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ABSTRACT 

The overall goal of this dissertation is to elucidate the cellular and circuit 

mechanisms underlying flexible behavior in the prefrontal cortex. We are often 

faced with situations in which the appropriate behavior in one context is 

inappropriate in others. If these situations are familiar, we can perform the 

appropriate behavior without relearning how the context relates to the behavior 

— an important hallmark of intelligence. Neuroimaging and lesion studies have 

shown that this dynamic, flexible process of remapping context to behavior (task 

switching) is dependent on prefrontal cortex, but the precise contributions and 

interactions of prefrontal subdivisions are still unknown. 

This dissertation investigates two prefrontal areas that are thought to be 

involved in distinct, but complementary executive roles in task switching — the 

dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC). 

Using electrophysiological recordings from macaque monkeys, I show that 

synchronous network oscillations in the dlPFC provide a mechanism to flexibly 

coordinate context representations (rules) between groups of neurons during task 

switching. Then, I show that, wheras the ACC neurons can represent rules at the 

cellular level, they do not play a significant role in switching between contexts — 
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rather they seem to be more related to errors and motivational drive. Finally, I 

develop a set of web-enabled interactive visualization tools designed to provide a 

multi-dimensional integrated view of electrophysiological datasets. 

Taken together, these results contribute to our understanding of task 

switching by investigating new mechanisms for coordination of neurons in 

prefrontal cortex, clarifying the roles of prefrontal subdivisions during task 

switching, and providing visualization tools that enhance exploration and 

understanding of large, complex and multi-scale electrophysiological data. 
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CHAPTER I. INTRODUCTION 

Humans can change their behavior based on context and internal goals. This 

ability consists of two main components: (1) the ability to prioritize internal goals 

and resist reflexive behaviors and (2) the ability to flexibly change behavior when 

circumstances or goals change. A fundamental question of cognitive neuroscience 

is how the brain enables this flexibility. What are the neural mechanisms for 

selecting the appropriate behavior for a given context and for resisting reflexive 

behaviors?  

This dissertation examines those questions with respect to two 

subdivisions of the macaque prefrontal cortex – the anterior cingulate cortex 

(ACC) and the dorsolateral prefrontal cortex (dlPFC). In this chapter, I will first 

review the motivation for studying ACC and dlPFC and the relevant hypothesis 

about their roles in supporting flexible behavior. Then I discuss a potential neural 

mechanism for selecting the relevant context at the circuit-level. Next I motivate 

interactive visualizations tools that will help us investigate the ACC and dlPFC 

data. I conclude with a summary of the remaining chapters. 

1.1  Background: The role of ACC and dlPFC in supporting 

flexible behavior 

1.1.1 Prefrontal cortex and flexible behavior 

Whereas flexible behavior undoubtedly involves the coordination of many brain 

areas (sensory, motor, and cognitive), a key node in this network is the prefrontal 

cortex (Cole and Schneider, 2007; Miller and Cohen, 2001). In a seminal study, 



 

 

2 

Milner (1963) had human patients with lesions perform the Wisconsin Card 

Sorting Task – a task designed to test the patient’s ability to switch between task 

contexts. Subjects were given cards – each of which had at least one shape drawn 

on them. These cards varied by color of the shape, number of shapes, and type of 

shapes. Patients had to learn – by trial and error – to match a set of four stimulus 

cards along a particular dimension (color, number, type). This task context 

(dimension) changed unbeknownst to the patients after ten consecutive correct 

answers. Milner found that patients with prefrontal lesions were inflexible – they 

tended to not be able to switch between task contexts – whereas patients with 

lesions in parietal and temporal cortices were much better. 

