48 research outputs found

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Robust vibration control of a flexible manipulator in presence of payload uncertainty

    Get PDF
    This paper presents the results of hybrid vibration controllers applied for vibration suppression of flexible manipulator. The model of the manipulator is assumed to be uncertain due to varying payload. To cater for the model uncertainty the proposed hybrid controller combines robust input shaping for command input with μ-controller applied for active vibration suppression using smart materials. Dependence of hybrid controller performance on design frequencies of input shaper is also studied. Results showed that the performance of hybrid controller is strongly dependent on the parameters used for designing input shaper, and the effectiveness of the hybrid controller can be substantially increased by judiciously selecting the design frequencies of input shaper. Effectiveness of the proposed controller is demonstrated by comparative studies with hybrid controllers formed by robust input shaping and PPF (positive position feedback) controller. Results are compared for suppressing vibrations resulting from slewing motion of manipulator, where the slewing motion is controlled by the PD controller. Results of comparisons showed that the μ-controller gave better performance in terms of settling time and energy consumption than those using PPF

    Structural load alleviation using distributed delay shaper: Application to flexible aircraft

    Get PDF
    © 2019 Elsevier Ltd Lightweight flexible aircraft suffers from unwanted oscillatory vibrations during aircraft manoeuvres. A recently developed distributed-delay signal (DZV) shaper is therefore proposed to be applied as a feedforward controller to alleviate the manoeuvre loads, as an alternative to traditional structural filters used routinely in this context. Structural filters are essentially linear low-pass filters with bandwidth below the significant flexible modes, applied to control signals generated either by the pilot's direct input or by the flight control system. It has been showed that if instead a properly tuned signal shaper is used, better performance can be achieved: first, the target modes are significantly attenuated while the responsiveness of the aircraft is less compromised and secondly, the oscillatory nature of the vibrations are reduced. The high fidelity simulation results on a full scaled dynamic model of a highly flexible blended wing–body (BWB) aircraft show that in comparison to traditional structural filters, signal shapers significantly reduce the wing root loading (forces and moments) which provides potential structural benefits

    Dynamics and control of dual-hoist cranes moving distributed payloads

    Get PDF
    Crane motion induces payload oscillation that makes accurate positioning of the payload a challenging task. As the payload size increases, it may be necessary to utilize multiple cranes for better control of the payload position and orientation. However, simultaneously maneuvering multiple cranes to transport a single payload increases the complexity and danger of the operation. This thesis investigates the dynamics and control of dual-hoist bridge cranes transporting distributed payloads. Insights from this dynamic analysis were used to design input shapers that reduce payload oscillation originating from various crane motions. Also, studies were conducted to investigate the effect input shaping has on the performance of human operators using a dual-hoist bridge crane to transport distributed payloads through an obstacle course. In each study, input shaping significantly improved the task completion time. Furthermore, input-shaping control greatly decreased operator effort, as measured by the number of interface button pushes needed to complete a task. These results clearly demonstrate the benefit of input-shaping control on dual-hoist bridge cranes. In addition, a new system identification method that utilizes input shaping for determining the modal frequencies and relative amplitude contributions of individual modes was developed to aid in the dynamic analysis of dual-hoist bridge cranes, as well as other multi-mode systems. This method uses a new type of input shaper to suppress all but one mode to a low level. The shaper can also be used to bring a small-amplitude mode to light by modifying one of the vibration constraints.M.S

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    Using input shaping to minimize residual vibration in flexible space structures

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1995.Includes bibliographical references (p. 115-118).by Kristen Andrea Bohlke.M.S

    Minimum Time Control of a Gantry Crane System with Rate Constraints

    Full text link
    This paper focuses on the development of minimum time control profiles for point-to-point motion of a gantry crane system in the presence of uncertainties in modal parameters. Assuming that the velocity of the trolley of the crane can be commanded and is subject to limits, an optimal control problem is posed to determine the bang-off-bang control profile to transition the system from a point of rest to the terminal states with no residual vibrations. Both undamped and underdamped systems are considered and the variation of the structure of the optimal control profiles as a function of the final displacement is studied. As the magnitude of the rigid body displacement is increased, the collapse and birthing of switches in the optimal control profile are observed and explained. Robustness to uncertainties in modal parameters is accounted for by forcing the state sensitivities at the terminal time to zero. The observation that the time-optimal control profile merges with the robust time-optimal control is noted for specific terminal displacements and the migration of zeros of the time-delay filter parameterizing the optimal control profile are used to explain this counter intuitive result. A two degree of freedom gantry crane system is used to experimentally validate the observations of the numerical studies and the tradeoff of increase in maneuver time to the reduction of residual vibrations is experimentally illustrated

