15,635 research outputs found

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Seamful interweaving: heterogeneity in the theory and design of interactive systems

    Get PDF
    Design experience and theoretical discussion suggest that a narrow design focus on one tool or medium as primary may clash with the way that everyday activity involves the interweaving and combination of many heterogeneous media. Interaction may become seamless and unproblematic, even if the differences, boundaries and 'seams' in media are objectively perceivable. People accommodate and take advantage of seams and heterogeneity, in and through the process of interaction. We use an experiment with a mixed reality system to ground and detail our discussion of seamful design, which takes account of this process, and theory that reflects and informs such design. We critique the 'disappearance' mentioned by Weiser as a goal for ubicomp, and Dourish's 'embodied interaction' approach to HCI, suggesting that these design ideals may be unachievable or incomplete because they underemphasise the interdependence of 'invisible' non-rationalising interaction and focused rationalising interaction within ongoing activity

    Path Integration Changes as a Cognitive Marker for Vascular Cognitive Impairment?—A Pilot Study

    Get PDF
    Path integration spatial navigation processes are emerging as promising cognitive markers for prodromal and clinical Alzheimer’s disease (AD). However, such path integration changes have been less explored in Vascular Cognitive Impairment (VCI), despite neurovascular change being a major contributing factor to dementia and potentially AD. In particular, the sensitivity and specificity of path integration impairments in VCI compared to AD is unclear. In the current pilot study, we explore path integration performance in early-stage AD and VCI patient groups and hypothesize that: (i) medial parietal mediated egocentric processes will be more affected in VCI; and (ii) medial temporal mediated allocentric processes will be more affected in AD. This cross-sectional study included early-stage VCI patients (n = 9), AD patients (n = 10) and healthy age-matched controls (n = 20). All participants underwent extensive neuropsychological testing, as well as spatial navigation testing. The spatial navigation tests included the virtual reality “Supermarket” task assessing egocentric (body-based) and allocentric (map-based) navigation as well as the “Clock Orientation” test assessing egocentric and path integration processes. Results showed that egocentric integration processes are only impaired in VCI, potentially distinguishing it from AD. However, in contrast to our prediction, allocentric integration was not more impaired in AD compared to VCI. These preliminary findings suggest limited specificity of allocentric integration deficits between VCI and AD. By contrast, egocentric path integration deficits emerge as more specific to VCI, potentially allowing for more specific diagnostic and treatment outcome measures for vascular impairment in dementia

    Unified Framework for Finite Element Assembly

    Full text link
    At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain

    Bridging the Semantic Gap with SQL Query Logs in Natural Language Interfaces to Databases

    Full text link
    A critical challenge in constructing a natural language interface to database (NLIDB) is bridging the semantic gap between a natural language query (NLQ) and the underlying data. Two specific ways this challenge exhibits itself is through keyword mapping and join path inference. Keyword mapping is the task of mapping individual keywords in the original NLQ to database elements (such as relations, attributes or values). It is challenging due to the ambiguity in mapping the user's mental model and diction to the schema definition and contents of the underlying database. Join path inference is the process of selecting the relations and join conditions in the FROM clause of the final SQL query, and is difficult because NLIDB users lack the knowledge of the database schema or SQL and therefore cannot explicitly specify the intermediate tables and joins needed to construct a final SQL query. In this paper, we propose leveraging information from the SQL query log of a database to enhance the performance of existing NLIDBs with respect to these challenges. We present a system Templar that can be used to augment existing NLIDBs. Our extensive experimental evaluation demonstrates the effectiveness of our approach, leading up to 138% improvement in top-1 accuracy in existing NLIDBs by leveraging SQL query log information.Comment: Accepted to IEEE International Conference on Data Engineering (ICDE) 201

    A virtual reality user interface for a design information system

    Get PDF
    The computer is a tool, a complex artefact that is used to extend our reach. A computer system can provide several kinds of services, but against these services stands a supplementary task that the user must deal with: the communication with the computer system. We argued that Virtual Reality (VR) can fundamentally improve the user interface by rendering on the common experiential skills of all users. We present the theoretical basis for this, referring to Donald Norman?s theory. We show that VR provides at least theoretically, the means to take a big step in the direction of an ideal user interface. As an example of a innovative application of VR in user interface design, we presented the VR-DIS system; an interdisciplinary design system for the building and construction industry. We discuss the issues underlying the design of its VR interface

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper
    • …
    corecore