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A flight experiment entitled the M.iddeck Active
Control Experiment (MACE) proposed by the Space
Engineering Research Center (SERC) at the
Massachusetts Ins_tute of Technology is described. The
objective of tb.is program is to investigate and validate
the modeling of the dynamics of an actively controlled
flexible, articulating, multibody platform free floanng in
zero gravity. A rationale and experimental approach for
the program are presented. The rationale shows that on-
orbit testing, coupled with ground tesung and a strong
analytical program, is necessary in order to fully
understand both how flexibility of the platform affects
the pointing problem, as well as how grav_t-y perturbs
this structural flexibility causing deviations between l-
and O-g_vity behavior. The experimental approach
capturu the emmntial physics of multibedy platforms, by
identifying the appropriate attributes, tests, and
performance metrics of the test article, and defines the
tests required to successfully validate the analytical
framework.

INTRODUCTION

Large spacecraft have become the focus of intense
scientificand engineering research in recent years.
Beginning with Space StationFreedom, spacecraftv_ll
no longer be restricted to the mass and volume limits
imposed by a singlelaunch vehicle.Instead,"..heycan be
assembled on-orbit,using astronauts on EVA or
telerobotic equipment. These Large Space Structures
(LSS) willhave increasinglystringentpoin_ng or shape
requirements, and a simultaneous reduclnon in their
structuralmass and associatedstiffness.Itw_lloftenbe

impouible to fully test such a structure on the ground
before its operational deployment. Therefore, the
question that must be dealt with is how can confidence in
the designer's abilityto predictthe on-orbitstructural
dynamic behavior of such spacecraftbe increased in
order to minute Ol_rational success of its m_smon? The
answer implies the development of an effecnve and
ei_cientLSS qualifimtmn procedure.

Figure 1 shows the possiblequalifica:ion teststhat
can be performed on a spacecraft in order to characterize
its on-orbit open and closed-loop structural dynamic
behavior. Each cell in the marx corresponds to a t_st or
accurateanalysis which the designer must be capableof
performing before qualifying the operational vehicle.
The least expensive test, a scaled test of a spacecraft
component performedinatmosphere on the ground, is in
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the upper left corner. The moat expensive test, a full
scale 0-g test performed in vacuum, is in the lower right
corner. The goal is to develop the most ef_cient
sequence of tests and analyses, in this matrix, which
leads to a high level of confidence in the performance of
the opera_onal vehicle.

The goal of the Middeck 0-gravity Dynamics
Experiment (MODE) family of flight experiment
faclities,conducted by the MIT Space Engineering
Research Center, is to explore the gravity-dependent
upects of this matrix in order to deue_p the analy_:ical
tools and test sequences necessary to conduct an
effecuveand ei_cientspacecraR qualifle_ion procedure.
This development is accomplished through a series of
small, relatively inexpensive flight experiments
conductedin the interactiveshir_sleeve environment of

theSpace ShuttleMiddeck.

I Attain.

V_

1 -| 0-|

_ Comlm_m

._DOE

Tam

MaDE

May Nm Be May Nel l_
Praazal Pm:zr_

No*
P'm:t_

MODE

N¢I
Pramua

tq_mt q_attmam mm rata.ix b- re.metal _
__qmmm,alt

MODE -1, which is to ha flown in AuguJt 1991, will
conduct a series of open.loop dynamic experiments on
fluid tanluL deployable and erectable trusses, flexible
appendages, and rotary joints typical of future
spacecraft, l MODE.1 is funded under the NASA OAET
In-Step program.

MODE-2, which istoha flown in September 1993, is
a reflight ofthe MODE-I instrumentationwith the new
Middeck Active Control Experiment (MACE) test
ar_cle.2 It willcont/nuethe work begun inMODE-I but
w_llextend it to include structuresutilizingControlled
St-r_cturesTechnology (CST). CST uses activecontrol
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OVERVIEW

The Space Engineering Research Center (SERC) at MIT, started in
July 1988, has completed two years of research. The Center is approaching
the operational phase of its first testbed, is midway through the
construction of a second testbed and is in the design phase of a third. We
presently have seven participating faculty, four participating staff
members, ten graduate students and numerous undergraduates.

This report reviews the testbed programs, individual graduate
research, other SERC activitiesnot funded by the Center, interactionwith
non-MIT organizations, and SERC milestones. Published papers made
possibleby SERC funding are included at the end of the report.
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Testbed Program

OFnCAL INrERFEROMETER Tm'rBED

The firstof the MIT SERC testbeds is based on a design for a 35 meter

space-based optical interferometer, chosen for the stringent alignment and

structural control requirements placed on such a structure by scientific

mission objectives. At the time of the last report, a scaled 3.5 meter
tetrahedral truss frame had been assembled and suspended in the

laboratory, and optical component design was underway for an internal

laser metrology system capable of measuring structural misalignment to

an accuracy of 10 nanometers. At the time of this writing, the construction

and integration of testbed optics, sensors, real time computer, and support
hardware is well underway, and preliminary tests have been performed on

the structure. The reader is referred to a fulldescription of the state of the

testbed in the publication MIT's Interferometer Testbed (included at the

back of this report), prepared in August for inclusion in the proceedings of

the JPL Workshop on Technologies for Space Interferometry, which two

students attended in April. A brief summary is presented here to highlight
the areas of activity for the testbed.

Optics: Hardware for a six-axis laser metrology system has been

installedin the tetrahedral truss to measure internal pathlength changes
due to structural flexibility.A 670 tLWatt HP laser and beam steering optics

are mounted to a truss vertex and powers optical measurement legs to
three (cat s eye) retroreflectors at distant locations in the truss. Ambient

laboratory disturbances measured by one optical leg are approximately 20

nm rms (broadband) which is 2-3 times below the desired closed-loop

stability level (in the presence of scaled disturbances) dictated by our
performance metric.

Control Hardware: Three piezoelectric struts have been integrated to
the truss with a suite of collocatedsensors. Active piezoelectric mounts are
under construction for the three cat's eye retroreflectors, which will be used
for output compensation in the range of +/- 5 ttm. SoRware is being written
for a VME based real time control computer capable of handling 32+ states
at sample rates of up to 2 kHz; the hardware for this system is complete and
can handle a total of 16 inputs and I0 outputs.

System Identification: A multichannel spectrum analyzer and a
suite of 32 accelerometers has been integrated to the testbed and used to

perform a system identification of the "naked truss" frame. The data

indicates.ver_ low damping (.1% and lower) and tightly spaced modes
occunng _n clumps.

Finite Element Model: A 228 node finiteelement model predicts a

frequency of the firstmode that is in 10% error with results of the system ID

test. The model is being updated, and is being utilized for controllability
and observability studies used for sensor and actuator placement.

Passive Damping: Several truss members have been constructed
with viscoelastic material and will be installed in the truss to establish a

nominal level of damping in the testbed. The struts are being tested in a

axial component tester constructed during the summer.



Control Experiments: Loc.al analog loops using velocity feedback
have been closed around active members with acceptable results.

During the next six months, the interferometer testbed will be
completed and will enter the research phase of use by graduate students.
In particular, the following issues will be addressed:

1)

2)

3)

4)

5)

6)

completion of all six legs of the laser metrology system

integration and testing of active mirror mounts

real time computer software

integration of a scaled disturbance source

system identification and finite element correlation of the

naked truss, followed by a system identification of the

completed truss.

passive damping treatment

MULTIBODY _ED

Work is proceeding on the ground version of the Middeck Active
Control Experiment (MACE). For details, see the next section. This
experiment is designed to study the behavior of structures that utilize active
control to modify their dynamics and whose structural characteristics
change between 1- and 0-g environments. SERC has selected a ground
based engineering model of the MACE test article as the Center's second
testbed. This will function as the basis for a flight experiment on the STS
Middeck in 1994.

Structure: This Engineering Model structural bus consists of four
flexible Lexan, tubular segments interconnected to the other test article
elements at five rigid, metallic nodes. A gimballed payload will be located
at each end of the bus. The gimbals rotate in two axes (pitch and yaw but no
roll about payload line-of-sight). Rigid body control is supplied by three
orthogonally oriented torque wheels located at the center of the bus. The
ensemble will be suspended from three CSA zero-g suspension devices.
The test article is shown in the figure below.

Sensors: Baseline sensors located along the bus include three 3-axis
rate gyro packages and three tri-ax accelerometer units, each of which can
be attached to any node of the bus. Four Strain gauges will be bonded to
each strut, a loadcell will be attached between the test article and each of

the suspension devices, and optical encoders will be attached to the gimbal
motors.

Types of control test_: Tests on the engineering model will consist of
pointing, scanning and multiple control system interaction. Pointing
involves active reduction of two-axis stability and jitter of one payload
reacting against the flexible structure. Scanning involves active reduction
of two-axis angular deviation from a reference scanning profile. Multiple
interaction tests involve simultaneous pointing and scanning of both
payloads.

Hardware status: All hardware, sensors, and actuators slated to be

used on the MACE EM have arrived with the exception of the active bending
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segment, the gimbals, and the CSA suspension devices. The active
segment will consist of a square Lexan rod with piezoelectric ceramic

mounted on its edges. It is in the final design sta_es andwill replace one of
the passive segments and provide localized bending in the structure. The
first gimbal is currently being assembled at LSMC, and is expected for
delivery in mid-December. LSMC is providing support to the MACE over
the next two fiscal years in the development of the EM and control
methodologies, and in the redesigns of the gimbal actuators. The CSA
suspension devices are in the final stages of the manufacturer's testing and
are also expected for delivery in mid-December.

Instrumentation and signal conditioning equipment have been
acquired and are in the final stages of integration with the AC-100 Real-

Time computer we have purchased and received. The AC-100 in

conjunction with the CSA suspension devices will serve as a zero-g
simulation and real-time digital control facility after its initial
responsibility of supporting the MACE program.

Present work: Work is continuing to study control issues involves

with the MACE. The attached paper entitled Dynamics and Control of
Multipayload Platforms: The Middeck Active Control Experiment (MAC.E)
was delivered at the CSI conference in Dresden, GDR in early October.

Also included at the back of this report is the set of annotated viewgraphs

entitled The MODE Family of,On-Orbit Experiment: The Middeck Active
Control Experiment (MACE) which was presented at the 1990 CSI

Conference. A matrix of possible control methodologies has been developed

to be included in the sample problem we have issued to various CSI experts
for their analysis and input.

initiat Open'l°°pedthe Identification: Dynamic testing of the MACE EM has beenwith results being used to verify a NASTRAN model also being
developed. A fully representative model is expected to be completed by the
end of January to coincide with expected completion of the EMtestbed. At
that point closed-loop testing will begin.

y

z ActiveSegment

InertialPlatform

°

Mul_ testbed test article



Research Programs
This section gives a discussion of the individual graduate research

programs that are funded through the M.I.T. SERC grant. Each

discussion is composed of a description of progress made during the last six

months and expected progress to be made during the next six months. In
addition, a specific testbed affiliationis listed under the researcher s names

to indicate the motivation for the research. The phrase general affiliation

implies that the research is not tied to a specific testbed.

DESIGN OF STRU_ FOR CONTROL

Mr. Robert N. Jacques and Dr. David W. Miller

(Interferometer Testbed)

In the past, the design of the structural and control subsystems of

spacecraR has been done independently, with control design taking place

late in the design process. However, as new space structures become

larger, and pointing and alignment requirements become tighter, many
. flexible modes of the spacecrai_ will have frequencies inside the needed

bandwidth of the controller. The resulting interaction of the structure with

the control is very strong and argues against designing these subsystems

separately. Currently, the approach to thisproblem is to use a computer
program which iterates over a precisely defined set of structural and

control design variables (e.g. sizing of members in a truss, or controller

gains) to find a design which optimally meets one or several objectives such
as minimum structural mass or RMS motion. The difficulty with this

approach is that even when an optimal design is obtained, there is very
littleinsight into why it is optimal. This understanding is crucial in the

very early stages of design when many possible design options prohibit

formal optimization. Even when a computer program is to be used in the

design of the system, engineering insight is needed in selecting the general

layout of the system and the design variables. The work done here is an
attempt to take a step back from numerical optimization of these systems

and develop some "rules of thumb" which can be used in the preliminary

design of a controlled structure.

Currently, the approach has proceeded in two parts. In the first
part, very simple controlled structures were used to study some of the

fundamental aspects of the interaction of the structure with the control.

These were simple spring-mass-dashpot systems. The advantage of this

simple model is that it is analogous to the interaction of a controller and

disturbance with a single mode of a structure, and its simplicity makes it

possible to derive the optimal control gains in closed form. This made it
possible to obtain analytic expressions for the performance of the system.

From analysis of these typical sections, an initial set of design rules of

thumb was developed. The second part of the approach used a finite

element Bernoulli-Euler beam as a design example. Structural design
parameters (such as element thicknesses) and control of this beam were

optimized numerically for different problem formulations. The goal was to

see if the designs suggested by the typical sections were similar to the

numerically optimal designs.
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Some of the conclusions revealed by this approach have been quite
interesting. The first concerns the role of damping in a controlled
structure. It was found that in a perfectly modelled system, passive
damping is very important when no control is used, however as the level of
control is increased, the need for passive damping eventually vanishes.
This was because at higher levels of control, the damping tended to resist
the control force insteadof aiding it. However, when the control is designed
for a structure that has unmodelled dynamics, it was found that the
damping was extremely important in the unmodelled modes, particularly
at high gain. A second conclusion was that the most common way to
optimize a structure was to make it less sensitive to disturbances, as
opposed to lettingthe disturbance into the structure and trying to controlit
out. When the disturbances were step loads,thisimplied that the structure
should be made very stiffto reduce itsdisplacement due to these loads,and
when the disturbances were impulses or white noise, the structure should
be made to have high inertiawhere the disturbances are applied. Third, it
was found, that the design strategy one should use can depend on the
amount of control effort available. Other methods for improving the
controlled performance, such as making the structure more sensitive to
actuation were found to help only in very specialcases.

In the future, several areas stillneed to be investigated. The beam
example used was very simple. It remains to be shown that the rules of
thumb can be used on a more complex system. The SERC interferometer
testbed is a good candidate for this analysis. Computer models of the
structure have been developed. Also, it will be possible to perform
experiments on the actual testbed to verifythe resultsof computer analysis.
Another area that needs to be investigatedisthe effectof controllertype on
design strategy. So far, the controllersused in this research have been

optimal LQR/LQG. These controllerswork very well in perfectlymodelled
systems, but have been shown to have some serious short connngs in the
way of robustness. Actual MIMO controllersused on space structures will
probably be based on H_o methods. Their influence on structural design
willbe important.

A STATISTICAL MODEIJANG APPROACH FOR BROADBAND

CONTROL OF UNCERTAIN STRU_

Mr. Douglas G. MacMartin and Prof. Steven R. Hall

(Interferometcr Testbed)

BACKGROUND

The goal of this research is to develop a methodology for designing
optimal active control systems for broadband control of uncertain flexible
structures. Thus a control system is required which will give good
performance over many modes, while being robust to parametric
uncertainties in these modes. Rather than modelling the detailed modal
behaviour of the structure using state space based methods, itmay be more
useful to model only some statisticalaspects of the response. One approach
that uses this philosophy is StatisticalEnergy Analysis, and the modelling
assumptions from SEA will also be used in this research. It is assumed
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that the individual modal amplitudes are not important, and that only the
modal energies,averaged over some number of modes, are important. The
cost can be related to these energies,and the energy can be related to the
power input and dissipationusing conservation of energy.

In order to apply this,the power flow from the structure to the control
system is required. A power flow model of the structure can be developed
using a dereverberatedmobility description,which accurately models the
localdynamics of the structure near the sensor/actuatorpair. This leads to
a characterization of the closed loop dynamics via a transfer function H,
defined such that H*H isthe relativepower reflectedinto the structure,and
I-H*H is the relative power dissipated. The transfer function H is
analagous to a reflection coefficient in a 1-D waveguide, where the
amplitude of the outgoing wave is H_i for an incoming wave c0i. Since
power is quadratic, the outgoing wave has power H*H for an incoming
wave of unit power.

Combining this model with the assumptions inherent in Statistical
Energy Analysis, the cost functional which reflectsthe best estimate of the
true performance metric of interestis

where C measures the cost associated with the modes in each frequency
band, and nin measures the power input from external disturbances in
each frequency band.

COST FUNCTIONAL MINIMIZATION

This cost functional combines aspects of both the H2 and Ha. problems.
Much of the research to date has focused on finding an approach for
obtaining compensators that minimize this cost functional. Preliminary
resultsare summarized in [1]which is included at the back of this report.

One approach to optimizingthe cost functional is based on finding
the necessary conditions using a Lagrange multiplier approach. The cost
can be evaluated using a single Riccati and a single Lyapunov equation.
For a given, fixed,compensator order, the Riccati and Lyapunov equations
required to evaluate the cost can be appended to the cost using Lagrange
multipliers,and the firstvariation of this augmented cost set to zero. The
necessary conditions are easily obtained from this approach, but they are
difficultto simplify and understand. In the _/2 or LQGproblem, the
conditions for a fixed-order compensator are simplified greatly by
introducing a projectionoperator [3].This operator is difficultto identifyfor
this problem due to the structure of the necessary conditions,resulting in
what is known as a "double Ac problem." This results because the
dynamics of the compensator appear in the problem twice: once in the
Riccatiequation and once in the Lyapunov equation that isused to evaluate
the cost.

There are a number of simpler such "double Ac _ optimization
problems, and the solution of these should help indicate how to solve the
current optimization problem. Three such problems were investigated;
these are the multi-model fixed-order approximation, estimation and
control problems. One compensator (or estimator, or approximate) is
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desired, to be applied to a finite set of models. This approach can be applied
to give robustness to parametric uncertainty, by choosing a finite number of
different models to represent the range of parameter variation. It is also
applicable to certain fault tolerance applications, where there may actually
be a finite set of models which are possible. The multi-model
approximation and estimation problems have been solved by identifying an
appropriate projection operator, and in b.oth of these, there is a maximum
order for the approximant or estimator that is optimal [2] (also included in
the back of this report). For the optimal control problem, there is no a priori
bound on the order of a compensator which is optimal, and this is directly
related to the difficulty in analyzing the necessary conditions. This result is
also (apparently) true for our problem.

Another related problem is that of finding a stable compensator that
optimizes an 9/2 performance. (Note that the optimal compensator for a
given system might not be stable.)This problem can be formulated so that it
has the same "double Ac" structure as the multi-model control problem,
and the cost functional in Equation (2). A variety of researchers have
investigated this problem in the past, without obtaining a particularly
satisfactoryalgorithm. One conclusion of thisbody of research is that for a
finiteorder, rational plant, the optimal compensator may be irrational. A
rational (state space) approximation of this compensator must be of
arbitrarilyhigh order.

There is,however, reason to believe that in all of these problems, a
suboptimal compensator exists with finite order comparable to that of the
plant, and with almost the same cost as the optimal, infinite order
compensator. The rationale for this belief comes from numrical
optimizations that have been carried out using a quasi-Newton algorithm.
Both the multi-model problem, and the H2/_ cost functional have been
studied in this manner. In both cases, and for several different plants, the

hadoptimal fixed order compensator of degree equal to the plant a cost
within a few percent of higher order compensators. With a compensator of
twice this order, there was virtually no further improvement in the cost
possible.

It may also be possible to minimize the cost by representing it in
another form more amenable to different techniques. Along this line,
connections have been noted between this H2/_ cost functional, and the
work of Zhou et al. [4], where the combined _h/_ problem was studied from
an input-output induced norm point of view. The cost in [4] is the induced
norm of a plant with two inputs. If the second input is restricted to be
causal, then the problem is equivalent to the H2/_ problem studied by
Bernstein et al. [5]. If the restriction is removed, then the problem is
equivalent to our Yh/H,_ problem. Zhou et al. have not solved thi's case, but
this representation of the problem may lead to solution techniques.

The cost in Equation (2) also has a time domain formulation in terms
of a stochastic Stackelberg non-zero sum differential game. The control u
minimizes the two norm of z under the influence of a white noise input o)i
and a deterministic but unknown worst case noise c0i. Once the control
Law is chosen, the deterministic noise uses this information and optimizes
a modified cost. A set of equations identical to those obtained from the
Lagrange multiplier approach can be obtained using this framework
instead.
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COST FUNCTIONAL INTERPRETATION

The dereverberation procedure can be interpreted as averaging all
possible plants over some class of uncertainty. If there is no knowledge of
the frequency of the plant poles, then the average plant is the
dereverberated model, which has poles on the real axis. If the uncertainly
in frequency is smaller, then the appropriate model to use is one where the
poles have been left shifted, but not all the way to the real axis. This is
again an average of the possible plants.

It is not sufficient to blindly design the control system for this model;
the fact that the real structure is conservative must be reintroduced into the

problem. This is what the cost functional in Equation (2) is intended to do.
The worst case noise in the Stackelberg interpretation of this cost can be
thought of as the noise that gives the worst possible conservative system.
this can be shown by choosing a control law and a level of left-shift, and
finding the optimum noise. The resulting open loop system is
conservative,and the frequency is shifted in the direction which increases
the cost.

FtrruRE WORK

Ultimately, an experimental test of the approach being developed is

desired. This will be done on the MIT Space Engineering Research Center
interferometer testbed. Some work has already begun in examining the use
of an active structural element in this truss for local control. The first

experiment will be to perform rate feedback.

An understanding of the optimal solution of the 1/2/_, multi-model

control, and stable I/2 compensator problems is still desired. The

numerical algorithm for the Y_2/_ cost needs to be improved in order to be a

viable approach for obtaining the compensator. Once this is done, it can be

used to study the robustness that this control design approach offers.

Other goals of the research include formalizing the argument to
allow information about lower modes into the model, and comparing the

resulting approach with the MEOP approach of Bernstein and I-lyland [6].

A generalization for noncollocated sensors and actuators is desired, as is
including robustness to time delays, actuator and sensor dynamics and so
forth.
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SYSTEMS ENGINEERING APPROACHES TO THE DESIGN OF CST

SPACECRAFT

Prof. Joseph F. Shea

The design of a CST spacecraft must be examined from a systems
engineering perspective. The characteristics of a very flexible structure
with precision pointing requirements places constraints on the spacecraft
design, and the choice of subsystems can strongly interact with the CST
tools used for disturbance minimization. There are two research projects
investigating the systems engineering approaches to the design of CST
spacecraft.

A SYSTEMS ENGINEERING APPROACH TO DISTURBANCE

MIN]MIT__TION FOR SPACECRAFT UTKJZING CST

Mr. Christopher E. Eyerman and Prof. Joseph F. Shea

(Interferometer Testbed)

An MS thesis, completed in June 1990, presented a systems design
method for disturbance minimization in the context of a space-based optical
interferometer. The thesis first characterizes disturbances due to both

environmental and on-board sources to which the spacecraft may be
subjected. It then reviews the various CST techniques available for
disturbance minimization, and formulates a numerical model of a full-
scale version of the SERC interferometer testbed. As examples of the
proposed system design method, three of the spacecraft subsystems are
examined in detail: the power, attitude control, and interferometer &
metrology subsystems. Options for each are examined with respect to
performance requirements and disturbance minimization. After the best
option is selected, recommendations are made on the use of CST tools to
bring the system response to disturbances within performance limits.

VEHICLE DESIGN OF A SPACE-BASED OPTICAL INr_'_ttOMETER

Mr. Andrew M. Nisbet and Prof. Joseph F. Shea

(Interferometer Testbed)

As a follow-on to the previously described research, and to
complement the development of the SERC interferometer testbed, a new
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project has been started to complete a full design of an interferometric
spacecraft,accepting only the tetrahedral truss structure as a given. Work
to date has been in understanding the basic science requirements of the
mission and the methods of disturbance minimization available. The next

step willbe to determine which of several methods forgathering the science
data is the best. Methods are differentiated by the number of
mirror/detector assemblies required and whether siderostat translation
along the truss legs or spacecraftattitudeadjustment is used to produce the
various baseline lengths and directions. The methods will be measured by
their performance, in terms of minimizing disturbances and maximizing
science time, and their cost in terms of mass, power, and equipment. The
previous research has shown that selectionof the science gathering mode
will drive the design of the other subsystems, so detailed design of the
remaining spacecraft subsystems will come after this initialtrade.

ROBUST MULT1VARIABLE CONTROL STUDIES

Prof. Michael Athans

(In terferometer Testbed)

This research deals with the development of concepts, theories,
methodologies and techniques for the design of multivariable control
systems for large space structures,with special emphasis on the stability
and performance robustness characteristics.Duringthis time period the
SERC interferometer testbed provided the main vehicle for planning and
carrying out the research described in the sequel.

The work is supervised by Professor Michael Athans, assisted by two
graduate students research assistants: Joel Douglas of the Electrical
Engineering and Computer Science Department, and Leonard Lublin of the
Aeronautics and Astronautics Department. Both graduate students are
working toward theirMS thesis.

Mr. Lublin continued his research related to the development of
nominal models, and quantification of unstructured modeling errors, for
the interferometer testbed and continues to be a key participant of the
interferometer group. During this time period he obtained a higher fidelity
finite-elementmodel of the interferometer by explicitlymodeling the twelve
bay truss structure for each leg of the pyramid using two elements for each
strut.The complexity fo the resultant finite-element problem requred the
use of a CRAY supercomputer. The new model agrees closely with the
simpler beam model developed during the previous reporting period, at
leastfor the low frequency modes.

We seek models of reasonable accuracy for initiating different
multivariable control system designs; however, of equal importance is to
fully understand the nature of, and bound on, modeling errors. These
errors are both parametric due to uncertainties in damping, stiffness,
geometry, etc.as well as dynamic in terms of poorly known high-frequency
modes and other parasitic dynamic phenomena. However, one of the key
findings during this reporting period was that significantmodeling errors
can also arise in the modeling of the actuators and sensors, which will
impart the nominal values and directions of the multivariable
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transmission zeros of the transfer function matrix used to model the
interferometer structure in control synthesis studies.

Errors associated with the location and directional properties of
transmission zeros may have serious impact upon the performance of the
control system for disturbance rejection, especially if these are lightly
damped zeros, forcing a low bandwidth control system implementation.
These issues were investigated by Mr. Lublin, who compared the transfer
function matrices of a two-dimensional truss structure with that obtained
by a simpler beam approximation, and the. models obtained using finite
element methods. Although the modes of both systems were very close, the
difference between point force and moment controls vs their physical
distributed implementation resulted in a very significant modeling error in
the transmission zeros and their directions. It is becoming more and more
apparent that finite-element models may not be sufficiently accurate to
implement a high bandwidth control system. Also, modeling errors in both
poles and zeroes may require larger damping than one may have initially
suspected. Thus, these models must be refined by empirical data. For these
reasons we have started planning for multivariable identification of the
interferometer testbed.

Mr. Douglas devoted most of his time in researching design
methodologies for stability-robustness and performance-robustness of
control systems with significant parametric uncertainty. During this
reporting period we were able to derive some new results that can be used to
design multivariable control systems using full state feedback strategies.
We tested the designs for a simple mass-spring system, which has been
used lately as a benchmark for assessing performance robustness for
diverse control synthesis methods (Bernstein-Wei in 1990 ACC). We found
that our formulation results in remarkable performance robustness in the
presence of significant uncertainty in the potential energy stored by the
spring (uncertain spring constant). The state variable feedback gains are
computed by means of a modified algebraic Riccati equation in which the
nature and size of the parameter uncertainties are manifested in two extra
terms: one that looks like the term that appears in the H 0o formation, and
seems to explain the fact that parameter errors can be partially modeled as
extra disturbances in the nominal design; the other term modifies the
original state variable penalties, and tries to force the system to move
towards operating regimes that minimize the impact of uncertain energy
stored in the system. These encouraging results have motivated us to
continue our theoretical research along these directions. It should be noted
that the present methodology cannot be directly applied to the
interferometer

testbed, because we do not measure enough state variables. We must
extend the currently available results in a very non-trivial way before they
can be used in conjunction with the postulated sensors and actuators in the
interferometer testbed.

We have also continued our theoritical effort that may provide us
with explicit guidance regarding performance limitations, say in terms of
disturbance-rejection, for dynamic systems characterized by lightly-
damped stable poles and minimum phase zeros. Such performance
limitations are understood for unstable and/or nonminimum phase
systems using results from advanced complex variable theory (Poisson
integrals, etc.). For the types of structures (e.g. the interferometer testbed)
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under consideration, in the absence of modeling errors and other nonlinear

actuator/sensor effects, the dynamic systems are "stably invertible" so in

principle it is possible to obtain excellent disturbance-rejection performance

using dynamic multivariable compensators of very high order. However,

from a pragmatic point of view, modeling errors, nonlinearities, reduced

complexity controllers and decentralized implementation will impose a

limit on achievable disturbance-rejection performance while maintaining
stability.We seek a theoretical framework that (hopefully) will make these

tradeoffs transparent, and reduce the amount of trial and error design
iterations that control designers must currently execute. Although the

theory is stillat its infancy, it confirms the insight gained by von Flotow and
his students on single-input single-output systems in that a minimum

pole/zero damping may be necessary to ensure stability if there exists

si.gnificantuncertainty in the location of pole-zero pairs bear the imaginary
axls.