    Comparison of polynomial profiles and input shaping for industrial applications

    Get PDF
    Command shaping creates reference commands that reduce residual vibrations in a flexible system. This thesis examines the use of command shaping for flexible system control in three industrial applications: cam-follower systems, sloshing liquids, and cherrypickers. One common type of command shaping is command smoothing which creates a smooth transition between setpoints. A specific type of command smoothing used in cam-follower systems is the polynomial profile. An alternative technique to reduce vibration in flexible systems is input shaping. In this thesis, input-shaped commands are compared to polynomial profiles for applications requiring both vibration suppression and fast motion. Simulation and experimental results show that input shaping is faster than polynomial profiles and provides a simple approach to suppressing residual vibration. Secondly, significant experimental contributions have been made in the area of slosh control. The oscillation of liquids in a container can cause liquid spillage or can cause stability issues, especially in space vehicles. In the past, a number of control techniques have been proposed, but only a few recommend the use of input shaping. This thesis describes the use of command shaping to limit slosh. Results are supported by numerical and experimental testing. Input-shaped commands reduce residual slosh amplitude compared to unshaped commands and polynomial profiles. Input-shaped commands can also accommodate uncertainties and changes in the sloshing frequencies. Lastly, a small-scale cherrypicker was constructed to study the use of input-shaping control on these types of aerial lifts. Cherrypickers have flexible dynamic effects that can cause dangerous and life-threatening situations. To study this class of machines and to provide future students an experimental testbed, several design criteria were established before construction began. The resulting machine achieved most design objectives, including a simple-to-use graphical user interface and accurate state measurements. Robust input-shaping controllers were implemented to limit endpoint vibration. The design of the cherrypicker is discussed and experimental results are reported.M.S.Committee Chair: William Singhose; Committee Member: Al Ferri; Committee Member: Jun Ued

    Dynamic modelling and control of a flexible manipulator.

    Get PDF
    This thesis presents investigations into dynamic modelling and control of a flexible manipulator system. The work on dynamic modelling involves finite element and symbolic manipulation techniques. The control strategies investigated include feedforward control using command shaping techniques and combined feedforward and feedback control schemes. A constrained planar single-link flexible manipulator is used as test and verification platform throughout this work. Dynamic model of a single-link flexible manipulator incorporating structural damping, hub inertia and payload is developed using the finite element method. Experiments are performed on a laboratory-scale single-link flexible manipulator with and without payload for verification of the developed dynamic model. Simulated and experimental system responses to a single-switch bang-bang torque input are presented in the time and frequency domains. Resonance frequencies of the system for the first three modes are identified. The performance and accuracy of the simulation algorithm are studied in comparison to the experimental results in both domains. The effects of damping and payload on the dynamic behaviour of the manipulator are addressed. Moreover, the impact of using higher number of elements is studied. The application of a symbolic manipulation approach for modelling and performance analysis of a flexible manipulator system is investigated. System transfer function can be retained in symbolic form using this approach and good approximation of the system transfer function can be obtained. Relationships between system characteristics and parameters such as payload and hub inertia are accordingly explored. Simulation and experimental exercises are presented to demonstrate the effectiveness of the symbolic approach in modelling and simulation of the flexible manipulator system. Simulation and experimental investigations into the development of feedforward control strategies based on command shaping techniques for vibration control of flexible manipulators are presented. The command shaping techniques using input shaping, low-pass and band-stop filters are considered. The command shaping techniques are designed based on the parameters of the system obtained using the unshaped bang-bang torque input. ii Abstract Performances of the techniques are evaluated in terms of level of vibration reduction, time response specifications, robustness to error in natural frequencies and processing times. The effect of using higher number of impulses and filter orders on the system performance is also investigated. Moreover, the effectiveness of the command shaping techniques in reducing vibrations due to inclusion of payload into the system is examined. A comparative assessment of the performance of the command shaping techniques in vibration reduction of the system is presented. The development of hybrid control schemes for input tracking and vibration suppression of flexible manipulators is presented. The hybrid control schemes based on collocated feedback controllers for rigid body motion control with non-collocated PID control and feedforward control for vibration suppression of the system are examined. The non-collocated PID control is designed utilising the end-point deflection (elastic deformation) feedback whereas feedforward control is designed using the input shaping technique. The developed hybrid schemes are tested within the simulation environment of the flexible manipulator with and without payload. The performances of the control schemes are evaluated in terms of input tracking capability and vibration suppression of the flexible manipulator. Initially, a collocated PD utilising the hub-angle and hub-velocity feedback signals is used as a feedback controller. Subsequently, to achieve uniform performance in the presence of a payload, a collocated adaptive control is designed based on pole-assignment self-tuning control scheme. Lastly, a comparative assessment of the performance of the hybrid control schemes is presented

