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a b s t r a c t 

Contact traces collected in real situations represent a popular material for the study of a Delay Toler- 

ant Network. Three main use cases can be defined for traces: social analysis, performance evaluation 

and statistical analysis. In this paper, we perform a review on the technicalities of real trace collec- 

tion and processing. First, we identify several factors which can influence traces during collection, fil- 

tering or scaling, and illustrate their impact on the conclusions, based on our experience with four 

datasets from the literature. We subsequently propose a list of criteria to be verified each time a trace 

is to be used, along with recommendations on which filters to apply depending on the envisioned use 

case. The rationale is to provide guidelines for researchers needing to perform trace analysis in their 

studies. 
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. Introduction 

Recent years have seen a major growth in the number of mobile

evices, almost all providing network connectivity through NFC,

luetooth or WiFi to name a few. This has made both opportunis-

ic and Delay Tolerant Networks major topics of interest. Assess-

ng the performance of such networks is a necessary step towards

heir deployment. So far, this task often relies on traces or datasets

we will use both terms indistinctly) including Contact Times and

ntercontact Times between nodes, coming either from synthetic

odels or captured in real-life situations. 

At first glance, traces such as the ones available at CRAWDAD

eem to be the most realistic material usable for Delay Tolerant

etwork studies. There are however strong hypotheses captured

nto these traces: the capture setting (conference, campus...), the

adio technology (Bluetooth, WiFi), the number of nodes, the total

uration, the scope (standard working hours vs. round-the-clock

ecording), and the sampling period. Furthermore, because these

ata collection efforts are usually hard to perform, only few re-

earch teams have managed to provide such datasets. This led to

ome traces being used much more often than others. For the pur-

ose of this study, we focus on datasets containing contact times

etween devices. GPS logs or network logs are consequently out of

he scope of this paper. 
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In [2] , we already studied the impact of some filtering tech-

iques on the statistical analysis of contact datasets. We chose to

ocus on statistical distributions instead of network performance

ue to their use in some proposals in the literature [7,24] , aim-

ng at scaling the captured networks in terms of time scale and/or

umber of nodes. We found out that among the filters used, some

ad a major impact on distributions, while the contribution of oth-

rs was much more limited. 

In this paper, we try to go deeper in the study of traces. Hence,

he work presented here considers all the steps in the life cycle

f traces, from the real-life data collection to the statistical anal-

sis. The various filters which can be applied in between are also

iscussed. The analysis of four existing datasets and their use in

arious research works provided us with several recommendations

or future trace-based studies. 

The remainder of the paper is organized as follows. In Section 2 ,

e present the traces and identify use cases for which they can

e exploited. Sections 3 –5 then provide a detailed inventory of

ll factors which could influence subsequent results, when respec-

ively collecting, filtering or scaling the trace. This in turn allows

ection 6 to propose a list of parameters which need to be consid-

red when working with a contact trace, and provide some advice.

inally, Section 7 concludes the paper. 

. Background 

In this section, we present the contact datasets which will be

overed by our study. We also identify three main use cases for

ontact datasets, based on the existing literature. 

http://dx.doi.org/10.1016/j.comcom.2016.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.05.006&domain=pdf
mailto:gwilherm.baudic@isae.fr
mailto:tanguy.perennou@isae.fr
mailto:emmanuel.lochin@isae.fr
http://dx.doi.org/10.1016/j.comcom.2016.05.006


Table 1 

Main characteristics of the datasets. 

Rollernet MIT Infocom ’05 Humanet 

Technology Bluetooth Bluetooth Bluetooth Bluetooth 

Year 2006 2004 2005 2010 

Device iMote phone iMote custom 

Environment urban campus conference office 

Duration (days) 0.125 284 3 1 

Time span NA 24/7 24/7 workday 

Sampling period (s) 15 300 120 5 

Internal nodes 62 89 41 56 

Internal contacts 60,146 114,046 22,459 64,445 

External contacts 72,365 171,466 5,757 64,531 
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2.1. Existing datasets chosen 

We have selected four datasets to illustrate our study. Three of

them were already used in [2] and in several previous works, while

the fourth one represents a more recent experiment for which

the authors made a careful study before choosing parameters. All

are publicly available through the CRAWDAD archive website. An

overview of their characteristics is presented in Table 1 . 

The first dataset is Rollernet [3] , which was collected during a

3-h long rollerskating tour in Paris in 2006. 62 Bluetooth contact

loggers (iMotes) were distributed to volunteers and staff members

among approximately 2,500 participants. The second one comes

from the Infocom 2005 experiment [22] , which also relied on sim-

ilar contact loggers. They were distributed among 41 participants

of the student workshop of the conference, who also attended the

rest of the conference afterwards for a total duration of three days.

The third dataset, MIT Reality Mining [10] , was collected through

the use of an activity logging application embedded in mobile

phones. These were lent to 100 MIT students over the course of the

20 04-20 05 academic year, representing almost 9 months of data.

For this third dataset, we only considered the Bluetooth contact

traces in our study (thus ignoring all information on the cellular

network), and restricted the data to the 89 devices which effec-

tively recorded contacts. 

Finally, the Humanet dataset [4] was also produced using cus-

tom hardware and Bluetooth. It recorded contacts between 56 peo-

ple in an office environment during workdays (no nights or week-

ends) for 6 weeks in 2010. However at the time of this writing,

only 1 day has been published so far. We only considered contacts

recorded between users when the devices were worn, thanks to

the use of the mobility flag recorded in the trace. 

As can be seen from Table 1 , the four traces selected here of-

fer a true diversity in terms of sampling periods, collection dates,

trace lengths and captured environments. Although there are sev-

eral other datasets available, the goal of the present work is to

study the assumptions and not the datasets, which is why we de-

cide to restrict ourselves to four of them. 

Some studies of Delay Tolerant Networks also used WLAN

traces, such as the Dartmouth dataset [15] . In this paper, we decide

to focus on Bluetooth traces; however, most of the issues high-

lighted here also apply to WLAN traces. 

