5,088 research outputs found

    Neural correlates of weighted reward prediction error during reinforcement learning classify response to cognitive behavioral therapy in depression

    Get PDF
    While cognitive behavioral therapy (CBT) is an effective treatment for major depressive disorder, only up to 45% of depressed patients will respond to it. At present, there is no clinically viable neuroimaging predictor of CBT response. Notably, the lack of a mechanistic understanding of treatment response has hindered identification of predictive biomarkers. To obtain mechanistically meaningful fMRI predictors of CBT response, we capitalize on pretreatment neural activity encoding a weighted reward prediction error (RPE), which is implicated in the acquisition and processing of feedback information during probabilistic learning. Using a conventional mass-univariate fMRI analysis, we demonstrate that, at the group level, responders exhibit greater pretreatment neural activity encoding a weighted RPE in the right striatum and right amygdala. Crucially, using multivariate methods, we show that this activity offers significant out-of-sample classification of treatment response. Our findings support the feasibility and validity of neurocomputational approaches to treatment prediction in psychiatry

    Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards

    Get PDF
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Functional Electrical Stimulation (FES) employs neuroprostheses to apply electrical current to the nerves and muscles of individuals paralyzed by spinal cord injury (SCI) to restore voluntary movement. Neuroprosthesis controllers calculate stimulation patterns to produce desired actions. To date, no existing controller is able to efficiently adapt its control strategy to the wide range of possible physiological arm characteristics, reaching movements, and user preferences that vary over time. Reinforcement learning (RL) is a control strategy that can incorporate human reward signals as inputs to allow human users to shape controller behavior. In this study, ten neurologically intact human participants assigned subjective numerical rewards to train RL controllers, evaluating animations of goal-oriented reaching tasks performed using a planar musculoskeletal human arm simulation. The RL controller learning achieved using human trainers was compared with learning accomplished using human-like rewards generated by an algorithm; metrics included success at reaching the specified target; time required to reach the target; and target overshoot. Both sets of controllers learned efficiently and with minimal differences, significantly outperforming standard controllers. Reward positivity and consistency were found to be unrelated to learning success. These results suggest that human rewards can be used effectively to train RL-based FES controllers.NIH #TRN030167Veterans Administration Rehabilitation Research & Development predoctoral fellowshipArdiem Medical Arm Control Device grant #W81XWH072004

    Goals and information processing in human decisions

    Get PDF
    We do not make decisions in the void. Every day, we act in awareness of our context, adjusting our objectives according to the situations we find. Operating effectively under multiple goals is fundamental for appropriate learning and decision-making, and deficiencies in this capacity can be at the core of mental disorders such as anxiety, depression, or post-traumatic stress disorder. In this thesis, I present studies I conducted to investigate how goals impact different stages of the decision process, from simple perceptual choices to subjective value preferences. Previous studies have described how animals assess alternatives and integrate evidence to make decisions. Most of the time, the focus of this work has been on simplified scenarios with single goals. In this thesis, my experiments tackle the issue of how people adjust information processing in tasks that demand more than one objective. Through various manipulations of the behavioural goals, such as decision framing, I show that (i) attention and evidence accumulation, (ii) brain representations, and (iii) decision confidence were all affected by context changes. Using behavioural testing, computational models, and neuroimaging I show that goals have a crucial role in evidence integration and the allocation of visual attention. My findings indicate that brain patterns adapt to enhance goal-relevant information during learning and the valuation of alternatives. Finally, I report the presence of goal-dependent asymmetries in the generation of decision confidence, overweighting the evidence of the most-relevant option to fulfil the goal. In conclusion, I show how the entire process is highly flexible and serves the behavioural demands. These findings support the reinterpretation of some perspectives, such as reported biases and irrationalities in decisions, as attributes of adaptive processing towards goal fulfilment

    Empirical experiments on intrinsic motivations and action acquisition: results, evaluation, and redefinition

    Get PDF
    This document presents Deliverable D3.2 of the EU-funded Integrated Project "IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots", contract n. FP7-ICT-IP-231722.The aims of the deliverable, as given in the original IM-CLEVER proposal were to identify new key empirical phenomena and processes, allowing the design of a second set of experiments. This report covers: (1) novelty detection and discovery of when/what/how of agency in experiments with humans ("joystick experiment") and Parkinson patients. (2) how object properties that stimulate intrinsically motivated interaction and facilitate the acquisition of adaptive knowledge and skills in monkeys and children ("board experiment")

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    Task switching in the prefrontal cortex

    Get PDF
    The overall goal of this dissertation is to elucidate the cellular and circuit mechanisms underlying flexible behavior in the prefrontal cortex. We are often faced with situations in which the appropriate behavior in one context is inappropriate in others. If these situations are familiar, we can perform the appropriate behavior without relearning how the context relates to the behavior — an important hallmark of intelligence. Neuroimaging and lesion studies have shown that this dynamic, flexible process of remapping context to behavior (task switching) is dependent on prefrontal cortex, but the precise contributions and interactions of prefrontal subdivisions are still unknown. This dissertation investigates two prefrontal areas that are thought to be involved in distinct, but complementary executive roles in task switching — the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC). Using electrophysiological recordings from macaque monkeys, I show that synchronous network oscillations in the dlPFC provide a mechanism to flexibly coordinate context representations (rules) between groups of neurons during task switching. Then, I show that, wheras the ACC neurons can represent rules at the cellular level, they do not play a significant role in switching between contexts — rather they seem to be more related to errors and motivational drive. Finally, I develop a set of web-enabled interactive visualization tools designed to provide a multi-dimensional integrated view of electrophysiological datasets. Taken together, these results contribute to our understanding of task switching by investigating new mechanisms for coordination of neurons in prefrontal cortex, clarifying the roles of prefrontal subdivisions during task switching, and providing visualization tools that enhance exploration and understanding of large, complex and multi-scale electrophysiological data

    Memory-based preferential choice in large option spaces

    Get PDF
    Whether adding songs to a playlist or groceries to a shopping basket, everyday decisions often require us to choose between an innumerable set of options. Laboratory studies of preferential choice have made considerable progress in describing how people navigate fixed sets of options. Yet, questions remain about how well this generalises to more complex, everyday choices. In this thesis, I ask how people navigate large option spaces, focusing particularly on how long-term memory supports decisions. In the first project, I explore how large option spaces are structured in the mind. A topic model trained on the purchasing patterns of consumers uncovered an intuitive set of themes that centred primarily around goals (e.g., tomatoes go well in a salad), suggesting that representations are geared to support action. In the second project, I explore how such representations are queried during memory-based decisions, where options must be retrieved from memory. Using a large dataset of over 100,000 online grocery shops, results revealed that consumers query multiple systems of associative memory when determining what choose next. Attending to certain knowledge sources, as estimated by a cognitive model, predicted important retrieval errors, such as the propensity to forget or add unwanted products. In the final project, I ask how preferences could be learned and represented in large option spaces, where most options are untried. A cognitive model of sequential decision making is proposed, which learns preferences over choice attributes, allowing for the generalisation of preferences to unseen options, by virtue of their similarity to previous choices. This model explains reduced exploration patterns behaviour observed in the supermarket and preferential choices in more controlled laboratory settings. Overall, this suggests that consumers depend on associative systems in long-term memory when navigating large spaces of options, enabling inferences about the conceptual properties and subjective value of novel options
    • …
    corecore