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SUMMARY

Command shaping creates reference commands that reduce residual vibrations in

a flexible system. This thesis examines the use of command shaping for flexible system

control in three industrial applications: cam-follower systems, sloshing liquids, and cher-

rypickers. One common type of command shaping is command smoothing which creates a

smooth transition between setpoints. A specific type of command smoothing used in cam-

follower systems is the polynomial profile. An alternative technique to reduce vibration

in flexible systems is input shaping. In this thesis, input-shaped commands are compared

to polynomial profiles for applications requiring both vibration suppression and fast mo-

tion. Simulation and experimental results show that input shaping is faster than polynomial

profiles and provides a simple approach to suppressing residual vibration.

Secondly, significant experimental contributions have been made in the area of slosh

control. The oscillation of liquids in a container can cause liquid spillage or can cause

stability issues, especially in space vehicles. In the past, a number of control techniques

have been proposed, but only a few recommend the use of input shaping. This thesis de-

scribes the use of command shaping to limit slosh. Results are supported by numerical

and experimental testing. Input-shaped commands reduce residual slosh amplitude com-

pared to unshaped commands and polynomial profiles. Input-shaped commands can also

accommodate uncertainties and changes in the sloshing frequencies.

Lastly, a small-scale cherrypicker was constructed to study the use of input-shaping

control on these types of aerial lifts. Cherrypickers have flexible dynamic effects that can

cause dangerous and life-threatening situations. To study this class of machines and to

provide future students an experimental testbed, several design criteria were established

x



before construction began. The resulting machine achieved most design objectives, in-

cluding a simple-to-use graphical user interface and accurate state measurements. Robust

input-shaping controllers were implemented to limit endpoint vibration. The design of the

cherrypicker is discussed and experimental results are reported.
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CHAPTER I

INTRODUCTION

The motion of flexible systems is often limited by a desired positioning accuracy. For

example, consider the crane model in Figure 1. As the crane trolley with mass M undergoes

point-to-point motion, the payload with mass m suspended a length L below the trolley will

respond with oscillations. For safe and efficient operation, the payload must be moved

quickly and with minimal residual vibration. There are several ways to reduce residual

vibration. One method is to adjust the mechanical design of the system. The system can be

made more rigid, or damping can be added to the system. Another method is to implement

feedback control, wherein sensors detect deviation from a desired setpoint and actuators

correct the error.

A third method to limit residual vibrations in flexible systems is command shaping.

One form of command shaping is smoothing the transition between setpoints [1, 6, 15, 19,

35, 44, 47, 65, 75, 76, 83]. Examples of smooth commands include polynomial profiles,

s-curves, and trigonometric functions [32, 33, 50, 64]. There has been extensive work to

design smooth command profiles to drive flexible systems and reduce residual vibration,
x(t)

M

m, L
θ

Figure 1. Crane Model
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but inherent tradeoffs exist between vibration suppression, rise time, and ease of design [8].

Input shaping is a specific type of command shaping that reduces vibration in flexi-

ble systems. Using knowledge of the system natural frequency and damping ratio, input

shaping provides a command design approach that results in a fast system response and

minimal residual vibration [5, 9, 51, 53, 62]. As opposed to the low-pass filtering effect of

most smooth commands, input shapers produce an effect similar to notch filters [52]. How-

ever, because input shapers do not have any pass-band constraints, they have much shorter

durations than traditional notch filters. This characteristic leads to faster rise times [52,55].

This thesis compares polynomial profiles with input shaping in several industrial appli-

cations. Chapter 2 provides essential backround information through a review of polyno-

mial profile design and input shaping. Chapter 3 compares polynomial profiles and input

shaping with respect to rise time and vibration suppression characteristics. Input shaping is

shown to be superior to polynomial profiles for vibration reduction, and this conclusion is

verified in the subsequent chapters. Chapter 4 reports simulation and experimental results

of slosh control using command shaping. Chapter 5 describes the design of a small-scale

cherrypicker and experimental testing performed on the machine. This thesis then presents

conclusions and suggests future work.

2



CHAPTER II

DESIGN PROCESS FOR POLYNOMIAL PROFILES AND

INPUT-SHAPED COMMANDS

In addition to the crane model shown in Figure 1, the cam-follower in Figure 2 is another

system with problematic flexible dynamics. The rotating cam surface profile inputs a de-

sired displacement profile, s(t), to the follower through some flexible connection, modeled

by spring k1. Additional flexibility and damping are modeled by spring k2 and dashpot b.

Ideally, the follower response, y(t), tracks the desired displacement. However, such flexible

systems often respond with undesirable vibrations [34, 82].

There are numerous cam profiles that limit residual vibrations [38, 50]. Some profiles

use optimized trigonometric functions [17,63,74]. Other cam profiles aim to minimize the

peak acceleration and jerk with cubic splines [80], or adjust coefficients of polynomials to

achieve kinematic or residual vibration constraints [11, 81]. Polynomial profiles and other

smooth profiles are also used as reference commands to drive automated machinery [20,33,

64, 71, 73]. Polynomial profiles are one common class of cam profiles. This chapter gives

an introduction to the design process for polynomial profiles and input-shaped commands.

m

k1

k2 y(t)

s(t)

Follower

Cam

b

Figure 2. Cam-Follower System
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2.1 Polynomial Profiles

A polynomial profile provides versatility and customization through the selection of bound-

ary conditions for a desired motion. The general form of a polynomial profile is given

by [38, 50]:

s(u) =C0 +C1u+C2u2 + · · ·+Cnun (1)

The polynomial coefficients, Cn, are chosen to satisfy the boundary conditions and limit

the dynamic response. The function s(u) is the displacement of the profile where u is the

normalized time such that u = 0 at the beginning of the motion and u = 1 at the end of the

motion.

Two common polynomial profiles are the 3-4-5 and the 4-5-6-7, named for the order of

the terms in the polynomial. The 3-4-5 polynomial provides continuity for the initial and

final conditions of displacement, velocity v(u), and acceleration a(u):

s(0) = 0, v(0) = 0, a(0) = 0

s(1) = h, v(1) = 0, a(1) = 0
(2)

where h is the magnitude of rise in the profile.

Solving for the coefficients of (1) using the boundary conditions in (2) gives the 3-4-5

polynomial profile:

s(u) = h(10u3−15u4 +6u5) (3)

The 4-5-6-7 polynomial profile can be obtained by including additional constraints on

the continuity of jerk j(u), the third time-derivative of position:

j(0) = 0

j(1) = 0
(4)

The 4-5-6-7 polynomial profile is:

s(u) = h(35u4−84u5 +70u6−20u7) (5)

The displacement, velocity, acceleration, and jerk of both polynomial profiles in the

time domain are shown in Figure 3. It can be seen that each profile achieves a displacement

4
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Figure 3. Polynomial Profile Motion Characteristics

from zero to one in 1.0 seconds. Because the 4-5-6-7 profile has an additional constraint,

it has a higher peak velocity and acceleration. The jerk contiunity constraint of the 4-5-6-7

profile is also shown.

Rules of thumb can be used to select polynomial profiles, and additional constraints

can be placed on transient characteristics to achieve a desired path [38, 50]. However,

polynomial profiles provide no guarantee of satisfactory vibration reduction without an

analysis of the full dynamic system. The method of input shaping discussed in the fol-

lowing section uses knowledge of the dynamic system during the design stage to produce

minimal-vibration command profiles.

5



0

0.5

1

1.5

2

2.5

0 1 2

Shaped Command
Shaped Response

Time (sec)

0

0.5

1

1.5

2

2.5

0 1 2

Command Response

Time (sec)

∗

∆

∆0

Figure 4. Input-Shaping Process

2.2 Input Shaping

The input-shaping process is illustrated in Figure 4. A baseline step command is convolved

with an input shaper containing two positive impulses. The result of the convolution is the

staircase command. Note that the baseline step command causes a residual vibration equal

to the step amplitude; and the input-shaped command eliminates the residual vibration.

Often, the baseline command used with input shaping is a step function because it yields

the fastest rise time. However, the baseline command can also be a ramp, an S-curve, or

any other command [14, 51, 53].

Input shapers are designed using knowledge of the system natural frequency, ωn, and

damping ratio, ζ . Constraint equations are used to determine n impulse times, ti, and am-

plitudes, Ai. The first constraint is derived from the percentage residual vibration equation,

given by [51]:

V (ωn,ζ ) = e−ζ ωntn
√
(C(ωn,ζ ))2 +(S(ωn,ζ ))2 (6)

where

C(ωn,ζ ) =
n

∑
i=1

Aieζ ωnti cos
(

ωnti
√

1−ζ 2
)

(7)

6



S(ωn,ζ ) =
n

∑
i=1

Aieζ ωnti sin
(

ωnti
√

1−ζ 2
)

(8)

Two additional constraints are placed on the impulse amplitudes. First, the sum of the

amplitudes must equal one so that the input-shaped command reaches the setpoint:

n

∑
i=1

Ai = 1 (9)

Second, the input shaper must be constrained to achievable commands. One method to

attain realistic inputs is to set all amplitudes greater than zero:

Ai > 0, i = 1, . . . ,n (10)

Because there can be multiple solutions, the time of the last impulse is minimized to

achieve the fastest command:

min(tn) (11)

To eliminate residual vibration, V in (6) is set equal to zero. Therefore, both (7) and (8)

must equal zero. These constraints give the amplitudes and time spacings of the impulses

in the input shaper. For example, the shaper shown in Figure 4 is [54, 62]:

 ti

Ai

=

 0 0.5Td

1
1+K

K
1+K

 (12)

where

K = e

(
−ζ ωn√

1−ζ 2

)
, (13)

and Td is the damped period of vibration. The input shaper given in (12) produces zero

vibration at the design frequency. As a result, it is called a Zero Vibration (ZV) shaper.