2.2. Typical use cases for traces 

We already mentioned that real traces are a straightforward so-

lution for Delay Tolerant Network researchers willing to add some

realism to their studies. More precisely, there are three major use

cases for traces which can be identified from the literature: so-

cial and mobility inference, performance assessment and statistical

analysis. 
f

ocial and mobility inference. For this task, traces are typically pro-

essed in order to obtain social graphs, or at least links of vari-

us strengths (number of contacts, total duration of contacts, time

f last contact, etc.) depending on the relationship between users.

his in turn can allow to identify communities, or more simply to

ake routing decisions for protocols based on social proximity. 

erformance assessment. It is rather commonplace for a paper

roposing a new routing protocol to demonstrate its applicability

n both synthetic and real traces. In this case, real traces are used

o overcome the potential lack of realism of the mobility models

ehind the synthetic traces. It was however shown in [21] that be-

ause contact traces do not record actual available bandwidth and

uffer occupancy, they can lead to overly optimistic performance

esults. 

tatistical analysis. This was the main topic of [2] , and is consid-

red as a usual processing to go beyond the raw trace, for exam-

le by capturing the overall contact times distribution or node de-

ree instead of individual values. This is also the approach used by

7,24] in order to extend a trace in time span and/or in number of

odes, as detailed in Section 5 . 

. Collecting the trace 

In this section, we provide a list of parameters which have to be

et at the time of recording. This list will be useful to both prac-

itioners willing to collect new traces and researchers planning to

xploit existing datasets. 

.1. Communication hardware choice 

Traces such as Humanet, Rollernet or those of the Haggle ex-

eriments have been produced with custom-made devices such as

Motes. The choice of custom devices was made by the Humanet

esearchers to be able to tweak Bluetooth parameters which were

ot adjustable on smartphones [5] . For real applications, which are

ighly likely to be deployed on off-the-shelf devices, the additional

onstraints of such devices would need to be taken into account.

onstraints can come from the underlying operating system, the

evice usage patterns [23] , or even, as mentioned before, the lack

f control over some parameters. The MIT dataset [10] for example

as produced using an app on smartphones, which were also used

y participants on a daily basis to make phone calls or send text

essages. The same year, researchers at the University of Toronto

23] also made a study on students equipped with PDAs running

ustom software. In these cases, exhausting the battery is not only

armful to the experiment itself, but also to the overall experience

or the user. Note that this consideration would also be true for

eal applications. One parameter which can be adjusted in this case

s the frequency to look for other devices, discussed next. 

.2. Sampling period 

The traces considered in this paper have all been produced by

robing at regular intervals for potential contacts. The choice of

his frequency (called sampling period or sometimes granularity

n the literature) can be determined by several factors. First, it is

esirable to leave enough time for the other devices to respond

o the probe. For this reason, the authors of [5] chose a value of

 s after a careful study of response time for several smartphone

odels. Other limitations come from the portable nature of the de-

ices used: a big sampling period has the advantage of saving en-

rgy (a concern already expressed in the previous subsection) and

lso memory [10] . Theoretical methods for choosing the optimal

requency can also be found in [18] and [20] . 
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Fig. 1. Histogram of the contact times for the keynote in the Infocom 2005 dataset. 

The sampling period of 120 s is clearly visible between peaks. The peak at 0 s con- 

tains in fact 1575 contacts. 
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However, the choice of a big sampling period means that

horter contacts remain unseen, which may underestimate contact

pportunities. To address this issue, the authors of [29] introduce a

ethod to infer a plausible mobility from the contact traces, which

an then be used to generate other traces with a higher tempo-

al resolution. This approach was later criticized in [16] , due to the

igh number of parameters which have to be set to properly cap-

ure the intrinsic mobility. We can also mention another solution

f adaptive sampling algorithms, which vary the sampling period

epending on the observed contacts or number of neighbors. Two

xamples are [11] and [28] . 

As an illustration, a close-up view of the distribution of con-

act times for the keynote contained in the Infocom 2005 dataset

s provided in Fig. 1 . According to the conference program, this

eynote lasted for 2.5 h on the first morning of the conference. For

larity, we reduced the range of the x axis from 50 0 0 to 120 0 s,

nd of the y axis from 1600 to 250 contacts. Each bar has a width

f 10 s. This plot only considers contact times for the keynote, but

e also obtained similar shapes for other periods of this dataset

panels, sessions...). By using a histogram and linear scale instead

f the much more common Complementary Cumulative Distribu-

ion Function log-log plots, the sampling period becomes more vis-

ble: the time interval between each peak is 120 s, which cor-

esponds to the sampling period advertised for this dataset. No-

ice that these peaks would translate into steps on a Complemen-

ary Cumulative Distribution Function log-log plot. The fact that

here are also other contacts whose durations are concentrated

round these peaks comes from the desynchronization procedure,

iscussed in the next subsection. It should be noted here that the

eak located at 0 s contains in fact 1575 contacts (instead of 250

s the scale choice might suggest). 

.3. Time synchronization 

With a distributed data collection, it is crucial to have a com-

on time reference to correctly detect encounters. Unfortunately,

he intermittent connectivity which characterizes Delay Tolerant

etworks makes this challenging. Interestingly, perfect time syn-

hronization may be undesirable during data collection, as two

luetooth devices scanning at the same time cannot discover each

ther. For this reason, the authors of [22] and [3] used a random

ephasing between device clocks, respectively of ± 12 s and ± 5 s. 

The authors of the Humanet dataset [4] used a nightly synchro-

ization: each night, when the collection device was left at the

ffice for charging and data uploading, it received a new times-
amp from the central server [5] . During the day, perfect synchro-

ization of scanning was avoided by using a random slave period

 3 + rand(1 . 5) s). On the contrary, authors of [22] and [3] per-

ormed a manual synchronization after the experiment, a process

hich is prone to errors: for example in [22] , accuracy below 5 mn

s not guaranteed. 

.4. Storage format 

At the end of the experiment, data from all participating de-

ices is gathered and merged. Then, the resulting files can be used

or evaluation and/or shared with the community. As was already

oticed in [17] , there is no common format for all the traces. Some

re available as text files [3,22] , others as SQL database dumps

4,10] . 

The type of data stored also differs: if it is always feasible

o find the identity of the two nodes involved, along with the

tart and end times of the contacts, contact and intercontact times

ometimes have to be computed. Format of times also vary, rang-

ng from Unix timestamps [10] to seconds from the beginning of

he experiment [22] . Consequently, a researcher willing to use sev-

ral traces would first have to decide for a common format, then

o some scripting to get all the traces in this common format. 

