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Abstract

Functional Electrical Stimulation (FES) employs neuroprostheses to apply electrical current to the 

nerves and muscles of individuals paralyzed by spinal cord injury (SCI) to restore voluntary 

movement. Neuroprosthesis controllers calculate stimulation patterns to produce desired actions. 

To date, no existing controller is able to efficiently adapt its control strategy to the wide range of 

possible physiological arm characteristics, reaching movements, and user preferences that vary 

over time. Reinforcement learning (RL) is a control strategy that can incorporate human reward 

signals as inputs to allow human users to shape controller behavior. In this study, ten 

neurologically intact human participants assigned subjective numerical rewards to train RL 

controllers, evaluating animations of goal-oriented reaching tasks performed using a planar 

musculoskeletal human arm simulation. The RL controller learning achieved using human trainers 

was compared with learning accomplished using human-like rewards generated by an algorithm; 

metrics included success at reaching the specified target; time required to reach the target; and 

target overshoot. Both sets of controllers learned efficiently and with minimal differences, 

significantly outperforming standard controllers. Reward positivity and consistency were found to 

be unrelated to learning success. These results suggest that human rewards can be used effectively 

to train RL-based FES controllers.
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I. Introduction

FUNCTIONAL Electrical Stimulation (FES) involves the application of electrical current to 

nerves and muscles to restore voluntary movement to individuals paralyzed by spinal cord 

injury (SCI) [1], [2]. Our work aims to restore upper-extremity function to those affected by 

high-level SCI, who are paralyzed below the neck. Neuroprostheses consist of the 

stimulating hardware and control software that generate movement. FES control algorithms 

calculate muscular stimulation patterns required to achieve desired movements. Effective 

FES control algorithms are challenging to develop, due to a wide range of pathological 

physiological characteristics of individuals with SCI, including spasticity [3] and joint 

contractures [4].

The arm is particularly difficult to control because a large variety of reaching movements 

must be restored. Unlike the lower extremity, which typically requires cyclical (e.g. walking) 

or stereotyped (e.g. sit-to-stand) stimulation patterns, the upper extremity must be controlled 

using a wide range of uniquely specified stimulation patterns. Controllers have been 

developed for a range of upper-extremity functions including elbow extension [5], wrist 

stabilization [6], and hand grasp [7]. The feedback-controlled hybrid NeuroMuscular 

Electrical Stimulation (NMES)-exoskeleton of Klauer et al. [29] shows robust adaptation to 

new users and use conditions; it employs lockable joints so that only one joint is controlled 

at a particular time. In contrast, the present work aims to control two joints simultaneously 

to achieve the specified reaching movements, and does not employ an exoskeleton; this 

method is more similar to normal physiological function and is likely to produce more 

natural-looking movements. The iterative learning control (ILC) [30]–[32] achieves accurate 

performance for FES-related control of the triceps and anterior deltoid muscles when tested 

on a set of unimpaired test subjects, although this method requires repetitive learning to 

track specific, pre-defined trajectories and does not perform well unless tasks are very 

similar to those used for training [33, 34]. In contrast, for the present work that aims to 

restore a diversity of arm movements for FES applications, it will be important to train on a 

wide range of tasks to ensure that the resulting controller is generalizable. ILC has been 

shown to work well to control planar arm trajectories via triceps stimulation in hemiparetic 

stroke patients [34]–[36]; however, this method involved 18 hours of training per subject, 

and efficiency in controller training is an important consideration when aiming to develop an 

effective and practical control method. Despite the progress that has been made, no upper-

extremity FES controller has been able to effectively and efficiently produce natural-looking 

reaching movements for a multiple-joint FES arm that includes the shoulder. Control 

techniques that are flexible and able to adapt to time-variant and user-specific physiological 

properties and user preferences will be needed to achieve this goal.
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Reinforcement learning (RL) describes a class of control algorithms that learn by trial-and-

error search to maximize a numerical reward signal by mapping situations to actions [8]. 

The RL controller explores a range of actions and, based upon the rewards that result, selects 

future actions based upon these experiences. Interaction with a dynamic environment is 

fundamental to the RL controller training process [9]. Micera et al. [37] developed a fuzzy 

logic controller that uses RL to tune parameters for control of a simulated elbow-like 

system. Sigmoidal and sinusoidal trajectories were successfully tracked in the sagittal plane 

using this controller. An action-space constraint and relaxation technique was employed by 

Izawa et al. [38] to accelerate the learning of their simulated planar arm controller, and to 

facilitate stable learning. However, between 2,500 and 8,000 training trials, depending on 

arm stiffness, were required to achieve significant learning. In human FES systems, this 

large number of trials to achieve good controller behavior would be unacceptably high. 

Thomas [21] and Thomas et al. [20], [22] applied RL control to a planar arm simulation, 

achieving good performance within a few hundred episodes of training.

One feature of RL control is that it can incorporate human-generated reward signals to shape 

controller learning. Human-generated rewards have the potential to tailor RL controller 

performance to the preferences of each individual user, which may change over time. 

Rewards provided by human users have also been shown to increase RL controller learning 

speed for some domains [10]. RL controller training may benefit from human-generated 

reward signals because human trainers are able to perceive high-level performance 

characteristics that may be difficult for a computer program to recognize [11], such as 

planning long-term strategy or judging the natural appearance of simulated arm movements.

RL control shaped by human rewards has been explored for a number of systems with 

continuous state and action spaces. Vien and Ertel [39] and Vien et al. [40] demonstrated 

successful learning on two computer games with continuous state and action spaces, via 

human feedback signals using the ACTAMER (Actor-Critic Training an Agent Manually via 

Evaluative Reinforcement) framework, which employs function approximation of this 

signal. Continuous actor-critic RL with a sparse, human-generated training signal was used 

by Pilarski et al. [41] to successfully complete a 2-joint velocity control task in a simulated 

robotic arm. Most recently, Mathewson and Pilarski [42] compared the use of 

environmentally-derived rewards, human-generated rewards, and the combination of both to 

control a humanoid robot. They found that rewards assigned by humans augmented 

performance beyond rewards strictly derived from the environment.

