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Symbols and abbreviations

Symbols and operators

AJ.] parametric analysis operation on the enclosed signal
A optimal mixing matrix

b, modal coefficient of order n

B optimal mixing residual matrix

c speed of sound

C covariance matrix

C¥  covariance matrix with diagonal loading

D[] decorrelation operation on the enclosed signal

D ambisonic decoding matrix

e energy density

E[.] expectation operator

f discrete frequency index

F sampling frequency

G matrix of CroPaC pseudo-spectrum values / VBAP gains (contextual)
h{  analysis mirror filter

h{  synthesis mirror filter

h{?)  spherical Hankel function of the second kind and order n

vector of HRTF filters

matrix of HRTF filters

active intensity vector

identify matrix

imaginary number

spherical Bessel function of the first kind and order n

wave number

number of frequency bands

number of loudspeakers

spherical harmonic degree

mixing or rotation matrix

time-domain sample index / spherical harmonic order (contextual)
number of time-domain samples / spherical harmonic transform order (contextual)
sound pressure

parameter vector

orthonormal Legendre polynomials of order n and degree m
matrix of power-map values

number of microphones

number of sectors

radius

3

vector of spherical harmonic signals
matrix of pseudo-spectrum values
discrete time index

particle velocity

diffuse energy distribution matrix
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vi

analysis windowing function
synthesis windowing function
vector of beamforming weights
spatial encoding matrix
»  equalisation matrix for signals of order n
time domain signal
time-frequency domain signal
vector of microphone signals
spherical harmonic of order n and degree m
vector of output signals / spherical harmonic steering vector (contextual)
matrix of spherical harmonics
DirAC audio stream
Kronecker delta
elevation angle
azimuthal angle
diffuseness
cross-spectrum between signals x and y
regularisation parameter
density of the medium
diagonal matrix of singular values
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Abbreviations

AcCroPaC
ALLRAD
ASW
BLAS
CroPaC
DaS

DAW

DC

DFT
DirAC
DoA

FFT

FIR

FOV
HO-DirAC
HRTF

IC

ICC

ICLD
ICPD

ILD

ITD

IR
LAPACK
LCMV
LEV
Mic2SH
MSVC
MKL
MUSIC
MVDR
OM-DirAC
PQMF
PWD
QMF

SHT

SMA

SNR
STFT
SVD
WOB-CroPaC
VBAP
VL-DirAC
VST

acoustic camera software that utilises CroPaC
all-round ambisonic decoding

apparent source width

Basic Linear Algebra Library
cross-pattern coherence

delay-and-sum

digital audio workstation

direct current

discrete Fourier transform

directional audio coding
direction-of-arrival

fast Fourier transform

finite impulse response

field-of-view

higher-order directional audio coding
head-related transfer function

interaural coherence

inter-channel coherence

inter-channel level difference

inter-channel phase difference

inter-aural level difference

inter-aural time difference

impulse response

Linear Algebra Package
linearly-constrained minimum-variance
listener envelopment

microphone signals to spherical harmonic signals conversion software
Microsoft Visual Compiler

Mathematics Kernel Library

multiple signal classification
minimum-variance distortion-less response
optimal-mixing directional audio coding
pseudo-quadrature mirror filterbank
plane-wave decomposition

quadrature mirror filterbank

spherical harmonic transform

spherical microphone array

signal-to-noise ratio

short-time Fourier transform
singular-value decomposition
weighted-orthogonal beamforming-based CroPaC
vector-base amplitude panning
virtual-loudspeaker directional audio coding
Virtual Studio Technology



1 Introduction

The ability to capture and extract meaningful real-time information from a spatial
sound scene, offers great potential for a variety of different applications; ranging from
equipment diagnostics, construction and military uses, through to various entertain-
ment platforms. In architectural acoustics, the ability to track the propagation of
reflections or to visualise the distribution of sound energy in a room can be very
helpful, for example, when optimising the placement of diffusers and sound insulating
materials (O’Donovan et al., 2008; Farina et al., 2011). Similarly, faulty mechanical
and electrical equipment components can often exhibit higher sound energy emissions;
thus, determining the location of this higher energy can be helpful, especially in
cases where the equipment is difficult to access. In the military sector, determining
the direction of sound sources within a sound scene and presenting this information
to the navigators (especially in low visibility conditions) can be of vital importance
(Nielsen, 1991). On the other hand, the various entertainment industries go to great
lengths to create immersive and authentic audio-visual content that can, for example,
be experienced via the emerging virtual and augmented reality headsets. While these
applications vary immensely in terms of their target audiences, all of the systems
described above may be derived from a common foundation; which comprises of
microphone array processing techniques, as this thesis will demonstrate.

A single omni-directional microphone placed within a sound scene is the starting
point. In the presence of an ongoing sound source, the amplitude of the captured
microphone signal will vary with time, and as such, the sound energy arriving at
this point in space can be monitored. However, while this single microphone will aid
the user in identifying the presence of a sound source, ascertaining certain spatial
parameters from the perspective of the listening position, such as the direction of the
sound source, is not possible without prior in-depth knowledge of the surrounding
area. Introducing a second microphone, however, will allow a system to determine
the direction of a sound source along a one-dimensional plane, by simply observing
the phase differences between the two microphone signals; assuming that the distance
between the sensors is known. This principle can be extended to two-dimensional
(2D) or three-dimensional (3D) direction of arrival (DoA) estimation, by utilising
three or four microphones, respectively; where the most typical orientation for the
latter is in a tetrahedral fashion. The most popular four-capsule 3D sound-field
microphone is the B-Format microphone (Gerzon, 1973).

While increasing the number of microphones beyond four will not allow a user to
monitor sound sources in other dimensions, it will, however, permit increased spatial
resolution when generating spatial filters; which are also referred to as beamformers.
These spatially selective beamforming algorithms form a basis for many sound-field
analysers and reproduction systems. One popular beamforming method is to simply
delay-and-sum (DaS) the microphone signals in such a manner as to allow constructive
interference to occur for a single target direction. Introducing more microphones into
the array will further improve the spatial selectivity of the DaS beamformer, and also
increase the signal-to-noise (SNR) ratio; which is especially important for submarine
sonar systems, where sound sources may be located several kilometres away. However,



while the DaS beamfomer will perform adequately for high-frequencies, low-frequency
selectivity is generally poor when utilising compact microphone arrays, as the larger
wavelengths will result in smaller differences in signal phase between the microphones.

Regarding the arrangement of these microphones, 2D arrays will generally orien-
tate the microphone sensors uniformly (or nearly-uniformly) in a linear, circular or
rectangular fashion, while 3D arrays will arrange the microphones around a cylinder
or sphere. The advantage of a uniform sensor distribution is that beamformers will
provide similar spatial resolution for all directions covered by the array. Whereas, the
incentives for a cylindrical or spherical microphone distribution, is that they allow for
both convenient and efficient methods of decomposing the sound-field at a listening
point into spherical harmonics (Rafaely, 2015). The efficiency of this transform lies
with the fewer microphone sensors that are required to obtain the spherical harmonic
signals, when compared to arrays that are not arranged in a spherical or cylindrical
manner; while the convenience aspect is due to the fact that this transform is well
founded in theory and translates well in practice. The advantage of performing this
additional spherical harmonic transform and generating beamformers using these
spherical harmonic signals, rather than relying on the microphone signals directly, is
that the microphone array specifications are not required to steer the beamformers
to the target look direction. In other words, the beamforming algorithms do not
require microphone array impulse responses (IR) for each possible steering direction.

It should be stressed at this point that once a system is capable of accessing these
spherical harmonic signals, and can subsequently generate beamformers, the system
can be orientated towards any of the aforementioned applications with reasonable
results. For example, in applications which require a user to effectively visualise
the relative sound energy distribution in a sound-field, multiple beamformers can
be first generated and steered towards points on a pre-defined grid. The relative
energy of these beamformed signals can then be displayed via a power-map; where,
for example, the colour red may indicate high-energy regions, and the colour blue
may indicate low-energy regions. If this power-map is subsequently overlayed onto a
corresponding video of the same sound scene, then the system may be referred to
as an acoustic camera. These systems may be used for source tracking in passive
sonar systems, identifying problem areas in room acoustics, or used to locate faults
in mechanical and electrical equipment which display higher sound energy. On the
other hand, to accommodate applications which require a user to auralise a captured
sound scene, beamformers may be generated for a pre-defined grid of loudspeaker
positions and sent to their respective loudspeakers or, alternatively, convolved with
their corresponding head-related transfer functions (HFRTS) and experienced over
headphones (Wiggins et al., 2001; Noisternig et al., 2003; Davis et al., 2005; Melchior
et al., 2009; Atkins, 2011; Shabtai and Rafaely, 2013; Bernschiitz et al., 2014).
Note that when operating in the spherical harmonic domain, this linear mapping of
spherical harmonic signals to loudspeakers is more commonly referred to as ambisonic
decoding (Gerzon, 1973), which is a popular non-parametric reproduction method
discussed later in this thesis.

Regarding beamforming algorithms formulated in the spherical harmonic domain,
perhaps the most common signal-independent approach, utilised for both the auralisa-



tion and visualisation of spatial sound-fields, is the plane wave decomposition (PWD)
algorithm. As the name would suggest, this beamformer relies on the assumption
that the waves emitted by sound sources present in the recorded sound scene, are
received as plane-waves at the listening position; therefore, this algorithm is said to
be suited only for capturing far-field sound sources (Eri¢, 2011). The beam patterns
generated by the PWD algorithm can be further manipulated by utilising in-phase
(Daniel, 2000), Dolph-Chebyshev (Rafaely, 2015) or maximum energy (Zotter et al.,
2012) weightings, to suit better the specific application.

However, while the PWD beamformer can provide reasonable results for many
applications, it often yields less than ideal results for many of the applications
described above, mainly as a result of its unwanted side-lobes and large beam width
(especially when utilising first-order or lower-order spherical harmonic signals). For
example, in the case of sound-field analysing systems (such as acoustic cameras),
this large beam-width can result in sound sources appearing spatially larger than
they actually are, and the unwanted side-lobes may cause a user to erroneously
identify non-existent sound sources/reflections in the power-maps. In the case of non-
parametric sound-field reproduction methods (such as ambisonics), these problems
may often result in directional blurring of point sources; localisation ambiguity; loss
of externalisation; reduced sense of envelopment in reverberant conditions and strong
colouration effects (Solvang, 2008; Santala et al., 2009; Braun and Frank, 2011;
Kearney et al., 2012; Bertet et al., 2013; Bernschiitz et al., 2014; Stitt et al., 2014;
Yang and Bosun, 2014).

Sound-field analysis

In order to surpass the performance offered by the PWD algorithm for sound-field
analysis and visualisation purposes, signal-dependent solutions can be employed;
with the penalty of increased computational complexity. One common solution, is
the minimum-variance distortion-less response (MVDR) algorithm (Capon, 1969),
which operates in the time-frequency domain and takes into account the inter-channel
dependencies between the microphone array signals per frequency band. It then
utilises this information to enhance the performance of the beamformer, by adaptively
placing nulls to the interferers. However, while this algorithm works well in free-field
conditions, the algorithm is relatively sensitive in scenarios where high background
noise and/or reverberation are present in the sound scene; resulting in sub-optimal
results for many real-world situations (Zoltowski, 1988).

