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Abstract

Input shaping is examined as a technique to reduce the residual vibration in
flexible space structures. As part of a NASA program, a nonlinear three-
dimensional model of the Shuttle's Remote Manipulator System (SRMS) was
used to test the interactions between feedback and feedforward control
techniques. The problem of changing geometry systems was also examined in
detail. As these systems move, their geometries change, and thus the system
characteristics change. This often leads to problems with controlling such a
structure. If a feedback controller is optimized for certain frequencies, then a
large move encompassing many frequencies might lead to more residual
vibration than usual. These systems also pose interesting problems for input
shaping. An input shaper is usually designed for one main frequency. If that
frequency is shifting during the move, what frequency do you shape for? This
thesis addresses this problem.

Results from using input shaping with feedback controllers on the SRMS
show that input shaping does improve performance for small slews over just
feedback control alone. For longer slews using a trapezoidal velocity profile,
input shaping only helps if the settling criterion is very small. Runs done using
the Draper Remote Simulation showed that the response of the system depended
very heavily on what type of payload was being moved. For the unloaded case,
the SRMS settled very quickly and a quick, insensitive input shaper improved
the performance the most. For a midsize payload, the SRMS frequencies are
much lower and performance is thus degraded. A more insensitive input shaper
gave the best performance increase here. For a very large payload, the system
frequencies are around 0.4 Hz. The unshaped SRMS response settled very
slowly, but input shaping could not overcome the nonlinearities and did not
provide any performance increase.

Thesis Supervisor: Warren Seering
Title: Professor of Mechanical Engineering
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Introduction
Chapter 1

1.1 Background and Motivation

Vibrations exist all around us. From the motion of a car as it travels over a
series of bumps to the vibration of the tip of a manufacturing robotic arm to the
spinning of a computer's hard drive, vibrations are a part of everyday life. And
many common engineering problems involve getting rid of or reducing the
levels of vibration. It is possible to reduce vibration by adding stiffness to the
system, but that often adds cost and slows down the operation speed. A better
solution is to intelligently choose a control strategy that minimizes residual
vibration, yet still moves quickly.

Vibration can be an especially large problem when working with space
structures. For example, the astronauts who control the Shuttle's Remote
Manipulator System (SRMS) often encounter significant time delays because they
must wait for vibrations to die out before they can attempt accurate positioning
tasks. This problem is especially acute because the SRMS's fundamental
frequency is so low, around 0.1 Hz when carrying a midsized payload. If the
astronauts must wait 10 cycles for the vibrations to die down, there will be a
delay of 100 seconds. A method of reducing the vibration and reducing the
waiting time would save time and money.

Many different techniques have been developed to reduce vibrations. The
feedback control field has worked for many decades to discover and develop
better and more robust kinds of feedback controllers. Controllers are now
capable of dealing with multiple inputs, multiple outputs, many sensors, and
actuators. Due to their ability to adjust to disturbances, closed-loop controllers
are often indispensable for insuring adequate performance. Feedback control is
able to reduce the residual vibration by increasing the closed-loop damping ratio.
However, the amount of damping that can be added is often limited by design
constraints. Active vibration control of flexible structures, such as flexible robotic
manipulator systems, has also experienced rapid growth in recent years. The
technique has been focused on eliminating vibrations that result in the structure
when feedback control is applied. Not as much attention has been paid to the
idea of modifying the system input so that the vibration is not excited in the first
place.

11



12 Chapter 1: Introduction

Input shaping is one such scheme that works upon the principle of modifying
the system input by taking out the energy at the system frequencies. Theses
frequencies are not excited by the input and thus do not oscillate. Input shaping
was first developed to work with linear systems, but can easily be applied to
nonlinear systems as well. The only knowledge necessary is the approximate
system frequencies and damping ratios. These frequencies and dampings are
used to create a shaped input that does not contain energy at the specified
frequencies. The cost of using input shaping is a time delay; the shaped input
ends after the unshaped input. However, this is usually an acceptable tradeoff
because the system is oscillating long after the command is over anyway. The
input shaper delays the command, but the shaped system response still settles
before the unshaped response.

1.2 Previous Work in Input Shaping

The origins of input shaping can be traced to Smith and his idea of posicast
control in 1958. [29] His idea applies to one-mode systems and involves breaking
a step command into two smaller steps, one of which is delayed in time. This
shaped command results in a reduced settling time of the response. However,
the posicast method is not very robust, since the system must have only one
vibrating mode and the frequency must be known exactly.

The first person to fully realize input shaping's potential was Singer. [25] In
his doctoral thesis, he derived the mathematical equations behind input shaping
and provided the tools for generating impulse sequences for many different
kinds of systems. By extending the field of input shaping to cover systems with
various dampings and multiple modes, Singer made input shaping into a viable
vibration reduction technique. [24] contains a concise summary of the
mathematics and the implementation of input shaping.

Singhose further extended the field by his derivation of increased
insensitivity input shapers. [28] This advance was made possible by relaxing the
zero vibration constraint at the system's natural frequency. By allowing the
residual vibration to be some nominal level, the insensitivity curve widens
around the frequency and is less sensitive to modeling errors. Singhose and
Singer also worked on the time-optimal negative input shapers. [27]
Traditionally, the input shaper has contained only positive amplitude impulses.
However, when the impulses are allowed to have negative amplitudes, the
length of the shaper can be greatly reduced. The negative shapers are slightly
less insensitive than the comparable positive shapers. A nice comparison of
input shaping and filtering techniques appears in [26].

Hyde calculated direct solutions to the multiple mode problem. [11] He
reformulated Singer's single mode shaper equations to include several modes
and solved the equations simultaneously using an optimizing software program.
Hyde also applied the input shapers to an experimental flexible structure, the

12 Chapter : Ilntroduction
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MACE testbed. Chang worked with the same hardware and did more tests with
different controllers with varying bandwidths. He saw that a higher bandwidth
controller and input shaper had improved percentage vibration reduction and
the absolute least residual vibration compared to lower bandwidth controllers
and input shapers. [5]

By transforming input shaper design into the z-plane, Tuttle developed a
different way of deriving multiple-mode input shapers. [32] Zero-placement in
the z-plane provides great flexibility in shaper design that can be exploited to
improve performance. For example, time-optimal sequences are easily generated
if the digital sampling rate is low.

Input shaping has been applied to many different types of system. Jones and
Ulsoy use an input shaper to avoid exciting unwanted vibrations in a Coordinate
Measuring Machine. [12] Tzes, Englehart, and Yurkovich apply input shaping to
a flexible one-link manipulator and achieve good performance. [31] Input
shaping has been implemented on a spherical pointing motor to reduce
oscillations by a factor of ten. [3] Input shaping has also been applied to wafer
handling robots, disk drives, a heavy-lift hydraulic robot, and a wafer stepper
used to manufacture microchips. Magee and Book use input shaping on a
flexible arm test bed with an attached Schilling micro-manipulator. [14] Banerjee
applied input shaping to a nonlinearly elastic shuttle antenna, where the shuttle
was constrained to use only bang-bang inputs. [2]

1.3 Previous Work on Flexible Robotic Systems

The Flexbot, a three-degree-of-freedom flexible system, was designed by
Christian to closely resemble the first three joints of the SRMS. [6] Christian
tested a variety of trajectories designed to minimized residual vibration. He
found that a trapezoidal velocity profile combined with input shaping is the best
method for eliminating vibration without sacrificing overall move time. Rappole
implemented an adaptive method of input shaping on the Flexbot and compared
it to constant-valued input shapers. The adaptive shapers did not perform as
well as the constant input shapers for constant-frequency moves, but showed
promise in reducing vibrations in systems with large frequency variations. [20]

Meckl and Kinceler investigated a two-link robot with flexible joints for a
large angle trajectory move. [15] They derived optimal minimum-energy
acceleration profiles for this model and got very good results in a preliminary
simulation. Magee and Book work with a two-link, flexible manipulator and use
it to test a modified command filtering methods. [13] They implement input
shaping inside the closed-loop system and compare it with a modified command
filtering method for a system whose parameters vary with time.

Chapter : Introdction 13



14 Chapter 1: Introduction

Schmitz and Ramey used a long-reach, 3-DOF planar manipulator to compare
a colocated independent joint control design and an end-point position sensor
feedback controller. [22] The end-point sensing was implemented with a
photodetector; however a wrist-mounted CCD camera is a more realistic option
for space systems. Tzes and Yurkovich worked with a single, very flexible link
and large slewing moves and applied an adaptive shaping technique which
incorporated frequency identification. [30] Carusone and D'Eleuterio work with
a two-link planar manipulator with rotary joints supported by air pucks on a flat
horizontal table, with a variety of rigid and flexible links. [4]

Oakley and Cannon use a two-link flexible manipulator to test modern
feedback control techniques such as an LQG-based endpoint controller, which is
noncolocated. [18] In this case, the inner link is rigid and the outer link is
flexible. The LQG-EP controllers worked much better than a PID controller, with
no significant increase in torque requirements. Hollars and Cannon did
experiments on a two-link manipulator with flexible tendons. [10] They
investigated classically designed colocated control and modern state-space
noncolocated control; the noncolocated controller had better performance.

Hillsley and Yurkovich apply input shaping to a two-link flexible, planar
manipulator, with and without feedback control. [9] The use of impulse shaping
with an endpoint-feedback controller provides superior performance over each
technique alone. Feddema uses a infinite impulse response filtering technique to
reduce vibration in a two-link flexible arm and a gantry crane with a suspended
payload. [8] Zuo and Wang implement a closed-loop input shaper on a single
flexible link and achieve good vibration control and stability, even when
disturbances are introduced. [34] Drapeau and Wang present a closed-loop
shaped-input control strategy implemented on a five-bar linkage manipulator
with one flexible beam. [7]

1.4 Outline

The remainder of this thesis is divided into five chapters. Chapter 2 contains
some interesting applications of input shaping theory. The interactions between
damping ratios and different types of input shapers are examined. The
performance of the input shapers for various modeling errors and settling bands
is explained and a strategy is recommended. Another sub-problem that is
investigated is the effect of friction on input shaping.

Chapter 3 explores the FLEX program and its components. The FLEX
program is a NASA In-Step program whose purpose is to develop the best way
of controlling a remote manipulator in space. The space arm will ultimately be
used to construct the space station, so precise and fast positioning is essential. A
team from MIT, Martin Marietta, Convolve, and Payload Systems was assembled

Chapter : Introductionz14



Chpe 1:Itoucin1
for Phase A. Further details of the background and motivation of the project will
be given in Chapter 3.

Chapter 4 gives some results from Phase A of the FLEX program. Several
different models and workspaces were explored during Phase A. An unloaded
model was developed and tested in various configurations. A study was done
on the interactions between input shaping and feedback controllers. A midsized
payload model was tested to see how different configurations and move
durations affected the relationship between feedback controllers of varying
complexity and inputs shaping.

Chapter 5 explores the changing geometry systems problem. In previous
work on input shaping, certain areas have been briefly touched upon, but not
delved into. One of these areas is the problem of changing geometry systems.
As these systems move, their geometries change, and thus the system
characteristics change. This often leads to problems with controlling such a
structure. If a feedback controller is optimized for certain frequencies, then a
large move encompassing many frequencies might lead to more residual
vibration than usual. These systems also pose interesting problems for input
shaping. An input shaper is usually designed for one main frequency. If that
frequency is shifting during the move, what frequency do you shape for?
Chapter 5 will attempt to address this problem.

Chapter 6 concludes the thesis with an overview of the results and a
suggestion of future work.

____·· �____1�11____�_
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Input Shaping Studies
Chapter 2

2.1 Introduction

Input shaping involves convolving a sequence of impulses, otherwise known
as the input shaper, with a desired system command to produce the shaped
system command. The input shaper is calculated to eliminate vibrations at
certain desired frequencies. It can be made insensitive to variation in resonant
frequencies, and thus is more effective at minimizing vibration in flexible
systems whose frequencies shift during moves. This chapter presents an
overview of the implementation of input shaping as well as some short studies
on various aspects of input shaping.

2.2 Explanation of Input Shaping

Input shaping is a feedforward technique that is implemented outside the
feedback loop, as shown in Figure 2.1. The command is generated and then the
input shaper is convolved with the command. The input shaper is designed to
eliminate or reduce the vibration at certain frequencies, usually the important
system modal frequencies. Input shaping's most straightforward form uses a
simple algorithm developed by Singer to reduce the residual vibration in flexible
systems. Singer derived the technique from a second-order, linear model of a
vibrating system. The equations are given at length in several references, so I
will not present them here. [11, 25]

Command Input

Closed-Loop System

Controller
Figure 2.1: Implementation of input shaping with a closed-loop system

Input shaping is calculated as follows. A series of impulses is specified such
that the response of a second-order system satisfies various constraints. The
constraints include the following: the residual vibration at the end of the move
must be zero, the first impulse occurs at t=O, and the amplitudes of the impulses
must sum to one. The derivative of the residual vibration can also be set equal to
zero, which gives the system additional constraints and more insensitivity to

17
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18 Chapter 2: Input Shaping Studies

modeling error. After solving the equations, the result is a series of impulses,
each with an amplitude and time. For example, a zero vibration (ZV) input
shaper only has four constraints, and thus two impulses. A zero vibration, zero
derivative (ZVD) shaper has six constraints and three impulses. The amplitudes
and timing of a ZVD shaper's impulses are given in Equation 2.1.

Each input shaper is generated for a specific frequency and damping ratio. If
the exact system frequency and damping are not known, the input shaper can be
made more insensitive to modeling errors by adding additional derivative
constraints. For example, a ZVDD input shaper has zero residual vibration and
two additional derivative constraints. The sensitivity of a shaper to modeling
errors can be calculated mathematically. Sensitivity curves are a way to
graphically portray the robustness of a particular shaper by showing the residual
vibration as a function of frequency. Both axes are normalized to generalize the
curve. The normalized frequency is defined as the natural frequency of the
system divided by the frequency used to design the input shaper. The
percentage of vibration remaining is the residual vibration amplitude with
shaping divided by the residual vibration of the unshaped response.
Insensitivity of an input shaper is defined as the width of the sensitivity curve at
a given level of residual vibration. Vibration levels of 5% and 10% are commonly
used to calculate insensitivities.

Sensitivity curve of ZV,ZVD,ZVDD,EI

20

C

E
0o
a:0 15

1o

. j
\: \:

..........
........ : ....... \....

.. .......... l

: \ \

! , \........\. : \ :

'.F'.

0.5 0.6 0.7

! \ ! ! ~ ~~~! { ! ! {:

! i! ? * * , / i:

. . . .: .: .......\ . . . ... : . ...\ ~~~~~~~... ..... ./... ...
,, : . . , . I ., \ . ,". .

i : ~~~Ii \ . . i . : ' . i/
. .... i.\ . . .. . . .... ...... :, . .,

:, .· . . ,.

~..... : 1 -S......- ....''. \ . . . ' ' 7 . , . ' ./ :
l ' , ' . ."

: ,;.- \: / - ,'
:'" ' \, ' \ : / *- ': ' .' \:/ . " '. X .'" :
i '- .. .. -~...'_.. \ . ......... _ . !

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Normalized Frequency

Figure 2.2: Sensitivity curves for different input shapers

Figure 2.2 shows the sensitivity curves that result from different types of
input shapers. It is clear that additional derivative constraints widen the
sensitivity curve. The extra-insensitive (EI) shaper is as long in duration as the
ZVD shaper, but is more insensitive. It gains this insensitivity by relaxing the
zero vibration constraint at the modeling frequency. Instead, the residual
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vibration at that point is limited to some small value, V, and then the zero
vibration constraint can be enforced at two frequencies close to the modeling
frequency. This leads to the wider sensitivity curve with a hump in the center
where the residual vibration reaches the level V. V is usually chosen to be 5 or
10%.

Input shaping is not without its price, however. Once the input shapers are
calculated, they are convolved with the system command. The impulses end up
delaying the end of the command. Figure 2.3 shows an example of how a
command is convolved with an input shaper. ZVD impulses are convolved with
a step command and the resulting shaped command is shown. The amplitudes
and times of the ZVD input shaper are given by Equation 2.1 and are only a
function of frequency (co) and damping ratio ().

Input Shaper Command Shaped Command
Amplitude

A2 ,,A
A2 A..

time

0 At 2At

Figure 2.3: Example of convolving a step command with a ZVD shaper

K=e -2 A =1/D

D=1+2K+K2 A2= 2KID (2.1)

At= lr A3 = K2 /D

When the input shaper is convolved with a simple step command, the
resulting shaped command is fairly simple to explain. The shaped command
starts at t=0 with amplitude Al. Then at At, the second impulse is added to the
first, so the amplitude of the step is A1+A2. At 2At, the final impulse is added and
the shaped move catches up with the unshaped move because A,+A2+A3=1. The
command ends up being delayed 2At seconds. If there is a lot of residual
vibration in the unshaped step response, i.e. it lasts longer than 2At, then input
shaping gets rid of all the residual vibration by the end of the move and time is
saved. If the system is highly damped, the vibrations from the unshaped step
response might die out before the shaped move even ends, and time is lost.
Careful selection of when to use the input shaper is important.
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Different input shapers have different time delays associated with them.
Usually, the more insensitive the input shaper is, the longer the associated time
delay is. Table 2.1 shows the insensitivities and time delays for different input
shapers. The % insensitivity is defined as follows: the distance from the center
frequency to the point where the sensitivity curve hits 5% residual vibration. So
for a ZVD shaper, the system can accept a error in the frequency of +14% and
there will still be less than 5% residual vibration at the end of the shaped move.
This can also be seen in Figure 2.2. Negative shapers allow the amplitudes of the
impulses to be negative, which can lead to saturation. However, they are much
shorter in duration than the other shapers.

type of shaper % insensitivity duration of input shaper
(cycles)

ZV ±3 0.50
negative ZV +3 0.29

ZVD +14 1.00
negative ZVD +13 0.68

ZVDD +±24 1.50
EI +20 1.00

negative EI +18 0.68
EI2 hump ±36 1.50

Table 2.1: Shapers and their associated insensitivities and delays
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Figure 2.4 shows the convolution process for a non-step command and a ZV
shaper. The resulting shaped command does not look like the original, but the
important frequency component has been removed, so there will be less residual
vibration at that frequency.

Once these single mode shapers were derived, it was quickly realized that
two single mode shapers could be created for different modes and convolved
together, thus creating a multi-mode input shaper. Convolution does not create
optimally short input shapers unless the frequencies of the two modes are far
apart. Optimization programs have been used to find direct solutions for
multiple mode problems. Another method of finding an optimally short input
shaper involves searching the Z domain. This method is described by Tuttle in
[32].

Input shaping is not merely a technique that only works on pre-computed
commands. It also can be implemented in real-time and works very well on
unknown trajectories. This is one of its strengths; input shaping only requires
foreknowledge of the system frequencies and dampings.

2.3 Interactions between the Damping Ratio and Input Shaping

Input shaping is able to reduce the level of vibration by modifying the
original command to filter out the energy at certain important frequencies. The
price of the reduced vibration is a time delay, which is equal to half of the
fundamental frequency's period if a zero vibration (ZV) shaper is used. One of
the ways of measuring the amount of residual vibration is to calculate the
settling time of the system. The settling time is defined to be the time required
for the system's response to a command to reach and stay within a range about
the final value. The range is usually two or five percent of the final value.
Another way to decrease the residual vibration is to increase the system's
damping ratio, either by system modifications or by using a feedback controller.
As the system's damping increases, the step response approaches the critically
damped case where the response rises very slowly, but has no residual vibration
and thus settles during its initial rise. Since input shaping adds a time delay, it
seems that above some damping ratio the time delay should make the shaped
system response slower than the unshaped case. It was decided to investigate
the interactions between damping and input shaping, to see how much time was
saved at different damping ratios.

For the single mode case, it is very easy to generate input shapers if the
system frequency and damping ratio are known. The main question is how well
are the system parameters known? If the system parameters are very well know,
a simple ZV shaper, which contains two impulses, will work very well to get rid
of the vibration. However, if the system parameters are not known as well, an
input shaper with more insensitivity to modeling errors is needed, such as a zero
vibration and zero derivative (ZVD) or a ZVDD shaper. The sensitivities of these
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shapers are shown in Figure 2.2. The ZV shaper is the most sensitive, since a
small shift in system frequency causes a large change in the amount of residual
vibration. The ZVDDD is the most insensitive, but also has the longest time
delay of two periods of vibration for a system with no damping.

To get the additional insensitivity to modeling errors, you must pay the price
of an extra time delay. At some damping ratio the tradeoff between shorter
settling time and longer command time delay should come into play. At that
point it makes sense to change the type of shaper being using, from an
insensitive shaper to a more sensitive shaper. This study examined the tradeoffs
between system damping, insensitivity of the input shaper, and the amount of
modeling error.

2.3.1 System Description

A model of a linear second-order system was created. The physical system is
shown in Figure 2.5. The open loop transfer function is given by Equation 2.2.
No feedback controller was added to the system, so there is only one vibratory
mode. The natural frequency was chosen to be 1 radian/sec and the damping
ratio was varied.

0 2
G(s) = s2+ 2o.s + COn2

2 K B
m 2-mK (2.2)

MATLAB was used to generate the response of this system to a shaped and
unshaped step input. The settling times were calculated for settling bands of 1, 2,
and 5 % of the final value. This was done for a range of damping ratios from
5=0.01 to r=0.9 and for the ZV, ZVD, ZVDD, and ZVDDD input shaper cases.
The test matrix axes are shown in Table 2.2.

Axes Range of values
damping 0.01-0.90

system error 2%, 5%, 10%, 20%
input shaper unshaped, ZV, ZVD, ZVDD, ZVDDD

Table 2.2: Axes of test matrix.

%_rapter 2: Input Shaping Studies
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Since input shaping cancels all vibration if the system is known perfectly, an
error in system knowledge was added to the system model. Runs were done for
a 2%, 5%, 10%, and 20% error in the system knowledge. Error in system
knowledge was defined by Equation 2.3, where Oin is the natural frequency of
the system and e is the percent error. Thus the input shaper is shaping for a
frequency, w, that is lower than the actual frequency, (On.

w,(100 - e)
100 (2.3)

The data is presented in several graphs comparing the damping ratio to the
percentage of time saved by using input shaping. Percentage time saved is
defined by Equation 2.4.

% time saved = tSunshaped - tShaped (2.4)
tSunshaped

A higher % time savings was better since that implied that the shaped step
response settled faster than the unshaped response. This performance metric has
an upper value of one and will be negative once the unshaped response settles
faster than the shaped response.

2.3.2 Results

Figure 2.6 is for the 2% error and 1% settling band case. In this case, the ZVD
shaper saves the most time for dampings below 0.2. This is because the ZVDD
rise time is much slower than the ZVD because of the extra half-period delay.
Since the settling time is being caught during the initial rise, the length of the
shaped command matters. The ZV shaper still has residual vibration after the
command is over because the small modeling error affects this very sensitive
shaper and causes a residual vibration greater than the 1% settling band. The
unshaped settling time decreases as the damping increases and the ZV settling
time is keeping pace with that; the straight line reflects this behavior. After
r=0.2, the ZV shaper saves the most time because the combination of the higher
damping ratio and the input shaper reduces the vibration enough that the ZV
settles during the initial rise. Above a damping ratio of 0.6, the ZVD and ZVDD
shapers actually hurt the performance since the unshaped response rises and
settles before the shapers finish rising.

'Chapter 2: Input Shaping Studies 23
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% time savings for settling band 1%, error 2%
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Figure 2.6: Time savings for a 1% settling band, 2% error

The comparable graph for 5% error and a 1% settling band is not very
different from Figure 2.6, since there is not a large difference in percent error in
system knowledge. The main difference is that in the 5% error and 1% settling
band case, the ZV line is higher and crosses the other two lines at a higher
damping ratio.

Figure 2.7 and Figure 2.8 show the time histories for ZV shaper with a 5%
error in system knowledge and a 5% settling band. The two horizontal lines at
y=1.05 and y=.95 are the settling band lines. Figure 2.7 shows the ZV shaper for a
low damping ratio, and would correspond to the flat curve of the ZV shown in
Figure 2.6. For example, the shaped and unshaped settling times for r=.07 are
around 8 and 40 respectively for a % time savings ratio of 0.80, and the times for
r=.10 are 5 and 30 for a % time savings ratio of 0.81. These ratios are comparable
and explain the flatness of the curve.

These time histories are for the mass-spring system shown in Figure 2.5. The
unshaped response behaves as expected. It overshoots the desired position and
then comes to rest at the equilibrium position. The shaped response overshoots
the first step of the shaped command and begins to move back towards the first
part of the shaped step. When the shaped command changes to the final desired
position, the system is pulled back towards the new desired position and comes
to rest much more quickly than the unshaped response. If there was no error, the
shaped command would end precisely when the system had reached the desired
position and there would be no residual vibration. The error in the shaper
frequency means that the end of shaped command is delayed too long.
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Therefore, the system has already reached the final desired position and changed
direction to move toward the first part of the shaped step. A example of a
shaped step command is shown in Figure 2.3.

error=5%, settling band=5%, damping=0.1

time (sec)
Figure 2.7: Time history for the ZV and unshaped step responses

error=5%, settling band=5%, damping=0.25

a)

._

ECZ

0 5 10 15 20 Z5 30 35 40
time (sec)

Figure 2.8: Time history for the ZV and unshaped step responses

Figure 2.8 shows the time history for the case where the shaped response
settles immediately to within the settling band, before the response is done
rising. For these cases, settling time is a function of rise time and the quicker the
response rises, the more time it saves. This is why the ZV response can save

1_1� I__
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more time than the ZVD or ZVDD response, even though the ZV allows larger
vibration amplitudes. The ZV response gets there before one-half of a period of
the system, while the ZVD case settles just before one period and the ZVDD case
settles just before 1.5 periods. Meanwhile, the unshaped response is getting
slower as damping increases, but also has less overshoot, so settles more quickly.
The shaped settling time is staying approximately the same, while the unshaped
settling time is decreasing. This leads to the lines seen in Figure 2.6 for the ZVD
and ZVDD shaper cases. The shaped settling time is not varying much, while the
unshaped is varying.