Although the use of human rewards has the potential to improve RL controller learning, they 

also represent a challenging addition to RL systems. While computers can update state 

information and generate rewards on a millisecond timescale, humans typically have a 

reaction time of 0.3 to 0.8+ s to press a button (as when assigning a reward) when 

responding to a visual stimulus [49]. Such delays in rewards necessitate that the RL 

controller assess to how much of the preceding action the reward should be applied. This 

temporal credit assignment problem [8] is a challenge of RL control that is amplified when 

human-generated rewards, with their significant delays, are used.
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Furthermore, human attention is finite, and humans are not able to train the RL controller by 

a constant sequence of viewing controller action and immediately assigning a reward; such 

an all-consuming training protocol would not permit useful integration into the daily life of 

the FES user. Instead, RL controllers should be designed to use sparse rewards from human 

trainers to effectively learn useful policies. While decreasing the frequency of rewards has 

been shown to slow learning speed [21], [43], techniques such as increasing the actor’s 

learning rate [21] have been found to compensate for the slowed learning that results from 

sparse rewards.

To our knowledge, the use of human-generated rewards to train RL controllers for FES 

human arm control has not yet been explored. This control problem is distinct from previous 

work on RL control with human rewards for continuous-state, continuous action systems in 

that the planar arm model we employ in the present work requires 6 nonlinear, redundant 

muscles to be independently controlled. This control challenge is significantly more 

complex than in other systems involving the control of robots, the properties of which are 

more predictable.

In our previous work [12], [27], we used sparse, delayed, computer-generated pseudo-human 

rewards to shape RL control and demonstrated that these rewards could result in significant 

RL controller learning of goal-oriented reaching tasks for a simulated planar human arm. 

However, whether rewards generated by humans, which will be less consistent [24] and may 

vary subjectively over time [28], will train the controllers as effectively as computer-

generated rewards remains an open question. Extending that work, in this study, ten 

neurologically intact human subjects generate reward signals to train an actor-critic RL 

architecture to control a planar arm.

These experiments aim to determine, for the control of goal-oriented reaching movements 

using a planar simulated human arm system, whether any fundamental similarities or 

differences exist when RL controllers trained using a population of human subjects are 

compared against controllers trained using a pseudo-human reward-generation algorithm 

[12]. The relative advantages of each training method will be determined, and based upon 

our findings, we will make recommendations for training actor-critic RL controllers for the 

planar arm system.

II. Methods

A. Experimental Setup

A planar biomechanical human arm and shoulder model implemented in the C language was 

used for all experiments [13], [27]. This model is named the Dynamic Arm Simulator 1 

(DAS1) (Fig. 1). The model includes two segments (upper arm and forearm), two joints 

(shoulder and elbow), and 6 muscles (4 monoarticular and 2 biarticular). Muscles are 

modeled according to the Hill convention [14], [15], and are represented by two first-order 

ordinary differential equations [16]. Refer to [13], [27] for additional model details.
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The three flexor muscles of the arm model were weakened by 50% to simulate muscular 

atrophy [17], [18]. This produced a compromised level of baseline performance upon which 

the RL controllers had to improve.

The continuous actor-critic RL controller [19] (Algorithm 1) using artificial neural networks 

(ANNs) to represent the actor and critic was implemented for this arm model using C++ 

[20]–[22]. Fully connected feed-forward ANNs were used; the actor consists of 22 neurons 

(6 input, 10 hidden, 6 output), and the critic consists of 17 neurons (6 input, 10 hidden, 1 

output), for a total of 39 neurons.

The ANN actor and critic weight vectors are initialized to the PD controller’s actor policy, 

followed by initialization of the critic’s weight vector by training with the actor’s learning 

rate set to 0. Subsequently, eligibility traces, which record on a short-term basis learning-

related events including visited states and performed actions, are initialized to 0. For each 

episode, the state of the system is initialized, muscle stimulation values are calculated and 

applied to the arm model, 20 ms is allowed to elapse, and the next state and reward are 

calculated (Fig. 2). TD error is calculated, the eligibility traces are updated, and updates are 

made to the actor and to the critic weights.

The actor generates actions according to

u(t) = S A s(t); wA + σn(t) (1)

where u(t) is a set of six continuous muscle stimulation values ranging from 0.00 to 1.00 

(indicated as Action(6) in Fig. 2), A( ) is the action-selection function, wA is the vector of 

actor parameters encoding the policy, σ is a constant that scales exploration, n(t) defines 

explorational noise:

τnṅ(t) = − n(t) + N(t) (2)

where τn is a time constant, and N(t) is normal Gaussian noise having the same dimension as 

the action space. S is the monotonically increasing logistic function, defined as:

S(x) = 1
1 + e−x (3)

The critic generates Temporal Difference (TD) error after the actor applies actions to the 

environment; this TD error is used to update the actor and the critic (Algorithm 1).

Algorithm 1

The Continuous Actor-Critic Reinforcement Learning Algorithm [19], [21]

1: Initialize ANN actor and ANN critic weight vectors w a and w c via error backpropagation supervised learning 

to PD controller’s actor policy. Then, train with actor’s learning rate = 0 to initialize critic’s weight vector.

2: Initialize eligibility values to zero: e c = 0
3: Repeat for each episode (reaching task)
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4:  s ← initial state of the system

5:  Repeat for each 20 ms time step within episode

6:   Calculate muscle stimulation levels a: a π(s) + n(t)
7:   Apply muscle stimulations to arm model

8:   Allow 20 ms to elapse

9:   Calculate next state s’ and reward: rTotal = rAutomated + rHuman

10:   Compute TD error:

δ(t) = r(t) + 1
Δt 1 − Δt

τ V (t) − V (t − Δt)

11:   Update critic eligibility traces:

κei(t) = − ei(t) + δV (s(t); w)
δwi

12:   Update actor:

ẇi
A = ηAδ(t)n(t)

δA s(t); wA

δwiA

13:   Update critic weights: wi = ηCδ(t)ei (t)

14:  Until maximum episode length reached

15: Until maximum run length reached

Symbols are defined as follows: π (s): actor’s policy; n(t): explorational noise (defined in Equation 3); r(t): reward at 
timestep t;

V(t): evaluation of the value function at timestep t;

κ : constant to scale eligibility traces over time; ηA: actor learning rate; ηC: critic learning rate.

The actor’s weights were initialized to match the policy conforming to a proportional-

derivative (PD) controller optimized via the simulated annealing algorithm [44] for this 2-

joint arm system as described in [13]. The critic’s weights were initialized so that they were 

consistent with the initial actor. For additional details of the implementation of this 

controller, refer to [12].