An alternative approach is to utilise subspace methods, such as the multiple signal
classification (MUSIC) algorithm (Schmidt, 1986), which performs an eigenvalue
decomposition on the covariance matrix or a singular value decomposition (SVD)
operation on the data matrix of the microphone signals and subsequently extracts
a pseudo-spectrum from the resulting signal and noise subspaces. The algorithm
can be orientated as a multiple-speaker localisation method by incorporating a
statistical direct-path dominance test, as described in (Nadiri and Rafaely, 2014).
Another approach, proposed in (Epain and Jin, 2013), is to employ pre-processing, in
order to separate the direct components from the diffuse field. This subspace-based



separation has been shown to improve the performance of existing super-resolution
imaging algorithms in (Noohi et al., 2013). However, while these methods are
generally more robust than their beamforming counterparts, they are still susceptible
to reverberation and/or background noise to some extent. This is due to their reliance
on the inter-channel dependencies of the signals and the difficulties that arise when
attempting to determine the size of the sub-matrices which define the noise and
signal subspaces. Therefore, a certain degree of bias may be expected when these
algorithms are subjected to sound-fields that deviate from the initial assumptions.
Furthermore, the increased implementation and computational complexity demanded
by these algorithms, may render them unsuitable for some systems.

On the other hand, one approach that has been shown to be robust to interfer-
ers/reverberation and has reduced computational requirements, is the cross-pattern
coherence (CroPaC) spatial filtering technique described in (Delikaris-Manias and
Pulkki, 2013). It operates by measuring the correlation between coincident beamform-
ers and subsequently deriving a post-filter that aims to suppress noise, interferers and
reverberation. While originally intended for enhancing the spatial selectivity of other
beamformers, it is possible to utilise multiple post-filters essentially as statistical
likelihood parameters and to subsequently derive pseudo-spectrums. Additionally,
the algorithm has recently been extended via a linearly-constrained minimum vari-
ance (LCMYV) inspired solution, such that it can utilise arbitrary combinations of
beamformers in (Delikaris-Manias, Pavlidi, Pulkki and Mouchtaris, 2016) which is
defined here as weighted-orthogonal beamforming-based CroPaC (WOB-CroPaC).

However, the main limitation with the original CroPaC algorithm becomes
apparent when utilising higher-order spherical harmonic signals, as unwanted side-
lobes are generated by the cross-spectrum operation; producing similar problems to
those attributed to the standard PWD beamformer. Therefore, a reformulation of
the original CroPaC algorithm which applies the product of multiple rotated CroPaC
beams to suppress the side-lobes, could be expected to yield improved performance
when utilising these higher-order spherical harmonic signals. Furthermore, the
new WOB-CroPaC algorithm presented in (Delikaris-Manias, Pavlidi, Pulkki and
Mouchtaris, 2016), currently uses both the spherical harmonic signals and the
microphone signals themselves; resulting in a large computational overhead, as
significantly more signals are required to be transformed into the time-frequency
domain. A reformulation of this algorithm, such that it operates solely on spherical
harmonic signals, should be expected to yield lower computational requirements.

Perceptually motivated sound-field reproduction

To improve upon the poor spatial accuracy offered by the ambisonics method,
parametrically enhanced sound-field reproduction techniques, such as directional
audio coding (DirAC) (Pulkki, 2006, 2007), may be utilised. The DirAC approach
operates on the basis of extracting a DoA parameter and a diffuseness parameter
at each time-frequency index. These parameters can be derived from the energetic
quantities of the active intensity vector and diffuseness estimate, which DirAC
interprets as narrowband perceived DoA and interaural coherence (IC) cues. Another



parametric approach is the HARPEX method (Barrett and Berge, 2010), based on
first order ambisonics and binaural rendering, with a dual plane-wave model and no
diffuse component.

While originally defined for first order spherical harmonic signals, DirAC has
recently been extended to accommodate higher-order signals (HO-DirAC) (Pulkki
et al., 2013; Politis, Vilkamo and Pulkki, 2015). The parametric model applied within
DirAC has been shown to be effective in a number of listening tests (Vilkamo et al.,
2009; Laitinen and Pulkki, 2009; Politis, Laitinen, Ahonen and Pulkki, 2015; Politis,
Vilkamo and Pulkki, 2015), mitigating the perceptual deficiencies present in lower-
order ambisonic decoded audio, with the compromise of increased computational
cost and implementation complexity. DirAC has also been utilised for headphone
reproduction in (Laitinen and Pulkki, 2009), by employing a virtual loudspeaker
approach (VL-DirAC). However, while this method has been effectively demonstrated
in real-time with head-tracking support, it is computationally demanding and prone
to certain artefacts in scenarios which are challenging for the parametric analysis.

However, improvements in computational efficiency over the virtual loudspeaker
approach, should be expected by utilising a binaural ambisonic decoder. Whereas,
the artefacts could be mitigated by utilising the optimal adaptive mixing solution
presented by (Vilkamo and Pulkki, 2013), in a similar manner to the loudspeaker
implementation described in (Politis, Vilkamo and Pulkki, 2015) or (Vilkamo and
Delikaris-Manias, 2015), which can synthesise the binaural cues directly from the
spatial parameters.

1.1 Aims of the thesis

With a focus on real-time implementations, the main aim of this thesis was to first
investigate methods for sound-field analysis and perceptually motivated reproduction.
Secondly, to derive new methods that could potentially yield higher spatial accuracy
in their respective target applications; while also remaining computationally feasible
given realistic hardware constraints.

The main contributions of this thesis work with respect to sound-field analysis
methods, may be summarised as:

e The development of a real-time acoustic camera framework, for which various
different algorithms can be implemented and contrasted. The software utilises
a commercially available spherical microphone array and a spherical camera,
to produce the power-map overlay and video stream, respectively.

e Among the various power-map/pseudo-spectrum methods that were imple-
mented into the real-time software are the: PWD, MVDR, MUSIC, and original
CroPaC algorithms. In order to assess the relative performance of these algo-
rithms for real-world situations, power-maps were generated using reverberant
test sound-fields and compared.

e An investigation into the feasibility of utilising the proposed side-lobe cancel-
lation technique with the original CroPaC algorithm (Delikaris-Manias and
Pulkki, 2013).



e A minor reformulation of the WOB-CroPaC algorithm (Delikaris-Manias,
Pavlidi, Pulkki and Mouchtaris, 2016) such that it may yield lower computa-
tional requirements, was also investigated.

The main contributions of this thesis work regarding perceptually motivated
sound-field reproduction techniques, can be summarised as:

e The development of a novel real-time headphone DirAC implementation, utilis-
ing a new architecture that overcomes the drawbacks of the VL-DirAC approach.
The proposed formulation incorporates support for higher order spherical har-
monic signals and the optimal adaptive mixing solution of (Vilkamo and Pulkki,
2013), in order to synthesise the binaural cues directly from the spatial param-
eters.

e Listening test results comparing the new DirAC formulation with the ambisonics
method are also presented and discussed.

1.2 Organisation of the thesis

This thesis is organised as follows: Section 2 provides details on how to transform
microphone array signals into the time-frequency and spherical harmonic domains,
and also how to generate both static and adaptive beamformers; Section 3 presents
various means of extracting spatial parameters and generating power-maps/pseudo-
spectrums of sound-fields, including a novel reformulation of the original CroPaC
algorithm; Section 4 provides an overview of the principles of spatial hearing and also
describes some perceptually-motivated means of reproducing sound-fields; including
an efficient and robust reformulation of the DirAC algorithm for headphone playback;
Section 5 provides details of the real-time implementations developed during the
thesis for spatial encoding, sound-field imaging, and sound-field reproduction; and
Section 6 concludes the thesis.
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2 Microphone array processing in the time-
frequency domain

This thesis is concerned with utilising microphone arrays to analyse a spatial sound-
field and subsequently visualise or auralise it with high spatial accuracy. Therefore,
this chapter provides the required background, regarding how spherical microphone
array (SMA) signals may be transformed into the time-frequency and spherical-
harmonic domains and how to generate spatially selective filters. This provides the
foundation for the implementations which will be described later in the thesis.

Note that vectors, v, have been given in bold font and lower-case letters; whereas,
matrices, M, are given in bold font and upper-case letters.

2.1 Time-frequency transform

A time-frequency transform is a means of dividing a time-domain signal into individual
sub-bands via the discrete Fourier transform (DFT) or a bank of filters. Typically,
these transforms are reversible and are categorised as either perfect reconstruction
or near-perfect reconstruction transforms. The former indicates that there is no
degradation in quality between the input signal and the output signal (provided that
the signals were not altered whilst in the time-frequency domain). In the case of
near-perfect reconstruction filterbanks, certain distortion artefacts are introduced
during the transform; however, this loss in quality is generally perceptually negligible
in practice.

Depending on the application, filterbanks may be critically sampled or oversampled.
In the case of critically sampled filterbanks, input signals of sampling rate F; are
decomposed into K sub-bands of sampling rates F,/K, which make these signals
suitable for audio coding applications as redundancy is minimised. Oversampled
filterbanks, on the other-hand, utilise overlapping windowing functions in order to
make the transform more robust to signal manipulations.

Short-time Fourier transform (STFT)

The short-time Fourier transform (STFT) is perhaps the most popular means of
transforming a time-domain sequence x(n) of N samples, into its time-frequency
domain counterpart Z(t, ), where t refers to the down-sampled time index and f
refers to the frequency index. The transform may be configured as either critically
sampled or oversampled, depending on the chosen windowing function. The forward
STFT transform is given as (Smith, 2011)

N/K—1 N—1 A
2t )= > > waln)z(n+iK + tN)e 92N for t =0, ..., 00 (1)
=0 n=0
where j2 = —1, K refers to the hop size in time-domain samples, and w, is the

analysis windowing function. The inverse STFT transform is expressed as (Smith,



2011)
N/K-1 4 N-1 N '
y(n) = > Nws(n) S E(t+i+ n[?], £ IN forn=0,...,00  (2)
i=0 F=0

where wy is the synthesis windowing function, which suppresses aliasing artefacts
which arise due to non-zero edges in the output frame that may have been introduced
during manipulation of the STFT data. However, spectral processing algorithms
should only manipulate the positive, DC and Nyquist frequency indices, as these are
conjugate copied to the corresponding negative frequency indices before applying
the inverse-DFT.

Note, however, that the fast Fourier transform (FFT) should be utilised for
practical implementations, due to the vast performance gains incurred by the increase
in computational efficiency. Furthermore, in order to attain the perfect reconstruction
characteristic, the windowing functions w, and wg should conform to the condition
laid down by Princen-Bradley, which ensures amplitude conservation. For example,
when utilising a hop size K = N/2 (which would constitutes an oversampling factor
of 2) the windowing functions should satisfy

wa(n)ws(n) +wa(n + N/2)ws(n + N/2) =1, forn=0,...,(N/2—-1). (3)

However, due to this windowing and/or zero padding prior to the FFT, the
output is susceptible to both temporal and spectral aliasing if it is modified in the
time-frequency domain. These aliasing components are typically suppressed via the
application of a synthesis windowing function. However, one alternative is the alias-
free STFT used in (Vilkamo and Pulkki, 2013), which has been designed to suppress
these aliasing effects without the need for a synthesis windowing function and has
been shown to be more perceptually robust than conventional STFT implementations.

This formulation avoids circular convolution effects (which lead to aliasing arte-
facts) by zero-padding the signal frame and pre-processing the complex magnitude
and phase operators in (1) and (2), so that the non-zero section of the input signal
frame is limited in length. This pre-processing consists of first applying an inverse-
FFT, then windowing and zero padding, and then applying an FFT before applying
the complex multipliers for the STFT transform. Providing that the combined length
of the non-zero parts are the same length or shorter than the zero-padded sections,
the circular convolution effects will be avoided; albeit, with the penalty of increased
computational complexity.