Figure 2.9 is for the 10% error case with a 1% settling band. Here both the ZV
and ZVD shaper curves are flat until r=0.2. The ZVDD line is much higher, since
it settles to within 1% very quickly by comparison.

% time savings for settling band 1%, error 10%

0.8 .................... . ..

0 .6 . ...................... : :. ..;. . .......
0 .8 . ............. ............... ............ ......... ...... ........ '...... .............

. .. :.: ::'-: ...................

0.2 ..........

0 .26 - zv ..... . ............... . ....... ......

- .. ... ... ......... ...... .. .... i..
-. ------ ZVDD .....

-0.4
102 10-1 10°

damping ratio
Figure 2.9: Time savings for a 1% settling band and a 10% error

Figure 2.10 shows the 20% system error case with a 1% settling band. All of
the shaping cases are flat, so the ZVDD has the most time savings. None of the
time savings are as large as seen before, since there is a large error in system
knowledge. This reflects the sensitivity curve pictured in Figure 2.2. The ZVDD
has the widest base, and so reduces vibration the most even with large modeling
errors. Figure 2.11 shows the 2% error case with a 5% settling band. All of the
curves are decreasing with increasing damping, which implies that all of the
shaped responses are settling during the initial rise. The ZV shaper rises the
fastest to within 5% since the modeling error is small and does not create much

residual vibration.
C~~~~~~~'....

dampingc.. ratio....: ....
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% time savings for settling band 1%, error 20%
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Figure 2.10: Time savings for a 1% settling band and a 20% error

% time savings for settling band 5%, error 2%
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Figure 2.11: Time savings for a 5% settling band and a 2% error

Another interesting graph, shown in Figure 2.12, is for the ZVDD shaper for
errors of 2, 5, 10, and 20% and a settling band of 1%. The 2, 5, and 10% error
curves are all very close and there is no apparent difference in time savings
between them. For the corresponding graph for the ZV shaper and 1% settling
band, see Figure 2.13, where there is a larger difference between each error case.
None of the curves save as much time as the ZVDD cases but they are all
separated and parallel. If the amplitude band is changed to 5%, the ZV sequence
saves a large amount of time for the 2% error case.
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% time savings for the ZVDD shaper, settling band 1%
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Figure 2.12: Time savings for ZVDD shaper
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Figure 2.13: Time savings for ZV shaper

Test runs were done to see if changing the natural frequency mattered.
Changing the natural frequency does change the settling time for the unshaped
and shaped cases, but since % savings is a ratio, the ratio stays the same,
independent of natural frequency. Trials were also done to compare the effects
of raising the frequency shaped for instead of lowering it, see Equation 2.3. They
do produce different results; increasing the frequency of the input shaper saves
more time and is different from the decreased frequency case by about 4% for
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e=0.02. The difference is more widely marked between the 5% error case. For a
damping of .08 there is a 14% difference, while there is only a 4% difference
between the two cases for a damping of 0.9. By using the graphs for the
decreased frequency case, you are getting a more conservative estimate (less time
saved), so the time saved will always be the same or higher than the estimate.
The increased frequency case overestimates the savings, and so could lead to too
high expectations of the possible time savings.

2.3.3 Summary of Results

Several tables of results of these simulations have been compiled. As shown
in Table 2.3, for a small settling band of 1%, the ZVD or ZVDD shaper saves the
most time for low damping ratios. As the damping ratios reach r=.2, the ZV
shapers become the best choice. For the larger errors in knowledge, the ZVDD or
ZVDDD shapers are the best choice. Interestingly, the unshaped response does
the best when the damping is 0.9 or the error is above 10% and the damping is
above 0.60. However, even at very high damping ratios, the unshaped has
enough residual vibration that the shaped response still settles faster when the
settling band is low.

2% error 5% error 10 % error 20% error
damping best IS % t saved best IS % t saved best IS % t saved best IS % t saved

0.01 ZVD 99 ZVD 99 ZVDD 98 ZVDDD 82
0.02 ZVD 97 ZVD 97 ZVDD 96 ZVDDD 80
0.03 ZVD 96 ZVD 96 ZVDD 93 ZVDDD 78
0.04 ZVD 95 ZVD 94 ZVDD 91 ZVDDD 76
0.05 ZVD 93 ZVD 93 ZVDD 89 ZVDDD 77
0.06 ZVD 92 ZVD 92 ZVDD 87 ZVDDD 73
0.07 ZVD 90 ZVD 90 ZVDD 84 ZVDDD 72
0.08 ZVD 89 ZVD 89 ZVDD 82 ZVDDD 70
0.09 ZVD 88 ZVD 88 ZVDD 80 ZVDDD 70
0.10 ZVD 86 ZVD 86 ZVDD 78 ZVDDD 66
0.15 ZVD 79 ZVD 79 ZVDD 66 ZVDDD 49
0.20 ZV 75 ZVD 73 ZVD 68 ZVDD 44
0.25 ZV 68 ZVD 63 ZVD 62 ZVDD 28
0.30 ZV 63 ZVD 55 ZVD 54 ZVDD 22
0.35 ZV 57 ZV 47 ZVD 42 ZVD 4
0.40 ZV 72 ZV 46 ZVD 40 ZV 12
0.45 ZV 63 ZV 31 ZV 24 ZVD 4
0.50 ZV 62 ZV 33 ZV 24 ZVD 15
0.55 ZV 61 ZV 35 ZV 23 ZV 13
0.60 ZV 44 ZV 45 none 0 none 0
0.65 ZV 44 ZV 43 none 0 none 0
0.70 ZV 42 ZV 42 ZV 42 none 0
0.80 ZV 32 ZV 32 ZV 32 ZV 32
0.90 none 0 none 0 none 0 none 0

Table 2.3: Results for a 1% settling band
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Tables A.1 and A.2 were compiled for a settling band of 2% and 5%,
respectively and are in Appendix A. One interesting result is that for the 2%
error and 5% settling band, the ZV case is the best case for a range of dampings
from 0.0 to 0.65. Only as the system near the critical damping does the unshaped
response have the best settling time.

The main point is that as modeling error is increased, the faster and more
sensitive input shapers cannot handle the error and settle quickly. A more
robust shaper is needed; the wider sensitivity around the shaper frequency
means that it reduces vibrations for a much wider range of frequencies. As the
settling band is decreased, the same thing is true; more insensitive shapers are
needed to reduce the residual vibration to even lower levels.

2.3.4 Conclusions

After looking at the results, it can be seen that there is a point at which input
shaping is no longer useful. Once the damping ratio gets above 0.7, input
shaping does not save much time because the unshaped response settles faster
than the shaped responses, if there is a large error in system knowledge. This is
especially true for the larger settling bands of 2% or 5%. As the modeling error
gets larger, a more insensitive shaper is needed for the lower damping ratios. As
the settling band increases, more residual vibration is allowed, so the less
insensitive shapers perform the best. These tables should allow someone to pick
an input shaper to use, if they know the approximate damping ratio of the
system, the allowable amount of residual vibration, and the uncertainty of the
system knowledge. For example, if the system damping is about 0.08, the
settling band should be around 2% of the final value, and the error in system
knowledge could be as high as 10%, then a ZVD input shaper should be used
and the shaped settling time should be about 15% of the unshaped settling time.

Here are my recommendations about what input shaper to use and when it
should be used:

+ For a small settling band and a low error, use a less robust shaper such as
ZV or ZVD.

+ For a small settling band and a large error, use a more robust shaper such
as the ZVDD if the damping ratio is less than 0.2. Otherwise use a ZV or
ZVD shaper for higher dampings.

+ For a large settling band and low error, use a ZV shaper. The fastest
shaper is best here.

* For a large settling band and a large error, use a ZVD shaper for dampings
below 0.2 and a ZV shaper for dampings above 0.2. If the damping is less
than 0.05 and the error is greater than 15%, try an even more insensitive
shaper such as a ZVDD or a EI shaper.
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By appropriately using the various input shapers according to the sensitivity
of system knowledge and the amount of residual vibration allowed, valuable
time and control effort can be saved. The results of this study give novice users
of the input shaping technology an idea of when and how to use input shaping
and which shaper to implement.

2.4 Effects of Friction on Input Shaping

The purpose of this study was to determine if there was a connection between
the bandwidth of a controller and the residual amplitude of vibration when
input shaping is used. If a linear system is perfectly known, input shaping of the
dominant modes will eliminate all of the residual vibration by the time the
shaped command ends. For a system with a very low damping ratio, which
implies that the system will "ring" for a long time in response to a step input, a
input shaper is very effective at reducing the settling time. Usually a single
mode ZVD input shaper gets rid of residual vibration within two cycles of
vibration of the dominant mode.

It has been observed that when a higher bandwidth controller was used in
conjunction with input shaping, there was less residual vibration after the move.
[5] The system in question was a highly nonlinear flexible system, the MACE
test article, with eight modes under 50 Hz. Three different bandwidth
controllers, 3, 10, and 20 Hz, were given the same path to follow and input
shaping was used to shape two modes with frequencies less than 10 Hz. The
highest bandwidth controller had the highest percentage of vibration reduction
and the absolute least residual vibration. This is despite the fact that the
unshaped 20 Hz bandwidth slew caused much more vibration than the other
unshaped slew for the lower bandwidth controllers. These observations were
seen again when using a completely different system, which made this trend
appear to be worth investigating. It was decided to develop a model of a
multiple mode system and add nonlinearities to try to simulate the same effects.

2.4.1 System Description

First a linear multi-mode system was tested to see if the effects extended to
the linear regime, though theoretically the effects should not. A two mass and
spring system was chosen as the simplest example of a multiple mode system.
The system is shown in Figure 2.14 and the equations of motion are given in
equation A.1 in Appendix A.

The spring and masses were chosen to place the open-loop frequencies at 0
and 6 Hz. A force was applied to mass 1 and a proportional controller was
added to close the loop. Thus the bandwidth of the controller could be increased
simply by increasing the gain of the controller. This system has two modes, a
rigid body mode and a flexible mode. Closing the loop by adding a proportional
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controller adds another vibratory mode to the system. For the rest of this section,
the two modes referred to are the two vibratory modes, not the rigid body mode.

X1 X2

Figure 2.14: Two-mode system

Since the system was exactly known and linear, in theory shaping one or both
of the vibratory modes should completely eliminate the vibration of the shaped
for mode. This hypothesis was tested by running simulations using MATLAB.
The results of the simulations showed that the input shaper did remove all
residual vibration from the modes shaped for and therefore the bandwidth of the
controller did not make a difference to the shaper. Simulations were done for the
colocated (sensing and actuating the motion of mass 1) and the non-colocated
(sensing the motion of mass 2 and actuating mass 1) cases. The results were the
same for both the colocated and non-colocated cases; input shaping of a known
linear system removed the mode completely.

Figure 2.15: Nonlinear System

Next a nonlinear system was developed by adding friction to mass 1, as
shown in Figure 2.15. A proportional controller was added to the system to close
the loop and an input shaper was added before the loop. A simplified model of
Coulomb friction was implemented where Ffriction=fmag when the velocity of mass
1 was positive and Ffriction= -fmag when the velocity of mass 1 was negative. The
numerical integrator used was a MATLAB function called ode45 that integrates a
system of ordinary differential equations using 4th and 5th order Runge-Kutta
formulas and variable step sizes. Unfortunately, the step size was becoming too
small because of the discontinuity in the friction model. A smoother model of
friction was developed to deal with this problem and is shown in Figure 2.16.
The relevant equations for this friction model are given in Appendix A.
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Friction Force vs Velocity
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Figure 2.16: Smoothed representation of friction, fmag=5 N

2.4.2 Test Matrix

Three different cases were chosen to be simulated. Case 1 was the non-
colocated case with unequal masses, case 2 was the non-colocated case with
equal masses, and case 3 was the colocated case with equal masses. In all cases
the input force was applied to mass 1, thus colocated control implies actuating
and sensing the position of mass one and non-colocated control implies actuating
mass 1 and sensing the position of mass 2. Simulations were done for the
following factors: different friction magnitudes, different proportional gains,
insensitivity of the input shaper, and different combinations of modes to shape
for. There were three different friction magnitudes: 2 N, 5 N, and 10 N. Then
there were three different combinations of vibratory modes to shape for: shaping
for low mode, shaping for high mode, and shaping for both modes. There were
the unshaped case and three different kinds of shapers: ZV, ZVD, and ZVDD
input shapers. The test matrix is given in Table 2.4.

Axis Case 1 Case 2 Case 3
Friction (N) 2,5, 10 2, 5, 10 2, 5, 10

Proportional gains 100-1000 100-900 100-1800
Input shaper ZV, ZVD, ZVDD ZV, ZVD, ZVDD ZV, ZVD, ZVDD

Shaper frequency ShL, ShH, ShB ShL, ShH, ShB ShL, ShH, ShB
Table 2.4: Friction test matrix

Each case also had a different number of proportional gains that spanned the
stable space. Case 1 had 10 gains from 100 to 1000, case 2 had 9 gains from 100 to
900, and case 3 had 18 gains from 100 to 1800. The number of gains used in each
case was dependent on the stability of the system. For cases 1 and 2, the system
goes unstable at a gain of 1018 and 905 N/m respectively; these systems are
shown in the first subplot of Figure 2.17. As can be seen from the lower subplot

=_ ._ .
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of Figure 2.17, the colocated system of case 3 never goes unstable. The smaller
roots travel to zeros around 4.5 Hz while the larger roots travel to infinity. For
cases 1 and 2, the frequencies of the modes travel toward each other as the gain is
increased, while for the colocated case both of the mode frequencies increase as
gain is increased.

Root locus for non-colocated case
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Figure 2.17: Root locus plots to demonstrate system stability

Another controlled variable was which combination of modes the shaper was
designed for. Runs were done to shape for the low mode, high mode, and both
modes. Normally one would not shape for the high mode alone, since the lower
mode usually dominates, but it was included for the sake of completeness. These
variables will be abbreviated as ShL, shaping for low mode, ShH, shaping for the
high mode, ShB, shaping for both modes, and UnSh, no input shaping. The
sensitivity of the shaper was another variable of interest. Originally the study
only tested a ZVD shaper, but it was decided to see what the impact of the
friction would have on the ZVDD shaper which is more robust, and on the ZV
shaper, which is less robust. The ZVDD shaper is less sensitive to modeling
errors, so it should reduce the residual vibration the most. The unshaped
response, which could be called a one impulse shaped response, was found for
every gain and friction magnitude. When shaping for only one mode, it is easy
to calculate the shaper times and amplitudes using the mode frequency and
damping. It is much more complicated to calculate the number of impulses,
times, and amplitudes when shaping for two or more modes, since convolving
two ZVD shapers does not necessarily give the time optimal solution. I used
MATLAB functions created by Tuttle which calculate the optimal minimum time
solution for an all positive input sequence. [32]

The friction magnitudes were chosen to span the largest possible range of
values. In Figure 2.18, the unshaped and shaped for the high mode FFT

,
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amplitudes are plotted for a range of friction magnitudes. From the plot we see
that F=2 N, 5 N, and 10 N span the space reasonably well. Friction magnitudes
lower than 2 N approach the linear response, while magnitudes higher than 10 N
approach the overdamped response where the two masses do not move. This
study was done for a gain of 1000, which is in the middle of the colocated gain
spread. For different proportional gains, the friction magnitudes span more or
less of the response space, but K=1000 seemed to be a reasonable place to choose
the friction magnitudes.

Case 3, colocated: Unshaped and ShH response, K=1000

M
CU

U)'a

E
W

2

friction magnitude (N)
Figure 2.18: FFT amplitudes for case 3 as a function of fmag

2.4.3 Results

Once the different variables were chosen, time histories were generated by
MATLAB for the many cases and runs. A sample time history is shown in Figure
2.19 for a case 3 system run with a ZVD shaper and a friction magnitude of 5 N,
which plots the displacement of mass 2. The four different lines represent four
different types of shapers. The solid line is the unshaped response, the dashed is
the shaped for low mode response, the dash-dot is the shaped for high mode
response and the dotted is the shaped for both modes response. The low mode is
dominating since the shaped for low mode and shaped for both modes responses
are very similar, as are the unshaped and shaped for high mode time histories.
The time delay associated with the input shaper is also visible. Since the time
between impulses is proportional to the inverse of the frequency, the low mode
shaper has a longer delay than the high mode shaper. But the ShL and ShB
shapers get rid of most of the residual vibration within 0.6 seconds, while the
unshaped system continues to ring for 10 seconds.
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Case 3, colocated: ZVD shaper, K=500, Ff=5N

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (sec)

Figure 2.19: Time history of a case 3 step response

FFT of x2, Case 3, colocated: ZVD, K=500, Fmag=5N

1 2 3 4 5 6 7 8
frequency (Hz)

Figure 2.20: FFT of a sample case 3 time history

9 10

Once time histories were generated, a way of evaluating them was needed.
In a single mode system, it is fairly easy to find good performance metrics such
as settling time and residual vibration after shaped move is over. However,
finding a valid performance metric is not as simple for a multiple mode system.
The amount of residual vibration cannot be pulled off a time history since the
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modes add together and overlap. So the data was taken to the frequency domain
where a Fast Fourier Transform was taken of the windowed data. A Hanning
window was used, since the data was not periodic. Figure 2.20 shows the
windowed FFT of the time history shown in Figure 2.19. Here the large
difference in residual vibration can be quantitatively measured. The unshaped
low mode peak is at least three orders of magnitudes larger than the ShL peak
and the ShB peak.

Once in the frequency domain, a subroutine was written and implemented in
MATLAB to find the modes and the corresponding amplitudes, as well as to sort
the modes by amplitude and frequency. In order to differentiate between actual
mode peaks and noise in the data, the lower limit of the FFT vibration amplitude
was set to be 0.001. This meant that if the vibration was occurring in a band of
less than 0.001 around the final position of 1.0, the subroutine assigned the
residual vibration an amplitude of 0.0. This was a logical step, because at this
amplitude level the oscillations are so small that they do not affect the settling
time. This also cuts out any noise in the frequency, which seems to be below 10-4

in Figure 2.20. This subroutine generated many tables of data which had to be
analyzed.

Case 3, FFT amplitudes of unshaped data

1 1.5 2 2.5 3 3.5
low mode frequency (Hz)

Figure 2.21: FFT amplitudes for case 3, unshaped amplitude vs. low mode frequency

The easiest way to find trends in data is to look at it graphically. Since there
were so many varied parameters, there were many different ways to display the
data graphically. I decided to plot the amplitude of the FFT peak vs. the
frequency of the low or high mode, with three lines of varying friction
magnitudes on each graph. (This is almost the same thing as plotting amplitude
vs. controller gain since the gain and the frequency of the low mode increase
together in all cases.) Figure 2.21 shows this configuration for the unshaped data
of case 3 for the low mode frequency. The lines start out far apart, but as the gain
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increases, the lines draw together. This can be explained by the fact that the
friction effect becomes less important as the gain overwhelms it. Thus, at high
controller gains, the system could be modeled as a linear system where friction is
ignored.

The FFT amplitudes were plotted for every run in every case. Figure 2.22 and
Figure 2.23 show the unshaped amplitudes for all cases and both the low mode
and high mode frequencies. Note that in Figure 2.23, the scale is different for the
case 3 plot. In Figure 2.27, the amplitudes are plotted versus the low mode
frequency, all of the amplitudes are increasing with gain. The non-colocated
amplitudes are increasing much more and to higher amplitudes than the
colocated ones. As the non-colocated systems approach instability, the systems
ring more and thus the FFT amplitude is higher since the modes aren't damped.
The difference in total amplitude is quite large, since case 3 gets up to 0.3 while
cases 1 and 2 get up to 1.45 (in reference to the input step of magnitude 1.0). As
the controller gain increases, the high mode frequency decreases for the non-
colocated cases and increases for the colocated case. This means that as the
proportional gain in case 1 or 2 is increased, the high mode frequency actually is
decreasing and moving from high to low frequency. Case 3 is exactly the
opposite; as the proportional gain is increased, the high mode frequency is also
increasing and moving from low to high. These amplitudes are less than the first
mode amplitudes, much less in the colocated case which is lower by an order of
magnitude. Another observation is that as the friction magnitude increases, the
amplitude decreases. Figure 2.22 and Figure 2.23 show the trends in the
unscaled data.

Unshaped response, Case 1
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Figure 2.22: Unshaped low mode amplitudes
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Figure 2.23: Unshaped high mode amplitudes
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Case 1, non-colocated: ZV shaper for low mode,

Figure 2.24:
low mode frequency (Hz)

Case 1 scaled low mode amplitudes when ShL

Unfortunately, it was hard to compare between different runs and cases
without a baseline reference. To make this task easier, the data was scaled by
dividing each data point by its unshaped counterpart, which gave the percentage
of vibration reduction. Figure 2.24, Figure 2.25, and Figure 2.26 show the
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percentage of the unshaped vibration left after the move finished plotted versus
the low mode frequency.

Case 2, non-colocated: ZV shaper for low mode

1 1.5 2 .Z@5D shape3for low me 4 4.5 5

1 1.5 2 2.5 3 3.5 4 4.5 5
low mode frequency (Hz)

Figure 2.25: Case 2 scaled low mode amplitudes when ShL

Case 3, colocated: ZV shaper for low mode
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low mode frequency (Hz)

Figure 2.26: Case 3 scaled low mode amplitudes when ShL

The above figures are only a small portion of the total number of graphs.
These figures are the most interesting and show the shaping for the low mode
cases, low mode frequencies and amplitudes only. Similar graphs could be
produced for the high mode when ShL, but no broad conclusions could be
drawn. When looking at the high mode frequency and the shaping for the low

& I . I I I IV
-0

t5 O a I a .01, 

-A
0. .

Caa), ,_. - -- 7 , I ICLIa3a)CcL 2-
'' SC

16nM - - 0MMP . -

Y

19 9.

-u

.A



Chapter 2: Input Shaping Studies 41

mode case, the percentage of the unshaped high mode amplitude does actually
decrease below 100%. This is partly because input shaping takes out energy
from the command, and thus excites less vibration. But the low mode itself plays
a part, since the input shaper takes out the low mode and three times the low
mode and five times the low mode, etc. For all cases, if the high mode frequency,
f2, and the first few harmonics of the low mode, f1, are plotted, as in Figure 2.27,
the lines cross, indicating mode cancellation at that frequency. The high mode
amplitude for ShL is actually higher on average for the non-colocated cases,
because the lines don't cross for as long, while in the colocated case the 3*f, line
runs almost parallel to thef2 line.

Non-colocated case 2: Modes and their harmonics
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Figure 2.27: Modes and harmonics

In all of the shaping for the low mode cases, the input shaper reduced the first
mode's residual vibration amplitude to under 4% of the unshaped amplitude,
except near the instability in the non-colocated cases. For the ZVD shaper, the
results are all below 2%, except for the last two gains in case 1. The ZVDD
shaper cases do reduce the residual vibration by more than the ZVD cases, but
not by enough to justify the time delay that the ZVDD shaper produces. The ZV
shaper has good results when the friction magnitude is equal to 10 N, but
otherwise leaves considerably more residual vibration than the more robust
shapers. There is no particular pattern in the data, only a tendency for the low
mode amplitudes to be lower at lower gains, and increase some as the gain
increases. This is because the unshaped low mode amplitude is increasing with
the controller gain. Thus the input shaper has to take out more total vibration to
get the same % of unshaped amplitude. For example, in case 3 with the friction
magnitude equal to 5 N, at K=200 the unshaped low mode amplitude is 0.0695,
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while at K=1500 the unshaped low mode amplitude is 0.2546. This does not
make a difference to the input shaper in linear systems, but the friction seems to
affect the results here. The friction adds damping to the system and reduces
residual vibration, but it is also delaying the system response.

In the shaping for the high mode cases, which are not shown, the unshaped
amplitude was much lower for the high mode than the low mode. The low
mode amplitude's maximum occurs at 0.3, while the high mode's maximum only
goes up to 0.05. Therefore, it was easier to lower the second mode's residual
vibration below the limiting threshold of 0.001. The performance of the input
shapers was much better for ShH and got rid of the vibration almost completely
for the ZVD and ZVDD shapers. The ZV shaper did not work as well and left a
few runs with a low amount of residual vibration. In the ShH cases, the low
mode amplitude was close to the unshaped value, unlike in the ShL cases where
the low mode shaping affected the high mode. When ShH, the low mode
amplitude does decrease for the non-colocated cases since as the high mode
approaches the low mode, the input shaper starts to reduce the low mode
amplitude. However, approaching instability also cause the peaks at the nearly-
unstable gain to increase dramatically, as shown by the low mode ShL
amplitudes in Figure 2.24. The ShH cases are not as useful, since you do not
usually shape for the higher mode alone. Here the friction does not really affect
the shaping as much as approaching instability does in the non-colocated case.
In the colocated case, the shaper gets rid of the high mode at least 16 out of 18
times for all friction magnitudes and number of impulses in the shaper.

ZV shaper for both modes, Case 1
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All of the colocated runs had zero residual vibration when shaping for both
modes. The non-colocated case 1 did have some residual vibration in the first
mode at higher gains as instability was approached, as shown in Figure 2.28.
Case 2 had some interesting results. In this equal mass, non-colocated case, at
higher gains and friction magnitudes another mode appeared at 4.78 Hz. This
corresponds to the motion of mass 2 and the spring, while mass 1 is motionless.
The mode frequency is given in Equation 2.5. This mode showed up at gains

1 k

27Txrm2 (2.5)

above 500 N/m in the fmag=5 and 10 N runs for ShL, ShH, and ShB. This indicates
that the friction was stopping mass 1 and allowing mass 2 to vibrate freely. Since
there was no friction on mass 2, in the simulation it could ring forever, which is
not very realistic. The mode at 4.78 dominated the higher mode, which did not
appear when the mass 2 mode appeared. There was no way to reflect this trend
in the summary tables, so case 2 was left out and only cases 1 and 3 are
summarized and in Table 2.5 and Table 2.6.