A graphical user interface (GUI) (Appendix Fig. 1) that permitted human rewards to be 

integrated with the RL controller was designed using Graphical User Interface Development 

Environment (GUIDE) software (The MathWorks, Inc. Natick, Massachusetts), and 

supporting functionality was provided by MATLAB and Simulink (The MathWorks, Inc.). 

Our design of the arm animation GUI (Appendix Figure 1) was intentionally simple to avoid 

complications that might have arisen from a more detailed representation of the arm and 

hand; for example, had a detailed hand with fingers been illustrated, subjects might have 

become confused about which part(s) of the hand were required to be inside or near the 

target in order to score the reaching movement positively. With our simple representation of 

the hand as a dot of the same size as the target dot, we avoided this issue.

The initial policy of each trained RL controller was established to be similar to that of an 

optimized proportional-derivative (PD) controller [13] specified by two parameters (one 

proportional gain and one derivative gain), optimized using the simulated annealing 

algorithm [44] and implemented using neural networks [21].
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Fig. 2 shows the block diagram of the system. The agent calculates the set of 6 continuous 

muscle stimulation values (ranging from 0.0 to 1.0) to be applied to the arm model at the 

current 20 ms timestep, and after this action has been applied, the arm model updates its 

states (joint angles, angular velocities, and target joint angles; target angular velocities are 

specified to be constantly 0.0). State information is used to update the actor and critic 

components of the RL controller, as well as the arm animation viewed by human subjects. 

At the conclusion of each 2-s reaching movement episode, the human subject rated the 

quality of the viewed reaching movement using the GUI, specifying reward values by 

manually clicking a computer mouse.

B. Experimental Protocol

This study used 10 adult human subjects (7 males, 3 females) under the age of 40 years who 

had no neurological or visual impairments that limited hand movement or visual information 

processing; all had normal or corrected-to-normal vision. Human experimentation was 

approved under the MetroHealth Medical Center IRB protocol #IRB10–00126.

Each subject participated in 5 RL controller training sessions. Each session involved training 

an RL controller over 500 episodes of simulated goal-oriented reaching movements; each 

episode consisted of rating one animated reaching movement. Each 500-episode training 

session required approximately 1 hour to perform. The 500-task training task set consisted 

of a set of 50 unique randomly-generated tasks repeated 10 times; each set of 50 tasks was 

always performed in the same order. Each movement allowed both joints to range from 

[20.0° , 90.0°]. The mean linear distance between the initial and target hand positions over 

the 50-task set was 32.04±15.97 cm. For each episode, the human subject viewed on a 

computer monitor the simulated reaching task performed by the animated planar arm, and 

after the task had completed, the subject was instructed to assign a reward based on his or 

her subjective assessment of the quality of the movement that had been performed. Subjects 

were allotted 4 s between tasks to permit adequate time to assign rewards. Permissible 

reward values were integers in the range of [−2, +2]. Preliminary experiments [21] had 

applied 3, 5, or 7 discrete reward levels to determine which yielded the most useful learning 

of the actor-critic RL controller. The controller’s learning measurably improved when 5 

discrete reward levels were used vs. only 3, but performance between the 5- and 7-level 

rewards systems was so similar that it was decided that using 5 reward levels would be 

sufficient. Additionally, we took into account the consideration of how many levels of 

discrete reward would be feasible for human subjects to effectively assign. Using 5 discrete 

reward levels corresponds to intuitive interpretations of Very Poor, Poor, OK, Good, and 

Very Good ratings, whereas using a higher number of levels might introduce a delay in the 

provision of human-generated feedback rewards, should subjects become confused about the 

interpretation of finer gradations of reward level. For each subject, the trained controller 

resulting from one session was used as the initial controller for the subsequent session.

Before their first session, human subjects were advised of a list of criteria on which they 

might consider rating tasks. However, subjects were free to select their own rating systems 

based on their subjective assessments of each individual task performed.
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In order to assess the consistency of human reward-giving for a set of dynamic tasks that 

was invariant (i.e., did not change across sessions due to RL controller learning), a video 

recording of 50 unique, randomly-generated movements controlled by an actor-critic RL 

controller was created. These recorded reaching tasks varied significantly with respect to the 

movement being performed as well as the qualitative movement characteristics. During each 

of 5 data collection sessions, each human subject viewed and rated the 50-task video (Fig. 3) 

once at the beginning of the session, and again at the end of the session, with the 500-

episode RL controller training run occurring between these two video rating runs.

C. Automated Rewards

To allow comparison with the collected human-rewards data, two additional sets of data 

were collected using computer-generated rewards to train RL controllers. Both of these data 

sets involved collecting 10 runs of 5 sequential 500-episode sessions per condition. The first 

data set used automated rewards only:

rAutomated(t) = W ∑
i

ui2 − d (x, y), xGoal, yGoal (4)

where W = −0.016 [21] was selected to match the reward function employed in the 

optimized PD controller [13] used for the initial policy, u is a vector of 6 muscle 

stimulations, d( ) is Euclidean distance, and (x,y) is the current hand position, calculated 

according to:

x
y =

L1 cos θsℎ + L2 cos θsℎ + θelb
L1 sin θsℎ + L2 sin θsℎ + θelb

(5)

where θsh is shoulder angle, θelb is elbow angle, L1 is length of the upper arm, L2 is length 

of the forearm, and both segments were assumed to have identical lengths. The target hand 

position is denoted (xGoal, yGoal), and is calculated from (5), using the target shoulder and 

elbow joint angles.

D. Human-Generated and Pseudo-Human Rewards

The second form of computer-generated rewards added pseudo-human rewards, which were 

generated by Algorithm 2, and assigned once per episode, at the final timestep. For this 

pseudo-human rewards case, 5 discrete reward levels were used, analogous to the human 

data collected. In this algorithm, final-timestep pseudo-human rewards are assigned using a 

combination of success at remaining within the target zone and extent of target overshoot. A 

detailed description is included below this algorithm.

In the system block diagram (Fig. 2), the (Pseudo-)Human Reward Generator block is the 

source of the reward that is added to the automated reward [12], according to:

rTotal = rAutomated + vr(Pseudo − )Human (6)

where rTotal is the total reward, rAutomated is the reward calculated from the arm model, 

r(Pseudo−)Human is the reward generated from either human or pseudo-human sources at the 
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final timestep of each episode (i.e. reaching movement), and ν is a constant weighting 

factor. The value of ν was selected to be 20.0 as a result of preliminary experiments so that 

human-generated or pseudo-human rewards would have a substantial impact on learning 

while still allowing the automated rewards to serve as a baseline component of the reward 

that permits moderate levels of learning that are able to be improved.