BROADBAND INPUT/OtrI_UT ISOLATION ON A FI ._rRr._.

STRUCTURE WITH UNCERTAIN DYNAMICS

Mr. Gary Blackwood and Prof. A. yon Flotow

(Interferometer Testbed)

The optical interferometer testbed has several optical mirror
components that have small mass compared to the mass of the entire
structure. The control task is to maintain the relative pathlength
differences between these components to a tolerance of 50 nanometers rms
in the presence of scaled space disturbances (primarily a reaction wheel
disturbance model, with both broadband and narrowband components).
The testbed is representative of a class of space-based optical systems under
consideration by astronomers; the relative degree of passive and active
control necessary to meet performance objectives is stillan open question.
In related work, Jim Garcia demonstrated in his MS thesis the feasibility of
single-axis broadband positioning of a mirror mounted to a flexible
structrue. The degree to which a control design could ignore the structural

flexibility of the substructure depended on the ratio of the mirror mass to
the structure s individual global modal masses, and upon the modal
damping ratios.

As an extension to Garcia's MS thesis, three-axis active mirror

mounts will be used to position the various optical components in the optical
interferometer testbed. Extensions of the theory for the multi-input-multi-
output case will be made to develop structural model error bounds for low-
order control systems that are designed ignoring selected (perhaps all)
flexible modes of the testbed structure. Within this analytical framework,

dynamic modifications (both active and passive) will be investigated for
their effects in reducing modelling uncertainty and in performance
improvement. These approaches will be studied both for the optical output
location as well as for disturbance input locations, and will form the basis
of Blackwood's PhD dissertation. At the present time, three three-axis

mirror mounts using piezoelectric and electrostrictive stacks have been
designed and are under construction. Calibration and integration of theses
components to the testbed will occur over the next few months, and open
loop input-output testing will begin.
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REALIZATION OF IMPEDANCE MATCHING FOR UNCERTAIN

STRUC2X/RF_ USING PASSIVE ELEMENTS

Mr. Ron Spangler and Prof. Steven Hall

(lnterferometer Testbed)

The idea on which this research is based is that it should be possible
to constrain any optimal control problem in such a way that the resulting
controller can be implemented using strictly passive elements which
require no connection to the inertial frame (that is, passive and space-
realizable). This is motivated by the results of MacMartin and Hall [1] on
power flow control for uncertain structures, in which broadband active
impedance-matching is accomplished using a collocated and dual (that is,
the product of input and output variables is power) sensor/actuator pair to
implement an H_ control law by which energy is extracted from the
structure at each frequency. The resulting controllers are positive real
impedances, and thus could be implemented using a network of passive
elements, but with a connection to ground.

One direction that this research has taken, therefore, has been to

investigate the theory of positive real systems, with an eye toward
fromulating a set of algebraic (state-space domain) constraints on a system
(a controller) such that it be passive and space-realizable. The seminal
reference is B. D. O. Anderson [2], [3]. His Positive Real Lemma provides a
connection between the frequency-domain definition of a positive real
system and a state-space-domain representation. Briefly, a positive real
system has a transfer function matrix G(s) with the following properties:

- G(s) has no poles in Re[s] > 0

- GT*(s) + G(s) is positive semidefinite hermitian in Re[s]>0

The Positive Real Lemma states that for any minimal state-space
realization of G(s), call it {A,B,C,D}, there exist matrices P, L, and W with P
symmetric positive definite such that

PA + ATP = - LLT

PB = C T - LW

WTW = D + D T (1)

Now for a given {P,L,W} which satisfy these equations one could
adjoin these three equations to any cost functional to constrain the resulting

closed-loop system, or impedance compensator, to be positive real, and thus
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implementable passively, though not necessarily space-realizably. The

problem is that there are a number of solutions {P,L,W} to the equations

above, so the resulting compensator may not be the best optimum.

In Network Analysis and Synthesis, Anderson states that the

solution {P,L,W} to the positive real lemma equations is used in the

synthesis of the passive network represented by G(s). A first step is to

determine a set of algebraic constraints which would result in a

compensator which is not only positive real but implementable using only

resistors and capacitors (or dashpots and springs), allowing connection to

ground. I seems possible that the positive real lemma and some knowledge

of network synthesis theory may yield these constraints, which would serve

as a starting point. (The next step would be to replace the ground with a

proof mass and investigate the performance degradation.) A search of the
literature for more recent papers in which the principle of positivity is used

in designing controllers is in progress, and research in this area is

expected to continue in the next six months.

More recently, however, another approach to the design of optimal

passive controllers has been formulated. This numerical optimization

approach uses a cost-functional approach to get both the matrix necessary

conditions for optimality of the absorber damping (C) and stiffness (K)

matrices, which are impossible to solve in closed form, and the gradients of
the cost functional with respect to each element in the absorber network

(each spring and damper) for use in a numerical gradient search. In
either case the masses in the network are given a fixed vaue.

The structural plant used is a uniform cantilevered Bernoulli-Euler

beam (big surprise) with a unit intensity white noise disturbance force d at

the mid-span. The passive controller networks are placed at the beam tip

(see Figure 1). The cost functional penalizes the _;2 norm of the sum of the
tip displacement and the tip velocity, weighted via a block-diagonal matrix

Q to approximate total energy of vibration.

passive

network

Figure 1: Test Case for numerical Optimization of passive controllers.

The plant model is that of an undamped beam in modal coordinates
(i.e., diagonal stiffness matrix and identity mass matrix) rendered in state-
space form. The open-loop output vector includes the tip displacement and

velocity. The mechanical network, being used as a controller rather than a
plant, has an input-output relationship converse to what we re used to in
dealing with mass-spring-dashpot systems. That is, its inputs are the
beam tip position andvelocity and its output is a force. As such, the values
of certain springs and dampers appear in the input and output matrices of
the controller model. The two models are interconnected just as a generic
dynamic controller is connected to any plant, so the closed-loop state vector
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includes both the open loop controller and plant states. The disturbance

input has closed-loop influence matrix Bc.

To find the matrix necessary conditions for optimality of the
controller K and C matrices write the closed-loop cost as

J = tr(PV)

PA+ATp+Q=O (2)

where A is the closed-loop system matrix and V = E{d2}BcBc T. Adjoining

the Lyapunov equation to the cost in (2) via Lagrange multiplier matrix H
and taking matrix partial derivatives with respect to P, H, K, and C yields

the necessary conditions. The A matrix is a 4x4 block matrix with C and K

in several of its blocks, so the necessary conditions resulting from the

derivatives with respect to these matrices are in terms of corresponding
blocks of H and P, and are hideously complex. Thus there is no closed-form

solution for the optimal K and C matrices.

So finding the optimal values is a numerical optimization problem

requiring the gradient of the cost with respect to each of the network
elements (each spring and damper). It can be shown that this gradient is,

for parameter p

-_ = 2tr HP (3)

where P solves the Lyapunov equation in (2) and H, the Lagrange

multiplier referred to above, solves

AH + HAT + V=O (4)

To find the gradient of A with respect to p requires specifying the
topology of the controller network, so that the controller C and K matrices
as functions of the individual parameters are known.

Thus far two cases of the above controllers have been investigated,
with one mass and two masses, each of value m. The single mass case has
only two parameters to be optimized (a single spring and damper), and the
two mass case has six, as seen below. All optimizations were performed for
a value of m/beam mass = 0.1. Using a matlab function which performs a

adient search given a set of initial parameters several optimizations have
en performed to date. In all cases the parameters are constrained to be

nonnegative, thus insuring positive definite K and C. In most cases there
will be a number (possibly infinite) of local minima of the cost, any number
of which can be reached given the proper initial parameter set.
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Figure 3, the closed-loop transfer function from disturbance to tip
velocity, shows the result of this procedure using a single mass network on
a ten-mode beam model. Note that the controller has tuned to the first
mode, with the result looking very similar to the classical vibration
absorber result. It is not exactly the same, as can be seen by optimizing this
controller using a single mode beam model, as the minimum energy
condition for optimality here differs from the classical problem's minimum
of maximum response (really an _ criterion).

A two mass controller has also been optimized using both a two and a
ten mode beam model. In the two mode case several minima have been
found which are on the constraints, i.e. in which one or more of the
parameter values are zero. A local minimum has also been found using
different initial conditions in which two of the parameters (k2 and c2) have
no effect, remaining at whatever initial value is selected. It is believed
there is a better minimum in the interior of the six-dimensional parameter
space which has not yet been found. It is probably very sharp, and will be
reached from a relatively small set of initial conditions. Several "clever"
schemes for identifying this optimum have not yielded results. In the ten
mode case the best optimum found is still on the constraints, with k2 -0.-.
This is shown in Figure 4. Again, it seems possible that a better minimum
exists in which all degrees offreedom in the controller are utilized.

It is possible, however, that this is not the case. The H2 cost over
which this passive controller is optimized is certainly contributed to most
strongly by the first mode response. It could be the case that doing the best
job possible on this mode and ignoring the others yields the optimum. In
this case, all degrees of frredom afforded by a two-mass damper are not
needed, rather it is the increased mass that is desired. Tuning single mass
controllers to modes other than the first and applying them to the multi-
mode model has shown that the "closed-loop" cost is still much higher than
the more general optima discussed above.

With the above in mind, current efforts are in the area of alternate
cost functionals which would lead to more broadband performance of the
resulting passive compensators. The most broadband results would be
gained by minimizing the y/_ norm of the closed loop system matrix, but
gradients of this norm are difficult to obtain for use in a numerical
_rocedure. There is a great deal of research being carried out currently,

owever, in the area of mixed H2/Y/_ control in which a performance
criterion is minimized while simultaneously satisfying an _ norm-bound
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constraint. Many of these problems become the problem in the limit of a
single scalar parameter in the cost functional, but do possess calculable
gradients for numerical optimization purposes.
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POINTING CONTROL FOR PAYLOADS USING VARIOUS

MEASUREMENT TOPOLOGIES

Mr. Mark E. Campbell and Prof. Edward Crawley

(Multibody Testbed)

OBJECTIVE

The objective of this research is to quantify, through analysis and
experiment, the performance improvements made by successive relaxation
of the constraintson the topology and successive additions to the hardware
of the Middeck Active Control Experiment(MACE) model.

APPROACH

The approach will be as follows:

1. Develop a simple two dimensional model of MACE and
compare it to typical section models.

2. Develop control schemes for the model by working through a
matrix of combining the relaxation of the constraints on the
topology and adding hardware to the system. Some of the
control schemes to be addressed willbe simplificationof LQG

and LQR, successive loop closures, and interpretation of
Mathieu Mercadal s analysis of the finiteelement model and
the fullthree dimensional system.

3. After selectinga few of the elements of the matrix as the best
control approaches, these will be implemented and tested in
the lab on the actual MACE testarticle.

WORK TO DATE

My research began with the investigation of the dynamics of the
planar model of MACE. First, the dynamics of a simple rigid bar and
payload were derived. There were four degrees of freedom(D.O.F.): three
rigid body D.O.F.'s including horizontal and verticaltranslation of the bus,
and rotation of the bus; and the relative angle between the bus and
articulating payload. The dynamics were examined for the origin of the
various terms, such as coriolis,centripetal,etc.

Two more D.O.F.'s were then added to the model: one flexible
vibration mode of the bus and one axial vibration mode of the bus. The
system was truncated down to a three D.O.F. model: the rotationof the bus;
the flexiblevibrationmode ofthe bus; and the relativeangle between the bus
and articulating payload. The dynamics were also linearized around a
nominal state. The basis for the nominal state was the MACE sample
problem.

This new model was then compared to the Non-CG mount, flexible
model of the typicalsectionmodels written by David Miller in Linear Closed
Loop Analysis,version 1.0. This showed the two models to be very similar.
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The immediate future of the research is to begin a linear control

analysis of the three D.O.F. model. Classical sequential loop closures will

be investigated initially and some MIMO control techniques will be looked

into at a later date. The plan is to begin taking the linear model through the

matrix of control options in the MACE sample problem. The results of this
simplified system could then be used for comparison to the more

complicated systems, such as the finite element model.

The order or size of most of the nonlinear terms in the six D.O.F.

model will also be investigated, just to know what is being thrown away

when the nonlinear system is linearized.

PLANNED RESULTS

The planned results are that we will fully understand the advantages

and disadvantages of the matrix control options of the planar model and

how this adds to the analysis of the MACE test article. An analogy has

already been formulated between the linearized system of the planar model

and the typical section models. The plan is to also develop an analogy

between the more complicated models of MACE and the simple planar
model.

CLOSED-LOOP STABKATY OF MULTIBODY SYSTEMS WITH

DISTRIBUTED Ff._O_HA'I_

Mr. Carlos E. Padilla and Prof. Andreas H. von Flotow

(Multibody Testbed)

In the past few months we have been investigating the problem of

closed-loop stability of multibody systems with distributed flexibility(e.g.,
robotic manipulators, MACE test article). Using existing results for the

control of rigid manipulators as a starting point, I am trying to obtain exact

stability results for systems whose models are known exactly and for which

all the states are available for feedback. (Note that the concept of state
feedback for a distributed parameter system needs to be clarified/defined by
this research). It can be shown that for independent joint PID control of

flexible manipulators stability is guaranteed. This is done using energy
considerations independently of the specific model for the distributed

parameter system.

Recent literature results attempt to show exponential stability of the

tracking control for multi-joint flexible-link manipulators. A
generalization of the computed torques approach for flexible manipulators,

together with the Positive-Real Lemma, are used to show that stabilityof the

closed loop system is guaranteed when a class of positive real (passive)
controllers are used as joint controllersI. However, this result depends on

both the joint controller and the structure beingsufficiently stiffand having
enough damping. Further, in order to take into account structural
damping to increase the implied performance guarantees, the observability

of the modes used to model the flexible members from the joint sensor must

be considered. This indicates that both stability and performance may

depend on the choice of mode shapes: a modelling choice. I am trying, on
the one hand, to generalize this result to the case when fullstate feedback is
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available for control. On the other hand, I would like to investigate further

the modelling issues affecting the stability proof and if possible extend the

results to practical cases (i.e, non-vanishing regions of convergence).

These issues have become evident in my stability analysis of the
MACE test article for "not-quite-independent joint PD control z. Stability
results depend on the model and in particular stability bounds seem to
depend on the particular choice of mode shapes used to discretize the

distributed flexibility. I am at present looking at these and other
"modelling for control design' issues and my efforts will be directed
towards completing a paper to appear in the 32nd SDM conference: Further
Approximations in Flexible Multibody Dynamics. Specifically, I want to
investigate how far a given set of dynamic equations, for the type of systems
under consideration, can be simplified given a set of operational constraints
in terms of maximum rigid body displacements and rates. It is foreseen

that the degree of simplification will be tied again to the modelling choice of
mode shapes. This suggests that some mode shapes capture the "essence'
of the physical system better than others. I am interested in finding
fundamental conditions (e.g., the satisfaction of certain energy integrals)
that will yield the best choice of mode shapes given that only a finite number
of them will be used to model the distributed parameter system.
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GRAVITY-SUSPENSION SYSTEM EFFECTS

Mr. Daniel A. Rey and Prof. Harold Alexander

(Multibody Testbed)

Significant progress has been made since the last report towards a
comprehensive understanding of the differential stiffening effects of axial,

bending and shear loads on a beam in the presence of axial, bending or
shear deformations. It was found that axial loads are the only load type
which contribute homogeneous stiffening while all other load types are
coupled to off-diagonal elastic degrees of freedom. An example of such a
coupled stiffening effect to the suspended MACE test article is the increased
horizontal plane bending stiffness which arises when a vertical bendi ng
moment is applied to the torsionally deformed test article as a payload out o-f
the vertical plane slews towards the longitudinal axis and away from the
center of the test article. Contributions to the shear mode of deformation

have yet to be determined. This analytical understanding will be

complemented by future research which will investigate the extent to which

existing finite element software packages capture these effects. A

parametric variation analysis will then follow using analytical and

numerical modelling techniques to determine how differential stiffening

affects the system eigenstructure; tracking also the slope and curvature

node positions for the firstthree flexible modes.
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An initial study of the first order effects of a suspension system on a
suspended test article has identified the different static and dynamic
mechanisms by which a suspension system alters the test article
dynamics. Horizontal stiffness is imparted at each attachment point due to
the static simple pendulum stiffeness and the dynamic impedances of the
suspension violin modes. Vertical stiffening occurs as a result of static test
article sag and suspension axial stiffness. Compound pendulum effects
were stiffen the torsional degree of freedom of the test article while
corrupting both the horizontal and vertical bending modes. Modelling
techniques or analytical approximations have been found for all of these
effects except for the magnitude of the dynamic impedance contributions of
the suspension violin modes. It is clear that approximate solution
techniques will have to be used for all suspension configurations with three
or more cables as the structure becomes overdetermined. The nature of the

predicted perturbations to the naked MACE test article with a three point
soft spring suspension system were qualitatively confirmed by experiment.

COMMAND SHAPING FOR THE MULTIBODY _ED

Mr. James Hyde and Prof. Warren Seering

(Multibody Testbed)

Work in the last six months has concentrated on:

1) Solidifying a M.S. thesis topic,

2) Completing the MACE inertia] wheels,

3) Performing and presenting initial modeling and simulation
results,

4) Identifying areas for future work.

The thesis title has narrowed to: "Using Input Command Shaping to
Minimize Multiple-Mode Vibration in Robotic Systems." This work will

extend and expand an earlier Mechanical Engineering Ph.D. thesis by Nell
Singer, one of Prof. Seerings former students. Since Seerings group is
located in the MIT Artificial Intelligence Laboratory, we have clarified a
framework for communicating and working with the SERC laboratory, the
main link being the MACE experiment, which will be used to attempt to
validate the central concepts of the thesis. Ongoing mechanical design
support will augment this cooperation.

A particular recent design effort has been the MACE inertial wheels,
which were completed and delivered in mid-summer. The parts were
manufactured with some alignment errors, and only after significant
modification in the AI Lab shop were they acceptable for inclusion in the
experiment hardware. Alignment and stability validation was conducted
in the AI Lab, and controller development and construction was completed
by SERC personnel.

Specific preliminary thesis research began in February 1990. The
first research focus was understanding Singer's Impulse Sequence Input
Shaping techniques and working on a new approach to achieve multiple-
mode shaping. Singer cancelled multiple-mode vibration by convolving
various single mode shapers into a longer sequence; the new method will
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yield multiple mode shapers as a direct solution to a set of constraint
equations. The new sequences will be shorter than the convolved

sequences, thus minimizing system response delays. The major problem

with this approach is that the constraint equations are a set of

simultaneous, non-linear, transcendental equations, which are very
difficultto solve.

Non-linear equation solvers perform well when they are provided

with good initial guesses, hence our next step was to linearize the

equations, and through an optimization process, generate approximate

multiple mode shapers. These approximate shapers were interpreted and

fed into a standard non-linear equation solver as initial guesses for the

exact solution of the fullequations. The exact sequence, theoretically, could

be used to eliminate multiple mode residual vibration in a flexible system.

To validate this concept, we employed a finiteelement MatLab model

of MACE. After identifying the system eigenvalues and constructing an

input shaping sequence, we conducted simulations of response to shaped

and unshaped slewing maneuvers. The input shaper removed about 90% of
the vibration in the system, identifying serious potential for the shaping
method.

These and similar tests were collected and presented at the 1990
NASA/DoD Controls-Structures Interaction Conference, and also
submitted to the 1991 IEEE Conference on Robotics and Automation and the

1991 Automatic Control Conference (see the attached paper for details). The

response at the CSI conference was favorable, and several attendees stated

intentions of using the technique on some of their test articles - a success

considering our major aim of raising the technique's level of familiarity
within the aerospace community.

Current work is aimed at increasing the number of vibrational
modes that can be eliminated by a single input shaping sequence. We have

had success at raising this number to five modes for some of our current

models; we hope to develop shapers capable of eliminating vibration in up to

ten or fifteen modes. The major obstacle at this point is the robustness of
the current non-linear equation solver, and we are going to try various

other solvers in the coming weeks.

Future activity will include the use of non-linear models of MACE.

The equations defining the shapers are derived from linear flexible system

theory, and the exact effects of system non-linearity on the input shaper's
effectiveness are unclear. The new models will allow us to identify some of
the problems caused by non-linearities, and hopefully assist in developing
approaches for dealing with those problems. Sometime in March or April
we hope to be conducting tests on the physical MACE experiment, still
under construction at SERC.
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NONLINF_AR ANALYSIS OF COMMAND SHAPING

Mr. Ken Chang and Prof. Warren Seering

(Multibody Testbed)

It was determined that Jim Hyde's work on input shaping required a
nonlinear model of MACE. For this purpose, we have been working on
installing DISCOS on a SUN Sparc workstation at the AI lab. The rigid and
flexible models of MACE developed by Carlos Padilla have been obtained
from Cambridge Research and are now being implemented at the lab.
Much of our time has been spent modifying the program to function on the
AI lab's upgraded UNIX system. The program is now working and resides
on the hard disk.

The next logical step in this non-linear modeling work is to include
the input shaper in the model. This requires first finding the natural
frequencies of the system to any chosen input. Then, these frequencies are
used to determine the shaping technique. We will then shape the input and
see the effects on residual vibration. Since the shaper works outside of the
plant, we can fairly easily implement it by manipLflating/shaping the input
before it goes into the DISCOS program.

HIGH BANDWIIY_ CONTROL OF LOW AREA DENSITY

DEFORMABLE MmRORS

Mr. Eric Anderson, Mr. Jonathan How,

Prof. Steven Hall and Dr. David Miller

(Possible Third SERC Testbed)

INTRODUCTION

A project to investigate the applicability of Controlled Structures
Technology to control of large precision optical surfaces has been initiated.
The objective of the work is to develop surface shape control technology
which will allow the reduction of mirror mass densities around 200 kg/m z,
associated with current techaiques, to a more practical 50 kg/m 2. It is
understood that such a reduction is not straightforward. A reduction in
area mass density will result in relatively low frequency structural
resonances and higher open-loop surface inaccuracies which will require
the focussed attention of the structural and control designers. Provided

such an improvement is successful, active mirror surface control

technology should become cheaper and more available to a wider class of
applications.

PROBLEM STATEMENT

A brief survey of the available literature shows that designs to control
mirror surfaces have existed for over twenty years 1. A little more analysis
shows that a key characteristic of many of these mirrors is that they are
very stiff. This is beneficial because the stiffer the mirror, the smaller the

deformation for a given disturbance, and the performance can be achieved
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by controlling the surface in its quasi-static regime. The flexible modes are
found at a high frequencies, beyond the required bandwidth. Consequently,
for the purposes of the control design, it is possible to treat the mirror as a
collection of rigid panels and ignore the flexible dynamics. Many of these
designs have been developed using_a combination of wavefront and edge
sensors, piezoelectric actuators, and a static figure control feedback. This
approach assumes that the control roll-off would be such that the flexible
modes of the stiff structure would not be destabilized. Very few of the
available control approaches discuss the topic of accounting for the effects of
control spillover. However, it is recognized that the mass per unit surface
area of the mirrors must be reduced from about 200 kgfm 2 to 50 kg/m 2
before the much larger designs envisioned for future space missions
become feasible. Weight reduction will result in a much more flexible
structure. Future control designs must account for this increased
flexibility to avoid spillover destabilization of these modes.

For this work, we will specifically be looking at reducing the weight
of the structure even further with an emphasis on reducing the
manufacturing (e.g. face grinding) costs by actively compensating for long
wavelength flaws in the mirror surface. The objective is to use a much
cheaper high precision active structure for the mirror combined with a
'large' amount of active control to achieve performance comparable to the
previous designs. The resulting mirror will then be better in terms of both
cost and weight.

Control systems for current mirrors typically use actuators which
push off a backplane which is of comparable stiffness to the mirror. This
backplane typically constitutes a significant contribution to the total mass
of the mirror structure. Our aim is to develop a self-straining structure
(which eliminates the need for the backplane), and the corresponding
control architecture to improve the shape performance of a very flexible
primary mirror over a wide range of frequencies in the presence of
disturbances and modelling errors. The controller will be based on
feedback of a combination of structural and optical measurements. A
typical representation of the relative control authority of these two feedback
loops is shown in Figure 1. Note that there are (at least) two main sets of
sensors, but probably only one set of actuators. As shown, the feedback
from the structural measurements will be used to control the mirror over a

wide frequency range. In particular, it is important to be able to minimize
the bandwidth fl. This will allow for a significant overlap between the two
control approaches even when the target object is a faint star and photon
limitations result in a very low wavefront sensor update rate. At thehigher
frequency end, the aim will be to improve the shape performance of the
modes which will contribute to the RMS ripple error but typically have a low
damping ratio.

OVERALL APPROACH

This research will develop analytical solutions to the problem which
will be verified on an experimental testbed to be designed and constructed.
The experimental issues will deal with the final design and lay-up of the
test structure, the identification of its properties, and the implementation of
the controllers. This work can also be separated into the design of the
controller and the structure, but it is recognized that the boundary between
the two is not distinct since both will have to deal with issues such as the
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sensor and actuator type and architecture. The approaches that will be

taken are discussed in the following two sections.

APPROACH TO THE STRUCTURAL DESIGN

The structural design will proceed in close coordination with the

control design along both analytical and experimental paths. The concept
of an 'active structure, 2,3,4 which possesses integrated sensing, actuation,

and potentially processing, will be employed. The goal of the analytical
development is to allow the results obtained to be applied to larger, more
complicated flexible controlled structures.

The practical capabilities and limitations of self-straining active
structures will be examined with a goal of determining for which problems
active structures are best suited. A region of effectiveness compared to the
conventional approach of mirror surface control will be established based
on such factors as weight savings, processing requirements, reliability,
and simplicity of design and manufacture. Performance objectives for
precision control will be incorporated in the structural design.

The design will start with a structure with desirable 'passive'
properties, including a very low coefficient of thermal expansion, tailored
mass and stiffness distributions, and some passive damping. The selection
and distribution of active components in the structure will depend strongly
on the proposed control architecture, and the expected disturbance
environment. The number, placement, and required accuracy of sensors
and actuators will be evaluated, with allowance for some redundancy and
fault tolerance.

The structure will be modeled well enough to do control design and
sensor/actuator placement. The appropriate roles of active isolation and
passive damping will be explored in conjunction with ongoing efforts in
SERC.

In parallel with the analytical development, an experimental
demonstration structure will be tested. Structural sensor and actuator

options will be considered and evaluated for accuracy at the submicron

displacement level using optical reference measurements. The test

structure will then be designed based on results of the initialseries of tests
and early analytical results. Open loop control to submicron displacements

will be demonstrated. The structure will then be actively controlled in the

presence of disturbances to the best precision possible.

APPROACH TO THE CONTROL DESIGN

The control design for this testbed will consist of determining the
solution to several complex problems which involve modelling, sensor and
actuator, implementation, and control architecture issues. The approach
will be to perform an analytic evaluation of the best alternatives by
performing a trade-off analysis of the implementation costs versus the
performance, and then doing an experimental comparison of the final
designs.

There are several factors about this problem that will strongly
influence the control design. The aim is to control the dynamic motion of a
flexible mirror to meet performance objectives which are a fraction of the
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wavelength of light. This t_pically will require a very dense array of both
sensors and actuators. Consequently, the number of measurements
available to the controller will be very large for any reasonably sized
problem, so the control architecture must be designed to efficiently handle
this information. Since the aim is also to design a controller for a large
frequency range (see Figure 1), either a good model must be developed for
the higher frequency regions or the controller must be designed for
robustness to parameter uncertainty. Another factor in the tradeoff
analysis is that the control commands will be calculated based on the
measurements from at least two sets of differentsensors, so the controller
must be able to combine these in an intelligentfashion.