Case 1 Number of zero amplitudes in low mode
(maximum is 10)

shaper F=2N F=5N F=1ON
Shaping for ZV 2 4 6
Low Mode ZVD 6 6 7

ZVDD 6 6 8

Case 1 Number of zero amplitudes in high mode
(maximum is 10)

shaper F=2N F=5N F=1ON
Shaping for ZV 8 9 9
High Mode ZVD 10 9 10

ZVDD 10 10 10

Case 1 Number of zero amplitudes in low and high
modes (maximum is 10/10)

shaper F=2N F=5N F=1 ON
Shaping for ZV 7/10 8/10 7/10
Both Modes ZVD 8/10 8/10 6/10

ZVDD 8/10 8/10 6/10
* zero amplitude implies residual amplitude less than 0.001

Table 2.5: Summary table for case 1

The numbers in the cells represent the number of FFT modal amplitudes
which were below the lower threshold (of 0.001) in a certain set of runs. These
numbers are a measure of how well the input shaper removed the residual
vibration. The higher the numbers, the less residual vibration there was in
general in each set of runs. Each cell represents a set of tests for a certain number
of impulses and a certain friction magnitude run over the applicable range of
controller gains. The number of zero amplitudes is summed for the set of
controller gains and placed in the table. For the ShB modes runs, the first
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number is for the first mode and the second number represents the second mode.
The tables show that the input shaper does better, in general, as the number of
impulses or the friction magnitude increases. There does not appear to be too
much difference between the ZVD and ZVDD shapers, so it makes sense to go
with the ZVD shaper which gives less time delay.

Case 3 Number of zero amplitudes in low mode
(maximum is 18)

shaper F=2N F=5N F=1ON
Shaping for ZV 6 10 16

Low Mode ZVD 13 14 18

ZVDD 13 13 18

Case 3 Number of zero amplitudes in high mode
_ (maximum is 18)

shaper F=2N F=5N F=1ON
Shaping for ZV 16 18 18

High Mode ZVD 17 18 18

ZVDD 18 18 18

Case 3 Number of zero amplitudes in low and high
mode (maximum is 18/18)

shaper F=2N F=5N F=1ON
Shaping for ZV 18/18 18/18 18/18

Both Modes ZVD 18/18 18/18 18/18

ZVDD 18/18 18/18 18/18

* zero amplitude implies residual amplitude less than 0.001
Table 2.6: Summary table for case 3

The runs with the most variations between runs are the shaping for the low
mode simulations. For both case 1 and case 3, the shaper for both modes gets rid
of all or most of the residual vibration. The shaper for the high modes does the
next best job of reducing vibration, mostly because there is not as much vibration
to get rid of in the first place, since the second mode does not dominate. The
reason why some of the trends seem wrong is that there were many points right
near the arbitrary threshold value of 0.001. Under this system 0.0009 was set
equal to zero, while 0.0011 stayed the same. This caused the variation in results
in the shaping for both modes and case 1 runs. The cells containing 6/10 actually
could be called 8/10 if the threshold was changed to 0.002, for example. The
colocated input shapers seem to remove vibration more effectively than the non-
colocated shapers. This is a function of the system, since the actuator force is
applied directly to the colocated mass, but is applied through the spring to the
non-colocated mass. There is no spring in its way to cause a time lag or reduce
the effectiveness of the input shaper.

2.4.4 Conclusions

A simple nonlinearity does reduce the effectiveness of shaping. However, the
input shaper still reduces the vibration amplitude to a maximum of 3% of the
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unshaped amplitude for the colocated case. In the non-colocated case, stability
issues cloud the results, but the vibration amplitude is still reduced to at least 5%
of the unshaped amplitude in all cases except for the highest gain which is very
close to instability. If there is a requirement of reducing the residual vibration to
less than 5% of the original unshaped vibration, here are some guidelines. A
multiple mode shaper will always reduce the vibration to below 5% in a
colocated case, so a multiple mode shaper with the insensitivity of a ZV shaper
will work fine. However, in the non-colocated case, you should use a multiple
mode ZV shaper unless the system is very near instability, in which case a
multiple mode ZVD shaper should be used. If shaping for the dominant first
mode only, avoid controller gains near instability, since the unshaped high mode
will excite too much vibration. Use a ZV shaper to meet the 5% band, while a
ZVD shaper will meet the 2% vibration reduction criterion. If shaping for a
second mode only, use a ZV shaper if there is friction, or a ZVD shaper if there is
very little or no friction. In general, friction adds damping to the system and
helps reduce the system vibration, so a lower input shaper can be used with
higher friction. Just beware of the lack of robustness associated with a ZV
shaper. If the system frequencies are not precisely known, use a more robust
ZVD shaper.

Here are some recommendations:
+ If the residual vibration must be reduced to a very small percentage of the

unshaped, use a multiple mode shaper (ZV/ZV).
* If you want to use a single-mode shaper, shape for the lower mode.

For reduction to 5% of unshaped, choose ZV.
For reduction to 2% of the unshaped, choose ZVD.

* If the system is near instability, use a more robust ZVD shaper and shape
for both modes.

* With more friction, a faster shaper (ZV) can be used to take advantage of
the increased system damping.

I did not see the higher bandwidth controllers reducing the residual vibration
at all. In fact, the results seemed to indicate the opposite in that at higher
controller gains the system has less percent vibration reduction. This can be
explained by the fact that at higher bandwidths more energy is sent to the system
and thus more vibration is excited, which leads to more vibration for the input
shaper to get rid of.

This study showed that a simple nonlinearity like friction does not impair the
input shaper's performance much at all. Even with varying friction magnitudes
it was possible for a single mode shaper to obtain a 96% vibration reduction
compared to the closed loop, proportional controller step response. The multi-
mode shapers performed even better and reduced the vibration to well below the
limiting threshold of 0.001 except near instability points.
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The FLEX Program
Chapter 3

3.1 Introduction

Input shaping has been applied to many systems since it was first developed
by Singer. [25] Space is particularly well suited for the use of input shaping
because of the restrictions on the weight of components. The dynamic
characteristics of the large, lightweight flexible space structures are very different
than those of industrial robots. The payload-to-arm mass ratio can be on the
order of 100:1 for a space manipulator whereas an industrial arm has a ratio of
less than 1. [22] The light and flexible space structures are also very lightly
damped with low frequency modes, so moving can cause a lot of residual
vibration. These residual vibrations then cause large time delays. Input shaping
does have an inherent time delay, but compared to the duration of vibrations for
a very lightly damped structure, input shaping saves a lot of time by eliminating
vibrations.

The FLEX program is one of the NASA In-Step programs. Its main goal is to
define the best methods for controlling construction, inspection, and repair
systems in space. The FLEX team consists of MIT, Martin Marietta, Payload
Systems, Inc., and Convolve, Inc. The principal investigator is Professor Warren
Seering of MIT. Other members of the MIT team were Dave Miller, Ketao Liu,
Carl Blaurock, and Bill Singhose. Ketao Liu created the FLEX models and Carl
Blaurock designed all of the feedback controllers. This chapter will discuss the
different tasks accomplished during Phase A of the FLEX program, including
modeling, designing feedback controllers, and investigating feedforward
methods.

3.2 Project Motivation

Current Shuttle Remote Manipulator System (SRMS) operations are severely
constrained by performance limitations. A study by Newsome, et. al, found that
approximately 30% of the operational time for the SRMS is spent waiting for
vibrations to decay to within acceptable levels. [17] As heavier payloads such as
International Space Station Alpha (ISSA) components are grappled by the arm,
oscillation periods will become even longer. Arm vibrations are a serious
problem for astronauts for three operating conditions: quick movement of the

47



48 Chapter 3: The FLEX Program

unloaded arm, manipulation of payloads with flexible components, and precise
positioning maneuvers.

Increased settling time is not the only penalty associated with arm oscillation.
Precise motions are very difficult to perform with a robot that tends to oscillate.
The lower the vibration frequency, the more difficult the precision task.
Oscillations are likely to create problems for astronauts trying to orient and
precisely locate large payloads during construction of the ISSA. Residual
vibration will be an especially serious problem when the SRMS and comparable
arms are used to handle payloads of masses near their load limits.

State-of-the-art teleoperation control methods are not currently in use on the
SRMS. They are not planned for use on arms being developed because these
technologies have not been evaluated sufficiently under realistic operating
conditions to fully explore their effectiveness. Unfortunately, testing these
technologies on the SRMS is prohibitively expensive; the cost, time required, and
risk associated with modifying the SRMS software make such tests impractical.
The FLEX program has been designed as a practical and cost effective alternative
to a test program employing the SRMS.

3.3 Objective

The overall objective of FLEX is to conduct a set of experiments which will
define the best methods for controlling construction, inspection, and repair
systems in space. We must also establish the value of state-of-the-art vibration
and teleoperation control methods for improving the performance of
construction, inspection and repair systems in space.

There were several specific objectives accomplished during Phase A. First,
members of the FLEX team have developed a fully three dimensional model of a
manipulator representative of those to be used for construction and maintenance
tasks for ISSA and other future space systems. Such a model is a key component
in the development of effective control methods. For this phase we chose to
model the current SRMS because it represents the state-of-the-art in manipulators
for use in space and because data necessary for validating such a model was
available from JSC and SPAR Aerospace. Second, we evaluated the performance
of an array of candidate control methods and, through extensive testing in
simulation, documented the potential of the most promising methods for
improving the performance of large, flexible robots. Feedback control methods
were researched, tested, downselected, extensively tested and downselected
again. Feedforward methods were reviewed and selected, then implemented on
the SRMS simulation with the feedback controllers. Comparisons were made
between simulations with and without feedforward control. Third, we
conducted ground tests to determine whether providing information about the
states of a manipulator to the astronaut operating the manipulator had the
potential to improve task performance. Fourth, we considered a number of
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candidate robot designs for an on-orbit test facility and selected one that will
allow us to achieve all of our technical objectives safely and at a reasonable cost.
The remainder of this chapter details our work on achieving the first two of these
goals. For more detailed information on the FLEX Phase A work, see reference
[23].

3.4 Modeling

During Phase A, we generated a symbolic, recursive, order N, Lagrangian
formulation of the equations that describe the motion of a fully three-
dimensional arm model. The model platform was designed so that with
inclusion of appropriate system parameters, it can represent a wide array of
flexible manipulators including the SRMS, the Space Station RMS, the test
manipulator that has been proposed for our on-orbit studies, and the ground
based test system that we plan to use in preparing for the proposed mission. The
availability of the symbolic equations is important for the model parameter
derivation procedure, which will use ground test data describing individual
components where possible, along with sensitivity relations derived from the
symbolic equations, to refine the nonlinear model.

Using this model platform, we created and calibrated a simulation of the
SRMS, called the FLEX simulation, to serve as a test bed for our control method
comparison studies. An accurate model of a three-dimensional manipulator in
space is crucial to stable implementation of advanced controllers on orbit, and
consequently to the success of the program. Also, by evaluating the controllers
on a model of the SRMS, we have illustrated the impact that these controllers
could have if transferred to the SRMS.

The MATHEMATICA program was used to derive nonlinear and linearized
symbolic equations of motion of the SRMS. These symbolic equations were then
transferred to FORTRAN code for the nonlinear model and MATLAB code for
the linear model by a C program. Because the symbolic equations were readily
available, we could easily obtain sensitivity equations of the nonlinear model for
model updating using experimental data. The availability of the equations also
let us have direct control of the modeling accuracy and nonlinear characteristics
of the models.

The model was designed to represent the modal characteristics of the SRMS
up to 20 Hz. The models were derived using the assumed mode method. Joint
and base flexibilities were included in the shoulder joint, elbow joint, and the
base models. Flexibility in the links was also included in the model. Parameter
values for system components were obtained from reports generated at JSC. We
calibrated our model by comparing its performance with that of the Draper
Remote Manipulator Simulation (DRS) which has been verified against flight
data and is considered to be a very high fidelity model. The model effectively
represents the dynamic performance of the SRMS, particularly for the dominant
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first mode. For more information, see reference [23]. Figure 3.1 presents the
frequency responses (FRs) from joint velocity commands to tip position for our
FLEX model and the DRS. As the figures show, the model effectively represents
the dynamic performance of the SRMS, particularly for the dominant first mode.

Frequency (Hz) Frequency (Hz)

Figure 3.1: FR from shoulder yaw to tip y and FR from elbow pitch to tip z

Several different versions of the SRMS simulation were created during the
program. The first model, FLEX,, was a planar model with no payload and very
little Coulomb friction. Its inputs were the desired shoulder pitch and the elbow
pitch torques. The second model developed, FLEX2, was a planar model which
allowed variable payload masses and included nonlinear Coulomb friction
effects. The final model of the SRMS is a fully three-dimensional model, FLEX3.
It has three rotary joints with two flexible links and a variable payload. The first
joint is the shoulder yaw joint with a range of motion of +180 degrees. The
second joint is the shoulder pitch joint, which can move from -2 degrees to 145
degrees. The third joint is the elbow pitch joint, which is located between the
first and second link. Its workspace is from 2 degrees to -160 degrees. The FLEX
model's workspace matches that of the SRMS. The first link is 20 feet long, 21
when the joints are included, and the second link is 23 feet long, 28.2 when the
joints and wrist are included. The flexibility of the FLEX simulation is 50% in the
joints, as opposed to the usual 90% in the joints for commercial machines.

The various models of the SRMS developed during the FLEX program will be
called the FLEX simulations in the rest of the thesis, to distinguish them from
other models used.

3.5 Feedback Controllers

Most existing control methods fall into one of three categories: linear control,
nonlinear extensions of linear control, and true nonlinear approaches. Proposed
linear methods include proportional plus integral plus derivative (PID)
independent joint control, PD plus constant gain link strain feedback (PD + strain
or PDS), and linear dynamic compensation such as the Linear Quadratic
Gaussian (LQG) controller. Nonlinear extensions include gain-scheduled LQG,
H-infinity control, and Linear Quadratic Regulator (LQR) and LQG methods

50 Chapter 3: The FLEX Program
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with nonlinear state estimators. These methods are well understood and account
for geometric nonlinearities of the SRMS. Nonlinear techniques encompass
adaptive control such as Recursive Least Squares (RLS) and variants, as well as
hybrid designs which combine nonlinear joint and angle control with linear
control of flexibility. Work to date suggests that nonlinear control alone tends to
give poor performance for flexible systems, possibly since theories for providing
accurate state measurement or estimation are not sufficiently well understood.

The feedback control investigation is being conducted on the SRMS so that
many of the control issues that are common to flexible manipulators (joint
flexibility, nonlinear friction, etc.) will be investigated. Additionally, examining
the behavior of the Shuttle manipulator under feedback control will highlight the
control problems inherent in that configuration which result from high gear
ratios, extremely high payload-to-arm ratios, and so on.

We began the feedback analysis with a preliminary evaluation of the many
feedback controllers which have been proposed for the SRMS. We want to
understand the value of state-of-the-art software for existing arms and for the
next generation of arms which are already designed. Therefore, the best
controller for the SRMS can be selected by discarding those which do not control
flexibility, and those which would require substantial SRMS hardware
modification (such as the addition of link piezoelectrics as actuators, or of tip
position sensing). The remaining controllers were ranked based on formulation
complexity (tractability of the derivation in three dimensions), implementation
complexity (computational requirements and number and type of sensors used),
and maturity (ground test heritage).

The initial downselect was based upon a literature review and the above
criteria. The surviving controllers were the PD controller, the sensitivity-
weighted LQR, multiple-model LQR, feedback linearized plus PD, gain-
scheduled LQR, and feedback linearized plus multiple LQR. These feedback
controllers were designed for the first planar model, FLEX1, and its particular
configuration space of no payload and very little Coulomb friction.

The proportional-derivative (PD) independent-joint feedback controller is the
baseline control to which all other controllers will be referenced. As predicted by
other researchers, the closed-loop bandwidth is limited by the first zero
frequency. Additionally, the architecture limits the closed-loop damping of the
flexible modes, leading to substantial oscillations at the tip, even if the joint
angles are well-controlled. To achieve good positioning of the end-effector, the
arm controller must account for flexibility in the link.

One technique which accounts for joint and link flexibility is the Linear
Quadratic Regulator (LQR) theory. To examine the LQR on the SRMS
simulation, the arm was linearized about a 90 degree elbow configuration. The
optimal feedback matrix was found by penalizing oscillations of the tip. The
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LQR feedback did not control "pinned-pinned" modes (which do not control
displacements of the tip), leaving them lightly damped. A penalty on the
encoder outputs was incorporated, which resulted in closed loop damping in all
modes. LQR feedback was not stable for the entire range of motion of the arm.
A technique called sensitivity weighting was used to uniformly add damping to
all closed loop modes. This resulted in stable operation throughout the
workspace for the SWLQR. It was optimized around elb= 90 degrees. Desired
velocities can be fed to the SWLQR-controlled system, enabling velocity rather
than position regulation. The SWLQR bandwidth (0.6 Hz) is approximately that
of the PD (0.55 Hz), but the settling time is roughly twice as fast. The
improvement in tip positioning is solely due to the inclusion of flexible effects in
the controller.

The gain-scheduling LQR (GSLQR) controller was implemented by
partitioning the workspace into regions (within which the arm response is nearly
linear). Then a LQR gain matrix was determined for each region. Multiple
model LQR design was developed by forcing a single gain matrix to control the
arm at several locations in the workspace. The MMLQR has equal weighting on
settling times around the elbow angles of 90 degrees and 10 degrees. SWLQG,
MMLQG, and FBLQG controllers were also designed for the initial FLEX model.
The decision was made to design LQG controllers because a large number of
sensors would be needed for a LQR controller. There are a limited number of
sensors available on orbit, and the LQR needed more sensor inputs than were
available. More sensors could be added to the SRMS or the FLEX test arm, but it
would be too expensive.

The feedback linearizing controller was designed with both a PD controller
outer loop (FBL) and a MMLQR controller outer loop (FBLMM). It combines the
rigid robot technique of inverting the rigid body dynamics and an outer loop
closed around the feedback linearization. With a flexible arm, the rigid feedback
linearization is converted into a configuration dependent "gain" on input torques
which accounts for the inertia change as the elbow angle changes. The outer
loop PD controllers was designed using root locus. The outer loop MMLQR was
designed by linearizing the arm with the mass matrix decoupler around two
angles and then finding the LQR matrix. The two angles are 90 and 10 degrees as
before in the regular MMLQR.

After the second downselect, the MMLQG, FBLQG, and GSLQR were chosen
to be tested further, as well as the baseline PD controller. They were tested over
a wide range of elbow joint configurations for the FLEX1 simulation. When the
FLEX2 simulation was developed, the controllers were redesigned for the new
payload and friction effects. The PD controller was also dropped in favor of the
SRMS rate controller, an accurate model of the current controller on the SRMS.
The controllers selected for comparison with the current SRMS rate controller
were the robust LQG, the gain-scheduled LQG (GSLQG), and rigid arm feedback
linearization with a robust LQG outer loop (FBLQG). These controllers were

-- -
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implemented in space-realizable form as outer loop controllers around the SRMS
rate controller.

The selected four controllers were compared on the midsize payload FLEX
model for a representative space construction task. The task consisted of
removing a 7500-lb component from the Shuttle bay and positioning it for
assembly. The weight represented an average of the payloads to be moved
during ISSA construction, and is dynamically "heavy". That is, the separation
between the lowest mode and higher modes is large. In order to avoid having a
controller achieve good performance at one arm configuration at the expense of
stability at another, each of the controllers is designed to achieve the best average
performance across the entire SRMS workspace. This also ensures that each
technique can indeed stabilize the arm in the presence of geometric
nonlinearities.

Two facets of the move were considered: a large slew from the payload bay to
the assembly area, and a small maneuver to position the payload for mating. The
large slew was a straight vertical motion of the payload from 5 feet inside the
Shuttle bay to 19 feet above the Shuttle. The primary metric was the time to
settle within a circle of 2 inch radius, centered at the target position. This is
based on the positioning accuracy requirement of the SRMS.

The mating maneuver was investigated by modeling the human operator's
commands as small position commands (the elbow and shoulder pitch joints
were commanded to move half a degree). The move was carried out around a
series of nominal elbow angles (from 0 degrees to -160 degrees, the range of the
SRMS elbow pitch joint) to assess the sensitivity of each controller to geometric
nonlinearity. The results of feedback control will be presented in the next
chapter.

3.6 Feedforward Methods

Feedforward techniques were compared on the basis of sensitivity to
modeling errors, compatibility with teleoperation, complexity of the required
calculations, amount of vibration reduction, length of command delay, and
maturity of the technology. The following four techniques were considered:
smooth trajectory generation, notch and lowpass command filtering, plant
inversion, and input shaping. Feedforward methods which were considered are
as follows: smooth trajectories, notch and lowpass filters, plant inversion, and
input shaping. 'Smooth' trajectories, or minimum jerk command trajectories,
limit energy put into a system to a band below the system's first natural
frequency. Notch and lowpass filters are used regularly for signal processing
and to get rid of vibrations at certain frequencies or beyond certain corner
frequencies. Plant inversion works by modeling the system, inverting the model,
and feeding the desired system response to the inverted plant. Then the
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resulting output becomes the command given to the actual plant. Input shaping
has previously been described in Chapter 2.

Plant inversion and predetermination of smooth trajectories were dropped
from consideration because they proved incompatible with teleoperation; they
require that the input command be known before the move begins. Passing the
commands through digital filters introduced long delays and limited system rise
times, and was not consistently effective in reducing vibration. Input shaping
has none of these drawbacks and has been shown to be effective for teleoperated
systems, and so was considered in some detail.

The controllers are coded in FORTRAN and compiled into executables, and
then there is a MATLAB shell program that generates the command and runs the
executable. Input shaping was implemented by adding the appropriate code to
the MATLAB shell. Since input shaping is a feedforward method, the only
modifications necessary were to the input generation sections. The trajectories
were known before the moves started, so input shaping was implemented after
the commands were calculated. System frequencies and damping ratios, the
information necessary to generate the shaped trajectories, were extracted from
linearized models of the systems. Test moves were chosen to be the same as
those used in the feedback tests. ZV and ZVD input shapers were chosen to
represent the input shaping field. They were chosen because they were quick
and easy to implement and do not excite higher frequencies or press saturation
limits like the negative shapers do.

3.7 Conclusions

Methods for feedback and feedforward control of flexible structures and for
robot teleoperation have been studied in depth by many researchers. The FLEX
program builds upon this previous work but will have much more impact on
space construction and maintenance. The technologies of nonlinear feedback
control, robust control synthesis, and feedforward input shaping have been
extensively explored. However, these explorations have been conducted
somewhat in isolation. The FLEX team has combined feedforward techniques
with robustified, nonlinear control in a manner which exploits the benefits of
both.

During Phase A we evaluated an array of candidate feedforward and
feedback control methods, and selected a few most promising ones for further
consideration. Useful information was obtained by rating the performance of
these control methods in completing a standard set of benchmark tests on the
three-dimensional simulation model of the SRMS that we developed during
Phase A. We have completed these sets of comparisons and consequently we
understand a good deal about the capabilities of each control method.

-
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FLEX Results
Chapter 4

This chapter will present the important results from Phase A of the FLEX
program. This chapter explores the interactions between feedback control and
feedforward methods. When you combine the two, does performance improve?
By what percent does performance improve, a lot or a little? Can the feedback
controller be redesigned with higher gains and then get better performance when
input shaping is added? Do you get enough improvement by adding input
shaping to justify the associated time delay?

There are many variables that could be considered. There are different types
of feedback controllers, different feedforward methods, different duration
moves, planar or 3-D moves, different payloads, different nonlinearities that can
be added, and many more factors. Performance can also be evaluated based
upon point-to-point criteria or trajectory following criteria. For input shaping,
there are many variables such as number of modes, insensitivity of the shaper,
and which frequency is shaped for. For each set of tests discussed, different
variables were selected to be the axes of the test matrix.

4.1 Unloaded SRMS Results

4.1.1 Procedure

The planar model of the SRMS with a nominal payload and no coulomb
friction was tested first. This model locks the shoulder yaw joint and just
actuates the shoulder pitch and elbow pitch joints. For sake of brevity, the
shoulder pitch will be called the shoulder joint and the elbow pitch joint will be
called the elbow joint. This planar simulation has 18 states, 2 inputs, and 15
outputs and will be referred to as FLEX1 in the rest of this chapter.

Four controllers have been tested extensively on FLEX1: the PD, multiple-
model LQG (MMLQG), gain-scheduled LQR (GSLQR) and feedback linearized
LQG controller (FBLQG). Additionally, a sensitivity-weighted LQR (SWLQR),
multiple-model LQR (MMLQR), a feedback linearized PD controller (FBL), and a
feedback linearized MMLQR controller (FBLMM) were examined before being
eliminated during the feedback controller downselect.
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The precise positioning task discussed in Chapter 3 was investigated by
modeling the human operator's commands as small step commands. The
shoulder and elbow joint step commands started at 0.25 degrees below the
desired angle and ended 0.25 degrees above the desired angle. Many small slew
runs were done for each controller about three different elbow angles, 10, 50, and
90 degrees. After the feedback controller downselect, each controller was tested
over a series of nominal elbow angles (from 0 degrees to -160 degrees, the range
of the SRMS elbow pitch joint) to assess the sensitivity of each controller to
geometric nonlinearity. elb is the elbow angle.

The performance metric used is settling time. Settling time, ts, is defined here
as the time to settle to within a certain radius about the final desired position; it is
a two-dimensional performance metric. For these tests the radius is equal to 2%
of the total distance traveled or a maximum radius of one inch. For the small
slews, the distance traveled by the joints is 0.5 degrees, which means that the tip
travels 0.51 feet. The radius is 2% of that which equals 0.12 inches. This is a very
small settling radius, but the small slews will be used by astronauts for precise
positioning tasks where final location is very important. In the result tables other
variables are the length of the input shaper delay, ti, and the shaper frequency, fl.

A variety of input shaping methods were examined, including single and
multiple mode input shapers. ZV and ZVD shapers are the primary input
shapers tested here. The system frequencies are calculated from the eigenvalues
of the linearized system matrix. Each controller has different primary
frequencies, so different input shapers are calculated for each controller at each
configuration tested.

4.1.2 Results

The initial small slew results are shown in Table 4.1, Table 4.2, and Table 4.3.
The PD controller was run for a single mode ZV and ZVD and several two mode
shapers. After looking at these results it can be seen that the shortest duration
input shaper is giving the largest improvement in performance. The ZVD and
two mode shapers delay the response enough that the reduction in vibration
amplitude does not fully compensate for the command delay. For this reason the
other controllers were only tested with a single mode ZV shaper, though some
controllers were tested at various shaper frequencies.