For access point records such as [15] (which were not used in

his survey), the trace does not directly contain contacts between

odes, but only connections to access points; hence, a common as-

umption is to consider two nodes as in contact when they are

oth simultaneously connected to the same access point (see for

xample [9] or [25] ). 

. Filtering the trace 

In this section, we now place ourselves from the point of view

f a researcher who would like to use real traces for his work, such

s datasets available at CRAWDAD. Although it seems straightfor-

ard to use the raw data directly, there are in fact several filters

hich can be applied. Notice that this section can also be valuable

or users of synthetic traces, because it lists several parameters of

nterest for simulations. 

.1. Defining intercontact times 

A first factor which needs to be accounted for is the definition

f an Intercontact Time, as we already pointed out in [2] : while

ost of the literature considers it to be the duration between the

nd of a contact and the beginning of the following one, some pa-

ers such as [24] consider the time difference between the begin-

ing of two consecutive contacts. Because this latter definition ag-

regates both the contact time and the “usual” intercontact time,

e believe it to be a reasonable choice when contacts are consid-

red instantaneous, as is often the case in theoretical performance

odels. Due to these two definitions, special care must be taken

hen intercontact times have to be computed from contact start

nd end times, like we mentioned in the previous subsection; to

he best of our knowledge, precomputed intercontact times avail-

ble in some datasets already follow the usual definition. 

.2. Symmetrizing contacts 

Bluetooth uses an asymmetric discovery procedure, which

eans that a recorded contact between node i and node j does

ot necessarily mean that j and i could also communicate; in fact,

he authors of [30] claim that this is rather uncommon. How-

ver, some works choose to assume symmetry [26] . For social

nalysis, symmetry is likely to be desirable (if user A meets user
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Fig. 3. Distribution of the contact durations in the original and synthetic traces. 

Note the appearance of longer contacts after the filtering. 
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B, then B also meets A). However, issues can appear with sym-

metric contacts when computing node degrees. In this case, re-

searchers should not forget that a contact between nodes i and j

means that j contributes to the degree of i , just as much as i con-

tributes to the degree of j . We show the differences for the case

of the internal nodes of the Rollernet dataset in Fig. 2 . Here, for-

getting that the raw dataset assumes symmetry leads to an un-

derestimation of the computed degrees, especially for the nodes

with the biggest indexes. Consider for example node 58 (out of

62), which degree jumps from 4 to 61 when symmetry is cor-

rectly taken into account. This leads the authors of [27] to conclude

that node degrees exhibit a linear distribution, while the results

presented here in Fig. 2 with symmetry clearly contradict these

findings. 

On the contrary, symmetry should preferably be avoided for

network performance assessment, unless of course the connection

is effectively symmetric. 

4.3. Merging contacts 

In contact traces, a contact between nodes i and j lasts as long

as probes from i get an answer from j . However, the authors of sev-

eral datasets observed a large number of contacts which were only

separated by one probe, and consequently decided in this case to

merge such contacts. For the Infocom 2005 dataset, this choice is

made to address a memory exhaustion problem caused by contacts

with a specific brand of mobile phones [12] . 

However, this strategy can merge two distant contacts, thus cre-

ating an artificially long contact which may not correspond to the

reality. Although this may be desirable when inferring mobility or

social relationships from the trace, it would lead to overestimat-

ing the transfer abilities of the network, thus biasing performance

evaluations. 

To illustrate this behavior, we applied such a filter to a syn-

thetic trace. The trace was generated with 41 nodes on a 100 ×
100 m 

2 area, moving according to the Random Waypoint model

(constant speed of 1 m/s, no pauses) during 2.5 h, the first one be-

ing discarded to allow convergence of the model. Node range was

10 m. The original sampling period was 1 s, a small value achieved

thanks to the use of a simulator (namely, the ONE [13] ) which

would not be possible in reality. The final sampling period applied

by the filter was 120 s. Note that the choice of parameters (node

number, duration, sampling period) was directly inspired from pa-

per sessions in the Infocom 2005 dataset. 

The results are presented in Fig. 3 . In the original trace

( Fig. 3 (a)), the longest contact recorded had a duration of 219 s.
n the final trace however ( Fig. 3 (b)), we notice the appearance

f 28 contacts with a duration of 240 s, which did not exist in

he first trace, and even a 360-s contact. When evaluating perfor-

ance, such long contacts would be seen as highly interesting data

ransfer opportunities, despite being only artifacts of the contact

erging process. 

One may however object that the previous study was done

ith a synthetic dataset instead of a real one. In fact, a similar

tudy was also conducted in [6] for the Humanet dataset. Orig-

nally produced with a sampling period of 5 s, the authors pro-

essed the trace to virtually achieve sampling periods of 120 s

s in [22] or 300 s as in [10] . Similarly to the present work,

ncreasing the sampling period produced longer observed con-

acts, and dramatically reduced the total number of contacts

ecorded. 

Like the previous filter, this one is sometimes already included

n the traces available on repositories: this is the case for example

or Rollernet (symmetry, contact merging) [3] and Infocom 2005

contact merging) [22] . This can be problematic because for such

atasets, there is no straightforward way of assessing the impact

f these choices due to the unavailability of the raw, unfiltered

ata; worse, users of such traces may not even realize the impli-

ations of this filtering. On the contrary, the more recent Humanet

ataset [4] does not include any filter in the released version; some

re however explicitly applied by the authors for their subsequent

tudies [6] . 
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1 This was the session length, as found in the conference program. 
.4. Losing or removing extreme values 

The range of values recorded in contact datasets can be quite

road, with intercontacts ranging for instance from a few seconds

o a few days in the Infocom 2005 dataset. Hence, one may want

o remove values which are outside a certain range. Some of them

an indeed be seen as a kind of artifact of the collection process:

n the case of the Infocom 2005 dataset, the longest intercontact

imes last for almost three days, which happens to be the length

f the whole experiment. They could therefore be interpreted as

airs of nodes which saw each other only at the beginning and

t the end of the experiment, thus indicating that the correspond-

ng people would have been unlikely to meet at all without the

xperiment. It should also be noted that the disappearance of the

ongest values can be a side effect of restricting the length of the

race: it is impossible to record durations longer than the trace

ength. 