The approach that will be taken in this work will be to investigate
various control architectures, and in the process develop a list of the
advantages and disadvantages of each in terms of the issues given above.
Other criteria,such as the communication requirements, the flexibilityof
redesign after failure,and the performance with noisy measurements, will
also be addressed. Some of the control architectures that will be

investigated are:

I. Centralized design

If. Fully decentralized design

Ill. Decentralized design with communication allowed between
controllers

IV. Multi-level design

where the decentralization will probably be at the mirror segment level.
Clearly, each of these designs has some obvious advantages and
disadvantages. A centralized design would provide very good overall
performance, but will be hard to implement due to the amount of
information available. Fully decentralized designs are much simpler to
implement, but have performance problems. Multi-level designs combine
many of the advantages of these approaches, but there are potentialstability
problems from control spillover. It is expected that some form of
decentralized controllerin a multi-levelarchitecture will provide the best
overall performance for this type of problem with a large amount of sensor
information. Results from previous design studies have certainlyindicated
that this isthe caseS,S,7. An analysisbased on these points should eliminate
some potential designs, and further computer simulations will indicate
which designs are worth implementing on the finaltestbed.

Some of the other issues to be addressed during the initialstages of
the controldesign include a determination of the anticipated noise levelsin
the measurements, since this might require that the controllersinclude a
filter.An algebraic expression for the performance objectivewill also have
to be developed. This could be in the form of compensating the modes of the
structure directly,or by controllingthe opticalmodes of the mirror through
the use of the Zernike polynomials,s Once the finaldesigns are selected,a
decision of how to implement the controllers(i.e.,digital,analog, or digital
analog) will have to be made. The controllers will then have to be
redesigned for this specialized implementation case and to include the
sensor and actuator dynamics.

29



NEAR-TERM PLANS

Important tasks to be undertaken early in the project:

I. Modelling issues such as the feasibilityof accurately modeling

the high frequency modes or the needfor the controller to be

explicitly designed for robustness will be addressed (mode vs.

wave modelling, active vs. passive damping).

II. The type, location for good performance, dynamic range,

resolution and d_namics of the sensors and actuators will be
evaluated, and the appropriate sensor-actuator matching for
efficientcontrol will be studied.

Ill. Efficient combination of low and high bandwidth control, using

wavefront and structural control sensors, will be investigated

(where does the break in frequency (Figure 1) occur?).

IV. An algebraic representation of the performance criterion will

be expressed.

V. Several control architectures employing dynamic or static

feedback approaches will be compared.

V I. The 1D testbed will be constructed using a self-straining beam
with distributed sensing and actuation.

V If Mounting of the beam, as well as optimal mass, stiffness, and

damping distributions will be addressed.

VIII. An optical reference system will be designed to acquire

displacement measurements to judge the control performance

(discrete points or continuous surface).
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ROBUST PERFORMANCE FOR SYSTEMS WITH PARAMETERIC
UNCERTAINTY

Mr. Nesbitt Hagood and Prof. Edward Crawley

(General Affiliation)

There has been much renewed interest in the problem of desi .gning
robust control systems for plants which have highly structured, real
parameter uncertainty. This type of uncertainty can be found in flexible

structures were higher modes of the plant can have poorly known natural

frequencies and damping. Since the uncertain modes are usually in the

critical rolloff region of the structural controller, they can lead to

degradation of system stability and performance. Such is the case for the

interferometer structure being developed as a testbed for structural
controllers. In complicated structures like the interferometer the finite

element models rarely represent the structural dynamics to the accuracy
needed in conventional Linear Quadratic Gaussian (LQG) design

methodologies. The existing design methodologies must be modified and

reevaluated in the light of the difficultstructural control problem especially

in the area of robustness to uncertainty.

In the area of robustness to parametric uncertainty, the particular

technique chosen for evaluation is based on considering the average

performance of the plant over a set described by the uncertain parameters.
It has been shown that ifthe average performance is finite,then no plant in

the set can have an unstable response. This is intuitive since if any plant

was unstable itwould drive up the average response. This idea can be used

to design controllers for uncertain sets of systems by finding controllers

which minimize the average quadratic cost. If such a controller can be

found it will both guarantee stability and increase the average system

performance. The idea of using the average has been used in the past by

Bryson, Skelton and others to design robust controllers for aerospace
systems. The present work has concentrated on providing a formalism to

average cost design.

The difficultywith designing controllers to minimize the average cost
lies in computing the average. For systems with many uncertainties,

computing the average amounts to performing a high dimensional

integration. There are some established ways for approaching this problem

such as Monte-Carlo or Fast Probability" Integration but they are to
computationally intensive for use in control synthesis. The impetus of the

present work has been to develop efficientways to compute approximations

to the average which can then be incorporated into the design. One such
efficient approximation to the average cost, known as the Bouret equation,

was foundin the area of random wave propagation, turbulence modelling
and Quantum mechanics. It is ideally suited for calculation of the

approximate average cost because of its linearity and capability to handle

large numbers of uncertainty.

The past six months have been spend developing control

methodologies base on the Bouret approximations to the average cost and a

related equation which overbounds the average cost. While minimization of
the Bouret approximation will provide robustness but not guarantee system
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stability a priori; minimization o_f the overbound does guarantee a priori
stability. While it seems that such guaranteed stability would be desirable
for flexible structures, the guarantee caries with it much lower

erformance and high required control effort. The past six months have
een spent quantifying the tradeoff between those controllers which

guarantee stability and those which provide robustness but not necessarily
stability throughout the set of possible systems. In the coming six months,
this trade-off will become more clear as the average based controllers are

first simulated and finaly implemented on the SERC interferometer testbed.
The two competing controllers, the Bouret approximate average and the
average bounding controller will be implemented and compared to existing
robust control methodologies such as _, and LQG/loop transfer recovery.
The controllers will be compared on the basis of robustness offered, control
cost, and performance.

AREA-AVERAGING SENSORS

Mr. Simon Collins, Dr. David W. Miller and Dr. Marthinus van Schoor

(General Affiliation)

Area-averaging sensors which exhibit magnitude rolloff without

associated phase lag have been experimentally demonstrated. This work
was published in a paper entitled "Development of Spatially Convolving

Sensors for Structural Control Applications" which was presented at the

1990 AIAA Structures, Dynamics and Materials Conference in Long
Beach, CA. Achieving magnitude rolloff without phase lag enables gain

stabilization without sacrificing phase margin. Future work in this area

will first involve demonstrating the advantages of zero phase lag sensor
over a point sensor, with or without rolloffdynamics, in an actual closed-

loop experiment.

Work during the last six months has focused on the spatial nature of

optimal control solutions. In this effort, full state Linear Quadratic

Regulator solutions to discrete approximations of distributed parameter

systems is formulated. It is realized that the finite set of feedback gains,
associated with measurements of structural motion at various locations,

are simply discrete approximations of the continuously distributed feedback

kernel which convolves with the state function to generate the control

command. By observing the discrete gains, this kernel can be inferred. It

is then shown that displacement and rotation feedback kernels can be
transformed into equivalent curvature feedback kernels. This facilitates

!,mplemention using the area-averaging sensor concept. The paper entitled
'Formulation of Full State Feedback for Infinite Order Structural Systems

will be presented at the First Joint U.S./Japan Conference on Adaptive

Structures in Maui, Hawaii. Future work will involve the experimental

implementation of the optimal feedback kernel.
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THE NEED FOR PASSIVE DAMPING IN FEEDBACK CONTROLLED

STRU 

Prof. Andreas .H. von Flotow

(General Affiliation)

It is well established that an infinite dimensional mathematical
model of a flexible structure cannot be stabilized with finite bandwidth

control; the required gain stabilization beyond the bandwidth model is
negated by the infinite structural gain at each resonance. Thus, even a

mathematical model with no modeling uncertainty will show that passive

damping is criticalto enabling active control. What is less well known are

the benefits of passive damping for the robust control of real structures.
There has been a tendency, m the research literature, to define the

research problem to consist of developing control approaches for the
broadband control (many modes in the control bandwidth) of poorly

modeled, lightly damped, modally dense structures. There is ample reason

to believe that such control is practically unachievable and that the attribute

"lightly damped" is one of the most easily and readily remedied

characteristics of such a problem structure.

This paper reports upon the enabling effectof passive damping in the
control of uncertain flexible structures, particularly with dislocated

actuators and sensors. Quantitative results are all single-input single-

output and the benefits of passive damping are then understandable in

terms of classical ideas of gain and phase stabilization. The paper derives

approximate expressions for the minimum acceptable level of passive
damping in terms of modeling uncertainty and desired bandwidth. These

relationships can then be interpreted as specifying either a minimum level

of passive damping or a minimum level of modeling fidelity. If the
requirement is not met, robust control with the bandwidth including

uncertain flexible dynamics, is not possible with linear time invariant (LTI)

compensation.

These ideas were exploited in the MS thesis of Jim Garcia (June
1990), in which unacceptable interaction of a flexible structure and a low-

order control system was limited by passive damping. In this project, a

small mirror, fastened to a flexible beam via a piezo-ceramic mount was
controlled such that the distance from this mirror to a second mirror

statically fastened to the same beam was regulated to remain constant.

Commanded motion of the piezo-cerarnically mounted mirror excited the
beam, influencing the motion of both mirrors and thus the desired

distance. This work quantifies the level of passive damping required to

enable low-order broadband feedback control of this system.
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Other SERC Activities

MIDDECK 0-GRAVITY DYNAMICS EXPERIMENT(MODE)

Prof. Edward Crawley, Dr. Marthinus C. van Schoor, Dr. David W. Miller

MODE is an STS middeck flight experiment funded under the NASA
In-Step program. MODE was conceived as a dynamics test facility uniquely
suited to conducting tests of nonlinear dynamic systems in the zero-gravity
environment on the shuttle middeck. During its first flight, tentatively
scheduled for September 1991, MODE will test the non-linear dynamics of a
fluid volume coupled to a simulated spacecraft mode and jointed truss
structure.

The MODE program completed its Critical Design Review (CDR) in
March 1990. Construction of flight hardware is proceeding with completion
in January, 1991.

MIDDECK ACTIVE CONTROL EXPERDIENT (MACE)

Prof. Edward Crawley and Dr. David W. Miller

MACE was a Phase B study, funded by NASA Langley Research
Center, to study the possibility of developing a controlled structure test

facility for the shuttle middeck based upon the MODE concept. Recently,
this experiment became part of the NASA In-Step program. As presently
envisioned, the first flight would involve the testing of a large angle
articulating, multibody platform representative of generic multipayload
platforms. The objective is to study the effect of gravity perturbations on
closed-loop performance. The ground-based engineering model is the
SERC multibody testbed.
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Government and Industry Interaction

ITEK INVOLVEMENT

As a result of the Center, SERC has become aware of the research

and development in active shape control being performed at ITEK and ITEK
has become familiar with the research effortin the Center. This has led to

the evolution of a joint research program in the development of lightweight,
active mirror technology. An actively deformable, precision surface is the

third SERC testbed andis presently in the conceptual phase.

JPL INVOLVEMENT

SERC and JPL have continued their close relationship by working on
research into active struts, fostered by SERC graduate students residing at
JPL during the past year, and through an effort to understand the
relationship between certain similar research results achieved at SERC
and JPL.

JPL, through Dr. Robert Laskin, has started to participate in the

Middeck Active Control Experiment (MACE).

NASA LANGLEY RESEAHCH CENTER

While coordination with efforts at NASA LaRC has been good in the

past, it was recently suggested that such coordination could be
strengthened. The present plan is to better coordinate SERC's multibody
testbed and LaRC's evolutionary CSI testbed. The August 1990 Summer
SERC Symposium was held at NASA LaRC.

MCDONNELL DOUGLAS SPACE SYSTEMS COMPANY

MDSSC is continuing its participation in the Middeck 0-Gravity
Dynamics Experiment (MODE) and is part of the Middeck Active Control
Experiment (MACE) team.

IM)CKHEED MISSILES AND SPACE COMPANY

LMSC has joined the Middeck Active Control Experiment_(MACE)
team and supported several undergraduate and graduate students at

LMSC during the summer of 1990 to work on MACE component

technologies. LMSC plans to significantly increase involvement in MACE
in calendar year 1991.
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Milestones

PAST

Event Objective Date
i , , i

SERC Presented August 1990

Symposium research (held at
NASA LaRC).

February 1990Multibody
Testbed Critical

Design Review

Formalize design

of multibody
testbed.

Event

Steering
Committee and

Technical

Representative

Meeting

Science Advisory

Committee

Meeting

SERC

Symposium

Objective

Review the SERC

program

Review the

interferometer

testbed.

Review science

issues for

multibody
testbed.

Present research

(to be held at

M.I.T.).

Date

January1991

Spring 1991

June 1991
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Abstract

Spacecraft, space-borne robotic systems, and manufacturing
equipment often utilize lightweight materials and configurations that
give rise to vibration problems. Prior research has led to the

development of input command pre-shapers that can significantly
reduce residual vibration. These shapers exhibit marked insensitivity
to errors in natural frequency estimates and can be combined to
minimize vibration at more than one frequency. Th_ paper presents a
method for the development of multiple mode input shapers which
are simpler to implement than previous designs and produce smaller
system response delays. The new technique involves the solution of a
group of Simultaneous non-linear impulse constraint equations. The
resulting shapers were tested on a model of MACE, an MIT/NASA
experimental flexible structure.

Introduction

Space-borne robotic systems and vehicles often employ lightweight materials

and configurations that result in a high degree of system flexibility. The

system's light weight facilitates launching, but chronic vibration problems are

a common result. Manufacturing equipment also increasingly utilizes lighter
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structural elements, a main objective being improving the speed of

automated assembly. The combination of a lightweight structure with high

performance requirements often leads to serious vibration problems. The

growing demand for high accuracy manipulation is in no way aided by these

simultaneous attempts to increase speed and decrease weight. Partial or

complete suppression of system vibration can improve spacecraft durability

and performance, and would allow manufacturing systems to operate faster

and more economically.

Attempts to decrease the vibration inherent in flexible systems have

enjoyed varied success over the past decade. Cannon and Schmitz [1]

experimented with the non-colocated feedback control of a flexible beam.

Through the use of accuratesystem models and opticaltippositionsensing

they achieved significantvibrationreduction in theirplanar testarticle.

Yurkovich and Tzes [8]reduced vibrationin the presence of unknown

and/or varying payloads by employing on linesystem identificationand

controllertuning. By using frequency domain techniques to examine the

system response following a sample input,enough information was gained to

adjust the controllergain scheduling to compensate for vibrationproblems.

Wie [9]employed H.. controllersto reduce vibrationwhile providing

robustness to modelling errors.This technique displayed solidperformance,

but was relativelydifficultto implement.

Input command shaping isan attractivevibrationreduction method

because itisessentially"hands off;"inputs can be fed through a shaper and

intothe system, and ideallythe resultingsystem output willbe vibrationfree.

Shapers alsousually residecompletely outside of a given controlsystem and

are thus easilycompatible with other vibrationschemes (seefigureI). Smith



Submir, e,d to the 1991 _/nmrna_onal Conference on Robotics and Automation

ClosedLoopSys_,m
=..-

I
I

_put Command Compensator t

I
J

l

Figure 1:

"l
I
I

i

I

I
J

Ou_ut

Shaper Position in Control System

[6] conducted early shaping investigations, largely through the use of posicast

control.

Meckl [3] examined the use of shaped force profiles to reduce vibration

in manufacturing systems. Meckl created profiles by using a versine ( I -

cosine ) function to modify force commands. When integrated twice, these

force profiles became input trajectories that reduced system vibration at a

structure's first natural frequency.

A major problem with command shaping is that its success usually

depends on solid prior knowledge of plant dynamics. Many attempts at input

shaping have been criticized because the shapers exhibited significant

dependence on precise system models.

Singer [4]presented a simple shaping algorithm thatdemonstrated

strong insensitivityto modelling errors. The shapers were assembled from

impulse sequences and produced only small delays in system response times,

on the order of one period of a system's naturalfrequency. This technique

performed notable vibrationreduction in testsof a fi.dlscalemockup of the

Space ShuttleRobotic Manipulator System, conducted at NASA's

Manipulator Development Facilityat the Johnson Space FlightCenter.

3



Submitted to the 1991 IEEE International Conference on Robotics and Automation

Tzes, Englehart, and Yurkovich [7] studied the effects of combining

input shaping with a closed loop, acceleration feedback controller. They

conducted tests on a flexible beam and proved that each technique can

complement the other, resulting in enhanced vibration reduction. This work

supports the assertion that input command shaping can be used concurrently

with other vibration suppression schemes.

Singer [4] originally assembled shapers designed to cancel single mode

vibration and later expanded the algorithm to handle multiple mode

problems. The initial multiple mode technique was somewhat cumbersome,

however, and the main purpose of this paper is to present an improved

method for developing multiple mode shapers. Simpler impulse trains can

be assembled by directly solving a full set of multiple mode vibration

equations. These new shapers have all the vibration reduction capabilities of

the original shapers, and yet exhibit savings in implementation complexity

and response time. We present an approach for solving the vibration

equations and offer evidence of the new shapers' potential through tests

conducted on a model of MACE, an MIT/NASA experimental flexible

structure.

Single Mode Shaping

To develop a single mode input shaper, we first note that the second

order system response to an impulse input is described by:

yi(t) = Ai e-g_t-4) sin((t-ti)_¢ 1 - 4 2 ) (i)

where yi(t) is the output, Ai is the impulse amplitude and ti is the time at

which the impulse occurs. The system's vibration frequency is ca, with

damping _. If the system is linear, its total response to a series of N impulses
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can be expressed as a sum of the the responses to each impulse "i." The

magnitude of the total response following the Nth impulse is given by:

[("Amp= _. Ai e"_°(t_*-t,) sin(ti_'f 1 - ;2 )) 2
i=l

+

N

(2)

A train of properly arranged impulses can suppress residual vibration

by forcing Amp to equal zero. This can only happen when both the sine and

cosine terms in equation (2) independently equal zero:

N
E Ai ¢_o._ sin(tit, o_ 1 - _2 ) : 0

i=I
N

,_. gi e ;°t' cos(tit.0'_" 1 - ;2 ) = 0
i=l (3)

To construct an impulse sequence that will act as a vibration reducing

input shaper, we start by imposing two initial constraints:

ti = 0 (4)

N

Ai=l
i= 1 (5)

The first is simply an origin specification, and the second is a normalization

constraint. Normalizing a shaper's impulse magnitudes ensures that a

shaped input will not exceed limitations imposed on the original input, such

as actuator or stress limits. We specify an arbitrary value for A1, and with N

= 2, we can use equations (3) to solve for the time and amplitude of the

second impulse in a two-impulse shaper.

This shaper will completely cancel residual vibration in a single mode

system, as long as the natural frequency and damping ratio are perfectly

5
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known. To account for possible modelling inaccuracies, the shaper should

exhibit some insensitivity to errors in natural frequency and damping ratio

estimates. By differentiating equations (3) with respect to natural frequency,

we generate two additional impulse constraints:

N

Ai ti e_ sin(ti_ 1 - _2 ) = 0
i=l
N

E Ai ti e_ COS(ti_'_ 1 - _2 ) = 0
i=1 (6)

Setting the partial derivative with respect to natural frequency equal to zero

also sets the partial derivative with respect to damping ratio equal to zero [4].

These new constraints require the addition of a third impulse to our

sequence; we have four equations, we need two unknown amplitudes and

two unknown times. The three impulse sequence will force the residual

vibration to be low even if the system parameters are not precisely known.

The standard three impulse, single mode shaper features impulses

with a 1-2-1 magnitude configuration and times that are equally spaced. A

typical sequence is shown in figure 2.

0L$,

O |,

m

0.|,

B.|,

0.0| • _ 4.N Q.N 41,1

Tune (s_:)

Figure 2: Typical single mode three impulse shaper.
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Note: these impulses are constrained to having positive amplitudes.

By using negative impulses, the time of a series' final impulse can be

decreased, but negative impulses tend to tax a system's actuators and

introduce high stress levels. In the remainder of this paper, all shapers will

utilize impulses with positive amplitudes. For a full derivation of the above

equations, see Singer [4].

Addin 8 Modes

To cancel multiple mode vibration, we can convolve several single mode

impulse sequences into longer trains. Convolution results in a sequence

whose final impulse islocated at a time equal to the sum of the damped

periods of the cancelled modes. The value of the finalimpuise's time will be

referred to as the shaper's "length." The number of impulses in the

convolved sequence is equal to 3m, where m equals the number of modes. A

standard three mode convolved shaper is shown in figure 3. This sequence

was solved for a zero damping case, so the twenty-seven impulses are

arranged symmetrically about the center of the pattern.

l+|l

II I+

I+III

.T+.I+ .TTI.I
1111111 IIII

,imll

l

l

'
I . I'I'II I.I t.l_l l,ll

"r'm_(s=:)

Figure 3: Three mode convolved impulse sequence.
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The convolved multiple mode sequences are easily generated, but their

failingsbecome clear when the cancellation of higher mode vibration is

desired. The number of impulses in a convolved shaper increases

exponentially with added modes, and by the time the third or fourth mode is

added, the sequence has become packed with impulses and can be difficultto

implement in real time. Shapers with more impulses increase the time

required to modify an input, and might force a decrease in servo rate.

The solution to these problems is to build multiple mode sequences

not through convolution of single mode sequences, but through a direct

solution of the constraint equations, (3) and (6),as written to include an

arbitrary number of modes:

N

_. Ai cr-,,_t_sin(tio._j¢ I - ;2 ) = 0
i=l
N

_. Ai cr.,_ cos(ti%3/l - _,_) = 0
i-l (7a)

N

X Ai ti cg,_h sin(ti%'_ 1 - _j2 ) = 0
i=l
N

i.1 (7b)

Repeating equations (7) for additional modes "j" generates a set of

simultaneous non-linear impulse expressions. Solving these equations can

yield shapers with shorter lengths than the convolved shapers. Shorter

sequence lengths decrease the delay in system response caused by using the

shaper. The direct solution sequences, moreover, use only (2hn) + 1

impulses, m being the number of cancelled modes. This linearly increasing

impulse population leads to vastly fewer impulses in higher mode shapers,

reducing implementation time.
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The savings in length and impulse density that the direct solution

sequences support are offset by an increase in sequence generation complexity.

The single mode shaper equations, given the constraints of positive impulse

amplitudes and shortest possible overall length, had a closed form solution.

As written for the multiple mode case, the shaper equations require a strict set

of constraints just to limit their infinite solution space, and no general

solution has been found.

Solving the Equations

The key to solving the multiple mode equations thus far has been to employ

a linear approximation. Equations (7) are non-linear only in terms of

impulse time. A straightforward approach is to pick a time for the sequence's

final impulse, essentially defining a sequence length, and then divide the

length into a fine time mesh. An impulse is placed at each time slot, with

unknown amplitude but known time. The equations are now under

constrained, but a linear approximation to the exact shaper sequence can be

generated through optimization.

The constraints for the optimization problem are the multiple mode

equations (7) and the normalization requirement (5). The cost function is the

sum of the second derivatives of equations (7a):

j-I i-I
M N

z z A, q77 ,)!
j.t i.l (8)

Minimizing the second derivative expressions forces the impulse sequence to

be even more insensitive to modelling errors. With these guidelines, the
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linear problem becomes "minimize the cost function subject to the stated

constraints."

Solution of the linear problem was accomplished using GAMS, a

standard optimization package. CAMS utilizesa version of the primal

simplex method to perform linear optimization. IfM is the number of

modes to be cancelled, _ is the length of the sequence, and dt is the value of a

single time mesh element, GAMS' constraint matrix consists of:

rows: r= (4*M) + 1

columns: c = a / dt

The variable vector is the series of impulse amplitudes, Ai. The simplex

method dictates that at least (c - r) amplitudes will equal zero, and additional

impulses are occasionally set with zero amplitude. The optimized GAMS

output yielded an impulse train with a number of impulses that was less than

or equal to r. This train was a linear approximation to the exact multiple

mode shaper.

The second phase of the linear work was to find the feasible solution

with the smallest possible final impulse time. This was achieved through

multiple GAMS runs, systematically reducing the time of the final impulse

and using a binary search algorithm that recognized when GAMS returned an

infeasible solution, meaning that the time had been reduced too far. This

technique ensured that the final GAMS output was the shortest possible

approximation. Figure 4 shows a typical final GAMS result from a three

mode problem.

l0
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Figure 4: GAMS output for a standard three mode system.

In many cases, this output could stand alone as an effective shaper

sequence, especially if the time mesh was set at a digital controller's servo

rate. The raw GAMS output, however, had about twice as many impulses as

the exact solution demanded. Our goal was to arrive at a sequence with as

few impulses as possible, so we used the GAMS output as an initialguess in a

non-linear equation solver.

Given the large number of impulses in the final approximate sequence,

the GAMS output had to be interpreted to obtain useful guesses of the exact

solutions to equations (7). GAMS would often place impulses in adjacent

time intervals;these impulses were replaced by single spikes that combined

the amplitudes of the neighbors and adopted theirexact average time. To

further reduce the number of impulses, the interpretation algorithm sought

out the closest non-adjacent neighbors. These pairs were combined by

summing their amplitudes and taking a weighted average of their times.

This set of techniques yielded a sequence whose number of impulses matched

that required by the non-linear multiple mode shaper equations (7).

I1
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Mathernatica TM was used as the non-linear equation solver, mainly

because of its additional potential as a programming language that could

envelop the entire computational side of the impulse sequence generation.

The time and amplitude of the first (i = I) impulse in equations (7) were held

constant, matching the first impulse from the interpreted GAMS output. The

remaining times and amplitudes were allowed to vary, with initial guesses of

their values provided by tl_e reduced GAMS sequence.

Mathematica employs a Newtonian gradient search algorithm to arrive

at its solutions. This method worked quite well, as long as our guesses were

sufficiently close to the optimal solutions. As the non-linear equations are

continuous and differentiable, adequate gradients are readily available, and

points of singularity are usually easy to avoid. The resultant exact impulse

sequence, after interpreting the GAMS output in Figure 4 to find initial

guesses, is shown in Figure 5. The impulses in the Mathematica result were

re-normalized t'o ensure that the constraint of equation (5) was upheld.

AmpUmde

Figure 5:

I 11

I i

I.L!

,.?

O.N I

i •

T'_ (see)

• .,,
• # I q_l I.II e.i I.'II

Exact impulse sequence solution, output from Mathematica.
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We found that Mathematica could solve the equations only part of the

time. A particular structure's absolute modal values and relative modal

spacing could disrupt the GAMS program, or Mathematica, or both, resulting

in a group of unsolved equations. A variety of different approaches have

been used to increase the robustness of the solution process, the ultimate goal

being the discovery of a closed form solution. While current work is

continuing in this area, the linear approximation/non-linear solution

algorithm has successfully generated workable impulse sequences for

different groups of three and five modes.

Modeling and Results

The three mode case of particular interest involves a set of frequencies found

using a model of an actual flexible system, the MACE test article. The MACE

experiment is a joint MIT/NASA project designed to study methods for

controlling flexible systems in micro or zero gravity fields. MACE is a flexible

structure with two multi-axis pointing payloads residing on either end of a

tubular bus. The system incorporates attitude control through a set of three-

axis torque wheels, and utilizes inertial position sensing information gained

from gyroscope packages mounted at the center of the bus and inside each

payload. A simple system schematic is shown in Figure 6.

Pointing/TrackingPayload (2)

f ActiveSegment

InertialPlatform

Approx. 1.5m

Figure 6: The MACE flexibletestarticle.
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The MACE project consists of a Ground Test Article, to reside at MIT,

and a Flight Test Article, scheduled for a Space Shuttle launch in 1993. The

Ground Test Article is currently being assembled and should be available for

testing in December of 1990. The ground article will be actively suspended to

emulate a flexible spacecraft in a micro gravity field. This experiment is a

prime candidate for practical validation of the command shaper techniques.

While the physical MACE structure has been under construction,

personnel at MIT's Space Engineering Research Center (SERC) have

developed several computer models of the experiment. The frequencies used

in the three mode case mentioned above were found using a linear finite

element MatLab model of MACE. The planar model depicted the segmented

bus and one of the pointing payloads, as shown in Figure 7.

Rotating Cantilevered Mass

(Payload) -_

_ Segl'nente.d Beam(Bus) _.,._,_,_ ,'._,,=-_ • _.._

Payload Rotation

-- Nodxl Displacemen_ and Rotations

,-- ,, i " - ']'_3 mp

F.-m!1

Figure 7: Finiteelement model of MACE.
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The firstthree eigenvalues of the model were fed into the CAMS /

Mathematica routine, generating the shaper sequence shown in Figure 5.

Next, simple torque inputs were fed through the shapers and into the

modelled payload's gimbal axis, producing the adjusted inputs shown in

figure 8. The resulting translation of the beam element on the opposite end

of the bus isshown in figure 9, and detailed views of the unshaped and

shaped response are provided by figures I0 and II, respectively. The model

had a system of eight modes of vibration, and only the firstthree were used in

forming the input shaper. Itis clear from the figures, however, that

cancelling these three modes was sufficientto suppress the majority of the

structure's vibration.
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Figure 8: System inputs adjusted by the input shaper.
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Figure 9: System response to inputs.
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Figure 10: Response to unshaped input (detail).
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Figure 11: Response to shaped input (detail).