Different frequencies were tried because when the primary frequency has a
high damping ratio, around 0.5, it is unclear whether shaping for that frequency
will help or hurt the response. This was shown in Chapter 2 for a simple linear
system. As the system damping approaches the critical level, input shaping
should help performance less and less. Originally the runs were done for the
second mode which has a higher frequency and lower damping ratio. However,
there was very little or no improvement in performance. So the input shaper was
recalculated for the first mode which had a lower frequency and a higher
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damping ratio. The systems settled faster when shaped for the lowest frequency,
regardless
damping.

of whether or not the damping ratio was approaching the critical

controller t. t, f, Shaper ti.
elb= 10 unshaped shaped

delta=0.5 (sec) (sec) (Hz) (sec)

PD 5.27 1.29 0.42 ZV 1.24
PD 5.27 2.37 0.42 ZVD 2.48
PD 5.27 2.14 0.42/5.65 ZV/ZV 1.28
PD 5.27 2.29 0.42/5.65 ZVD/ZV 2.29
PD 5.27 2.32 0.42/5.65 ZVD/ZVD 2.56

SWLQR 2.87 1.24 0.43 ZV 1.37
SWLQR 2.87 2.88 4.14 ZV 0.14
MMLQR 1.95 1.07 0.49 ZV 1.23

MMLQR 1.95 1.97 3.86 ZV 0.14
FBL 2.24 1.43 0.65 ZV 0.82

GSLQR 1.70 1.69 3.57 ZV 0.14
FBLMM 1.62 1.61 6.89 ZV 0.07
SWLQG 4.02 2.00 0.32 ZV 1.75
SWLQG 4.02 2.92 0.32/1.81 ZV/ZV 1.86

Table 4.1: FLEX1 results for small slew around 0eb=10 degrees

controller ts ts f, Shaper tis
0,elb=5 0 unshaped shaped

delta=0.5 (sec) (sec) (Hz) (sec)
PD 4.01 1.21 0.46 ZV 1.15

SWLQR 2.04 2.06 4.11 ZV 0.13
SWLQR 2.04 1.20 0.47 ZV 1.20
MMLQR 1.80 1.84 3.79 ZV 0.14
MMLQR 1.80 1.05 0.54 ZV 1.16

FBL 1.92 1.44 0.70 ZV 0.76
GSLQR 1.78 1.82 3.62 ZV 0.14
FBLMM 1.57 1.58 5.81 ZV 0.09
SWLQG 3.54 1.84 0.36 ZV 1.58

SWLQG 3.54 2.60 0.36/1.68 ZV/ZV 1.69

Table 4.2: FLEX results for small slew around 0elb=50 degrees

The PD controller benefits the most from input shaping. Its settling time is
reduced at least by half and at most by 75% when a ZV shaper is added. These
shapers take out most of the vibrations and the time delay is very short. The
results are not as clear for the more complicated controllers. The MMLQR,
SWLQR, and SWLQG benefit when a ZV input shaper is added. The FBL,
GSLQR, and FBLMM do the same or slightly worse when input shaping is
added. They are very nonlinear controllers, so this is not unexpected. The
feedback controllers are designed to add a lot of damping to the modes, so the
lowest frequencies are critically damped. When the FBL and GSLQR inputs are
shaped for the higher frequencies, their performance does not improve. The
fastest settling time is achieved with the MMLQR and a ZV shaper. It settles in
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about 1.05 seconds, compared with a minimum unshaped settling time of 1.5 for
the FBLMM controller.

controller ts ts f Shaper tiS

elb=9 0 unshaped shaped
delta=0.5 (sec) (sec) (Hz) (sec)

PD 2.50 1.08 0.56 ZV 0.96
PD 2.50 1.82 0.56 ZVD 1.91
PD 2.50 1.70 0.56/20.42 ZV/ZV 0.91

PD 2.50 1.68 0.56/20.42 ZVD/ZV 1.8
PD 2.50 1.69 0.56/20.42 ZVD/ZVD 1.82

SWLQR 1.76 1.66 4.00 ZV 0.13
MMLQR 2.06 1.50 0.58 ZV 0.99

FBL 1.86 2.02 0.82 ZV 0.66
GSLQR 1.66 1.70 3.69 ZV 0.14

FBLMM 1.41 1.52 4.79 ZV 0.11

SWLQG 2.23 1.88 0.72 ZV 0.77
SWLQG 2.23 2.20 0.72 ZVD 1.54
SWLQG 2.23 1.84 0.72/1.92 ZV/ZV 0.95

Table 4.3: FLEX1 results for small slew around elb=90 degrees

The results show that the input shapers works best for the systems with the
lowest frequencies and simplest feedback controllers. The MMLQR and SWLQR
controllers do not shift the closed loop frequencies very far (though damping is
added), so the input shaper can get rid of them easily. The GSLQR and FBLMM
controllers add enough damping to the modes with frequency less than 1 Hz that
the damping is above 0.7; therefore it does not make sense to shape for those
frequencies. However, the next highest frequency (with a damping less than 0.7)
is around 3.5 Hz for the GSLQR and 5.5 Hz for the FBLMM. There is not that
much energy in these modes, so the input shapers end up adding a delay to the
system. The SWLQG has a huge overshoot in the unshaped case. Here, input
shaping really works well. But even with input shaping, we cannot get down to
settling times achieved with MMLQR or PD plus ZV input shaping.

After these simulations were run and analyzed, a feedback controller
downselect was performed. Three controllers were chosen to be tested further,
the GSLQR, FBLQG, and MMLQG, as well as the baseline PD. The decision was
made to change to LQG instead of LQR controllers in order to account for the
limited number of sensors available for use on orbit. The final controllers were
then run for a 0.5 degree step, for a range of elbow angles between 0 and 160
degrees. A single mode ZV and ZVD shaper were added to the inputs.

Figure 4.1 and Figure 4.2 show the individual controller performances for the
unshaped and two input shaper cases. Unfortunately, the MMLQG proved only
to be stable for a very small angle move and so was moved for delta angle=0.05
degrees. The PD, FBLQG, and GSLQR were moved for delta angle=0.5 degrees.
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Figure 4.1: FLEX1 simulations for PD and MMLQG controllers
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Figure 4.2: FLEX1 simulations for FBLQG and GSLQR controllers

The PD controller does much better when input shaping is added. The ZV
shaper gives the most performance increase because the time delay is half that of
the ZVD shaper. But the ZVD shaper still does better than the unshaped step
responses. The PD controller was designed for an elbow angle of 90 degrees, so
its unshaped performance is the best at that point. However, by adding the ZV
shaper, the performance is evened out over the whole range so comparable
settling times are achieved everywhere. The MMLQG does not benefit from
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adding input shaping, unlike the original MMLQR. The GSLQG also is not
helped by the addition of input shaping, though the input shapers do not add as
much time delay as they did to the MMLQG.

The FBLQG is a puzzling case. Exact feedback linearization is a rigid robot
technique where inverse dynamics is used to get rid of the rigid body modes.
Then a MMLQG controller is added as the outer loop. This make the FBLQG
system a very complex and nonlinear one. Input shaping was derived as a linear
system technique, though it has been effectively applied to nonlinear systems.
Here input shaping is not having much effect in the ZV shaper case and is both
improving and degrading performance in the ZVD case. There is definitely some
interaction going on between the feedback linearization method and the input
shaping, but it is not clear exactly what is happening.

Figure 4.3 shows the unshaped results for the FLEX, simulation over the
range of 0 to 90 degrees. The PD, FBLQG, and GSLQR results are moving a
distance 10 times that of the MMLQG. Thus the MMLQG results are not
comparable and it is doing decidedly worse than the others, taking just as long to
travel one-tenth of the distance that the others travel.
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Figure 4.3: FLEX, unshaped results

Figure 4.4 shows the results for the ZV shaper. The PD plus ZV input shaper
definitely does the best here. If results are compared with Figure 4.3, it can be
seen that the PD plus ZV is settling faster than the best unshaped controller, the
GSLQR.
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RMS controllers with ZV input shaper
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Figure 4.4: FLEX, results for a ZV shaper
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Figure 4.5: FLEX1 results for a ZVD shaper

Figure 4.5 shows all of the controllers settling times when ZVD shaping is

added. The interesting thing here is that the results are all very close to each

other. Performance is evened out by adding the ZVD shaper, perhaps because

the insensitivity of the shaper and the time delay allows the fundamental

frequency enough time to die out for each controller. The results are not shown

for the 90 to 180 degree range; however, they look very similar to the results

shown here, and so are not enlightening.
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4.1.3 Conclusions

Input shaping does increase the performance of the feedback controller if the
controller is not too nonlinear. When input shaping was added to the PD,
MMLQR, and SWLQR, performance noticeably increased. However, when input
shaping was added to the more nonlinear controllers such as FBLQG and
MMLQG, the performance stayed the same or was degraded.

The PD controller plus ZV input shaper did better than all of the unshaped
system responses. It has the additional benefit of being easy to implement and
does not require much computational resources or any additional sensors. These
results are for the SRMS model with no payload and no friction, both of which
make the system and strategies more complicated.

4.2 SRMS Proportional Controller

4.2.1 Purpose

One of the major questions raised in the previous study was what happens
when you relax the settling performance constraint and allow the feedback
controllers to move faster. How much more quickly do you reach the desired
position? We are trying to assess the value to be gained by adding input
shaping. Can the system reach its goal faster if shaping is used? We have
learned how quickly the system can accomplish its move with a well damped PD
controller. Now we are trying to learn whether we can do better with a
proportional controller (with a very small derivative gain).

The decision was made to do a series of tests on the PD controller to see what
the interactions were between the feedback controller and input shaping.
Usually the feedback controller is designed first and input shaping is added later.
If they are designed concurrently, theoretically you could get a large
performance increase.

4.2.2 Test Protocol

These questions were investigated by modifying the FLEX1 plus PD controller
model. Motor saturation was taken out of the model in order to simplify the
problem. The FLEX1 code was also modified so that it reads in the proportional
and derivative gains for the elbow, Kpe and Kve, from a MATLAB file. The
shoulder gains were kept equal to the original PD controller gains. The FLEX
simulations for this section will be called FLEXm.

One of the first decisions to be made was what performance metrics to use.
The rise time was chosen to be one metric. The radius rise time was defined to be
the first time the tip position enters the settling radius. However, with
proportional and derivative control, sometimes the tip misses the settling/rise
radius on the way up, and on the way down. It is swinging past the desired
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position without entering the settling circle. In fact, it often misses it for many
swings back and forth. In order to circumvent this problem, elbow rise time was
chosen to be the time it takes for the elbow joint to complete two-thirds of the
commanded move. Both radius and elbow rise time were calculated for the runs,
as well as the settling time.

Initially I was going to study just a proportional controller. However, with
no derivative gain, the controller went unstable for a low gain. By adding a very
small derivative gain of Kve=0.0010, the maximum desired proportional gain of
Kpe=0.30 was stabilized. Kve is only one order of magnitude below the lowest
proportional gain of the study, Kpe=0.01. The original gains that were designed
for the elbow are Kpe=0.05 and Kve=0.0163. By adding the small amount of
damping, the system poles move off the imaginary axis. In practice, every
mechanical system has some damping, so this is a realistic addition. When the
poles are on the imaginary axis in the simulation, we see unstable higher modes
which would not become unstable in practice.

Runs were done for a shoulder angle of 0 degrees and a nominal elbow angle
of 45 degrees. The unshaped input to the system was an elbow step command
from 40 degrees to 50 degrees. The tip of the arm moves four feet during the
move. The settling radius is one inch around the desired final tip position. Runs
were done for a range of proportional gains between 0.01 and 0.3. All runs were
done for an elbow proportional gain of Kve=0.0010. For the shaped runs,
different input shapers were tried until the vibration was reduced enough so that
the shaped response settled at the same time it reached the rise radius. This was
done to see how much input shaping was needed for each proportional gain and
to see if it varied along the test matrix.

4.2.3 Results

The rise time results are shown in Figure 4.6. The radius rise time to a 1 inch
radius about the final desired position is shown in the first subplot. This metric
does not give consistent results; sometimes the tip misses the rise radius until it
has vibrated for a while. The second subplot shows the elbow rise time; these
results show a more consistent pattern. The shaped elbow rise time is always
greater than the unshaped rise time. This shows the effect of the time delay
introduced by the input shaper.

The reason why the rise times are higher when the gains are less than 0.04 is
that different shapers are needed for the lowest gains. The first two shaped
points, Kpe=0.01 and 0.02, needed single mode ZVD shapers to get the settling
time to equal the radius rise time. The second two points, Kpe=0.03 and 0.035,
needed single mode ZVDD shapers to get the settling time to equal the rise time.
At Kpe=0.04 the system switches to needing two mode, ZV/ZV shapers for the
rest of the cases and the curve levels off. One reason why this is happening is
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that the dominant mode is not changing frequency as much after Kpe=0.04,
which is why the results look the same.
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Figure 4.7 shows the settling times for the shaped and unshaped responses.
The settling times level off at a proportional gain of about 0.15. So there is a
minimum settling and rise time below which the system cannot go, despite the
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lack of friction and saturation. The second subplot in Figure 4.7 shows the
percentage of time saved, the shaped settling time divided by the unshaped
settling time. It is decreasing with proportional gain, as the unshaped settling
time gets smaller and smaller. However, the shaped case always saves you time.

One reason why the response levels off after a certain gain is shown in Figure
4.8. The first mode reaches a certain frequency and levels off, while the second
frequency continues to increase with increasing proportional gain. The
dominant pole is approaching a zero and thus cannot change any more.

1st and 2nd Mode Frequency vs gain, Kve=0.001
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Figure 4.8: First and second mode frequencies for FLEXum

4.2.4 Conclusions

It is not as easy as one would like to increase a controller's performance. In
this case we were trying to increase the system rise time by increasing the
proportional gain of a PD controller. This worked very well for low gains, where
a significant difference can be seen. However, the system constraints meant that
increasing the system gains past a certain point had no effect. The fundamental
mode approached the corresponding zero and the frequency of the system could
not rise any higher. The original proportional gain of the PD system was 0.05, so
the PD controller was designed very well. By decreasing the derivative gain, the
system did move faster and input shaping was able to make the system settle
faster than before. This study leads me to believe that it is hard to design
feedback controllers and input shapers in concert unless you have a very well
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known system that behaves well. And even if you do know the system very
well, it will still be hard to design the feedback and feedforward systems.

4.3 Midsize Payload Results

4.3.1 Test Matrix

Once the FLEX model was redesigned to accept payloads and the friction
level was raised, the controllers had to be redesigned. A sample payload of 7500
lb. was used to represent an average of the payloads to be moved during space
station construction. This payload meant that the system frequencies changed
from around 0.5 Hz to 0.09 Hz. This difference was too large for the original
controllers to handle, so they were redesigned to be stable and effective in the
new workspace. The controllers are the SRMS rate, which uses same gains as the
controller on the SRMS, the LQG, the FBLQG, and the GSLQG. This model of the
FLEX simulation will be called FLEX2.

The new controllers were tested on a representative space construction task.
The task consisted of removing a 7500-lb component from the Shuttle bay and
positioning it for assembly. This task was broken into two parts: a large slew
from the payload bay to the assembly area, and a small maneuver to position the
payload precisely and accurately. The large slew was a straight vertical motion
of the payload from 5 feet inside the Shuttle bay to 19 feet above the Shuttle. The
motion followed a trapezoidal velocity profile for the Z tip. The move was
translated into the corresponding joint position and velocity commands, which
were fed to the FLEX2 model. The primary metric was the time to settle within a
circle of two inch radius, centered at the target position. This requirement is
based on the positioning accuracy requirement of the SRMS.

We assumed that settling time is a primary limitation to productivity, and
that rise time plays a role in perceived arm responsiveness. Therefore controllers
were evaluated by comparing average rise times and average settling times at all
of the nominal angles.

4.3.2 Results

Large slew settling times for each of the controllers are shown in Table 4.4 (as
t,). Also recorded were the average and maximum end-effector position errors
(eavg and emax respectively). The large slew settling time for the SRMS rate
controller is not reported. The rate controller does not incorporate position
feedback; it relies on astronaut input to reach a desired position. As a result,
settling time in response to a position command is not a relevant metric. (The
arm does reach the desired position, but not in a time comparable to that possible
under human control). The implementation costs of each controller were
assessed using the following metrics. The total energy used in the large slew was
calculated (E). The number of lines of code in each controller was determined as
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an indicator of the cost of validating the controller software. Finally, as an
indicator of required real-time processing, the total control calculation time, t,
for the large slew (80,000 cycles at 500 Hz) is shown. The rate controller does not
have a number of lines or tc given because it is the default. All of the other
controllers are outer loops around the rate controller.

The small slew results are also reported in Table 4.4, where tr is rise time and
ts is settling time to a radius equal to 2% of the total distance traveled. The
settling and rise times shown in the tables are the average times averaged over
the entire range of nominal elbow angles from 0 to -160 degrees. For the small
slew, SRMS controller results can be reported, since the rate commands can be
scaled to produce the correct change in position.

Controller Large Slew Small Slew Cost

ts eavg emax tr ts E # of tc
(sec) (in) (in) (sec) (sec) (W) lines (sec)

SRMS rate * 7.2 13.5 6.15 37.9 1961 - -
LQG 85.4 1.4 3.2 5.96 11.6 916 181 8.6

FBLQG 69.8 .9 4.2 4.33 25.7 923 212 11.5
GSLQG 67.8 .3 .8 2.37 4.2 612 512 34.0

Table 4.4: Evaluation of advanced feedback control on FLEX2
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Figure 4.9: FLEX2 settling times vs. elbow angle, advanced feedback control

Figure 4.9 shows the settling times, as a function of elbow angle, for the
advanced feedback controllers, compared to the nominal rate controller. The
best controllers achieve small settling times at all elbow angles. LQG achieves
about three times better settling time than rate control, but loses authority
around an elbow angle of -120 degrees. GSLQG settles almost ten times faster
than rate control over the entire workspace. Comparison with Table 4.4 shows
that, as expected, good performance is achieved at the expense of increased
complexity, measured by both computation time and code size. The feedback-
linearizing controller, FBLQG, does not include local loops at the joints to
minimize the effects of Coulomb friction. Our experience suggests that adding

Chapter 4: FLEX Results 67

I I I I 

3

I I I I 



68 Chapter 4: FLEX Results

such loops would significantly enhance the performance of this controller for
small motions. The metrics for the long slew show that performance increases
monotonically for increased control complexity, while energy used in the move
decreases.

- ··· ''' '.... .. .... . . . .......... - .

: 020 ..... 

Y error (in) X error (in)

Figure 4.10: FLEX2 payload path errors during the vertical move

Figure 4.10 demonstrates the performance of the arm under GSLQG control.
The deviation (in inches) of the payload center of mass from the desired path
during the large slew is plotted. The 7500 lb. mass travels 24 feet upwards in 60
seconds. The payload remains within an inch of the desired position throughout
the move.

Table 4.5 shows the values for the same controllers and performance metrics
defined above when input shaping was added to the input. The costs metrics are
slightly different than before. The # of lines and t metrics refer only to the
additional cost incurred by adding input shaping. The energy metric (E) is
computed the same way as in the previous table. Once again the SRMS rate
controller does not settle because of the lack of position feedback. However,
input shaping did not noticeably improve the rate controller's performance.

Controller Large Slew Small Slew Small Slew Cost (due to
ZV ZV ZVD ZV input sha ing)

ts eavg emax tr ts tr ts E # of tc
(sec) (in) (in) (sec) ) (ssec) (se (W) lines (se)

SRMS Rate * 10.2 26.9 6.13 9.08 8.83 26.5 1200 4 1.8

LQG 68.8 2.53 6.93 7.43 7.82 9.45 9.60 507 4 1.8
FBLQG 67.8 1.36 4.23 8.78 34.0 11.9 32.7 2335 4 1.8
GSLQG 67.4 1.22 3.33 3.53 3.43 4.52 4.42 1095 4 1.8

Table 4.5: Evaluation of advanced feedback with input shaping on FLEX2

For the large slews, input shaping helped the settling time, but increased the
average and maximum errors associated with trajectory following. This is due to
the time delay introduced by the shaper. The shaped response lags the
trajectory, and so incurs larger errors even though it follows the path more
closely than the unshaped response. The unshaped commands end at 70 seconds
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and the FBLQG and GSLQG responses settle before the command ends for both
the unshaped and the ZV shaper cases. Thus, there was not much that the input
shaper could do to improve these controllers' performances. However, the input
shaper did not add a noticeable delay to the large slews. This is because the
duration of the input shapers was short compared to the move duration. The
trapezoidal velocity command given to the controllers seemed to minimize
vibration; the unshaped responses did not vibrate much after the move was
done. Even the rate controller did not vibrate much; it just didn't settle quickly
because of the lack of position feedback.

For the small slew moves, the rise times for each controller have all increased
or remained the same, due to the time delay added by the shaping of the input.
The ZV input shaper achieves the largest improvement with the rate controller.
Average settling times drop from 38 seconds to 9 seconds. The ZV input shaper
also improves performance when coupled with the LQG and GSLQG controllers.
The nonlinear friction associated with FBLQG contributes to its poorer
performance when used with input shaping. The total energy increases when
input shaping is added to the FBLQG which indicates that the nonlinearities
inherent in the FBLQG are hindering the input shaper's performance. Figure
4.11 shows the settling times, as a function of elbow angle, for the combined
advanced feedback controllers and the ZV input shaper.

FLEX2 sim, Tip position settling time vs ELP, ZV input shaper
rc ,%ou

45

40

35

o 30

- 25
CD

200

15

10

5

n
-160 -140 -120 -100 -80 -60 -40 -20 0

ELP [deg]

Figure 4.11: FLEX2 settling times, advanced feedback with ZV input shaping

The ZV input shaper does improve the LQG, GSLQG, and SRMS rate
performance for small slews. By contrast, the ZVD shaper does not improve the
performance of the GSLQG; it just delays the settling time. The ZVD shaper does
improve the performance of the LQG and SRMS rate controller, but not as much
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as the ZV shaper does. Interestingly, the ZVD input shaper does not degrade
performance quite as much for the FBLQG when compared with the ZV.
However, they still both do worse than the unshaped FBLQG which settles about
8 second faster than the ZVD shaped responses. Figure 4.12 shows the ZVD
settling responses over the tested elbow joint range.
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Figure 4.12: FLEX2 settling times, advanced feedback with ZVD input shaping

The GSLQG curve looks very similar to the unshaped GSLQG curve shown in
Figure 4.9. The LQG curve is very smooth as well. The SRMS rate controller
plus ZVD curve is much higher than the rate and ZV curve. The additional five
second delay associated with the derivative constraint is causing the response to
rise more slowly and seems to be exciting more vibration. The tip responses of
the SRMS rate controller are shown in Figure 4.13. There is a lot of vibration
present in the unshaped response, though the damping is high enough to get rid
of the ringing within five cycles. The ZV response settles very quickly and
immediately, without exciting any vibration. The ZVD response is slower and
still has a small amount of residual vibration after the command finishes.

Figure 4.14 shows the FBLQG response for an elbow angle of 45 degrees. The
ZV and ZVD input shapers are not helping reduce vibration at all. They are
merely delaying the rise time and settling time. The shaped responses do not
overshoot the desired position by as much as the unshaped, but do have as much
residual vibration as the unshaped responses. The lack of modeled coulomb
friction in the FBLQG feedback loop could be one cause of this performance
degradation. FBLQG combines feedback and feedforward techniques already by
modifying the input by multiplying it by the inverse dynamics. Putting
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additional feedforward techniques on top of this is obviously not helping the
system performance.
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4.3.3 Conclusions

While many details of advanced control implementations on the SRMS and
SSRMS remain to be addressed, the above study supports the following
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conclusions. First, the potential for significant performance improvement under
advanced control exists. As much as a factor of six reduction in settling time,
and a factor of 24 reduction in path-following error, are achieved in our
simulation studies. Second, our cost metrics suggest that higher performance
generally incurs higher costs. However, the feedforward control achieves a
factor of four improvement over RMS rate control alone, with relatively minimal
cost. This further suggests that cost and performance can be traded off by proper
choice of algorithm, given a comparable set of performance and cost data for the
algorithms.

4.4 Large Slewing Moves

A small study was done to investigate the FLEX2 2D trajectories. The move
shown in the previous section was from zi=5 to z- 19 feet. A variety of shorter
and longer moves with zi=5 and z=[-ll -15 -19 -23] were examined. The results
are shown in Table 4.6. tce is the length of the command. The metrics have all
been defined in previous sections. The GSLQG got rid of all of the vibration, no
matter what length the move was. In fact it settled 3.4 seconds before the
command reached its final point in all cases. The LQG controller also had good
performance; though the settling time did increase by 0.2 seconds for each
additional four feet moved. It settled from 3.4 to 2.6 seconds before the
command reached its final point. The Rate controller had the worst performance;
this is not surprising since settling time is a poor criterion here. However, it was
not vibrating once the command ended, just settling very slowly due to the
SRMS integrator.

Controller Zfinal tce ts t,-tce eavg emax E
(feet) (sec) (sec) (sec) (in) (in) (W)

Rate -11 50 70.4 20.4 2.99 9.09 1398

Rate -15 60 85.2 25.2 3.64 10.28 1493

Rate -19 70 96.6 26.6 4.14 10.99 1612

Rate -23 80 103.8 23.8 4.40 11.13 1725

LQG -11 50 46.6 -3.4 0.94 3.52 761

LQG -15 60 57.0 -3.0 0.88 3.52 698

LQG -19 70 67.2 -2.8 0.92 3.52 714

LQG -23 80 77.4 -2.6 1.00 3.52 831

GSLQG -11 50 46.6 -3.4 0.18 0.73 877

GSLQG -15 60 56.6 -3.4 0.19 0.73 1051

GSLQG -19 70 66.6 -3.4 0.21 0.73 1180

GSLQG -23 80 76.6 -3.4 0.24 0.73 1301

Table 4.6: FLEX2 large slews

The fundamental frequency of the system was not changing since the
shoulder joint was moving different distances, not the elbow joint. (The RMS is
symmetric about the shoulder, so only the elbow angle determines the
frequency.) The point of this test was to see if vibrations died out as a function of
move distance. The answer appears to be that the vibrations were not apparent
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for any of these particular runs. Either they have all died out since the move
lasted longer than 5 cycles of vibration, or the controllers get rid of them. So to
get vibration, moves of much shorter duration or moves that change the system
frequencies more must be investigated. Trapezoidal velocity trajectories are
doing a very good job of reducing vibration for these long moves. The next thing
to do is to change the velocity and accelerations of the velocity profile and see
how much faster the system can move. This problem of optimizing performance
for systems with changing geometries will be explored further in the next
chapter.