    From plain visualisation to vibration sensing: using a camera to control the flexibilities in the ITER remote handling equipment

    Get PDF
    Thermonuclear fusion is expected to play a key role in the energy market during the second half of this century, reaching 20% of the electricity generation by 2100. For many years, fusion scientists and engineers have been developing the various technologies required to build nuclear power stations allowing a sustained fusion reaction. To the maximum possible extent, maintenance operations in fusion reactors are performed manually by qualified workers in full accordance with the "as low as reasonably achievable" (ALARA) principle. However, the option of hands-on maintenance becomes impractical, difficult or simply impossible in many circumstances, such as high biological dose rates. In this case, maintenance tasks will be performed with remote handling (RH) techniques. The International Thermonuclear Experimental Reactor ITER, to be commissioned in southern France around 2025, will be the first fusion experiment producing more power from fusion than energy necessary to heat the plasma. Its main objective is “to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes”. However ITER represents an unequalled challenge in terms of RH system design, since it will be much more demanding and complex than any other remote maintenance system previously designed. The introduction of man-in-the-loop capabilities in the robotic systems designed for ITER maintenance would provide useful assistance during inspection, i.e. by providing the operator the ability and flexibility to locate and examine unplanned targets, or during handling operations, i.e. by making peg-in-hole tasks easier. Unfortunately, most transmission technologies able to withstand the very specific and extreme environmental conditions existing inside a fusion reactor are based on gears, screws, cables and chains, which make the whole system very flexible and subject to vibrations. This effect is further increased as structural parts of the maintenance equipment are generally lightweight and slender structures due to the size and the arduous accessibility to the reactor. Several methodologies aiming at avoiding or limiting the effects of vibrations on RH system performance have been investigated over the past decade. These methods often rely on the use of vibration sensors such as accelerometers. However, reviewing market shows that there is no commercial off-the-shelf (COTS) accelerometer that meets the very specific requirements for vibration sensing in the ITER in-vessel RH equipment (resilience to high total integrated dose, high sensitivity). The customisation and qualification of existing products or investigation of new concepts might be considered. However, these options would inevitably involve high development costs. While an extensive amount of work has been published on the modelling and control of flexible manipulators in the 1980s and 1990s, the possibility to use vision devices to stabilise an oscillating robotic arm has only been considered very recently and this promising solution has not been discussed at length. In parallel, recent developments on machine vision systems in nuclear environment have been very encouraging. Although they do not deal directly with vibration sensing, they open up new prospects in the use of radiation tolerant cameras. This thesis aims to demonstrate that vibration control of remote maintenance equipment operating in harsh environments such as ITER can be achieved without considering any extra sensor besides the embarked rad-hardened cameras that will inevitably be used to provide real-time visual feedback to the operators. In other words it is proposed to consider the radiation-tolerant vision devices as full sensors providing quantitative data that can be processed by the control scheme and not only as plain video feedback providing qualitative information. The work conducted within the present thesis has confirmed that methods based on the tracking of visual features from an unknown environment are effective candidates for the real-time control of vibrations. Oscillations induced at the end effector are estimated by exploiting a simple physical model of the manipulator. Using a camera mounted in an eye-in-hand configuration, this model is adjusted using direct measurement of the tip oscillations with respect to the static environment. The primary contribution of this thesis consists of implementing a markerless tracker to determine the velocity of a tip-mounted camera in an untrimmed environment in order to stabilise an oscillating long-reach robotic arm. In particular, this method implies modifying an existing online interaction matrix estimator to make it self-adjustable and deriving a multimode dynamic model of a flexible rotating beam. An innovative vision-based method using sinusoidal regression to sense low-frequency oscillations is also proposed and tested. Finally, the problem of online estimation of the image capture delay for visual servoing applications with high dynamics is addressed and an original approach based on the concept of cross-correlation is presented and experimentally validated
    corecore