Conclusions

These MatLab results are somewhat predictable. The input shapers are

defined by equations that predict the response of linear systems, and the

MatLab model was also linear. Cancelling the vibrations of the MatLab

model, therefore, served mainly as a confirmation of the proper solution of

the constraint equations, and allowed for concrete visualization of what a

system experiences when the input shapers are employed. The lessons

learned from this initial case will also be valuable _hen more complex,

higher mode shapers are developed.

The next step in this program is to employ more accurate models of

MACE. The testarticlehas been simulated non-linearly, using the DISCOS

program. This model will likelypredict some of the shaper's failingsin

suppressing vibration in non-linear systems.

The second major future task is to improve the equation solving

algorithm to facilitatethe construction of higher mode shapers. Sequences

17



Submi_ to the 1991 IEEE International Conference on Robotics and Automation

that can cancel up to ten or fifteen modes are not out of the question. In

addition to increasing the number of cancelled modes, we are devoting effort

to decreasing the sequence generation time. We have shown that the direct

solution sequences are easier to implement than the convolved sequences,

but they are much more difficult to generate. These continued efforts to solve

the constraint equations, coupled with the lessons learned from the DISCOS

model, will aid in the generation of input shapers capable of effectively

reducing vibrations in the actual MACE structure.
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Introduction

The MIT Space Engineering Research Center (SERC) has developed a controlled structures
technology (CST) testbed based on one design for a space-based optical interferometer. The role
of the testbed is to provide a versatile platform for experimental investigation and discovery of CST
approaches. In particular, it will serve as the focus for experimental verification of CSI
methodologies and control strategies at SERC. The testbed program has an emphasis on
experimental CST--incorporating a broad suite of actuators and sensors, active struts, system
identification, passive damping, active mirror mounts, and precision component characterization.

The SERC testbed represents a one-tenth scaled version of an optical interferometer concept
based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The
testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with
attachment points at three vertices (Figure 1). Each aluminum leg has a 0.2m by 0.2m by 0.25m
triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global
modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL
Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural
deflections at the vertices (site of optical components for maximum baseline) resulting in reduced
stroke requirements for isolation and pointing of optics. Typical total light path length stability

goals are on the order of x/20, with a wavelength of light, _.,of roughly 500 nanometers [1]. It is
expected that active structural control will be necessary to achieve this goal in the presence of
disturbances.

A unique feature of the SERC testbed is the implementation of a multi-axis laser metrology,
incorporating complex bends in multiple beam path lengths. At three mock siderostat locations are
precision three-axis active mirror mounts. The fourth vertex holds a laser head and other optics.
These optical components provide laser interferometric displacement measurements for baseline
metrology (six axes define the position of the mock collecting apertures relative to the fourth
reference point). We are concerned that the testbed represents a scaled model of an actual scientific
observatory as closely as possible. At the same time, we seek to perform CST research which is
generic and applicable in different areas.

The structure is instrumented with accelerometers, load cells, strain gages, experimental
piezoceramic and piezopolymer sensors, and (initially) three piezoceramic active strut members.
The stiffness of the active struts has been selected to approximately match the impedance of
structure as seen by the actuator at the active strut mounting location, leading naturally to control
designs based on passive shunting, wave impedance, or balanced bridge feedback.

A finite element model of the testbed was constructed and a conventional system
identification using an external excitation source will be carried out. The results (frequencies,
mode shapes) will be compared and the subsequent roles of each of these models in the control
design determined. Because of inherent inaccuracies of the finite element model in representing
lightly damped closely spaced modes, the experimentally determined modal model is preferred for
control design. Methods for generating uncertainty information from the system identification for
application in robust control methodologies, and studies of model reduction techniques are
planned.

* Research Associate ** Graduate Research Assistant

JPL Workshop on Technologies for Space lnterferometry
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Three-axis active mirror mounts have been designed which provide z3.5 microns of stroke

over a frequency range of 500 Hz. Two mounts employ conventional piezoelectric actuators; the
third mount utilizes electrostrictive actuators that exhibit superior bidirectional repeatability, a

result of greater linearity and reduced hysteresis as compared to piezoelectrics. The moving mirror
mass has been sized to reflect the approximate scaled masses of siderostats of the proposed space-
based optical interferometer. The actual moving mass of the the mirrors will be varied to determine
the level at which interaction with the structural flexibility becomes significant.

The remainder of the paper begins with a description of the optics portion of the testbed.
Then the testbed CST program is reviewed with attention focussed in six areas: results from other

research closely-related to the testbed, finite element modelling, system identification, passive
damping, an axial component tester, and control experiments.

Optics

In this section, the optical components of the testbed are described. The focus here is on
the implementation of the on-board metrology system. Functional explanations of space-based
interferometry can be found elsewhere in this volume.

Beam-combining coherence requirements for an actual space-based interferometer will

require on-board sensing and correction mechanisms capable of controlling path lengths to M20.
Multi-aperture non-interferometric imaging instruments with similar baselines and operating
wavelengths can have more demanding requirements. The sensing system for orienting the
instrument relative to an external reference coordinate frame should have resolution and stability on

par with the resolution and stability of the internal metrology system. Our immediate concern is the
reduction in errors due to flexibility (Figure 2).

t I
t I

Internal Flexible External Rigid Body External Flexible

Figure 2: Sources of Path Length Error

The Interferometer CST Testbed under construction at MIT addresses the problem of most
direct relevance to CST: control of the instrument geometry in order to control projected baselines
and internal path lengths. The testbed control goal is to maintain fixed distances between points on



thestructurewhich representcollectingapertures(mocksiderostats)andmetrologynodes,since
relativemotionamongthesepointschangesbothprojectedbaselinesandinternalpathlengths.

A sampleinterferometermissionto imageatenthmagnitudeobjectatvisiblewavelengths
with one milliarcsecond resolution using one meter aperturesleadsto path length stability
requirementsof approximately.80nmrms. Thebasictestbedconfigurationis intendedto include
enoughdetailto be representauvewithoutbeingoverly,complexandcostly. Manyof thefeatures
maybeapplicableto otherspacecraftrequiringprecisioncontrol. Sensingof theexternal(rigid
body) orientation of the testbedand the scienceopticsare not currently addressed,although
metrologysystemsfor bothof thesecould be tieddirectly into the on-boardbaselinemetrology
systemwith little difficulty. Additionally, eachmock siderostatmount includesprovisionsfor
mountingasmallflat mirror with its reflectingsurfacecoplanarwith thevertexof themetrology
systematthatsiderostat.Suchamirror mightform partof afuturescienceopticschain.

A six-axis laser metrology system forming an optical tetrahedron (Figure 3) will provide
the primary measure of control effectiveness. One vertex is located at each of the three mock
siderostats with the fourth vertex containing the out-of-plane reference point. The outputs of the

near and far legs will yield relative displacements among the vertices with the minimum number of
laser axes. The vertices of the optical and structural tetrahedrons typically do not coincide since the
siderostat locations were chosen to represent non-redundant baselines without necessarily requiring

rigid body tilting of the entire instrument. In the initial configuration, one siderostat plate will be
located near one structural vertex; the others are roughly 1/2 and 1/3 of the distance down two
different legs. The relative angles between the actively-mounted cat's eyes will be less than 96.5

degrees, which is within the cone of operation.
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Figure 3: Illustration of the Structural and Optical Tetrahedral Trusses

The power required to operate six axes, instead of the nine that would be needed to
determine ax,ay,az for the three siderostats, permitted the use of a commercially available laser
measurement system using a single laser head mounted on the testbed. We are using a dual-
frequency stabilized laser head (670 pW total power), detectors, and fringe counting electronics
manufactured by Hewlett-Packard Corporation. A lens and 45-degree polarizer assembly plus a
short length of optical fiber allow the detector electronics packages to be located out of the way of



the measurement optics and associated mounting fixtures. The VME-based fringe counting
electronics provide a seamless link to our real-time control computer.

Figure 4 details one measurement axis. The measurement resolution is limited by the HP-
supplied electronics to L/64 at _. = 633 rim, or approximately 10 nm. Greater resolution can be
obtained with alternate electronics, such as the VME modules developed by Mike Shao's group at
JPL. For operation in air without wavelength tracking over short time scales and in a laboratory
disturbance environment, we feel that 10 nm resolution will be adequate. Our closed loop control
frequency range is 2-200 Hz, so changes in the refractive index of air and other sources of error
with long time constants will not pose any problem. A preliminary error budget suggests that
measurement resolution will be ~ 17 nm.
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Figure 4: One Axis of the Laser Metrology System

Cat's Eye Retroreflectors
Cat's eye retroreflectors will be used to provide wide fields of view at the vertices of the optical
tetrahedron. These are similar to cat's eyes used by C. Townes (UC Berkeley 10p.m
interferometer) and D. Hutter (US Naval Observatory Astrometric Interferometer) although in this

application there is no siderostat slew range to contend with. The minimum size of the cat's eye
for a given amount of spherical aberration is a function of the laser beam diameter and the refractive
index of the cat's eye glass. The metrology laser beam diameter of 6 mm at the laser head led to a
cat's eye size and mirror mass which was unnecessarily cumbersome for implementation on a
moving platform. Reducing the beam diameter permits the cat's eye size to be reduced while

maintaining the same spherical aberration performance. Lenses reduce the collimated beam
diameter to 4 mm without reducing the available power. The cat's eye parameters are:

glass index at 633 nm
radius of small hemisphere
radius of large hemisphere
max. AOPL across beam cross section
mass
usable field of view:

1.72 (Schott SF 10)
25 mm
34.7 mm
k/10
511 g
+/- 60 degree cone (see Figure 5)
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Modifying the radii to generate a small amount of ftcusing will help counteract the increased

divergence of the smaller beam diameter and produce better overlap at the detectors. The curved
surface of the large hemisphere will have a silver reflective coating with a protective overcoat. The

curved surface of the small hemisphere will be coated with a broadband anti-reflective coating
targetted to be the proper thickness for _, = 633 nm at half the cone angle. Anti-reflective

performance at other angles will depend on the spectral response of the coating. The hemispheres
will be aligned after coating and joined by optical contacting.

Other Optics

'i'he remainder of the optics for each measurement leg consists of a polarizing beamsplitter
cube with crystal quartz quarter wave plates cemented to opposite faces, plus the associated feed
optics. Each beamsplitter-waveplate assembly is mounted in a semi-custom mount which provides

the adjustment degrees of freedom needed to align the measurement beam with respect to its
retroreflector endpoints. Three of these mounts are rigidly attached to an open pyramidal "bucket"

that is itself rigidly attached to the main fourth vertex optics plate (Figure 6). The remaining three
mounts are rigidly attached to the siderostat optics plates (Figure 7) in the far leg measurement
paths. These rigid mounts are designed to prevent motion of the beamsplitter optics from
appearing as motion of the retroreflectors. The feed optics must maintain the orthogonality of the
laser polarizations through complex bends in order to minimize errors due to polarization mixing.
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Results from Recent Testbed-Related Research

In conjunction with the development of the testbed, several other areas of research are
being pursued. Three studies have been completed, and are documented elsewhere [1-3]. Some
relevant results are summarized below.

Systems Level Disturbance Minimization Using Controlled StruqWr¢_ Teqhnolou_,

Disturbances present on a typical large space-based observatory are detailed. The spectrum
of disturbances is di,/ided into those which depend on the space (Earth orbital) environment and
those which are internal. Various CST techniques for minimizing the effect of disturbances on
mission requirements are reviewed. These include passive structural tailoring, passive damping,
vibration isolation, and active structural control. The full-scale 35-meter baseline version of the
interferometer testbed is used as a case study for evaluating the flowdown of systems level
information to the structural requirements. The power, attitude control, and interferometer and

metrology subsystems are discussed with respect to their role as disturbance sources. Finally, an
approach for systems level disturbance minimization is outlined.

Experimental Characterization .of Damping at Nanostrain Levels
In light of the increasing trend towards nanometer-level requirements on structural stability,

it was considered beneficial to characterize damping at extremely small displacement and strain
levels. There has been discussion in the CSI community recently regarding dynamic behavior of
structures at extremely low vibration levels. In particular, it was not known whether there was a
radical change in properties below a particular vibration or displacement floor. In this study,
damping was measured in aluminum and graphite/epoxy material specimens in air and in vacuum,
and in the bare interferometer testbed truss. It was demonstrated that material damping was
independent of strain from ten microstrain down to one nanostrain. Excellent correlation with
therrnoelastic material models was obtained. Damping in the testbed was found to be independent
of strain below one microstrain (Figure 8). The linearity can be exploited by doing system
identification at micron displacement levels instead of nanometer levels. The results were
immediately instrumental in allowing the use of relatively inexpensive accelerometers for system
identification on the testbed, rather than the extremely accurate high cost sensors.
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Ex_nmental Demonstration of Nanometer-level Active Control of a Flexible Beam
In this approach to structural control, the flexibility of the structure is ignored to the greatest

extent possible. Instead of controlling the structure, a mirror mass was moved to maintain an
optical path length in the presence of disturbances propagating through the structure (Figure 9)
using a control strtegy that ignored the structural dynamics of the flexible base structure. The
approach was successful provided that the actuated mass was small compared to modal masses of
the structure. The effect of damping was investigated and quantified. An order of magnitude



reduction in vibration levels was demonstrated (Figure 10). This concept--implemented only for a
single input single output case--will be extended to the interferometer testbed, where active mirror

mounts will be used to position the cat's eye retroreflectors in three displacement degrees of
freedom. Preliminary analysis of the finite element model suggests that the ratio of the moving
mirror mass to the modal masses of the structure are small enough to allow the design of a high
performance stable controller without further considerations of the structural dynamics. Research
into active isolation will focus on the extension of this approach to cases involving noncollocation,
multiple flexible modes, and multi input multi output systems.
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Figure 10: Results from Path Length Control Experiment

Finite Element Model

The purpose of the finite element model is to provide a basis for analytical studies of
structural modification, and to serve as one basis for control design. The accuracy of the finite
element model is verified by comparison of frequencies and mode shapes with an experimentally
derived modal model. It is not likely that the model will be used for control design if experimental
models are available. The effort in finite element modelling is outlined in Figure 11.

Two f'mite element models have been constructed using ADINA: a continuum beam model
and a model which contains separate elements for each strut. The continuum model has sufficient
accuracy to make it useful for examining various approaches to control. Some features of the
models are described below.

Continuum Model

• Equivalent continuum cross-sectional properties for each leg of the truss were
derived. (The six legs have identical cross-sections.)

• Each of the six legs was then modeled with 14 Timoshenko beam elements.
• The f'trst flexible mode is at 38 Hz.

• The low mode shapes are characterized by 1st and 2rid bending and the torsion of
individual legs.
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Full Struts Model

• There are 228 nodes representing the aluminum joints.
• Each of the 696 struts is modeled with a Timoshenko beam.
• The fLrst flexible mode is at 34.56 Hz.

• The model runs in under 2 minutes on the Cray II.
• The low mode shapes are characterized by 1 st and 2nd bending and torsion of the

individual legs.
° There are 35 flexible modes below 200 Hz.
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Figure 12: Frequency Distribution of First 39 Finite Element Modes



Distribution of Modes

Figure 12 shows the frequency vs. mode number for the first 39 modes based on the full

struts model. Because of the inherent symmetry of the structure, there are repeated eigenvalues
(multiplicity 2 or 3) present. Further, there is a separation between clumps of modes from 54-98

Hz and from 142-194 Hz. The repeated roots and clumping of modes will disappear once
concentrated mass of the three siderostats and the fourth vertex are added. Also, the added mass
will drop the frequencies further so that there will be more than 50 modes below 200 Hz.
Matlab Posmrocessin

The-eigenveciors from the full struts model have been used to calculate strain energy
distributions for each mode. The elements can be ranked from most to least strain energy by mode
or sum of modes. This information will be used to choose passive damping element locations, and
later as an initial criterion for active member location selection. With an improved model (including
optics) we will be able to calculate a rough optical path performance metric to rank locations on an

'open loop' controllability basis (i.e. without simulating performance of the closed loop system).
In separate work, a two-dimensional truss model has been used as a sample problem to

develop necessary tools for control based on state-space models from the ADINA output.
Implications of the close modal spacing and light damping are being studied.

Addition of Damping

The finite element model will be augmented with experimentally determined damping
values. In addition, damping will be added in select elements in conjunction with the viscoelastic
struts experiment. A more careful study optimizing passive damping locations will be carried out
later.

Role of the Finite Element Mode!

The finite element model in its current form is a useful tool for parametric studies, mode
shape visualization, calculation of strain energy distributions, and selection of system ID
accelerometer locations. We have improved the accuracy of the model, but it is still not perfect.
With initial ID data we will be able to make a direct comparison between finite element and
experimental data.

At some point a broader discussion of the role of finite element models in CST may be in
order. There are several points which must be addressed. From the academic perspective at
SERC, these include:

• The 'need' to develop a highly accurate finite element model because it is standard
practice in industry.

• The value of a finite element model for laying out identification and control
architectures

• The inadequacy of finite element models as a basis for control in a complex lightly
damped structure

• The relative value of f'mite element models and experimental system identification
• The realistic potential for on-orbit system identification
• The need for an accurate finite element model ff system identification is not

possible
• The role of a hybrid approach which could include subscale and component

identification
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System Identification

A system identification is routinely performed on controlled structure testbeds as a prelude
to control experiments. To date, the interferometer testbed is the most complex structure to be
identified in SERC. The experimental model derived from the system ID will serve two purposes.
First, it will allow verification of the finite element model. Second, it will provide a modal model
for conn'ol design.

Because of the complexity of the optics, the testbed will not reach its 'final' configuration

for some time (late fall 1990). However, an initial ID will be performed in order to provide
verification of the naked truss finite element model. The structure and model will be sufficiently
complicated later so that tracing sources of error will be difficult. In addition, the initial ID will
allow us to become familiar with the recently-purchased software and hardware systems. The ID
will be done with an external shaker and roughly 32 or more accelerometers. Later, active
members installed in the truss will be used for system ID.

Initial tests show several interesting results. The first flexible mode was measured at 31.34
Hz, compared with a finite element prediction of 34.56 Hz. This 10% error indicates a need to
revise the finite element model, with input from a subcomponent stiffness test on the struts. The
effect of gravity is apparent in the structure. Modes which are nominally the same frequency differ
by typically 0.3 Hz. Also, pendulum and bounce suspension modes have been measured (below 4
Hz). Finally, typical damping ratios of 0.04% to 0.07% have been recorded for the flexible truss
modes, with minimal intrumentation and cabling on the structure.

Frequency Resolution
Due to memory limitations of the identification computer, frequency resolution is currently

at best 0.0125 Hz. This may not be acceptable for lightly damped modes present in the testbed.

Generation of the Modal Model

The Structural Measurement Systems STAR software will provide frequency domain fits
over limited frequency ranges. These will be assembled in Matlab where the full modal model will
be constructed. This model will initially contain roughly 100 states.
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Figure 13: Near Term Efforts on Passive Damping Augmentation

A passive-as-possible approach is preferred in achieving a spacecraft which must meet
stringent shape or pointing requirements. However, in an environment which will include several



potential disturbance sources, some sort of vibration alleviation will also be necessary. The
introduction of an active control system can greatly improve performance at the expense of
complexity, cost, and the possibility of instability. Passive damping augmentation is a far less
glamorous, but nevertheless effective alternative. When an active structural control system is
considered necessary, passive damping can only be beneficial. It does not make sense to

implement aggressive structural control on a plant with only 0.05% inherent damping. Our initial
goal is to conduct enough tests to establish the basis for later comprehensive experimental studies
of passive damping schemes to be carried out in the future. The program has been broken into
four areas representing different approaches to passive damping. These are shown in Figure 13.

Viscoelastic

Constrained layer viscoelastic struts have been tested in a small cantilevered truss. Poron
and Scotchdamp materials were compared, and Scotchdamp was found to be more effective. The
effectiveness of different Viscoelastic layer thicknesses has been judged based on ringdown
experiments in a first bending mode. A significant component of the strain energy of the structure
is in the damper strut. This allowed high loss factors (25 %), and large drops in frequency.

Twelve of these simple highly effective struts have been manufactured. With information
from the component tester, it will be possible to model the struts with equivalent axial stiffness and
viscous damping. This information will be integrated into the finite element model where a
prediction of the added global damping due to several viscoelastic struts is possible. A repeat of
the ID experiments will yield a measured value for damping.

Shunted Piezoelectrics

A resistively-shunted strut [4] was built and tested in a small cantilevered truss. The initial
results were discouraging, with damping values below those expected. Subsequent re-engineering
of the strut yielded no improvement. The use of a commercial Physik Instrumente actuator in the
strut gave no better results. Although the experiment was designed to concentrate a large amount
of strain energy in the piezoceramic material, this was apparently not the case. A careful test of the
strut in the component tester will provide an accurate accounting of strain energy distribution. The
active member actuator stiffnesses were selected with consideration of appropriate stiffness
properties for the shunting application in the large testbed.

Concerns

The difficult problem we face in adding significant global damping is the large number of
struts (696) in the testbed. The damping members must be selectively placed, perhaps near critical
payloads. At this point, the constrained layer Viscoelastic struts are by far the least expensive and
easiest to make. Drawbacks include the frequency-dependent loss factor and material
propertytemperature sensitivity. The shunted piezoceramics are potentially more effective than we
have demonstrated to date, but are expensive. A device based on the Honeywell D-Strut design,
which is capable of broadband viscous damping and is relatively temperature-independent is
desirable, but is at this point prohibitively expensive to incorporate into the testbed.

Component Tester

An axial component tester has been constructed and is operational on an optics bench. This
facility includes a Physik Instrumente piezoceramic strut to drive various test articles which
represent subcomponents of the testbed. Mainly, these are passive or active replacements for the
aluminum struts. Load and displacement are measured, the latter with a Zygo Axiom 2/20
interferometer system. The tester will be used in the 0.1-200 Hz frequency range, with
displacements from 1 nm to 60 ima. Initial measurements to be conducted are:

• stiffness of truss longerons and diagonals
• stiffness of active struts

• voltage/deflection plots of active struts
• viscoelastic strut characterization



The facility will be available in the future for characterization of other passive or active

components.

Control Experiments

We do not forsee having the capability to do absolute shape control in the near future, since

that requires rigid body control of the testbed. The initial effort involves separation of the

structural control and optical metrology path length control loops. Capabilities will be established

in each through simple closed-loop experiments. Figure 14 shows the near term goals for control

experiments.
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Figure 14: Neax Term Efforts on Control Experiments

M0d¢l Basis for Control Design

There are several methods for generating a model which is a suitable basis for control

design. These include finite element models (usually augmented with experimental damping

values), measured models based on modal models from system identification, and measured

models based on direct information from input-output actuator-sensor pairs. The third approach is

preferred if the proper measurements can be made. For all these designs model reduction may be

necessary in the plant and controller.

Real Time Software
The software to do linear, constant coefficient, digital control is functionally complete. The

code is called MatCon for matrix control. The user interface is through Matlab, where a typical

continuous control design is discretized. The discrete matrices and some other constants (number

of inputs, outputs, and states, scaling factors, and the sampling period) are saved in a standard

Matlab .mat file. The real-time computer then reads this data and starts the controller. The

following algorithm is used.

input vector y from A/D

Xn+ 1 ----FIIX n + FI2Y n

Un = F21 xn

output vector u to D/A

wait for next sample time



While the controller is running the user can stop and start the controller, record states, inputs, and
outputs, and scale inputs and outputs. The data file of input vectors is stored in on-board memory,
until a set number of samples has been saved. The controller is then stopped and the data
transferred to the hard disk on a Sun Sparcstation, where it can be read back into Matlab. States

and outputs can be reconstructed from the saved input data for full analysis. There is a direct
interface to the six HP laser measurement boards. Four-pole Bessel anti-alias filters with a corner
frequency set by digital input-output from the real-time computer are used. The filter cards also
provide a digitally programmed gain of 1,2,4,8,or 16 to help amplify low-level sensor signals.
We will have the capability to process 16 inputs, 10 outputs, 32 states at lkHz. The control
bandwidth is not expected to exceed 150 Hz.

The active strut design is shown in Figure 15. In addition to the load cell and internal strain

gage measurements, two accelerometers are mounted to the strut to provide an inertial collocated
measurement and to permit system identification using the active struts. Three struts are currently
available, and an additional homemade unit will initially be used as a disturbance source generator.
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Active Mirror Mounts

Active mirror mounts will be used to maintain to M20 the linear positions of the cat's eye

retroreflectors, which are located at the three mock siderostat locations shown in Figure 3. Output
position control will be achieved by moving the cat's eye and mounting table using three
microactuators: 0.7" piezoelectric stacks for two of the active mirror mounts and 0.4"
electrostrictive stacks for the third, as shown in Figure 16. The actuators will be run in common
mode to actuate piston, or z, motion of the point M of the cat's eye. In differential mode, the cat's
eye and table will be tilted; resulting in x and y displacements through the lever arm and flexure
assembly. The rotations and lateral displacements cannot be controlled independently, but this
constraint will not be a problem for the envisioned set of control experiments in the near to medium
term. Simultaneous displacements of +/- 3.5 I.tm can be achieved in all three directions. The
mirror mount design includes the flexibility to introduce additional mass to simulate the scaled
mass of the retroreflectors. Additionally, the mounts can later be modified to incorporate mass
reactuation, where the he effect of moving the mass of the cat's eye is reduced or even cancelled.
The result will be a reduction in the interaction between the mirror control system and the truss
flexibility.

static ring piezo actuators

supp°lrt '_

structure

__ science mirror

cat's eye

siderostat plate

/

Figure 16: Active Mirror Mount Functional Drawing

The active mirror mount is a small stroke device intended to control only path length errors
in the flexible truss. These errors will result from disturbance sources that are introduced

intentionally to simulate space disturbances and from disturbances present in the ambient noise
environment of the laboratory. Figure 17 shows the ambient acceleration power spectral density
(PSD) in the worst-case direction measured by a triax of moderate-sensitivity accelerometers

(1V/g) at a proposed active mirror mount location on the truss. In this very preliminary study., the
structural dynamic response, starting at 30 Hz, is also corrupted by electrical noise and various
lower frequency suspension modes. A displacement PSD is calculated by scaling the acceleration

PSD by l/m 4, which leads to an estimate of rms displacement of 22 nm in the frequency band of
20-100 Hz. Assuming that a point corresponding to a siderostat on another leg experiences the
same disturbance and vibrates out of phase with the f'trst point throughout this frequency range, an
ambient path length error of 44 nm rms can be expected. The actual error may be less once
electrical noise is removed and the additional mass of the active mirror mounts is added to the
truss.



Electmstricrive Actuator's

In separate work [5], electrostrictive ceramic PMN:BA, a material of interest to structural
conn'ol engineers, was characterized for test parameters of frequency, amplitude, and temperature.
Results indicate that at room temperature the material strain response is quite linear with almost
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no phase due to hysteresis, unlike piezoelectrics, and is constant with frequency. However, the
induced strain sensitivity is highly dependent on temperature, and hysteresis increases rapidly
below room temperature. Since electrostrictive actuators will be used in one of the three active



mirror mounts, the operating temperature of the actuators will need to be monitored during
calibration and usage.

Summary

The SERC interferometer CST testbed will soon be fully operational. The facility will
address concerns regarding extremely tight constraints imposed on structural motion in future
space observatories. At the same time, the testbed will serve as a platform for exploration of a
broad range of controlled structure technologies and approaches.

Work described in this paper was funded by NASA Grant NAGW-1335.
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Abstract

A cost functionalisproposed and investigatedwhich is moti-

vated by minimizinI the energy in a structureusing only coUo-
cited feedback. Defined for an H..-norm bounded system, this

cost functionalalsooverbounds the N2 cost. Some propertiesof

thiscostfunctionalire given,a_d preli._nLryresultson the pro-

cedure forminimizing itare presented.The frequencydomain cost
functionalisshown to have a time domain representationin terms

of a St_ckelberg non.zero sum di_'e:entialgame.

Introduction

This paper ex_ninos the properties, evaluation algorithm, and
an optimization approach for a cost functionalfor combined

Hs/_lm control.Combined 7_s and 9-_ controlisof interestsince

itcombines the problems of nominal performance And robust sta.
bility.Related work includes_: optimization with an 7-¢._ con-

stralnt[i-4],minimum entropy 7_.,control14,5],and mixed 7_z

and _.. control [6, 7]. The cost functionalof interestto us is
defmed u follows.