4.5 Conclusions

The FLEX program successfully developed a number of SRMS models.
Feedback controllers of varying complexity and effectiveness were developed for
each model. The GSLQG controller performed very well on the midsize payload
model with friction. It had the lowest settling times and the lowest trajectory
errors. However, it also had the highest complexity and needed additional time
in order to compute the controller at each time step. In contrast, the SRMS rate
controller worked well when input shaping was added with little additional
complexity or time penalty. However, the settling times were not as low as the
GSLQG controller and the lack of position feedback impaired the trajectory
settling performance. There is definitely a tradeoff between complexity and
performance.

When an astronaut is added to the control problem, the results grow even
more complicated. The interactions between an automatic feedback controller
and an astronaut need to be investigated further, preferably on orbit. This will
be investigated further in the later phases of the FLEX program.
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Geometrically Varying Systems
Chapter 5

5.1 Introduction

Robotic manipulators are an example of a class of systems whose geometries
change as they move. As the robotic arm travels through its workspace, the
fundamental frequencies shift. This means that the feedback controllers must be
stable and effective over a larger range of frequencies than the controllers for
other types of systems. When input shaping is added to these systems, certain
questions arise. Which frequency do you shape for? Potentially you could shape
the input using the beginning frequency, the end frequency, the midpoint
frequency, or using an adaptive input shaping method. There is also the general
problem of how to deal with systems whose frequencies change with geometry
and the more specific problem of how input shaping and feedback controllers
interact while the geometry is changing. In this chapter, I will investigate the
effects of input shaping with simple feedback controllers on geometrically
varying systems.

The Space Shuttle Remote Manipulator System (SRMS) is a very good
example of a changing geometry system. It is a fifty-foot long, six degree of
freedom robot arm designed for use in space, since it cannot lift itself in a gravity
environment. It deploys payloads from the orbiter's cargo bay and captures
payloads for retrieval or repair. The SRMS can also be used as a platform for the
astronauts during their extravehicular activities. It has seven joints but usually
six degrees of freedom since the swingout joint is normally fixed during
operation. Since it is very long and light, less than 1000 pounds, the SRMS is
extremely flexible, especially when moving heavy payloads.

Singer examined geometrically varying systems in his doctoral thesis. Three
types of systems were considered: systems for which the period of oscillation
varies by a small amount, systems that experience large changes in frequency,
but are velocity limited, and systems which experience large changes in
frequency but are not velocity saturated during the move. For systems whose
frequencies change less than 20% or 30%, he suggests that a more insensitive
shaper is all that is needed. Systems which are velocity limited can have their
accelerations and decelerations shaped to reduce residual vibrations. Systems
with changing frequencies can be assumed to be "quasi-static" and use adaptive
input shapers that change frequency at discrete points along the move.

75



76 Chapter 5: Geometrically Varying Systems

5.2 Models

Tests were performed using several different models. A simple two-link
model, based upon the SRMS, was created in order to get results quickly. Since
the model has very few nonlinearities, the results should also be easier to
interpret. The FLEX2 simulation, which includes the variable payloads and
friction effects, was tested further and has already been discussed in Chapters 3
and 4. The model that I explored the most was the DRS; it is known to be
accurate and it captures many of the crucial nonlinearities such as friction,
stiction, saturation, and backlash.

The decision was made to only move in single plane of the SRMS workspace,
the xz plane. The planar assumption does simplify the problem. However, there
are certainly enough nonlinearities present in the SRMS models to make the
problem very interesting and hard to understand. The SRMS 2D model is a
sufficient representation of a real system for certain cases.

5.2.1 Two-link Model

The two-link model was designed to represent a simplified SRMS. The
system was modeled as a two-link flexible manipulator with a payload. The
resulting model, referred to as the 2LM, consists of a fixed base joint, a rigid link,
an elbow joint, another rigid link, and a wrist and payload. The joints are flexible
and damped. The model is shown in Figure 5.1.

M T

Figure 5.1: Two-link model and its parameters

The equations of motion for this system are given in the Appendix B. The
masses, inertias, and link lengths were chosen to be equal to the actual SRMS
values. The values are given in Table 5.1 and are from reference [19].
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Length Mass Inertia Joint Stiffness
(feet) (slugs) (slug-ft2) (ft-lb./radian)

Link 1 20 8.0 266.0
Link 2 23 3.5 154 2

Shoulder Joint 2.11E6
Elbow Joint 5.2 0.4362 1.90E6

Payload 238.7 7063.5
Table 5.1: SRMS parameters used in the two-link model

The stiffnesses and dampings of the joints were chosen to match the SRMS
frequencies and to match the damping and settling times. Once the SRMS
parameter values were added to the two-link model, its system response started
to resemble the SRMS's response. The gearbox stiffness of the SRMS shoulder
pitch is Kgl=2.11E6 ft-lb./rad and the gearbox stiffness of the elbow pitch is
Kg2=1.9E6 ft-lb./rad, as given in Table 5.1. These stiffnesses were used as the
baseline spring gains. The stiffnesses gave frequencies of the right order of
magnitude, but were too high since some nonlinearities were missing from the
two-link model. The SRMS rate controller has equal gains on each joint, so K2
was chosen to equal K1. When the spring gains were increased to K,=2.6*Kg=K2
and damping was added to model the rate controller, B1=1.2E5 ft-slug-sec/rad
and B2=1.0E5 ft-slug-sec/rad, the two-link model became a very good
representation of the SRMS. This factor of 2.6 that was necessary to get the
frequencies to match can be considered a correction factor. There are many
nonlinearities which were not included in this simple model. The correction
factor is necessary to compensate for the missing elements. The correction factor
was found by after trying many combinations of stiffnesses and damping ratios.

2d Frequency map as a function of elbow angle and controller
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Figure 5.2 shows the FLEX2 system frequencies versus the two-link model
frequencies. This FLEX2 system uses the SRMS rate controller as its feedback
controller and both models use the 7500 lb. payload. There is good agreement
(within 2.5% of each other) and both follow the same curve. The frequencies do
not change as the shoulder angle is changed. Part of the reason why the joint
stiffnesses and dampings were changed was to compensate for the lack of
friction and saturation in the two-link model. Both of those nonlinearities could
have been added, but they would have increased the run time, which was the
reason for the simpler model. The model could also have been improved by
incorporating torsional springs in the links, and placing a torsional spring under
the base. However, adding torsional springs would only add two extra modes
and would not necessarily clarify the problem. Currently the model has
flexibility only in the joints and rigid links. The two-link model was able to
match the first two frequencies of the SRMS by tuning the joint flexibilities and
dampings, but does not model any of the flexibility in the links. Therefore, the
two-link model results will never exactly match the more complicated models. It
is a good first-order approximation, however.

5.2.2 The Draper Remote Manipulator Simulation (DRS)

The Draper Remote Manipulator Simulation (DRS) was developed by Draper
Labs over a period of 10 years and designed to account for many nonlinear
effects. It was extensively verified using actual flight data and was validated by
NASA for use as a tool for analysis of shuttle payload deployment and retrieval
operations. It has a flexible payload module to allow higher fidelity simulation
of the internal motion of payloads with flexible components. [21]

Payload Joint velocity limits (deg/sec)
Shoulder Yaw Shoulder Pitch Elbow Pitch Wrist

unloaded 2.29 2.29 3.21 4.76
7500 lb. 0.51 0.51 0.71 1.06

32000 lb. 0.229 0.229 0.321 0.476
Table 5.2: Joint velocity limits for different payloads

The DRS simulation I used had been previously transferred to the UNIX
environment by Singer. [25] The model includes saturation, motor resistance,
motor coulomb friction, motor stiction friction, joint brakes, joint friction,
gearboxes, and servo loops. Many different parameters can be changed, such as
the friction, stiction, integral gains, sampling rates, payloads, inputs, outputs, etc.
I used the default DRS parameters, as defined in Payload Deployment and
Retrieval System Simulation Database, Version 1.0, but changed the payload
parameters to model the various payloads correctly. [19] Three payload
configurations were tested: the nominal payload (just the wrist and end-effector),
a 7500 lb. payload used in the FLEX simulations, and a 32,000 lb. cylinder
payload defined in the DRS reference manual. [16] Each of these payload has
different characteristic joint rate limits, as stated in Table 5.2. These limits
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constrained the workspace by limiting the joint velocities. The motor torque
limits restricted the allowable accelerations.

5.3 Procedure

5.3.1 Hypothesis:

There are different combinations of geometrically changing systems and
moves:

I. Insensitive system: frequency changes less than 10%
II. Mid-sensitive system: frequency changes between 10% and 20%
III Sensitive system: frequency changes more than 20%

A. move duration is longer than N cycles of vibration (of the
fundamental frequency)

B. move duration is less than N cycles of vibration

Each type of system needs a different solution. For example, for system I, a
ZV or ZVD input shaper should remove the most vibration with the least time
penalty. They are faster than the more insensitive shapers and should give the
greatest improvement with the least cost unless there is a large error in system
knowledge. System II needs a more robust input shaper, such as a ZVD, ZVDD,
EI, or EI two-hump. The sensitivities and time delays associated with each of
these input shapers are given in Table 2.1. N is defined to be the number of
cycles at which the initial acceleration is no longer affecting the residual
vibration. N is different for each system, and so is not chosen to be a specific
number here. System damping plays a large part in defining N; the higher the
damping, the lower N should be.

System III, the very sensitive system for which the system frequencies change
more than 20%, appears to be the most interesting problem. For part A, if the
move duration is longer than N cycles, the vibration caused by the initial
acceleration should die out before the deceleration portion of the move begins. (I
am assuming that a smooth trapezoidal velocity move is being used for these
long moves, not a step command which would excite too much vibration.) Then
only the deceleration is creating the residual vibrations. If the desired endpoint
of the move is known, you should be able to shape just the deceleration for the
system frequency at that position. This eliminates the need for an input shaper
that takes into account the changing frequencies, either adaptively or by
choosing a middle frequency.

One problem is choosing N, the number of cycles at which the initial
acceleration dies out. This number depends on many factors, such as system
damping and the percent change in system frequency. It is also possible that the
deceleration does not excite residual vibration of significant amplitude. If the
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settling band is wide enough, input shaping might not be needed, if the smooth
trapezoidal velocity profile is being used. Also, if the feedback controller has
very good performance, it should be able to follow the trajectory closely with
very little residual vibration. This was seen when the GSLQG controller was
tested on trapezoidal velocity trajectories in Chapter 4.

For systems of type III.B, the vibrations from the acceleration of the arm up to
speed and the vibrations from the deceleration will interact. If the move is timed
carefully, the vibrations could be exactly out of phase and cancel each other.
However, usually the vibrations add together and create vibrations of a higher
amplitude than the deceleration alone would create. This seems like an ideal
opportunity to use input shaping to get rid of the residual vibrations. There are
many possible options. Simple shapers for one frequency, end or middle, are the
easiest to implement and calculate. The initial acceleration could be shaped for
the beginning frequency and the deceleration could be shaped for the end
frequency. This is possible because there is a constant velocity section in
between the accelerations, which allows the shapers to be switched smoothly.
An adaptive shaping method that keeps switching between different input
shapers as the frequency changes is also possible, though much more complex to
implement.

5.3.2 Test Protocol

The purpose of this chapter is to investigate the workspace of the SRMS. Its
frequencies shift as the geometry of the arm changes. As the arm moves from an
elbow angle of 0 degrees to an elbow angle of 90 degrees, the frequencies change
25%. This indicates that the SRMS is a sensitive system, type III. In order to test
my hypothesis, two different systems should be tested. One that models the
situation in III.A (sensitive system, long duration move, and large frequency
shift) and one that models the situation in II.B (sensitive system, short duration
move, and large frequency shift). The problem is finding a system that will
change frequency by at least 20% during a short duration move, thus
representing III.B. The SRMS is a system of type III.A and the two-link model
could be modified to represent III.B. By classifying the different systems into
various sensitivities and move durations, the general problems involved with
changing geometry systems should be decomposed into parts small enough to
answer.

The long duration moves necessary to test III.A are done using trapezoidal
velocity profiles. Unshaped runs of different move durations will show how
much residual vibration there is after each move as a function of move duration.
The test axes are sensitivity of the system and move duration. Another possible
axis is system damping; however, the models represent the SRMS and changing
the damping would change the system completely and the results would not
necessarily translate to the SRMS. The goal of this thesis is to generate results
that improve the base of knowledge about the SRMS, so damping was not chosen
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to be a major test matrix axis. The system damping sub-problem was
investigated by running a small series of tests on the DRS model to see how
changing the motor friction levels changed the system damping and response.
These results are presented in section 5.5.6.

Figure 5.3 shows how the trapezoidal trajectories were calculated. t is the
length of acceleration. t2 is the time at the end of the constant velocity section.
tce, the end of the command, is equal to t+t2, since the deceleration also takes t1
seconds. There are two equations and five unknowns, a, d, v, t, t2. d, the angle
traveled, and a, the acceleration, are specified as a part of the test matrix. This
leaves one variable to be chosen. In different tests, either v or t2 was chosen and
the others were calculated from equations shown in Equation 5.1.

v = at

d = 0.5vt l + v(t2 - t ) + O.5vtl = vt2 = atlt2 (5.1)
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Figure 5.3: Trapezoidal velocity profile

The two-link model, the FLEX model, and the DRS simulation were run using
the same variables. The velocity was varied over a range of values in the two-
link and FLEX tests. For the DRS simulations, the velocity was chosen to be the
maximum allowable for each payload, as given in Table 5.2. The acceleration,
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move distance, and payload were varied over the SRMS workspace. The
payloads were chosen to be the unloaded case, the 7500 lb. payload used in the
FLEX program, and a 32000 lb. cylinder payload.

5.4 Verifying and Testing Simple Models

5.4.1 Procedure

In order to verify that the two-link model's behavior represents that of the
SRMS, it was compared to the FLEX2 model. Trapezoidal velocity profiles were
generated for the desired accelerations, velocities, and move distances. The move
consisted of the elbow pitch joint moving an angular distance of A0elb=90 and 120
degrees, while the shoulder pitch was commanded to remain constant. The
initial angles were ,,h=0 and Oelb=0. The accelerations ranged from 0.001 to 0.008
rad/s2 . The duration of the move was varied over a range that depended on the
distance traveled. The appropriate performance metric is the time to settle after
the command has finished, tsc=ts-tce, because the moves are all of different
duration, which makes it hard to compare settling time. The settling times were
calculated for a settling radius of 0.5 inches around the desired final tip position.

For the comparison to be valid, the FLEX2 model was modified to take out the
integrator in the rate controller. The new modified FLEX2 model is called the
FLEXm. Without the integrator, the rate controller settles much more quickly to
a final position, though the position is not the desired one. The settling time for
the FLEX2m is now defined to be the time taken to settle around its final position,
not the desired position.

For every acceleration, velocity, and distance, there is a certain minimum
move time when using a trapezoidal velocity profile. For D=-90 degrees and
a=0.001 rad/s 2 , the minimum move duration is 80 seconds. This means that there
are already eight cycles of vibration (f-.10 Hz) for the shortest move. The percent
frequency change is 35% and 24% respectively, in these two cases. For the two-
link model with the 7500 lb. payload, the system must move more than 75
degrees to get over a 20% change in frequency. Therefore, this limits the
minimum move length, and the hypothesis III.B cannot be checked by these
models unless the torque limits are ignored and the acceleration increased.

5.4.2 Verification of the Two-link Model

Figure 5.4 shows two representative step responses from the FLEX2m
simulation and the two-link model. The FLEX2m SRMS rate controller is the solid
line, the two-link is the dashed line. The two models do not have the same
damping ratio or follow the command in the same way, but the frequencies
match and both responses settle at about the same time.
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One of the main differences between the two models is the rise time. The
FLEX2m response follows the velocity command very closely initially because a
torque is being applied until the command goes to zero. Then the links, which
have been bent by the acceleration, straighten. This causes the joint velocity to
change directions. This behavior is shown in Figure 5.5, which is a closer look at
Figure 5.4. The two-link model does not have torsional springs and thus no
wind-up in the links, so its initial behavior differs from the FLEX, response.

SRMS rate and 2 link step responses
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Table 5.3 shows the results for the two-link model and the FLEX2m rate
controller model for a low acceleration and a range of velocities. For this
acceleration, the two-link model unshaped response is settling before the
command is over. The residual vibrations have amplitude less than half an inch,
so the responses are settling during the initial rise. The FLEX2m unshaped
response is settling a short time after the command is done. The two different
models do not have exactly the same system response, but the results are similar.
Decreasing the velocity while increasing move duration is not affecting the
settling time except in the last two cases of the 2LM. For D=90, v=0.0132 rad/s,
there is an overshoot of the desired x tip position. The overshoot has an
amplitude of 0.84 inches, so it is just larger than the settling radius. The elbow
angle overshoot can be seen in Figure 5.8, which shows the two-link model
responses for two different velocities and D=90. The initial overshoot is
increasing with increasing command length. This causes the settling time to be
after the command is done.

D=90 degrees 2LM 2LM SRMS rate SRMS rate
amax vmax tce unshaped neg. El unshaped ZVD

(rad/s2 ) (rad/s) (sec) (sec) (sec) (sec) (sec)

0.001 0.0394 79.4 -2.8 2.65 1.2 5.1

0.001 0.0316 81.6 -2.8 2.60 1.2 5.1

0.001 0.0262 86.2 -3.0 2.65 1.2 5.1

0.001 0.0226 92.6 -2.8 2.65 1.2 5.1

0.001 0.0198 99.8 -2.8 2.60 1.0

0.001 0.0176 107.6 -3.0 2.60 1.0 5.1

0.001 0.0158 115.8 -3.0 2.65 1.2

0.001 0.0144 124.4 0.0 2.65 1.4 5.1

0.001 0.0132 133.2 0.2 2.65

Table 5.3: Settling times for 2LM and FLEX2m, D=90, a=0.001

When input shaping was added to the low acceleration moves, it only added
a delay to the system, as shown in Table 5.3. Two different types of input
shapers were tried, a ZVD and a negative EI input shaper. The frequencies were
chosen to be the frequencies of the system at the end of the move. Because the
unshaped responses were settling during the initial rise or right after the end of
the command, there was not much that input shaping could do. The low
acceleration and smooth trapezoidal velocity profile gets rid of all of the residual
vibration. There is not need for input shaping at these values.

Figure 5.6 shows the time history of the elbow angle for the two-link and
SRMS rate controller for a=0.001 rad/s 2 , v=0.042 rad/s, D=-120 degrees. The
FLEX2m is not following the command during the deceleration, and once the
command ends, settles quickly, though to the wrong position. If the integrator
was still in place, the SRMS rate controller would settle to the correct position,
but would take an extra 50 seconds. The amplitudes of the residual vibration for
both models are both about 0.24 inches. The second subplot shows that the
amplitude of residual vibration is low for both models. The two-link has better
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performance at trajectory following than the SRMS rate controller, since it has
position and velocity feedback

RMS rate and 2 link for a=0.001
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Figure 5.7: Settling times for 2LM and FLEXm, D=90 and 120, a=0.001

Figure 5.7 shows a comparison of settling times for the two-link model and
the FLEX2m SRMS rate controller model. When looking at the individual time
histories, the two-link model and the FLEX2m follow the same trend, but the
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FLEX simulation does not follow the command as well as the two-link model
because of saturation and friction. However, the two models do perform
roughly the same so results generated on the simpler and quicker two-link model
should translate to the more complicated FLEX2 model and the DRS.

5.4.3 Two-link Model Results

Once the two-link model was verified by testing it with the FLEX2 model,
more tests with trapezoidal profiles were run. Figure 5.8 shows the 2LM residual
vibration and command for two different velocities and a 90 degree move. The
quicker response has a near-triangular velocity profile, v=0.039 rad/s which lasts
79.4 seconds. The slower response has a command time of 133 seconds and a
velocity one-third of the previous velocity. There is not very much vibration in
either response; however, the lower velocity has slightly more residual vibration,
enough to make it settle just after the command is over. Increasing the velocity is
having very little effect on the amount of residual vibration. One possible reason
is that the acceleration is too low. The acceleration was varied in the next set of
tests. Because there was not much residual vibration in the low acceleration
moves, input shaping was only added to the higher acceleration moves.

Two-link System for D=90, a=0.001
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Figure 5.8: 2LM large slew move for two velocities, D=90 degrees, a=0.001 rad/s 2

Table 5.4 shows the results for an acceleration of 0.004 rad/s 2 , where the
move distance equals 90 degrees. The unshaped results settle after the command
has ended. The negative EI input shaper does improve performance here; it
saves several seconds. However, compared to the length of the command, not
much time is saved at all, there is only a 4% time savings. The negative El input
shaper lasts 6.09 seconds, so it is getting rid of all the vibration and allowing the
response to settle before the shaped command has ended. The ZVD shaper is
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doing the same thing, but its duration is 8.90 seconds and its
means that the ZVD responses settle after the negative EI do.

longer time delay

D=90 2LM settling times (ts-tce)
amax vmax tce unshaped ZVD neg. EI

(rad/s2 ) (rad/s) (sec) (sec) (sec) (sec)

0.004 0.0786 39.65 5.70 6.05 4.80
0.004 0.0524 43.10 6.00 6.00 4.80
0.004 0.0392 49.80 5.60 6.00 4.80
0.004 0.0314 57.85 5.25 6.00 4.75
0.004 0.0262 66.55 5.55 6.00 4.75
0.004 0.0224 75.60 8.90 6.00 4.75
0.004 0.0196 84.90 9.40 6.05 4.80
0.004 0.0174 94.35 9.70 6.05 4.85
0.004 0.0158 103.95 9.65 6.10 4.90

Table 5.4: Settling times for 2LM, D=90, a=0.004

When the acceleration is increased to a=0.008 rad/s 2 , the level of vibration
increases, shown in Table 5.5. The unshaped responses take longer to settle, as
do the shaped responses. The lengths of the input shapers are the same, but the
additional vibration causes the shaped responses to settle slightly after the lower
acceleration shaped responses.

D=90 2LM settling times (ts-tce)
amax vmax tce unshaped ZVD neg. EI

(rad/s 2) (rad/s) (sec) (sec) (sec) (sec)

0.008 0.1120 28.00 10.60 6.75 7.70
0.008 0.0784 29.80 6.35 6.75 5.30
0.008 0.0524 36.55 9.80 6.75 7.75
0.008 0.0392 44.90 13.70 6.75 8.50
0.008 0.0316 53.95 13.25 6.75 8.75

0.008 0.0260 63.25 11.00 6.80 8.90
0.008 0.0224 72.80 11.05 6.85 8.90

Table 5.5: Settling times for 2LM, D=90, a=0.008

The ZVD shaper is doing a better job at minimizing residual vibration for this
acceleration than the negative EI shaper. Both shapers have the same
insensitivity, but the EI allows 5% of the residual vibration to remain rather than
trying to get rid of all the vibration. These results indicate that the frequencies
are shifting slightly with acceleration. The EI shaper did better for a=0.004
rad/s2, but the ZVD shaper did better for a=0.008 rad/s2. There is no good
explanation for why one shaper did better at one acceleration and another shaper
did better at a different acceleration.

The faster acceleration runs are definitely producing more vibration. The
response no longer settles before the command ends, and the runs end much
more quickly. Table 5.6 shows a comparison of the results for different
accelerations and the same velocity. Not only are the unshaped settling times
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increasing, but the shaped settling times are increasing as well, even though the
duration of the input shaper stays constant.

D=90 2LM settling times (ts-tce)
amax vmax tee unshaped ZVD neg. EI

(rad/s2 ) (rad/s) (sec) (sec) (sec) (sec)

0.001 0.0394 79.4 -2.8 2.65
0.002 0.0393 59.65 1.45 3.75
0.004 0.0392 49.80 5.60 6.00 4.80
0.008 0.0392 44.90 13.70 6.75 8.50

tis 0 8.90 6.09

Table 5.6: Settling times for 2LM, varying accelerations

Figure 5.9 plots the tsc vs. the velocity from Table 5.4 and Table 5.5. The
negative EI shaper has a constant settling time, regardless of velocity and
acceleration. The ZVD gives a constant settling time for the lower acceleration,
but follows the unshaped performance more closely for the higher acceleration.
Part of the changes may be due to the metric used. Settling time to a certain
radius is not a very robust metric. If the system barely misses the settling radius,
it is not taken into account and the response does not settle until the next cycle is
over. This may explain the irregularity in the curves, especially the unshaped
responses. The input shaper time delay means that the responses settle before
the shaped command is through. Since there is no vibration after the end of the
move, the settling time is equivalent to the rise time.
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From these results, I draw the conclusion that higher acceleration moves do
excite more vibration. The two types of input shapers implemented reduced the
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residual vibrations in the higher acceleration moves. However, the shaped
responses settle before the shaped command has finished, so a shorter input
shaper might still get rid of all of the vibration and have less delay.

5.4.4 Conclusions

A simple two-link model was developed and tested. It used the SRMS
parameters and was tuned to represent the SRMS first frequency and damping
ratio. When the performance was compared with the FLEX2 simulation, the
agreement was good. This model is much simpler and thus runs faster than the
FLEX2 simulation which must calculate mode shapes and torsional effects.

From the initial investigation of the two-link and FLEX2 models, input
shaping is only needed for a long move if there is a very tight settling criterion.
If you only need to settle to within a one inch radius or greater, then the
unshaped moves settle on the way up to the final desired position. The
acceleration also has a large effect. If the acceleration is increased, the move ends
more quickly with more residual vibration. However, the residual vibration has
an amplitude of less than two inches even for the higher accelerations.
Trapezoidal velocity profiles excite far less vibration than step commands.

