noise than
the resolution, as this measure worsens towards the high frequencies with increasing virtual
radius, and the differences with the ideal MSL obtained with the physical arrays of the same
radii in absence of noise (dashed curves) become larger. This is a consequence of the holography
process itself, as the noise captured with the physical array is amplified with increasing distance
to the reconstruction points, specifically for r >R. Therefore the reconstructed pressure deviates
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Figure 4: Resolution along the azimuth angle (top left), along the inclination angle (top right)
and MSL (bottom) obtained by means of simulations with a physical array of ra-
dius R = 9.75 cm and 50 microphones (black continuous curve), as well as with four
virtual arrays with radii 2R, 3R, 4R and 5R (blue, green, red and cyan continuous
curves), that result from the pressure at the physical array with radius R via acous-
tic holography. The colored dashed lines show the results with arrays of the same
radii as the virtual arrays, but with a SNR of infinity. A plane wave was created at
(θ ,ϕ) = (90◦,90◦), and a SNR of 30 dB was assumed for the physical array with
radius R.

from the ideal one [15], having a direct impact on the beamforming map, particularly on the
sidelobes. Although not shown here, simulations reveal that the amplification of noise with an
virtual array of radius 6R has dramatic influence on the beamforming map.

In conclusion, the results from the simulations show that one could take advantage of virtual
arrays using the appropriate radius for each frequency, determined by the MSL. For example,
in the case of study, a virtual array with radius 5R is suitable up to 170 Hz, from this frequency
to about 280 Hz, one with radius 4R would be preferable, from 280 Hz to 400 Hz, 3R is more
adequate, whereas from 400 Hz to 800 Hz a virtual array with radius 2R seems better. Above
800 Hz the physical array should be used as it is.

4 MEASUREMENT RESULTS

Measurements with a Brüel & Kjær (B&K) prototype array were carried out in a large anechoic
chamber of about 1000 m3. The array, which can be seen in Fig. 2, had 50 1/4 in. microphones
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B&K Type 4935 flush-mounted on a rigid sphere and 11 video cameras. Its radius, R, was
9.75 cm.

The set-up, shown in Fig. 5, consisted of a loudspeaker placed in the far field, at 5.8 m from
the array. The loudspeaker height was 1 m and the array height 1.30 m. The array was placed
such as the loudspeaker was detected at about (θ ,ϕ) = (90◦,90◦).

Figure 5: Measurement set-up.

The loudspeaker was fed with white noise. The signal level was adjusted so that the SNR at
the array microphones was about 30 dB for most of the frequency range, although the SNR at
the low frequencies was lower. The signal at each microphone was recorded with a B&K Pulse
analyzer for 10 s. The data was segmented in blocks of 1 s using a Hanning window and a 50%
overlapping. For each block, the crosspectra between each microphone and a reference, which
was chosen to be microphone number one, was computed. The averaged crosspectra were used
as input to conventional delay-and-sum beamforming. Besides, the data were used to predict
the pressure at several virtual radii Rv, at 2R, 3R, 4R and 5R, before applying beamforming,
following the procedure indicated in Sec. 2.3. The resulting resolution for the azimuth and
inclination angles, and the MSL with the physical and virtual arrays are shown in Fig. 6.

Both performance indicators follow the same trend observed in the simulations shown in
Fig. 4: the resolution improves towards the low frequencies with increasing virtual radius, and
the MSL is shifted towards the low frequencies, although its level increases with increasing
virtual radius. The reader should keep in mind that the simulations were carried out assum-
ing a SNR of 30 dB, which was not exactly the case for the measurements, especially after
postprocessing the data, and therefore, some deviations between simulations and results are ex-
pected. In this regard, the MSL curves obtained with the virtual arrays are slightly better than
the simulated ones.

These results confirm that the concept of virtual array can be used to enhance the performance
of the beamforming system at low frequencies, with an appropriate virtual radius depending on
the frequency. In this study, this makes it possible to extend the lower frequency of the physical
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Figure 6: Resolution along the azimuth angle (top left), resolution along the inclination angle
(top right) and MSL (bottom) obtained by means of measurements with a rigid spher-
ical array of radius R = 9.75 cm and 50 microphones (black continuous curve), as
well as the resulting resolution and MSL when considering four virtual spherical ar-
rays with radii 2R, 3R, 4R and 5R (blue, green, red and cyan continuous curves), that
result from the pressure at the physical array with radius R via acoustic holography.
A plane wave was created at about (θ ,ϕ) = (90◦,90◦).

array down to about 55 Hz and 75 Hz in terms of resolution for the azimuth and the inclination
angles, respectively, and 110 Hz in terms of MSL, in comparison with the original 250 Hz,
350 Hz and 550 Hz.

The advantage of combining acoustic holography and beamforming is further illustrated in
Fig. 7, where the beamforming map obtained with the physical array at 210 Hz is shown, to-
gether with the maps obtained with virtual arrays with radii 2R, 3R and 4R. The larger the virtual
radius, the clearer the map becomes, making it possible to localize better the sound source at its
actual position, (90◦,90◦).
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Figure 7: Normalized beamforming outputs at 210 Hz measured with a rigid spherical array
with 50 microphones and radius R = 9.75 cm (top left), and three virtual rigid spheri-
cal arrays of radii 2R (top right), 3R (bottom left), and 4R (bottom middle), that result
from the pressure at the physical array with radius R via acoustic holography.
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5 CONCLUSIONS

Beamforming with spherical arrays is a powerful tool to localize and identify sound sources in
a three-dimensional sound field. However, the resulting maps are difficult to interpret at low
frequencies because such frequencies imply poor directivity, in particular with delay-and-sum
beamforming. Inspired by the fact that the performance of the array would improve at low
frequencies if a larger array was used, the present paper has presented a simple method that
consists of predicting the pressure at a larger and virtual array by means of acoustic holography,
and using it as input to the delay-and-sum beamforming procedure.

The performance of this combined approach has been assessed with two performance indica-
tors, namely the resolution and the MSL. Both simulations and experimental results show that
the resolution improves with increasing virtual radius, at the cost of the MSL, which is more
sensitive to noise. This implies that the maximum virtual radius appropriate for each frequency
is mainly determined by the MSL.

The use of holography prior to delay-and-sum beamforming offers new possibilities without
any additional cost. At low frequencies the concept of virtual array can be used to improve
the maps at such frequencies, while conventional beamforming can be applied directly at high
frequencies.
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