Definition I Co_er a _q_tem H(a) = [H0(a) H_(s)] and a

number./E IR, unth tfo e 7_7_, Hi E _7"t**, and ;IH_I]. < "I.

Them the coat L( H, _) is definsd by

L(_,_):=
--eO

The Jpecific form of this cost is motivtted by minim_n$ the to-

tal vibrational energy of a structure with only a model o| the local

dynLmics near an actuator and collocated sensor. Previous work
with this type of model h_ used _ [g] and _. [9] optimiz_tions
of the power flow. Briery, the frtction of the input power flow
that is reflected into the structure at the _ctuator location is a

quadratic at each frequency, and can be represented by a transfer

functionHH'. The _ractionof the power that isdissipatedisthen

(I - H H" ), and the total power diuipatcd is (1 - tI H" ) E where
E is the structttr .l e_gy _ a f_mction of frequency. L( the power
flow into the structua_ f_tml exl;etmd disturbtmos sources is given
by _{j_), then a power bs/_ce yinldsthat the totalenergy in the

structure is given by L([H H@], i). A more detailed explanation

may be found ia [I0].

In {7], a framework for mixed _s/W.,=, control problems iscon-
sidereal. There the cost functional is motivsted in an input/output

sense. The system is subject to two input4, one of bounded spec.
tram, and the other with bounded power. For the cue wbem
the fu_t input sign *1 is white and the second is c_usal, necessary

and sui_cient conditions ate given for the existence of a controller
which minimizes the cost. The non-white and non-cauzal case is

"Supported by Sa_lis Nl_,'.,,al Leb_a_ry und_ coatr_t 4_-439t stud by
the MIT Sp4u:sEaI_ _ _ C_t_ trader NASA Stmat NA_W-I_
• _Fia_ac.ia/support by the Commonmudth Fund u_ter its H_k_em Fellow.
Sbil_ program,mad b7 AFOSR-|9.-027_

P_emat4d _t the 2{Pa rI_EB _ oll l)eckloa ud Control, 8oaolu/u,
Hs_ Dec_ber 1_0

describedbut not solved (seeSection3.3.)This cue is,howev_,

of particularinterest_, the cost the_ equals £(H,7), reve_m_ a

close relationship between the present appro_u:h _d the approach
taken in !7]. This connection is curr_tly under investigation.

The final section of this paper gives a third interpretation of

this costin terror ofa St_ckdberg non-zerosum dJ_erenti_game.

Properties

The followingb_ic propertiesof £(H, 7) willbe statedwithout

proof,and can be easilyshown to hold.

Proposition 2 Let H(a) and "f s_tu_ the conditionam Defin,.
aon I. Then

(i) L( H,'_) _s well d,fined.

(5) L(H,'_) > O, and L(H,'r) = 0 _ Ho = 0

(iii) L(UHV,'r) = L(H, 7) /or any U,V _ 7_£,_ _ U°U =
I. VV'=I.

In the cue where Ht = Ho, further properties of the cost
L(H,'f) can be casaba/shedby relatingitco the entropy I(H,?) of

a system defied, forexample, in Reference [5].

Definition 3 Fo_" H _ 7_7_=, _ _ _R, and [[HI[. < % the en-
tropy at snfinttlt s,s defined by

.7=

AisoletC(H) be the usu*l _z cost_ssociatedwith the system H;

1 : tr_u:e{H'H}dw (3)c(t¢) :=
-era

Proposition 4 For H = [_o Ho] , unth Ho an_ ? s_i_n@ tAe

cond_twna m Definttwn $, colander the costL(H, ?), the entrup_

l( Ho,7), and the _: costC( Ho). Define _ =-F s, _hen

(i) _(_,_)=_(U(Ho,_))

(iS)L(H,7) >_I(Ho,7) >_C(Ho).

Proof: The first_.sertionfollows directlyfrom the proof of

Proposition 2.3.2in Reference [5].The firstinequalityin (ii) fol-

lows from L(H,'r) = I(Ho,'r) + _(l(Ho,'r)) mad the result ff_m

Proposition 2.3.2in [5} that _ (I(Ho,_,))__O. The final inequal-

ityis obtained from the result that I(Ho,'y) itself bound_ the _z
cost.

That L(H, _) ove:bounds an _z costcan s£_obe shown to hold
for the cs,_ Ht _ H0.

Proposition S L(H,_) >_C(H0).



Proof: Since ]lH:l]. < I, (I- _-sH_HT) < 1 and (I-
7-aH_H_) -1 < 1. The result then follows directly from the de£-
nition of L(H,_) in Equation (1). [3

Finally,note that reJ_cingthe 7_m-norrn bound completely re-

covc=sthe _3 cost.

Proposition 6 liraL(H,7) = C(Ho).

Proof: This followsdirectlyfrom the definitionof L(H,7) in

Equation (I) and the Dominated Convergence Theorem.

Evaluation of the Cost

Consider a state space representation for a strictly proper sys-

tem H = [H0 H_] ,

[ A I Bo B, ] = C(sI- A)" [BoB_]H= C 0 0

The aim isto evaluate L(H,7) in term_ of the statespace data.

Note that a non-zero term DI could be included; Hi is made

strictly proper only to simplify the results.
Lemma 7 Let H = [Ho HL} be 9_"'" by Equat,on (_),"_E IR,

4_ I[H_l[. < "r. The,_

L( H, ,) = trace {CQC r}

,,_,.,P, Q sc,t_,_(A + 7-'B,B[P),t_He_d

PA + ATP + 7-aPB_Brp + C7"C = 0

(A + "r-'B,B_P)Q + Q(A + 7-'BxB[P) _" + BoBro = 0 (7)

Proof: Since H_H_ < 7=I Vw, then 3M ±_ 6 7_, given by

M°M = H_(! - _-'HtH_)-tHo

A state space representation for M'M can be found by noting
that M'M is the transferfunction of the f_dback system shown

in Figure i. So

M'M = _CTC _A_" .,
o B_o

With P given by Equation (6),then

-- o']
is the stable factor of M'M above [11]. Substituting Equation (8)

into (1), it is cleatfl'om (3) that the cost g(H,'t) isthen given

by IIMII,, whereIIMII, = trace {CQC T} *-d Q sat_,_esthe Lyt-
punov equation (7) [13]. V

--__c(o,- A)-, H(-.Z -

Figm_ h Block Diagram for M'M

Figure 2: Feedback System

Optimization

The goal of thissectionis to presentan appm_h for solvin_

for the optimum controllerthat minimizes a cost functionalof

the form (I). Linear time.inv_uiantcontrollerswillbe usumed

throughout, but thisform isnot proven to yieldminimM cost.Tht

necessaryconditionsthatan optima] compensator must satisfy_,
presented.Conditions for the existenceof such s controller ate not

discussedhere.

The system can be describedby the block diagram in Figure2

P can be realizedin statespace M

P = C, 0 0 _gts (if'

C= D_o D_ 0

and H isthen givenby the [ow¢= linearf=_ction_ltransformation,

= .rCP, K) = [P,o P,,] + P,,KU - P.K)-' [e_ P,,] (Z2!

Admissible compensators K willbe those which stabilize P, and

satisfyIIHtllm< 7. The problem statement isthen

(5) m_n {L(H,7) : K _lmissible} (13)

By a stalin E of H, without loss of generality consider the ¢a_,
7=1.

The full state feedback problem is examined first, with normal-

(6) i_md controlweighting, so that C_ ffi [C _r 0] and D_ -- [0 /_ .

Theorem 8 Cona_er the problem st_teme_ (18), with Ac_. :=

A+ B,F, I/F ,aa _t_i_/eedb_k m_t.z th_tsol_e.Equ,_io,,(I$),

F = -_(P_ + PQ)(Q+ ¢)-' (z_i

_h,,'eP, Q, P, and Q satUs_ A_,,, = (Ac_ + B,B_P) st_le an,
(8)

PAcL + Ar_p + PB_Brp + CTC + FTF = 0 (15'

A.,_ + qAi, + a0a( = o (z_:

PA_,_ + A_P + crc + FrF = 0 (17:

(g) Proof: The closed loop system isH = C 0 0 . Fror
F 0 0

Vropo,ition 7,the cost k $ = tr_ce {CqC _ + FQFT}, where (

solves the Lyapuaov equation (16), tad P satisfies the Rices

equation (1_). Appending these two equations to the cost u co_

(10) straits with L_range multipliers/_ and _ respectively Fields th
equations for P, _ and F upon di][erentiating with respect to
P and F.

Pmlhniaary results indicate that an iterative approach to sol,

ing these equations converges rapidly to the optimal feedback la

F. Given an initial guess for F (say, from the minimum eutro I

controlproblem [5)), P, Q, 1_, and 0 can be computed mquentia]

_. the solution of Riccsti and Lyapunov equations. Equation (1
can then be ev_uated for F, and the process repeatte_.

For a system of order n and a fixed order comimmmtor o(

der n_, the necessm 7 conditions for the optimum can be foun

_gain using a Lagrange multiplier approsr.h, in terms of 4 ore
. +., matrix equations simiI_ to EquationJ (15)-(18). Work

currentlyinprogrmm to simplifyand interprettheseresultsfort

dy_tmic compens4ttion problem. Note that them is no a p_,
re.on to expect tkat no imprownnent in the _t c4m be _w.hie_

for _ > n.

ORIP.:dNAL PAQE I,_
OF POOR OUALI'P



Time Domain Interpretation

The form of the augmented co6t for the linear control problem

lead= to an interesting digere_ti _l games interpretation. It ie well
known that the central controller in the 74, problem c_n be found
u the solution to a zero-su.m di_erentLal game [14], where for min-

imiffiing HT,,,IIm, the control u _nd noise _u solve the optimization
problen_:

I"u = ar_in zrz-_awrwdt (19)

I"_# = argmin -zrz + 7=wren dt (20)

u has some information V about the state, and tu has full informA-
tion.

With the current cost functional, and under the usumption of

linear feedback, the optimization problem is again equivalent to a
differential gt_rte, but it is no longer a zero-sum game. x,Vhether

the two problems are equivalent when both are allowed nonlinear
re.back is unknown.

Proposition 9 I/an optimal linear compen-,,,tor ezuts foe prob-

lem (I$), then it is the s.m_ aa that of a St=ckelbe_ dtffe_nti41
game t_t,_ U _ [e_er, _21 _ follower 4rid _o _ ungt sntertagtI/

_uhite hour, _#here u and u_ solve the follol#m 9 opt_r_=atton prob-
lemJ:

= ar n UmS {:z} (21)

=, =  22)
¢_

u h_s some in/o.mation V =bout the st=e, and w h_s f_l in/o.n_-
tion.

Proof: Assuming a linear control law for u, tee optimization
problem for wt is easily solved with a single RJccati equation

(which is Equation (15) for the statefeedback case.) Append-

ing thisas a Con.traintforthe optimizationproblem (21) results

in =m identicalproblem formuJationto that of problem (13).

Tldm game see-_, to be • more natural problem to pore than
the pure 74. differential game, since the control does not benefit

from the use of noise, but inste_i optimiz_ in _ type of cost
functional, while the deterministic noise _ul solve= the sazne opti-
mization problem as before. In addition, the plant iJ subject to a

white noise input _#0. This look= =imi_r to the framework of [e,Tl
sincea singleoutput isminimized in the presence of two distur-

bance inputs,one of which isassociatedwith the _f=nature of the

problem while the other isusociated with the 74,.nature.

Note that for a non-zero sum differentialgame, the solution

depends on how the optimalityis defmed. For the Stackelberg

or leader-followersolution[15-17],one player(here the controlu)

acts_ leaderand announces a strategy,and knowing thisstrategy,

the follower(here the noisetat)solvesitsoptirruz.ationproblem.
ALso note that in general,the optimal controlfor the Staclmlberg

problem ieknown to be nonlinear[17].SimilArequation-to (15)-

(lg) have been reported in [16], where the optimal tinear state
feedback law for • Stackelberg problem wu found. The nonllneat,
team optimal strategy obtained, for example, in {17] does not ap-

ply to thisprobl,,msIncethe leaderu r.a_notincrea_ the follower

tub's cost indefinitely,and thereforecannot induce u_t to follow a

=trltegy desirable to u.
The differentialgames representationof problem (13) alJows

the matrices of Equations (15)--(18)to be given an interpretation.

-P and +/_ correspond to the optimal cost-to-go for the coetJ
associated with tat and u respectively, Q is the covanance of the

state, and _ is the sensitivity of the cost for u to changes in the
cost for w_.
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Abstract

In certain applications modeling uncertainty can be represented by a finite number

of plant models. This paper considers the problems of determining a feedback con-

troller or estimator that optimizes an 7"12 performance criterion involving a collection

of plant models. The approach is based upon fixed-structure optimization in which

the estimator or controller order are fixed prior to the development of optimality

conditions.

1 Introduction

The goal of robust control design is to obtain controllers that maintain desirable per-

formance in the face of modeling uncertainty. In certain cases modeling uncertainty

can be adequately represented by means of a finite number of plant models. This

multi-model problem arises for example, if the plant can undergo sensor or actuator

failure modes. A finite set of models has also been used to design for robustness to

an infinite set of models, as in the case of parametric uncertainty [1], high frequency

uncertainty [2], or parameter variations (e.g. for different flight regimes) [3].

A fundamental issue in multi-model problems is the simultaneous or reliable sta-

bilization problem. Here the goal is to design controllers that stabilize each model in

a finite collection of plant models. Considerable progress has been made in solving

this problem [4-10].

The goal of the present paper is to consider a multi-model optimization problem.

Specifically, we consider a quadratic (7"/2) performance criterion involving a collection

of plant models controlled by a single feedback compensator. The approach we take

involves f_ng the order of the compensator and optimizing over the feedback gains.

This approach is similar to that of [11] where static output feedback controllers were

considered.

One of our principal objectives in considering the Multi-Model Control Problem

is to examine the issue of compensator order. In [6] it is shown that simultaneous



stabilization of a pair of plants of bounded degreemay require a compensator of

arbitrazily high order. In the present paper we show how this issue manifests itself

in the structure of the necessary conditions for optimality.

To further elucidate the role of compensator order we also consider two related

problems that are simpler in structure but that involve analogous issues. The ob-

jective of the MuIti-Model Approximation Problem is to determine a single model

that simultaneously approximates a finite collection of models. For a collection of r

models each of order n_, i = 1,... ,r, the m_dmal-order solution is given by a model
F

of order _ hi, which is larger than the order of each of the given plant models.
i--1

In a related vein we also consider the Multi-Model Estimation Problem wherein

we seek an estimator for each model in a given collection of plant models. As in the

Multi-Model Approximation Problem the maximal-order solution has order greater

than the individual plant models.

The fixed-structure approach applied to the multi-model problems is a direct

extension of the technique utilized in [12-14]. Indeed, by specializing these results to

the case of a single model, the results of [12-14] are immediately recovered.

2 Multi-Model Approximation

Consider the following problem.

Problem 1 (Optimal Multi-Model Approximation Problem) Given a set of

r controllable and obsewable systems Hi, i = 1 ... r, with state space representations

H, = = C,(sI- A,)-IB, (1)
c, o

and a set oft numbers ai E IR, a, > O, i = 1 ... r, find a single approzimation model

of fiz, ed order n,_, with state space representation

= (2)
0

2



that minimizes the weighted _2 modeI-approzimation c_iterion,

r

J(Hm) = _ oa IIH,- H.]I] (3)
i=I

To guarantee finite cost J, assume that each Hi is stable, and also restrict the

optimization to the set of stable approximation models Hm. Furthermore, since the

value of J is independent of the internal realization of H,._, assume that the realization

in Equation (2) is controUable and observable. Thus require that (Am, B_, Cm) E 7_

where

T¢ = {(Am, Bm, C..) : Am stable, (Am, B.,)controllable, (Am, Gin) observable}

Without loss of generality, the weightings ai can be assumed to be normalized so that

i=1

With this normalization, the weighting ai can then be associated with the probabihty

that Hi accurately models the dynamics of the system.

The necessary conditions for an optimai solution to this problem are given in

Theorem 4. The approach used to obtain them is presented briefly here for comparison

with the approach required for the multi-model estimation and control problems in

Sections 3 and 4, and for the single model problems in [12-14].

The model approximation error transfer function Hi - Hm can be represented in

state space as

°J ,l ]H_- Hm = o Am Bm =

[Ci _Cml 0 j [Ci 0

The cost J isthen

J(Hm) = _-_tr {aiOi(_iOi T }
i=l

where each Qi satisfiesa Lyapunov equation

(4)

(s)

Ai¢, + ¢,AT+ 9ig,r = o (6)



Appending these constraints to the cost with Lagrange multipliers Pi yields first order

necessary conditions for a solution upon differentiation with respect to Qi, A_, B_,

and C._. Each matrix Pi and _), has dimension (hi + n._)x(n, + n._) and can be

partitionedinto nixni,nixn,.,nmxni and _.,.xn,,_blocks as

A __ (7)

The necessary conditionsare then Equations (6),and

o¢,
v_ (s)

OJ

OB,,,

OJ

OC,,,

OJ

OA,,,

T r

= _ _,A,,B.+_ _,A,,B,= o
i=l i=l

r

= c. _2_,¢,,,- _C_c,&,, = 0
i----! i=l

= _,(A,,¢,. + A,,¢,,,)=o
i=l

(9)

(:to)

(11)

The equation obtained from differentiatidn with respect to A,, is of particular im-

portance in simplifying and understanding the structure of the necessary conditions.

In the case of a single model (r = 1), Equation (11) yields

G T

A projection operator r = GTF = r 2 is then used to simplify the equations [12].

For the multi-model approximation case, from Equation (6) each Qi2,

identical equation,

" A _ B_B_ = 0 (la)A_¢i,, + q,.,., +

Hence the Qi,, satisfy Qi,, = Q2_, i = l...r. Similarly, each /3i,, satisfies

satisfiesan

r- cr_c. =0 (14)



and hence/5,_ 2 - ]522, i = 1 ...r. Furthermore, from Equations (13) and (14), (_2 and

15;_ are the controllability and observability grammians, respectively, of the system

H,,_. With these simplifications Equation (11) can be written as

+ 0 (15)
i--1

This immediately gives the following result:

Proposition 2 Given a fized order model that is optimal for Problem 1, of order

n_ > N = _ n,, there exists a model of order N with the same cost. Hence with no
i=l

fized order constraint, the optimal system .for multi-model approzimation has order

no larger than N.

Proof: Vi, rank {Pie, 0i,, ) _< n,, hence rank a_a,, {_i,, < N. So, from

Equation (15), rank {h202_} _< g. If n= > N, either ]52_ or 0,s or both must not

be full rank, and thus the representation of H,,, must have states which are either

uncontrollable or unobservable. (The maximum number of states which are both

observable and controllable is N.) Removing any uncontrollable or unobservable

states yields a system with identical cost and at most N states. []

With the controllabilityand observabihty assumptions on the representationof

H.,, ]522and (_2_must be positivedefinite,and thus Equation (15) can be written

(16)

Define

r = GrF

T I -- /IV _ T

(17)

(is)

(19)

(20)



Then _" is again an oblique projection operator, that is r 2 = -r. Note that in general,

r is oblique rather than orthogonal, since it need not be symmetric.

The following lemma from [12] is required for the statement of the main theorem.

Lemma 3 Suppose ¢, P E lit N_ are positive semi-definite. Then eP is nonneg-

afiresem.impte(hasnon-negativeeigenv_lues).Furthe,,_ore,if rank{¢P}= ,_,,

then there ezist G, P E IR"_'xlv and positive semisimple M E IR'"'x'" such that

Cp =GrMr (21)

rGr = I,_, (22)

Matrices G, F, and M satisfying the conditions of the lernma will be referred to as a

projective factorization of QP.

It will be convenient to compile the state space information about all of the models

into a single set of matrices (A, B, C,,), where

A ___

0

_',-. = [ axC1 a2C2

0

A,

• .. _C_]

B1]

B, [ (23)
,a

The subscript a on 6'.. indicates that it depends on ai.

Theorem 4 Suppose (A.,,B.,,C,.) solves the optimal multi-model approzimation

problem (1). Then there ezist positive semi-definite matrices Q, P E IR Nx_r such

that, for some projective factorization of QP, A,,_, B_, and C,_, are given by

As = rAGr (24)

e,_ = rB (2s)

Cm = OaGT (25)

6



and such that the following conditions are satisfied:

rank (Q} = rank {/5) = rank {#/5} = n,

A# + OAr + _    BrT.r = 0

PA + ArP + Or& r "r "- riO_ O,,ra.= 0

(27)

(28)

(2g)

Proof: Define # = G"_#22G and/5 = r,r/522r,,and note that r# = #, and/st = aft.

Pre- and post-multiplyingthe Lyapunov equations (13) and (14) for 0,, and 152,by

either I,,.. = FG"er or I,_.. = GF r yields the following equations:

7" [A# q" OA T dr- j_j_T] _. 0 (30)

[/5/_ -l-AT/5 + C_C'c,] "r -'- 0 (31)

The (1,2) sub-blocks of the Lyapunov equations (6) and (8) yield identical equations.

Equation (30) is equivalent to Equation (28) since Equation (28)=(30)+(30)r-(30)r,

and Equation (30)=7.(28). Similarly, Equations (31) and (29) are equivalent. Note

that only two Lyapunov equations are required for the necessary conditions because

the (1, 1) sub-blocks of both Equation (6) and Equation (8) are superfluous.

Equations (25) and (26) follow directly from (9) and (10). Equation (24) for A_

is obtained from the (2,2) block of either m(Eq'n 8)#, or a_P,(Eq'n 6) ,

either of which yield that _ (a,/5,A,,#,) = 0. 13
i=1 22

Because the form of the equations is identical to that of the single model case,

the discussion in [12] applies for this problem as well. As in [12], the form is a result

of optimality, and not fixed beforehand. If (Am, B,_, O,_) satisfies the necessary con-

ditions, so does (TA_T -a, TB,,,, 6'_T -a) for an arbitrary nonsingular transformation

matrix 7'. Further, there exists a similarity transformation which diagonalises Q/5

and r simultaneously. Representing r in terms of #15 as in [12] lends to numerical

algorithms for the optimal multi-model approximation problem.

7



Remark 5 In the "full order" case n,,_ = N, then r = G = F = IN, giving A_ = ,4,
P

B,_, = B, and Cr_ = C... Thus H,,, = _ c_Hi. This is ezactly the expected result," the
i=l

best possible approximation is simply the weighted average of all the models.

Remark 6 For a single model (r = 1), the equations clearly collapse to the equations

of[12].

3 Multi-Model Estimation

Consider the following problem.

Problem 7 (Optimal Multi-Model Estimation Problem)

tern_ Hi, i = 1...r, with state space representations

Hi= Ci_ 0 = (sI- Ai)-lBi +
Ci, O_

Ci, Di

and a set oft numbers ai E IR, el > 0,

order he, with state space representation

[AI ]lie= '
C. 0

that minimizes the weighted 7"[2 model-estimation criterion,

1"

J(g,) = _ ai IIH,, - H,H,,II]
i=1

where Hi is partitioned into Hit and Hi2 according to the two outputs.

Given a set ofr sys-

(32)

i = 1...r, find a single estimator of fized

(33)

(34)

The estimation problem can be illustrated by the block diagram as shown in

Figure 1.

The following assumptions about the problem will be made:



Zi

Figure 1: Estimation problem for each system.

(i) Each Hi is stable, and each (Ai, Ci,) is detectable.

(ii)

(iii)

r

i=l

For clarity in understanding the form of the equations, the process and mea-

surement noise for each model will be assumed to be uncorrelated, so/_ib_ = 0.

Without loss of generality, assume/_i = [Bi 0] and Di = [0 D,] •

(iv) Require that the measurement noise have no singular directions common to all
$.

models, so _ aiDiD_ > 0. This is a generalization of the usual single model
i=l

assumption of nonsingular measurement noise, DD r > O.

It is interesting to note that each Di need not have full row rank, hence the

estimation problem for each individual model may be singular without the multi-

model problem being singular.

As in the multi-model approximation case, require (A,, Bt, C,) ETC.

The model estimation error transfer function Hi, - HtHi_ can be represented in

state space as

H_, - H, Hi, = B.Ci, A, 0 B,D,, = C_ 0

Cil -C, 0 0

(35)

The cost J can again be written in the form of Equation (5),

"{ }J(H,) =S] tr (Se)
i=l



where each Q, satisfies a Lyapunov equation identical to Equation (6)).

Necessary conditions can again be obtained using a Lagrange multiplier approach.

The Lyapunov equations for/3i are identical to Equations (8). The equation obtained

by differentiating with respect to A, is the same as Equation (11), and once again this

will be the key equation for understanding the structure of the necessary conditions.

For this problem, each Q_ satisfies

A.¢),,,+ + + . + B.B = o (37)

Each Qi,= now satisfies a distinct equation, and thus Qi,, # Qk_,, i _ j. The critical

observation for this problem, however, is that each/3q_ still satisfies Equation (14).

Thus it is stiU true that /3i,, = /32a , i = 1...r. This is sufficient to obtain the

dements of a projection operator from Equation (11), and to prove the foUowing

result, analogous to Proposition 2.

Proposition 8 Given a fized order model that is optimal for Problem 7, of order
r

n,, > N = F_. hi, there e¢ists a model of order N with the same cost. Hence with
i=l

no fixed order constraint, the optimal system for multi-model estimation has order no

larger than N.

{,t, }Proof: As in the Multi-Model Approximation case, rank ai/3q, Qi,_ < N.

From Equation (11). rank{P22 _ a_(_,..} < N. If n,,, > N. either P22 or __,a,Q,..
i=l i=1

or both must not be full rank. /322 is the observability grammian of the system

(A,, B., C,), and thus is not full rank if and only if (A,, 6',) is unobservable. Also,
l"

E aiQi,, is not full rank if and only if (A,, B.) is not controllable. This result will
i----1

be proven in Proposition 13. Proposition 8 then follows in the same manner as the

proof of Proposition 2. []

Remark 9 The estimator must obtain all the information possible about the state

from the output y. Since all state information from all the models has a finite di-

mension N, there is an estimator state vector of dimension N that contains the most

10



information possible about the state vectors of the It,. Any additional estimator states

must be redundant.

As noted earlier, t522 is the observabillty grammian for H, and therefore must be
1"

positive definite. Proposition 13 proves that _ a_Q_,, must also be positive definite.
i=1

Hence for the multi-model estimation problem, Equation (11) can be written as

r, , a_

(38)

With G, F, and -r defined as in Equations (17-19), r is again a projection operator,

satisfying r 2 = r.

In addition to the definitions of ft. and 1), given in Equation (23), this problem

requires (7o_ and C..,, defined analogously to C.., and

B,B_ 0

o B,B[

0 B,B,T

(39)

= :E D,D, (40)
i=1

Theorem 10 Suppose ( A,, B,, C.) solves the optimal m_ti-model estimation problem

(7}. Then there ezist positive semi-definite matrices Q, Q, P fi I_NxN such that, for

some projective factorization of Q/5, A=, B=, and C. are given by

A, = rAG r - B,O.,G r (41)

Be "T -I= rQC,.,V2 (42)

6', = d'o,G T (43)

and such that the following conditions are satisfied:

AQ + QA r + _ "r -1 _ "r -1- QC_,V2 Go, Q + r±QC_V 2 C,,,Qrj. = 0 (44)

11



iQ + bA r + Q_ v2-'_o,Q - _._o,_r v-,Oo, Q__= o (45)

P(A ('D&Ty-10,_,) + (_ _ ^T -1 " T" "T- .,,,..°, _ QC'_V, c..,) P + c_,¢'.., - -,-_.05,g'..,,-,.= o (46)

Proof." The derivation of these equations is similar to that for the necessary con-

ditions for the multi-model approximation problem. Define Q = O r (,_ c_Q,,,) G,
#

P = rTp_r, andQ = diag{":'0,,, } - Q. Substituting intotheLyapunov equa-
tionsdefining (_, and /5_ yields Equations (45) and (46) from both the (1,2) and

(2,2) sub-blocks. The (1,1) sub-block of the Q_ Lyapunov equation can be used

to obtain Equation (44), and the (1, 1) sub-block of the/5, equation is superfluous.

Equations (42) and (43) follow directly from the equations obtained by differentiating

the augmented cost with respect to Be and Ct. Equation (41) for A_ is obtained in

an analogous fashion to the approximation problem. 1:3

As in the multi-model approxfimation case, the necessary conditions obtained here

are similar in form to those for the single model case [13]. Again, the necessary

conditions hold for any non-singular state transformation of the estimator. Numerical

algorithms developed for solving the equations in [13] can be applied to this problem

as well.