Importantly, this effect also varied by the subdivision of prefrontal cortex 

that contained the lesions. Patients with dorsolateral prefrontal lesions tended to 

perseverate on the incorrect task context more than patients with orbitofrontal 

lesions, indicating some degree of specialization of function within the prefrontal 

cortex. Dias et al. (1996) further tested the specialization of prefrontal 

subdivisions by ablating the dorsolateral prefrontal cortex or the orbitofrontal 

cortex in two groups of macaques. Dias and colleagues found the monkeys with 

dorsolateral lesions had trouble shifting between contexts in a task similar to the 

Wisconsin Card Sorting Task, but not during reversal learning – simply changing 

the associations between stimuli and reward.  The orbitofrontal cortex showed 

the opposite effect. Monkeys with orbitofrontal lesions performed as well as 
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monkeys without lesions in the Wisconsin Card Sorting analog, but performed 

poorly in the reversal learning task.  

What these lesions studies highlight is that it is important to understand 

the differences in function between prefrontal subdivisions. Different 

subdivisions of prefrontal cortex may contribute to different kinds of behavior. At 

the same time, we know that prefrontal subdivisions are intimately connected 

with each other (Barbas and Pandya, 1989; Medalla and Barbas, 2010), so it is 

also important to understand how prefrontal subdivisions work together. In the 

next section, I discuss the two prefrontal subdivisions this dissertation focuses 

on. 

1.1.2 ACC and dlPFC 

The dorsal ACC (areas 24 and 32 in the macaque monkey) and dlPFC (area 

46) are prefrontal subdivisions that are simultaneously active in attentionally-

demanding tasks and anatomically connected (Bates and Goldman-Rakic, 1993; 

Medalla and Barbas, 2010, 2009). Their roles in supporting flexible behavior are 

thought to be distinct, but complementary. To motivate our approach, we review 

the current hypotheses about the role of context in ACC and dlPFC. 

The dlPFC is the prefrontal subdivision most commonly associated with 

visual attention. It receives sensory input from the dorsal and ventral visual 

streams and projects to motor areas such as supplementary motor area, basal 

ganglia and superior colliculus (Jacobson and Trojanowski, 1977; Schwartz and 

Goldman-Rakic, 1984; Yeterian and Pandya, 1994) – putting it in an ideal 
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position to influence visual sensory information and motor outputs (Miller and 

Cohen, 2001). Neurons in dlPFC are selective to context (even if the context is 

cued under different modalities) and sustain their activity over delays in tasks 

that require the memory of a cue (Fuster, 1973; Wallis et al., 2001). Moreover, 

lesions of the dlPFC impair the ability to cognitively adjust to changed contexts 

(Dias et al., 1996). Thus, the role ascribed to dlPFC is that of context 

maintenance/updating and attentional biasing of other brain areas (Miller and 

Cohen, 2001). 

The role of ACC is more controversial — as evidenced by the sheer number 

of hypotheses about its role. There are four main categories of hypothesized 

functional roles for ACC: ACC as a recruiter of attention for action, ACC as error 

detector, ACC as conflict detector, ACC as action-outcome predictor. 

1.1.3 ACC as recruiter of attention for action 

An early idea for the role of ACC is that it selects the contextually-relevant 

sensory information for performing the appropriate response, much like the 

hypothesized role for dlPFC. This idea seems to have quickly fallen out of favor, 

but two studies have suggested this role. Using PET and a semantic word 

monitoring task (subjects had to report the percentage of words that fell into a 

particular category), Petersen et al. (1989) found that increasing the number of 

words to be monitored resulted in greater blood flow to ACC. They interpreted 

this increase in ACC activity as supporting the need for increased attention in the 

task. A later fMRI study by Luks et al. (2002) found ACC more active when the 
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cues were informative for the upcoming task (versus neutral cues), indicating that 

ACC can use context-related task information. While both of these studies are 

hardly conclusive for the idea of attention for action, the idea has received some 

revival in recent models (see section 1.1.7 on Recent models of ACC and in 

particular, Shenhav et al. (2013)). 