Algorithm 2

Assign Pseudo-Human Rewards

1: Uppeer OvershootThreshold = 0.1

2: LowerOvershootThrehold = 0.2

3: At final timestep of each movement:

4: if AtTarget and InDwellState
and (MaxOvershoot < UpperOvershootThreshold) then

5:  FinalTimestepReward = 2

6: else if AtTarget and lnDwellState then

7:  FinalTimestepReward = 1

8: else if NotAtTarget and ReachedTargetButExited and (maxOvershoot < lowerOvershootThresho1d) then

9:  FinalTimestepReward = −1

10: else if (MaxOvershoot > LowerOvershootThreshold)

then

11:  FinalTimestepReward = −2

12: else FinalTimestepReward = 0

13 end if

E. Performance Metrics

The recorded performance metrics were defined as follows:

Dwell-At-Target Success: At the final timestep of each reaching movement episode, the 

arm model’s hand position was evaluated relative to the target position. If the hand fell 

within the specified target zone, and had continuously remained within this target zone for at 

least 100 ms, the episode was scored as a success. Otherwise, the episode was counted as a 

failure. Because this metric is a binary value, success was measured over groups of episodes: 

success percentages were recorded over the set of 500 episodes performed per session, as 

well as over each 100-episode subset.

Target Overshoot: One overshoot value was recorded for each reaching movement 

episode as the largest Euclidean distance from the target position traversed by the hand, 

subsequent to the hand entering the target zone. Mean overshoots were calculated over each 

set of episodes. Episodes in which the target zone was not reached were necessarily 

excluded from reported overshoot values.

Mean Rewards: For the human-generated and pseudo-human reward conditions, each 

reaching movement episode involved the assignment of an integer reward value ranging 
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from −2 to +2. The mean reward was calculated as the average reward value over each 500-

episode session, as well as over 100-episode subsets of this data set.

Positive:Negative Rewards Ratio: The final-timestep reward, generated by human 

subjects or the pseudo-human rewards-generation algorithm (Algorithm 2), was recorded for 

each training episode. Positive rewards were defined as the sum of the counts of +1 and +2 

rewards, and negative rewards constituted the set of all −1 and −2 rewards. Ratios of the sum 

of positive reward instances divided by the sum of negative reward instances were calculated 

for selected subsets of the collected data.

F. Trained Controller Testing

After the RL controllers had been trained, each was tested on a set of 500 unique randomly-

generated tasks ranging from [20.0° , 90.0° ] for both joint angles. None of the testing tasks 

had previously been used to train the controllers. The mean linear distance between the 

initial and target hand positions over the 500-task testing set was 28.38 cm ± 16.88 cm. The 

arm model continued to have its three flexor muscles weakened by 50% of their maximum 

force. RL controller learning was turned off during this testing stage, so that each controller 

could perform a single set of the 500 tasks in a deterministic process. An optimized PD 

controller [13] was also applied to this set of 500 tasks.

G. Data Analysis

Data were inspected for adherence to standard statistical assumptions (e.g., normality, 

linearity, homoscedasticity) and alternative analyses were conducted when assumptions were 

violated. The relative performance of RL controllers trained using human-generated rewards 

against controllers trained using pseudo-human computer-generated rewards and automated 

rewards was assessed via pairwise t-tests that were corrected for multiple comparisons using 

false discovery rate (FDR) [48]. These tests were performed on the dwell-at-target success 

metric of the controller training data over the final 100 episodes. To compare the rewards 

assigned by human subjects against those assigned by the pseudo-human algorithm, Welch’s 

t-test was used. The ratios of positive:negative rewards for both conditions over Session 1 

and Session 5 were calculated. To test whether human reward signals significantly improve 

accuracy in arm movement, linear mixed modeling was used, and the slope of the human-

rewards condition was tested to determine whether it differed significantly from zero.

To determine the relationship between human reward-assignment consistency and dwell-at-

target success of the RL controllers trained using human rewards, it was necessary to 

calculate this consistency value (Fig. 4); this quantity was calculated in the following way. 

For the video rating experiment, each subject had rated each of 50 tasks ten times. For each 

of the 50 tasks, the mean and standard deviation over the subject’s 10 rating values for that 

task were calculated. The 50 standard deviation values corresponding to each subject’s 50 

rated tasks were averaged, and this mean standard deviation value was used as the Reward 

Consistency value for each subject. For the dwell-at-target success data set, each human-

trained controller’s success percentage over the final 100 episodes of Session 5 was used. 

Spearman’s ρ was calculated to compare the human reward consistency and dwell-at-target 

success data sets for each human subject.
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For analysis of trained controller testing, Kolmogorov-Smirnov analysis was applied to 

compare RL controllers trained using human and pseudo-human rewards for the metrics of 

dwell-at-target success, time to achieve the dwell state, and target overshoot.

III. RESULTS

In this section, we compare the performance of RL controllers trained using human-

generated rewards with the performance of RL controllers trained using computer-generated 

pseudo-human rewards and computer-generated automated rewards, for dynamic goal-

oriented reaching movements using our arm model. A benchmark optimized PD controller 

[13] is also used for comparison.

A. Dwell-at-Target Success

Dwell-at-target success percentages over the final 100 episodes of each of the five sessions 

of RL controller training are presented in Fig. 5. Error bars show 95% confidence intervals 

averaged over 10 runs; the solid blue trendline averages all 10 human subjects’ data. The red 

dotted trendline indicates the optimized PD controller’s performance on the same set of 50 

unique tasks on which the RL controllers were trained. All RL controllers significantly 

outperformed the PD controller (which had a mean success rate of 40%), and all RL 

controllers improved their dwell-at-target success rates over the course of the five 500-

episode sessions. In particular, the mixed model analysis showed that human rewards 

significantly improved accuracy from trial to trial (prediction equation: accuracy = 64.1 + 