Remark 11 In the "full order" case n, = N, then _" = G = F = IN, giving A_ =

A - B,_,, B, = QO_,W', andC, = 0,,,. OnlytheRiccatiequation�or Q nee_ to

be solved, and thia has the same form as the Kalman filter equation. Because of the

coupling of the multiple models in Q, the full order estimator is not simply a weighted

average of the individual model estimators.

Remark 12 For a single model (r = 1), the equations clearly collapse to the equa-

tions of [1_]. For r = 1 and n, = N, the equations collapse to the standard Kalman

filter result.

Finally, the proposition used in the proof of Proposition 8 needs to be proven.

r

Proposition 13 Q = _ aiQi,,
i=,

i, full ranki/and onlyi/(A,, B,) is _ont,oUable.

12



Proof: (_ satisfiesthe Lyapunov equation

(A, + B,C..,GT)Q + Q(A, + B,C,,,GT) T + B, V2BT, = 0 (47)

This follows from summing Equations (37)and representing Q,_ in terms of G

and _. ¢_ is therefore a controllability grammian, and is full rank if and only if

(A, + B,6',,, G"r, ]3, ) is controllable. This system is controllable if and only if (A,, B,)

iscontrollable. D

4 Multi-Model Control

A simple form of the necessary conditions for the multi-model control problem is sig-

nificantly harder to obtain than for either of the two previously considered problems.

A form of the equations similar to the single model case has not yet been obtained.

The problem will be set up here, and the critical issues discussed. In particular, the

question of controller order is investigated.

Consider the following problem.

Problem 14 (Optimal Multi-Model Control Problem)

terns Hi, i = 1... r, with state space representations

[IHi = 0_, 0 D,,,

Given a set of r sys-

(48)

and a set oft numbers o_ E IR, e_ > O, i = 1... r, find a single compensator of fized

order no, with state space representation

(49)

(50)

that minimizes the weighted 7"12model-control criterion,

t"

J(Ho) = IIH,.II 
i=l

13



Hi inpartitioned into Hut , Hit3, Hi2_ and Hi3_ according to the two inputs and two

outputs. The closed loop transfer f'_netion Hi.,, is obtained from the lower linear

Factional transformation, Hi.. = U( Hi, He).

The control problem can be illustrated by the block diagram as shown in Figure 2.

w ,I I z.

u y

Figure 2: Control problem for each system.

The following assumptions about the problem will be made.

(i) Each system Hi must satisfy (Ai, B,,) stabilizable and (A,, C,,) detectable.

T

(ii) _ oa = 1
i=l

(iii) For a compensator He to exist which gives finite cost J, the set of systems Hi

must be simultaneously stabilizable. Conditions for simultaneous stabilization

have been studied by Ghosh and Byrnes [6].

(iv) As in the estimation problem, assume uncorrelated process and measurement

noile, so Bit Di2t = 0. Without loss of generality, again take Bi, = [Bi, 0] and

Di2t = [0 Di2tl " Further, require that the measurement noise have no singular
T

directions common to all the models, so E aiDi:t Di_t > 0.
i=l

Ci, Di,, = O, Oi, =(v) The dual assumptions to (iv) will also be made. That is, -T-

[01, = , and _ aiDit:Di_: > 0. Note that for any individual
Dit: i=l

Hi, the control weighting Di,2 D_3 may be singular.

14



The optimization will be restricted to the (non-empty) set of simultaneously sta-

bilizing compensators H=, with controllable and observable realizations.

The closed loop transfer function H,,,, can be represented in state space as

0 0

0 0

]0 (52)

The cost J can again be written in the form of Equation (5),

"1 }
4=1

and again,each (_4satisfiesa Lyapunov equation identicalto Equation (6).

Necessary conditions can again be obtained using a Lagrange multiplierapproach.

The Lyapunov equations for ]5iare identicalto Equations (8).Once again,the equa-

tion obtained by differentiatingwith respect to A_ is the same as Equation (11).

However, for the control problem, there is a crucialdifference.Each {_i,,and ]_i,,

satisfy,respectively,

" A T 15. _TBT B=B[ = 0 (54)A,04,, + Q,,, _ + B, C4, 0,,, + .._,,t_,, = +

T- A,,B,,C, T T- c[co o (55)P,,, A= + A, P,,, + + C_ B4, Pit, + -

Thusforthis problem,every¢4.. and everyP4..isdifferent,that is¢,,, -#Q,,,,, # j.

and P,,,# Pa,, i # J. As a result,Equation (Ii) isdifficultto factor,and thisalso

has seriousimplicationson the order of the compensMor.

Proposition 15 There is no a prioribound on the order of a compenaator tohichis

optimal for Problem 1.4.

Proof: Ghosh and Byrnes [7] give an example of two second order systems, param-

eterized by A, which require an arbitrarily high order compensator for simultaneous

stabilizationas A tends to some limit.Since any optimal compensator must be si-

multaneously stabilizing,italsomay be of arbitrarilyhigh order. []
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Remark 16 The result in Proposition I5 has been shown before/the purpose of re-

stating it here is to illustrate how the result manifests itself in the present contezt.

For all three of the problems investigated in this paper, _ _/3i,z Q,** has at most
i=1

rank N. Equation (11) then yields that _ o_P_,,O_,, has remk less than or equal to
i=l

N. For controllable and observable systems H,,,, H,, and He, each term in this last

sum has rank n,,,, n,, or no. In the approximation case, this sum can be factored as

P22Q22, and in the estimation case, it can be factored as P22 _ _Q_**- Sylvester's
i----1

inequality [15] can then be used to show that this second sum has rank equal to n,,,

or n,. From this, the conclusion that n,,, <_ N, and n, _< N follows. In the multi-
t*

model control problem, the sum _ o_/5_,, Qi** may have maximum rank N while the
i=l

individual terms in the sum can have larger rank n_. That is, the optimal compensator

may be both observable and controllable for arbitrarily large order n_.

Theorem 17 Suppose (A_, B_, Cc) solves the optimal multi-model control problem

(I_). Then there e=ist positive se_ee_niU m_t_ces _,, P, • _tc,_+-.)xc-,+-.) such

that A_, Be, and C_ are the solutions of

T

E a_ ([o_,,A,_,,, +/5_,,A,Q,,, + Di,,B,C,,Q,,, + [_i,,B,,C, Qi,,) = 0
i----1

(56)

T

E ai (Pi,,B,D,,,D, T, + (/5,,,_,,, +/5,,,¢,,,)C_ ) = 0
i=1

(57)

" oE _ (D[,Di,,C..Q,,, + B,,(P,t,Q,,, + =
i----I

(58)

where Qi and Pi satisfy Equations (6) and (8) respectively, with the appropriate par-

titioning given by Equation (7).

Proof: Equations (57) and (58) are the necessary conditions obtained directly

from differentiating the augmented cost with respect to B, and Co. Equation (56) for

Ac is obtained in the same manner as for the approximation and estimation problems.

I3
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Remark 18 Equation (56) can be solved for A, using Kronecker algebra [16];

vec {A,.} a. "T A,,= sQi_ @ X

le

y]_ a, ((0:, ®/5i,,) vec {Ai} +vec {Pi,,B¢Ci, Oi,, + Pi, tBi, C, Oi,,})
i=1

(59)

Note that the inverse in Equation (59) exists. To see this, note that each/_,,, and Q_,,

axe positive definite, and their Kronecker product is therefore positive definite [16].

The sum of these products is therefore nonsingular.

Remark 19 lf D,_l = #,D2x, i = 1...r (which may not be an unreasonable assump-

tion,) then Equation (57) can be written as

T Vi-aBo= 0,,, +

½= ai_i D21D_I

loh _ re

=o (60)

(61)

In general, Bc can be solved using Kronecker algebra. Similar comments apply to the

calculation of Cc.

5 Conclusions

The simultaneous optimal approximation, estimation and control problems for mul-

tiple models has been investigated. In each problem, the order of the system to be

found is fixed, and the necessary conditions that an optimal solution must satisfy are

found. For both the approximation and estimation cases, the optimal model can be
f

written as an optimal projection of a "full order" model with order N = _ n_. There
i----1

is no improvement in the optimal cost that can be obtained by using a model with

order larger than N. In the control case, there is no such a pr/or/bound in terms of

the individual model orders ni that can be placed on the optimal compensator order.
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ABSTRACT

The exact Linear Quadratic Regulator solution for infinite order structures is

the convolution of spatially distributed feedback kernels with spatially

continuous state functions. For structures, several state functions exist that

completely describe the state of the structure at any given point in time. The

continuous control function is then the convolution of one of these state

functions with an appropriate feedback kernel. If another state function is

selected, a new feedback kernel can be derived that will yield identical closed-

loop performance. The appropriate state function should be selected based

upon the ease with which it can be measured.

This paper discusses the estimation of exact displacement and displacement
rate feedback kernels from finite dimensional control solutions based on finite

element structural models. These kernels are then transformed to equivalent
curvature and curvature rate feedback kernels. These curvature kernels are

augmented with single point displacement and rotation feedback to account for
rigid body motions. The curvature and curvature rate state functions can be

measured using a growing class of sensors known as area averaging sensors.
The output of area averaging sensors equals the convolution of all structural

curvature states with the spatial sensitivity function of the sensor.

Transforming the discrete feedback gains into continuous feedback kernels

and using area averaging sensors enables the implementation of full state

feedback for infinite order structural systems.



INTRODUCTION

Rationale

Structures are infinite order systems. To obtain a mathematically exact

structural model requires the use of a set of partial differential equations

subjected to the appropriate boundary conditions. However, in practice it is

difficult or impossible to find the exact closed-form Linear Quadratic

Regulator I (LQR) solution for most structures. Therefore, structures are often

modelled by discretization of the structure. This is even true for some very

simple structures. The most common method of discretization is finite

elements. When the structure is discretized, the order of the model is reduced.

Instead of being modelled by an infinite order system, the structure is now

modelled with a finite number of degrees-of-freedom. The result is a matrix

ordinary differential equation which will approximate the temporal and

spatial behavior of the structure.

Given the possibility to model a structure as an infinite order system or as a

discrete finite dimensional model, it is prudent to define the terminology used

in this paper. A state function corresponds to a motion variable which is a

continuous function of both space and time. Discrete states or degrees-of-

freedom correspond to point motion variables, which are functions only of

time, at a finite number or locations throughout the structure (Fig. 1). The

feedback of spatially discrete structural states involves feedback gains,

whereas the feedback of a spatially continuous state function involves feedback
kernels.

For control design, Linear Quadratic Regulator (LQR) methods exist that can

be used to formulate optimal structural control solutions for these matrix

ordinary differential descriptions. Given that model truncation is one of the

major contributors to the control spillover problem, it is desirable to include as

many degrees-of-freedom as possible in the control model. This is a costly

approach, both in terms of money and in implementation since the increased

z,v v(x) v i v n

El, pA
,_ X

x=O x=L
,,q

Figure 1. Graphical repre_nmtion of tCmte vector
and state function description of a structure



number of degrees-of-freedom requires more state sensors and the controller
needs to multiply state feedback gains with the increased number of state
measurements to obtain the feedback command. However, the derivation and

implementation of a LQR solution, based on a infiniteorder model, that
convolves a spatiallydistributedfeedback kernel(s)with a spatiallycontinuous
state function(s)would completely avoid the model truncation, spatialaliasing
and cost of implementation problems.

This approach contradicts two common beliefs that stems from the use of
approximate, reduced order structural models. A common beliefis that that
the feedback architectureis typicallythe multiplicationof gains with discrete
point measurements (or estimates) of the structural motion. These

measurements typicallycorrespond to degrees-of-freedom in a finiteelement
model. The second beliefis that the type of degrees-of-freedom (displacement,
rotation and their rates)used in the reduced order model are the appropriate
statevariables to measure.

Itis also important to realizethat the feedback kernels can be transformed as
desired to accommodate measurements other than the statesvariables used in

the model. Such a transformation can allow the use of not only displacement
or rotation but also curvature as measurements for the infinite order

controller.This paper discusses the estimation of exact feedback kernels from
finitedimensional controlsolutionsand the transformation of these kernels to

accommodate the measurement of curvature. Posing the feedback in terms of
curvature allows the use of a growing class of sensors known as area
averaging sensors. These sensors can provide the spatially continuous
measurement of the curvature required by the infiniteorder controller.

Implementation issues associated with these sensors are also discussed in
order to demonstrate one technique for realizing the use of these feedback
kernels. In thissense, the continuous kernel represents the fv.llstate feedback
solution for infiniteorder structural systems, and the availabilityof at least
one implementation technique makes this solution more than just a
mathematical exercise.

Background

The description that is obtained of a structural system from a finiteelement
model is a set of second order, matrix ordinary differentialequations of the
form

M_(t) + CX(t) + Kx(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices, respectively.
The vectors x and f contain discrete point degrees-of-freedom and force inputs,
respectively. This system can be placed in first order, state-space form

i_(t) = Az(t) + Bu(t) (2a)

where

3



I x 0

The Linear Quadratic Regulator minimizes a cost

J = _ i{zTQz + uT Ru_t

0

forthissystem by formulating a feedback gain matrix G such that

u(t)= -R-I BT pz(t)= -Gz(t)

where P isthe solutiontothe steady-statematrix Riccatiequation

PA + ATp + Q - PBR-IBTp = 0

(2b)

(3)

(4)

(5)

The feedback form in Eq. 4 consistsof multiplying the feedback gains contained
in G by the statevector in z, whose entriescorrespond to the temporal motions
of spatiallydiscretepoints throughout the structure. The resultant products
are summed to arrive at the appropriate control actions which are placed in
the vector u. This feedback architectureissimply an artifactof the need to use
a finitedimensional (reduced order) structuralmodel to implement the control
design.

In actuality, structures do not undergo motion only at discrete points
corresponding to the model's nodes but also deform continuously throughout
the region between nodes (See Fig. 1). The exact motion of the structure is
described by state functions which are continuously distributed along the
length of the structure. Therefore, for infiniteorder structural systems, the
mathematically exact control inputs are not the sum of products of discrete
gains with discrete motions but the general form of the control is the spatial
convolution of the statefunction with a feedback kernel.

In order to demonstrate the concept of using infinite order structural models
for control, a simple structural beam can be used as an example. The partial
differential equation description of a uniform beam is

o_4v(x,t) c)2v(x,t)

EI bx 4 + pA Jt 2 = f(x,t)

This descriptioncan be placed into state-space,spatialoperator form 2

-_z(x,t ) = a(x)z(x,t) + b(x)u(x,t)

(6)

(7)

by choosing the statefunctions as those which determine the potential(strain)
and kineticenergy in the beam (curvature and transverse velocity)
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J

0

EI j2

pA 2 o j[wj (8)

The parameter E is the modulus of elasticity,I is the area moment of inertia,

A is the cross-sectional area and p is the volumetric mass density.

The cost is defined by

J = L _ J(< qz, z > + < ru,u >)dxdt

2 o-- (9)

where the matrices q and r are matrix operators penalizing the state and

control functions, respectively. Note that q and r are not constants but are

spatial operators and that the inner integral indicates that the beam is
assumed to be of infinite extent. An infinite extent beam was chosen to

facilitate the acquisition of a closed-form, exact solution. However, the

operator form for a finite extent beam can also be posed, although the solution

will probably require numerical techniques.

The feedback structure is found from the solution pz to the functional

Riccati equation

0 = paz + a*pz + qz - pbr-lb*pz Vz (10)

where the symbol "*" signifies the adjoint operator. The feedback is the spatial

convolution of a kernel matrix A:with the state function z

u(x,t)=-r- b (pz)(x,t)=- JlC(x-w)z(w,t)dw

-.- (11)

where x corresponds to the location on the structure where control is applied

and w indicates where states are measured. Equation 11 is the general

solution because it represents the control action at any location as a function of

the state functions along the entire extent of the structure. This feedback is

analogous to that in Eq. 4 in the sense that it represents the continuous sum of
gains times the states of the structure.

The implementation of these continuously distributed feedback kernels

requires the use of a continuously distributed sensor. Several researchers

have demonstrated the use of continuously distributed curvature sensors and

actuators. C.K. Lee3, 4, S.E. Miller5, S. Collins 6 and D. Miller7 have worked on

the development of area averaging sensors. These authors use spatially

distributed sensors to achieve certain measurement characteristics. C.K.

Lee3, 4 and S. Collins 6 used sensors shaped as particular mode shapes to obtain

a measurement of the generalized coordinate of that mode. S. Collins 6 and D.

Miller 7 developed sensors which roll off with frequency without exhibiting

phase lag. It will be shown in this paper that area averaging sensors can be

used to implement the feedback solution to a partial differential equation

description of a finite extent structure.
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Appma 

An over optimisticgoal for this research would have been to attempt to solve
the infinitedimensional structuralcontrol problem. This goal is not realistic
because firstitwould require the exact partialdifferentialequations (PDE) and
boundary conditions (BC's) that describe the dynamics of the structure and

second itwould be impossible in most cases to find the LQR solutioneven ifan
exact model existed, de Luis2, for example used an infiniteextent beam in

solving the infinitedimensional controlproblem in order to find a closed-form,
exact control solution. The same infinitedimensional control problem can

also be posed for a finiteextent beam s. However, this problem is much more
di_cult to solvedue to the existenceofboundary conditions.

A more realisticapproach is to model the structures with the more familiar

finitereduced order models (Eqs. 2 through 5) and to hope that by increasing
the fidelity(number of degrees-of-freedom) of the model, the continuous

feedback kernel can be inferredfrom the distributionof the discretegains.

The following section discusses the derivation and implementation of

continuously distributed feedback kernels. Several important steps are
involved in this derivation. First,spatiallydiscretedisplacement and rotation
gains derived using standard matrix Riccati techniques on finiteelement
structural models must be converted into spatially continuous feedback
kernels. Second, these kernels must be transformed into feedback of

distributed curvature to facilitateimplementation using area averaging
sensors. An alternativeapproach, also discussed in the next section,is to first

convert discretedisplacement and rotationgains into discretecurvature gains
and then to convert these gains into a spatiallycontinuous curvature feedback
kernel. Numerical examples are interspersed with these formulations to
demonstrate these techniques. After the section on feedback kernel

formulation, a discussion of general control issues of interest is presented
along with an additional numerical examples.

Reference Example

Throughout the rest of this paper, these techniques are formulated for the
cantilevered beam of length L shown in Figure 2. A control moment isapplied

to a point on the beam 1/10th of the distance from the clamped root to the free

tip. This moment actuator is used to represent an equivalent piezoelectric

actuator at the cantileveredend. de Luis etal2 demonstrate that one valid way
of modelling the influence of a piezoelectriccurvature actuator is to derive

equivalent moments at the two ends of the actuator, which are of equal
magnitude but of opposite sign. In this problem, if it is assumed that the

piezoelectric actuator runs from the root, the companion moment at the
clamped end of the beam does not enter the problem and is therefore not

shown. The pertinent parameters of the problem are listedin Table 1. The

performance metric is the transverse displacement of the tip of the beam (Vtip).

The entry in the state penalty matrix (Q) corresponding to this displacement is

6



assumed to be unity. This statepenalty in equation form, from Eq. 3, is

zr Oz = V2p
(12)

Z,V

%

x=O I L
Xl I Xa = U

--_ _---- 10
I I

Figure 2.Cantilevered.Bernoulli-Eulerbeam.

FEEDBACK KERNEL FORMULATION

This formulation process is shown in Figure 3. The upper leR box represents
the formulation of discrete displacement and rotation gains using classical
finiteelement models. The objectiveis to evaluate the continuous curvature
kernel represented by the bottom, right box. Two paths (1 and 2) can be
followed to obtain the curvature kernel from the displacement and rotation
gains. Following either path involves the same three steps but in different
order. In either case,the firststep is to evaluate the discretedisplacement and
rotationgains. For brevity,reference to displacement, rotation and curvature
rate gains and kernels are omitted from the discussion although they are an
integralpart of any control design. However the evaluation of these rate gains
and kernels are identicalto the processes shown for the displacement, rotation
and curvature gains and kernels.

Following path one, the second step involves calculating the continuous
displacement kernel from the discretedisplacement and rotation gains (Path
la in Fig.3). This displacement kernel completely describes the feedback. The
evaluation of a rotation kernel is redundant since itwould simply be derived
using the same gains that were used in deriving the displacement kernel. The

third step (lb) involves transforming the displacement kernel into a curvature
kernel which convolves with distributed curvature to generate the control
action. This path isdiscussed in detailin the restof thissection.

Table

Bending stiffness

1. Parameters for cantilevered

E1

Control effort penalty

beam example.
1.0 Nm 2

Mass per unit length pA 1.0 kg/m

ILength L 1.0 m
Actuator location xa 0.1 m

R 0.001

7



KERNEL

Discrete

i[Discrete displacement

and rotationsgains
from classicalFEM

and LQR

Discrete
curvature gains

Use finite element

displacement

interpolation

functions

la

Discrete state

transforrnatwn

2b

v

Use finite element
curvature

interpolation

functions

Figure 3. Matrix of feedback options.

Continuous

Continuous displacement

kernel function

lb I Integration

Continuous curvature

kernel function

Following path two, the second step involves transforming the discrete
displacement and rotation gains into discretecurvature gains (2a). The third
step then involves using these gains to find the continuous curvature kernel
(2b). This path isused, in the followingdiscussion,as a check of the firstpath
since both paths should yield approximately the same curvature kernel.

Evaluation of the Discrete Displacement and Rotation Gains

The first step in evaluating the discrete displacement and rotation gains is to
develop a finite element model of the cantilevered beam. The mass and
stiffness finite elements that are used in the following analysis are

reel e =

156 22l 54 -131"

22l 4l 2 13l -3l 2

54 13l 156 -22l

-13l -3l 2 -22l 4l 2

12 6l -12 61

6l 4l 2 --61 2l 2

-12 -61 12 -6l

61 2l 2 -6l 412
(13)

8



with the corresponding finite element nodal degrees-of-freedom

Vele= Ui Ui Ui+l Vi+l (14)

where l is the element length and is equal to the total length of the beam (L)
divided by the number of elements. The other parameters are listed in Table 1.
It is assumed that the model is undamped. The entry in the state penalty
matrix Q corresponding to this displacement is set equal to one.

Using a ten element model of the beam, the gains obtained from the LQR solver
are shown in Figure 4. The gains in the upper left window are the

displacement gains at discrete locations along the structure. The lower leR
window shows the rotation gains. Notice that no discernable spatial
distributioncan be seen in these gains. The windows in the upper and lower
right display the displacement rate and rotationrate gains, respectively.

10
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4

2
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-2
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S ,m ' *

m #s

2.51

_.5F
i- I

_" 1

0,5!
e__ t

lira

* t
$

X _

, !

t

0.2 0.4 0.6 0.8
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-0.5
0 0.2 0.4 0.6 0.8 1

(a) (b)

0. I)

= 0.05_

o

O.Ol

-0.05 -0.03
0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1

location on beam location on beam

(c) (d)

Figtwe 4. Discrete gains at nodal positions along the structure for controlling tip

displacement. The individual windows show grins for (a) displacement, (b) displacement
rate, (c) rotation and (d) rotation rate.
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These displacement and displacement rate gain distributions indicate the

shape that the respective continuous kernels will have, but not the

magnitudes. This is only an approximate indication of the continuous shapes

since the displacement kernel combines the information from both the discrete

displacement and rotation gains. In other words, a single kernel contains all

of the gain information displayed in a single column of Figure 4.

Evaluation of the Spatially Continuous Feedtmck Kernel

The next objective in the analysis is to find the spatially continuous feedback

kernel from the spatially discrete gains evaluated in the previous section (Path
la in Fig. 3). To this end, the beam finite element displacement and rotation

gains will be used to derive the continuous displacement feedback kernel
which convolves with the displacement state function. Since the reference

example has a point actuator, the feedback convolution in Eq. 11 degenerates to
the integral of a kernel times the state function. It is also convenient to use a

kernel that is defined over the length of the beam, rather than having the

kernel be defined, as in Eq. 11, in terms of the actuator location (Xa). Using

this kernel transformation, the feedback is given by

L

u(t)=-I_w)z(w,t)dw=- [_C t¢DR](W) w,t)dw
0

L

= -f _:C(W) 32v "

0

o

L

t)dw- f  DRCW) Cw,t)gw
o

L

=-j _D(W)V(W,t)dw- _DR(W)--_(w,t)dw
0 (]t

o

= uD(t) + UDR(t) (15)

Note that the state functions shown in Eq. 8 include the curvature of the beam.

Eq. 15 shows part of the feedback to be the integral of curvature times a
curvature kernel. Alternatively, this can equivalently be expressed as the

integral of the displacement state functions times a displacement kernel. This

displacement kernel is derived in the next paragraph.

The integration over the entire length of the beam can be divided into the sum

of integrals over segments of the structure corresponding to the finite element

domains as shown in Fig. 5.
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(a)

IL _D (w)"• s J

u(t) = J KD(W) v(w,t)dw .

x=O I x=L
NI L

I Xa =m
-_ I_--- 10

I I

_(w)
wi+ ! ,'1

j .u(t)- KD(w) v(w,t)dw .;."
I

_ "_'_V (W)
.'q I

,',t (M ,
_ __ X,W

x=O -7 w, w_÷ I x=L
"q I

-_ _--- L
I I Xa =m

10

Figure 5. Graphical representation af integration cfflon-nel with state function

The firsthalf of Eq. 15 then becomes

L

uD(t ) = - [PrD(W)V(w.t )dw
0

wi+ I

=...- JprD(W)V(w,t)dw-

wi

=...UD i + UD,+I +...

wi÷2
] _rD(W)V(w.t)dw-...

Wi.l

(16)

The element interpolation function description of the displacement anywhere

within the element located between wi and wi+!

,2 + 2___)vi(t ) + ( _ _ 2_/5. + _ff jlvi(t )v(_,t)=(l-3--_--

( _2 ¢,) ,'¢2 _,)+ 3-_--2-_ v,.z't)--lj -[5 lvi*'(t)
for O<_<l

(17)
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can be substituted into each of these element convolutions. Then, the control

action associated with an element is a function of that element's nodal

degrees-of-freedom

wi+ 1

UDi(t)=_ f rD(W){( 1 ¢2 ¢3_-3--_-+ 2 l-T)vi(t)

wi

(3_2 - ¢3 ¢22--_-)Vi+ l(t ) - ( -["5

¢3

¢2 __.tvi(t) +

¢31}l2
lvi+1(t) dw where ¢ = w- wi

(18)

Ifthe form for rD were known, then the integral in Eq. 18 could be evaluated to

find the the gains for the nodal degrees-of-freedom. Conversely, in this case

these gains are known from the solution to the matrix Riccati equation and

instead it is the form of the kernel rD that is being sought. To estimate this

kernel, a form for the kernel, containing unknown parameters, can be selected

so that the spatial integral in Eq. 18 can be evaluated. Then, these parameters

can be found by equating the elements of this integration to the discrete gains.
A cubic form for the kernel is chosen

SCDi(w)=ai(w-wi)3 +_(w-wi)2 +ci(w-wi)+di f°rwi <W<Wi+I (19)

Given the polynomial order (cubic) assumed for the four degree-of-freedom

finite element, a cubic polynomial for the internal curvature distribution is the

highest order polynomial for which the unknown coefficients can be uniquely
found.

If the form in Eq. 19 is inserted into Eq. 18, and the integral is evaluated, the
result will be the contribution that the continuous kernel across that element

makes to the gains associated with that element's nodal degrees-of-freedom.

In other words, at one of the element's nodes, Eq. 18 yields partial gains for the

nodal degrees-of-freedom which, if summed with the gain contributions from

the adjacent element, will give the total gains associated with that node's

degrees-of-freedom. Thus, the gain contributions from the elements

neighboring a shared node can be used to find the total displacement and

rotation gains associated with that shared node

l

gvi = ai¢ 3 +bi_ 2 +ci¢ +d i 3-_--2--_- d_

o

l

f(ai+l¢ 3+ bi+I_ 2 +Ci+l_+ di+lll

0

+

(20a)
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O

l

o (20b)

where gvi and gv,i are that node's displacement and rotation gains,

respectively, as shown in Fig. 4.

These two relations give two conditions for finding for the elemental kernel

coeffÉcients ai, bi, ci and di. Two more conditions are required in order to

ensure a unique solution. These two additional conditions are found by

requiring continuity of the kernel magnitude and slope at a shared node.