Another constraint can be added by taking the derivative of (6) with respect to ω and

setting it equal to zero. This results in the more-robust Zero Vibration and Derivative (ZVD)

input shaper. The time locations and amplitudes of a ZVD shaper are [51]: ti

Ai

=
 0 0.5Td Td

1
1+2K +K2

2K
1+2K +K2

K2

1+2K +K2

 (14)

7
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Even more robustness to changes in frequency can be obtained with an Extra-Insensitive

(EI) input shaper [41,58]. This shaper is created by setting the percentage residual vibration

constraint, V , in (6) to a non-zero tolerable value, Vtol . For an undamped system, the time

locations and amplitudes of the EI shaper are given by: ti

Ai

=

 0 0.5Td Td

1+Vtol
4

1−Vtol
2

1+Vtol
4

 (15)

To eliminate multiple vibration modes, additional shapers or more complex shapers

are required. A two-mode ZV-shaper (ZV2M) can be designed by simultaneously solv-

ing for the constraints of a two-mode system [27]. Specified Insensitivity (SI) shapers are

generated by specifying a tolerable level of residual vibration over any desired range of

frequencies [57,59]. One method for generating SI shapers uses multiple suppression con-

straints over the range of frequencies. At these distinct frequencies, residual vibration is

constrained to below the tolerable percentage. For example, Figure 5 shows a case where

residual vibrations are suppressed to below 5% of the vibrations caused an unshaped com-

mand over the range of 0.8 to 1.2 Hz.

However, it may be more meaningful to specify a tolerable value of vibration rather

than specify a percentage of tolerable vibration [57]. For a value-based optimization, a

new tolerable vibration constraint is written. For example, the sum of the residual vibration

amplitude contributions of the first two modes, C1 and C2, should be less than a desired

8



tolerable amplitude:

Vtol ≥VAmp =C1 +C2 (16)

From (16), a two-mode SI shaper (SI2M) can be developed.

9



CHAPTER III

COMPARISON OF POLYNOMIAL PROFILES

AND INPUT SHAPING

This chapter provides a comprehensive comparison between polynomial profiles and input

shaping and their use in flexible systems. First, it is shown that numerical methods are nec-

essary to compare the two commands. Next, Section 3.2 reports the vibration-suppression

properties of both types of commands with respect to rise time, robustness, and practi-

cal implementation considerations. Experimental results from a bridge crane are used to

support the theoretical results.

3.1 Frequency Analysis of Input Shapers and Polynomial Profiles

Some smooth commands can be deconvolved into an initial command and an input shaper

[56]. For example, a typical s-curve can be deconvolved into the initial command and input

shaper shown in Figure 6. The shaper “embedded” in this s-curve has the impulse times

and amplitudes of:  ti

Ai

=

 0 Rc
2 Rc

1 −2 1

 (17)

where, Rc is the risetime of the command.

0

0

Initial Command Input Shaper
0

Shaped Command
(S-Curve)

p(t) u(t)
0.5

1

1 1

-2 0.5 1

b(t)=2t2

∗

Figure 6. S-curve Convolution (From “Command generation for flexible systems by
input shaping and command smoothing”, Singhose, et al.)

10



The input shaper in (17) provides a useful tool to compare this command to input shap-

ing. For example, the frequencies suppressed by the s-curve can be determined for a given

rise time. Using such an analysis, it has been shown that the s-curve rise time must be

four times longer than a ZV-shaped step command to suppress the same frequency. How-

ever, this decomposition cannot be done for all smooth commands. In this section, several

common input shapers are shown to eliminate residual vibration at regularly-spaced fre-

quencies. Then, it is shown that the 3-4-5 and 4-5-6-7 polynomial profiles do not eliminate

residual vibration at regularly-spaced frequencies. Because polynomial profiles do not con-

tain the periodic nature seen in input shapers, they do not contain an embedded input shaper.

The results are generalized in the appendices to include all input shapers and all polynomial

profiles.

3.1.1 Laplace Transform of Input Shapers

It has been shown that the amplitude-frequency response of the ZV shaper is a periodic

function [42]. The analysis is extended here through the use of the Laplace transform.

To find the frequencies where an input shaper yields zero residual vibration, its Laplace

transform is set equal to zero [54]. The Laplace transform of a two-impulse shaper is:

A1 +A2e−t2s = 0 (18)

For the ZV shaper, the relation between the two amplitudes is found from (12):

A2 = A1e
−ζ π√
1−ζ 2 (19)

The time locations of the ZV impulses are also given in (12). Substituting the amplitude

relation and time locations into (18) yields:

A1(1+ e
−ζ π√
1−ζ 2 e−

π

ωd
s
) = 0 (20)

This is further reduced to:

e−
π

ωd
(ζ ωn+s)

=−1 (21)

11



Substituting s = σ + jω into (21) yields:

e−
π

ωd
(ζ ωn+σ)e−

π

ωd
jω

=−1 (22)

In (22), there is a real and an imaginary exponential term. For the equation to hold true,

the real term must equal 1, and the imaginary term must equal -1 [54]. This yields:

e−
π

ωd
(ζ ωn+σ)

= 1 (23)

e−
π

ωd
jω

=−1 (24)

Therefore,

σ =−ζ ωn (25)

cos
(

πω

ωd

)
− j sin

(
πω

ωd

)
=−1 (26)

The real cosine term in (26) must equal -1, and the imaginary sine term must equal

zero.

cos
(

πω

ωd

)
=−1 (27)

ω

ωd
= 1,3,5, . . . (28)

and,

sin
(

πω

ωd

)
= 0 (29)

ω

ωd
= 1,2,3, . . . (30)

The solution of (28) contains odd, positive integers, and the solution of (30) contains

positive integers. The overall solution is the intersection between the solution sets of (28)

and (30), i.e. when ω/ωd equals an odd, positive integer. Therefore, a ZV shaper eliminates

residual vibration at regularly-spaced frequencies.

A similar procedure can be followed for the ZVD shaper. The corresponding real cosine

and imaginary sine terms for the ZVD shaper are:

cos
(

πω

ωd

)(
1+ cos

(
πω

ωd

))
= 0 (31)
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Figure 7. Overall ZVD Shaper Solution

and,

sin
(

πω

ωd

)(
1+ cos

(
πω

ωd

))
= 0 (32)

The overall solution for the ZVD shaper is found from the common terms of (31) and

(32):

1+ cos
(

πω

ωd

)
= 0 (33)

ω

ωd
= 1,3,5, . . . (34)

Similar to the ZV shaper, the ZVD shaper also eliminates residual vibration when the

quantity ω/ωd equals an odd, positive integer. To help visualize the solution, (31) and (32)

are plotted in Figure 7. The solution is located at the points where the real cosine solution

curve and the imaginary sine solution coincide on the zero axis. It is clear that each point,

marked by a circle, occurs at regularly-spaced frequencies.

The EI shaper has a different solution due to the presence of the variable Vtol . The

overall solution is:

ω

ωd
=

1
π

cos−1
(

Vtol−1
Vtol +1

)
(35)

When Vtol equals zero, it is equivalent to the ZVD shaper, and so it eliminates residual

vibration at odd, positive integers. At nonzero values of Vtol , residual vibration is eliminated

at two points on either side of each odd, positive integer.
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Figure 8. Solutions for the EI Shaper

To help visualize the solution, a family of curves is shown in Figure 8(a) for the cosine

solution over a range of Vtol values. When Vtol equals zero, the cosine term is zero at

frequency ratios of 1 and 3, and two symmetrical points about 1 and 3. For increasing

values of Vtol , the zero-crossings move away from 1 and 3, but remain symmetrical about

these points.

The same family of curves is shown for the sine solution in Figure 8(b). Similarly,

as Vtol increases, the zero-crossings move away from frequency ratios of 1 and 3. The

overall solution for the EI shaper is where the cosine and sine terms have mutual zeros. For

Vtol = 0.3, these values occur at 1 ± 0.31, 3 ± 0.31, 5 ± 0.31, and so on. For Vtol = 0.6,

these values occur at 1 ± 0.42, 3 ± 0.42, 5 ± 0.42, and so on. Like the previous shapers,

the EI-shaper eliminates frequencies at regular intervals.

The Unity Magnitude Zero Vibration (UM-ZV) input shaper exhibits somewhat differ-

ent behavior because it has a negative impulse [60]: ti

Ai

=

 0 Td
6

Td
3

1 −1 1

 (36)

The zeros of the UM-ZV shaper are:

ω

ωd
=

3
π

cos−1
(

1
2

)
= 1,5,7,11,13, . . . (37)
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Figure 9. Overall UM-ZV Shaper Solution

For the UM-ZV shaper, the pattern is different than previously seen, but the zeros still

repeat at a regular interval. The cosine and sine equations are plotted in Figure 9, and the

locations of the overall solution frequency ratios are circled. These methods are generalized

to include all input shapers in Appendix A.

Another way to demonstrate the periodic manner in which input shapers eliminate resid-

ual vibrations is with a vector diagram [58]. A vector diagram plots the impulses of an input

shaper as vectors on a polar axis. Each vector begins at the origin. The length of a vector

is equal to the amplitude of the corresponding impulse. The rotation angle of the vector

is found by multiplying the system frequency, ω , by the time location of the impulse. If

the impulse is negative, then the vector points toward the origin. The sum of the vectors

determines the magnitude and phase of the residual vibration.

For example, consider the vector diagram of the ZV shaper shown on the left of Figure

10. For an undamped system at frequency ω , the first vector has a length of 0.5 and has an

angle of zero. The second vector also has a length of 0.5 and is rotated by an angle θ =ωt2.