4.1 × Trial; χ2 = 70.398, p < 0.0001). Phrased differently, human reward signals did improve 

the accuracy in arm movement beyond what would be expected by chance, and their 

improvement occurred at a constant rate of approximately 4.1% each trial.1

We analyzed dwell-at-target success (Fig. 5) of the final 100 episodes of each training 

session, to emphasize the performance that controllers had achieved toward the end of each 

session. The superior dwell-at-target success of controllers trained using pseudo-human 

rewards when compared with controllers trained using automated rewards became detectable 

from Session 2 onward (p<0.0001, FDR-adjusted q<0.0001; see Table 1). Furthermore, 

controllers trained using human rewards also began to significantly outperform those trained 

using automated rewards over the final 100 episodes starting at Session 2 (p = 0.03, FDR-

adjusted q = 0.03), and maintained this advantage over the remaining sessions. For dwell-at-

target success of the final 100 episodes of Session 5, pairwise t-tests showed significant 

differences between the automated rewards condition and both the human-generated (p = 

0.0001, FDR-adjusted q = 0.0002) and pseudo-human rewards training conditions 

(p<0.0001, FDR-adjusted q<0.0001). No significant difference (p = 0.07, FDR-adjusted q = 

0.07) was observed between the human-generated and pseudo-human rewards conditions for 

the final 100 episodes of the final session’s dwell-at-target success values.

1A squared term was also added to the model to account for possible non-linearities in the rate of improvement. This model was not 
significantly different than the model without the squared term (χ2 = 1.799, p = 0.1799).
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B. Final-Timestep Rewards

Reward Trends Across Sessions—Mean rewards assigned by human subjects and by 

the computer-generated pseudo-human algorithm (Algorithm 2) across the five training 

sessions are presented in Fig. 6. The mean rewards given by each human subject appear to 

be fairly consistent across all episodes; individual trendlines (thin lines) do not significantly 

cross others or show dramatic shifts as sessions progress. Human rewards visually fall into 

two distinct groups: the more-positive group, consisting of Subjects 6, 7, 8, and 9; and the 

less-positive group, consisting of the remaining six subjects. The more-positive group tended 

to have a larger positive reward increase over the 5 sessions (mean difference between the 

mean rewards in Session 5 and in Session 1 was 0.47 ± 0.39, mean ± s.d.), compared with 

the less-positive group (0.05 ± 0.34). Pseudo-human computer-generated rewards (thick 

black dashed trendline) increased monotonically across the sessions, while the mean human 

final-timestep rewards increased only modestly and non-monotonically across sessions. The 

standard deviations of the pseudo-human rewards were substantially smaller than those of 

the human-generated rewards.

Because variances between the two groups were not equal, Welch’s t-tests were performed 

for each session separately and their p-values adjusted for multiple comparisons using false 

discovery rate [48] (FDR; see Table 2). The rewards assigned by the pseudo-human 

algorithm were found to be significantly more positive than the rewards generated by human 

subjects for every training session (see Table 2). When rewards over all sessions were 

grouped into Positive (+1 and +2 values) and Negative (−1 and −2 values) categories, 2 of 10 

human subjects (Subjects 4 and 5) had net-negative rewards, and the remaining 8 subjects 

showed net-positive rewards. Also, when the mean reward for the first (Session 1) and last 

(Session 5) training sessions were compared for each human subject, and the difference of 

the mean rewards between the final and initial sessions was calculated, 3 of the 10 subjects 

showed rewards that became more negative over time, while the remaining 70% of subjects 

showed increased positivity of rewards over time.

Positive:Negative Reward Ratios—Fig. 7 presents the positive:negative reward ratios 

for human-generated rewards and computer-generated pseudo-human rewards for the initial 

(Session 1: Fig. 7(a)) and final (Session 5: Fig. 7(b)) data collection sessions. The black 

dashed horizontal lines separate net-positive (i.e. positive:negative reward ratios > 1) and 

net-negative (i.e. ratios < 1) reward ratios. Human reward ratios are blue when net-positive, 

and red when net-negative. From Session 1 to Session 5, all 10 of the pseudo-human reward 

ratios became dramatically more positive. In contrast, only 3 of the 10 human subjects 

(Subjects 6, 8, and 9) show ratios that substantially increased from Session 1 to Session 5, 

and 4 subjects (Subjects 2, 4, 5, and 7) had reward ratios that decreased over this period.

C. Success as a Function of Reward Consistency

Spearman’s ρ was calculated to relate RL controller learning success over the final 100 

episodes of Session 5 to human-generated reward consistency over the 50-task video rating 

data set. No correlation was found between dwell-at-target success and rating consistency: ρ 
= 0.0307, N = 10, p = 0.933.

Jagodnik et al. Page 12

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2020 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Trained Controller Testing

Fig. 8 shows the results of applying the RL controllers trained using either human-generated 

or pseudo-human rewards to the set of 500 randomly generated testing tasks. Boxplots of the 

dwell-at-target success percentages are given in Fig. 8(a). Both sets of RL controllers 

showed high success rates (98.26 ± 1.18% for the human-trained controllers, 99.20 ± 0.41% 

success for the pseudo-human-trained controllers), indicating that both forms of training 

allowed the hand to reach the target zone and remain there for nearly every movement 

tested. The human-trained controllers show slightly more variability than controllers trained 

using pseudo-human rewards. Optimized PD controller performance is given by the red 

dashed line, and is noticeably less successful (43.0% success) than either of the sets of RL 

controllers. Kolmogorov-Smirnov analysis revealed a significant difference between the 

human and pseudo-human rewards conditions: pseudo-human rewards outperformed human 

rewards (D = 0.60; p = 0.03).

Fig. 8(b) presents the mean time required to achieve the dwell state for both training 

conditions. Human-trained controllers had slightly larger (i.e., slower) mean times to achieve 

the dwell state, compared with the controllers trained using pseudo-human rewards (1.01 ± 

0.07 s vs. 0.95 ± 0.02 s, respectively). Kolmogorov-Smirnov analysis showed a significant 

difference between the two cases (D = 0.60; p = 0.03), with the pseudo-human rewards 

condition achieving the dwell state more quickly. The optimized PD controller, given by the 

red dashed trendline (1.36 s), had a notably larger mean time to dwell value than either of 

the RL controller sets.

Fig. 8(c) gives the mean target overshoot of both controller training conditions. The human-

trained RL controllers had a larger mean overshoot (12.83 ± 0.92 cm) than did the 

controllers trained with pseudo-human rewards (11.58 ± 0.63 cm), although both sets of RL 

controllers had smaller mean overshoot values than that of the optimized PD controller 

(12.88 cm) for this set of 500 tasks. The Kolmogorov-Smirnov test showed a significant 

difference between the two reward conditions, with the controllers trained using pseudo-

human rewards having smaller overshoot than controllers trained using human rewards (D = 

0.60; p = 0.03).