These are found by using Eq. 19 to evaluate the magnitude and slope at the

right end of the ith kernel and equating that to the magnitude and slope of the

(i+1)th kernel at its leR end yielding

ail 3 + 2bil 2 + ciI + d i - di+ 1 = 0 (21)

3a_l 2 + 2bil + c_ - ci+1 = 0

These four conditions can be expressed in matrix form as

(22)

314 4l 3 7l 2 l

14 15 20 2

l 5 l 4 l 3 l 2

42 30 20 12

13 l 2 l 1

312 21 1 0

l 4 l 3 3l 2 l

28 15 20 2

15 l 4 l 3 l 2

105 60 30 12

0 0 0 -1

0 0 -1 0

ai

ci

di

ai+l

bi+I

Ci+l

dl+ l

l°0
(23)

where the first two rows are found by evaluating the integrals in Eqs. 20a and

20b. A global matrix can be assembled, using Eq. 23 as the sub-matrices, to

yield a linear equation relating the coefficients of the cubic-fitted kernel

functions to the discrete gains

Tc = g (24)
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The desired coefficients are then given by

c = T-1g (25)

The approximate shape of the spatially continuous displacement feedback
kernel can be calculated by evaluating this piecewise cubic kernel along the
length of the structure. This evaluation is made by using the coefficients in c
which are appropriate for the given segment of the structure within which the
kernel is being evaluated.

Using the discrete gains of the ten element finite element model (shown in Fig.
4) to evaluate the coefficients in Eq. 19 of the piecewise cubic displacement and
displacement rate kernels, the functions in Figure 6 are found. These
functions are the piecewise cubic kernels combined into a single curve.

Notice the erratic shape of the displacement kernel. This erratic shape may
correspond to some weighted sum of mode shapes. Given that the tip
displacement (performance metric) can be represented as a sum of
displacement mode shapes, and that the applied moment (control input) can be
represented by the sum of curvature mode shapes, the shapes in Figure 6
could correspond to some combination of the displacement and/or curvature
mode shapes. In other words, these shapes may correspond to some type of
mode shape 'feedthrough' from the control input to the performance metric.

_J
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(a) Co)

Figure 6. Spatially continuous feedback kernels as a function of location along the beam for

controlling tip displacement. The indivddual windows show the kernels for (a) displacement

and (b)dispLacement rate.
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Equivalent Feedback Using Alternative State Functions

The feedback architecture using the kernel derived in the previous section has

the form in Eq. 16. This involves the spatial integral of the kernel times the

displacement state function. However, the continuously distributed

displacement state function may not be a measurable quantity. Therefore, it

may be convenient to express the same control in terms of another, more
measurable state function.

Extensive work in the area of area averaging sensors4,5,6,7,8 has shown that

continuously distributed measurements of curvature-induced strain can be

made using polyvinylidene flouride (PVDF). Therefore, the displacement

feedback kernel of Eq. 16 must be transformed into equivalent feedback of the
curvature state function.

Integration by parts can be used to transform the feedback form in Eq. 16 into

equivalent feedback of the curvature state function plus point measurements of

rotation and displacement, in order to retain rigid body control. This

transformation is given by

L

" uD(t ) = f Pco(w)v(w,t)dw
0

L

= v(O,t) I XO (w)dw +
0

LwL c_2 - -

o o r o_z (26)

Jv( L,t ) LL
f

Jx Ow

dw

While the point measurements of displacement and rotation must be made in

order to retain rigid body measurement, the actual location on the structure

where these measurements are made is arbitrary. The displacement or

rotation of a point on the structure can be related to the displacement or

rotation of any other point by integrating the intervening strain appropriately.

For example,

Jv(L,t) Jv(O,t)

Jx Jz

L

+ f J2v(w't)-_ dw

0 (27)
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Substituting this translation of the rotation measurement into Eq. 26 gives the
equivalent feedback as

L _(O,t) LL

uD(t) = v(O,t) f _D(w)dw 4 oax f _ _:D(Y)d_lw +
o ow

LLL _2v(w,t)

1_ _:D(V)dvdy o_w2 dw
ow$ (28)

Notice that in this equation, the first two terms, representing the feedback

gains associated with point displacement and rotation measurements, can be

evaluated directly from the displacement feedback kernel. The outer integral
in the third term corresponds to the integration of the distributed curvature

kernel with the curvature state function. The inner two integrals evaluate the

curvature kernel from the displacement kernel. This curvature kernel is
given by *

LL

_C(W) = _ i _D( _:)dvdY

(29)

The boundary conditions in the reference example were conveniently chosen to

exclude rigid body motion thereby eliminating the need for any point

displacement or rotation measurements. The motion of the structure is

completely describable by the curvature state function because

v(O,t) =

Substituting Eq. 30 into Eq. 28 yields

o_v(O, t )
=0

_x (30)

LLL c)2v(w't ) dwuD(t) = I I _ _D( T)drdY
o w r _w2

(31)

To calculate the

Equation 31 can

as the feedback law in terms of the displacement kernel.

shape of the continuous curvature kernel, Eq. 29 is employed.

also be used to evaluate the curvature rate kernel if the displacement rate

kernel (_oR) is used in place of the displacement kernel (_o).

Figure 7 depicts the resulting curvature and curvature rate kernels for the ten

node finite element model (Figure 4 and 6). Notice that, unlike the

displacement kernel, the curvature kernel is smoother. This is predominantly

due to the smoothing process inherent in the double integration of Eq. 31. Also

notice that the magnitude of the kernels in Fig. 7 are largest where the

cantilevered beam tends to exhibit the largest curvature: the root. In Fig. 6,

the magnitude of the displacement kernel is not the largest where the beam

tends to exhibit maximum displacement; namely the tip.
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Although not shown, for this reference example, increasing control authority

by decreasing the control effort penalty (R) does not change the kernel shapes.

Instead, it changes the absolute and relative magnitudes of the kernels. A

change in the shape of the kernel will be achieved by a change in the spatial

nature of the problem such as moving the actuator or selecting a different

performance metric. This observation is supported by an additional example

presented later in the paper. Actual implementation of these sensors is the

topic of a follow-on paper.

The results in Fig. 7 correspond to the objective represented by the lower, right

box in Figure 3. The next step would be to implement these two kernel shapes

using area averaging sensors. The details of this process will be discussed in

the section on implementation issues. Prior to that, the next section discusses

the alternate path in Fig. 3; namely path number 2.
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Equivalent Feedlm_ Gains using Curvature States

An alternativeprocedure to evaluating the continuous curvature kernel is to
firstderive the discrete curvature gains from the discrete displacement and
rotation gains, as shown by path 2a in Fig. 3. This can be done in two ways.

The firstinvolvesusing the transformation matrix given by de Luis eta/2

Io-I
lVi+1J a 4 L _l] °i,

l e l l 2 vi
6 2 6

-: 7 _t_ 1
vi+ t (32)

This elemental sub-matrix can be assembled into a global state transformation
matrix. The number of degrees-of-freedom are not reduced by this
transformation because now there exist two independent curvatures at each
node. Remember, curvature is not constrained to be continuous in the beam

finite element formulation because applied point moments can induce
discontinuous curvature. Originally,displacement and rotation were the two
nodal DOFs. Now, a node has two curvatures, one associated with the leftand
one with the right-hand element.

The 'o'symbols in Figure 8 indicate the net curvature gains at each node as
derived using this transformation. The net curvature gain at a particular
node is found by summing the individual curvature gains at that node. This
procedure is justified at nodes where external moments are not applied
because the two curvature gains correspond to the feedback of curvature
measurements acquired an infinitesimaldistance to either side of the node.
Without an externally applied moment, itcan be assumed that these curvature

measurements are identicaland therefore the net gain is the sum of the two
gains.

The second approach to deriving discrete curvature gains is to integrate the
displacement and rotationgain vectors to get the curvature vector. Unlike Eq.
29, thisintegration process involves both the displacement and rotationgains.
This integralcan be approximately evaluated element by element by summing
the products of the gains with the element width. Other standard numerical
integrationtechniques can also be used.

The '*'symbols in Fig. 8 represent the curvature and curvature rate gains
found using this integration approach.
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Figure & Discrete gains at nodal locations along the beam for controlling tip displacement.

The individual windows show gains for (a) cttrvature and (b) curvature rate. The "'

indicates gains found through integration while the 'o' indicates glxins found through
transformation.

Notice the good agreement between the curvature and curvature rate gains
found using the transformation and integration techniques. The agreement
may seem to improve near the tip of the beam but when calculated it was found
that the relative error is more less constant along the beam.

The final step in Figure 3 (2b) involves calculating the curvature and curvature
rate kernels from the discrete curvature and curvature rate gains. Rather
than using the technique in Eqs. 15 through 25, it can be observed that each of
the discrete gains at a node roughly represents the area under the continuous
kernel for the region between the midpoints of that node's neighboring
elements Therefore, if the gain is divided by the length of an element, the
result should be approximately equal to the magnitude of the kernel at the
nodal location.

Figure 9, when compared with Fig. 7, shows that this is the case.
Furthermore, Fig. 9 shows the overlay of the gains divided by respective
element lengths for different fidelity models. This reveals that the magnitude
of the kernel is captured quite well at nodal locations for rather coarse models

for this simple reference example. This is an important result since in
practice it would be generally impossible to find the exact feedback kernel from
a continuous model. However, Fig. 9 illustrates that as the order of the model
is increased the kernel shape is asymptotically approaching some shape. It is
this shape that represents the infinite order solution and that must be
implemented.
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Implementation Issues

The possibility of implementing infinite order structural controllers is made
possible by the existence of area averaging sensors such as those described in
References 4,5,7 and 8. Once the curvature kernel is obtained, it is a simple
calculation to alter the kernel for equivalent feedback of curvature-induced
surface strain. This simply requires knowledge of the distance of the surface
mounted sensor from the centroidal axis in the structure. Once this kernel is
found, the sensor can be built.

Polyvinylidene flouride (PVDF) 9 is suggested for this sensor for several
reasons. First, PVDF is a strain sensitive material which can be continuously
distributed along the surface of a structure and whose accumulated charge on
a surface electrode equals the integral over the length of the PVDF of the
electrode width times the surface strain in the structure. Second, PVDF has

an elasticity which is relatively small when compared to the elasticity of
conventional structural materials. This allows the sensor to be rather non-

intrusive into the dynamics of the structure. Third, the shape of the electrode
can be easilyaltered to equal that of the kernel while leaving the actual PVDF
material uniformly distributed. This achieves the strain sensitivity
appropriate for implementing the kernel while keeping the small dynamic
influence that the PVDF does exert on the structure uniformly distributed. In

addition,removal of electrodefrom near the edge of the PVDF greatly reduces
the possibilityof the sensor shorting itsbottom and top surface electrodes. A
fourth and final reason for using PVDF is its high strain sensitivitywhich

provides an excellentsignal to noise ratioforcontrolpurposes.

One drawback of implementing the feedback kernel through the shaping of the
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electrode is that once the electrodeis shaped and the material is mounted on
the structure,the kernel is effectivelyfixed and cannot be altered. Feedback

gains which reside in a computer can be readily altered if alteration is
required. However, C. K. Lee in Reference 4 has developed a method which
could be used to circumvent this inflexibilityin the gains. He uses an area

averaging sensor whose electrode is segmented into numerous squares and
the voltages on these squares are summed as appropriate for a particular gain
distribution.Ifthe gain distributionneeds to be altered,the manner in which
these voltages are summed can be changed.

Throughout the discussion of full state feedback for infiniteorder systems,
there was an implicit assumption that high frequency dynamics in the
structure consisted solely of additional modes which would be properly
modelled given the use of a sufficientnumber of finiteelements. However, this
is seldom, ifever, the case in actual structures. O_en, torsionor out-of-plane
bending modes exist irrespective of whether only in-plane bending was
modelled. These dynamics may feed through to the output of the sensor.

Therefore, the spatial wavenumber filteringconcepts presented in Reference 8
could be used to roll off,without phase lag, the frequency response of the
spatiallycontinuous sensor.

Figure I0 illustratesthe way in which a PVDF area averaging sensor was
implemented in Reference 8. The electrode is shaped as a decreasing

exponential in two directions.Note that the sensor may have to be segmented
ifthe PVDF sheet is not as long as the kernel. Given that PVDF isa polarized
material, a negative part of the kernel can be implemented by either flipping
that segment of the PV'DF or reversing leads (see Reference 8).

For the reference example discussed thus far,two PVDF electrodes could be
shaped: one each as shown in Figs. 7a and 7b. Bonding these two sensors to
either side of the cantilevered beam, one sensor for the curvature kernel and
one for the curvature rate kernel, the two sensor voltages can be summed

appropriately and used to drive the controlmoment.

The unique feature of this technique is that the processes of multiplying the

gains times the curvature measurements and accumulating these products is
performed by the sensor. This feature significantly reduces the control
implementation effortassociated with numerous point sensors.

Sellmem I Scllmcm 2 Scgmcm 3

21



Issues associated with controllers based on classical beam finite
elements

The previous section has shown how PVDF sensors can be used to implement

infinite order controllers. It was also shown in Figure 9, that finite elements
models can be used to predict the shape of the infinite order feedback kernel.

The hope is that by progressively increasing the order (accuracy or fidelity) of

the finite element model, the shape of the feedback kernel will approach some

asymptotic shape. It is this shape that represents the infinite order feedback
kernel and that must be implemented with PVDF.

Classical finite elements are the obvious elements to be used in such a model

refinement process. This study has identified two implementation problems

that are uniquely associated with these classical beam finite elements. The

firstis that the stiffness matrix obtained with these classical beam elements

becomes ill-conditioned as the element size decreases. Decreasing the element

size is typically associated with increasing model fidelity.This is illustrated by

looking at the conditioning number of the stiffness matrix of a cantilevered

beam obtained by using the following classical beam finite element:

12 61 -12 6l

6l 412 -61 2l 2

-12 -6l 12 -61

6l 212. -6l 4l 2
(33)

The conditioning number for a matrix is the ratio obtained by dividing the

largest eigenvalue by the smallest eigenvalue of the matrix. The higher the

conditioning number of a matrix, the more ill-conditioned the matrix is and

the more likely that matrix will be susceptible to computer round-off errors. It

can be shown I0 that the conditioning number is proportional to:

1
Cond _. --

l 2 (34)

Thus as more elements are used and the element length (1) decreases, the

matrix becomes ill-conditioned and results from the LQR routine will become
less reliable.

A second problem associated with classical finiteelement models is a problem

of non-uniqueness. From finite difference theory it is known that rotation can

be estimated from discretized displacements as:

.... __ +O(/2)v i = v_+12lVL
(35)

In Eq. 35, v_ is the nodal rotation and v_'s is the nodal deflection. The

truncation error, which is of order 12, will decrease as the element size (l)
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decreases, indicating that the finite element nodal rotations (v I) can be

expressed as linear combinations of the nodal displacements (v i) with
increasing accuracy. The manifestation of this problem lies in the
interpretation of the feedback gains calculated by the LQR algorithm. Given
that the nodal rotations may become linearly dependent on the nodal
displacements (or vice versa), the gains obtained by the LQR algorithm may
yield an optimal solution but the displacement and rotation gains may not be
unique.
These two problems are investigated by comparing the results of two
discretized models used to solve the reference cantilevered beam example. The
first model is the classical finite element beam model, while the second is a
second order accurate finite difference model. In the finite difference mode,
the stiffness term in the governing differential equation (Eq. 6) is approximated
hr.

EIv i = v_÷_-6v_-l +4vf-6Vi-l +Vi-_ +0/2)
l4 (36)

The effects of ill-conditioning and non-uniqueness are investigated by
comparing the results of models in which the fidelity of the model is increased
by increasing the number of nodes. Both these models should exhibit the ill-
conditioning problem since the finite difference model also has a conditioning
number that will increase (deteriorate) as the element size decreases since the

conditioning number is approximately 1/(l 2) 10. The finite difference model,

however, should not exhibit the non-uniqueness problem associated with the
finite element model. These conclusions are supported by the results of the
investigation. . Although not shown, both the models exhibit ill-conditioning
problems and the Riccati solver failed to yield a solution for a model with 40
nodes (or 80 degrees-of-freedom) for the finite element model and 80 degrees-of-
freedom for the finite difference model. However, the finite element model

may exhibit the non-uniqueness problem as the fidelity of the model is
increased. In Fig. 11 the distribution of curvature gains becomes erratic as the
number of nodes are increased above 10. The finite difference model on the

other hand, as shown in Fig. 12 does not exhibit this behavior. Even with these
erratic gains, the closed loop finite element models are stable with identical
closed loop poles for the first five modes. This observation leads to the
conclusion that this behavior may be due to the non-uniqueness problem
associated with these elements.

Note that the slow convergence to the "infinite" shape of the finite difference
model is due to the method in which the point moment is applied to the
structure. An applied point moment is achieved by applying appropriate
forces to nodes neighboring the node to which the moment must be applied.
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Figure 12 Convergence of finite difference model with increasing model fidelity.
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AN ADDITIONAL NUMERICAL EXAMPLE

An additional numerical example involves the control of the relative

transverse displacement between the tip and the middle of the beam. This

state penalty has the form

+ 2
q(vtip - Vrnh_dle )2 = q(V_p - 2VtipVmiddle Vmiddle )

(37)

For this example, the scalar q is unity.

Figure 13 shows the discrete gains. Again, the displacement and rotation

gains are rather erratic. However, the curvature and curvature rate gains are

smooth. Figure 14 shows the continuous feedback kernels. While the

curvature rate kernel has a shape similar to that in the previous example, the

curvature kernel now undergoes a change in sign. All the curves seem to

have an inflection point near the midpoint of the beam (x=0.5).

CONCLUSIONS

A technique has been presented for inferring the exact, spatially continuous

LQR feedback solution to the control of structures from the discrete feedback

gains derived using finite dimensional structural descriptions. These

feedback kernels possess several unique attributes. First, it has been shown

that feedback of the state functions can be transformed to equivalent feedback of

other state functions. This aids in implementation because the feedback can be

derived in terms of the state function that is most easily measured. Area

averaging sensors provide one means for implementing these spatially

continuous feedback kernels. Second, these continuous sensors can eliminate

spatial aliasing. Spatial aliasing is one of the primary causes of spillover in

structural control. Third, all of the feedback computation can be effectively

performed by an area averaging sensor.

The research presented in this paper must be seen as the first step in an

attempt to formulate and implement full state feedback for infinite order

structural systems. Several issues must be resolved before this approach can
be considered a viable alternative to reduced order controllers. For example:

the accuracy with which the area averaging sensors must match the desired

kernel must be investigated. Robustness of this control approach must be
determined and the theory must be demonstrated in the laboratory. The

researchers are presently working on these topics and plan to implement an

infinite order controller on a cantilevered beam using the actuator and

performance metric presented in the reference example.
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on a structure in order to modify its dynamic behavior to
meet its performance requirements. Unfortunately,
active control introduces the pouibility of exciting the
structure in an u_le manner making it critical that
either confidence in the predic_on of on.orbit behavior
be improved or the types of testa required for
qualificaaon be idonri_ed.

Before proceeding with a discussion of the

experimental approach to developing qualification
procedures, it is necessary to present the rationale that
lead to MACE. After all, conducting experiments on-
orbit, even thcee which are performed on the STS
middeck, is technically risky, expensive, requires
extensive planning, and produces less data than would
be obtained in a comparable ground experiment. The
program must clearlyexploitthe unique aspectsofthe
on-orbitenvironmentinordertojus'dfyitsconduct.

The objective of this paper is to portray the rationale
for conducting this type of flight experiment and co poet
the scientific questions to be addressed through this
research. Additionally, the tes_ article will be described,
along with the ground and on-orbit experiment support
equipment. Tl_/s paper concludes with a cliscusslon of
planned on-orbit activities.

AND RA_O_

" The goalofMACE istodevelopa wellverifiedsac of
CST toolsthat willallow designers to eitherbe able co
predict on-orbitbehavioror allow sui_icientversanliryin
the design to allow identificationand tuning of the
structureon-orbit. A number ofdifferentoptionsexist
for deriving this setoftools.The first and leastexpensive
istorelyon analysisforthe designand qualificanonof
spacecraftwhich incorporatecur. Unfortunately,this
approach is far less than satisfactory. The scientific
literatureisriddledwith examples ofboth closed and
open.loop experiments whose performance varied
greatlyfrom thatpredictedby state-of-the-arcanaly'cical
methods. The masons behind thisare varied.Often the
structural or sensor/actuator characteristic which

contributesto thisperformance degradationisnot the
next detail that would have been included in the

analyticalmodel. Its existenceistmuallynot predicted
but insteadisdiscoveredthroughexperimentation.This
experience iUu_'at_ that8nalyms alone is notsu/_cien_.

The question that nex_ arises ie what sort of testing
needs to be performed, along with analysis, in order to
develop an effective and efficient spacecraft
qualification procedure. Four different options exist.
Listedinas_nding order from lowestcohighestcostand

complexity, they are: ground.based open-loop
experiments,ground-ba_d closed-loopexperiments,on-

orbitopen-loop experiments and on-orbitclosed-loop
experimontA

Ground.based open-loop testing is the simplest type
of experimental program that can be tamed ouc to
verify the validityof analytical models It _s an
absolutely necessary step, since the quantities that are

most required for cloud-loop control design are exactly
those which are hard to predict analytically For
example, st_ctura] modal frequencies can be precilcc_d

using numerical methods with a relativelyhJg.ndegree
of accuracy. Conversely,modal damping _a:uel are

•extremely hard topredictanalyzicallyon large complex

structures where many energy dissipation mechanisms
are present. Unfortunately,closed-loopconcro;i_rsfor

structuresusuallyrequire accurate knowledge of the
modal damping because damping determines stability
margins and thereforeperformance. This problem is
exacerbatedinstructuresthat are lightlydamped, such
asLSS.

Itiseasilyconcluded,therefore,that ground.based
open-looptestingis essential to quantifythe accuracyof
analytical models. However, these tests by themselves
are not suf_cient to validate the appropriateness of an
analytical model or the performance of a closed-loop
system. Skeltonahi- demonstrated that no measures of
accuracy of the open.loop model are sufficientto
guarantee stabilityofa closed-loopsystem atarbitrarily
high gain. This impliea that the acquisition of the open-
loop model can never be sufficient to predict cloud-loop
performance. Therefore, ground-based closed-loop
testing ie absolutely necessary for the successful
application Of CaT to r_.i_stic _s.

Since csT structureswill be used in the space

environmen_ it is im_t Coinvestigate whether tho_
characterisncsthatare present on-orbitand cannot be
adequately simulated on earth affect the open and
closed-loop tests. [n Table I variousvehicleparameters
are listed along with four significant differences that
occur between on orbit and ground-based tests. The
u_bleindicatesthatthesedifferencesdo affectthevehicle

parameters.

Tab_ 1 "riMevarle--u_,_turaL Miaemat|¢ aad dynamic prom

ma dlJ_ bei_em o_-ofblt aad _aa, d

A_ro/ Suspension Gravity Thermal/
Acoustic Radiat/on -

Stiffness no yes yes yea

Damping yes yes yes yes

Mass yes yes no no

Forcing yes yes no no

Kinematics no yes yes no
I

The importamt issueis whether the differencesin
Table I cause regularorsingular perturbationstothe
problem. A regularperturbationisone whose effecton
the vehicleparameter disappearsas the perturbationis
allowed Co approach zero. This isin contrastwith a
singular perturbationwhose presence substantially
modifies the vehicleparameter even as the perturbation
approaches zero. If the perturbations are regular, then
they can be modelled and the results from the ground-
based testa can be more easilyused to predicton-orbit
behavior. However, they may still have a very
substantial,althoughpredictable effect on the structural
parameter. For example,small changesinthe plantcan
oftenlead Colargechanges in the modal damping or in
the mode shapes, two quantities that have a direct effect
on closed.loopstabilityand actuator and sensor
performance.Therefore,ifthe plantishighlysensitiveto
regular pet_uffmtions due to influences listed in Table I,
itisprobably necessary to conduct open-loop on-orbit
testing.Iftheperturbationsaresingular, it is essentialto
conduct open-looptestingon-orbitin order toidentify

and a_ust fortheseperturbations.

The onlyissuethatnow remains cobe addressedis

whether on-orbitclosed-looptestingisstillrequired.The
answer tothisquestiondepends on whether any singular
pervarbarioneare identifiedduring the on-orbitopen.
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loopexperiments,or whether any regularperturbations
cause significantunpredictablechanges in the plant. Lf

the answer toeitherofthesequest'ionsis"yes",then on-
orbitclosed-looptesm_gisessential.

A preliminarymlalysisdoes not revealany singular
perturbatiormarisingfrom one ofthe foursourcesshown
in Table 1. Non-convective potential aeroacoustic
equations do not give rise to singularities,nor do

conservative fields such as gravity. So long as
suspension devices are passive or collocated active, they
do not introduce singularities. Since the
thermal/radiation terms only affect otherwise symmernc
stiffness and damping parameters, they also do not give
rise to singular perfections.

However, a situation in which a regular
perturbationcan have significanteffect on the closed-
loop performance of the structure can be easily
imagined. The stiffnessadded by a suspension system,

even if small, can change the mod_l structure.
Additionally,foran articulatedtestarticle,a suspension
system could introduce an unexpected kinematic
constraint.Gravitycan change preloadon a joint,and
hence damping. Gravity will also cause otherwise
straightmembers tocurve,causing significantchanges
in the modal sn'ucture,such as nonplanar coupling of
modes. Therefore,while no singularperturbauons have
been identified,there are a number of regular

perturbationswhich can cause significantchanges inthe
plant that could resultin controlperformance being
degraded.

Therefore,the conclusionthat isreached is that

ground-based open and closed-loop testing is not
sufficientfor the verificationof CST technology. At a
minimum, on-orbitopen-looptestingwould need tobe
conducted to test for the presence of any singular
perturbations,orany significantregularperturbauons.
Ifthese perturbationsare found to exist,then on-orbit

closed-looptestingbecomes essential as argued by
Skelmn. Iftheyarenot present,then theclosed-looptests
might stillbe needed if a suitable ground-based
performance metric or disturbance environment is
unobtainable,or,more likely,ifthe additionalcost of
conducting the closed-loop experiments were
incremental.

Having demonstratedthe likelynecessityofon-orbit
closed-looptesting,a testar_cleon which toperformthe
experiments mus_ now be selected.A surveyofproposed
futurespacecraftwas under,ken and an evaluationwas
made on which type of spacecraft exhibit the most
requirements for CaT and which were most limited by
earth-bound tes_. 4J Some of the spacecraft types that
were consideredincludedtwo pointalignment occulting
instruments, multipoint alignment interferometr_c
devices,shape controlof reflectivesurfaces,flexible
manipulators,and multipayload plat'forms.Thas latter
type was selectedbecausethe largeangle mouons ofthe
payloads stressstate-of-the.artsuspension devicesand
because of itsapplicabilityto missions of near term
/nteruL

Proposed missions which will use thls type of

spacecraR includelow and geosynchronous pla:formsm
the Mission to Planet Earth, the evo',_:1onary

InternationalSpace Station,and the plane_ orblung
platforms of the Exploration Initiative .As tb.ese
platforms become larger and more complex, the
propensityforindividualon.board controllersto:nteract

witheach otherand with thebus attitudecontrolsystem
willgrow. This propensityisexacerbatedby increasing
payload mass fraction associated with larger
instruments and robotic devices, decreasing structural
bus stiffnessaseociatedwithlargerplatforms,increasing
authority of the controllersassociated with tighter
pointing and positioning requirements, and the
increasing need to reject disturbances which originate at
other l_yloade. This rationale makes clear the need to
develop a well verified set of CST tools. This
development must include:

i. The development of a comprehensive analytical
CST framework forr.hedesignand analysisofcontrolled
multibody platforms. This analysis begins with an
understandingofhow flexibilityinfluencesthe pointing
and trackingperformance ofmultibody platforms,and
must be abletoincludethe influenc_ofsuspensionand
gravityforuse incorrelatingwith ground testresults,
and to exclude the influence of suspension and gravity
for use in prodicting on-orbit remdt_.

2. The validation of the analytical framework by
comparison with a set ofground based experiments with
a test ar_cle which incorporatesthe emntial physical
characteristicsofa multibody platform.This test will,of
necessity, include the influence of gravity and
suspension,and willbe tTpicalof the preflightground
_esringofan _tual platform.

3. The validationof the analyticalframework by
comparison with a set of on-orbit zero gravity
experiments which eliminate the influenceofgravity
and suspension.