If the ZV shaper is designed perfectly (t2 = π

ω
), then the second vector will be exactly

opposite of the first vector (θ = ω
π

ω
= π). The two vectors sum to zero, demonstrating

that the ZV shaper eliminates residual vibration. Now consider a system where ω is three

times the original value, as shown on the right of Figure 10. With the same ZV shaper,

the second vector now has an angle of 3π and appears in the same location. The sum of
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Figure 10. Vector Diagrams for a ZV shaper

the vectors for this new system is also zero. This vector diagram analysis shows that if the

first design frequency is multiplied by any odd, positive integer, then the ZV shaper will

eliminate residual vibrations.

Similar vector diagrams can be generated for the ZVD and EI shapers to show that they

also eliminate residual vibrations at or near every odd, positive integer multiple of the first

frequency.

A vector diagram of the first suppressed frequency of the UM-ZV shaper is shown in

the top left of Figure 11. The three vectors clearly add to zero. In the top right, the system

frequency is increased by a factor of five. The vectors are mirrored across the horizontal

axis and still add to zero. The three vectors return to their original locations when ω is

seven times the original value, shown in the bottom of Figure 11. This pattern continues,

in accordance with (37).

3.1.2 Continuous Fourier Transform of Polynomial Profiles

The 3-4-5 polynomial profile can be converted to the frequency domain using the con-

tinuous Fourier transform (CFT). Over the interval −∞ to ∞, the polynomial profile is

piecewise. For a 3-4-5 polynomial with a rise of one and a rise time of one, the piecewise
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equation is given by:

x(t) =


0 t < 0

10t3−15t4 +6t5 0≤ t ≤ 1

1 1 < t

(38)

The magnitude of the CFT gives the frequency content of the command. For the 3-4-5

polynomial, this is:

|X( jω)|= 60
ω6

[
−288cos(ω)+120ω

2 cos(ω)

−2ω
4 cos(ω)−288ω sin(ω) (39)

+24ω
3 sin(ω)+288+24ω

2 +2ω
4]1/2

The plot of this function in Figure 12 shows the frequency content over a range of

frequencies. At certain frequencies, the magnitude is zero. These are the frequencies where

the 3-4-5 profile completely eliminates residual vibration. The location of these zeros is

particularly important. Note that the frequency is not normalized because this polynomial

command was not designed for a specific frequency.
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The first fifteen zeros were numerically determined, and the frequency difference be-

tween sequential zeros (zero-pairs) is shown in Figure 13. The difference between zero-

pairs is not constant; but as the zero-pair approaches infinity, the difference approaches 1

Hz. This is a result of the last two terms in (39). From this equation, it can be noted that

the 3-4-5 polynomial profile does not eliminate vibration at regularly-spaced frequencies.

The magnitude of the CFT of the 4-5-6-7 polynomial profile is:

|X( jω)|= 840
ω8

[
−15840ω sinω +3144ω

3 sinω

−48ω
5 sinω−2880cosω +10368ω

2 cosω (40)

−528ω
4 cosω +2ω

6 cosω +14544

+4032ω
2 +48ω

4 +2ω
6]1/2
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The last three terms in (40) similarly show that the 4-5-6-7 polynomial profile does not

eliminate vibration at regularly-spaced frequencies. For a generalization that extends to all

polynomial profiles, refer to Appendix B.

In this section, common input shapers were shown to eliminate residual vibration at

periodically-spaced frequencies, and this conclusion was extended to include all input

shapers in Appendix A. It was also shown that the 3-4-5 and 4-5-6-7 polynomial profiles

do not eliminate residual vibration in a periodic manner, and this conclusion was extended

to include all polynomial profiles in Appendix B. If some command can be decomposed

into a baseline command convolved with an input shaper, then the frequency domain of

the command must contain periodically-spaced zeros. Because polynomial profiles do not

contain periodically-spaced zeros in the frequency domain, there cannot be an input shaper

embedded in polynomial profiles.

3.2 Comparison of Polynomial Profiles and Input-Shaped Commands

Given that both polynomial profiles and input-shaped commands are used to drive flexi-

ble systems, it is important to understand their relative strengths and weaknesses. First,

typical responses of polynomial profiles and input-shaped commands are shown. Then,

comparisons are made with respect to rise time and robustness. Practical implementation

considerations are also discussed.

3.2.1 Polynomial Profile Command Responses

Consider the single degree-of-freedom cam-follower system in Figure 2 with a natural

frequency of 1 Hz and no damping. The follower response of this system to three different

3-4-5 polynomial profiles with different rise times is shown in Figure 14. The first rise

time is equal to half of the period of oscillation (0.5 s); the second rise time is equal to one

period of oscillation (1.0 s); and the last rise time produces residual vibration that is 5%

of the move distance (1.68 s). Corresponding results for the 4-5-6-7 polynomial profile are

shown in Figure 15.
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Figure 15. 4-5-6-7 Polynomial Profile Responses

The half-period 3-4-5 and 4-5-6-7 profiles induce residual vibration amplitudes greater

than 80% of the move distance. With a rise time equal to one period, the residual vibration

amplitudes are reduced to 46% and 56%, respectively. To achieve residual vibrations of

5%, the polynomial profiles require rise times of 1.68 and 1.95 seconds, respectively. If

the residual vibration amplitude must be suppressed even further, then the rise times of the

polynomial profiles must increase.
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Figure 16. Response of a One-Mode System (1 Hz) to ZV-Shaped Commands

3.2.2 Input-Shaped Command Responses

Two ZV-shaped commands were designed for the single degree-of-freedom, 1-Hz un-

damped system. The first command uses a baseline step command. This results in the

fastest-possible ZV-shaped command with a rise time of 0.5 seconds. The second com-

mand is a shaped smooth command [5]. Here, the baseline command is a 3-4-5 polynomial

command with a rise time of 0.5 seconds, which produces a shaped command with a rise

time of 1 second. This shaped command will be abbreviated as “ZV-shaped smooth”. It is

slower than the shaped step command, but provides a low-pass filtering effect similar to the

polynomial profiles. Refer to [56] for guidelines regarding the use of smooth baseline com-

mands with input shapers. These two ZV-shaped commands and the follower responses are

shown in Figures 16(a) and 16(b). Both commands eliminate residual vibration for this

system.

The benefit of the low-pass filtering effect of the ZV-shaped smooth command can be

seen in a system with additional modes of vibration. The responses of a two-mode system

with frequencies of 1 Hz and 3.5 Hz are shown in Figures 17(a) and 17(b). It can be

seen that the ZV-shaped step command eliminates the first vibratory mode, but there is

noticeable residual vibration at the higher frequency. However, the low-pass filtering effect

of the ZV-shaped smooth command eliminates most of the residual vibration at the higher
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Figure 17. Response of a Two-Mode System (1 Hz and 3.5 Hz) to ZV-Shaped
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Figure 18. Response of a One-Mode System (1 Hz) to an EI-Shaped Command

frequency.

An EI-shaped command was also created using the same baseline command as the ZV-

shaped smooth command and with a tolerable residual vibration, Vtol , of 5%. The one-mode

system response is shown in Figure 18. Because the system operates exactly at the design

frequency, there is 5% residual vibration. However, this shaped command is very robust to

deviations in system frequency, and will be discussed further in Section 3.2.3.

3.2.3 Rise Time and Robustness

It is often desired to move a system rapidly without exciting resonances. Table 1 compares

the rise times, R, of polynomial profiles to input-shaped step commands. The values are
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Table 1. Comparison of Rise Times to Achieve 5% Residual Vibration
3-4-5 Profile 4-5-6-7 Profile

RZV = 0.29 R3-4-5 RZV = 0.24 R4-5-6-7
RZVD = 0.50 R3-4-5 RZVD = 0.43 R4-5-6-7
REI-5% = 0.47 R3-4-5 REI-5% = 0.39 R4-5-6-7
RUMZV = 0.19 R3-4-5 RUMZV = 0.16 R4-5-6-7

for the fastest commands that achieve 5% residual vibration in a one-mode system. For ex-

ample, to suppress vibration in a given system, the rise time of a ZV-shaped step command

is only 29% of the rise time of a 3-4-5 polynomial profile. For an EI-shaped command

designed with 5% tolerable vibration, the rise time is 47% of the rise time for a 3-4-5

polynomial profile. Input-shaped commands show an even greater benefit over the 4-5-6-7

polynomial profile. The fastest command is the UMZV-shaped command, which has a rise

time of only 16% of the 4-5-6-7 polynomial profile. It should be noted that convolving a

different baseline command with the input shaper may result in different rise times.