1.1.4 ACC as error detector 

Electroencephalography (EEG) studies have found that, as early as 50-150 ms 

after human subjects make an error, a strong negative deflecting potential occurs 

that is often localized to ACC. This led to the hypothesis that ACC acted as a 

comparator between the response made and the correct response (Bush et al., 

2000; Carter et al., 1998; Carter and Veen, 2007; Gehring and Fencsik, 2001; 

Scheffers and Coles, 2000). A later formulation extended this to a model where 

basal ganglia signal “surprise” via phasic dopamine and ACC learns to select the 

correct process based on this dopamine signal (Holroyd and Coles, 2002). Brown 

and Braver (2005) similarly proposed that ACC learns to associate error with the 

stimulus-response representation active just prior to the error, meaning ACC 

detects the situations in which an error is more likely. 

There is much neurophysiological evidence that ACC responds to error, 

going back to the earliest studies of ACC.  Niki and Wantanabe (1979) found that 

cingulate neurons increased their firing rate when the monkey made an error or 

when a juice reward was omitted for a correct response. Shima and Tanji (1998) 

found that neurons in the cingulate motor areas (notably area 24c) increased 
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their firing only when the reward was reduced and the task changed. Michelet et 

al. (2009) found that ACC neurons showed increased activity both immediately 

after the error and during the next trial when a non-contextual warning stimulus 

signaling the start of the trial. Because this was also correlated with reduced error 

rates, they took this to indicate the ACC is involved in adjusting the level of 

attention needed on the next trial. While subsequent hypotheses (conflict 

detection and action-outcome) agree that ACC responds to error, they have tried 

to subsume that function under both the conflict and action-outcome hypothesis. 

1.1.5 ACC as conflict detector 

Another influential hypothesis suggests that ACC acts as a detector of conflict 

between information processing pathways; that is, anytime there are two or more 

competing processes (such as when deciding between two possible responses), 

the ACC signals the need for greater attention to resolve the conflict (Botvinick et 

al., 2001). The original hypothesis focuses on conflict between response processes 

and error processes, but in a later paper, Botvinick et al. (2004) suggest this can 

be extended to conflict between stimuli processes (such as when there are 

irrelevant but salient stimuli) and conflict between tasks or rules. 

The support for the conflict theory primarily comes from human 

neuroimaging. In an often-cited fMRI study, MacDonald et al. (2000) trained 

subjects on a cued Stroop task. The subjects were cued to either name the color of 

the word stimulus or to read the word stimulus. On congruent trials, the color of 

the word stimulus and the word were the same. On incongruent trials, the color 
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of the word stimulus and the word were different. MacDonald and colleagues 

showed that ACC had a greater blood-oxygen-level dependent (BOLD) response 

to incongruent stimuli versus congruent stimuli, but found no such response in 

dlPFC. Because incongruent stimuli involved two possible competing responses 

(read the word versus name of the color of the word), the author took this to 

mean that ACC, but not dlPFC, responds to conflict. Kerns et al. (2004) further 

investigated the congruency effect by using a cued Stroop task to find trial-by-

trial adjustments by ACC and dlPFC. Kerns and colleagues showed that 

incongruent trials preceded by congruent trials produced greater ACC activation 

compared to two incongruent trials in a row. They also showed that the increased 

ACC activity predicted both faster responding and dlPFC activity on the next trial. 

Some fMRI studies also investigated the possibility of conflict between 

competing task sets in the ACC. Hyafil et al. (2009) used a spatial Stroop task and 

found ACC had stronger activity on the first trial after the task changed (the 

switch trial) regardless of the current or prior trial congruency. Similarly, 

(Woodward et al., 2006) found a linear decrease of activity in ACC as a function 

of the number of trials from the most recent task switch. 