IV. Discussion

In the experiments described, ten neurologically intact human subjects trained actor-critic 

RL controllers to perform planar goal-oriented reaching movements using a biomechanical 

human arm model, by assigning a subjective reward to each animated arm reaching 

movement performed by the controller. Additionally, pseudo-human computer-generated 

rewards (Algorithm 2) were used to train RL controllers, as was an automated rewards 

training condition that used only rewards provided by the arm model (Fig. 1). A benchmark 

optimized PD controller was also applied to the sets of training and testing tasks used for RL 

controller analysis.

We found that all three forms of training rewards allowed the RL controllers to significantly 

outperform the optimized PD controller for the dwell-at-target success performance metric. 

The deterministic PD controller was not able to adapt to a new control strategy necessitated 
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by the arm model the flexor muscles of which had been weakened significantly. In contrast, 

all RL controllers were able to improve their performance progressively to adapt to this 

weakened arm model. All three forms of RL controller training rewards accomplished 

measurable improvement in dwell-at-target success over five sessions of 500 episodes per 

session.

Both human-generated and pseudo-human rewards yielded significantly improved dwell-at-

target success when compared with the performance of RL controllers trained using 

automated rewards. The mean dwell-at-target success values of the controllers trained using 

pseudo-human rewards (Fig. 5, thick black dashed trendline) were visibly somewhat larger 

than those of controllers trained by human subjects (Fig. 5, thick blue solid trendline) for all 

sessions; however, there was no statistically significant difference between the RL 

controllers trained using human-generated and pseudo-human rewards when the final 100 

episodes of the final data collection session were evaluated, which is the most useful metric 

of overall learning success.

Trained RL controllers tested on tasks that they had not previously encountered showed a 

small but statistically significant advantage of training using pseudo-human rewards instead 

of human-generated rewards for the performance metrics of dwell-at-target success, time to 

achieve the dwell state, and target overshoot (Fig. 8). Controllers trained using human-

generated rewards and controllers trained using pseudo-human rewards each outperformed 

an optimized PD controller on all three performance metrics (Fig. 8). While the controllers 

trained using pseudo-human rewards had marginally better performance than controllers 

trained using human-generated rewards on all three metrics, the functional difference 

between the performance of these two training cases was minimal, with both sets of 

controllers demonstrating excellent performance on all three metrics.

Given the strong similarities in performance when using pseudo-human and human-

generated rewards to train the actor-critic RL architecture employed for planar arm 

movement (Figs. 5 and 8), we propose the use of pseudo-human rewards to pre-train 

controllers in simulation to achieve a baseline level of performance. Then, when the 

controller is introduced to its human FES user, human rewards can be substituted to shape 

controller performance to the preferences of the individual user. Sequential RL controller 

training with computer-generated and human-generated rewards has been shown to be 

possible [10], although careful parameter tuning was found to be essential to the success of 

such a technique [10]. It will remain to be experimentally determined whether an actor-critic 

RL architecture will be sufficiently flexible to learn effectively from pre-training with a 

pseudo-human reward function followed by subsequent training using human-generated 

rewards, when these two forms of reward have distinctly different properties.

Pseudo-human rewards proved to be consistently and significantly more positive than 

human-generated rewards (Figs. 6 and 7). The deterministic pseudo-human reward 

generation algorithm (Algorithm 2) caused rewards to become progressively more positive 

as controller learning improved, and the hand achieved the dwell-at-target state with 

increasing success. In contrast, even though the RL controller learning resulting from human 

training progressed apace with that of the controllers trained using pseudo-human rewards 
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(Fig. 5), human rewards did not consistently become more positive across sessions, and 

variability in these rewards was much larger than that seen for pseudo-human rewards (Fig. 

6). Interestingly, the human reward trendlines visually fell into two distinct groups (Fig. 6, 

thin trendlines), with 4 of the 10 subjects assigning rewards that had similar positivity to the 

pseudo-human rewards (thick black trendline), while 6 of the 10 subjects tended to assign 

less positive rewards, so that the calculated mean human reward values (thick blue solid 

trendline) were substantially less positive than the pseudo-human rewards. In analyses 

comparing reward positivity to dwell-at-target success, we found no association between 

these two quantities. Although larger numbers of subjects would be required to draw strong 

conclusions, it appears that human trainers may have inherent biases that shape their reward-

assignment tendencies. If the positivity of assigned rewards proves not to significantly 

influence the success of actor-critic RL architecture training, reward positivity may not be a 

factor that should be included in future RL controller design considerations.

When the human rating consistency values from the animated reaching movement video 

rating experiment were compared against the RL controller learning achieved by each 

subject, no correlation was detected. This finding agrees with our previous assessment of 

controllers trained using human-generated vs. pseudo-human rewards: the pseudo-human 

rewards were, by definition, 100% self-consistent, because they were generated from 

Algorithm 2. This algorithm used only a few quantitative metrics to evaluate controller 

performance. In contrast, the human subjects were able to assess a much wider range of both 

quantitative and qualitative performance characteristics when selecting their reward values. 

As a result, human-generated rewards were much more variable. From the dwell-at-target 

success analysis of the data in Fig. 5 and associated statistics, we found that, even though the 

pseudo-human rewards were much more consistent than human-generated rewards (Fig. 6), 

the ultimate dwell-at-target success for both forms of training were strongly similar. This 

suggests that the actor-critic RL control architecture implemented for this modeled human 

arm domain does not appear to be sensitive to reward consistency, and that as long as the 

reward signals contain useful information, this controller can learn efficiently even when 

inconsistent, unpredictable human rewards are used.

We analyzed the effects of using both human-generated and pseudo-human rewards on the 

speed of RL controller learning, as measured by dwell-at-target success percentages across 

sessions (Fig. 5). The controllers trained using pseudo-human rewards demonstrated a 

significant and consistent learning speed advantage over those trained using automated 

rewards, starting in Session 2. The advantage of using human-generated rewards was not as 

pronounced, first becoming substantial in Session 3. By Session 5, the controllers trained 

using both human-generated and pseudo-human rewards showed a significant advantage 

over controllers trained using automated rewards, with the success values of the human-

trained and pseudo-human controllers being statistically indistinguishable.