For the very small radius, the ZVD and negative EI shapers get rid of
vibration. They have an associated time delay that is very close to how long the
unshaped case takes to settle. Therefore, we are not getting much time savings at
all. As the acceleration is increased, the model is having more trouble keeping
up with the trapezoidal profile, and thus has more vibration at the end of the
move. The next section will examine more closely the problem of how
acceleration, move distance, move duration, and input shaping interact for
trapezoidal velocity profiles.

5.5 DRS Results

The DRS model was initially just going to be used to verify the FLEX
simulation's performance. However, it proved to be simpler to understand than
expected. Therefore, a series of tests were run using it, since it has been verified
by NASA. It should be very accurate so that recommendations gathered from its
results can be transferred to the SRMS without modification or the need for much
more further verification.

5.5.1 Simulations Run

Runs were done for maximum velocities, three different payloads, a range of
accelerations, and a range of distances. The range of accelerations varies from
payload to payload, due to the differing inertias and the maximum motor torque.
The unloaded payload has a maximum velocity of 3.21 deg/s and a maximum
acceleration approximately of 0.05 rad/s 2 . The 7500 lb. payload case has a
maximum velocity of 0.51 deg/s and a maximum acceleration of roughly 0.005
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rad/s 2 . The 32000 lb. payload has a maximum velocity of 0.321 deg/s and a
maximum acceleration of 0.001 rad/s 2 . These maximum velocities were specified
by NASA. The maximum acceleration were determined by looking at the
simulation results that follow in this section. Table 5.7 shows the test matrix
used in this section.

Axes P=O P=7500 P=32000
Distance 15,45,90 15,45,90,135 15,45,90

Acceleration (rad/s2) 0.002-0.064 0.001-0.016 0.0002-0.008
Elbow velocity (deg/s) 3.21 0.51 0.32

Input Shapers ZV, negative ZV, ZVD, negative ZVD, EI,
negative EI, ZVb

Table 5.7: DRS test matrix

The moves were chosen to be joint space moves instead of Cartesian space
moves to make it easier to define and calculate the moves and angles. The
distance of the move was defined to be the angular distance the elbow pitch joint
moved. The shoulder pitch angle moved only one-quarter of the distance the
elbow moved. I chose to move both of the joints at once to represent realistic
behavior of the arm. In space, it is likely that both joints would be moving, not
just the elbow joint. The distances chosen were 15 degrees, 45 degrees, and 90
degrees. The initial angles were chosen to be Osh=0 and Oe1b=0. Figure 5.10 shows
the initial and final arm positions for each of these moves.

Initial and final arm positions

---

.o
o
N

-3

-4

-10 0 10 20 30 40 50
X position (feet)

Figure 5.10: DRS arm positions for various move distances

The metric used to measure performance is settling time. Because all of the
moves have different durations, the time to settle after the command has
finished, tsc, will be used. tsc is defined to be the overall settling time, ts, minus

(-1apter 5: Geometrically6 Varying Systems90

-Vv



Chapter 5: Geometrically Varying Systems 91

the command time, tce, will be used again. However, this metric does not
adequately capture the system's performance. If the system response just misses
a settling radius, the tsc will not indicate this. Thus, a new settling time metric
was developed. The system tip positions were fed into a MATLAB function
where the frequency of the residual vibration was calculated. Then an
exponential decay envelope was fitted to the residual vibration to get the
damping ratio. Once the damping and frequencies were calculated, the envelope
settling time could be calculated. This was defined to be the point at which the
exponential envelope hit the settling radius of 0.5 inches. After much refinement,
this function worked well and calculated the envelope settling time, tse, for any
payload, tip position, or combination of several tip positions. This metric is more
consistent than the regular settling time metric.

One of the problems with this metric occurs when the residual amplitude is
much lower than the settling radius. Then the envelope settling time calculation
may give a time that occurs before the move has started. To fix this problem, the
envelope settling time was cut off at the end of the command. If the tse was less
than the duration of the command, it was set equal to the length of the
command. This will be seen in later tables where entire columns are equal to the
length of the shaped command. In these cases, the regular settling time gives an
accurate portrayal of how much earlier the response settled.

Envelope calculation, P=7500, D=45, a=0.008

1.5

.2

0 .5 .. ....... 

-1.5 . . . . .. .
0 5 10 15 20 25 30 35 40

time (sec)
Figure 5.11: Calculation of exponential envelope

Another problem is that the envelope calculation is an automatic function run
by MATLAB. The function fits the exponential curve to the responses as best it
can. Usually it works very well and the exponential envelope contains all of the
residual oscillations. However, sometimes the fit is not perfect, as shown in
Figure 5.11. In theory the exponential envelope is the maximum and none of the
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response is outside of the envelope. Then the envelope settling time is always
the same as or longer than the radius settling time. But since the function does
not always find a perfect exponential fit, the system response can escape from the
envelope. When this occurs, the regular settling time is longer than the envelope
settling time. In Figure 5.11, the response goes outside the envelope just after the
envelope has settled to 0.5 inches. Thus the regular settling time is longer than
the envelope settling time. An exponential window or Fourier transform of the
data could solve some of these problems but were not investigated.

Many different input shapers were calculated and implemented on the DRS
runs. In the changing geometry problem, it is not clear which frequency should
be chosen for the input shaper. The end frequency is a popular choice, as is the
middle frequency. Both were tried here. The types of shapers used are as
follows: ZV, negative ZV, ZVD, negative ZVD, EI, negative EI. These shapers
have been described in Chapter 2. A modified ZV shaper was also implemented
that shapes the initial acceleration for the start frequency and the deceleration for
the end frequency; it will be called ZVb.

The result tables in the following sections list settling times in columns. Each
column represents a different input shaper. If the shaper name is followed by a
m, the suffix means that shaping for the middle frequency rather than the end
frequency was done. The b suffix indicates that two different shapers were used;
the acceleration up to constant velocity was shaped for the beginning frequency
and the deceleration was shaped for the end frequency. The e suffix means
shaping for the end frequency. tis is the duration of the input shaper and is
given in the last row of the table. thelbf is the final elbow angle. In the tables, the
best or two best input shapers at each acceleration are shaded to make them
easier to distinguish from the others.

The shaper frequencies were calculated several different ways and are shown
in Table 5.8. Since the unshaped responses were simulated before the shaped
responses, the envelope settling function were used to find the frequency of the
residual vibration and damping ratio at each position. These values were used to
create the first set of input shapers. These shapers have no suffix in the result
tables. The second set of frequencies was found by giving the system a small
velocity step of duration 0.25 seconds at the desired angle. Once again, the
envelope function was used to find the system frequencies at that angle from the
step response. The input shapers with suffix 2 were done using this second set of
frequencies. These frequencies were quite different than the first frequencies
used. When this was realized, the frequencies were recalculated with a velocity
step of 1.25 seconds. These frequencies were much closer to the original
frequencies. The input shapers with suffix 3 are done with the third set of
frequencies. The problem with finding the frequencies was that the system is
nonlinear, so it oscillates with changing periods of oscillations. The envelope
function was used to find the frequencies, but it is not perfect, so the frequencies
are not perfect either.
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Payload Elbow Angle Frequency 1 Frequency 2 Frequency 3
(lb.) (degrees) (Hz) (Hz) (Hz)

0 0 0.478 0.460 0.459
0 15 0.384 0.449 0.412
0 45 0.376 0.485 0.447
0 90 0.592 0.588 0.582

7500 0 0.070 0.090 0.083
7500 15 0.071 0.091 0.076
7500 45 0.073 0.090 0.075
7500 90 0.090 0.105 0.098

32000 0 0.048 0.037 0.037
32000 15 0.037 0.040 0.036
32000 45 0.043 0.036 0.040
32000 90 0.048 0.039 0.047

Table 5.8: DRS frequencies

In the result tables in the following sections, certain cells are shaded. These
cells contain the shaped or unshaped responses that had the fastest settling
times. If the shaped responses settled after the shaped command was done, the
envelope settling time, tse, was used to find the best response. If the shaped
response settled before the shaped command was done, the regular settling time,
tsc, was used because the tse would automatically be the length of the input
shaper delay. So in each row, either the envelope or the regular settling time was
picked to be best, not both.

5.5.2 General Trends in Unshaped Slews

The unshaped settling times for the midsize payload are shown in Figure
5.12. The unshaped responses are very similar for commanded acceleration, a,
greater than 0.002 rad/s 2. Only at the lower accelerations does the amount of
residual vibration change much at all. At a certain commanded acceleration, the
motor saturates and the arm can no longer keep up with the commanded profile.
At the end of the saturated move, the motor decelerates as fast as it can, but for a
duration that depends on the specified acceleration. This phenomenon occurs
because the DRS has a rate controller and not a position controller. So if the
commanded acceleration is above the maximum motor acceleration, the response
should decelerate from the constant velocity towards zero velocity. However,
the deceleration is too quick for the arm to be able to follow the command, so the
command will go to zero velocity before the response has reached zero velocity.
This sudden ending of the command should cause residual vibration to increase,
even when above saturation levels. The duration of the acceleration, t, does
level off above certain accelerations. For example for P=0, t=1.17 for a=0.048
rad/s2 but t=0.88 for a=0.064 rad/s2. This explains why settling times do not
increase much once the acceleration is above a certain level; there is not much
difference in deceleration duration.
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DRS, P=7500, unshaped settling times
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Figure 5.12: Unshaped settling times for P=7500

DRS, P=7500, cycles to settle
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Figure 5.13: Cycles to settle for P=7500

0.016

0.014 0.016

The midsize payload's fundamental frequency varies from 0.07 Hz at an
elbow angle of zero degrees to 0.1 Hz at 135 degrees. Thus one cycle of vibration
will last between 10 to 14 seconds. As the move distances rise, the amount of
vibration of the system actually does not change much, shown in Figure 5.13.
For D=15 and D=45, the cycles to settle are almost equal. The number of cycles to
settle decreases some for D=90, but not by much. For the D=135 case, there is
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much less vibration. One of the main reasons for this is that the moves last
around 270 seconds. That means that there are 27 cycles for the initial vibration
caused by the acceleration to die out. The deceleration is also at an arm position
where it has very little inertia compared to its initial arm position, as shown in
Figure 5.10. Consequently, it has less residual vibration.

DRS, P=0, unshaped settling times
no0
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5

-' 4
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, 3
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0
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9I

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
acceleration (rad/s/s)

Figure 5.14: Unshaped settling times for P=O

For the unloaded payload case, the amplitude of vibration increases as
acceleration grows, as shown in Figure 5.14. The motor is saturating at an
acceleration around 0.05 rad/s2. The D=15 case could not be run for
accelerations below a=0.01 rad/s2 because the move distance is short enough
that it takes longer to reach the maximum velocity and then decelerate than it
does to move the required distance. The interesting dip in the settling time
curves is characteristic of trapezoidal velocity profiles. At certain lengths of
accelerations, the acceleration steps act like a ZV input shapers. If the initial
acceleration lasts an even multiple of the system's period, then the acceleration
can be considered two impulses of a ZV zero damping input shaper convolved
with a step command. (A zero damping ZV shaper has two pulses of amplitude
0.5 and separated by half a period.) If the second half of the initial acceleration is
exactly out of phase with the first half, then the second acceleration oscillations
cancel the first acceleration oscillations exactly. Or if the deceleration is exactly
out of phase with the initial acceleration, the oscillations can also cancel each
other out. This behavior occurs at the same point for D=45 and D=90. For D=15,
the vibrations appear to be canceling around a=0.064 rad/s2. Christian has a
more complete explanation of the behavior of trapezoidal velocity profiles. [6]
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Position errors for a 45 degree move, P=O

0 5 10 15 20 25 30 35
time (sec)

Figure 5.15: Position errors for varying accelerations, P=O, D=45

40

Figure 5.15 shows the different position errors for several accelerations. The
first part of the curve is the initial acceleration. No vibration can be seen during
this part of the move. The next section is the constant velocity section. Different
amounts of vibration can be seen here. The third part of the move is the
deceleration and the fourth part is after the command is done, where only the
residual vibrations are left. For a=0.004 rad/s 2, the move is a triangular velocity
profile, so there is no constant velocity part. For this acceleration, the vibrations
can be seen during the deceleration. The duration of the acceleration, t, is only a
function of velocity and acceleration and not the distance traveled, as illustrated
in Equation 5.2. t2-t, is the length of the constant velocity section of the move.

V

a

d
v

(5.2)

The maximum acceleration is even less for the large payload case due to the
large payload inertia, as shown in Figure 5.16. The interesting effect here is that
the D=15 and D=90 cases follow each other very closely, while the D=45 case has
the dip caused by the acceleration and deceleration canceling.
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DRS, P=32, unshaped settling times

U
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acceleration (rad/s/s) x10-3

Figure 5.16: Unshaped settling times for P=32000

Certain trends can be seen in the unshaped data. As acceleration increases,
the amount of residual vibration also increases. This is true for all of the
payloads and distances, except when the acceleration and deceleration are timed
to cancel each other. However, at some point the amount of residual vibration
levels off and increasing the acceleration does not increase the amplitudes of
oscillations. This phenomenon occurs because the constant velocity of the
trapezoidal profile is fixed according to the limits of each payload. As the
acceleration increases, at some point raising the acceleration only decreases the
move duration by less than a second.

5.5.3 Midsize Payload Results

For an average-sized payload of 7500 lb., the best shapers are the ZVD and
the negative ZVD. The ZVD's envelope settling times are equal to the length of
the input shaper, which means that the response is settling before the end of the
shaped command, so we have to look at the regular settling time to see when it
actually settles. The shapers are reducing the vibration enough so that the
response settles while rising to the final position. The performance is improved
by the use of input shaping.

For the P=7500 and D=45 case, the ZVD shaper family is doing the best job.
The results are given in Table 5.9. The negative ZVD and the ZVD get rid of the
most vibration. However, not much time is saved since the ZVD shaper delay
lasts one period and the vibration is dying out in approximately two periods. At
most we save 12 seconds on a 92 second move, an 11% time savings.
Interestingly, the negative EI does well for a=0.002, but not for a=0.004 or 0.008.
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The ZVD and EI responses are settling before the shaper is done. Evidently the
additional robustness helps here.

Reular settlin times, ts (sec) Paload=7500, D=45
accel tce unsh ZV ZV2 ZV3 neg neg ZVD ZVD2m ZVD3 neg nenegeg EI neg neg

ZV ZV3 ZVD ZVD2ZVD3 El Elm
n nA1 o7 1 ' 1I [ ' 'IIU.VV l 8.l . 7lV.7 I 16 12 8 

0.002 92.68 18.27 17.00 16.90 18.20 15.62 16.65 8.77 14.65 17.42
n naI 9A In 1' 117 7 17 if Iof7n Aqn n 1 Rs-) I1

0.004 90.45 19.55 18.55 17.62 19.02 20.70 17.25
0.005 90.00 19.77 17.77 19.20 17.25

0.006 89.70 19.92 17.90 19.35 17.30

0.008 89.35 20.10 18.87 18.02 19.47 22.45 17.37

13.10 15.85 9.15 7.72 13.12
13.70 16.80

15.77 18.75 12.40 14.00 17.15 10.12 12.05 20.00

16.02 19.02 14.10 19.97 17.40

16.20 19.22 14.58 19.97 17.40

16.35 19.42 14.77 20.80 23.67 10.72 13.72 21.35

0.016 88.78 20.421 1 
tis I 0.00 6.96 5.55 6.67 1 3.22 1 3.88 13.92 11.09 1 13.331 9.87 7.54 9.08 113.7C 9.9 7 7.60
Envelope settling times, tse (sec) Payload=7500, D=45

accel tce unsh ZV ZVm ZV3 neg neg ZVD ZVD2m ZVD3 neg neg neg EI neg neg
ZV ZV3 ZVD ZVD2ZVD3 EI Elm

0.001 97.13 10.16

0.002 92.68 17.03 14.14 15.47 16.29 16.17 16.57 13.92 11.09 16.91 9.87 11.89 14.98 13.7C 9.97 14.45

0.003 91.20 17.97 17.83 18.22 17.78 13.92 16.46 17.74 9.87 15.29 17.87

0.004 90.45 18.37 14.90 18.54 18.81 19.72 19.28 13.92 16.43 20.36 9.87 16.33 18.85 13.7 9.97 16.81

0.005 90.00 18.54 19.03 19.16 20.02 13.92 17.00 20.63 12.26 18.07 20.66

0.006 89.70 18.72 19.15 19.32 18.82 13.92 16.96 20.76 13.59 16.95 20.91

0.008 89.35 17.96 15.34 19.19 19.72 20.06 19.12 13.92 18.13 20.92 13.62 17.30 21.46 13.7 14.15 17.89

0.016 88.78 18.27 =
tis 0.00 6.96 5.55 6.67 3.22 3.88 13.92 11.09 13.33 9.87 7.54 9.08 13.7£ 9.97 7.60

Table 5.9: Settling times for P=7500, D=45

Regular settling times, tsc (sec Payload=7500
ithelbf accel tce unsh ZV I ZVm ZV3 negZV neg ZVD ZVD2 ZVD3 neg neg negEI

Ii~ I ]. I ZV3 ZVD ZVD3
14 nnan1nlfQnfinl In'n' I I I11
JLJ U./J.I .J . I I I I I I I l

0.0020 33.85 19.62 18.27 17.50 18.75 16.23 17.23 9.30 17.52

0.0030 32.38 20.48 17.92 19.17 17.62 9.77 15.27 18.33

0.0050 31.18 21.121 18.32 19.65 17.85
0.0060 30.88 21.321 18.42 19.77 17.92

0.0080 30.53 21.52 20.27 18.57 19.93 23.68 18.02

17.23 7.73

17.62

17.67 12.15
15.82 18.93 14.25 17.85
15.97 19.07 14.55 17.92

19.27 14.85 18.02 14.22

0.01601 29.95 121.751 1 -

tis I 0.00 1 7.14 1 5.52 6.60 1 3.20 1 3.84 1 14.29 10.98 13.19 1 10.11 8.98 1 10.21
Envelopeset times, tse (sec)

thelbf accel tce unsh ZV ZVm ZV3 neg ZV neg ZVD ZVD2 ZVD3 neg neg negEIl
II I _ I IZV3 ZVD ZVD3

15 0.0010 38.30 13.43

0.0020 33.85 16.24 14.72 16.83 17.46 16.77 17.86 14.29 20.01 10.11 15.97 10.21

0.0030 32.38 19.17 18.74 19.44 19.58 14.29 17.21 20.89 10.11 19.84

0.0040 31.63 19.70 16.36 19.49 19.98 20.12 20.79 14.29 21.27 10.11 20.60 10.21
0.0050 31.18 19.90 19.82 20.31 21.22 14.29 17.84 21.42 11.47 20.92

0.0060 30.88 20.13 20.00 20.53 21.50 14.29 13.19 21.61 12.21 21.05

0.0080 30.53 20.34 17.22 20.34 20.79 21.28 14.29 21.82 12.84 21.30 14.19
0.0160 29.95 20.54

tis 0.00 7.14 5.52 6.60 3.20 3.84 14.29 10.98 13.19 10.11 8.98 10.21

table b.IU: ettlmg times or Y'=/uu, D=1

When P=7500 and D=15, the ZVD shaper family does the best as shown in
Table 5.10. In fact the results here mirror the results from the D=45 case. The
ZVD and negative ZVD all trade off being the best; the negative ZVD does the
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best for lower accelerations, but the ZVD does the best for higher accelerations.
The time savings is about 12 seconds for a 30 second command and 20 second tsc;
a time savings of 24%. The ZV shapers are not doing well at all. They do slightly
better than the unshaped case, but only save a second or two. The negative ZV is
doing worse than the ZV. The shapers that use the first frequency, from the
unshaped trapezoidal responses, do better than the shapers of the same type that
use frequencies 2 or 3.

For the P=7500, D=90 case, the ZVD family is still giving the best
performance. The negative ZVD gives the highest increase in performance by
saving about 10 seconds for all accelerations. Table 5.11 gives the results. The
ZVb shaper, shaping for both the beginning and end frequency, was tried but it
did worse than the regular ZV shaper. This is a longer move and at the end
position there is a dominant x mode; the z mode settles on the way up. These
input shapers are only designed for one mode, so might do better if the tip is
only vibrating in one direction. This might explain the problems at D=45. At the
end of that move, the tip is vibrating equally in both the x and z direction.
However, in the D=15 case, the z tip mode is dominating, so I should have less
trouble there as well. But that move is shorter in duration as well. The problem
is trying to separate all of the effects of the different interacting nonlinearities.

Regular settling times, tsc (sec) Payload=7500
thelbf accel tce unsh ZV ZVmZVVb ZVb 3 neg ZV neg ZVD ZVD3 neg neg neg EI

Qn ZV3 n ZV3 ZVD ZVD3 
an nnniNh1ziQ ;Q'7

0.0020180.93 14.22 8.88 13.45 13.12 13.38 12.35 12.80 6.43 11.18

0.0030 179.45 15.00 14.37 13.35 6.97 7.60
0.0040 178.70 15.30 9.95 14.70 14.53 14.70 13.37 13.97 7.30 7.92

0.0050 178.25 15.62 1 14.85 13.95 7.50 8.15
0.0060 17 7 .9 51 15.82 1 1 15.00 14.12 7.65 8.35

I- --- __- - --- - -- -- e I a -o - -- . . -- an ~ - A

0.00U( 177.6U l.U 1U.b'/ 1j.17 14.97 1.1'/ 13.9Z 14.32 . ?S.1 13.13 _s _

0.0160 177.03 16.35
tis 0.00 5.66 5.13 5.17 5.12 2.79 2.99 11.32 10.25 8.05 7.00 8.13

Enveloe settling times, tse (sec) Paload=7500
thelbf accel tce unsh ZV ZVm ZVb ZV3 neg ZV neg ZVD ZVD3 neg neg neg El

ZV3 ZVD ZVD3
90 0.0010 185.38 2.29

0.0020 180.93 12.84 5.66 7.09 6.32 6.90 9.74 9.77 11.32 10.25 8.05 7.00 8.13
0.0030 179.45 13.58 12.81 12.25 11.32 10.25 8.05 7.00
0.0040 178.70 14.27 7.40 13.53 13.77 13.46 12.86 12.70 11.32 10.25 8.05 7.00 8.13
0.0050 178.25 14.46 13.91 13.84 11.32 10.25 8.05 7.00

0.0060 177.95 14.59 13.93 14.15 11.32 10.25 8.05 8.88
0.0080 177.60 14.81 8.35 13.90 14.20 13.91 14.11 14.49 11.32 10.25 8.05 7.53 8.13
0.016 177.03 15.10

tis 0.00 5.66 5.13 5.17 5.12 2.79 2.99 11.32 10.25 8.05 7.00 8.13

Table 5.11: Settling times for P=7500, D=90

5.5.4 Nominal Payload Results

For the nominal payload DRS model, the envelope settling times are all equal
to the shaper duration, which indicates that input shaping is getting rid of all the

5.20 5.38
6.03
12.42 6.42
12.85
12.85
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residual vibration. Therefore, the fastest shaper is the best. These results also
mean that we must actually look at the regular settling times to see when the
responses actually get within the settling band.

Since the fastest shaper is giving the biggest increase in performance, some
type of ZV shaper should be used. The unshaped case settles within 6 seconds
after the end of the command, which is about 3 cycles of vibration because the
frequencies are around 0.5 Hz. The fastest and most sensitive shaper does the
best for this payload. The frequencies are higher, so small errors in frequencies
do not have as large an effect here as they do for the heavier payloads where the
frequencies are an order of magnitude lower.

For the P=O, D=15 case, results are shown in Table 5.12. The negative ZV
shaper does the best overall. There does not seem to be much vibration here, or
at least there is a large amount of damping present, so it dies out fairly quickly,
within 3 cycles, so the fastest shaper is doing the best job. The ZVm does worse
than the ZV, which shapes for end frequency. Here the z tip position is driving
the response, while the x tip is vibrating, but not as much. The z and x
frequencies and dampings are the same.

Regular settling times, tsc (sec) Payload=0

0.0640 5.55 6.73 1 i _
tis 0.00 1.32 1.10 0.65 2.64 1.87 1.89

Envelo settling times, tse (sec) Payload=0
thelbf accel tee unsh ZV ZVm neg ZV ZVD neg ZVD neg El

15 0.0160 8.18 3.23 1.32 1.10 0.65 2.64 1.87 1.89
0.0320 6.42 6.21 1.32 1.10 0.65 2.64 1.87 1.89
0.0400 6.08 7.20 1.32 1.10 0.65 2.64 1.87 1.89
0.0480 5.85 7.34 2.63 1.10 0.65 2.64 1.87 1.89
0.0640 5.55 7.33

tis 0.00 1.32 1.10 0.65 2.64 1.87 1.89

I able 5.12: ettlmg times tor r'=u, uL=I

Table 5.13 shows the results for the P=O and D=45 case where the ZV does the
best for lower accelerations and the negative ZV does the best for higher
accelerations. Shaping for the middle frequency does not do better than shaping
for the end frequency. The x tip and z tip are vibrating equal amounts at the
same frequencies and dampings.