However, extreme values can also be the smallest ones. Among

hese, one value is especially interesting: contacts with a dura-

ion of 0 second. They represent a large part of the raw Bluetooth

races studied here (75% of Rollernet, 52% of Infocom 2005, 43%

f the MIT dataset and 55% of the Humanet dataset). It should be

oted that these contacts did not really last for 0 s during the

race collection; instead, they were simply shorter than the sam-

ling period and were only detected for one probe. This can be

een for example on Fig. 3 in Section 4.3 , where the application

f the sampling algorithm led to a majority of recorded contacts

ith a duration of 0 s while the original trace did not contain any

minimum duration was 1 s). Recall also the highest peak at 0 s

n Fig. 1 . Yet, some papers such as [24] appear to discard all con-

acts shorter than the sampling period (including the 0-s contacts),

hus removing a substantial part of the data. On the contrary, the

uthors of [26] choose to include these 0-s contacts in their analy-

is by extending them to an arbitrary value of 1 s. This extension,

espite being far from reality, is however necessary for some sta-

istical tools due to the presence of logarithms in the formulas [2] .

The question that is raised by these choices is about their im-

act on the intercontact times: if some contacts are deleted, then

he surrounding intercontacts should be merged because they no

onger separate anything. This would lead to overestimating the in-

ercontact length. 

.5. Restricting contacts to device mobility 

Referred to as the “human mask” in [6] , this filter is used to

iscard contacts which happened while the device was not worn

y the user (e.g., it was idle on the desk). If the use of this fil-

er is desirable for inferring mobility from the contact traces, it

hould be avoided when evaluating network performance, since it

ay discard useful connections. Furthermore, applying this filter

equires a way to tell when the device is worn and when it is not:

n the case of the Humanet dataset [4] , this was achieved through

he collection of accelerometer data, a parameter which is unfortu-

ately not present in all traces. For the MIT dataset [10] , for which

o accelerometer data was available, the authors tried to imple-

ent a so-called ’forgotten phone’ classifier to identify times when

he phone was not with the user. 

.6. Filtering devices 

Traces may not only record contacts between devices partici-

ating in the experiment (“internal” nodes), but also with other

evices which were observed despite not collecting any data (“ex-

ernal” nodes). 

The issue with the external nodes is that they can be detected,

ut not detect others. In other words, and unless symmetry of con-
acts is assumed, they will be able to receive data, but not to send

t. Consequently, and for simplicity, contacts with these external

odes are sometimes simply discarded from the trace. The study of

ggregated distributions of Contact Times and Intercontact Times

ed the authors of [12] and later of [2] to the conclusion that both

ategories of nodes exhibited similar behaviors. 

Even when the nodes are restricted to the “internal” ones, fur-

her filtering may be needed. Some datasets ( [4] and most of the

races in [22] ) involve fixed nodes, typically placed by the re-

earchers in strategic zones where people are highly likely to meet.

nlike the others, these nodes are not tied to a person. While these

odes are especially interesting for location inference, they are also

nown to dramatically improve the performance of Delay Tolerant

etworks [1] ; hence, they should be either properly acknowledged

r discarded when evaluating network performance on such traces.

or statistical inference or mobility modeling, we believe that both

xternal and fixed nodes should also be discarded, because they

ill typically exhibit different connection patterns. 

.7. Pair discarding 

To ensure statistical validity of the distribution fitting process,

hich will be discussed in more details in Section 5 , we need

o have a minimum number of samples for each pair. This lower

ound can also be interesting when building social graphs, as a

ay to remove the less active pairs from the analysis which would

ranslate into low-weighted edges and unnecessarily clutter the

raph. The authors of [9] use a threshold of 4 contacts, while the

alue chosen in [26] is 9 contacts. It should be noted here that the

ssumption of symmetry mentioned earlier will also impact the

umber of pairs which would be discarded. Indeed, merging the

ontacts from node i to node j with those from j to i into a single

air will logically increase the total number of contacts recorded

or this pair, eventually going over the threshold. Hence, the use

f the symmetry filter should be properly acknowledged for such

ses, as was done in [9,26] . 

The major issue of this filter is the fact that some pairs will

e removed from the analysis, as if they did not exist. This is es-

ecially problematic for statistical analysis, because it means that

uch pairs being missing as inputs will typically be also missing in

he data generated from this analysis. One possible solution could

e to aggregate the data from all such pairs, and treat them as one

ig virtual pair, at the expense of ironing out any differences that

ay exist between the original pairs. 

. Scaling the trace 

Once the trace has been adequately filtered, this may not be

ufficient for the envisioned purposes. Indeed, datasets may con-

ain time periods which exhibit different properties: some nodes

ay not be functioning properly [10] , or the experimental condi-

ions were different (such as a break during a rollerskating tour [3] ,

olidays between school terms [10] , or nights [22] ). Sometimes,

he dataset is simply too long for the envisioned experiment, so

hat only a subset of it suffices. This subset should however be

hosen carefully: it would be unfortunate to try to study the dy-

amics of users in a session of the Infocom 2005 conference by

aking a 1.5-h 

1 long sample in the middle of the night, or studying

he on-campus interactions of MIT students over a holiday week. 

But the opposite can also happen: the trace can be too short

n time or not contain enough nodes. Due to the inherent dif-

culties of setting up trace collections, and the resulting limited

umber of existing datasets, such limitations are commonplace. To



Table 2 

Filter settings for the fitting study. 

Filter Value 

Intercontact time definition Usual 

Symmetry No 

Contact merging Yes, included in raw trace 

Extreme values 0 s contacts extended to 1 

Device mobility NA (no data available) 

Device filter Internal nodes only 

Trace length Whole trace 

Contacts per pair ≥ 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Sums of pairwise intercontact times, for both the original dataset and the 

synthetic one obtained through statistical analysis. Each dot represents a pair. Some 

pairs exhibit much longer durations in the synthetic trace than in the original one, 

and the four-group structure disappears. Notice the scale change between the two 

graphs. 
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address these shortcomings, two solutions have been proposed in

the literature, namely the Community Trace Generator [7] and the

Encounter-based MOdel [24] . 