Robustness is an important design consideration to accommodate modeling errors or

changes in the system. Figure 19 shows the percent residual vibration amplitude resulting

from two ZV-shaped commands and one EI-shaped command designed for a system fre-

quency of 1 Hz. Here, 100% residual vibration corresponds to the vibration induced by a

step command, and robustness is defined as the frequency range over which a command

induces less than 5% vibration. At the design frequency (1 Hz), the two ZV-shaped com-

mands eliminate residual vibration, and the EI-shaped command reduces residual vibration

to 5%. However, the EI-shaped command is over six times as robust as the ZV-shaped

commands [58]. At higher frequencies, the ZV-shaped step command eliminates vibration

at odd multiples of the design frequency. The smooth baseline command of the ZV-shaped

and EI-shaped smooth commands provides a low-pass filtering effect. The residual vibra-

tion induced by these commands is reduced to 5% at all frequencies greater than 2.8 Hz

and 2.6 Hz, respectively.
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Figure 19. Residual Vibration Amplitudes

Figure 19 also shows the vibration induced by two polynomial profiles. The polyno-

mial commands have rise times equal to the ZV-shaped smooth command. The 3-4-5 and

4-5-6-7 polynomial profiles induce over 45% residual vibration at 1 Hz. The 3-4-5 and

4-5-6-7 profiles do reduce residual vibration to 5% at frequencies greater than 1.7 Hz and

2.0 Hz, respectively.

3.2.4 Practical Considerations

One weakness of polynomial profiles used for reference motion commands is that they

cannot be generated on-the-fly. When polynomial profiles are used to generate trajectory

commands, a path is generated according to desired boundary conditions. There are two

limitations to this requirement. First, a move command must reach its final state before a

successive move command can begin. Second, if a move command is interrupted during

the move, then the low-pass filtering effect is eliminated. Input shaping overcomes these

limitations by convolving an input with an input shaper in real-time. By this method, any

desired movement results in reduced residual vibration. Move commands can be generated

on-the-fly without regard for previous move commands and without the need for the system

to finish any current motion it might be executing.
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3.3 Experimental Results

Testing was conducted on the portable bridge crane sketched in Figure 20. The bridge and

trolley axes are driven by servomotors, and an overhead camera provides precise, real-time

measurements of the payload location [31]. Using a payload suspended 70 cm below the

trolley ( f = 0.59 Hz), move commands were generated using the 3-4-5 and the 4-5-6-7

polynomial profiles to achieve a 20 cm move distance. ZV-shaped and EI-shaped smooth

commands were designed to eliminate vibrations for a 0.59 Hz system. The risetimes of

the ZV-shaped and EI-shaped commands were 1.7 and 2.5 sec, respectively. Because these

commands contain a smooth profile as the basline command, their risetimes are greater

than that of a shaped-step commands.

The effect of increasing the rise time of polynomial profiles on residual vibration was

investigated. For each test, the rise time was increased from 1.7 seconds until 5% residual

vibration was achieved. The results are shown in Figure 21. The 3-4-5 and 4-5-6-7 polyno-

mial profiles resulted in 44% and 55% residual vibration, respectively, when the rise time

was set equal to the ZV-shaped command (1.7 s). The polynomial profiles resulted in 10%

and 21% residual vibration when the rise time was set equal to the EI-shaped command

(2.5 s). In order to achieve 5% residual vibration, the 3-4-5 profile required a rise time of
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Figure 21. Experimental Testing of Rise Time

3.0 seconds, and the 4-5-6-7 profile required a rise time of 3.3 seconds. On the other hand,

both shaped commands resulted in residual vibration amplitudes of less than 5%.

The robustness of the commands was studied by testing them over a range of system

frequencies by changing the height of the suspended payload. The same ZV- and EI-shaped

commands were used, and the polynomial profiles had rise times equal to the rise time of the

ZV-shaped smooth command (1.7 sec). The results are shown in Figure 22. The ZV-shaped

command resulted in less than 5% residual vibration at the design point of 0.59 Hz. The

residual vibration increased as the system deviated from the design point. The EI-shaped

command was more robust; it limited residual vibration to less than 5% between 0.49 Hz

and 0.72 Hz. The polynomial profiles with the given rise time could not reduce residual

vibration to 5% in the workspace that was measurable by the data acquisition camera. It

is interesting to note that the polynomial profiles produced larger-than-expected vibrations.

This was a result of stiction in the motors that prevented small velocity changes. Stiction

did not induce greater vibrations in the input-shaped cases because it was a component of

the baseline command and not the input shaper. These experimental results confirm the

results shown in Figure 19.
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Figure 22. Experimental Testing of Robustness
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CHAPTER IV

SLOSH CONTROL

4.1 Introduction

Slosh is the oscillation of liquid inside a container. There are many cases where sloshing

is undesired. In the packaging and metal industries, excessive slosh can spill liquids or

molten metal [67]. Sloshing of fuel and other liquids in vehicles can result in unwanted

dynamics and dangerous rollovers [4]. This is especially true for space vehicles where

excessive slosh can cause instability [43].

There has been significant research to characterize and control slosh. A main thrust of

research was driven by NASA. This work covered the governing equations, experimental

results for a variety of container shapes, and the modeling of slosh [3,13,28,49]. There have

been more recent studies of slosh in space vehicles which investigated liquid type [24, 25],

container shape [69, 70], and spacecraft motion [26, 46].

In order to suppress slosh, a variety of methods have been proposed, simulated, and

tested. Some techniques are passive [36], or rely on actuators near the liquid surface for

slosh suppression [23, 72]. However, it is often not practical to place actuators in or near

the liquid. The majority of proposed techniques use the container motion as the control

input in a feedback loop. Examples of these include: sliding mode control [7, 30]; H∞

control [67, 79]; PID control [61]; a hybrid shape approach [29, 37, 77, 78]; and iterative

learning control [21]. Some control schemes filter the input to create a prescribed motion

that results in minimal residual oscillation [10,16]. Several experimental test rigs have been

constructed [2, 3, 16, 18, 22, 68].

There have been several implementations of input shaping as a means to control slosh

[2, 16, 22, 45, 66, 68]. However, no reports have shown experimental verification of input

28



0
0.05

0.1
0.15

0.2 0
0.025

0.05
0.075

0.1

0

10

20

30

40

 

Liquid
Depth (m)

Container  
Length (m)

 

Fr
eq

ue
nc

y 
(r

ad
/s)

5

10

15

20

25

30

35

95%

Figure 23. Slosh Frequency of Liquid Surface

shapers that are robust to parameter variation. This chapter reports simulated and experi-

mental evaluation of robust input shaping for slosh suppression.

4.2 System Modeling
4.2.1 Slosh

The natural frequency of the i th mode of a liquid surface in a rectangular container can be

described by [3]:

ω
2
ni
= (2i−1)

gπ

a
tanh

(
(2i−1)

hπ

a

)
(41)

where g is the gravitational acceleration, a is the container length in the direction of wave

motion, and h is the liquid depth. Several assumptions are utilized to arrimve at this sim-

plified equation, including zero liquid viscosity. Note that the container width is not an

influence on the frequencies. Experimental testing has shown that (41) often predicts the

frequency with less than 5% error [39].

A three dimensional surface plot of the fundamental slosh frequency versus container

length and liquid depth is shown in Figure 23. Increasing the container length results in

a lower slosh frequency because the wave must travel further before being reflected. As
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the liquid depth increases, the hyperbolic tangent term approaches unity and the frequency

approaches a theoretical limit. As a result, the slosh frequency changes very little after a

critical depth. The line superimposed on Figure 23 shows the liquid depths at which the

slosh frequency reaches 95% of its maximum value. This line corresponds to liquid depths

that are approximately half of the container length.

Analytical expressions have also been developed for the damping ratio, showing it to

be approximately 0.01 for water. The analytical expression for the damping ratio is a

function of an experimentally-found constant, the Galilei number, and container geometry.

However, it can have up to 25% error [3,39]. Given this uncertainty, the damping ratios for

the tests reported here were determined experimentally.

4.2.2 Dynamic System Model

A container with sloshing liquid can be approximated by the model shown in Figure 24.

The container motion y(t) induces a damped vibratory response, xi(t), in the i th mode.

This is a linearized form of the commonly-used pendulum model of slosh. Each additional

vibratory mode of slosh is modeled by an additional mass-spring-damper system. The first

two modes of slosh are modeled in Figure 24. The combined mass of the container and

stationary liquid is m0, and the dimensions a and h used in (41) are also illustrated. The

equation of motion for the i th mode of the system is:

ẍi +2ζiωni ẋi +ω
2
ni

x = 2ζiωni ẏ+ω
2
ni

y (42)

where ωni is given in (41), and ζi is determined experimentally.

Converting (42) to the s-domain yields:

X(s) =

(
2ζiωnis+ω2

ni

s2 +2ζiωnis+ω2
ni

)
Y (s) (43)

The motion of the liquid surface, δ (t,w), is a function of time and the measurement

location w. The rightmost edge of the container, measurement location a, is of particular
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interest because it is the anti-node of the mode shapes and where spillage occurs [3]. The

motion at location a is the sum of the relative motions between xi and y:

δ (t,a) =
n

∑
i=1

xi(t)− y(t) (44)

The motion of the liquid surface at location a caused by a step in velocity of the con-

tainer is:

δ (t,a) = |Ẏ |
n

∑
i=1

(
1

ωdi

)
e−ζiωni t sinωdit (45)

where |Ẏ | is the velocity amplitude and the damped natural frequency is:

ωdi = ωni

√
1−ζ 2

i (46)

In order to design a value-based input shaper, the amplitude contributions of the first

two modes can be found in (45). As described in Chapter 2, the sum of these contributions

should be less than a tolerable amplitude:

Vtol ≥VAmp = |Ẏ |
(

1
ωd1

+
1

ωd2

)
(47)

From (47), a two-mode SI shaper (SI2M) can be designed.
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Figure 25. Wave Interference for 2-Second Move, (ω = 6 rad/s)

4.2.3 Wave Interference

When considering point-to-point motions, it is important to understand how vibrations in-

duced by the ‘go’ command may interfere with vibrations induced by the ‘stop’ command.

For example, an acceleration pulse and a deceleration pulse (delayed by 2 seconds) are

shown in the top left of Figure 25. The acceleration pulse would cause a one-mode system

(ω = 6 rad/s) to respond with the oscillations shown by the dashed line in the top right of

Figure 25, and the deceleration pulse would induce the oscillations shown by the dotted

line. The total linear system response is the sum of these two waves, and is shown in the

bottom of Figure 25. In this case, the residual vibration amplitude is 1.1.