We conclude that training controllers using our pseudo-human reward-generation algorithm 

(Algorithm 2) shows a moderate advantage in learning speed over using human-generated 

rewards, which in turn achieves learning more quickly and efficiently than the automated-

rewards condition. This finding conflicts with previous work showing an advantage in 

learning speed when human-generated rewards are used to train RL controllers, compared 
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with computer-generated rewards [23], although our domain differs from that of previous 

work, and the superiority in learning speed of our pseudo-human rewards-generation 

algorithm over controllers trained using human-generated rewards was only a modest effect.

Previous experiments using humans to train RL controllers have consistently identified a 

strong positive bias in human reward assignment [10], [24]. Comparing these observations 

against our results (Figs. 6 and 7), we observe that 2 of the 10 human trainers (Subjects 4 

and 5) had net-negative reward values for most of the training sessions. We posit that a 

combination of task domain and psychological traits of the human trainer yield observable 

trends in controller training behavior, and that human-generated rewards will not necessarily 

always have a positive bias. On the whole, however, for this study in which RL controllers 

learned from interactions with their human trainers, over the entire set of 2,500 training 

episodes completed by each subject, most (8 of 10) human trainers did assign rewards with a 

positive bias, to a greater or lesser degree, consistent with previous findings in the literature. 

Also, our experiments revealed that human-generated rewards varied in their internal 

consistency. This finding is in accordance with previous work showing that the human 

reward function is dynamic and inconsistent [24], [25].

The pseudo-human reward generation algorithm (Algorithm 2) was developed with the goal 

of achieving a balance among the 5 possible reward levels over a preliminary testing set of 

500 episodes. However, other criteria may instead or addition ally have been used to specify 

this algorithm, which would have yielded different controller-training behavior. Therefore, it 

should be recognized that the pseudo-human reward generation described here is one 

specific formulation of many possible reward generation schemes, and that other algorithms 

would produce different controller learning properties.

Alternatives to treating feedback as numeric, such as interpreting human rewards depending 

on both the teaching strategy adopted by the teacher (e.g. the human deciding to withhold 

rewards as a sign of negative feedback) as well as the task intended to be taught, could 

potentially improve the rate of learning. For example, Loftin et al. [45] provided two novel 

Bayesian algorithms to achieve effective learning from human-generated rewards for the 

contextual bandit [46] problem. Exploring whether such methods will extend effectively to 

more complex systems such as the arm model used in the present work remains for future 

investigation.

Ng et al. [47] described the importance of choosing effective shaping functions for human-

guided RL control; their work suggests the significance of considering how modifications to 

the reward functions of Markov decision processes (MDPs) affect the optimal policy. They 

present strategies to modify the reward function in order to preserve the optimal policy; 

future exploration of this concept in the context of selecting the most effective method to 

integrate human rewards with the actor-critic RL controller could be useful.

Despite the many challenges of using sparse, delayed rewards as a training signal, we have 

shown that actor-critic RL controllers can be trained in a simulated human arm domain using 

both human-generated and pseudo-human rewards with these properties. In future work, the 

pre-trained controller should be introduced to human FES users with tetraplegia, and it 
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should be observed how successfully an actor-critic architecture is able to adapt when the 

shoulder and arm being controlled have properties differing from the simulated arm system 

on which the controller was trained.

These experiments demonstrate that it is possible for subjects to successfully train RL 

controllers for a simulated human arm, using subjective human-generated rewards. Pseudo-

human rewards, generated from an algorithm, were also used for RL controller training, and 

were found to result in performance similar to that of controllers trained with human-

generated rewards; pseudo-human rewards training yielded a statistically significant 

advantage over human-trained controllers, although the functional difference between the 

two forms of training was minimal. Even though the rewards used for training were delayed, 

sparse, and inconsistent, the actor-critic RL architecture was able to learn effectively from 

them. Significant learning is observable over as few as 500 training episodes, with learning 

progressing consistently over the five training sessions performed. We recommend that 

pseudo-human computer-generated rewards be used for controller pre-training in simulated 

environments before introduction to human Functional Electrical Stimulation (FES) systems, 

in which they can be trained using human-generated rewards in addition to computer-

generated rewards. These results serve as a proof of concept that human rewards are a viable 

training signal for RL control of upper-extremity FES systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Top view of the biomechanical arm model. The Y-axis is anterior. Movements occur in the 

sagittal plane with no gravity, as if sliding across a frictionless tabletop. Antagonistic muscle 

pairs are listed as (flexor, extensor): monoarticular shoulder muscles: (A: anterior deltoid, B: 

posterior deltoid); monoarticular elbow muscles: (C: brachialis, D: triceps brachii (short 

head)); biarticular muscles: (E: biceps brachii; F: triceps brachii (long head)). φ1 and φ2 are 

shoulder and elbow joint angles, respectively. Adapted from [13], [26]. Moment arm values: 

d1 = 30 cm, d2 = 50 cm [12].
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Fig. 2. 
Block diagram of the actor-critic reinforcement learning (RL) controller [19] with human-

generated and pseudo-human rewards, to control a simulated planar human arm. TD error is 

temporal difference error. State variables consist of 2 current-value joint angles, 2 target-

value joint angles, and 2 angular velocities.
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Fig. 3. 
Design of 50-task video animation rating experiment. The design displayed was used for 

each of 10 human subjects; sample data and results from Subject 6 (representing typical 

reward assignment consistency behavior) are shown.
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Fig. 4. 
Calculation of reward consistency value for a single subject; data for Subject 6, representing 

typical reward assignment consistency among the 10 subjects, is shown. μ is mean, σ is 

standard deviation.
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Fig. 5. 
Dwell-at-target success over the final 100 episodes of each of five 500-episode 

reinforcement learning (RL) controller training sessions. Learning resulting from 10 

individual human subjects are shown as thin trendlines, and the mean human dwell-at-target 

success is shown as the thick solid blue trendline. All standard error bars represent 95% 

confidence intervals with averages over 10 runs of the same controller training condition in 

the center; the human data set (thick solid blue trendline) is averaged over all 10 human 

subjects. Means and confidence intervals have been offset on the x-axis between the 

conditions for visual clarity. Controllers trained using human rewards significantly 

outperformed those trained using automated rewards starting at Session 2 (p = 0.03, FDR-

adjusted q = 0.03), and maintained this advantage over the remaining sessions. In Session 5, 

pairwise t-tests showed significant differences between automated rewards and both the 

human-generated (p = 0.0001, FDR-adjusted q = 0.0002) and pseudo-human rewards 

training conditions (p < 0.0001, FDR-adjusted q < 0.0001). No significant difference (p = 