5.1. Existing scaling approaches 

These two proposals share a common approach: extracting

characteristics from the trace as statistical distributions (and not

as raw data), which are subsequently used for the generation of a

new trace exhibiting the same statistical properties. CTG [7] cap-

tures the number of nodes along with the distributions of node

degree, aggregated Contact Times and Intercontact Times. EMO

[24] also captures the number of nodes and distribution of node

degree, but contact and intercontact times are treated in a pair-

wise manner. More precisely, the pairwise empirical distributions

are first fitted to a probability distribution (which needs to be the

same across all pairs), then the empirical distribution of the pa-

rameters of these distributions is fitted to another probability dis-

tribution. For example, the pairwise contacts of the MIT dataset

[10] are found to be exponentially distributed, with parameters of

the exponential law following a normal distribution [24] . 

At this point, we would like to mention again the aggregated

contact time distribution shown in Fig. 1 . Because of the sampling

process, contact durations are distributed close to the sampling pe-

riods, leading to ties (several samples with the same values) and

an intermittent shape, with long runs of time values for which no

contact is recorded. This is in sharp contrast with the continuous

character typically displayed by usual statistical distributions. 

5.2. Statistical fitting issues 

A first problem comes from the distribution fitting process

used, which strives to use the same statistical distribution to fit

the (inter-)contacts of all the pairs. In [9] and later in [26] , it

was shown for four different traces (Infocom 2005, Rollernet, MIT

and Dartmouth) that the Intercontact Times of some pairs could

be modeled equally well by several distributions, while for some

other pairs none of the three distributions considered (namely

Pareto, exponential and log-normal) gave a satisfactory result. In-

terestingly, the distribution which was able to represent the largest

number of pairs was for the four traces the log-normal distribu-

tion, despite the variety of environments captured. 

We applied this statistical fitting approach (one distribution to

model all the pairs) to the pairwise Intercontact Times of the In-

focom 2005 dataset [22] . We provide the list of parameters for the

filters introduced in the previous section in Table 2 . 

No extreme values are discarded. As shown in Table 2 , 0-s

contacts are however extended to 1 s, so no intercontact has to

be modified. We used the same statistical fitting procedure as

in [2] (Maximum Likelihood estimation for the parameters, and

Kolmogorov–Smirnov test to determine the best candidate). The

choice of distributions to test is also the same: exponential, log-

normal or Pareto with x = 1 . We found out as in [9,26] that
min 
he statistical distribution able to represent the largest number

f pairs was log-normal. Then, we used the estimated parameters

ound for each pair to generate the same number of synthetic In-

ercontact Times for each pair as in the original trace. The results

n terms of total Intercontact Times can be found on Fig. 4 . On

hese plots, each dot represents a node pair. When comparing the

riginal trace with the generated one, we notice that the totals

or some of the pairs are much higher as the original ones (even

xceeding the initial trace length), implying that longer intercon-

acts have been generated. Furthermore, the dots for the original

race are grouped into four regions. Closer inspection of the in-

ercontact times for each pair reveals that this structure is caused

y a few very long intercontacts (having durations of at least one

ight). These long (but rare) intercontacts, which could be seen as

xtreme values, are lost after the fitting process. 

Even the fitting process itself can hide many details. A first ex-

mple is the Pareto law. In [19] , the authors mention two defi-

itions for it, which they name “Pareto0” and “Pareto” depending

n their ability to accept values arbitrarily close to 0. When only

he Pareto law is used, it is also possible to find several defini-

ions for the exponent. Another issue with power laws is the fact

hat they have a lower bound, usually written x min . In [2] , we al-

eady mentioned that there are two possibilities to estimate this

ower bound: arbitrarily setting it to a value such as the sampling
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eriod [24] , or using a mathematical estimator such as the one

roposed in [8] . In both cases, data below the lower bound will be

iscarded, as if the filter presented in Section 4.4 had been applied.

his makes comparison between distributions somewhat trickier,

ecause other statistical distributions (like, for example, the expo-

ential one) do not have any lower bound in their usual definition,

nd will therefore try to fit all the data. Once the various distri-

utions to test have been chosen, a tool to help decide which one

est models experimental data is needed. As we mentioned in [2] ,

here are several possibilities. The simplest is to plot the data with

n adequate scale and perform a graphical fitting, as in [12] . Other

uthors used statistical tools, such as the Kolmogorov–Smirnov

est [24] or the Cramer-von Mises test [9,26] . Indeed, according to

he authors of [8] , statistical tests should always be favored over

raphical fitting because the latter approach is too error-prone. 

.3. Validation issues 

These statistical fitting approaches have another drawback: they

re validated by showing their ability to reproduce aggregated

istributions of contact and intercontact times. The major advan-

age of aggregated distributions over their pairwise counterparts is

hat they are much more compact (only one distribution to con-

ider) [9] , which made them a common approach in the literature

or validation. However, the authors of [14] claim that validation

hould be made on parameters which are not used as inputs of

he algorithm: they validate their mobility model (which is based

n hotspots, speed distribution of users and transitions between

otspots) by its ability to correctly estimate the number of people

t a hotspot across the workday. 

Furthermore, aggregated distributions are known to hide many

etails. In [9] , it was found that both exponential and log-normal

airwise distributions could lead when aggregated to the observed

ower laws. The authors of [19] also show that several other pair-

ise distributions can lead to power laws when aggregated, and

rovide a list of cases when using only the aggregated distribu-

ion is in fact not correct. Another issue was shown in [25] . In

his work, the authors select three mobility models, and tune their

arameters to reproduce the empirical aggregated distributions of

ontact Times and Intercontact Times found in real datasets. When

erforming simulations with both the real traces and the synthetic

nes derived from them, they find out that synthetic traces always

rovide much more optimistic performance results than the real

nes. 

. Recommendations 

In Section 3 , we reviewed the parameters to be considered at

he time of data collection, while Section 4 provided an overview

f the filters applied for trace exploitation. Then, Section 5 pre-

ented two approaches to scale existing traces and their limita-

ions. Based on these findings, we can now list the various param-

ters which have to be considered when using a trace. 