If the move time changes, then the residual vibration amplitude may differ, despite the

system receiving the same acceleration and deceleration pulses. In Figure 26, the decel-

eration pulse occurs at 2.5 seconds. The oscillations induced by each pulse are shown,

and the total response has a residual vibration amplitude of 2.3. If the system frequency
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Figure 26. Wave Interference for 2.5-Second Move (ω = 6 rad/s)

changes, then a different amount of residual vibration will be generated, despite using the

same acceleration and deceleration. In Figure 27, the deceleration impulse is again set at

2 seconds, but the system frequency has changed from 6 rad/s to 5 rad/s. With this lower

frequency, the total system response has a residual vibration amplitude of 2.7, rather than

the 1.1 vibration amplitude that occurs with a frequency of 6 rad/s.

4.3 Testing Apparatus

For experimental testing, the container and camera in Figure 28 were mounted to an XY

gantry. The gantry was driven by servomotors and controlled by a programmable logic

controller [31]. The camera recorded the slosh inside the container. Parameters of the

experimental setup are given in Table 2.

Each video frame from the experimental trials was extracted from the video, as shown

in Figure 29(a). The image was then thresholded, as shown in Figure 29(b). The surface

of the water was located from the boundary between whte and black, and is shown in
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Figure 28. Testing Apparatus
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Table 2. Experimental Parameters

Container length (m) 0.18

Move distance (m) 0.36

Peak velocity (m/s) 0.18

Acceleration (m/s2) 1.5

Camera frame rate (Hz) 30

Camera resolution (mm) 0.35

(a) Image Frame

(b) Thresholded Image

Recorded Point

(c) Boundary and Recorded Point

Figure 29. Image Processing
Figure 29(c). To measure slosh, the displacement of the rightmost point on the surface was

recorded for each image. This point is denoted by the circle in Figure 29(c). The damping

ratios of the first two modes were experimentally found to be 0.010 and 0.015 using the

logarithmic decrement.
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4.4 Command Design

When designing commands for a system with sloshing dynamics, it is important to un-

derstand which modes of oscillation are important and how the sloshing frequencies will

change. Some applications only consider the first mode of slosh [26], while other appli-

cations may require consideration of the second mode. In addition, the frequencies may

change significantly due to varying liquid depth, or the frequencies may remain relatively

constant during operation.

Four input shapers were designed to accommodate each scenario: one- or two-mode

suppression, and robust or not robust to frequency changes. A single-mode, non-robust ZV

shaper was designed for a frequency of 12.5 rad/s (a liquid depth of 8.7 cm). A single-mode

EI shaper was designed for a frequency of 10.9 rad/s (a liquid depth of 4.9 cm) and with a

5% tolerable vibration. A two-mode ZV shaper (ZV2M) was designed for frequencies of

12.5 rad/s (a liquid depth of 8.7 cm at the first mode), and 22.1 rad/s (3.5 cm at the second

mode). A two-mode value-based SI shaper (SI2M) was designed using (47) to suppress

slosh for frequencies between 9.1 rad/s and 13.1 rad/s (liquid depths > 3 cm for the first

mode) and 21.7 rad/s and 22.7 rad/s (liquid depths > 3 cm for the second mode) with a

maximum residual vibration amplitude of 10 mm. For simulations and testing, these input

shapers were convolved with a baseline trapezoidal velocity command. The impulse times

and amplitudes of the four shapers are given in Table 3.

Two polynomial profiles were also designed to move the liquid container. The 3-4-5

and 4-5-6-7 polynomial profiles given in (3) and (5) were designed with rise times equal to

the SI2M shaper duration (0.590 s).

Figure 30 shows a plot of the expected percent residual vibration amplitude resulting

from the input shapers as a function of slosh frequency. As a general rule, 5% residual vi-

bration is considered acceptable here. For liquid depths > 3 cm, the first mode frequencies

for the container range from 9.1 - 13.1 rad/s. The liquid depth of 3 cm was chosen because

spillage was very unlikely to occur at this depth for the given container. Around the region
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Table 3. Shaper Impulse Amplitudes and Times

ZV
ti 0 0.247

Ai 0.51 0.49

EI
ti 0 0.288 0.576

Ai 0.27 0.48 0.25

ZV2M
ti 0 0.183 0.363

Ai 0.32 0.39 0.29

SI2M
ti 0 0.207 0.385 0.590

Ai 0.22 0.29 0.29 0.20
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Figure 30. Input Shaper sensitivity

of the first mode, the ZV and ZV2M shapers suppress a relatively small range of frequen-

cies below 5%. The EI and SI2M shapers suppress a much wider range of frequencies

around the first mode.

The second mode frequencies range from 21.7 - 22.7 rad/s for liquid depths > 3 cm. In

this range, the ZV and EI shapers clearly do not perform well. However, the ZV2M shaper

has a region of 5% suppression at the higher mode. The percent residual vibration of the

SI2M shaper is slightly greater than the ZV2M shaper at the higher mode because it has

been designed for the value of residual vibration rather than the percentage.

Another way to visualize input shaper performance is to examine vibration suppression

over a range of liquid depths. Figure 31 shows the frequency of the first sloshing mode as
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Figure 31. First Mode Slosh Frequency vs. Liquid Depth

a function of liquid depth. The range of acceptable vibration suppression for each input

shaper is shown. For the ZV, EI, and ZV2M shapers, the acceptable range is the region of

5% suppression. The ZV shaper suppresses vibration at all liquid depths > 7.9 cm. The

ZV2M shaper performs slightly better, suppressing vibration to below 5% at liquid depths

> 6.8 cm. The very robust EI shaper suppresses the first mode of slosh at liquid depths >

2.7 cm. The acceptable region of the SI2M shaper is shown to be range of liquid depths it

was designed to suppress vibration. In this case, the SI2M shaper suppresses vibration at

liquid depths > 3 cm.

A similar plot is shown in Figure 32 for the second mode of slosh. The ZV and EI

shapers are unable to suppress this higher mode. The SI2M produces acceptable vibration

at all liquid depths > 3 cm. The ZV2M shaper suppresses second mode vibrations to 5% at

all liquid depths > 2.5 cm. Note that the second mode frequency approaches the theoretical

maximum more quickly than the first mode frequency.

4.5 Simulation Results

Simulations were conducted using a four-mode model and the testing parameters given

in Table 2. Simulation results for a liquid depth of 12 cm are shown in Figure 33. The
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Figure 32. Second Mode Slosh Frequency vs. Liquid Depth

transient period (when the container is in motion) and the residual period (when the con-

tainer is stopped) are marked. Figure 33(a) shows that the ZV- and EI-shaped commands

suppress the first mode, but the remaining modes generate residual vibration amplitudes

of 12 mm and 11 mm, respectively. However, these are far less than the 38 mm residual

vibration amplitude of the unshaped command. Figure 33(b) shows that the ZV2M- and

SI2M-shaped commands suppress the first two modes and produce low residual vibration

amplitudes of only 5 mm. The SI2M case stayed within its design constraint of less than

10 mm of residual vibration. The 3-4-5 and 4-5-6-7 polynomial profiles in Figure 33(c)

eliminate the high frequency content of the response, but the first mode remains, resulting

in residual vibration amplitudes of 12 mm and 14 mm, respectively. The residual vibration

amplitudes are listed in Table 4.

Simulations were also conducted for a liquid depth of 4 cm, and the results are shown

in Figure 34. The system frequencies are lower at this depth compared to the 12 cm case,

and the unshaped command induces a greater residual vibration amplitude (55 mm) than

the 12 cm case. Figure 34(a) shows that the ZV-shaped command resulted in larger resid-

ual vibrations (22 mm) than the 12 cm case. However, the robust EI-shaped command

suppressed the first mode and produced a result similar to the 12 cm case (10 mm). The

ZV2M-shaper in Figure 34(b) suppressed most of the second mode vibrations, but the first
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Figure 33. Simulation Results from 12 cm Liquid Depth

Table 4. Residual Vibration Amplitude Simulation Results

Command 12 cm Depth 4 cm Depth

mm % of Unshaped mm % of Unshaped

Unshaped 38 100% 55 100%

ZV 12 32% 22 40%

EI 11 29% 10 18%

ZV2M 5 13% 12 22%

SI2M 5 13% 6 11%

3-4-5 12 32% 30 55%

4-5-6-7 14 37% 34 62%
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Figure 34. Simulation Results from 4 cm Liquid Depth

mode contributed to the residual vibrations (12 mm). The SI2M shaper remained within

its design constraint of less than 10 mm of residual vibration (6 mm). Although the 3-4-5

and 4-5-6-7 polynomial profiles in Figure 34(c) have rise times equal to that of the SI2M

shaper duration, they induced substantially larger amounts of residual vibrations (30 mm

and 34 mm, respectively).

These results highlight the design objectives of the four input shapers. At the deep

liquid depth where slosh frequency varies only slightly, the one-mode shapers suppressed

the first mode. The two mode shapers achieved additional slosh suppression by reducing

residual vibration amplitude contributions from the first and second modes. At a shallow

liquid depth, the robust shapers performed better than the non-robust shapers. These studies

provide a basis for selecting an optimal input shaper for an application. For example,

the ZV shaper was the fastest shaper and is most effective in a system that requires one
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mode of vibration suppression and has a non-changing, deep liquid depth. However, the

slightly slower SI2M shaper can be used to accommodate large changes in liquid depth and

suppression of the first two modes. These results also show that the polynomial profiles do

not provide satisfactory slosh suppression with a rise time equal to the SI2M shaper at the

deep and shallow liquid depth.