0.07, FDR-adjusted q = 0.07) was observed between the human-generated and pseudo-

human rewards conditions for the final session’s dwell-at-target success values.
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Fig. 6. 
Mean rewards over five 500-episode reinforcement learning (RL) controller training 

sessions. Rewards resulting from 10 individual human subjects are shown as thin trendlines, 

and the mean human reward value is shown as the thick solid blue trendline. All standard 

error bars represent 95% confidence intervals with averages over 10 runs of the same 

controller training condition in the center; the human data set (thick solid blue trendline) is 

averaged over all 10 human subjects. Means and confidence intervals have been offset on the 

x-axis between the conditions for visual clarity. Pseudo-human rewards are significantly 

more positive than human-generated rewards for all 5 sessions (Table 2).
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Fig. 7. 
Positive:negative final-timestep reward ratio for the initial (Session 1: Panel (a)) and final 

(Session 5: Panel (b)) data collection sessions of reinforcement learning (RL) controller 

training. H1 – H10 denote reward ratios from human subjects 1 – 10; C1 – C10 denote 

reward ratios from computer-generated pseudo-human reward algorithm (Algorithm 2). For 

human reward ratios, blue dots indicate net-positive reward ratios, and red x markers 

indicate net-negative ratios. Black dashed line shows the division between net-positive and 

net-negative reward ratios.
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Fig. 8. 
Testing of reinforcement learning (RL) controllers trained using computer-generated 

pseudo-human and human-generated rewards. Boxplots show 10 sets of 500 tested tasks per 

reward condition (10 controllers trained by using pseudo-human rewards and 10 controllers 

trained by human subjects; 1 controller per subject). Stars indicate statistically significant 

differences between the two training conditions. (a) Dwell-at-target success percentages. 

(98.26 ± 1.18% for the human-trained controllers, 99.20 ± 0.41% for the pseudo-human-

trained controllers). Kolmogorov-Smirnov analysis revealed a significant difference between 

the human and pseudo-human rewards conditions: pseudo-human rewards outperformed 

human rewards (D = 0.60; p = 0.03). (b) Mean time (in seconds) required to achieve the 

dwell state (1.01 ± 0.07 s vs. 0.95 ± 0.02 s for human-trained vs. pseudo-human reward-

trained). Kolmogorov-Smirnov analysis showed a significant difference between the two 

cases (D = 0.60; p = 0.03), with the pseudo-human rewards condition achieving the dwell 

state more quickly. (c) Mean overshoot of target (in cm): 12.83 ± 0.92 cm for human-trained 

controllers vs. 11.58 ± 0.63 cm for pseudo-human reward-trained controllers. The 

Kolmogorov-Smirnov test showed a significant difference between the two reward 

conditions, with the pseudo-human rewards having smaller overshoot than human rewards 
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(D = 0.60; p = 0.03). In these plots, the red central line indicates the median; upper and 

lower limits of the blue boxes indicate the upper and lower quartiles, respectively; and the 

black horizontal lines above and below each box indicate the maximum and minimum 

values, respectively.

Jagodnik et al. Page 30

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2020 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Screenshot of the arm visualization GUI used in experiments. The green dot represents the 

target, and the green ring indicates the target zone, which was not displayed during 

experiments involving human-generated rewards. For each episode, the dot representing the 

hand (adjacent to the wrist) had the goal of reaching and remaining at the target dot, for a 

variety of different tasks. Note that the text labels in this figure were not present during the 

testing sessions.
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TABLE I

P VALUES (AND CORRESPONDING FDR-CORRECTED q VALUES) FOR PAIRWISE COMPARISONS FOR EACH CONTROLLER TRAINING 

REWARD CONDITION ACROSS EACH OF THE FIVE SESSIONS FOR THE DWELL-AT-TARGET SUCCESS PERCENTAGES FOR THE FINAL 

100 EPISODES OF EACH SESSION (FIG. 5)

Session Condition p q

1 ANOVA 0.0575 0.0575

Human vs. Automated NA NA

Automated vs. Pseudo-Human NA NA

Human vs. Pseudo-Human NA NA

2 ANOVA <0.0001 <0.0001

Human vs. Automated 0.031S 0.0316

Automated vs. Pseudo-Human <0.0001 <0.0001

Human vs. Pseudo-Human <0.0001 0.0001

3 ANOVA <0.0001 0.0001

Human vs. Automated 0.0015 0.0022

Automated vs. Pseudo-Human <0.0001 <0.0001

Human vs. Pseudo-Human 0.0646 0.0646

4 ANOVA 0.0001 0.0001

Human vs. Automated 0.0037 0.0056

Automated vs. Pseudo-Human <0.0001 <0.0001

Human vs. Pseudo-Human 0.0471 0.0471

5 ANOVA <0.0001 <0.0001

Human vs. Automated 0.0001 0.0002

Automated vs. Pseudo-Human <0.0001 <0.0001

Human vs. Pseudo-Human 0.0693 0.0693
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TABLE II

PAIRWISE t, p, AND FDR-CORRECTED q VALUES FOR THE MEAN REWARDS VARIABLE (FIG. 6) COMPARED BETWEEN 

HUMAN-GENERATED AND PSEUDO-HUMANGENERATED CONDITIONS

Session t p q

1 2.30 0.044 0.044

2 2.93 0.015 0.019

3 4.29 0.002 0.006

4 3.82 0.004 0.006

5 3.92 0.003 0.006

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2020 September 29.


	Abstract
	Introduction
	Methods
	Experimental Setup

	Algorithm 1
	Experimental Protocol
	Automated Rewards
	Human-Generated and Pseudo-Human Rewards

	Algorithm 2
	Performance Metrics
	Dwell-At-Target Success:
	Target Overshoot:
	Mean Rewards:
	Positive:Negative Rewards Ratio:

	Trained Controller Testing
	Data Analysis

	RESULTS
	Dwell-at-Target Success
	Final-Timestep Rewards
	Reward Trends Across Sessions
	Positive:Negative Reward Ratios

	Success as a Function of Reward Consistency
	Trained Controller Testing

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	TABLE I
	TABLE II