.1. Production 

First, the hardware and radio technology used for collection

ust match the ones which are envisioned for the application. The

ampling period must also be chosen carefully, taking into account

oth what is planned for the application and the limitations of the

adio technology, as detailed in [5] . More precisely, the sampling

eriod must consider the time to find other devices, but also the

cceptable impact in terms of energy consumption. However, en-

rgy is no longer a major concern: while the team behind the MIT

ataset [10] tried in 2004 to make cell phones batteries to last for

ore than 2 days without charging, it is now not uncommon to
harge a smartphone on a daily basis. Based on the conclusions

rom [6] and our complementary analysis on contact merging, a

ealistic trace should also be as precise as possible, thus requiring

 small sampling period. Therefore, a trade-off between energy and

recision is needed. We believe that trace collection effort s should

ocus on precision, at the expense of frequent charges of the ex-

erimental devices; on the contrary, real application deployments

hould aim for a pleasant user experience, which means limiting

heir footprint on energy consumption. 

Issues on time synchronization must definitely be considered;

ased on existing literature, we would recommend random slave

eriods [5] instead of clock desynchronization, due to the smaller

esulting errors. 

If the collected data is to be made public, it is desirable to per-

orm as little filtering as possible on the data, which will then

llow other researchers to apply their own filters depending on

heir goal. Regarding these filters, their application should always

e properly and precisely described, especially when they are in-

orporated in released data (as has already been the case in some

atasets for symmetry, intercontact definition or contact merging).

he aim here is to make results easier to reproduce and compare,

 concern which was the original motivation for [2] . 

.2. Filtering 

A summary of recommendations on the filters can be found

n Table 3 , for the three common uses of traces introduced in

ection 2.2 : social structures and mobility inference, performance

valuation, and statistical analysis. The filters are presented in the

ame order as they were introduced in the previous sections. For

ach filter, we detail for each use case if it can, must or must not

e applied. In this context, can means that we believe it is possible

o apply this filter, provided that the researcher is well aware of it

nd of its consequences. 

For example, the length filter can be used in all cases to iso-

ate a part of the trace exhibiting particular properties (workdays,

offee breaks...). The same observation applies to the Intercontact

ime definition: using the alternative definition is not wrong by

tself, except when simultaneously considering non-zero contact

imes. Regarding symmetry, we also believe that it can be applied

f the connection was really symmetric, but must be avoided oth-

rwise. 

For the other filters, the situation is slightly different. Mer ging

ontacts is recommended for social and mobility inference if one

oes not want to minimize the links between nodes in the net-

ork, as also found in [6] . On the contrary, overestimating data

ransfer opportunities will be detrimental to performance assess-

ent and statistical analysis. We recommend filtering (or modify-

ng) extreme values only for statistical analysis, at the very least

hen a large percentage of 0-s contacts is present in the trace.

imilarly, we recommend the use of the mobility filter only for so-

ial or mobility inference, because it would underestimate trans-

er opportunities in the two other use cases considered. Regard-

ng the choice of devices to consider, a study on social or mobility

nference should typically ignore fixed or external nodes because

hey do not represent social interactions. Fixed nodes may however

e useful for localization. For performance assessment, the choice

f nodes is left to the researcher, as long as it is properly doc-

mented. For statistical analysis, the choice of nodes should also

e carefully made in order to avoid the capture of unwanted be-

aviors. One may object that conclusions of [2,12] indicated simi-

ar trends among both internal and external nodes; however, these

onclusions did not consider fixed nodes, and were drawn based

n the study of aggregated distributions instead of pairwise ones.

inally, ensuring the validity of the statistical analysis requires a



Table 3 

Recommendations for the use of filters. + = MUST, - = MUST NOT, o = CAN. 

Social/mobility inference Performance assessment Statistical analysis 

Intercontact time definition o o o 

Symmetry o o o 

Contact merging + - - 

Extreme values - - + 

Device mobility + o o 

Device filter + o + 

Contacts per pair - - + 

Trace length o o o 
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lower bound on the number of contacts for each pair, a condition

which we believe is less necessary otherwise. 

It should also be noted that there can be some interplay be-

tween the filters: for example, symmetry will increase the number

of contacts for a given pair, and, due to its impact on Intercontact

Times, also modify the range of values; choosing only a portion

of the dataset will cause all (inter-)contacts longer than this new

duration to disappear; removing the shortest or longest values di-

rectly influences the number of values of the node pair in question,

as does the mobility filter or the trace length. This list is not ex-

haustive, and represents an even stronger motivation to properly

document the filters used in a study. 

However, one may argue that if a researcher has enough control

on the experiment to correctly set all the parameters mentioned

above, it may be desirable to skip the trace collection part and di-

rectly proceed to application deployment. But even in this situa-

tion, trace collection can be a reasonable choice, since a recording

of all contacts will be available for subsequent trials. Availability

of this data would increase the repeatability of the deployment. It

also allows to exploit the trace with various filter combinations,

and then possibly for multiple use cases. For example, it would

be possible to increase the sampling period without compromising

the validity of the collected data. 

This raises the question of representativity of traces. More pre-

cisely, real applications are unlikely to be limited to simply prob-

ing their surrounding for other nodes, which is what trace collec-

tion effort s have been doing so far; instead, they will also involve

data transfer between devices (of images, news items, chunks of

large files...). Assessing the difference in terms of recorded contacts

between both approaches is outside the scope of this work, but

would represent a highly valuable result for the community. A first

step in this direction has been made in [21] , where the authors

recorded message exchanges in addition to the contacts between

nodes. 

6.3. Scaling 

We mentioned that available traces do not always exactly

match the situations one is willing to study. In Section 5 , we pre-

sented some solution proposals to this problem. We do not see any

issue in taking only a subset of an existing dataset, provided the

choice of time period is carefully conducted (i.e., not mistaking a

conference session with a lunch or a social event) and precisely de-

scribed. If already present in the trace, Intercontact Times should

be recomputed to reflect the time span change. However, based

on the various limitations previously outlined, we would strongly

advise against upscaling (extending the number of nodes and/or

the time span), unless new tools are created to address current is-

sues of the existing approaches. Based on the findings expressed

in Section 5 , these new tools should be able to work at the pair

level (and not only with aggregates [7] ), and be able to use several

statistical distributions to model them instead of only one. Defini-

tions of the statistical tools (distributions and goodness-of-fit tests)
hould be properly provided to avoid any ambiguities when build-

ng upon the results. Furthermore, the quality of such tools should

ot be judged on their ability to accurately reproduce aggregated

istributions [25] , but rather on pairwise distributions or network

erformance results. 