4.6 Experimental Results1

Experimental testing was conducted on the testing apparatus in Figure 28 using the pa-

rameters in Table 2 and the commands described in Section 4.4. Images of the residual

vibrations at a liquid depth of 12 cm are shown in Figure 35. The unshaped case had large

amplitude vibrations. The ZV-shaped case reduced vibrations, but two peaks of the second

mode are visible. The ZV2M-shaped case further reduced residual vibrations, and the third

mode shape is visible in these images. The 3-4-5 polynomial profile case had large am-

plitude vibrations in the first mode. The EI-shaped, SI2M-shaped, and 4-5-6-7 polynomial

cases are not shown because they are similar to the ZV-shaped, ZV2M-shaped, and 3-4-5

polynomial cases, respectively.

A plot of the entire surface as a function of time for 12 cm unshaped case is shown in

Figure 36. Between 0 and 1 seconds, the entire surface is level and not moving. The con-

tainer accelerates at 1 second which induces slosh, and the container decelerates 2 seconds

later which induces additional slosh. This transient period is colored gray. The residual

slosh has an amplitude of 28 mm and damps out over time (ζ1 ≈ 0.10). A similar plot

for the 12 cm SI2M-shaped case is shown in Figure 37. The residual slosh amplitude is

reduced to 5 mm. Because the first and second modes have been nearly eliminated, the

movement of the third mode shape is revealed in the surface. Plots for the other tests are

provided in Appendix C.

To better identify the modal contributions, the Fast Fourier Transform (FFT) of each

1Work in this section was done in conjunction with Mr. Kun Bai
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(a) Unshaped

(b) ZV Shaped

(c) ZV2M Shaped

(d) 3-4-5 Polynomial Profile

Figure 35. Experimental Testing Images from 12 cm Liquid Depth
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Figure 36. Surface Oscillations for 12 cm Unshaped Case
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Figure 37. Surface Oscillations for 12 cm SI2M-Shaped Case

result from the 12 cm case is shown in Figure 38. The first and second mode frequencies

are revealed by the peaks of the unshaped case at 13 rad/s and 23 rad/s, respectively. The

ZV- and EI-shaped commands reduced the magnitude at the first frequency, but the sec-

ond frequency magnitude remained large. The ZV2M- and SI2M-shaped cases reduced

the magnitude of both the first and second frequencies. The low-pass filtering effect of

the 3-4-5 and 4-5-6-7 polynomial profiles did not reduce the magnitude at the first mode

frequency, but the higher modes of vibration were attenuated.

Next, testing was conducted for liquid depths from 2 to 12 cm in increments of 1 cm.

The residual vibration induced by all commands and liquid depths are shown in Figure 39.

The unshaped command caused the greatest residual vibrations at all liquid depths. The

polynomial profiles produced the second and third greatest residual vibrations at all liquid

depths except for the 6, 7, and 8 cm cases. The 4-5-6-7 profile induced greater vibrations

than the 3-4-5 profile, which agrees with the results in Chapter 3. The residual vibrations

caused by the unshaped command and polynomial profiles varied across liquid depths be-

cause of interference between vibrations induced by the ‘go’ and ‘stop’ commands.
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Figure 38. FFT of Experimental Results from 12 cm Liquid Depth
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The input-shaped commands succesfully reduced the residual vibrations. The ZV- and

EI-shaped commands produced similar results at deep liquid depths. However, as the fre-

quency changed at shallower liquid depths, the slosh induced by the ZV-shaped command

increased relative to that induced by the EI-shaped command. This confirms the relative

robustness of the EI shaper. The ZV2M- and SI2M-shaped commands also produced sim-

ilar results at deep liquid depths. At shallow liquid depths, the ZV2M-shaped command

produced its greatest residual vibrations. The SI2M-shaped command remained robust to

changes in liquid depth and limited residual vibrations to less than 10 mm for all cases.

Note that the shaped commands reduced the effect of interference between the vibrations

induced by the ‘go’ and ‘stop’ commands because input shaping suppressed vibrations

induced by each command separately.

The FFT of each result from the 4 cm case is shown in Figure 40. At this liquid depth,

the first and second mode frequencies are 10 rad/s and 22 rad/s, respectively. In Figure

40(a), the ZV-shaped command had a greater magnitude at the first frequency than the ro-

bust EI-shaped command, and both commands had similar magnitudes at higher frequen-

cies. In Figure 40(b), the ZV2M-shaped command also produced a greater magnitude at the

first frequency than the robust SI2M-shaped commands. In Figure 40(c), the polynomial

profiles were unable to significantly attenuate the first and second frequencies.

To better examine the robustness of each command to changes in liquid depth, Figure

41 shows the FFT for both the 12 cm and 4 cm liquid depths in the same plot for each

command. The FFT of the unshaped result had an average peak magnitude of 6.8 at the

first mode and an average peak magnitude of 1.8 at the second mode. The ZV-shaped com-

mand reduced the magnitude at the first mode, but the 4 cm case had a larger magnitude

because the ZV shaper is not robust to changes in frequency. The robust EI-shaped com-

mand reduced the magnitude of the first mode for the 12 cm case, and greatly reduced the

magnitude for the 4 cm case. Because the ZV- and EI-shaped commands could not supp-

press the second slosh mode, they had large magnitudes at the second mode for both liquid
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(c) Polynomial Profiles

Figure 40. FFT of Experimental Results from 4 cm Liquid Depth

depths. The ZV2M-shaped command had a larger magnitude for the 4 cm case than the 12

cm case because it is not robust to frequency changes. However, the SI2M-shaped com-

mand is robust at the first mode and had very small magnitudes for both liquid depths. The

ZV2M- and SI2M-shaped commands equally reduced the magnitude at the second mode

for both liquid depths. The low-pass filtering effect of the 3-4-5 and 4-5-6-7 polynomial

profiles is also demonstrated: the first mode magnitudes were similar to the unshaped case,

and the second mode magnitudes were attenuated.

These experiments verify the key results predicted by the simulations. Robust input

shaping suppressed vibration over a range of system frequencies, and two-mode input shap-

ing suppressed vibration of the second mode of slosh. In addition, these results show that

polynomial profiles were not an effective method to suppress slosh with a fast rise time.

Although the polynomial profiles peformed better than input shaping in some cases, this

vibration suppression is not repeatable for a range of system frequencies or move distances.
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(b) ZV-Shaped
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(c) EI-Shaped
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(d) ZV2M-Shaped
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(e) SI2M-Shaped
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(f) 3-4-5 Polynomial
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(g) 4-5-6-7 Polynomial

Figure 41. FFT of Experimental Results from 4 cm Liquid Depth
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CHAPTER V

CHERRYPICKER

Aerial lifts raise people high up in the air so that they can work on power lines, buildings,

airplanes, and similar elevated structures [40, 84, 85]. Figure 42 shows an aerial lift that

uses a scissor mechanism to extend straight upwards. Figure 43 shows a different type of

aerial lift, often called a cherrypicker. This type of lift uses a jointed arm to extend not only

upward, but also out from the truck that forms its base.

The cherrypicker has a much larger workspace than the scissor lift, but given that it

can extend out from the base, it will oscillate, and can even tip over [12, 48]. Oscillations

of the workers can cause work delays, injuries, and property damage. Examples include

when the bucket oscillates into a glass-sided building and when the bouncing bucket forces

workers close to power lines. If the machine tips over, then the result can be catastrophic.

For example, the cherrypicker shown in Figure 43 tipped over at the Miami airport when

the workers where installing an antenna on the tail of a DC-8 airplane. One of the workers

died and the other was severely injured.

A small-scale cherry picker has been constructed for use as an experimental and edu-

cational testbed. During the Fall 2010 semester, an advanced controls course at the Mas-

sachusetts Institute of Technology (MIT) used the machine in several laboratory exercises.

This chapter presents details of the mechanical design and control system of the small-scale

cherrypicker. Then, the system is used to compare the effectiveness of polynomial profiles

and input shaping.
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Figure 42. Scissor Lift

Joint 1Joint 2

Joint 3

Bucket

Stabilizing
Arms

Cab

Figure 43. Cherrypicker Involved in Fatal Accident at Miami Airport

5.1 Mechanical Design1

The house of quality in Figure 44 was created to determine which features of the cher-

rypicker were most integral to its successful operation and to ensure that customer needs

were addressed by the design. The left-hand column lists customer needs - qualities that

1Work in this section was done in conjunction with Mr. Ehsan Maleki and Mr. Lukas Kaufmann
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are desired in the finished product. In this case, the primary customers are students us-

ing the cherrypicker for class and the professors teaching the class. The column adjacent

to the customer needs gives the relative importance of each feature to the customer. Safe

operation and a flexible control system are two of the most important features to the cus-

tomers. The top row lists engineering requirements - features that can be controlled by the

engineering design team.

The central matrix of the house of quality gives a correlation between the customer

needs and the engineering requirements, where 1 is a low correlation and 5 is a high corre-

lation. For example, the base design has a large influence on the size and variable inertia

properties. The webcam has a strong influence on the tele-operation capabilities, but it

has little bearing on other customer needs. To determine the most important engineering

requirements, each number in the matrix is multiplied by the importance, and the sum of

each column is calculated. The interface ease of use and base design were determined

to be the most important engineering requirements to satisfy customer needs. This is a

reasonable result because the interface must provide clear and simple access to all capa-

bilities of the cherrypicker, and the base design is the foundation for all of the mechanical

components.

The ‘roof’ of the house of quality examines how the engineering requirements im-

pact each other. Four symbols are used to give the correlation between each engineering

requirement. This analysis helped determine tradeoffs and synergies of the engineering

requirements. For example, a large base can increase the workspace size but will have

detrimental effects on the weight of the machine.