----- r1 - i _ __7 If,- - I 7'71 I __ 1 U-- -
theloi accel ce unsn Lv

15 0.0160 8.18 3.50
0.0320 6.42 6.08 2.08
0.0400 6.08 7.40 2.50
0.0480 5.85 7.55 2.75

LVJ nIeg LV ineg 
1.07 0.60 1.00
2.30 2.05 2.83
2.37 1.80 1.05
2.40 1.90 2.93
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Regular settlin times, tsc (sec) Payload=0
thelbf accel te ush ZV ZVm neg ZVI ZVD ZVDm neg ZVD neg ZVDm neg EI neg EIm

0.0080 21.02 1.98
0.0160 17.52 4.58
0.03201 15.78 4.42 1 2.30 0.45

1 10.04001 15.43 6.97 1 2.75 0.45
__ A -A .- A _ ._~ -

0.83 0.53 0.78 0.60 0.33 1 0.35 1 0.50 0.33
7 I N in 1 ' I n QI n R I n )I 1 ' IN n 71

2.20 2.42 1.22 1.90 2.60 2.22
2.20 2.68 3.20 2.02 2.47 3.77

0.0480 15.20 7.17 
0.0640 14.90 7.40

tis 0 1.35 1.06 0.6 2.7 2.12 1.91 1.44 1.93 1.45

Envelo settli times, tse (sec Payload=0
thelbf accel tce unsh ZV ZVm neg ZV ZVD ZVDm neg eg Z neg EI neg EIm

45 0.0040 28.02 0.00
0.0080 21.02 0.99 1.35 1.06 0.60 2.70 2.12 1.91 1.44 1.93 1.45

0.0160 17.52 4.08 1.35 1.06 0.60 2.70 2.12 1.91 1.44 1.93 1.45
0.0320 15.78 4.13 1.35 1.06 0.60 2.70 2.12 1.91 1.44 1.93 1.45

0.0400 15.43 7.32 1.35 1.06 0.60 2.70 2.12 1.91 1.44 1.41 2.72
0.0480 15.20 7.43
0.0640 14.90 7.76

tis 0 1.35 1.06 0.6 2.7 2.12 1.91 1.44 1.93 1.45
ll I e- .n.n n ,,u1. _ . ,, _ _ ~, _ ,le.A

I able 3.1j: ettung times or '=u, u=45

For the P=0 and D=90 case, the ZV shaper does the best job. There is not
much vibration in the z tip response, only in the x direction, so the ZV shaper is
only really working on the x tip. It does not have to deal with vibrations in both
directions, in or out of phase. Table 5.14 gives these results.

Regular settling times. tsc (sec) Pavload=O
-t -'D -' -s - -- ', __-- -

thelbf accel tee unsh ZV ZVm neZV ZVD neZVD EI
90 0.0020 56.05 -1.18 , ,

0.0040 42.03 -0.78
0.0080 35.03 0.37
0.0160 31.53 1.47 -0.05 0.07 0.55 0.37 0.37
0.0320 29.78 l 0.32 0.45 0.12 1.70 0.57 0.57
0.0480 29.20 4.42 0.52 1.72 1.07 0.97 0.97
0.0640 28.90 4.60 0.75 . 2.15 1.15 0.97 0.97

tis 0 0.85 0.95 0.5 1.69 1.16 1.17

Envelope settling times, tse (sec) Payload=0
thelbf accel tce unsh ZV ZVm neg ZV ZVD neg ZVD neg EI

90 0.0020 56.05 0.00
0.0040 42.03 0.00
0.0080 35.03 0.00
0.0160 31.53 1.08 0.85 0.95 0.50 1.69 1.16 1.18

0.0320 29.78 0.00 0.85 0.95 0.50 1.69 1.16 1.17
0.0480 29.20 4.26 0.85 0.95 0.50 1.69 1.16 1.17
0.0640 28.90 5.05 0.85 0.95 1.59 1.69 1.16 1.17

tis 0 0.85 0.95 0.5 1.69 1.16 1.17

Table 5.14: Settling times for P=0, D=90

The ZV shaper family does the best job for this payload. A ZV or negative ZV
only takes 1.2 or 0.6 seconds, yet in general the shaped responses settle on the
way into the settling band. You also get a better % time savings because the
moves are so much shorter in duration. For the short D=15 moves, you can get a
45% time savings by using input shaping; for the longer D=90 moves, you get
less time savings, only around 12%. Input shaping saves a few seconds. The big
benefit is being able to move at fast accelerations to get there quickly and have

V. V ..-- i -.- I .. - I -. 11 
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little vibration. For example, D=45, a=0.004, the arm gets there and settles in 27
seconds without input shaping. With a=0.040, an order of magnitude higher,
and a negative ZV shaper, the arm gets there and settles within 15.6 seconds.
This is only a 12 seconds difference, but added up over many such moves the
overall time savings could make a difference.

5.5.5 Large Payload Results

The 32000 lb. payload case is a puzzling one. Table 5.15 shows the results for
a variety of accelerations. Input shaping does not appear to be helping here at
all. The ZV shaper is better in a few cases than the unshaped, but not by much.
The ZVD, negative ZVD, and negative EI shapers all do very poorly. One
potential cause is saturation of the command, but the amplitude of vibration does
appear to be increasing with acceleration. Another potential problem is the
accuracy of the shaper frequency. If the frequency is off by a hundredth of a
Hertz, that is a 25% change in frequency. The negative EI shaper has a very wide
sensitivity curve, yet did worse than the ZV. So it seems that the time delay
associated with the shaper is having more of an effect than the error in shaper
frequency. A multiple mode shaper was tried; however, a ZV/ ZV shaper for
two modes would last 23.3 seconds. The time delay is as long as it takes the
unshaped cases to settle. shaping for both beginning and end frequencies was
also tried, but the ZVb did worse than the regular ZV. The shapers are simply
delaying the move, not allowing it to settle more quickly.

Regular settling times, tsc (sec) Payload=32000
thelbf accel tce unsh ZV ZV3 ZVb neg ZVneg ZV3 ZVD ZVD3 neg ZVD neg ZVD3ne EI

45 0.0002 168.20 14.32 23.65 22.78

0.0004 154.18 17.77 26.27
0.0005 151.38 30.85 24.62 26.80 26.73 25.02 24.25 31.82 36.05 27.07 31.65 33.82
0.0006 149.53 30.60 27.67
0.0008 147.18 32.52 28.70
0.001 145.78 21.70 27.42 28.90 27.67 27.67 26.80 34.10 37.95 29.25 32.65 31.42
0.002 142.98 23.30 28.42 30.22 28.65 28.65 28.22 35.42 39.05 30.55 34.22 32.57
0.004 141.58 34.92 29.05 30.72 29.72 29.72 28.97 36.15 39.57 31.28 35.25 33.67
0.008 140.88 35.38 29.32

tis 0.00 12.04 12.66 12.75 8.29 7.58 24.08 25.32 17.39 17.64 17.62

Envel
thelbf

45

nn.. .. ttlin .tim'. te Ce)y P- 'load=32UU _~~~~e ZVV V3ngZY e V3ng
ZV3

39.58

17.62

ZVb

35.87

39.04

neg ZV
27.39

32.14

40.12

35.04

40.88
41.7741.6942.00

36.25

12.66

42.18

12.75

34.92

33.45
40.31
39.30

7.58

36.65

35.69
36.79 37.21 38.40 33.11

34.92

33.45
40.31
39.30

8.29

42.95

24.08

43.38

41.63

41.64

25.32

35.84

17.39

42.94

17.64

T'able 5.lb: ettlmng times for i=;szUUU, U=40

Table 5.16 shows the results for the D=15 and D=90 cases. Input shaping is
just delaying the command and the settling time again.

v-F .v-W use usILVU, LU .- I O x --. w ..
--

_ _

28.95

34.76

37.59

31.47

neg ZV3 ZVD ZVD3 neg ZVD ne ZVD3 neg EI

-- _ _ , < . . --- -
" M ' A " rol ^^ ^ $ A A A ~
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Regular tsc (sec) P=32000
D=15 D=90

amax tee unsh neg EI tce unsh neg EI
0.0005 291.57 23.03 26.72
0.0010 52.33 24.08 37.72 285.98 25.92 25.77
0.0020 49.52 25.77 39.30 283.18 27.20 28.03
0.0040 48.12 26.62 40.58 281.77 27.83 28.60
0.0080 47.43 26.98 281.07 28.20

tis 0.00 19.58 0.00 15.32
Envelope tse (sec) P=32000J1 1 D=15 D=90

amax tce unsh I neg EI tce
nn I I I tce e 1 _7

0.0010 52.33
0.0020 49.52
0.0040 48.12
0.0080 47.43

39.28 285.98
41.13 283.18
38.56 281.77

281.07

neg El
26.87
26.36
24.66
26.20

I tis I I 0.00 I 19.58 I0.00 1 15.32 1
Table 5.16: Settling times for P=32000, D=15 and D=90

In order to investigate the reasons why input shaping was not working, I took
motor friction and stiction out of the DRS model. The results are shown in Table
5.17. Taking friction out did decrease the settling times, but did not improve the
input shaping performance. So there seems to be some other nonlinearity
hurting input shaping's performance.

Re ular tsc (sec Friction=0 Payload=32000
thelbf amax tce unsh ZV

45 0.0005 151.38 17.62 26.00
0.001 145.78 21.20 28.08
0.002 142.98 22.82 28.52
0.004 141.58 23.62 29.67

tis 0 13.84

Envelope tse(sec) Friction--0 Payload=32000
ZV

30.60
33.31
36.79
36.83

I tis- 0 I 13.84 1
Table 5.17: Settling time for P=32000, D=45, and no friction

thelbf amax tce
45 0.0005 151.38

0.001 145.78
0.002 142.98
0.004 141.58

5.5.6 Damping Investigation

Damping is affected by many different things and it changes a lot in real
systems. Precise machines whose performance depends on an accurate system
model may recalibrate damping once or twice per hour depending on the
application. Damping also tends to be quite temperature sensitive. In space this
is a large issue since temperature extremes are common.
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To investigate this issue, a series of tests were run using the DRS model with
various levels of damping. The damping of the system was changed by
changing the motor friction and stiction levels. n is defined to be the normal
amount of friction and stiction in the DRS, which is a motor friction torque of
0.0208 foot-pounds on each joint, and a motor stiction torque of 0.0208 foot-
pounds on each joint. Runs were done for the range of 0, 0.ln, 0.5n, n, 2n, and
5n. Table 5.18 gives the unshaped results.

Reg lar tsc (sec), P=7500, a=0.004
friction d=15 d=45 d=90

On 14.12 13.00 9.90
O.ln 14.15 12.95 9.80
0.5n 13.85 12.75 14.10

n 20.90 19.55 15.30
2n 21.37 19.85 20.67
5n 35.33 33.33 31.80
tce 31.63 90.45 178.70

Envelope tse (sec , P=7500, a=0.004
friction d=15 d=45 d=90

On 15.62 14.62 11.54
O.ln 15.82 14.23 11.84
0.5n 17.14 15.64 12.46

n 19.70 18.37 14.27
2n 23.42 22.27 17.67
5n 35.93 34.19 29.67
tce 178.70 90.45 31.63

Table 5.18: Settling times for varying levels of friction, P=7500, a=0.004

The results were all about the same for friction levels of 0, 0.1 n, and 0.5n. The
settling time function just calculated the time to settle to the final position,
not the final desired position, so it ignores the fact that the moves go to
different end positions. There is a large jump at 5n, with settling times twice as
long as at the lower friction levels. So for the lower range, the friction does not
dominate the results, but once you get above a certain level, the friction
dominates. The higher friction makes the vibrations lasts longer. This result
directly contradicts the study done in Chapter 2 on friction. There we saw that
additional friction added damping to the system and the amplitudes of the
residual vibrations were reduced. In the SRMS system, which is highly
nonlinear, the opposite effect is being seen.

The time histories shown in Figure 5.17 shows the P=7500, a=0.004 rad/s 2 ,
D=45 degrees case for a variety of friction levels. The friction levels shown here
are f=0, f=0.5n, f=2n, and f=5n.
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DRS runs for varying levels of friction, P=7500, a=0.004* . f=.5n
~~~-5 .......... ~~~f=5n

-10...... 

- E 0 ..............
-15. .

':% . .. ..... .... ............... . ........... ..........
N -20 ...... ...... ..........

-2 5 . ............ ............................. ......... ................. ............. ............

-3025, . .
0 20 40 60 80 100 120 140

time

Figure 5.17: DRS varying friction runs, tip z position

The friction is changing the system response by making it move slower. It
is also causing more vibration at the end of the move, as can be seen in Figure
5.18. More stiction and friction seems to lead to more residual vibration in
the joints.

DRS runs for varying levels of friction, P=7500, a=0.004
-25

f=On

-2 6 5. ....... ..................... .... . ........ ......................... .... .... ...f=.n

~~~~-26.5~.......... f=5n

-27. . .; -: :
-2.5 . I

-28.5 

-29 ,
80 90 100 110 120 130 140

time
Figure 5.18: Detail of DRS varying friction runs, P=7500

One possible explanation for the increase in residual vibration is that there is
a different method of energy dissipation. For normal levels of friction and

. A.. . . _, .
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stiction, energy is dissipated in the joints and in the links. When the very high
levels of friction are added to the system, the joints might lock and not be able to
dissipate any energy there. Then all of the excess energy would have to be
dissipated in the links. This would cause the links to vibrate longer and with
higher amplitude. The link flexibility is defined to be the tip position minus the
rigid body position, which is the position that the tip would be at if the links
were perfectly rigid. When the link flexibility was plotted for several friction
cases, the links are definitely oscillating more at the higher friction levels. So this
explanation is plausible. However, more evidence is needed to prove this theory.

Regular tsc (sec), P=7.5K, a=0.004, D=45
friction tce unsh ZV ZVD ZVD3 neg ZVD2

0.00 90.45 13.00 16.35 15.77 18.35 14.12
0.1n 90.45 12.95 16.67 15.80 18.45 14.17
0.5n 90.45 12.75 17.40 15.77 18.60 14.12

n 90.45 19.55 17.62 15.77 18.75 13.92
2n 90.45 19.85 24.70 15.52 18.67 21.20
5n 90.45 33.33 31.52 14.10 14.33

tis 0.00 5.54 11.09 13.33 7.53
Envelope tse(sec), P=7.5K, a=0.004, D=45

friction tce unsh ZV ZVD ZVD3 neg ZVD2
0.00 90.45 14.62 15.28 15.19 16.26 _

n, 1 _n Ar C I 1 AA1 Cr nr C/ 1 n1 . in YU.43 a 13.44 13.ZD 1O.DL
0.5n 90.45 15.64 16.49 16.06 17.16

n 90.45 18.37 18.66 16.76 20.36
-- - . - I _ -- - - -_

2n 90.45 22.27 22.20 16.78 18.29
5n 90.45 34.19 44.36 11.09 13.33 14.74

tis 0.00 5.54 11.09 13.33 7.53
Table 5.19: Interactions between friction and input shaping, P=7500, D=45, a=0.004

Input shaping was implemented on the 7500 lb. payload system with various
levels of friction, as shown in Table 5.19. The results from the ZVD shaper are
very consistent; all settling times are around 15.7 seconds, no matter what level
of friction. In terms of improvement in performance, we do see improvement at
the higher friction levels, but at the lower levels, the unshaped case is doing
better. The negative ZVD shaper has the most best performance for the low
friction levels. For the 5n case, the shaped response does not vibrate as much as
the unshaped response. In fact, the ZVD response looks like the lower friction
responses. Since the links are vibrating to dissipate more energy and input
shaping reduces the amount of energy put into the system modes, there should
be less excess energy to dissipate when input shaping is used.

The less friction there is, the quicker the move reaches its desired position and
settles, as can be seen in the previous-plots. Input shaping does better for the
higher friction levels, but that is partially because I was using the frequency from
the normal levels of friction runs. As the friction level increases, the residual
vibration's frequency and damping appears to decrease. When the friction
equals 0.ln, the residual vibration frequency is 0.082 Hz and the damping is
0.237. At friction equal to 5n, the frequency is 0.069 Hz and the damping is 0.128.
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The energy dissipation mechanism appears to change the system characteristics a
little.

The ZVD family of input shapers is doing better than the ZV shaper here, but
the same frequency was used for all input shapers so any results are only valid
for the close-to-normal friction levels.

5.5.7 Conclusions

I am not seeing completely consistent patterns within each move distance and
payload. For example, if one input shaper did the best for a certain move
distance, payload, and acceleration, I would expect it to do the best job for all
accelerations. However, this is not the case. A family of input shapers
dominates; for example, in the P=7500 and D=45 degree case, the ZVD and
negative ZVD shapers do the best. The DRS results are summarized in Table
5.20.

Payload 0 7500 32000
D=15 ZV, neg ZV ZVD, neg ZVD unshaped
D=45 ZV, neg ZV ZVD, neg ZVD unshaped
D=90 ZV neg ZVD, ZVD unshaped

Table 5.20: Summary table for DRS data

The unloaded cases are the easiest to analyze. A simple ZV or negative ZV
input shaper will shave several seconds off the settling time. The realization here
is that you can move the unloaded arm very quickly, if you trust your software.
At an acceleration of 0.040 rad/s 2 and a maximum velocity of 3.21 deg./s, the
SRMS can complete a 90 degree elbow joint move in 30 seconds if a ZV shaper is
used.

With a midsized payload the SRMS must move much more slowly. The
saturation of the motor means that it is limited to an acceleration of 0.005 rad/s 2.
It takes 190 seconds to complete the same 90 degree elbow move, even if input
shaping is added to reduce the vibration. A motor with a larger allowable torque
is needed to speed the joints up. The more robust input shapers such as ZVD
and negative ZVD give the most performance increase for this case. However,
the moves are long enough that for D=45, the best time savings you get is 13%.
The unshaped moves take around 2 cycles to settle, so that does not give input
shaping much room to improve the system performance.

The heavy 32000 lb. payload was resistant to input shaping. When joint
friction and stiction were taken out of the DRS model, the unshaped responses
settled more quickly, but input shaping did not help any more than usual. The
nonlinearities of the DRS are more apparent with this extremely large payload
and inertia.
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One of the things these studies are showing is that the workspace of the RMS
has to be very well mapped for frequencies. Errors in system knowledge are
hindering the input shapers' performance.

5.6 Conclusions

A simple two-link model was developed and compared with the FLEX2 SRMS
rate controller simulation. It was tested using a trapezoidal trajectory profile to
see how residual vibration changes with acceleration, move distance, and end
position. The DRS simulation was used to complete the study of changing
geometry problem. Three different payloads were examined to see the
differences in the workspace. Input shaping was added to the system to see if it
could reduce the residual vibrations. A different input shaper gave the best
performance for each payload. A ZV or negative ZV shaper did the best job for
the unloaded cases, where frequencies were the highest and did not shift as
much. The ZVD family of input shapers gave the most performance
improvement for the midsize payload cases. The heaviest payload did not
respond well to input shaping; a ZV shaper only helped in a few cases. The ZV
shaper has the least amount of time delay and does the best of the shapers tried;
however it does not do very well. The associated time delay hurts the shapers a
large amount here because the frequencies are so low.

The heavy payload case is not getting a performance increase by using input
shaping. However, the unshaped response has a long settling time so there is
room for improvement. An advanced feedback controller like those designed in
Chapter 4 should offer a large performance increase. The controller would allow
the system to settle as soon as the command finishes or before. The controller
would have to be designed for a range of frequencies since the geometry
changes, but that can be done and was done for the FLEX controllers.

In general, using a trapezoidal trajectory is recommended. It has a much
smoother profile than just a step command and excites much less vibration. If
you calculate the length of the acceleration, you can get the phase of the
deceleration 180 degrees out of phase with the acceleration vibrations and they
will cancel. However, it is not simple to get the trajectory to do this and when it
does happen, it usually restricts you to certain low velocities and accelerations.

The nonlinearities associated with the complex SRMS make it difficult to
separate out the effects. Friction was investigated to see how changing its levels
changed the system damping and responses. When the motor friction levels
were increased, the system had more residual vibration. One explanation is that
the energy dissipation mechanism might be changing when the friction is
increased. If energy is dissipated mostly in the joints when the friction is at
normal levels, when friction is increased it might be locking the joints and
preventing energy dissipation. Then the links would have to vibrate more to
dissipate the excess energy. This theory was supported by plots of the flexibility
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of the links which showed that the links were vibrating more for the high friction
cases.

Part of the original hypothesis was verified. For a sensitive system, which
means that the system frequencies change by at least 20% during the move, and
moves longer in duration than five cycles of vibration, the unshaped SRMS
response settled to within a radius of two inches immediately. No input shaping
is necessary if the desired radius is that large, which validates some of the
hypothesis. However, neither the DRS or the FLEX2 models settled during the
initial rise if a smaller radius of 0.5 inches was used. This indicates that there is
residual vibration of small amplitude. For precise positioning tasks, it is not
unreasonable to need to settle to within a very small radius. Therefore, some
additional method is needed to reduce the residual vibration.





Conclusion
Chapter 6

6.1 Summary

In this thesis I have investigated the effects of system damping, friction, and
control strategies on flexible space systems. The main system investigated was
the Shuttle Remote Manipulator System (SRMS). A detailed three-dimensional
model of it was created during the FLEX program. A simple two-link model was
developed that approximated its behavior. The Draper Remote Manipulator
Simulation was also used to simulate the SRMS. Each of these models
incorporated different nonlinearities, and thus the results were slightly different
from each.

In Chapter 2, input shaping was explained and the results of two small
studies were presented. The system damping study explored the interaction
between damping and input shapers. Once the damping ratio gets above 0.7,
input shaping does not save much time because the unshaped response settles
faster than the shaped responses. As the modeling error gets larger, a more
insensitive shaper is needed for the lower damping ratios. As the settling band
increases, more residual vibration is allowed, so the sensitive shapers perform
the best. Tables were generated to allow someone to pick the best input shaper
to use if they know the approximate damping ratio of the system, the allowable
amount of residual vibration, and the uncertainty of the system knowledge.

The friction study showed that a simple nonlinearity like friction does not
impair the input shaper's performance much at all. Even with varying friction
magnitudes it was possible for a single mode shaper to obtain a 96% vibration
reduction compared to the closed loop, proportional controller step response.
The multiple mode shapers performed even better and reduced the vibration to
well below the limiting threshold of 0.001 except near instability points. In this
study, the additional friction reduced the vibration amplitude and made the
responses settle faster.

The background and motivation of the FLEX program was explained in
Chapter 3. The FLEX program was designed to develop a better control strategy
for the space arms that will be used for construction. A model of the SRMS was
developed during Phase A. Many feedback and feedforward methods were
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initially investigated, but only three feedback controllers were chosen to be
pursued in Phase B.

Chapter 4 discusses the results generated during the FLEX program. The best
feedback controller turned out to be the gain-scheduled LQG, GSLQG.
However, when input shaping was added to the GSLQG, it had even better
performance in the small moves. When input shaping was added to the SRMS
rate controller, its settling time decreased to a third of the unshaped value. It still
took twice as long to settle as the GSLQG plus ZV input shaper, but it saved a lot
of controller effort and calculation time.

The focus of Chapter 5 was exploring the problem of changing geometry
systems. The SRMS's frequencies change as it moves through the workspace.
Many tests were done along different axes of the test matrix to find the best
solution to this problem. A simple two-link model was created to represent the
SRMS. The model was benchmarked against the FLEX2 model and the first
system frequencies matched very well. Both responses settled in the same
amount of time. The two-link and FLEX2 models were tested using trapezoidal
velocity profiles. Their behaviors were similar, but the saturation and friction in
the FLEX2 model restricted its maximum velocities and acceleration. When input
shaping was added to the two-link model, the system performance did improve.

The DRS model was used to do many simulations for a variety of distances,
accelerations, and input shapers. For the unloaded arm, a ZV input shaper gave
the most performance increase and had a time savings of 12 to 45%. For the 7500
lb. payload, a ZVD or negative ZVD was the best input shaper to use and had a
time savings of 11 to 24%. The heavy 32000 lb. payload did not respond well to
input shaping. A ZV shaper only helped in certain cases. When friction was
taken out of the DRS model, input shaping still did not help the 32000 lb. case.

For the heavy payload case, the settling time after the command finishes is
around 30 seconds, which is two cycles of vibration. It seems like a good
feedback controller would help the system performance for this payload. The
current rate controller does not go to the desired final position or settle quickly.
Adding a few strain gauges to the links would allow a more advanced controller
to be used. As was shown in Chapter 4, a well-designed feedback controller can
make the system respond and settle very quickly for any type of input. Since
input shaping is not improving performance for the heavy payload case,
implementing a better feedback controller designed for heavy payloads should
be investigated.

Adding more friction to the 7500 lb. payload case caused the arm to move
slower and have more residual vibration. This contradicts the results seen in
Chapter 2. The additional friction and stiction do slow down the system
response. For the same commands, the higher friction responses do not move as
far or follow the command as well as the lower friction cases. One possible
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explanation for this behavior is that the high friction and stiction levels are
locking the joints so that the joints can no longer dissipate energy. Instead the
flexible links are the only mechanism for dissipating the energy. Thus the links
vibrate more and longer to get rid of the excess energy. Input shaping was
effective at reducing vibration for the higher friction levels. The shaped
responses look like the lower friction unshaped responses. Input shaping does
not input as much energy into the system, so there is less energy to dissipate at
the end and the links do not have to oscillate as much to get rid of the energy.

The DRS is a very useful model of the SRMS. Interactions between the rate
controller and input shaping were investigated. In most cases input shaping was
helpful and improved performance. However, there was no one best input
shaper. Different input shapers work best with different payloads and in
different areas of the workspace.

6.2 Future Work

The FLEX program is planned to be a four phase program. Consequently, we
have only begun to look at the SRMS and different control techniques. Future
phases of the program will involve designing a flexible manipulator to work in
the Shuttle middeck. New controllers must be developed to work with this new,
smaller manipulator. The controllers also must be designed to work in a three-
dimensional workspace. The three-dimensional FLEX SRMS model was
developed near the end of Phase A. Therefore, no controllers were designed to
take advantage of the 3D system. The planar controllers were just imported into
the 3D FLEX model and they worked as well as before. However, there was only
a rate controller on the shoulder yaw joint, so the overall performance was
degraded. The control problem needs to be addressed. When an astronaut is
added to the control problem, the results grow even more complicated. The
interactions between an automatic feedback controller and an astronaut need to
be investigated further, preferably on orbit. Hopefully this will be accomplished
during future phases of the FLEX program.

Further work needs to be done on both the three-dimensional control
problem and the input shaping problem. When you are shaping for three-
dimensional moves, the modes are usually not the same in all directions. Certain
modes have zero amplitudes in certain directions or vibrate between out-of-
plane. Since the frequencies are changing over the course of the move, the
problem grows even more complex. Input shaping was derived as a method for
dealing with one-dimensional motion. There is no methodology of how to apply
input shaping in two or three dimensions. Multiple mode shapers can be used,
but it is unclear whether to shape for joint vibrations or tip vibrations. Also,
where should you think about input shaping. Ideally, you want to eliminate
vibrations at the tip of the arm. Yet the inputs to the system are joint commands.
The noncolocated sensors and actuators problem needs to be explored more
fully.