Quadrature mirror filterbanks

For applications that do not require the manipulation of the intermediate data, the
pseudo-quadrature mirror filterbank (PQMF) is a popular time-frequency transform,
which has found its way into various audio codecs due to its critically sampled
characteristic. It is implemented by first designing a low-pass prototype FIR filter,
hipe(n), of order N and then modulating it with cosine sequences to obtain analysis,



h{(n), and synthesis, h{(n), band-pass filters. The analysis filters for K sub-bands
are defined as (Nguyen, 1994)

N K
B (n) = hipe(n) cos| o (2f + D)(n— 5 = ), for f =0, K1, (4)
which are then convolved with the time domain input frame to attain the sub-bands,
which are subsequently down-sampled by a factor of K in order to reduce redundancy.
After the time-frequency domain processing/analysis has been performed, the sub-
bands are then up-sampled by a factor of K, before applying the synthesis filters,

which are defined as (Nguyen, 1994)

B (n) = Bt (n) cos| = (2F + 1)(n— Y + BN for f= 0, K =1, (5)
2K 2 2

The prototype filter should be designed such that the energy is preserved in the
inter-sections between adjacent sub-bands and that the non-adjacent sub-bands are
are sufficiently suppressed. Due to the down-sampling and up-sampling operations,
spectral aliasing artefacts in adjacent bands are introduced in the analysis stage
and then subsequently cancelled out completely in the synthesis stage; providing
that no manipulations to the intermediate data are made. If manipulations are
made, however, then the aliasing components will remain; although, typically they
are sufficiently suppressed so that they are not perceivable by the listener, which is
why the PQMF is referred to as a near-perfect reconstruction filterbank. However,
this property of relying on adjacent sub-bands to cancel out aliasing components is
not ideal. Therefore, to accommodate robust manipulations of the time-frequency
domain signals, the complex valued quadrature mirror filterbank (QMF) is more
preferable, as this reliance on adjacent bands is avoided.

The complex QMF allows each of the sub-bands to be altered independently
from one another without the introduction of spectral aliasing by utilising complex
modulators (Vaidyanathan and Hoang, 1988). The complex analysis filters for K
sub-bands are defined as (Nguyen and Vaidyanathan, 1989)

L (n) = hige(n) expli = (2 +1)(n ~ 12v _ ]2()}, for =0, K—1, (6)
which are applied to the time domain input frame and subsequently down-sampled
by a factor of K in a similar manner to the PQMF'; however, due to the complex
modulation, this results in an oversampling by a factor of 2. The complex synthesis
filters are defined as (Nguyen and Vaidyanathan, 1989)

hl(n) = hips(n) exp[ji(Qf +1)(n— N + 5)], for f=0,...K—-1. (7)

2K 2 2
These filters are favoured for perceptually-motivated spatial audio codecs, for
example, which process the audio in the decoding stage to synthesise the original
multi-channel audio from a down-mixed audio stream and the inter-channel level,
phase, and coherence differences that were encoded into the bit-stream by the encoder.
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2.2 Spatial encoding

Spatial encoding is the means by which microphone signals are decomposed into
spatially selective signals, which sample the sound-field. In the case of spherical
microphone arrays (SMA), these spatially selective components are typically spherical
harmonic signals, which form an orthonormal basis over the unit sphere and are
obtained via a spherical harmonic transform (SHT) or a spherical Fourier transform.
The accuracy of this decomposition is dependent on: the arrangement of the sensors
on the sphere, the radius of the sphere and the array type (Rafaely, 2015). The total
number of sensors will dictate the highest order N of spherical harmonic signals that
can be estimated.

In order to decompose the input signals x from a SMA of () sensors into an
estimate of the spherical harmonic signals for each frequency, a frequency-dependent
spatial encoding matrix W € CV HD?XQ can be applied

s(t, [) = W(f)x(t, f), (8)

where

X(ta f) = [xl(tv f),l‘g(t, f)a s 7$Q<t7f)]T € CQXl? (9)

are the microphone signals and

S(t, f) = [SOO(tvf)751—1(t7 f)?sl(](ta f)? s 7SNN—1(t7 f)?SNN(tJ f)]T S (C(N+1)2X17

(10)
are the spherical harmonic signals.
The frequency-dependent spatial encoding matrix is calculated as
W(f) = 0, W (/)Y (1)

where W,, € CVHD*x(N+1)? i ap equalisation matrix which attempts to mitigate
the effects induced by the spherical sensor arrangement; Y € R*WV 1% i3 a matrix
of spherical harmonics for the sensor positions; and o, = 47/@Q is (in this case) the
sampling weight for a uniform or nearly-uniform sensor distribution on the sphere
(Rafaely, 2015). For arrangements that are not uniform, «, should be replaced by a
diagonal matrix and may be optionally incorporated into matrix Y. The equalisation
matrix is defined as

where

L |bu(HP
On(f) 1bn ()P + A

wn(f) = (13)
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where b, (f) are frequency-dependent and order-dependent modal coefficients, which
take into account certain characteristics of the SMA; including whether the construc-
tion is open or rigid and the directivity of the sensors (omnidirectional or directional);
and A is a regularisation parameter that influences the sensor noise amplification.
For more details on calculating the equalisation matrix W,,, the reader is referred
to (Alon et al., 2015; Losler and Zotter, 2015), or for a signal-dependent encoder
(Schorkhuber et al., 2017). Additionally, for microphone arrays that incorporate
sensors of differing directional characteristics, a more general formulation of (11) is
detailed in (Rafaely, 2015).

The spherical harmonics Y are given here in matrix form

[ Yool)  Yao(@) .. Yoo() 1T
%11(({?1)) 5;;11((522)) };;11((52@))

Y= y) Ya©) o g | (14)
Van (@) Yan(Qs) ... Yan(Q0).

where €, = (6,, ¢4, ) are the locations of each of the sensors, where 6, € [—7/2,7/2]
denotes the elevation angle, ¢, € [—m, 7| the azimuthal angle and r the radius
of the SMA. Note, however, that due to the difficulties that arise when utilising
complex-valued spherical harmonics for real-time applications (such as increased
computational complexity and non-trivial sound field rotation); this thesis work has
been developed using real-valued spherical harmonics of order n > 0 and degree
m € [—n,n], which are calculated as

(2n+1) (n — |m|)!
A7 (n+ |m|)!

Yom (0, 9) :\l (2 = dmo) PnImI(Sin9>Um(¢)a (15)
with
sin|m|p, m <0
vm(0) =<1, m=0 (16)

cosmo, m >0,

where 0,,0 is the Kronecker delta, P, are the orthonormal Legendre polynomials
and ! denotes the factorial operator. Real spherical harmonics up to fourth order are
depicted in Fig. 1. Note that arbitrary rotations of real-valued spherical harmonics
can be performed using a single matrix multiplication, detailed in (Blanco et al.,
1997), or recursively, as described in (Ivanic and Ruedenberg, 1996, 1998). Whereas
rotations of complex spherical harmonics may be performed using the Wigner-D
weighting (Rafaely and Kleider, 2008) or by utilising projection methods (Atkins,
2011).

2.3 Static beamformers

Once the SMA signals have been transformed into spherical harmonic signals, signal-
independent spatial filters (or beamformers) can be generated without the need for
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Figure 1: Real spherical harmonics from zeroth to fourth order (top to bottom).
Positive and negative phase lobes are depicted with yellow/green and blue colours,
respectively.

measuring the impulse response of the array. Beamforming in the spherical harmonic
domain can be performed as

y(t, f) = w's(t, f), (17)

where w € COVD*X1 ig (in this case) a frequency-independent steering vector, which
is given as
W = Y(Q) ©d, (18)

where y(Q) € C*(N+1? are the spherical harmonic weights for any arbitrary direction
Q= (0,9¢), where § € [—m/2,7/2] denotes the elevation angle and ¢ € [—m, 7] the
azimuthal angle; ® denotes the Hadamard product; and d is a vector of weights
defined as

d =[do,dy,dy,dy,. .. dy]" € RVEDx1, (19)

The weights d can be adjusted to generate a range of different types of axis-
symmetric beamformers: regular (Rafaely, 2015), in-phase (Daniel, 2000), maximum
energy (Zotter et al., 2012; Moreau et al., 2006) and Dolph-Chebyshev (Rafaely,
2015). A comparison of the performance of these beamformers for DOA estimation
is given in (Delikaris-Manias, Pavlidi, Pulkki and Mouchtaris, 2016).
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2.4 Adaptive beamformers

Signal-dependent beamformers will typically utilise the frequency-dependent co-
variance matrix of the input spherical harmonic signals, which can be estimated
as

Csn(f) = E [s(t, f)s(t, /)] € Oty (20)

where E[-] denotes a statistical expectation operator. The covariance matrix can be
estimated by averaging this result over finite time frames, typically in the range of
tens of milliseconds or by recursive schemes.

One popular adaptive beamformer is the MVDR algorithm, which is a special case
of the linearly-constrained minimum-variance (LCMV) algorithm. The generated
beam will adaptively change according to the input signals and its response is
constrained to unity in the specified look direction, while minimising the variance of
the output (Rafaely, 2015). The minimisation problem is defined as

minimise w” Cgu(f)w

21
subject to wy(Q) = 1. (21)
The resulting MVDR weights can then be derived as
y()" Cgul(f
w(p) = LSl (22)
y(EQ)H Ceu(f)y(2)

which should then be applied per frequency band.

Note that the main advantage of applying the MVDR algorithm in the spherical
harmonic domain, instead of utilising the microphone signals directly, is that the
steering vectors are simply the spherical harmonics for different angles y(€2) on the
sphere.
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3 Sound-field analysis and parameter estimation

This section is concerned with exploring various methods of extracting spatial
information from a sound-field. The purpose of this may be to convert the information
into a visual depiction of the surrounding sound energy, or to enhance the perceptually
motivated sound-field reproduction methods described in Section 4. Therefore, various
means of displaying the relative sound energy distribution in a sound-field, through the
use of beamforming or via statistical means, are presented; as well as the extraction
of spatial parameters, such as the DoA and diffuseness.

Additionally, this section details a novel approach which generates pseudo-
spectrums by utilising the CroPaC algorithm, presented in (Delikaris-Manias and
Pulkki, 2013), with an additional side-lobe suppression technique to improve spatial
selectivity. This algorithm has also been generalised to operate on higher-order
spherical harmonic signals. Furthermore, a minor reformulation of the WOB-CroPaC
algorithm, detailed in (Delikaris-Manias, Pavlidi, Pulkki and Mouchtaris, 2016), is
presented, which operates solely on the spherical harmonic signals; thus, reducing
the computational complexity for real-time implementations.

3.1 Scanning beamformers

The term scanning beamforming is commonly used to refer to the act of steering
beamformers in multiple directions, controlled by means of a predefined grid which
samples an area of interest, and then calculating the sound energy or a statistical
likelihood parameter for each of these directions. In the case of the former, the
relative sound energies can be plotted as a power-map, where (for example) a red
colour may indicate an area of high sound energy and a blue colour may indicate
an area of low sound energy. Whereas the statistical likelihood parameter may be
plotted as a pseudo-spectrum, which leads to similar depiction, as the likelihood of a
sound arriving from each direction is plotted instead. A user may then observe these
visual representations of the sound-field, in order to identify where sound sources
and/or early reflections are located.

