33 research outputs found

    The Quest for Scalability and Accuracy in the Simulation of the Internet of Things: an Approach based on Multi-Level Simulation

    Full text link
    This paper presents a methodology for simulating the Internet of Things (IoT) using multi-level simulation models. With respect to conventional simulators, this approach allows us to tune the level of detail of different parts of the model without compromising the scalability of the simulation. As a use case, we have developed a two-level simulator to study the deployment of smart services over rural territories. The higher level is base on a coarse grained, agent-based adaptive parallel and distributed simulator. When needed, this simulator spawns OMNeT++ model instances to evaluate in more detail the issues concerned with wireless communications in restricted areas of the simulated world. The performance evaluation confirms the viability of multi-level simulations for IoT environments.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017

    The Simulation Model Partitioning Problem: an Adaptive Solution Based on Self-Clustering (Extended Version)

    Full text link
    This paper is about partitioning in parallel and distributed simulation. That means decomposing the simulation model into a numberof components and to properly allocate them on the execution units. An adaptive solution based on self-clustering, that considers both communication reduction and computational load-balancing, is proposed. The implementation of the proposed mechanism is tested using a simulation model that is challenging both in terms of structure and dynamicity. Various configurations of the simulation model and the execution environment have been considered. The obtained performance results are analyzed using a reference cost model. The results demonstrate that the proposed approach is promising and that it can reduce the simulation execution time in both parallel and distributed architectures

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Anonymity and Confidentiality in Secure Distributed Simulation

    Full text link
    Research on data confidentiality, integrity and availability is gaining momentum in the ICT community, due to the intrinsically insecure nature of the Internet. While many distributed systems and services are now based on secure communication protocols to avoid eavesdropping and protect confidentiality, the techniques usually employed in distributed simulations do not consider these issues at all. This is probably due to the fact that many real-world simulators rely on monolithic, offline approaches and therefore the issues above do not apply. However, the complexity of the systems to be simulated, and the rise of distributed and cloud based simulation, now impose the adoption of secure simulation architectures. This paper presents a solution to ensure both anonymity and confidentiality in distributed simulations. A performance evaluation based on an anonymized distributed simulator is used for quantifying the performance penalty for being anonymous. The obtained results show that this is a viable solution.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2018

    Following the Right Path: Using Traces for the Study of DTNs

    Get PDF
    Contact traces collected in real situations represent a popular material for the study of a Delay Tolerant Network. Three main use cases can be defined for traces: social analysis, performance evaluation and statistical analysis. In this paper, we perform a review on the technicalities of real trace collection and processing. First, we identify several factors which can influence traces during collection, filtering or scaling, and illustrate their impact on the conclusions, based on our experience with four datasets from the literature. We subsequently propose a list of criteria to be verified each time a trace is to be used, along with recommendations on which filters to apply depending on the envisioned use case. The rationale is to provide guidelines for researchers needing to perform trace analysis in their studies

    Performance Enhancement of MANET based on Cross-layered Reconfigurable Hierarchical Routing Protocol

    Get PDF
    High speed data communication is the demanding factor in both commercial and defence applications. Several algorithms are proposed to support the high-speed data exchange while ensuring the quality, performance and reliability. However, there is still a gap, citing various compatibility issues with variety of transceiver technologies. This paper proposes a novel algorithm for enhancing the performance of mobile ad-hoc networks using Free-Space Optics (FSO). The FSO has the natural ability to the interference while capable of large bandwidth and excellent compatibility. Low power and adaptability are the features with which it has contributed to the latest technologies like storage area network, wireless area network etc. The proposed work uses optical spheres with a multi-transceiver system and a cross-layered reconfigurable routing mechanism. Parameters such as delay, residual energy, throughput, and drop are verified for the Crosslayered Reconfigurable Hierarchical Routing Optical Sphere (CRHROS) protocol for varying numbers of optical transceivers. The proposed work also compares the performance of two traffic sources, Constant Bit Rate (CBR) and Variable Bit Rate (VBR), for the proposed algorithm

    A survey on probabilistic broadcast schemes for wireless ad hoc networks

    Get PDF
    Broadcast or flooding is a dissemination technique of paramount importance in wireless ad hoc networks. The broadcast scheme is widely used within routing protocols by a wide range of wireless ad hoc networks such as mobile ad hoc networks, vehicular ad hoc networks, and wireless sensor networks, and used to spread emergency messages in critical scenarios after a disaster scenario and/or an accidents. As the type broadcast scheme used plays an important role in the performance of the network, it has to be selected carefully. Though several types of broadcast schemes have been proposed, probabilistic broadcast schemes have been demonstrated to be suitable schemes for wireless ad hoc networks due to a range of benefits offered by them such as low overhead, balanced energy consumption, and robustness against failures and mobility of nodes. In the last decade, many probabilistic broadcast schemes have been proposed by researchers. In addition to reviewing the main features of the probabilistic schemes found in the literature, we also present a classification of the probabilistic schemes, an exhaustive review of the evaluation methodology including their performance metrics, types of network simulators, their comparisons, and present some examples of real implementations, in this paper
    corecore