Primate neurophysiology studies have had less success finding evidence of 

conflict in single neurons. Ito et al. (2003) trained monkeys on a saccade 

countermanding task in which the monkeys saccaded to a target unless a stop-

signal was given. Error neurons were defined as those neurons that were more 

active on stop-signal trials when the monkey incorrectly saccaded. Reinforcement 
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neurons were defined as those that were more active after receiving primary or 

secondary rewards. Conflict neurons were defined by the amount of change in 

firing after cancelling the saccade that was inversely proportional to the 

probability of cancelling the saccade. They recorded in ACC area 24c and found 

error-related neurons and reinforcement-related neurons, but no conflict-related 

neurons. Nakamura et al. (2005) similarly found no evidence of conflict in ACC. 

They trained two monkeys on a task where a cue indicated the correct direction of 

saccade and recorded in ACC and SEF. The cue was placed in the correct 

direction of the saccade (no response conflict) or the incorrect direction 

(response conflict). ACC activity was the same for both conditions, but nearby 

SEF neurons increased their firing in the conflict condition, suggesting that SEF, 

but not ACC, is responsive to conflict. 

However, several recent studies suggest that conflict-related neurons do 

exist in ACC. Sheth et al. (2012) used fMRI and single neuron recordings to show 

that human dorsal ACC neurons fire more frequently with increasing degrees of 

conflict, and, like Kerns et al. (2004), this is activity was greater if the preceding 

trial had no conflict. Amemori and Graybiel (2012) also found evidence of 

decision conflict-related neurons in the ventral bank of ACC. They trained 

monkeys to respond to two cues that informed them of the relative amount of 

liquid reward and airpuff they were about to receive. The monkeys could choose 

to avoid or receive the reward and airpuff. To measure decision conflict, they 

modeled the probability of the monkey choosing to receive the reward and airpuff 
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given the cues. They found this predicted well for a small subset of the neurons, 

but they never address its effect on firing rate.  Finally, Ebitz and Platt (2015) 

found that, in a visually guided saccade task, task-relevant distractors on average 

induced a greater increase in ACC neuron firing rate compared to task-irrelevant 

distractors presented during the intertrial interval. They interpreted this to mean 

that ACC signals task conflict – conflict between the current goal, in this case 

saccading to a target, and stimuli not aligned with the goal, such as the distractor. 

1.1.6 ACC as action-outcome predictor 

Controversial evidence of conflict signals in the non-human primate ACC 

and the observation that the ACC responds both to error and reward prompted 

yet another formulation of ACC function — that of action-outcome predictor. The 

action-outcome hypothesis posits that ACC neurons learn to associate possible 

responses (actions) with the reinforcement values of their outcomes, both 

positive and negative reinforcement. Thus, ACC neurons predict when revisions 

to the response need to be made (Alexander and Brown, 2011; Brown and Braver, 

2005; Rushworth and Behrens, 2008). Supporting this, Matsumoto (2003) found 

many neurons in medial prefrontal cortex (1) have a preference for reward or 

absence of reward and (2) show preferences for specific motor-reward 

combinations. Compared to lateral PFC neurons, these medial prefrontal neurons 

fired earlier after the presentation of a visual cue, which signaled the anticipated 

reward. The authors argue that this difference (between medial and lateral PFC) 

implies medial PFC is important for response based on expected reward, because 
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medial PFC cells that detected reward-response contingencies were active at the 

earliest time in which the monkeys could choose a response. A later study by 

Matsumoto and colleagues (2007) found that ACC neurons responded to positive 

and negative reinforcers and responded in a manner consistent with reward 

prediction errors; the neurons fired more for a reward when there was more 

uncertainty in the correct choice. This reward prediction error may be specific to 

ACC, as it was not found in OFC or dlPFC (Kennerley et al., 2011). 

Neurons in ACC also track the history of errors multiple trials into the 

past. For example, Kennerley et al. (2006) lesioned ACC and had monkeys 

perform a motor-reward reversal task. The monkeys had to choose between 

turning and lifting a joystick in order to receive a reward and the rewarded motor 

action was changed after 25 correct responses. Surprisingly, although the 

lesioned monkeys did not perform as well, they were still able to change between 

the tasks at almost the same performance level as the control monkeys. 