Generating power-maps

The simplest approach to obtain a power-map P is to generate regular PWD beam-
formers and to calculate the energy of the resulting signals

Prwn(Q, 1, f) = ly(2;)"s(t, /)", (23)

where s are the spherical harmonic signals and y are the spherical harmonic weights
for directions §; = [, 2y, ..., €], which are specified by a pre-determined grid
that should (ideally) uniformly sample the area of interest. The result may then
be averaged over the frequencies of interest and/or averaged over time to suit the
application.
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Figure 2: Power-maps generated off-line using fourth order spherical harmonic signals
and the PWD algorithm, comparing (23) on the left with (24) on the right. A total of
1002 beamformers were steered uniformly around the unit sphere and then converted
to a 2D representation via triangular interpolation. A pre-recorded sound-field was
utilised, consisting of a female speaker located at [90, 0] degrees and a male speaker
located at [0, 0] degrees, in a reverberant room. Results were averaged with equal
weighting over frequency bands with centre frequencies between [140, 8k] Hz.

Alternatively, the PWD power-map can be derived from the spherical harmonic
covariance matrix Cgy

Pown(Q,t, f) = [y(2)" Csu(/)y ()], (24)

which will obtain near-identical results to (23), provided that the covariance matrix
is estimated from the same signal frame and not averaged over time. A comparison
of the two approaches is depicted in Fig. 2.

This same approach can also be extended to generate power-maps using adaptive
beamformers, such as the MVDR algorithm (Rafaely, 2015)

Puvor (€, ¢, f) = [w(Q) " Csu(f)w()], (25)
where « )HC’l(f)
P AL SH
) = S ey () 20)

However, since the covariance matrix is time-variant and the weights are required
to be recalculated periodically, this method is more computationally demanding
than the PWD algorithm; especially if you consider that (26) will require a matrix
inversion, lower-upper decomposition or Gaussian elimination, to implement in
practice. Furthermore, diagonal loading of the covariance matrix Cgy may be required,
in order to mitigate the possibility of ill-conditioned estimates that subsequently
lead to an unsuitable matrix inversion being performed

u(f) = Csulf) + ((le)t (Cau( /)] ) L 21)

where )\, is a regularisation parameter and I is an identity matrix.
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Generating pseudo-spectrums

Alternatively, instead of generating a traditional power-map using beamformers,
a pseudo-spectrum may be obtained by utilising subspace methods, such as the
MUSIC algorithm described in (Nadiri and Rafaely, 2014). First, the signal U €
C™! and noise U, € CWH)*~1x(N+1)*~1 guhspaces are obtained via a singular
value decomposition (SVD) or eigenvalue decomposition of the spherical harmonic
covariance matrix (please note that the frequency and time indexes are omitted for
the brevity of notation)

Cgy = USUY = [U,U, ] FO z(:)] FH : (28)
where 3 denotes the singular/eigen values.

A direct-path dominance test is then performed, in order to ascertain which time-
frequency bins provide a significant contribution to the direct path of a sound source.
These time-frequency bins are selected by determining whether the first singular/eigen
value, o7 of matrix 3 is significantly larger than the second singular/eigen value, oy,
when given in a descending order

LS B, (29)
02
where § > 1 is a threshold parameter.

Essentially, this subspace method is based on the assumption that the direct
path of a sound source will be characterised with higher energy than the reflecting
path (Nadiri and Rafaely, 2014). However, unlike the PWD and MVDR approaches,
where a power-map is generated by depicting the relative energy of beamformers,
the MUSIC pseudo-spectrum is obtained as

1

Snmap () = vH(9,) <I — USUSH)Y(QJ)

, (30)

where Syiap is the pseudo-spectrum value for direction €2;. For a more comprehensive
comparison between various sound-field imaging approaches, the reader is directed
to (Delikaris-Manias, Pavlidi, Pulkki and Mouchtaris, 2016).

3.2 Cross-spectrum-based parameter estimation

Instead of using beamformers to generate an energy-based power-map or employing
subspace methods to generate a pseudo-spectrum, it is possible to derive statistical-
likelihood parameters by utilising the cross-spectrum of different beamformers. This
cross pattern coherence (CroPaC) parameter has been previously utilised for spatial
filtering applications, where it has been shown to be effective in noisy and reverberant
conditions (Delikaris-Manias and Pulkki, 2013; Delikaris-Manias, Vilkamo and Pulkki,
2016). In this subsection, the original CroPaC algorithm presented in (Delikaris-
Manias and Pulkki, 2013), has been reformulated and generalised to use static
beamformers and spherical harmonic signals of arbitrary order N.
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Figure 3: Visualisation of the CroPaC half-wave rectification and normalisation
process, before (left) and after (right).
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Figure 4: Visualisation of CroPaC beams for N = 1 (left), N = 2 (middle) and
N = 3 (right).

The CroPaC algorithm estimates the probability of a sound source emanating
from a specific direction in 3D space, by calculating the cross-spectrum between two
spherical harmonic signals of orders N and N + 1

§R[SN(Q]" tv f)*SN-i-l (Qj7 L, f)]
N s (@t 0
where R denotes the real operator; sy and sy are the spherical harmonic signals
for a look direction €; and the same degree m, * denotes the complex conjugate
and ) is an order-dependent normalisation factor to ensure that Gyap € [0,1]. The
normalisation factor can be calculated as
(N+1)*—=(N-1)2%+1 4N +1
2 2
The power-map is then estimated for a grid of look directions 2 = (€2, Qs,...,Qy),
averaged across frequencies and subjected to a half-wave rectifier. The resulting
power-map is then given by

Gt f) =\ (31)

A= (32)

Giap(©, £) = max [0, [1( G ). (33)

The half-wave rectification process ensures that only sounds arriving from the look
direction are analysed. An illustration of how this half-wave rectification process
affects the directional selectivity of the CroPaC beams is depicted in Fig. 3.
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Figure 5: The original CroPaC algorithm (left) and the proposed side-lobe suppressed
version (right), using second, third and fourth order spherical harmonic signals (top-
bottom). A total of 1002 CroPaC beamformers were steered uniformly around the
unit sphere and then converted to a 2D representation via triangular interpolation.
A pre-recorded sound-field was utilised, consisting of a female speaker located at [90,
0] degrees and a male speaker located at [0, 0] degrees, in a reverberant room. Results
were averaged with equal weighting over frequency bands with centre frequencies
between [140, 8k| Hz.

3.2.1 Side-lobe suppression

The fundamental problem with the original CroPaC algorithm (Delikaris-Manias and
Pulkki, 2013), and the generalised formulation (31), is that the calculation of the
cross-spectrum between different orders of spherical harmonics results in the creation
of unwanted side-lobes, which vary depending on the order. A visual depiction of
these aberrations, shown in Fig. 4, may be generated by multiplying the following
spherical harmonics together: YxnY(ny1)nv+1) for N =1 (left), N = 2 (middle) and
N = 3 (right).

These side-lobes can introduce biases in the power-map, as is depicted in Fig. 5.
This thesis therefore, proposes a technique that suppresses these side-lobes by
multiplying rotated versions of the estimated CroPaC beams. The number of rota-
tions/estimated beams is determined by the order N. This novel side-lobe suppressing



(a) Side-lobe suppression for order N = 1. The two beams on the left show
the rotating beam patterns and the beam on the right is the resulting
beam pattern.
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(b) Side-lobe suppression for order N = 2. The three beams on the
left show the rotating beam patterns and the beam on the right is the
resulting beam pattern.
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(c) Side-lobe suppression for order N = 3. The four beams on the
left show the rotating beam patterns and the beam on the right is the
resulting beam pattern.

Figure 6: Visualisation of side-lobe cancellation for N = 1,2, 3.
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parameter Ggup can be estimated as

Gaar(,t) i N=1

Gsup(§Y,t) = (34)

N
[I Gliap (1) i N > 1,

=1

where p; is a parameter that defines an axis-symmetric roll of % radians of the
spherical harmonic signals prior to the calculation of the CroPaC parameter. This
rotation can successfully suppress side-lobes that are generated when using (31). This
concept is illustrated in Fig. 6; where each row illustrates the side-lobe suppression
for different orders. In the top row N = 1, which results in a single roll of 7 in (34).
For N = 2 (middle row) and N = 3 (bottom row) three and four rolls of  and 7 are
applied, respectively. The resulting enhanced beam patterns Ggyp € [0, 1], which
are derived from the product of multiple Gyap € [0, 1], are shown on the right-hand
side of the figures.

3.2.2 Weighted-orthogonal beamforming-based formulation

Much in the same vein as the original CroPaC algorithm, the more recent LCMV
inspired reformulation also relies on determining the cross-spectrum between two
coincident beamformers (Delikaris-Manias, Vilkamo and Pulkki, 2016), in order to
formulate a post-filter and subsequently enhance an existing robust beamformer.
The cross-spectrum operation is given as (please note that the time and frequency
indices (¢, f) have been omitted for the brevity of notation)

s, 5, () = W' () diag(Csu) wo(%;), (35)

where w,(€2;) € CWVH*x1 ig the steering vector of a signal-independent beamformer
specified by the user; and w,(€;) € CW *x1 s a steering vector of an adaptive
beamformer derived from an LCMV minimisation problem

Wo () = arg min w2 (Q;)Csaw, ()
Wo(€25) (36)
subject to A(2;)w,(2;) = b,

using
A(Q) = [y(¢) diag[Csulwa ()], (37)
and
b—[10], (38)
where y € CO+D*x1 ig 4 gpherical harmonic steering vector for direction (2;, which

should be the same look-direction as the robust beamformer that is to be enhanced.
Applying the Lagrange multipliers method (Balanis and Ioannides, 2007), the
solution to (36) is given as

Cgu A7 ()
A(Q)C AT ()

Wo(€;) = b. (39)
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Figure 7: Power-map utilising MVDR beamformers (left) and the revised WOB-
CroPaC formulation (right); using second, third and fourth order spherical harmonic
signals (top-bottom). A total of 1002 beamformers were steered uniformly around the
unit sphere and then converted to a 2D representation via triangular interpolation.
A pre-recorded sound-field was utilised, consisting of a female speaker located at [90,
0] degrees and a male speaker located at [0, 0] degrees, in a reverberant room. Results
were averaged with equal weighting over frequency bands with centre frequencies
between [140, 8k| Hz.

In (Delikaris-Manias, Vilkamo and Pulkki, 2016) the post-filter was applied to
a robust beamformer derived in the space domain; whereas for this thesis work, it
was modified to operate solely in the spherical harmonic domain. This reduces the
computational complexity, as the time-frequency transform needs only be applied to
the spherical harmonic signals and not also to the microphone signals. Therefore,
the final gain factor is given as

Gwos(£;) =

min[Fy, (), |Ps,s, ()]
\l Eb(Qj)S S 7 o

where FE,(€);) is the energy of the robust beamformer that is to be adaptively
attenuated to improve its performance, calculated as

Ey(9;) = [wi (€)Csuwy (9], (41)

where wy,(§2;) are breamforming weights of the robust beamformer formulated in the
spherical harmonic domain. Note that (40) can also be constrained by a spectral
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floor parameter, such as in (33), to allow the user the control over how harshly the
post-filter is applied to the robust beamformer.

A comparison between (40) and MVDR beamformers, is depicted in Fig. 7;
where wy,(€2;) are MVDR beamforming weights calculated using (26) and w,(€2;) are
PWD beamforming weights with Dolph-Chebyshev weighting (Rafaely, 2015). It is
important to note that since the diffuse noise of the spherical harmonic signals is not
known, the assumption made in (35), is that the diagonal elements of Cgy can be
utilised to provide an estimation of this noise. Therefore, the post-filter will act as a
form of spatial-gate during periods when the signal extracted from the specified look
direction is on-going. This is also the reason why the post-filter should theoretically
work better in high-noise and reverberant environments, as the estimate effectively
becomes more accurate as this noise level increases. The algorithm also has the
added benefit of deriving the post-filter from one set of beamforming weights, as
the w,(€2;) weights are derived from the user specified w,(€2;) weights; whereas the
original CroPaC algorithm requires the user to specify both beam patterns.