_·�UIII__
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The DRS simulation proved surprisingly easy to run and modify, once a few
changes were made to the code to make it easier to read in initial angles and
commands. Now that we have realized how simple it is to run, further work can
focus on exploring all the different nonlinearities incorporated into the DRS
model. The moves were only done in a single plane, but the DRS is also three-
dimensional, so more work need to be done to explore the entire workspace. If
different feedback controllers could be added to the DRS, even more discoveries
could be made.

Payload mass had a large effect on the results in Chapter 5. The unloaded
arm can be controlled well with just the Rate controller and input shaping. The
heavier payload case poses the more challenging problems. Future work should
focus on these problems where the system frequencies are very low and moves
very long. There must be better ways to move these payloads around. Another
module of the DRS that I did not explore is the flexible payload module. It has
the ability to create and simulate many different flexible payloads, of varying
mass and stiffness. If we are planning on making recommendations about better
ways to control the SRMS during space construction, a flexible payload could
represent some of those tasks better than models of a stiff cylinder.

I proposed a hypothesis in Chapter 5 about the relationship between
frequencies and move duration. I think another factor that should be
investigated is system damping. The SRMS models I have been using have a
high enough damping that unshaped vibrations die out in about two cycles. A
more lightly damped system would have very different behavior and system
response. The hypothesis should be tested for more systems, ideally for a system
which has a large frequency change during a short move so that systems of type
III.B can be tested, if they exist outside of simulations. The Flexbot, a two-link
flexible robot, should also be used to test the hypothesis experimentally. Its
frequencies change as it moves through the workspace, and it was designed to
represent the SRMS, so it should be a type III.A system with actual backlash,
friction, and other nonlinearities.

114 Chapter 6: Conclusion



References

1. Ardayfio, David D. Fundamentals of Robotics. New York: Marcel Dekker, Inc.,
1987.

2. Banerjee, Arun K. and Singhose, William E. "Slewing and Vibration Control
of a Nonlinearly Elastic Shuttle Antenna," AIAA Guidance, Navigation, and
Control Conference, Scottsdale, AZ, 1994.

3. Bederson, Benjamin B., Wallace, Richard S., and Schwartz, Eric L. "Control
and Design of the Spherical Pointing Motor," Proceedings of the IEEE
International Conference on Robotics and Automation, Atlanta, 1993, p. 630-636.

4. Carusone, Joseph and D'Eleuterio, Gabriele M. T. "Experiments in the
Control of Structurally Flexible Manipulators with the RADIUS Facility,"
Proceedings of the Second Joint Japan/US Conference on Adaptive Structures,
Nagoya, Japan, 1991, p. 589-605.

5. Chang, Ken W. Shaping Inputs to Reduce Vibration in Flexible Space Structures,
Master of Science Thesis, Massachusetts Institute of Technology, 1992.

6. Christian, Andrew D. Design and Implementation of a Flexible Robot,
Massachusetts Institute of Technology Artificial Intelligence Laboratory
Technical Report No. 1153, 1989.

7. Drapeau, Vincent and Wang, David. "Verification of a Closed-loop Shaped-
Input Controller for a Five-bar-linkage Manipulator," Proceedings of the IEEE
International Conference on Robotics and Automation, Atlanta, 1993, p. 216-221.

8. Feddema, J.T. "Digital Filter Control of Remotely Operated Flexible Robotic
Structures," Proceedings of the American Control Conference, San Francisco, 1993,
p 2710-2715.

9. Hillsley, Kenneth L. and Yurkovich, Stephen. "Vibration Control of a Two-
Link Flexible Robot Arm," Proceedings of IEEE International Conference on
Robotics and Automation, Sacramento, CA, 1991, p 2121-2126.

115

· ^ U U _ II --



116 Rfrne

10. Hollars, Michael G. and Cannon, Robert H. "Initial Experiments on the End-
point Control of a Two-Link Manipulator with Flexible Tendons," ASME
Winter Annual Meeting, November 1985.

11. Hyde, James M. Multiple Mode Vibration Suppression in Controlled Flexible
Systems, Master of Science Thesis, Massachusetts Institute of Technology,
1991.

12. Jones, Steven D. and Ulsoy, A. Galip. "Control Input Shaping for Coordinate
Measuring Machines," Proceedings of the American Controls Conference,
Baltimore, Maryland, 1994, p 2899-2903.

13. Magee, David P. and Book, Wayne J. "Eliminating Multiple Modes of
Vibration in a Flexible Manipulator," Proceedings of the IEEE International
Conference on Robotics and Automation, Atlanta, GA, p 474-478.

14. Magee, David P. and Book, Wayne J. "Filtering Schilling Manipulator
Commands to Prevent Flexible Structure Vibration," Proceedings of the
American Control Conference, Baltimore, MD, 1994, p. 2538-2542.

15. Meckl, Peter H. and Kinceler, Roberto. "Trajectory Determination for
Vibration-free Motions of a Flexible-Joint Robot," Proceedings of the American
Control Conference, Baltimore, MD, 1994, p. 2521-2525.

16. Metzinger, Richard W. DRS Users Guide. Charles Stark Draper Laboratories,
1985.

17. Newsome, J., Layman, W., Waites, H., and Hayduk, R. "The NASA Controls-
Structures Interaction Technology Program," Proceedings of the 41st Congress of
International Astronautical Foundation, Dresden, Germany, 1990.

18. Oakley, Celia M. and Cannon, Robert H. "Anatomy of an Experimental Two-
Link Flexible Manipulator under End-point Control," Proceedings of the 29th
Conference on Decision and Control, Honolulu, HI, 1990, p. 507-513.

19. Payload Deployment and Retrieval System Simulation Database Version 1.0, JSC-
25134, 1991.

20. Rappole, Bert W. Minimizing Residual Vibrations in Flexible Systems, Master of
Science Thesis, Massachusetts Institute of Technology, 1992.

21. Rogers, Keith E. Limiting Vibration in Systems with Constant Amplitude
Actuators through Command Preshaping, Master of Science Thesis,
Massachusetts Institute of Technology, 1994.

References116



Reeece 1

22. Schmitz, Eric and Ramey, Madison. "Initial Experiments on the end-point
control of a 2-DOF long-reach elastic manipulator," Proceedings of the SPIE
Symposium on Advances in Intelligent Systems, Boston, MA, 1991.

23. Seering, Warren. "Control of Flexible Construction Systems: the In-Step
Phase A final report", 1995.

24. Singer, N.C. and Seering, W.P. "Preshaping Command Inputs to Reduce
System Vibration," Journal of Dynamic Systems, Measurement, and Control, Vol.
112, March 1990, p. 76-82.

25. Singer, Neil C. Residual Vibration Reduction in Computer Controlled Machines,
Doctoral Thesis, Massachusetts Institute of Technology, 1989.

26. Singhose, William, Singer, Neil, and Seering, Warren. "Comparison of
Command Shaping Methods for Reducing Residual Vibration," Third
European Controls Conference, 1995.

27.Singhose, William, Singer, Neil, and Seering, Warren. "Design and
Implementation of Time-Optimal Negative Input Shapers," Submitted to the
Journal of Dynamic Systems, Measurement, and Control, 1994.

28. Singhose, William E. Shaping Inputs to Reduce Residual Vibration: A Vector
Diagram Approach, Bachelor's Thesis, Massachusetts Institute of Technology,
1990.

29. Smith, O.J.M. Feedback Control Systems, New York: McGraw-Hill Book
Company, Inc., 1958.

30. Tzes, Anthony and Yurkovich, Stephen. "An Adaptive Input Shaping
Control Scheme for Vibration Suppression in Slewing Flexible Structures,"
IEEE Transactions on Control Systems Technology, Vol. 1, June 1993, p. 114-121.

31. Tzes, Anthony P, Englehard, Matthew J., and Yurkovich, Stephen. "Input
Preshaping With Frequency Domain Information For Flexible-Link
Manipulator Control," Proceedings of the AIAA Guidance, Navigation, and
Control Conference, Boston, MA, 1989, p 1167-1175.

32. Tuttle, T.D. and Seering, W.P. "A Zero-placement Technique for Designing
Shaped Inputs to Suppress Multiple-mode Vibration," Proceedings of the
American Controls Conference, Baltimore, MD, 1994, p. 2533-2537.

33. Yoshikawa, Tsuneo. Foundations of Robotics: Analysis and Control. Cambridge,
MA: MIT Press, 1990.

References 117



118 References

34. Zuo, Kai and Wang, David. "Closed Loop Shaped-Input Control of a Class of
Manipulators with a Single Flexible Link," Proceedings of the IEEE International
Conference on Robotics and Automation, Nice, France, 1992, p 782-787.



Extra Data from Input Shaping Studies
Appendix A

A.1 Additional Data from Damping Ratio Study

2% error 5% error 10 % error 20% error
damping best IS % t saved best IS % t saved best IS % t saved best IS % t saved

0.01 ZVD 98 ZVD 98 ZVDD 97 ZVDDD 96
0.02 ZVD 97 ZVD 97 ZVDD 95 ZVDDD 92
0.03 ZVD 95 ZVD 95 ZVDD 92 ZVDDD 88
0.04 ZVD 94 ZVD 94 ZVDD 90 ZVDDD 85
0.05 ZVD 92 ZVD 92 ZVDD 87 ZVDDD 80
0.06 ZVD 91 ZVD 90 ZVDD 85 ZVDDD 76
0.07 ZVD 89 ZVD 89 ZVD 87 ZVDDD 72
0.08 ZV 89 ZVD 87 ZVD 85 ZVDDD 69
0.09 ZV 87 ZVD 85 ZVD 83 ZVDDD 64
0.10 ZV 86 ZVD 84 ZVD 83 ZVDDD 61
0.15 ZV 82 ZVD 76 ZVD 75 ZVDD 52
0.20 ZV 85 ZVD 69 ZVD 67 ZVDD 44
0.25 ZV 79 ZV 59 ZVD 54 ZVDD 23
0.30 ZV 74 ZV 49 ZVD 42 ZVD 7
0.35 ZV 73 ZV 50 ZV 43 ZVD 26
0.40 ZV 64 ZV 37 ZV 26 ZVD 16
0.45 ZV 63 ZV 63 ZV 26 ZV 16
0.50 ZV 61 ZV 61 ZV 25 ZV 13
0.55 ZV 45 ZV 44 none 0 none 0
0.60 ZV 44 ZV 44 ZV 44 none 0
0.65 ZV 43 ZV 42 ZV 42 none 0
0.70 ZV 40 ZV 40 ZV 40 none 0
0.80 none 0 none 0 none 0 none 0
0.90 none 0 none 0 none 0 none 0

Table A.1: Results for the 2% settling band

Table A.1 shows the best input shaper when a 2% settling band was used.
The rows in the table represent the damping ratios and the columns represent
different errors in system knowledge. The % time saved is the unshaped settling
time minus the shaped settling time all divided by the unshaped settling time.
Its highest value is 100, but it can go negative if the shaped settling time is
greater than the unshaped. The higher % time saved values are more desirable.

Table A.2 shows the best input shaper for a larger settling band of 5%.
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2% error 5% error 10 % error 20% error
damping best IS % t saved best IS % t saved best IS % t saved best IS % t saved

0.01 ZV 99 ZVD 98 ZVD 98 ZVDDD 95
0.02 ZV 98 ZVD 96 ZVD 96 ZVDD 93
0.03 ZV 97 ZVD 94 ZVD 94 ZVDD 89
0.04 ZV 96 ZVD 92 ZVD 91 ZVDD 85
0.05 ZV 95 ZVD 90 ZVD 90 ZVDD 82
0.06 ZV 94 ZVD 88 ZVD 87 ZVDD 78
0.07 ZV 93 ZVD 86 ZVD 85 ZVDD 74
0.08 ZV 92 ZV 85 ZVD 83 ZVDD 70

0.09 ZV 92 ZV 83 ZVD 81 ZVDD 67
0.10 ZV 91 ZV 82 ZVD 79 ZVDD 63
0.15 ZV 86 ZV 75 ZVD 69 ZVDD 46
0.20 ZV 80 ZV 80 ZV 57 ZVD 52
0.25 ZV 75 ZV 75 ZV 47 ZVD 39
0.30 ZV 73 ZV 73 ZV 45 ZVD 35
0.35 ZV 65 ZV 65 ZV 32 ZV 18
0.40 ZV 63 ZV 63 ZV 63 ZV 16
0.45 ZV 46 ZV 46 ZV 46 none 0
0.50 ZV 46 ZV 46 ZV 46 none 0
0.55 ZV 45 ZV 44 ZV 44 none 0
0.60 ZV 42 ZV 42 ZV 42 ZV 42
0.65 ZV 38 ZV 38 ZV 38 ZV 38
0.70 none 0 none 0 none 0 none 0
0.80 none 0 none 0 none 0 none 0
0.90 none 0 none 0 none 0 none 0

Table A.2: Results for the 5% settling band

A.2 Effects of Friction

Following are the equations of motion for the two mode system:

ml- 1j + ks(xl - x2 )= Ftotal

m23x2 + ks(x2 - X1) = 0
(A.1)

Table A.3 gives the constants for all three cases.

case I case 2 case 3
mass 1 l(kg) 1 1 1

mass 2 (kg) 2 1 1
spring (N/m) 905 905 905

Table A.3: Mass and spring parameters for three cases

For the linear non-collocated case and collocated case, the total force was
calculated by Equations A.2 and A.3 respectively:

Ftotal = K(X2 ref -X 2 )

120 Appendix A: Extra Datafom Input Shaping Studies

(A.2)



Apeni A:EtaDt rmI u hpn tde 2

Ftotal = K(Xlref - x1) (A.3)

For the nonlinear case, the friction term was added to the total force.
Following are the equations for the total force for the non-collocated and
collocated cases.

Ftotal = K(X 2 ref - x2 )- Ffiction (A.4)

Ftotal = K(Xlref - Xl)- Ffriction (A.5)

The friction force is shown graphically in Figure 2.13 as a plot of force vs.
velocity of mass 1. It is a smoothed form of Coulomb's friction made by joining a
straight line segment of positive slope that passes through the origin to two
curves from an ellipse to two horizontal lines. I tried to fit a cubic to this curve,
as well as arcs from a circle instead of the ellipse, but the math did not work out.
The general line and ellipse equations are given in Equations A.6 a, b, c:

y =mx y = finmag (A.6 a, b, c)

a 2 y-k 2

The point (x,,y,) is where y=mx and the ellipse intersect; the point (x2,y2) is
where the ellipse and Y=fmag intersect. If we specify (x,,y,), this defines the line
y=mx where m=y/xl. Y2 must be equal to fmag in order to fit Equation A.6c. We
also specify x2, choosing 2*x,. Then we can solve for constants a, b, h, and k by
plugging the two points into Equation A.6b. After some algebra we have:

h=x2 b = Y2 - k (A.7 a, b, c, d)
k Y2 - Y2 + my(xl - h) b(h- x1)

2y2 -2y + m(x - h) b -(y - k)

xl and x2 were chosen to be small relative to the velocity: x=0.0005 and
x2=0.0010. The slope of the line was chosen to be m=O.7*y2 /xi, which is rather
steep since y2=fmag=2 or 5 or 10 N. In the actual MATLAB code, Y2 is always equal
to fmag, but fmag changes between simulations, so the constants h, k, b, and a must
be calculated each time the program is run.
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Two-link Model Equations
Appendix B

I derived the equations of motion for a two link system using Lagrangian
methods. I found it easiest to split the system into two smaller systems and then
combine the results at the end. The system consists of two rigid links with an
elbow joint connecting them and a payload at the end of the links. Each link has
a mass and inertia; the elbow joint and payload have masses and inertias as well.
The sub-systems were a two-link system with only link masses and inertias and a
two-link system with joint mass and a payload. Full derivations can be found in
references [1] and [33].

The first set of equations derives the equations of motion for a two-link
system with a mass, Me, at the elbow joint between link 1 and link 2 and a
payload, Mp, at the end of link 2. The associated inertias area also included, I,
and I. (xl, yi) is the position of the elbow joint and (x2,y 2) is the position of the
payload. 01 and 02 are the shoulder pitch and elbow pitch angles, respectively. 1

and 12 are the lengths of the links.

First the coordinates and velocities of the payload mass are found.

X2 = 4 cos(01)+ 12cos(01 + 02) 2 = -46, sin(01)- 12(61 + 02)sin(01 + 02) (B.1)

Y2 = 1,sin(6 1)+ 12sin(O, + 02) Y2 = 1COS(01)+ 12(6 1 + 02)COs(08 + 02) (B.2)

Then the velocity of the payload is calculated.

V2 = lt6~ +2 (61 + 62) 2+ 2 2 61(61 + 62)cos(02) (B.3)

The Lagrangian is given in Equation B.4.

L= ml2 2 +½I,+,2 + 2 2 + m pl2(6 + 62)22L- 1m ~26 2 p 1 +~~2m 2(61+62)(B.4)
+ml 1261(061 + 02 )coS(02) + I(6 1 + 02)2

Once the derivatives of the Lagrangian are taken, you end up with two equations
of motion.
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61l [(me+) + mp)l2cos(2) + I + + 2 cs(0) + ]+ 2[ml22 + ml cs(2) + ]
(B.5)

-2mp1,120102 sin(02)- m1,202 sin(02) = T,

I[mpl2 + mpl 2 cos(02)+ I,] + 62[m] + I ] + + mpll2 2 sin(02) = T2 (B.6)

These equations can be combined into matrix form. Note that the mass matrix is
symmetric.

[(me + mp) + Ie + mp22 + 2ml,12 cos(02)+ Ip ml 2 + ml,12 cos(02)+ Ip0 l 

mpl2 + mpl 2 cos(02) + Ip m J1+I62J 

{} o[-m msin () mP 2 8n02)J6l 12 [2mPlll2sin(0 2)]{..

The second set of equations derives the equations of motion for the two-link
system with the masses and inertias of the links included. (x, y,) is the position
of the center of mass of the first link and (x2,y2) is the position of the center of
mass of the second link. We assume that the mass density of the links are evenly
distributed so that the mass and inertia of the link acts at L/2.

First the coordinates and velocities of the center of mass of link 2 are found.

x2 = l cos(O) + ½12 cos(O1 + 02) X2 = -46, sin(, 1)- 12(61+ 2 )sin(0, + 02) (B.8)

y2= 4 sin(01,)+ +- 2sin(01 + 02) 2 = -l,46 cos(01)- 12(61, + 62)cos(=- + 02) (B.9)

Then the velocity of the mass center of the link 2 is calculated.

V22 = 1201 + 22 + 120 + 2 2 +112(2 + 6162)COS(02) (B.10)

The Lagrangian is given in Equation B.11.

n84 (B.11)L ll2 +I 2 +2m211 +8m22(61 + 62) (B.)
+2m2412(02 + 6162)s(02 ) + I2(1 + 02)

Taking the derivative of the Lagrangian gives you the two equations of motion in
Equations B.12 and B.13.

Ol[4mll2 + I, +m2(l2 + 412 +1 2cos(02))+ 2]+ 2[m2(412 + 2l2cos(02))+2](B1 2
-m24l2 sin( 2)(2 2 + ) = T(B.12 )
-½m2t12 sin(02)(26102 + 22)= T,

01 [m2 (¼12 +½l 2 Jcos(0 2 ))+I 2 ]+ 02 [¼m2122 +I 2 ]+- m 21 ,12062sin(0 2 ) = T 2 (B.13)
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After combining Equations B.12 and B.13 into a matrix representation, you get
Equation B.14.

m11 + m + +m(12cos(02))+ 2 m(412 + 12 lcos(02)) + I210 _
M2( 12 + 1 12 COS(02)) + 2 4 212 + 1M 2 }

(B.14){J + n(° 2 m2llil sin(02)]{62} + [m21112 sin( 2+
T2 L- m2412 sin(02) ° 2{ 1121

To get the complete equations of motion, you must combine Equations B.7 and
B.14 to get Equation B.15,

M J2 M2212 T2 -C 02 L 1

where

M = (m, + m +4 m l + m 2) +(m + m2)12 + (2mp + m2)12 cos(02)+ I, + I + I + IP

M2 = (i1 + m 2+((mn,, + M2) 2COS(02 + 2 + I +
M22 = (m + 4m2) + I2 + Ip (B.16)

c = (m + m2)h12 sin(02)

After inverting the mass matrix and multiplying both sides by the inverse,
Equation B.17 is the result. This is the form that the equations were entered into
MATLAB's nonlinear integrator.

1 M22(T, +cQ2 + 2c6 2) - M2 (T 2 - C62) 

L2J M1 1 M 22 - M12 -M1 2(TI +c62 +2c0,1 2)+ Ml,(T 2 - c2) (B.17)

Torque T1 is the driving torques acting between the base and shoulder pitch
joint. Torque T2 is the driving torque acting at the elbow joint between links 1
and 2. Proportional derivative controller loops were closed around the joint
angles to get the torques. The stiffnesses and damping ratios, which could also
be considered the proportional and derivative controller gains, are given in
Chapter 5.2.1.

T, = K,(0,lref-,)+ B,(,,,lref-) (B.18)

T2 = K2 (0 2ref - 2)+ B2 (6 2ref - 2)
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K1, K2, B, and B2 can be adjusted to give the system different frequencies and
damping ratios.



Using the DRS Simulation
Appendix C

The DRS model is surprisingly easy to use, if you have the proper
documentation. The two documents needed are The DRS Users Guide and the
Payload Deployment and Retrieval System Simulation Database. [16, 19] They contain
the default parameter values and a description of most of the initialization
variables. The DRS has been converted to FORTRAN code that can be compiled
on a UNIX machine or a Macintosh. The DRS program consists of 13 separate
FORTRAN files. Usually, the only programs that have to be modified are
vname-orig.f, vdatout.f, and vrmsgpc_inp.f.

vname-orig.f contains all of the initialization parameters. This is where you
can change the payload, the friction and stiction levels, the integral gain, the
initial joint angles and velocities, and many others. After the following line you
can change or insert any variables in Appendix C of The DRS User's Guide.

C ** BEGIN NAMELIST DECLARATION

If you want to see what the default variables are, comment out all of the
variables that follow that line, compile, and run the program. The first 435-437
lines of the output file will contain the initial values of the simulation
parameters. One thing I found useful to do was to let the program read in the
initial joint angles. Otherwise you have to recompile the program every time
you change initial angles or rates. For example, if you wanted to read in the
initial shoulder pitch and elbow pitch angles you would add the following code
to the end of vname-orig.f.

open(unit=2,status='old',file='intheti.dat )
read(2,*)gam(3),gam(4)

Just make sure that you actually have a file called 'intheti.dat', or the program
will crash. This file can be created in MATLAB very easily, as the following line
shows. The initial angles are in degrees.

save intheti.dat -45 45 -ascii

To change the output variables, you must edit vdatout.f. Search for the
phrase 'write(6' and you will find something close to the following line. Chose
whatever variables you want from Appendix B of The DRS User's Guide and

127



128 Appendix C: Using the DRS Simulation

insert them into this line. Right now this line prints out the time, shoulder pitch
angle, elbow pitch angle, x tip position, y tip position, and z tip position. Do not
output too many variables, unless you plan on creating 1MB files every time you
run the DRS.

2009 WRITE(6,2010) TYME,XDATA(23),XDATA(24),XDATA(40),
1XDATA(41),XDATA(42)

In order to change the inputs to the program, you must edit vrmsgpc_inp.f.
Search for the phrase 'read(3' and you will find the following line. jtcdfp is the
command to the motor. The following lines are setting up the input file and
reading in shoulder pitch and elbow pitch rates from the file 'indat.dat'.

c nsing update
c arbitrary velocity input

integer numb,jnt
character *100 outdat, indat
COMMON /OFILE/outdat,indat

c nsing update
C override the SRMS gpc command and put mine in.

inquire (file=indat,number=numb)
if (numb .eq. 3) goto 90
open(unit=3,file=indat)

90 continue
do 100 i=1,6

jtcdfp(i) =0.0
100 continue

C shoulder yaw is 1
C shoulder pitch is 2
C elbow pitch is 3

read(3,*)jtcdfp(2),jtcdfp(3)

In MATLAB, you need to calculate the joint rates you wish to input, in
rad/sec. The joints must be multiplied by gains to convert them to motor
commands. Each joint rate must be multiplied by the gear ratio and the arm
command scaling factor K2=12.0948. The gear ratios are as follows:

Shoulder yaw Shoulder pitch Elbow pitch I Wrist pitch Wrist yaw Wrist roll
1841.95 1842.95 1260.28 737.74 738.74 737.74

Table C.1: DRS joint gear ratios

The inputs to the DRS must be integers, so you must round the input after
multiplying it by the conversion factors. If you were creating the input data file
in MATLAB, you would do the following:

Kelb=1260*12.0948;Ksh=1843*12.0948;
dthet=round([dShP*Ksh dE1P*Kelb]);
save indat.dat dthet -ascii

Use the following Makefile to compile the program.
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.SUFFIXES: .f .o

ORIG=drsmain.o vdatout.o vflexl.o vflex2.o vinterps.o vonetym.o
vphm.o vrunmod.o vupdate.o vinit.o vservo.o vname-orig.o
vrmsgpc_inp.o

orig: ${ORIGI
f77 -o drsm-orig ${ORIG} libimsld.a
@echo "done"

.f.o: $*.f
f77 -c $*. f

.C.o: $*.c
cc -g -c $*.c

After the program is compiled, the executable file is drsm-orig. Rename the
file and run as follows:

drsm-orig >datafile.dat

Of course, you can choose the name of the output file to be anything you
want. To look at the data, edit the output file by removing the first 435-437 lines
of text. The text contains all of the namelist initialization parameters that the
DRS uses. Then load in the file to MATLAB and you should be able to look at
the data you have created. The DRS also creates a file called outdat.dat, which
should be deleted as it contains garbage, and grows very large.

If you want to change the payload, you must change the payload mass,
inertia, position vectors, and joint rate limits. The Payload Deployment and
Retrieval System Simulation Database gives a good description of payload
parameters for certain payloads.
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