According to the authors, the difference between the lesion and control monkeys 

lay in their ability to repeat the same movement, even though it was being 

rewarded. Lesioned monkeys did not continue to repeat the same movement after 

an error while control monkeys did. Kennerley and colleagues interpreted this to 

mean that the monkeys were failing to track the past history of errors. Seo and 

Lee (2007) reported more direct neurophysiological evidence of neurons 

responding to reward history. They observed that that 66% of neurons in ACC 

significantly modulated their firing rate in response to an error on the previous 
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trial and 26% modulated their firing rate to an error two trials previous. Johnston 

and colleagues (2007) further found that making an error in the preceding trial 

increased task-related selectivity in ACC on the next subsequent trial but not 

dlPFC (dlPFC activity was similar to that of an error trial). Similarly, Michelet 

(2009) also found that errors in the previous trial enhanced ACC activity in 

response to a non-task-related warning cue in a Wisconsin Card Sorting-like task. 

1.1.7 Recent models of ACC 

Finally, more recent views of ACC function have tried to reconcile these 

disparate hypotheses. Alexander and Brown (2011) suggest that conflict, error 

likelihood, and reward findings can be explained by ACC (and other medial 

prefrontal areas) detecting unexpected outcomes — more specifically, ACC learns 

to predict the probability and timing of responses and outcomes for a given 

context. Holroyd and Yeung (2012) propose that ACC learns to value, select and 

maintain the appropriate context and the amount of attention needed. Shenhav 

et al. (2013), taking a related approach, propose that ACC weighs the expected 

costs and rewards of increasing attention in a given context and chooses the 

appropriate amount of attention and biasing signal. 

While all of the recent hypotheses propose different roles for ACC, there 

are several commonalities, especially with regard to the role of context. First, 

each proposes that context plays an important function in ACC – either in 

determining the possible responses and outcomes likely to occur, maintaining 

and selecting context, or evaluating the amount of attention needed for a given 
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context. Second, each proposes that ACC activity varies with the predicted 

amount of attention needed — the "cognitive demand" — in a context-dependent 

manner — either because more than one possible response-outcome might occur 

or because there are different values of attending in that context. Third, each 

hypothesis proposes that dlPFC (along with basal ganglia) is responsible for 

implementing context-dependent attentional signals from ACC.  An important 

focus of this dissertation is investigating how cognitive demand and context 

signals affect ACC and dlPFC (chapter III). 

1.2 Background: The role of prefrontal rhythms and coherence 

in circuit-level communication 

Neurons tend to fluctuate rhythmically in excitation – both through intrinsic 

currents at the cellular level and as groups (Ainsworth et al., 2012). This 

rhythmicity has been observed throughout the brain and changes with cognitive, 

sensory and motor state (Buschman and Miller, 2007; Lakatos et al., 2008; 

Pesaran et al., 2008). A benefit of rhythmic excitation is that whenever multiple 

excitatory inputs arrive at nearly the same time to a target neuron, the effect on 

the targeted neuron’s firing rate maybe supralinear, i.e. is greater than a simple 

addition of the effect of asynchronous inputs (Nettleton and Spain, 2000; Salinas 

and Sejnowski, 2000). 

Neuronal rhythms also influence the temporal effectiveness of inputs to a 

group of neurons. If inputs arrive at peak times of group excitability, there is an 

increased chance of neurons in the group firing. Conversely, if the inputs arrive 
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when the group is less excitable, either due to inhibition from interneurons or 

refractory currents, there is less chance of neurons in the group firing (Burchell et 

al., 1998). 

These observations have led to the suggestion that stable phase 

relationships (measured by phase-coherence) between groups of neurons enable 

selective communication between the groups — the so-called Communication 

through Coherence hypothesis (Fries, 2005). If two groups of neurons are 

coherent at the same frequency and the conduction delays between the groups 

are sufficiently short, the groups can mutually excite each other at times of peak 

excitability, allowing effective communication between the groups. If the groups 

are not coherent, their oscillations are not sufficiently narrowband, or the 

conduction delays are long enough to result in anti-phase coherence, then signals 

between the groups are less effective and communication is diminished. 