3.3 Direction-of-arrival and diffuseness parameter estima-
tion

Extracting estimates of the DoA of sound sources and the diffuseness within a sound-
field is useful for many sound-field visualisers and parametric reproduction methods
that are available today.

DoA estimation via peak finding

To determine the DoA of the most prominent sound source in a sound scene, it is
possible to use an existing power-map/pseudo-spectrum and subsequently determine
the highest energy point and note down this position. Such an approach is commonly
referred to as peak finding and can be performed simply as

DoA(0s, ¢s) = Q2 € max(Pyap). (42)

where 05 € [—7/2,7/2] denotes the elevation angle and ¢4 € [—m, 7| the azimuthal
angle of the sound source; and Pyap is an arbitrary power-map or pseudo-spectrum.

However, extracting multiple DoA estimates from a single power-map is not a
trivial matter as this will involve removing the area of the power-map containing the
first DoA estimate, before determining the next highest peak. Therefore, ascertaining
the optimal amount of area to remove from the power-map, such that the same sound
source is not identified twice or a second sound source is unintentionally removed,
can be problematical; especially, if the spatial width of the sound source is not known.
For an in-depth description of a power-map based multiple sound source localisation
approach, the reader is directed to (Pavlidi et al., 2015).

The act of deriving DoA estimates from power-maps, however, is inherently
computationally demanding, as numerous beamformers are required to sufficiently
sample the area of interest; in order to subsequently obtain these estimates with
adequate precision. Therefore, while these approaches are well suited for scenarios
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which do not require real-time analysis, less computationally demanding methods are
preferred for certain applications. Furthermore, in the case of parametric reproduction
methods (such as the original DirAC formulation) only a single DoA estimate is
required.

DoA and diffuseness estimation using first-order spherical harmonic sig-
nals

Due to the large computational complexity associated with power-map-based DoA
estimation, cheaper and more flexible alternatives are often employed for real-time
applications. Perhaps the most popular approach, is to extract the DoA and diffuse-
ness, 1, estimates from the active intensity vector i,, which can be estimated per

frequency using the zeroth and first order spherical harmonic signals, s, as (Pavlidi
et al., 2015)

. 1 .
(1, ) = SRlp(t, (e, ), (13)
where, p, is the sound pressure, estimated as
p(tu f) = SOO(tv f)a (44)

and, u, is the particle velocity. Assuming that the sound sources are received as
plane-waves, the particle velocity can be estimated as

s1-1(t, f)

sw(t, f) |, (45)
pocy/2 su(t, f)

u(t7f) ==

where pq is the density of the medium in question and c is the speed of sound.
The DoA estimate can then be obtained simply as

DoA(0s, s, t, f) = Z(E[—1a(t, f)]), (46)
where, /, represents the angle operator. Whereas, the diffuseness can be obtained as

B )
VD) =1~ g By (47)

where e is the energy density, calculated as

p(t, f)I?

elt, f) = Fhalt P + 5 5

(48)

Both the DoA and v estimates can then be averaged over frequencies or treated
individually, depending on the application. For a more detailed and up-to-date
description of how to utilise the active intensity vector for DoA estimation, the reader
is directed to (Pavlidi et al., 2016) and (Delikaris-Manias et al., 2017).
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4 Perceptually motivated sound-field reproduction

Before delving into perceptually motivated spatial sound-field reproduction methods,
it is first helpful to have an understanding of how the human auditory system
perceives a spatial sound-field to begin with. Therefore, this section begins with a
brief introduction into spatial hearing. This is followed by formulations for both non-
parametric and perceptually motivated parametric means of reproducing sound-fields,
in the spherical harmonic domain. For the former, the popular ambisonics method
is detailed, whereby spherical harmonic signals are linearly mapped to loudspeaker
positions via a decoding matrix for loudspeaker or headphone playback. Whereas the
parametric reproduction method which this thesis work focused upon, is the DirAC
approach; which operates by extracting perceptually meaningful parameters from
the sound-field, in order to enhance the spatial accuracy of the decoded audio which
is delivered to the listening position.

A new DirAC formulation for headphones is then presented, which aims to
reduce the computational complexity of DirAC implementations that preceded it;
while also reducing artefacts by utilising the optimal adaptive mixing solution
presented in (Vilkamo and Pulkki, 2013). This approach is similar to the loudspeaker
implementation described in (Politis, Vilkamo and Pulkki, 2015), whereby binaural
cues are synthesised directly from the analysed spatial parameters.

4.1 Spatial hearing

During human evolution, the sensory ability for locating the direction of sound
sources was essential for survival in the pre-modern world, which is largely the reason
why humans possess relatively advanced auditory systems. Today, spatial hearing
remains useful for orientation in one‘s environment and for localising sound sources
that may or may not be visible (Pulkki and Karjalainen, 2015). The term localisation
describes the ability to make judgements regarding the direction of a sound source
and also its distance relative to the listener. According to Moore (Moore, 2012), the
most reliable cues utilised in the localisation of sounds sources are derived from the
comparison between the signals arriving at the two ear canals; however, localisation
can still be partly influenced by the signal at a single ear canal. It is at this point
that a distinction is made between binaural (both ears) and monaural (one ear)
directional cues.

Binaural and monaural cues

Binaural directional cues arise when the auditory system decodes the differences
in sound between the two ear canals, in order to help ascertain the azimuth and
elevation of sound sources. Spectral differences are referred to as frequency-dependent
interaural level differences (ILDs) and the temporal differences are referred to as
interaural time differences (ITDs) (Pulkki et al., 2011). However, it is important to
note that due to the physical properties of acoustical wavefronts, these ILDs and
ITDs are not equally effective for localisation at all frequencies (Moore, 2012). This
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is best explained by describing how these interaural differences occur. Firstly, ILDs
arise due as a result of the shadowing effect of the head, where the contra-lateral ear
signal is attenuated. This is because high frequencies, with wavelengths shorter than
the dimensions of the head, do not diffract around the head or pass through it easily
(Moore, 2012). ITDs on the other hand, simply occur due to the fact that the ears are
located on different sides of the skull; thus, arrival times of wavefronts are dependent
on the direction of the sound source relative to the position of the head (Pulkki
and Karjalainen, 2015). Additionally, ITDs will also result in an interaural phase
difference (IPD) when the auditory system is presented with on-going or sinusoidal
sound sources (Moore, 2012). Psychoacoustic tests (Blauert, 1997) have shown that
the auditory system is sensitive to ILD at all frequencies. However, it is generally
acknowledged that ILDs that are sufficiently large to provide useful localisation cues,
will occur for frequencies above 2 kHz (Moore, 2012). On the other hand, the auditory
system is sensitive to ITDs mainly at frequencies below 750 Hz; although, humans
may also be sensitive to ITDs between the signal envelopes at higher frequencies
(Pulkki et al., 2011). The duplex theory introduced by Rayleigh (Rayleigh, 1907),
describes the extent of the relevance of these ITD and ILD cues for specific frequency
ranges. However, while this theory may be sufficiently accurate when applied to
pure tones, complex sounds will deviate from these specified boundaries in practice
(Moore, 2012).

Monaural spectral cues are developed within the pinna of the listener and the
torso itself may also filter the incoming sound depending on the DoA and introduce
spectral changes from 1-2kHz upwards (Pulkki et al., 2011). However, frequencies
above 6 kHz are the most affected, as it is at these frequencies where the wavelengths
are sufficiently short for the sound waves to diffract and reflect strongly within the
cavities of the pinna (Moore, 2012). This direction dependent filtering is especially
important for the localisation of elevated sound sources (Blauert, 1997). Additionally,
this filtering provides information about the source direction within the cone of
confusion (Pulkki and Karjalainen, 2015); which is a perceptually ambiguous region,
where the difference in distance from both ears to any point on the surface of an
imaginary cone is constant. Although, these ambiguities related to the cone of
confusion may also be resolved by head movements (Moore, 2012).

Monaural and binaural cues for a specific direction can be collectively described
by a head-related transfer function (HRTF), where the ILD corresponds to the
difference in frequency-dependent magnitudes between the left and right spectra (Xie,
2013). The ITD are encoded into the phase characteristics of the HRTFs (Xie, 2013);
and the monaural cues are derived from the ratio between the spectral content of
the sound source and the spectral content of the left and right channels (Vorldnder,
2007).

Localisation in enclosed spaces

When subjected to a sound source in a normal listening situation, the sound will
reach the two ears from a number of different directions, due to reflections from
the surfaces in the surroundings. These reflections will provide the listener with
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some impression of the listening space and a sense of the objects and architecture
around them (Valimaki et al., 2012). This interaction between the sound source
and the room is referred to as reverberation and is comprised of both early and late
reflections.

Despite the fact that many reflected sound waves arrive at the listening position
from multiple directions, the auditory system is still capable of localising sound
sources based on the directional cues from the direct sound with little additional
difficulty (Moore, 2012). This is due to assisting mechanisms in the auditory system
that suppress early reflections, so that localisation is largely determined by the
direct sound. After psychoacoustic experiments, such as in (Litovsky et al., 1999),
it has been established that this phenomenon is due to an echo suppression and a
subsequent precedence effect; historically, referred to as the Haas effect (Haas, 1951)
or the law of the first wavefront (Blauert, 1997). Essentially, if two correlated sounds
reach the ear in close succession, then an echo suppression occurs to ensure that the
listener perceives them as a single fused sound; provided that the interval between
them is below the echo threshold (which is roughly between 30-40 ms (Pulkki and
Karjalainen, 2015)). This single fused sound will then be localised in the direction
of the earliest sound, due to this precedence effect phenomenon; provided that the
sound is of a transient nature (Moore, 2012). In situations where the arrival time
between the two correlated sounds is less than 1 ms, this precedence effect no longer
operates; instead, the two sounds are localised in a direction that is somewhere
in-between the two sounds, which is due to a phenomenon referred to as summing
localisation (Moore, 2012); exploited prolifically in sound reproduction systems.

The reverberation that follows a direct sound is comprised of both early reflections
and spatially diffuse late reflections. The early reflections are less likely to be masked
than the later reflections; therefore, psychoacoustic evaluation is often biased to the
analysis of the first 80 ms (Begault and Trejo, 2000). While it has been acknowledged
that the direct path is largely responsible for localisation of a sound source, as a
result of the assisting mechanisms described above, the early reflections are more
responsible for conveying a sensation of both the geometry and the materials of
the surrounding space (Valimaki et al., 2012). A typical room has several physical
features, which have an influence on reverberation and consequently the perception of
the environmental context. These include: the volume of the room, which is evident
in the length and magnitude of the reverberation; the absorptivity of the room
surfaces, which are frequency-dependent; and the shape of the enclosure, including
the orientation of the objects within it (Begault and Trejo, 2000). Furthermore,
certain physical parameters of a room are often calculated, as they can be roughly
translated into perceptual characteristics; these include the reverberation time (T60),
the reflected-to-direct ratio (R/D) and the spatial distribution of the early reflections
(Begault and Trejo, 2000).