. Conclusion 

Contact traces collected during field trials are the most straight-

orward way for researchers to introduce some realism in their

ork. They are mainly used in the context of Delay Tolerant Net-

orks for social inference, performance assessment or statistical

nalysis. In this work, we show that the conditions captured by

races can be quite far from reality, due to the high number of

ther factors which can influence the collection process (sampling

eriod, device characteristics...). We also listed filters which have

een applied to traces in various research works, and proposed

ecommendations on their use depending on the envisioned exper-

ments. For all the filters, researchers need to be aware of their ex-

stence, especially when these are already incorporated in the files

vailable in public repositories. Finally, two existing approaches

iming to extend datasets while retaining their intrinsic character-

stics are presented. We found out that there are in fact several

idden limitations (such as modeling all node pairs with the same

istribution, or validating with aggregated measurements) which

ay prevent them to truly achieve their goal. 

Because of the large number of factors which have to be consid-

red when using real traces for performance assessment, we have

ome to the conclusion that synthetic traces should be considered

ith more attention. Unlike real datasets, synthetic models have

he advantage of offering full control over their parameters. How-

ver, measuring their conformance to reality is still a challenge,

onsidering that this is often done by comparing them with real

races. 

cknowledgments 

The authors are grateful to the anonymous reviewers for valu-

ble comments that helped greatly improve the paper. They would

lso like to thank Victor Ramiro for his comments and question-

ngs, and Jeremie Bigot for pointing out some issues of the scaling

rocedures. 

eferences 

[1] N. Banerjee, M.D. Corner, D. Towsley, B.N. Levine, Relays, base stations, and

meshes: enhancing mobile networks with infrastructure, in: ACM MobiCom
’08, 2008, pp. 81–91, doi: 10.1145/1409944.1409955 . 

[2] G. Baudic, T. Pérennou, E. Lochin, Revisiting pitfalls of DTN datasets statistical
analysis, in: ACM CHANTS ’14, 2014, pp. 73–76, doi: 10.1145/2645672.2645683 . 

[3] F. Benbadis, J. Leguay, CRAWDAD dataset upmc/rollernet (v. 2009-02-02),

2009, (Downloaded from http://crawdad.org/upmc/rollernet/20090202 ). http:
//dx.doi.org/10.15783/C7ZK53 

[4] J.M. Cabero, V. Molina, I. Urteaga, F. Liberal, J.L. Martin, CRAWDAD dataset tec-
nalia/humanet (v. 2012-06-12), 2012, (Downloaded from http://crawdad.org/

tecnalia/humanet/20120612 ). http://dx.doi.org/10.15783/C74G60 

http://dx.doi.org/10.1145/1409944.1409955
http://dx.doi.org/10.1145/2645672.2645683
http://crawdad.org/upmc/rollernet/20090202
http://dx.doi.org/10.15783/C7ZK53
http://crawdad.org/tecnalia/humanet/20120612
http://dx.doi.org/10.15783/C74G60


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

[  

[  

 

 

 

[  

 

 

 

[  

 

 

[  

 

[  

 

[5] J.M. Cabero, V. Molina, I. Urteaga, F. Liberal, J.L. Martin, Acquisition of human
traces with Bluetooth technology: challenges and proposals, Ad Hoc Netw. 12

(2014) 2–16, doi: 10.1016/j.adhoc.2012.05.007 . 
[6] J.M. Cabero, I. Urteaga, V. Molina, F. Liberal, J.L. Martin, Reliability of Bluetooth-

based connectivity traces for the characterization of human interaction, Ad Hoc
Netw. 24 (Part A) (2015) 135–146, doi: 10.1016/j.adhoc.2014.08.010 . 

[7] R. Calegari , M. Musolesi , F. Raimondi , C. Mascolo , CTG: a connectivity trace
generator for testing the performance of opportunistic mobile systems, ACM

ESEC/FSE07, 2007 . Dubrovnik, Croatia. 

[8] A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical
data, SIAM Rev. 51 (4) (2009) 661–703, doi: 10.1137/070710111 . 

[9] V. Conan , J. Leguay , T. Friedman , Characterizing pairwise inter-contact patterns
in delay tolerant networks, in: Autonomics ’07, 2007, pp. 19:1–19:9 . 

[10] N. Eagle, A.S. Pentland, CRAWDAD dataset mit/reality (v. 20 05-07-01), 20 05,
(Downloaded from http://crawdad.org/mit/reality/20050701 ). http://dx.doi.org/ 

10.15783/C71S31 

[11] A. Hess, E. Hyytia, J. Ott, Efficient neighbor discovery in mobile opportunistic
networking using mobility awareness, in: Communication Systems and Net-

works (COMSNETS), 2014 Sixth International Conference on, 2014, pp. 1–8,
doi: 10.1109/COMSNETS.2014.6734890 . 

[12] P. Hui , A. Chaintreau , J. Scott , R. Gass , J. Crowcroft , C. Diot , Pocket switched
networks and human mobility in conference environments, in: ACM WDTN

’05, 2005, pp. 244–251 . 

[13] A. Keränen, J. Ott, T. Kärkkäinen, The ONE simulator for DTN protocol
evaluation, in: ICST Simutools ’09, 2009, pp. 55:1–55:10, doi: 10.4108/ICST.

SIMUTOOLS2009.5674 . 
[14] M. Kim, D. Kotz, S. Kim, Extracting a mobility model from real user traces, in:

IEEE INFOCOM 2006, 2006, pp. 1–13, doi: 10.1109/INFOCOM.2006.173 . 
[15] D. Kotz, T. Henderson, I. Abyzov, J. Yeo, CRAWDAD dataset dartmouth/campus

(v. 20 09-09-09), 20 09, (Downloaded from http://crawdad.org/dartmouth/

campus/20090909 ). http://dx.doi.org/10.15783/C7F59T 
[16] A.K. Monfared, M.H. Ammar, E.W. Zegura, Plausible mobility inference from

wireless contacts using optimization, in: ACM CHANTS ’13, 2013, pp. 7–12,
doi: 10.1145/2505494.2505501 . 