Several designs were developed based on the house of quality results and were system-

atically evaluated. The final design is sketched in Figure 45. The base measures approxi-

mately 1 m by 0.5 m. The slew motor is mounted to the base and rotates the turntable via

a worm gear. The shoulder motor is mounted to the central post and actuates the shoul-

der joint through a timing belt and pulley. The elbow motor is mounted at the first arm
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Figure 44. Cherrypicker House of Quality

attachment point and also transmits power through a timing belt and pulley. The shoulder

motor gearbox provides a 50:1 speed reduction, and the elbow motor gearbox provides a

20:1 speed reduction. The two arms are constructed from 1 m sections of a pole vault pole.

The constructed cherrypicker is shown in Figure 46. Each motor is equipped with

an encoder that outputs velocity and absolute position. The endpoint of the cherrypicker
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Figure 45. SolidWorks Image of Cherrypicker

is tracked by a machine vision system, and the horizontal and vertical positions of the

endpoint are recorded.

In addition to these features, other design considerations facilitate its use as an experi-

mental and educational testbed. To reduce the overall weight, the majority of the compo-

nents are aluminum and the motors were selected to provide sufficient power while mini-

mizing weight. T-slotted framing was used due to its light weight and ease of assembly. It

was also used for the shoulder and elbow motor mounting points. In this way, the timing

belts could be tensioned without the use of a tensioner or idler pulley.

The worm gear in Figure 47 transmits power for the slewing motion. This eliminates

the need for a gear box on the slew motor while also providing reliable, slip-free motion.

A flexible coupling accommodates slight errors in alignment, and a pillow block bearing

supports the shaft. The timing belt for the shoulder joint is made of a stronger, more

expensive material than the timing belt for the elbow joint because it requires a greater

tension. The pulleys for the elbow motion were placed close to the arm to minimize the
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Shoulder Motor

Slew Motor

Elbow Motor

Figure 46. Constructed Cherrypicker

bending moment on the pole. They also provide a 2:1 speed reduction for a total speed

reduction of 40:1 at the elbow joint.

The inertial properties of the cherrypicker can be varied, and safety measures are in-

cluded in the event of a tip-over. The legs can be moved to change the footprint size, and

the arms can be replaced to provide more or less flexibility and weight. Additional legs

that swing out from the base protect the machine from completely tipping over. Figure

48 provides a demonstration of this feature. Under normal operating conditions, the leg

remains upright and the pin rests at the top of the slot as seen in Figure 48(a). When the

cherrypicker begins to tip over, gravity pulls the pin down the slot which extends the leg,

as shown in Figure 48(b). The pin remains locked in place and prevents the cherrypicker
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Figure 47. Slew Motor and Worm Gear

Leg

Pin (Directed
Into Page)
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(a) Stable Cherrypicker Configuration (b) Tipped-Over Configuration

Figure 48. Tip-Over Protector Demonstration

from tipping further.

The graphical user interface (GUI) used to control the machine motion is shown in Fig-

ure 49. The top left area contains the buttons to control each direction of rotation. The

bottom left area provides several options to the user. The type of input shaper can be se-

lected; a pre-planned trajectory can be uploaded and executed; velocity and position data

can be recorded and downloaded; and the control directions can be changed to a differ-

ent coordinate system. The right side of the GUI contains the real-time position of the
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Figure 49. Cherrypicker GUI

cherrypicker from both top and side views. The angle of each joint is displayed, and dy-

namic figures provide tele-operators with an image of the cherrypicker configuration. The

machine vision output is also displayed.

Additional methods of operation are also provided. The operator control box in Figure

50 provides alternate control inputs. Three joysticks control the three degrees of freedom.

Several buttons were included to provide access to other control features. Remote operators

can connect to the control interface through a Virtual Network Computing connection, and

a webcam can be accessed to view the machine.

The cherrypicker was used in a course at MIT titled, ”Command Shaping: Theory and

Applications” during the Fall 2010 semester. The MIT students used the cherrypicker for

a series of laboratory exercises to supplement their classroom experience. As a result, the

cherrypicker met most design goals and provides the foundation to reach other objectives in

the future. The three motors provided realistic motion of the cherrypicker, and the machine

vision gave accurate measurements of the endpoint position. The GUI was simple to learn
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Figure 50. Cherrypicker Control Box

α

Figure 51. Side View of Cherrypicker Showing Shoulder Joint Motion

and use, and also allowed students to test implement advanced control techniques. The

primary objective for future work is to reduce the weight to facilitate the safety of tip-over

dynamics experiments.

5.2 Experimental Results

The natural frequency and damping ratio of the cherrypicker were experimentally deter-

mined while the cherrypicker was in the extended state, shown on the left of Figure 51.

In this configuration, the frequency was determined to be approximately 2 Hz, and the

damping ratio was calculated to be 0.08 from the logarithmic decrement.
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Table 5. Shaper Impulse Amplitudes and Times

ZV
ti 0 0.200

Ai 0.56 0.44

SI
ti 0 0.261 0.519

Ai 0.33 0.46 0.21

Unshaped, ZV-shaped, and SI-shaped trapezoidal-velocity commands were tested on

each joint of the small-scale cherrypicker. The ZV shaper was designed using the experi-

mentally determined parameters in the extended configuration ( f = 2 Hz, ζ = 0.08). The

SI shaper was designed to suppress frequencies between 1.5 and 2 Hz to 5% residual vibra-

tion. This range was selected because if the endpoint mass increases (e.g. people and tools

loaded into an empty bucket), then the system natural frequency decreases. This SI shaper

can accommodate a 25% decrease in system frequency that the non-robust ZV shaper can-

not accommodate. The impulse amplitudes and times of these two shapers are given in

Table 5. In addition, 3-4-5 and 4-5-6-7 polynomial profiles with rise times equal to the

duration of the SI shaper were also designed.

The shoulder joint was moved while the elbow joint remained stationary and fully ex-

tended. This motion is illustrated in Figure 51. The position of the endpoint for a 15◦

shoulder joint motion is shown in Figure 52. The unshaped move caused a residual vibra-

tion amplitude of 33 mm. The ZV- and SI-shaped commands reduced the residual vibra-

tion to 10 and 12 mm, respectively. The 3-4-5 and 4-5-6-7 polynomial profiles reduced the

residual vibration only slightly to 25 and 27 mm, respectively. Consistent with the results

seeen in Chapter 3, the 4-5-6-7 profile induced somewhat greater vibrations than the 3-4-5

profile. These residual vibration amplitudes are listed in the second column of Table 6.

Larger shoulder joint motions of 30◦ and 45◦ were also tested, and the results are listed

in Table 6. At different move distances, the commands induced different amounts of resid-

ual vibration due to interference between the vibration induced by the acceleration and

deceleration portions of the commands. The ZV- and SI-shaped commands consistently
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Figure 52. Endpoint Vibration for 15◦ Shoulder Joint Motion, Unweighted Endpoint

Table 6. Endpoint Residual Vibration Amplitude Due To Shoulder Joint Motion

Command Unweighted (mm) Weighted (mm)

15◦ 30◦ 45◦ 15◦ 30◦ 45◦

Unshaped 33 41 58 132 103 108

ZV 10 12 27 106 47 92

SI 12 21 23 22 15 26

3-4-5 25 62 35 67 53 40

4-5-6-7 27 68 35 84 88 35

reduced the vibration relative to the unshaped command. It is interesting to note that the

two polynomial profiles induced more vibration than the unshaped command for the 30◦

move.

To study changes in the cherrypicker dynamics when the payload mass increases, the

mass was increased by 50%. This lowered the system natural frequency by approximately

20%. The position of the endpoint for the 15◦ shoulder joint motion is shown in Figure

53, and the residual vibrations amplitudes are listed in the fifth column of Table 6. The

unshaped case had larger residual vibrations than the unweighted case. The ZV-shaped

case also had large residual vibrations because it is not robust system frequency changes.
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Figure 53. Endpoint Position for 15◦ Shoulder Joint Motion, Weighted Endpoint

However, the robust SI-shaped command reduced vibrations to a similar level as the un-

weighted case. The polynomial profiles induced much larger vibrations than the SI case

despite having equivalent rise times.

As a result, the ZV-shaped command reduced the residual vibration amplitude from

the unshaped command by an average of 63% for the unweighted case and an average

of 29% for the weighted case. The SI-shaped command reduced residual vibration for

the unweighted case by 58% and for the weighted case by 82%. The 3-4-5 and 4-5-6-7

polynomial profiles reduced residual vibration by 8% and 2% for the unweighted case,

respectively, and by 53% and 40% for the weighted case, respectively. Despite having a

rise time equal to the duration of the SI shaper, the polynomial profiles were unable to

provide the same performance improvement as the SI-shaped command for these shoulder

joint motions.

Similar studies were conducted for the elbow joint. Motions of 36◦, 48◦, and 60◦ were

tested using the five commands while the shoulder joint remained stationary. This motion is

illustrated in Figure 54. As the elbow contracts, the cherrypicker dynamics change, and the

system frequency was observed to increase slightly. The residual vibration amplitudes from

both unweighted and weighted cases are given in Table 7. The residual vibrations induced
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β

Figure 54. Side View of Cherrypicker Showing Elbow Joint Motion

Table 7. Endpoint Residual Vibration Amplitude Due To Elbow Joint Motion

Command Unweighted (mm) Weighted (mm)

36◦ 48◦ 60◦ 36◦ 48◦ 60◦

Unshaped 15 50 23 51 47 18

ZV 11 10 11 26 15 13

SI 12 10 10 16 10 10

3-4-5 11 10 15 17 14 24

4-5-6-7 12 24 11 25 14 25

by the unshaped command were relatively large and varied across different move distances.

The ZV- and SI-shaped commands suppressed vibration equally well in the unweighted

case. The robust SI-shaped command performed better than the ZV-shaped command when

weight was added to the endpoint. The polynomial profiles reduced vibration amplitude for

the unweighted case, but performed worse than the SI-shaped command in the weighted

case.