The T60 is defined as the duration that is required for the reflected sound energy
to fall 60 dB below that of the direct sound energy. This T60, to some extent, is
proportional to the listener’s perception of the size of the surrounding environment
or enclosure (Begault and Trejo, 2000). Whereas, the R/D ratio is simply the ratio
of the reverberant sound energy to direct sound energy and can be attributed to the
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extent of the perceived distance between the sound source and the receiver (Politis,
Delikaris-Manias and Pulkki, 2015). Interestingly, it has been found that even a
single reflection from a wall can provide sufficiently reliable distance cues (Sheeline,
1983; Von Békésy and Wever, 1960). Increasing the reverberant sound energy that
arrives at the receiver position, will also have an influence on the perceived apparent
source width (ASW) (Von Békésy and Wever, 1960); which equates to the listener’s
perception of the physical extent of a sound source. Additionally, the early lateral
reflections can also have an influence on the perceived ASW, while potentially adding
some uncertainty to sound source localisation (Vorlander, 2007). Whereas, late lateral
reflections are considered to be responsible for a dimension of spatial impression
known as spaciousness or listener envelopment (LEV) (Toole, 2008); which may
be described as quite literally how enveloped in sound the listener perceives to be.
While research regarding the cues that contribute to this perceived ASW and LEV
is still ongoing, these sensory concepts are commonly described collectively by the
frequency-dependent normalised cross-correlation between the two ear canal signals;
referred to as the interaural coherence (1C).

4.2 Ambisonics reproduction

Ambisonics reproduction is a method which aims to recreate a captured sound-
field, by utilising spherical harmonic signals as the input and a decoder that takes
into account the target playback system. This decoder is essentially a matrix of
beamforming coefficients, with one steering vector per loudspeaker direction or filter
per headphone transducer.

Ambisonic decoding to loudspeakers can be performed via a single matrix multi-
plication with D}, € REXNV+D? where L refers to the number of loudspeakers

YIs<t7 f) = DlsSN<t7 f) (49)

The ambisonic decoding matrix depends on the available order N; where the
simplest decoder is formulated as

1
Dy = ZYfQ, (50)
where Yy, € ROVTD*xL g o matrix of spherical harmonics for each loudspeaker
position.

However, a more perceptually motivated decoder is the all-round ambisonic
decoder (ALLRAD) detailed in (Zotter and Frank, 2012), which maps signals to
a uniformly-distributed loudspeaker layout with energy preserving properties in a
linear manner, before routing them to an arbitrary loudspeaker set-up via vector-base
amplitude panning (VBAP) (Pulkki, 1997)

1

Dy =
BT Ly

thY‘Z;h (51)

where Lyq is the number of directions of a uniform spherical t-design grid (Hardin
and Sloane, 1996); Yy € RWV+HD*xLu g a matrix of spherical harmonics for the
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t-design grid positions; and Gy € R¥*/d is a matrix of VBAP loudspeaker gains
which assign the t-design signals to virtual source positions. For a more expanded
description of ambisonic decoding in general, the reader is referred to (Zotter and
Frank, 2012).

Binaural decoding

Ambisonic decoding to headphones, on the other hand, can be performed with a
matrix of filters Dy, € C2XV+D* hased on a set of individualised or generic HRTFs

Yoin(t, f) = Duin(f)sn(t, f). (52)

This binaural ambisonic decoding matrix also depends on the available order N
and can be designed based on a virtual loudspeaker approach (Wiggins et al., 2001;
Melchior et al., 2009), or by directly expressing the HRTFs in the spherical harmonic
domain (Shabtai and Rafaely, 2013); for a description of the two approaches see e.g.
(Politis and Poirier-Quinot, 2016).

Additionally, rotation of the sound-field, necessary for head-tracking, can be
performed through an appropriate spherical harmonic rotation matrix M, €
R(N+1)2><(N+1)2

Yo (. f) = Din(f)Mior(e, B, 7)sn(E, ), (53)

where «, 3,y are rotation angles sent by the head-tracker. For implementation details
on the rotation matrices, the reader is again referred to (Politis and Poirier-Quinot,
2016).

4.3 Directional audio coding reproduction

While the ambisonics method (much like the signal-independent PWD beamformers in
Section 3) does not introduce any distortion to the resulting signals, its performance
is completely determined by the spatial resolution of the input format. In the case
of first order and lower-order spherical harmonic signals, this limitation can affect
the perceived spatial quality of the output; resulting in directional blurring of point
sources, localisation ambiguity, and strong colouration effects (Solvang, 2008; Santala
et al., 2009; Braun and Frank, 2011; Kearney et al., 2012; Bertet et al., 2013;
Bernschiitz et al., 2014; Stitt et al., 2014; Yang and Bosun, 2014).

On the other hand, perceptually motivated approaches, such as DirAC, are
designed to improve upon the quality offered by ambisonic decoding, while still
utilising the same input spherical harmonic signals. The DirAC method can be
divided into two main processes, the analysis of spatial parameters and the synthesis of
the signals which accurately exhibit these analysed traits via parametric enhancement.
The end goal, is to reproduce a sound-field with a higher degree of perceived spatial
accuracy compared to ambisonics and other non-parametric reproduction methods;
while minimising any detrimental artefacts that may be introduced in the process.
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4.3.1 Parametric analysis

The spatial parameter vector which is utilised by DirAC comprises of a DoA estimate,
the total energy and the diffuseness. For first order spherical harmonic signals s;
this process can be denoted as

b1 (tv f) =A [Sl(tv f)] = [97 ¢, ¢, ¢]7 (54)

where A [.] refers to the extraction of spatial parameters from the signal in question
(refer to Section 3.3 for more details).

Note that in the case of first order spherical harmonic signals, only one estimate
of the parameter vector is possible per time and frequency index. However, if higher-
order spherical harmonic signals are available, then spatially selective patterns may
be imposed on the zeroth and first order spherical harmonic signals, in order to
extract multiple parameter vectors per time and frequency index. This results in
improved spatial accuracy, in cases where multiple sound sources are located in their
own individual sectors.

The extraction of a parameter vector for .S sectors can be written as

pn(t, f) = A[Wnsn(t, f)] = [e1,¥1,01, ¢, ...
es, Vs, bs, dsl, (55)

where Wy € C#$*(N+1)? jg 5 beamforming matrix that generates the appropriate
sector analysis signals, and S is the order-dependent number of sectors; for more
details on the structure of Wy, the reader is referred to (Politis, Vilkamo and Pulkki,
2015). A depiction of these spatially selective sectors utilising second order spherical
harmonic signals is provided in Fig. 8. Furthermore, it is important to note that if
only first order spherical harmonic signals are available, the analysis reduces to the
basic parameter vector analysis in (54).

4.3.2 Legacy first-order synthesis

Once the parameter vectors have been extracted from the spherical harmonic signals,
preliminary first-order ambisonic decoding for loudspeakers is performed with matrix
Dy, € REXVHD? a5 in (49).

These loudspeaker signals are then parametrically enhanced, where the analysed
parameters are utilised to separate the signals into directional and diffuse streams,
which are then re-distributed appropriately between the loudspeakers. The directional
stream zq;,; can be obtained by employing vector-base amplitude panning (VBAP)

(Pulkki, 1997)
V91—

Zdir(tv f) = I G(@, ¢)y15(t7 f)v (56)
where G is a diagonal matrix containing the VBAP gains for the estimated DoA,
and 1 is the diffuseness estimate.

The diffuse stream can then be obtained via suitable decorrelation of the ambisonic
decoded signals

za(t, /) = D |0 yu(t. )| (57)



o
o

\
o O cooo

o Mo kRmo

L
0000 O

0.2
3 0.
g R
-0. -0.
08
08 -0.
08 0,
40 -
0g0d
Y
: 0.
0.4
0.2 0.
0
-0.2 -0.
0.
0
04 , -0,
T8 —0.80"{]

o o
oo o
o
S o
o ¢ €
R L =R % ]
on
N
‘
¢
.
\
o o
P o N
o & o
N Mo
o|
Ny
™~

DD
N
o
=
o
=]
o~
o
ND

0 0.2
-02 02

(a) Spherical harmonics up to the first-order.

' 0.4

0.2

02

04

4 0.8 .
5 04 -

0

M ENON

o
=]
o

|
&°
LIS |I\i
H e
I~
o
®
L
ocoo o
Lo RO
i

(e) Fourth sector patterns.

30

Figure 8: Visualisation of the spherical harmonics up to the first-order (a), and after
the second-order spherical harmonics have been spatially filtered to obtain the sectors
used by the higher-order DirAC analysis (b)-(e).
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where D [-] denotes a decorrelation operation of the enclosed signals.

The resulting direct and diffuse loudspeaker streams may then be summed together
and reproduced over loudspeakers, or alternatively, they can be convolved with their
respective HRTFSs in order for them to be experienced via headphones

Ybin(t7 f) = HlS[Zdir(t7 f) + Zdiﬁ(ta f)]? (58)

where the binaural rendering of the virtual loudspeaker signals is performed with a
set of HRTFs contained within a matrix of filters Hj; € C?*%. Head-tracking may
then be integrated by rotating the analysed DoAs and the spherical harmonic signals
prior to the ambisonic decoding (Laitinen and Pulkki, 2009).

4.3.3 Higher-order synthesis for headphones with optimal mixing

The primary drawback with the legacy first-order DirAC synthesis approach, is that
it does not take into account what has already been achieved by the ambisonic
decoding, in terms of directional spatialisation and diffuse reproduction. Rather,
time-variant panning and diffuse gains are applied to the linearly-decoded signals
Dyss1 without jointly considering the combined linear and parametric rendering; with
the exception of a mean correction for the purpose of energy preservation (Vilkamo
et al., 2009). Therefore, an improvement in spatial accuracy and signal fidelity should
be attained, if the panning gains and decorrelation are applied only to the extent
that is necessary following the linear ambisonic decoding. Such a reformulation of
the DirAC synthesis was presented by Vilkamo et al. in (Vilkamo and Pulkki, 2013),
referred to here as optimal mizing.

Another limitation of the virtual loudspeaker approach detailed in (Laitinen and
Pulkki, 2009), is its inability to make use of higher-order spherical harmonic signals
at both the analysis and synthesis stages; which would be expected to obtain a
more accurate model of the sound-field and subsequently improve its performance
in scenarios that are challenging for the basic intensity-diffuseness model. The HO-
DirAC formulation detailed in (Politis, Vilkamo and Pulkki, 2015) takes advantage
of the higher spatial resolution of higher-order spherical harmonic signals in order to
extract multiple intensity-diffuseness estimates from spatially separated sectors (see
Section 4.3.1). The formulation also fully integrates the optimal mixing approach
in (Vilkamo and Pulkki, 2013), which aims to preserve the single-channel quality
of the linear ambisonic decoding, while also enhancing the spatialisation cues that
ambisonics may fail to deliver; such as sharp point source sounds and spatially
incoherent diffuse sounds.

In (Politis, Vilkamo and Pulkki, 2015), HO-DirAC was formulated for arbitrary
loudspeaker set-ups, while in this section it has been reformulated for efficient
headphone reproduction.

Optimal mixing solution

The optimal mixing formulation, presented in (Vilkamo and Pulkki, 2013), essentially
solves the problem of finding a mixing matrix which when applied to the ambisonic
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decoded signals, will yield outputs that have the desired binaural cues, while also
preserving the high single-channel quality of the decoded signals as much as possible.

Since the ILD, I'TD and IC cues relate directly to inter-channel level differences
(ICLD), phase differences (ICPD) and coherence (ICC) during headphone listening,
they are all encoded into the covariance matrix of the binaural signals. Therefore,
the problem can be set as

Vbin = AYlin + BD [Yiin] (59)

where
Yin(t, f) = Duin(f)sn (2, f). (60)

The mixing matrices A and B are then the solution to
ACspA" + BCsuB” = Ciarger (61)

where Cgy is the covariance matrix of the spherical harmonic signals; Cgy is a
diagonal matrix composed of the diagonal elements of the covariance matrix for the
decorrelated decoded signals, calculated as

Csn = diag{E|[D [yin] D [yim]” |}: (62)

and Ciarget is the target covariance matrix, derived from the analysed parameters,
and contains information related to the ICLDs, ICPDs and ICCs which the linearly-
decoded ambisonic signals should exhibit.