The specific criteria which will determine
experiment success of MACE are the identification of the
regular (and, if they exist, singular) per_rbatione in the
dynamics which occur as a result of the change from one
to zero gravity, and the production of the data for the
final validation of the analytical framework. The
ultimateresultof,V_ACEwillbe a wellverifiedmodelling
capabilityfor the controlled structures design and
qualificationof future multibody platforms, and a
detailedunderstanding ofthe parametrictendenciesin
vehicle dynamics, geometry and performance
requirements,,which cause the zerogravityclosed.loop
behavior to differfrom the one gravityresults. This

capability can be exploited by future spacecraft
designers to eitherobtain confidence in the on-orbit
performance of theirCaT spacecraftbefore they are
deployed, or to design enough versatilitTinto the
spacecraftin order to accommodate any unexpected
deviation between ground and on-orbitbehavior.

ExPm_n_vA_. A_PROACX

The fulfillmentofthe basicobjectiveofthe MODE 2
program requirestwo steps. First,the research must
validatethe analyticalframework for the design and
analysis of controlled muhibody platforms by
comparison with a set ofgrou_/x_sed experiments on a
test article which incorporates the essential physical
characteristics of envisioned multibody platforms.
Second, the research must also validate the analytical
framework by comparison with a set of zero &rauity

experimentswith a testarticlesimilartothatused inthe
ground tests.These objectivesnecessita_two aspectsof
theexperimentalapproach: the captureofthe essential
physicalcharacteristicsof multibody platformsin the
designofthe MACE testarucle,and the performance of



meaningful tests which validate the analytical
framework through a coherent on-orbit and ground test

program.

Capturing the F._tial Physics

To arrive at the essential physical characteristics of
multibody platforms, one must consider the vehicle
architecture of the missions which are envisioned by the
international space community, e In such platforms, the
payloads and articulating appendages each have
pointing or positioning requirements, and corresponding
attitude sensors, pointing gimbals and control systems.
The spacecraR structural bus is flexible and has its own
attitude cont_,oi system. The simulation of th_s ve_cle
architecture, in its associated operational environment,
nscessitates a test ar_cle with the following att'nbutes:

• a test ar_cle designed with the appropriate multiple
scaling laws to allow it to fit in the middeck, yet
preserve the essential performance req_urements of a
full sca]o test ar_cle,

• the incorporationofat least two gimballingpayloads
toenable the implementation ofmultipleinteracnng
controlsysmme withindependent objecuves,

• the incorporation of two rigid payloads,
representativeof compact but high mass fraction
devices,and a flexibleappendage, interchangeable
with one payload, representative of an aruculatnng
appendage such as a robotic servicer,

• a sufficiently flexible structural bus such that flexible
resonances lie within the controllerbandwidth,

• a sufficientlyflexiblestructuralbus which, when
suspended even from state-of.the-artsuspension
devices,exhibitsa degree of suspension coupling,

gravity stiffening and droop,

• a sufficiently low structural damping so that the test
article is representative of structures incorporating
typical aerospace materials,

• and a su/_ciently complex geometry so that the test
articleundergoes full3-D kinematic and coupled
flexiblemotion further stressing state-of-the-ar_

suspensionsystems.

In order to developthe appropriatelyrefinedCST

tools, representative test objectives with appropriate
disturbances and performanco metrics must be used. 7
The teets thatwillbe carried out u part of.MACE include

pointing and tracking ofsingioand multiplepayloads.
For each experimontrun, performance willbe measured
in tho presenco of random broadband dis_urbancos,
which originate on the structm'_ bus, and narrowband
disturbancee due to the planar and non-planar slewang of
a second payload.

The performanco motricsof allthe closed-looptests
willbe derivedfrom inertialangular ratedaua obumned
from bi-axis gyroscope packages mounted on the
payloads. Specifically,the performance metricsforthe
varioustestsare etability (Le_,RMS 2-axasangular
positionaboutpoin_ng LineofsightortrackJngreference
profile),jitter(/.e.,RMS 2-axis angular rate about
pointinglineofsightortrackingreferencepro_.ie_.slew
reeponse time (i.e.,time required to complete
maneuver) and percent degradation ofsmbd:'.yand
jitter from single payload performance _L e.
quantification of multiple interact:ng con:rol
performance).

O_ _'::O!--:_-'_' i'_"

Different types of controllers, both linear and
nonlinear, will be implemented on the MACE test ar_cle
depending on the performance objective and payload
amplitude. Three families of controllers will be used
during the on-orbit test. One family w_ll be identical to
those used in the ground test. This family will explicitly
identify the differences in one-gravity and zero-gravity
performance. The second family will be those which
analytically corrected beforehand for the absence of
suspension and gravity effecte. This family will
explicitly verify the ability to model the known
differencesbetween ground and flight and identify the
importance of unexpected perturbations. The third
family will be based upon on-orbi_ identification of the
test article. Between these three families, the objectives
of,MACE willbe met.

Validation of the Analytical l_amework

Given a test article which captures the eseential
physicalcharac_risticsofthe genericclaseofmultibody
plat-forms, a test program which validates the analytical
CST toolsmust be formulated. Such a program must

incorporateboth ground.basedand zero-gravitTtesting.

Based upon SERC's previous experience in
laboratory active s_-ucturalcontrolexperiments, itwas
concludedthata challengingyetrealisticgoalforMACE
would be to attempt to improve closed-loop

pointing/trackingperformance by 40 dB over itsopen-
loopvalue (Fig.2). Lndependent ofthe absolutelevelof

performance, this level of performance improvement
will demonstrate the effecrivenese of the controlled
su'uct_res technology.

u
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Both the ground testingand on-orbittestingwill
begin by measuring the open.loopperformance. Then
the authorityof the controllerwillbe increased,and
closed-loopperformance in the presence of scaled
dis_trbanceswillbe measured. By comparing closed-

loop performance as a function of control authority
be_veen ground and on-orbittesting,regular(and ifthey
exist,singular)perturbationsin the dynamics which
occuras a resultofthe change from one tozerogravity
willbe identified.To extractmaximum benefitfrom the

on-orbitdata,itisdesirableforthese perturbationsto
beg_n to manifest themselves at the levelof control
authoritywhich achieveshalfofthe performance in the
l-genvironment (Le.,at 20 dB). In thisway, thereisa
_enes oftests(i.e.,0 to20 d.B)where ground and orbital
resul_sshouldbemrmlar,and a seriesoftests(/.e.,20 to40

dB) where significantdeviation might be expected.



Singularperturbationscouldcause significantdeviations
throughoutthe 0 to40 dB range.

This experimentalapproach isformulated tostudy
the levels of control authority where the gravity
perturbations become important (i.e., the transition
regime). Testing only at levels below this tranJition
re@imutdo_ not jtmtify an on-orbit experiment+ Testing
only at levels above this tranmition re&ira4 may not yield
meaningful data. Valuable information can only be
uncovarNi by testing at levels which span the tranaition
re&ires because the_ tests gradually reveal the
fundamental ways in which the pertinent gravity
dependant phenomena perturb the control problem.

Thus the MACE test article and associated tests are
representativeof an important clm of futureNASA,
ESA, and NASDA missions,and they are designed to
exhibit gravity dependent characteristics which become
important to closed-loop performance as control
authority is incraased. By its design, the program
exhibits mis_on applicabilJtT, technical relevancy and a
fundamental exploitation of the environment -tuque to
the STS system.

Pom_r_G ONX FLZXaU.Z S_gvcrtm._ Bus

A preliminary analysis of the linear pointing
problem is presented to illustrate the research approach.
In this section, performance degradation due to
unmodel]od flexibility will be investigated. There are
two fundamental questions that need to be answered for
the problem of pointing while mounted on a flexible
_'ucmral b_. They are:

l) How do_ u_mod_lltd risibility dtgrsd_ payload
pointi_ lm'forma_? and

2) How are controllers designed and implemented
on a modelled fl_ible bus?

The firet identifies the problem and the second iden_fies
the solution. The _tual control analysis tasks that will be
used as this research progre_ are:

Task I. Design a controllerassuming thestrut-ruralbus
isrigid.

Task 2. Evaluate the performance ofthiscontrolleron
an evaluation model which incorporatas
flexibility in tbe _ bus.

Task 3. Us, a flexible model to design the active
controller using existing pointing and tr_king
hardwmm.

Task4. Allow the flexible model controller to use
additional sensors which measure flexable
motion of the bus.

Task 5. Allow the flexible model controller to also use
a_"_atore to control this flexible motion.

The first two tasks address the first quelrtaon. The
control algorithm derived using the rigid d_mgn model in
task 1 will be applied, in tuk 2, to a flexible evaluatqon
model using two different sensor configurations referred
to as localized and centralized, which ar, depicted in Fig.
3.

Inthe loca_zed configuration,the iner_a/aturude of
the payloadismeasured directlyby an inertaaIplatform

(]_P).In the can_'alizedconfiguration,theiner_alamtude

ofthe payloadisinferredfrom theinertialat_nade ofthe
structuralbus at the [P and a measure ofthe relative

angle at the gimbal. Now, flexibilityliesbetween the
payloadand the inertialmeasurement. Ifthe structural

bus were rigid the performance using the centralized and
localized configurations would be equivalent. In the
centralized configuration, however, flexibility in the
structural bus can introduce an additional angle between
the IP and the end of the stTuc_u'al bus where the gimbal
islocated. Leftunmeasured, this flexibility induced angle
can degrade pointing pe_ormance.

C.mm/Lmd

In this paper, only typical ,_'tion analyse_ will be
dealt with to inv_p_ the manner in which _mctural
bus flexibilitydegrades payload pointing performance
(tasks 1 and 2). The typicalsectionmodels employ
lumped muse, and inertiu to cap_e the fundamental
physics embedded in th. linear pointing problem.
Ultimately, these various control design and analyms
tasks will be performed on models of increasing
complexity.

There are two basic clasps of rigid payloads: ¢ant_r
of gravity (CG) mounted paylo_zi_ and non,CG mounted
payloads. A_ w_ll be shown, CG mounted payloads
exhibit certain desirable charmcteri_cs which make theu'

controlsignificantly ea_er.
The simplest model which captures the

fundarnentale of CG mounted payload pointing is th,
two inertia model shown in Fig. 4. The inertia Jl
represents a s_'uct_wal bus on which an attitude control
torque _'_is applied. The iner_a J_ represents the pointed
payloadwith the torque rreprosen_/ngthe gimbal torque
between the payload and _ha structural bus. Tha two
angle coordinates O_ and 82 are the inertial rotation_ of
the su_ctural btm and payload, r_p_-tively. _ model
is used u the rigid con_ro] design model.

In the Linear Quadratic Regulator (LQR)
formulation the inertial angle of the payload can be
pegged to improve payload pointing stability u

J=½7(="<t=
• (I)

X_ li l[i,_=

{elj
00:]{:){o:]
v 0 00 t andR=

0 0 '_=

0 0
(2)

where J isthe cost,z isthe statevector,Q isthe state

penaltymatrix,u istheconvrolinputvector,and R isthe



controleffortpenaltymatrix. The feedback solutionto
the steady-_cateRicca_ equationgives

= -Gx

(3)

.iJ
- ___,j

al J2
rap,,4 m_ ,t,,_mo,_ _ as ,,o,mmdp,_o.d.

Noticethat thiscontrolonly feedJ the inertialpayload
angleand angularratetotheg_mbal torque.No at_cude
controlormeuurement of the structuralbus at_cude are

required. The controlstifl'ensand damps the payload
motion with rsepect to a parl_cular orientanon inuner_al
space by using the structuralbus a._a reactioninertia.
The closed-loopeigenvaluesare

(4)

mode is in aAs might be expected, the pointing
Butterworth pattern with damping equal to 70.71% of
critical.

The closed-loopvariance of the payload inertial
angle about it_nominal line-of-sightcan be calculated
assuming a steady-state additive white noise
disturbance. This disturbance is assumed to be present
either at the attitude control location or at the payload
gimbal. Other work has looked at stabilitybounds
associa_d with unmodelled flexibi]iW. 9

The variance is found by solving the closed.loop
Lyapunov equation relating the driving noise covanance
matrixV tothe state covariancematrixX.

X_ + _X= -V (5)

where A s is theclosed-loopstatedynamics maCrLXofthe
plant.The vm'iance of the payloadinertialangleis

/ x314

Not-icethat the variance isonly a funcnon ofthe
additivegimbal torquenoise(@_). Ifthereisno g_mbal
torquenoise,the varianceiszero. The atctude control
noisedoesnot disturbthe payloadbecausethe mouon of
the payload is decoupled from the mouon of '-_e

structuralbus. The costisproportionalto :he g_rnbal
torque noise and decreases with increasing payload
iner_ciaand increasingcontrolauthority( vJ/Y.

Having derived the controllerusing the design
model, it isnow possibletoinves,dgatehow unmodelled

flexibilitydegrades the pointing performance by
impinging the control law (Eq. 3) upon a flexible
evaluationmodel (Fig5).

F_i_n, $ l",edbll ,nmimul,_ m,xli_ I_. CG momslid p,_,md

Assuming that82can be measured direcdy(thelocalized
configuration),tSe closed-loopeigenva]uesare given by

'I v Zi.__

_=0,0, (-1±i), _ J_zJ_2 (7)

Notice that the rigid body mode is unaffected since the
attitude control torque is not used. The poles assocmted
w_th the pointingmode are equivalenttothe polesforthe
sysu_m withoutflexibility(Eq.4). The remaining poles
are identicalto the flexiblemode polesofthe open-loop

system.

Control spillovere_ste because the _imb_l torque
disturbs the st'r_ct_re. _owever. there is no observation
spilloverbecausethereis no measurement ofany motion
associated w_]n the mismodelled structure. The

m'easurement of the payload inertial motion is
reconstructedexacdy and thereforeeliminatesspillover.
The closed.loopvarianceofthe payloadangleisidentical
to:hatin Eq. 6. Therefore,flexibilitydoes not degrade
the pointing performance when local inertia]
measurements are fedback toa CO mounted payload.

Inthe centralizedcon_guration,theinertialangleof

the payloadequalstheinerualangleofJ (_) plusthel 2

gumbal angle (8c). However, the inerri_angle of the
st'ruc_ura/busiss.ssumedtobe measured at theat'titud_

controllocationon Jn" Therefore,the flexibilityinduced
ro_a_on _12 "ell is not measured.

The closed.loopvamance of _he payload'sinertial
angleisshown in Pig.6a (forgimbal noise)and Pig.6b
(for attitude control noise). The horizontal axis

representsthe ratiov/_as the costofthe conu'ol(]Dis
decreased.The solidlineinPig.6a isthe variance,from
Eq. 6,fortheriglddesignmodel subjec_togimbal noise.
The dashed line repr_senm the variance associatedwith
the flexibleevaluationmodel. Noticethatfeedbackfrom
iner_almeasurements atthe attitudecontrollocationto

the gimbal, acrossthe flexibility,couplesthe flexible
motion to the payload angle causing performance
degradation which increases wath increasingcontrol
authomry (v/_).

Inthecaseofattitudecontrolnoise(Fig.6b),onlythe
varianceassocar_d wuh the evaluationmodel isshown

because the variance associatedwith the rigiddesign
model _Eq. _) is zero. This variance is now nonzero
because_he centralizedconfigura_onfailstoaccountfor
:he _exib_li_yinduced angle between _he inertial
platformand the locanonwhere the &nmbal isattached

OF POOR OUALiTY
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(8l_-812).This flexibility-inducedangle corrupts _he
estimateofthe payloadiner_alangle.Since the payload
attempts to track thiJ estimate, this error causes a
degradaeioninpointingperformance.

Multibody platforms can also have non-CG
mounted payloads attached to the strucraralbus. The

non-CG mount couplesrotation(_) ofthe st_--cturalbus
with rotation_ofthe payload. The rigidcontroldesagn
model isshownin Fig.7.

Fpy

J2
m 2

Penalizingthe inertialangle ofthe payload g_ves the
feedbacka_

°' L_
,,}=_o -

where

-G_

(8

,9

b32 =- mlnt2tl£ _

h_ = (m_ *m2)J _+ mzm_(z x+e?)
d_n (10)

den=(m_*rn2)J_J2 +(Jle22 +J2_)mlm_ (11)

No_icethat whileboth the attitudecontroland gimbal

ac_ators are used,onlythe inertialstatesofthe payload
are measured. The clomd-looppolesare givenby

o,
(12)

Again,the Burterwor'_hpatternexieta.The controlnow
requiresfeedbacktothe structuralbus'attitudscontrol

torque sinceangular morion ofthe structuralbus and
payloadare coupledinopen-loop.

This control can be impinged upon a flexible
evaluationmodel suchas the one shown inPig.8.

Ju J12 I_x21 ¢2

Fp_Fpy

m 2

_s _ eN_mlkm mod_ _ om_4_ _ im_d_s_

Flexible motion of the structural bus, caused by _imbal
and attitude control torque noise, perturb_ the angle of
_he payload. This results in both control and observation
spi]lover.

Impinging the feedback in Eq. 8 on the evaluation
model inPig.8,using the localizedconfiguration,gives
_heresultsshown inFigs.9a and 9b. The overlaidsolid
and dashed linesinFig.9a show thatthe leveltowhich

Tmbal noisedisturbsthe payloadangle barelychanges



between the dss/gn and evaluation models. The solid
carve in Fig. 9b shows the variance of the payload angle
associated with the desip modal (Fig. 7) in the presence
of attitude control torque noise. Notice that since
sn'act-_.-al bus rotation couples with payload rotation,
attitude control noim now disturbs the payload in the
design model. The dashed line in Fig. 9b shows the
variance associa_,d with the evaluation model.

Excitation of the flexible motion couples with payload
rotation to cams performance degradati0n, even though
a lacalized ¢on_i_u-ation is used. The evaluation model
is more susceptible to performance degradation as a
function of control authority when the noise is
introduced at the at_mcla control location than when it is
inn'oducod at the _. Th_ is because the unmo_lled
flexibility lies between the disturbance and the payload
thereby frequency shaping the disturbance on the
payload in _e former case, wi_/le the disturbance is
impinged dirlctly upon the payload in the lat_r.

Figures 9c and 9d show the variance caused by the
two differentnoise sources for the non.CG mounted

systams when a centralizedcon_guration isused. In
both flguros,the solidcurves represent the varlance

associated with the designmodel. The dashed curvesare
the variancesofthe evaltmtionmodel. Noticein Fig.9c
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that the variance associatedwith gimbal noisedeviates
from thatforthe design model at high levelsofcontrol
authority. This was no_ _he case for the localized
configuration(Pig.9a). For the caseofattitudeconn-ol

noise (Fig.9d), deviation again occurs batwsen the
variance ofthe design and evaluation models. Note,
however, that for either noise source the variance

eventuallyincreaseswith increasingcontrolauthority
and that the levelofcontrolauthoritywhich minimizes
the varianceclspendaon which noisesourceexists.

The above analysis has served to illust'rat_the
degradation in performance that can occur when
controllers designed using rigid models are applied to
flexible spacecraft. The open-loop coupling of the
unmodsIIed flembilit7 to the payload angle makes the
non-CG systems more susceptible to performance
degradation than the CG system. Centralized
configurations exhibit mora deviation from the expected
rigid body performance than localized configurations
because the feedback paths are closed across the
flexibilitytherebycouplingthe unmodelled flexibility_o
payload motion. However, centralizedconfigurations
are programmatica_lyadvantageous because the various
payloadssharean expenmve common resource,the [P.
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oF GRAVlTY ONTI_ PonvrING AND_G

Pao_

Multibody platforms were chosen as the reference
mission configuration not ordy because they charaetarise
many proposed missions but also because they are
arguably the most mutceptible to gravity influences. The
essence of the on-orbit phase &the MACE program is co
identify and characterize these influences. To this end, a
set of sample problems was selected each of which
captures a different type of gravity perturbation. The
objective of this line of research is to analytically predict
the manner and degree to which these influences perturb
the closod-loop cont_ml problem.

Gravity will cause changes between dynamics
measured on the ground and on.orbit. These
perturbations can be grouped in two broad categories:
those resulting directly from the presence of the gravity
field,and thou, which are a resultof the mechanical

suspension system required for 1-g tests. These are
illusO'atedinFig.10. The firstcategoryincludes:modal
coupling which occurs due to the statac sag of a
structural member, gravity stiffening(in tension)or
deetiffening(in compression) of structuresalong the
gravity vector,and dynamic buckling which occurs
when the structural members deform transversely to the
gravity vector. The second category of problems
includes: added stiffnessand mass of the suspension
system,added damping ofthe suspension system,and
modal couplingofthe suspensiondynamics w_ the test
ar_cle.Alloftheseinfluencesresultinperturbationsof
the system frequencies,damping and mode shapes
which can fundamentally alter the stabilityand
performance of a controller,and must be taken into
accountindesign.

GROUm_BAsED ENGnvEERn_C MODEL Tm'rm_

The initial configurationof the MACE test arucleis
shown in Fig. 11. Itconsistsof a segmented straight
tubularbus with a two axispointing/t'rackingpayloadat
each end. An active,strain-inducingsegment islocated
alongthe bus. The MACE testar_clewillhave a closely
coupled set of flexiblemodes with a fundamental

bendingfrequencybelow 2 Hz. This isdone throughthe
choiceofmaterial(Lexan)and geometry ofthe bus.

A segmented designoftubularmembers connected
by universaljointswas chosenas the bus structurefora
number ofreasons.First,itprovidesan evolutionarytest
article since it is straightforward to modify its geometry
to represent more complex slructxures. It is also possible
to add and change the locations of passive and active
members. These include piezoelectric members and
members with a high level of pasmve damping. Discrete
devices such as torque wheels, accelerometere and proof
mass actuators can be attached at the joints.

The overall length of the t_ ar'dde is approximately
1.5 m. The MACE engineering model (EM) node
provides for attachment of the members through the
MACE joint and provides a standard hole pattern for
attachment of the payloads, iner_i.,l platforms and other
instrumentaOon. Each member is .4 m in length and 25.4
mm in diameter. Four members are mind in the MACE

iniOal configuration.

Two t'yT_ of payloads are currently envisioned:

• PointinS/tracking. These payloads are mounted to
the bus through a two axis motorized gimbal
mount. The payloads are rigid, and capable of
120" mo_ion in t_vo axes.

• Flexible appendage. This payload consists of a
flexible, instrumented boom mounted on a two
axis motorized gimbal. The gimbal is capable of
120 ° morion in two axes, and the fundamental
frequency of the flexible boom is less than the
fundamental frequency ofthe bus structure(<2
HE).

The DC torqueactuatorsinthegimbals willbe used
toalignthe pay]oadeor to sweep them through a pre-
determined t'racknngprofile.Rate gyroscopeslocatedon
the rigidpointing/trackingpayloads and the flexible
appendage will provide a measure of the inertial angular
rate of the payloads for feedback and performance
measure. The g_mbal motors will have integrated
encoders.

In addition to the sensors and actuators located on
the payloads,the followingsensorsand actuatorswill
a_sobe used:

• Torque WT_els. A setofthreetorque wheels is
situated at the center node of the structural bus.

The purposeof these torquewheels is to provide
both three ax_s attitudecontroland structural

control.

÷
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Pointing/l_acking Payload (2)

Active Segment

Inertial Platform

Approx. 1.5 rn

_11 lssit_i oo_ f_r m,_ pMM_rmte_ _

r

_' Active Member. The MACE activemember

conKistmofa square Lexan rod with piezoelectric
ceramics mounted on the side. It will be capable
ofbending about two axes. The member w11]be
instrumentedwith surfacebonded strmn gauges.

* Rat. Gyroscopes. A setofthree rategyroscopes
willbe collocatedwith the torquewheels forming
an inerlnala_mde controlplatform.

Additional sensors such as strain gauges,
accelerometers, etc. can be placed along the test article as
requiredby the variouscontrolalgorithms.

Given the recognizedneed to perform closed-loop
ground-based testa,the question arisesas tohow does
one best approximate the boundary conditions of space.
Required is a system which will support the payload
weight while having a minimal impac_ on the test article
dynamics. A zero spring rate pneumatic/electric
suspension device from CSA Engineering Inc. of Palo
Alto,Californiawillbe used tosuppor_the testarticlein
l-g. The suspension system will have a 63.5 mm
maximum verticalstroke,a maximum payload of 17.4
kg, and will use displacement and acceleration feedback.

Puc_rr TmTSED

The MACE flight testbed consists of (1) the
Experiment Supporz Module (ESM), which contains all
experiment electronics in one standard middeck locker,
and (2) the MACE test ar_cle which is stowed in a second
middeek locker (P/g. 12). 1° The primary difference
between the ground-based EM and the _ghc _s_d will
be the manner in which the various active componanm of
thetestarticlewillbeconnectedtoeach otherand to the

ESM. Electricalconnections along the bus will be
accomplished by modifying the EM joint to provide
simultaneouJ electricaland mechanical connections.

This will be accomplished by inserting a mulripin
electricalconnector insidethe joint. Wiring w_llrun
insidethehollowLexan members. Finally,the _estarmcle
willbe connectedtothe ESM through a singleumbilical
which willalsoattachtoa testarticlenode. This greatly
simplifieson-orbitassembly time thereby mayamizzng
teeingtime.

Experiment Support Module (ESMD

Much ofthe MODE 2 ESM willbe idenncal tothe

MODE I ESM, utilizingmany similar or Ident-ical
components. These willincludethe ESM suppor_frame,
data storagedevice,analog circuitcard cage, and ehe

majority of the computer system. Modifications will
include the addition of a real time high speed control
computer, and downlJnk/uplink capability. All MACE
data acquisi_on,s_orage,signalprocessingand signal
generation will be performed by Payload Systems
SensorNet Experiment Computer.

The purpose of the downlinDJuplinkistoallowon-
orbitidentification,downiink of identifiedparameters
and uplinkofnew controlalgorithmsin the event that
unexpected behavior occurs. Downlink will be
accomplished through data interleavingon the STS
videochannel. Uplink willbe accomplishedthrough the
STS Text and Graphics System (TAGS).

Required Reeourcee

MACE resource requirementJ are summarized in
Table2 below.

ESM

T_b[e 2 MACE F._mmt_t gequbmam $_nunT Table

Weight
Volume, operational

Volume, stowed
Power requirement

Telemetry
Crew activities

Data processing
,MACE Test Article

Weight
Volume, opera[donal

Volume, s_wed
Power requirement

Crew ac_vi_es

5411_
I Middeck Locker
I Middeck Locker
113 Watts @ +28 VDC

Downlink/uplink
Set-up,opera_orum
Performed by ESM

54Ibe.

30" xS" x 60"
I Middeck Locker
15 Wat_

Set.u_,Io_rationa

Flight Operations

MODE-2 callsfor operation by the crew on two
separate days. Procedures require configuration,
activation and operation of MODE-2 by one crew
member during a normal eight hour work per/od. If the
test sequence proceeds flawleuly,the crew task forall
the ,V.ACE_sts willinvolveassemblingthetestarticlein
a predetermined coniggurarion, running open-loop
identificationtestsover a specifiedfrequencyrange,and
beginning closed-loopoperations.The probabletesting
scenario would be co excite the structure using a pre-
determined excitationprofilewith one ofthe on.board

actuators,then,aftersteady.statehas been achieved,to

tO
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iniUa_ the active control using low gain values.

Assuming no instabilitiesare found, the performance
metric and sensor outputs willbe recorded and the
experiment can be repeated with higher gz_n values,
untilallthepredetermined_ns have been implemented
or an instabilityisreached. Testing would proceedto
additionalconfigurationsor controlalgorithmsas rime
permite.This procedureisillusrramdinFig.13.

ARer the first day, video and video encoded data will
be transmitted to the ground to be analyzed by the PI
team and new control algorithms, if necessary, w_ll be
upllnked to the crew prior to the second day's operation.
While no real time communications, audio or video, are
required, thie infrequent access to the STS video and
TAGS system will be necessary for up/down link
activities.

CONCLUSIONS

There is a clearneed to develop an effec::veand
ei_cientanalyticaland test procedureforquah f)_ng CST
spac_-rai_.The goalistodetermine the degree _ which
gravityl_rt'urbsthe closed-loopperformance ofLarge
Space St'ruct_reswhich cannot be fullyor accura:ely
testedon the ground.

The MODE.2 program, using the MACE test ar_cle,
is designed to develop this qualification procedure by
formulating 8 set of CST design and qualiflcatdon tools
and validating these tools through ex_nsive ground and
on-orbit testing. By conducting these open and closed-
loop tests using a relatively inexpensive test ar_cle, a co_t
effective preliminary search can be performed to
ident_eythe presenceof_-avita_onalper't'urbe_:ions to the
control problem. The specific criteria which will
determine experiment success are the identi_ca_/on of
the regular(and,iftheyexist,singular)perturba_ion_in
the dynamics which occuru a resultof the change _rom

one to zero gravity,and the development ofvalida_d
analytical and experimentalCST tools needed to insure
_heoperationalsuccessofa CST spscocra_
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