[17] M. Musolesi , C. Mascolo , Mobility models for systems evaluation - a survey,
Middleware for Network Eccentric and Mobile Applications, Springer-Verlag,

2008 . 

[18] A. Nayebi, G. Karlsson, Beaconing in wireless mobile networks, in: IEEE WCNC
20 09, 20 09, pp. 1–6, doi: 10.1109/WCNC.2009.4917610 . 
[19] A. Passarella, M. Conti, Analysis of individual pair and aggregate intercontact
times in heterogeneous opportunistic networks, IEEE Trans. Mobile Comput.

12 (12) (2013) 2483–2495, doi: 10.1109/TMC.2012.213 . 
20] S. Qin, G. Feng, Y. Zhang, How the contact-probing mechanism affects the

transmission capacity of delay-tolerant networks, IEEE Trans. Veh. Technol. 60
(4) (2011) 1825–1834, doi: 10.1109/TVT.2011.2131693 . 

[21] N. Ristanovic , G. Theodorakopoulos , J.-Y. Le Boudec , Traps and pitfalls of us-
ing contact traces in performance studies of opportunistic networks, in: IEEE

INFOCOM 2012, 2012, pp. 1377–1385 . 

22] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, A. Chaintreau, CRAWDAD dataset
cambridge/haggle (v. 20 09-05-29), 20 09, (Downloaded from http://crawdad.

org/cambridge/haggle/20090529 ). http://dx.doi.org/10.15783/C70011 
23] J. Su, A. Chin, A. Popivanova, A. Goel, E. de Lara, User mobility for opportunistic

ad-hoc networking, in: IEEE WMCSA 20 04, 20 04, pp. 41–50, doi: 10.1109/MCSA.
2004.29 . 

24] F. Tan, Y. Borghol, S. Ardon, EMO: A statistical encounter-based mobility model

for simulating delay tolerant networks, in: IEEE WoWMoM 2008, 2008, pp. 1–
8, doi: 10.1109/WOWMOM.2008.4594 84 8 . 

25] G. Thakur, U. Kumar, A. Helmy, W.-j. Hsu, On the efficacy of mobility mod-
eling for DTN evaluation: analysis of encounter statistics and spatio-temporal

preferences, in: Wireless Communications and Mobile Computing Conference
(IWCMC), 2011 7th International, 2011, pp. 510–515, doi: 10.1109/IWCMC.2011.

5982586 . 

26] P. Tournoux , J. Leguay , F. Benbadis , V. Conan , M. Dias de Amorim , J. Whit-
beck , The accordion phenomenon: analysis, characterization, and impact on

DTN routing, in: IEEE INFOCOM 2009, 2009, pp. 1116–1124 . 
[27] P. Vieira, A. Costa, J. Macedo, A Comparison of opportunistic connection

datasets, in: 2012 Third International Conference on Emerging Intelligent Data
and Web Technologies (EIDWT), 2012, pp. 66–73, doi: 10.1109/EIDWT.2012.52 . 

28] W. Wang, V. Srinivasan, M. Motani, Adaptive contact probing mechanisms for

delay tolerant applications, in: Proceedings of the 13th Annual ACM Interna-
tional Conference on Mobile Computing and Networking, in: MobiCom ’07,

ACM, New York, NY, USA, 2007, pp. 230–241, doi: 10.1145/1287853.1287882 . 
29] J. Whitbeck, M.D. de Amorim, V. Conan, M. Ammar, E. Zegura, From encounters

to plausible mobility, Pervasive Mobile Comput. 7 (2) (2011) 206–222, doi: 10.
1016/j.pmcj.2010.11.001 . 

30] E. Yoneki, The importance of data collection for modelling contact networks,

in: Computational Science and Engineering, 2009. CSE ’09. International Con-
ference on, vol. 4, 2009, pp. 940–943, doi: 10.1109/CSE.2009.332 . 

http://dx.doi.org/10.1016/j.adhoc.2012.05.007
http://dx.doi.org/10.1016/j.adhoc.2014.08.010
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0005
http://dx.doi.org/10.1137/070710111
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0007
http://crawdad.org/mit/reality/20050701
http://dx.doi.org/10.15783/C71S31
http://dx.doi.org/10.1109/COMSNETS.2014.6734890
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0009
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5674
http://dx.doi.org/10.1109/INFOCOM.2006.173
http://crawdad.org/dartmouth/campus/20090909
http://dx.doi.org/10.15783/C7F59T
http://dx.doi.org/10.1145/2505494.2505501
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0013
http://dx.doi.org/10.1109/WCNC.2009.4917610
http://dx.doi.org/10.1109/TMC.2012.213
http://dx.doi.org/10.1109/TVT.2011.2131693
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0017
http://crawdad.org/cambridge/haggle/20090529
http://dx.doi.org/10.15783/C70011
http://dx.doi.org/10.1109/MCSA.2004.29
http://dx.doi.org/10.1109/WOWMOM.2008.4594848
http://dx.doi.org/10.1109/IWCMC.2011.5982586
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30200-6/sbref0021
http://dx.doi.org/10.1109/EIDWT.2012.52
http://dx.doi.org/10.1145/1287853.1287882
http://dx.doi.org/10.1016/j.pmcj.2010.11.001
http://dx.doi.org/10.1109/CSE.2009.332

	Following the right path: Using traces for the study of DTNs
	1 Introduction
	2 Background
	2.1 Existing datasets chosen
	2.2 Typical use cases for traces

	3 Collecting the trace
	3.1 Communication hardware choice
	3.2 Sampling period
	3.3 Time synchronization
	3.4 Storage format

	4 Filtering the trace
	4.1 Defining intercontact times
	4.2 Symmetrizing contacts
	4.3 Merging contacts
	4.4 Losing or removing extreme values
	4.5 Restricting contacts to device mobility
	4.6 Filtering devices
	4.7 Pair discarding

	5 Scaling the trace
	5.1 Existing scaling approaches
	5.2 Statistical fitting issues
	5.3 Validation issues

	6 Recommendations
	6.1 Production
	6.2 Filtering
	6.3 Scaling

	7 Conclusion
	 Acknowledgments
	 References