Firstly, the optimal mixing solution attempts to meet the energies and coherence
targets imposed by Ciarget, Via linear mixing of the spherical harmonic signals through
matrix A; therefore, avoiding decorrelation and the subsequent potential decorrelation
artefacts, such as the temporal smearing of transients. However, if the targets cannot
be satisfied in this first step, the spherical harmonic signals are decorrelated and
then further mixed to the outputs through matrix B. For example, such a case could
arise whereby the sound-field is analysed as being completely diffuse and yy;, fails to
meet the appropriate binaural correlations, due to high inter-channel coherence of
the ambisonic decoding.

Apart from satisfying the constraint in (61), the solution also aims to minimise
phase differences between the enhanced yy;, of (59) and yy, as much as possible;
hence preserving the high single-channel quality of the linear decoding and increasing
robustness. The overall structure of the proposed method is presented in Fig. 9. The
full solution to (61) can be found in (Vilkamo et al., 2013).

Target covariance matrix definition

The final step to complete the optimal mixing (OM-DirAC) method is to define the
target covariance matrix Ciapget- Assuming S sectors are used in the analysis, S
sets of parameters ps = [es, U5, 05, @] are extracted. The following assumptions are
made:

a) the energy of the diffuse part for the sth sector is e,
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Figure 9: Diagram of the proposed headphone DirAC formulation. Where TFT/FB
refers to a time-frequency transform or perfect-reconstruction filterbank.

b) the energy of the directional part for the sth sector is (1 — 1 )es,
c¢) the diffuse components are uncorrelated between sectors, and
d) the directional components are uncorrelated with the diffuse components.

Based on these assumptions, the covariance matrix of the directional and diffuse
components of a single sector can be calculated as

CL) = (1 —h.)esh (b, 6 )0 (6, 6.), (63)
Céfgf = wsesUa (64)

where h = [k, hg]" is a vector of HRTFs for the analysed direction 6, ¢; matrix U
is a diffuse energy distribution matrix dependent on the reproduction system.

In the case of binaural signals, U should conform to the binaural coherence curve
pin(f) under diffuse-field excitation. This coherence curve can be computed from
the set of HRTFs, e.g. as proposed in (Politis, 2016), or it can be approximated via a
parametric model such as in (Bor and Martin, 2009). A suitable distribution matrix
is given here

u=| o %] )
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where «, § are factors that distribute the diffuse energy between the left and right
ears where o + 3 = 1, and determined by

[a, B trace [CSH] '

(66)

The total target covariance matrix Cyarger combines all of the individual sector

contributions <

Ctarget = Z C((ifz + C((iff)'f (67>
s=1
which essentially contains the binaural ILDs, ITDs and ICs determined by the
directional analysis and its definition, along with (61), concludes the proposed
solution.
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5 Real-time implementations

For the bulk of the thesis project work, real-time implementations of various sound-
field analysis and perceptually-motivated reproduction methods were developed and
subsequently compared to the proposed formulations in Section 3.2.1 and 4.3.3, for
their respective use cases. Therefore, to effectively demonstrate the various sound-
field analysis algorithms (including the approach proposed in this thesis), an acoustic
camera framework was developed; which utilises a commercially available spherical
microphone and spherical camera to produce the necessary power-map overlays and
video streams, respectively. Whereas the proposed OM-DirAC formulation was
implemented within a binaural ambisonic decoder with head-tracking support.
This section first provides details of the design considerations and the external
libraries which were employed in the real-time software implementations. It then
describes the real-time implementations in detail; providing examples or listening test
results as validation of the implemented algorithms and their relative performance.

Software design considerations

The chosen platform for the real-time implementations was the Virtual Studio
Technology (VST) audio plug-in format, which is a standardised application extension
that can be utilised by a variety of different digital audio workstations (DAWSs); thus,
ensuring support for a wide range of hardware configurations and operating systems.
Both Windows and MacOSX versions of the software implementations were developed,
utilising Visual Studio 2015 and Xcode projects, respectively. Furthermore, the JUCE
framework was employed for the graphical user interface (GUI) designs, and written
in the C+4 programming language. The rationale for selecting this additional
framework also included its video camera and Open Sound Control (OSC) message
support, which were utilised by the acoustic camera implementation and the ambisonic
decoder for head-tracking purposes, respectively.

Since the algorithms presented in this thesis all operate in the spherical harmonic
domain, an additional VST audio plug-in was created for the real-time spatial encoding
of microphone signals into spherical harmonic signals (see Section 2). Therefore, the
three real-tine VST plug-ins developed for this thesis work are as follows:

e Mic2SH, which takes spherical microphone array signals (namely the com-
mercially available Eigenmike32) and encodes them into spherical harmonic
signals.

e AcCroPaC, which is an acoustic camera that features the power-map /pseudo-
spectrum generating algorithms described in Section 3, including the novel
CroPaC reformulation in Section 3.2.1. However, it does not include the
algorithm described in Section 3.2.2, as the computational complexity proved
too high to operate in real-time.

e OM-DirAC, which is a binaural ambisonic decoder that is parametrically
enhanced via the novel DirAC formulation that is detailed in Section 4.3.3.



36

Due to the overlap in implementation requirements and in the interest of efficiency,
various standalone software libraries were developed and utilised by the three VST
plug-ins; these are as follows:

e wutillib, which is a separate utility library for various helpful functions, such
as memory allocation for multi-dimensional arrays. Additionally, due to the
primitive C language support offered by Microsoft’s Visual Compiler (MSVC),
a wrapper for complex numbers was required for the same code to compile
correctly on both operating systems.

e shlib, which is a library containing functions for generating real-valued spherical
harmonics and rotation matrices. Additionally, various types of axis-symmetric
beamforming weightings were implemented, such as in-phase (Daniel, 2000),
maximum energy (Zotter et al., 2012; Moreau et al., 2006) and Dolph-Chebyshev
(Rafaely, 2015).

e cdfjsaplib, which is a C implementation of the covariance domain framework
for spatial audio processing, originally presented as a MatLab function in
(Vilkamo et al., 2013), utilised for the optimal-mixing solution in the OM-
DirAC implementation.

Optimisations

The internal algorithms for the software implementations were all written in the C
programming language and underwent rigorous optimisations in order to operate
in real-time. For example, the linear algebra operations that are used prolifically
throughout the thesis work, were all written to conform to the basic linear algebra
subroutines (BLAS) standard. Whereas, operations such as the lower-upper (LU)
factorisation and singular value decomposition (SVD) were addressed by the linear
algebra package (LAPACK) standard. The optimised variants of these aforementioned
libraries which were utilised in this thesis work, were Apple’s Accelerate framework
and Intel’s Mathematics Kernal Library (MKL), for the Mac OSX and Windows
versions, respectively.

Time-frequency transform

The time-frequency transform selected for the real-time implementations is based
on the STEFT (see Section 2), and utilises analysis and synthesis windows which are
optimised to suppress temporal aliasing; note that the source code of the implemen-
tation can be found in (Vilkamo, 2015). The temporal resolution of the transform
was determined by a hop size of 2.7 msec (128 samples at 48kHz sample rate).

The chosen time-frequency transform initially provides a uniform resolution of 128
bands, before employing additional filters which increase the low-frequency resolution,
resulting in a total of 133 bands with centre frequencies which are roughly equivalent
to the Bark scale at the lower frequencies (Pulkki and Karjalainen, 2015). Note
that this practice is similar to the hybrid-QMF filterbanks utilised by many spatial
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Mic2SH Ver 1.0.0alpha, May 23 2017, AALTO (c) 2016

Mic: | Eigenmike32 CH Idx: | ACN Norm: |N3D ~ EQ: | radinverse ~~

Figure 10: The Mic2SH VST user interface.

audio codecs (Schuijers et al., 2004) and is popular with implementations of other
perceptually-motivated time-frequency domain algorithms.

5.1 Mic2SH

The first VST implemented was the microphone to spherical harmonic signals
(Mic2SH) converter, which spatially encodes the microphone signals from the Eigen-
mike32 by utilising the transformation matrices described in Section 2; the GUI for
the plug-in is shown in Fig. 10.

The plug-in also performs the necessary equalisation required to mitigate the
effect that a rigid sphere has on the initial estimate of the pressure on the sphere,
which can be first determined by calculating the theoretical modal coefficients as
(Rafaely, 2015)

Jn(kra)
i (kra)

where 7, is a spherical Bessel function of the first kind and order n; h{?) is a spherical
Hankel function of the second kind and order n; r is the radius of the sphere; and
k = 2x f/c is the wave number.

This influence of the rigid sphere on the spherical harmonic signals estimate can
be removed by inverting these b,, coefficients and applying them to the encoded
signals. However, it is important to note that this approach would result in a large
amplification in microphone noise, especially at the lower frequencies. Therefore, a
regularised inversion is recommended [such as (13)], where a regularisation parameter
A can be applied in order to make a compromise between noise amplification and the
accuracy of the transform. These regularised inverted modal coefficients can then be
utilised in (12), to complete the spatial encoding. Note that different regularisation
strategies common in the literature have been implemented in Mic2SH, such as
the Tikhonov-based regularised inversion (Moreau et al., 2006) and soft limiting
(Bernschiitz et al., 2011). The plug-in can also accommodate the various spherical
harmonic format conventions which are popular today, such as the SID/ACN channel
orderings and the N3D/SN3D normalisation schemes.

by (kr) = 47" [jn(kr) — h? (kr)), (68)

n
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Figure 11: The spherical microphone array (Eigenmike32) and spherical camera
(RICOH Theta S) orientation.

5.2 AcCroPaC

Various scanning beamformers described in Section 3.1 and the proposed side-lobe
suppressed CroPaC formulation detailed in Section 3.2.1, were introduced into the
second VST plug-in, AcCroPaC!. This plug-in relies on spherical harmonic signals
and spherical video stream as input, for which the commercially available Eigenmike32
and RICOH Theta S were utilised, respectively. The set-up is depicted in Fig. 11.
The algorithms within the acoustic camera have been generalised to support
spherical harmonic signals up to 7th order and can be optionally generated using the
Mic2SH VST described above. The overall block diagram of the system is shown in
Fig. 12. The time-domain microphone spherical harmonic signals are first transformed
into the time-frequency domain. For computational efficiency the spherical harmonic
signals are rotated after the time-frequency transform towards all the points defined
by the grid, in the case of the proposed CroPaC algorithm. These signals are then
fed into either beamforming units or pseudo-spectrum generators. For the proposed
algorithm, the cross-spectrum based analysis parameter is estimated for each grid
point by using the spherical harmonics of the maximum available order, and the
order before it. Please note that when the side-lobe suppression mode is enabled,
one parameter is estimated per roll and the resulting parameters are multiplied.
The user-interface consists of a view window, and a parameter editor (see Fig. 13).
The view window displays the camera feed and overlays the user selected power-map
in real-time. The field-of view (FOV) and the aspect ratio are also user definable,
which accommodates a wide array of different web-cam devices. Additionally, the
image frames from the camera can be optionally mirrored using an appropriate
affine transformation (left-right, up-down etc.); in order to accommodate a variety

!Special thanks is extended to Symeon Delikaris-Manias for his help during the design and
development of the AcCroPaC VST plug-in.
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Figure 12: Block diagram for the AcCroPaC VST internal processing; where TFT/FB
refers to an STFT or perfect reconstruction filter-bank.