For these elbow joint motions, the ZV-shaped command reduced the residual vibration

amplitude from the unshaped command by an average of 64% for the unweighted case

and an average of 53% for the weighted case. The SI-shaped command reduced residual

vibration for the unweighted case by 64% and for the weighted case by 69%. The 3-4-5 and

4-5-6-7 polynomial profiles reduced residual vibration by 60% and 57% for the unweighted

case, respectively, and by 53% and 45% for the weighted case, respectively.
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These results further confirm the advantages of input shaping over polynomial profiles.

A non-robust ZV shaper suppressed residual vibration for two types of cherrypicker motion

in a nominal case. To accommodate additional endpoint mass which decreased the system

frequency, a robust SI shaper decreased residual vibrations in all cases. Although the 3-4-5

and 4-5-6-7 polynomial profiles reduced residual vibration in some cases, they did not

consistently reduce vibration to the same level as input-shaped commands.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Flexible systems are widespread and present a host of challenging engineering problems.

Cranes, cherrypickers, sloshing liquids, and cam-follower systems all have flexible dynam-

ics that limit their performance. When choosing a method of command shaping to improve

the performance of these systems, it is important to consider both safety and efficiency. In

other words, it is important to use a command with a rapid response time that also sup-

presses the flexible dynamic response. This thesis provided a comprehensive comparison

between two methods of command shaping: polynomial profiles and input shaping.

In Chapter 2, polynomial profiles and input shaping were reviewed. Polynomial profiles

are commonly used in cam-follower systems, and their ease of design has extended their use

to other areas. It was shown that polynomial profiles provide a smooth transition between

setpoints in a command. This command smoothing technique primarily provides a low-pass

filtering effect in order to suppress vibrations. Input shaping was shown to more-directly

target the flexible modes.

Chapter 3 provided a numerical comparison between polynomial profiles and input-

shaped commands. It was shown that polynomial profiles do not contain an embedded

input shaper, so the two methods have a fundamental difference. The rise time of polyno-

mial profiles and input-shaped commands was compared. On average, polynomial profiles

require a rise time three times as long as the rise time of basic input-shaped commands to

achieve similar residual vibration suppression.

These results have practical implications. Through the use of input shaping, the through-

put of a process that contains flexible components can be increased compared to a system
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using polynomial command profiles. Automated machinery, such as a pick-and-place ma-

chines, can complete a task more rapidly if they are driven by input-shaped commands.

Chapter 4 described the use of command shaping as a means to control slosh. The

dynamics of slosh in a rectangular container were described. Four input shapers were de-

signed to accommodate several scenarios, including: one- or two-mode suppression, and

robust or non-robust performance. Two polynomial profiles were also designed with a rise

time equivalent to the slowest of the input shapers. Simulations showed that one-mode

input shapers decreased residual vibration amplitude compared to the unshaped case, and

two-mode input shapers further decreased the residual vibration amplitude. Simulations

also showed that robust input shapers can accommodate changes in slosh frequency asso-

ciated with changes in liquid depth.

Experimental testing verified these results. The most notable success was a two-mode

specified insensitivity shaper that limited residual vibration to below a specified amplitude

at all liquid depths. In comparison, polynomial profiles did not consistently reduce the

sloshing amplitude. For eight out of the eleven tests, the polynomial profiles produced

greater residual vibration than all the input-shaped commands. The three cases where

polynomial profiles reduced residual vibration could be attributed to interference between

oscillations induced by the acceleration and deceleration parts of the command, and this vi-

bration suppression is not repeatable for a range of system frequencies or move distances.

These results further verify the conclusions of Chapter 3.

Chapter 5 described the design of a small-scale cherrypicker. Several design consider-

ations were made in order to facilitate its use as an experimental and educational testbed.

Students in coming years will be able to supplement their course work and research with

this machine. Input-shaped commands and polynomial profiles were tested on the cherryp-

icker. The results from these tests also agreed with the conclusions of the previous chapters

that input-shaped commands outperform polynomial profiles.
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6.1 Future Work

To further demonstrate the benefits of input shaping, it would be advantageous to provide

an objective comparison between input shaping and other smooth commands. The work

presented here can be used as a basis for future analyses of smooth commands. Using the

process described in Chapter 3, it can easily be determined if a smooth command does

not contain an embedded input shaper. The simulation and experimental testing protocols

presented in this thesis can then be peformed to compare additional smooth commands to

input shaping.

Numerous real-world aspects of slosh remain to be studied. The extrapolation of the

results in Chapter 4 to other container geometries and different types of liquid could be

investigated to produce a large range of additional important results. Two-dimensional

container motion and uncertainties in container length could also be studied. Deflection-

limiting input shapers could be tested as a method to prevent spillage during the transient

period. Input shaping should also be studied in the case of pouring liquid out of a container.

Other studies, such as long move distances or slosh in large containers, may require a new

experimental setup. Research into these areas can further demonstrate the effectiveness of

input shaping in a wide range of slosh applications.

The cherrypicker provides a platform for many future investigations. Additional flexi-

bility could be included in the arms to better reflect the two-mode response seen in cherryp-

ickers and other two-arm manipulators. The weight of the cherrypicker could be reduced

to improve the ease and safety of tip-over experiments. A system for measuring the end-

point position in three dimensions should be developed. These improvements will greatly

facilitate its use as an experimental and educational testbed in the future.

A number of studies remain that can encompass the wide range of operating conditions

seen in cherrypickers. More comprehensive joint motions could be tested to examine the

full dynamic range of the cherrypicker. Vibration control for slewing motions could also be

studied. A flexible payload can be added to end point to simulate bucket sway. Static and
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dynamic stability conditions could be determined for different configurations of the joints

and footprint. These studies could further show the benefit of input shaping as a method to

improve cherrypicker safety.
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APPENDIX A

INPUT SHAPER GENERALIZATION

An input shaper has n impulses with known amplitudes, Ai, and time spacings, ti. The first

impulse begins at t1 = 0. To find the frequencies that are eliminated by an input shaper, the

Laplace transform of the input shaper is set equal to zero:

A1 +A2e−t2s + · · ·+Ane−tns = 0 (48)

Substituting s = σ + jω and assuming no damping yields:

e−tis = e−ti(σ+ jω) = cosωti− j sinωti (49)

Substituting (49) into (48) yields:

A2

A1
cosωt2 + · · ·+

An

A1
cosωtn =−1 (50)

A2

A1
sinωt2 + · · ·+

An

A1
sinωtn = 0 (51)

If (50) has a solution, then it must repeat at some constant period based on the least

common multiple of the arguments. The same is also true for (51). The overall solution

is the intersection of the real cosine and imaginary sine solutions. If an overall solution

exists, then it too must repeat at some constant period based on the least common multiple

of the arguments of the trigonometric functions.
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APPENDIX B

POLYNOMIAL PROFILE GENERALIZATION

A function is converted to the frequency domain with a continuous Fourier transform

(CFT), given by:

X( jω) =
∫

∞

−∞

x(t)e− jωtdt (52)

Over the interval −∞ to ∞, the polynomial profile is piecewise. For a general polyno-

mial profile with a rise of h and a rise time of tr, the piecewise equation is given by:

x(t) =


0 t < 0

s(t) 0≤ t ≤ tr

h 1 < tr

(53)

where

s(t) =C0 +C1t +C2t2 + · · ·+Cntn (54)

The integral is separated into three intervals:

X( jω) =
∫ 0

−∞

0dt +
∫ tr

0
s(t)e− jωtdt +

∫
∞

tr
he− jωtdt (55)

The integral is further expanded:

X( jω) =
∫ tr

0
C0e− jωtdt +

∫ tr

0
C1te− jωtdt + · · ·

+
∫ tr

0
Cntne− jωtdt +

∫
∞

tr
he− jωt (56)
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The integral containing Cn is expanded first using integration by parts:∫ tr

0
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The next step is to use Euler’s identity and separate terms into real and imaginary parts.

If n is odd, then the expression becomes:∫ tr

0
Cntne− jωtdt =Cn

[
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where,
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dn =

(
j

ω

)n+1

(−1)nn! (61)

The key components are the last terms in (59) and (61). This is where the quantity

1/ω is raised to the (n+1)th power. It can be seen that the integrals in (56) with lead-

ing coefficients C0,C1, . . . ,Cn−1 cannot have the term 1/ω raised to the (n+1)th power.

Additionally, evaluating the last integral in (56) yields:∫
∞

tr
he− jωt =

−h
ω

( j cosωtr + sinωtr) (62)

Therefore, the total CFT will contain one sine term, one cosine term, and one constant

term with the quantity 1/ω raised to the (n+1)th power. When the magnitude of the CFT

is found, this quantity cannot be eliminated. The presence of this term is sufficient to show

that the zeros of the CFT magnitude of any polynomial profile do not occur in a periodic

manner.

If n is even, then (57) becomes:∫ tr

0
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dn =
1
j
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(−1)nn! (66)

The same conclusion can be drawn when n is even.
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APPENDIX C

SLOSHING SURFACE PLOTS
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Figure 55. Surface Oscillations for 3-4-5 Polynomial Profile Case, 12 cm Liquid
Depth
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Figure 56. Surface Oscillations for 4-5-6-7 Polynomial Profile Case, 12 cm Liquid
Depth
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Figure 57. Surface Oscillations for ZV-Shaped Case, 12 cm Liquid Depth
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Figure 58. Surface Oscillations for EI-Shaped Case, 12 cm Liquid Depth
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Figure 59. Surface Oscillations for ZV2M-Shaped Case, 12 cm Liquid Depth
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