An important feature of phase-coherence is that it enables rapid and 

flexible routing of information between groups of neurons, allowing them to be 

selected and de-selected in a task-dependent manner (Akam and Kullmann, 

2014, 2010, 2012). Moreover, this selection of neuronal groups does not strictly 

depend on the underlying anatomical connectivity, which can only change on a 

much slower timescale. This makes phase-coherence an ideal mechanism for the 

context-dependent linking of neurons. Context switches and shifts of attention 

can occur in hundreds of milliseconds, so the mechanism that supports them 

must also be able to operate on this timescale (Singer, 2013). 
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Supporting this, several studies have found evidence for increased 

coherence between prefrontal cortex and distant brain areas during tasks that 

require visual attention. For example, Buschman and Miller (2007) found that 

beta (22-34 Hz) coherence was stronger between parietal and prefrontal cortex of 

monkeys when the task required top-down attention. Similarly, Gregoriou et al. 

(2009) found that spike-field coherence between LFPs in prefrontal cortex and 

neurons in visual cortex was enhanced when attending to a stimulus in their 

shared receptive field. Attentionally-enhanced coherence between prefrontal 

cortices and other areas also appears to be wide-spread among subdivisions of 

prefrontal cortex — electrodes placed in multiple subdivisions of prefrontal 

cortex were coherent in a content-specific manner with electrodes in the parietal 

lobe during a visual working memory task (Salazar et al., 2012). Another focus of 

this dissertation is how coherence varies with task within prefrontal cortex and 

how this might help coordinate subpopulations of neurons when switching 

between tasks. 

1.3 Background: Interactive Visualization for Neuroscience 

1.3.1 The purpose of visualization in science 

Visualization is a fundamental tool for analysis and communication in science 

(Cleveland and McGill, 1985). Visualization serves two primary purposes: 

First, we use visualization to quickly make multiple, simultaneous comparisons 

(Gelman and Unwin, 2013; Tukey, 1993). While it is easy to compare and reason 

about a few numbers, this becomes more difficult as the amount of data or the 
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number of dimensions increases. Visualization eases the cognitive burden on our 

working memory by efficiently encoding properties of the data into features 

salient to the human visual perceptual system (Card et al., 1999; Cleveland and 

McGill, 1985). This involves exploiting easily processed, pre-attentive visual 

features such as color, line orientation, and line width as well as higher level 

perceptual grouping cues such as symmetry and proximity to reduce the search 

for information (Card et al., 1999; Fekete et al., 2008; Healey et al., 1996). By 

doing so, we are able to more accurately and quickly answer questions about the 

data compared to data tables (Spence and Lewandowsky, 1991), solve problems 

related to the data, and make predictions about future data. 

Second, we use visualization to assist in the understanding and checking of 

statistical assumptions — it helps qualify our knowledge and uncertainty about 

the data and the procedure(s) used to summarize the data. All numerical 

statistical summaries rely on assumptions about the structure of the data (our 

implicit/explicit mental model of the data), but inspection of such summaries 

alone cannot tell us about violations of those assumptions (Anscombe, 1973). 

Visualization complements the use of statistical summaries by revealing 

differences between the expected structure of the data and the observed data 

(Tukey, 1977). This is important, from the initial stages of analysis to publication, 

for revising our assumptions and models and for understanding and 

communicating where and how often our models fail (Gelman, 2004). 
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A canonical example of the problem with numeric summaries and the 

benefit of visusalization is a set of four datasets known as Anscombe’s Quartet 

(Anscombe, 1973). 

Figure 1.1 An example of the importance of model checking – Anscombe’s Quartet.  