VST: accropac_o3 (AALTO) - Track 1[2/2] b1

No preset ~ | [+| | Param 16in u| QM

AcCroPaC Ver 1.0.0a

PM: | CroPaC Legacy Sup Camera: | THETA UVC FullHD Blender Mirror: @ FOV: | 360°

Figure 13: The AcCroPaC VST user interface. Third-order spherical harmonic signals
and the proposed CroPaC formulation were utilised in a reverberant environment.
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of different camera orientations.

Processing modes and sampling grids

The AcCroPaC VST generates the power-map/pseudo-spectrums by sampling the
sphere via a spherical grid. A pre-computed almost-uniform spherical grid was
chosen for the implementation, which provides 252 nearly-uniformly distributed data
points on the sphere. The grid is based on the 3LD library (Hollerweger, 2006),
where the points are generated by utilising geodesic spheres. This is performed by
tessellating the facets of a polyhedron and extending them to the radius of the original
polyhedron. The intersection points between them are the points on the spherical
grid. The two power-map approaches and two pseudo-spectrum methods described
in Section 3 were implemented within the plug-in: conventional signal-independent
beamformers (PWD, minimum side-lobe, maximum energy and Dolph-Chebyshev)
and signal-dependent MVDR, beamformers; and the MUSIC and proposed cross-
spectrum-based methods. The power-map/pseudo-spectrum values are then summed
over the analysis frequency bands and averaged over time slots using a one-pole filter

pMAp<Qj,t — 1) = OéIjMAp(Qj,t) + (1 — Oé)PMAP(Qj, t), (69)

where « € [0, 1] is the smoothing parameter. The spherical power-map values are
then interpolated to attain a 2D power-map, using pre-computed VBAP gains. The
spherical and interpolated grids are shown in Fig. 14. These 2D power-maps are then
further interpolated using bi-cubic interpolation depending on the display settings
and are normalised such that Pyap € [0,1]. The pixels that correspond to the
2D interpolated results are then coloured appropriately, such that red indicates
high energy and blue indicates low energy. Additionally, the transparency factor is
gradually increased for the lower values to ensure that they do not unnecessarily
detract from the video stream.

5.2.1 Examples

Examples of power-maps/pseudo-spectrums are shown in Fig. 15 for four different
modes: PWD beamformer, MVDR, MUSIC and the technique proposed in this
thesis. Fourth order spherical harmonic signals were generated using the Mic2SH
VST plug-in, and these were used for all four methods. The video was unwrapped
using the software provided by RICOH and then combined with the calculated
power-map/pseudo-spectrum. Since the camera is not at the same position as the
microphone array, a calibration process is performed to align the power map with the
image. Note, however, this will affect sources that are very close to the array. The
resulting acoustic camera outputs are shown for two different recording scenarios: a
staircase of high reverberation time of approximately 2seconds (Fig. 15, e-h) and
a corridor with slightly shorter reverberation time (Fig. 15, a-d), approximately
1.5 seconds.
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(b) Nearly-uniform spherical grid plotted on a 2D equirectangular plane (black colour) and
a 2D VBAP interpolated grid overlay (cyan colour).

Figure 14: Spherical and interpolated grids.

It can be seen from Fig. 15(a-d) that there is one direct source and at least one
prominent early reflection. However, in the case of PWD, the distinction between
the two paths is the least clear, and also erroneously indicates that the sources
are spatially larger than they actually are. The distinction between the two paths
is improved slightly when using MVDR beamformers, which is improved further
when using MUSIC. In the case of the proposed technique, the two paths shown
in the other three power-map modes are now isolated completely, and a second
early reflection with lower energy is now visible; which is not as evident in the other
three methods. The PWD algorithm also shows evidence of an erroneous sound
source, which is probably the result of the side-lobes pointing towards the real sound
source; thus, highlighting the importance of side-lobe suppression for acoustic camera
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(a) PWD, corridor (b) MVDR, corridor

(g) MUSIC, stairs (h) proposed, stairs

Figure 15: Images of the acoustic camera VST, while using fourth order spherical
harmonic signals and the four processing modes in reverberant environments.

applications. The images in Fig. 15(e-h) indicate a similar performance; however, in
the case of MUSIC, the ceiling reflection is more difficult to distinguish as a separate
entity.
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OMDIrAC v 1.0.0aipha, Jun 2 2017, AALTO (0) 2016
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Figure 16: The OM-DirAC decoder user interface.

5.3 OM-DirAC

A real-time implementation of the binaural DirAC formulation proposed in Section
4.3.3 was developed as a VST audio plug-in, OM-DirAC?. The implementation
supports spherical harmonic signals up to 7th-order and head-tracking. Contrary to
the rotation of the analysed DoAs, as was previously carried out in the VL-DirAC
implementation [detailed in (Laitinen and Pulkki, 2009)] it was found to be more
efficient to rotate the spherical harmonic signals directly, due to the faster update
rates. The rotation angles are updated at every analysis frame.

The spatial parameters py for (55) are obtained instantaneously to capture rapid
variations of the sound scene, while the definition of input and target covariance
matrices Cyin, Choqel are computed across multiple windows to capture and provide
meaningful signal statistics for a robust synthesis. The beamforming coefficients W y
in (55), the ambisonic decoding matrix Dy, and the binaural coherence matrix U
for (65) are precomputed and stored within the plug-in. The decoding matrix Dy,
is computed using a densely measured set of HRTFs measured at Aalto University.
The decoding filters and HRTFs are pre-processed with the same time-frequency
transform as the one applied during runtime and converted to spectral coefficients.
During the construction of the target covariance matrix, the HRTF vector h in (63)
is interpolated from the measured set to the respective analysed direction (6s, ¢)
using triangular interpolation on the measurement grid (Gamper, 2013).

The GUI is depicted in Fig. 16, which allows the user to manipulate the rotation
angles via sliders or by utilising an external head-tracker and OSC messages. It
also offers control over the degree of averaging performed in the calculation of the
input spherical harmonic signals covariance matrix (via a one-pole filter) and allows
the user to disable the direct and/or diffuse component contributions to the target
covariance matrix. The OM-DirAC enhancement can also be disabled entirely, which
means that the processing reverts back to a binaural ALLRAD ambisonic decoder.

5.3.1 Evaluation

A multiple-stimulus listening test was conducted in order to assess the performance
of the OM-DirAC implementation.

2Special thanks is extended to Archontis Politis for his help during the design and development
of the OM-DirAC VST plug-in.
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Identifier Description
groove_dry Four instruments in a free-field
groove__small Four instruments in a small room
mix_ dry Female speech, fountain, piano, claps/ free-field
mix_ small Female speech, fountain, piano, claps/ small room
speech_ large Female speech in front in a large hall

Table 1: Sound scenes identifiers.

Identifier Description

hiddenRef Reference 28-channel loudspeaker signals convolved with HRTFs
OMDirAC o3 Third-order OM-DirAC
OMDirAC ol First-order OM-DirAC

ambi_ 03 Third-order ambisonic decoding Dy,

ambi ol First-order ambisonic decoding Dy,

Table 2: Test cases identifiers.

Five synthetic sound scenes were simulated with a varying number of sound
sources in anechoic and reverberant environments (see Table. 1). Room reverberation
was simulated with the image source method. All direct paths and image sources were
quantised directly to 28 plane wave signals covering the sphere, without employing
panning. These 28-channel signals were played back in an anechoic chamber through
real loudspeakers from their corresponding directions, to assess the naturalness of the
synthetic scenes. The 28-channel scenes served as a reference to assess the different
methods and were specifically designed to be critical of basic parametric analysis.
There are two free-field sound scenes, labelled here as groove dry and miz_dry.
The former consists of individual dry recordings of a band distributed on the front
hemisphere horizontally, while the latter incorporates clapping, a fountain, piano and
female speech, with three of the sound sources placed horizontally and one above the
listener. groove small and miz__small, are the reverberant versions of their free-field
counterparts. The final sample speech__large, comprises of female speech in front of
the listener simulated in a large hall.

The reference test cases hiddenRef, were obtained by convolving the 28-channel
signals with their respective HRTFs and summing the resulting binaural signals.
Ambisonic encoders were applied to each of the 28-channel sound scenes, in order
to obtain both first-order and third-order spherical harmonic signals. The sum of
the omnidirectional signals served as a low-quality anchor. The test cases for both
first and third-order ambisonics and OM-DirAC ambi_ol, ambi_03, OMDirAC o1,
OMDirAC 03, were obtained by passing the corresponding spherical harmonic
signals through their respective off-line decoders (see Table. 2). Note that the
standalone Ambisonic decoders are identical to the one used within the OM-DirAC
implementation.
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Figure 17: The means and 95 % confidence intervals of the listening test results.

The test subjects were instructed to rate the test case they perceived to be closest
to the reference, in terms of overall quality and spatial accuracy, as 100; to rate the
test case furthest from the reference as 0; and to rate the remaining four test cases
relative to each-other, the reference and anchor. Since previous studies (Vilkamo
et al., 2009; Laitinen and Pulkki, 2009; Politis, Laitinen, Ahonen and Pulkki, 2015;
Politis, Vilkamo and Pulkki, 2015), have found that lower-order ambisonics may
colour the output spectrum compared to the reference, all of the test cases were
equalised to spectrally match their reference; thus, reducing the likelihood of large
variances in the results due to the easily remedied spectral differences between
methods.

There were 13 test participants in total. It can be seen that for the majority of
sound scenes (Fig. 17b) the first and third-order variants of OM-DirAC are perceived
as being closer to the reference (in terms of overall quality and spatial accuracy) when
compared to their respective first and third-order variants of ambisonics. However,
it is evident in the miz_dry sound scene that spatial artefacts induced by the lack of
individual sectors in OMDirAC o1 have negatively impacted scores; although, the
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scores are still significantly higher than that of the ambi o1 test case, while using
the same first-order spherical harmonic signals. It can also be seen that the increased
number of sectors in the third-order case OMDirAC 03, has reduced spatial artefacts
to a certain extent; however, the performance is not significantly different to the
ambi_03 test case for the miz_dry sound scene. Regardless, it must be stressed that
this particular sound scene does not represent a likely recording scenario and most
recordings will contain some degree of reverberation, which can be seen to mask
these spatial artefacts to some degree in the reverberant counterpart miz_small.



47

6 Conclusion

This thesis has provided details regarding real-time software implementations for
spatially encoding microphone signals, and for visualising and auralising spatial
sound-fields at the listening position. These systems were realised as an acoustic
camera framework and a DirAC enhanced ambisonic decoder, respectively, for which
novel reformulations of the CroPaC and DirAC algorithms have been integrated.

Regarding the acoustic camera, the novel coherence-based parameter with addi-
tional suppression of the side-lobes, represents an intuitive approach for visualising
sound-fields. It also yields a reduction in implementation and computational re-
quirements when compared to MVDR or MUSIC, as it does not rely on lower-upper
decompositions, Gaussian Elimination, or singular value decompositions. As is
demonstrated in the simple test recording scenarios, this proposed method can be
inherently tolerant to reverberation, providing greater spatial selectivity than the
other methods explored in this thesis.

Regarding the novel DirAC formulation for head-tracked headphone playback, this
proposed algorithm represents a clear improvement over existing implementations by
reducing the computational requirements and artefacts arising from model mismatch;
while also improving the robustness and overall perceived spatial accuracy. According
to the listening test results, based on comparisons with a binaural reference, the
method described outperforms first-order ambisonic decoding for all tested sound
scenes and third-order ambisonic decoding in a number of cases, while using only
first-order spherical harmonic signals. When using third-order spherical harmonic
signals, the method is improved further and performs better than ambisonic decoding
for all cases bar one; attaining scores which more closely match the reference.

The End
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