Each box consists of one dataset in Anscombe’s Quartet. Data points are orange filled-circles. The 
data have the same mean and variance in the x-dimension as well as the same regression line 
(blue line). These statistical summaries (mean, variance, regression line) do not explain the clear 
differences in structure between the four datasets. Credit: Wikimedia Commons 

 

Each dataset consists of 11 observations of two variables — x and y. Across 

all four datasets, the x- and y-variables have the same mean and variance 

between each dataset. Within each dataset, the x- and y-variables are also 

identically correlated and fit by the same regression line. Thus, the numerical 

statistical summaries are identical. However, visual inspection of the datasets 



 

 

17 

reveal strikingly different structure in each dataset (Figure 1.1). In particular, 

the second and third dataset (going clockwise around Figure 1.1) respectively 

show a quadratic pattern, and a pattern in a single datapoint has an inordinate 

effect on the statistical summary. 

1.3.2 Limitations of static visualizations in neuroscience 

Static visualizations — visualizations where the state of the visualization cannot 

change by user interaction or animation — have been the de facto standard in 

neuroscience. Static visualizations are used at the early stages of analysis in 

examining the quality of raw signals (e.g. voltage changes on an electrode, BOLD 

signals in fMRI), in formulating preliminary hypotheses and in communicating 

refined analyses in publication. In general, they play a central role in the iterative, 

sense-making process of data analysis and communication of results. 

Advances in technology and computing have made generating static 

visualizations easier, but those same advances have led to more data, more 

complex analyses and more sophisticated hypotheses (Freeman, 2015). In 

electrophysiology, implantation of multielectrode arrays with upwards of 100 

electrodes are becoming common (Einevoll et al., 2012; Miller and Wilson, 2008; 

Siegel et al., 2015) and the number of simultaneously recorded neurons is 

projected to double every seven years (Stevenson and Kording, 2011). Laminar 

recordings have also become standard and add a spatial dimension of data per 

electrode. Whole brain two-photon imaging experiments in zebrafish can yield up 

to 1.2 TB of data per hour (Freeman, 2015). In fMRI, the amount of data per 
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brain is already high and there already have been efforts to analyze more than 

1000 subjects (Van Dijk et al., 2012). 

Consequently, analyses are growing in complexity, because with more 

data, there is greater statistical power to resolve finer differences in the data; we 

can partition the data into smaller subsets (more dimensions), make comparisons 

between these subsets, and still not be overcome by noise. Advances in 

computational power have reduced the time to compute these differences and 

allow for more sophisticated algorithms to detect differences. Thus, we can ask 

more complicated questions and form more sophisticated hypotheses. 

So why is this a problem for static visualizations? Complex analyses and 

hypotheses necessitate an increase in the number of static visualizations or 

further summarization of the data (dimensionality reduction) to deal with the 

number of dimensions — often both. For example, a common visualization of 

spiking data from a neuron would be a raster plot or, as a summary, a histogram. 

These are typically visualized with respect to a particular experimental stimulus 

or event (e.g. a saccade); when there are sequences of such events, each event 

requires a new visualization. To investigate the firing rate of 1000 neurons in 

multiple conditions implies visualizations for each neuron, or aggregation in 

some form (e.g summarization by brain area) once the visualization becomes too 

ineffective to support perceptual comparison. Because analysis is an iterative 

process, a typical analysis might require hundreds of visualizations as different 

sets of experimental conditions are examined or as more data are added. 
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A large number of static visualizations results in more time spent 

switching between visualizations, which can not only extend the time to analyze 

the data, but also has a meaningful impact on our ability to explore and 

understand the data. For example, Liu and Heer (2014) found that even a 500 

millisecond delay between visualizations could reduce the amount of the dataset 

explored and affect the number of hypotheses and observations formed. 

Similarly, Brutlag (2009) found that users performed fewer web searches if there 

was as little as a 200 millisecond delay in the return of search results. 

Summarization, while often necessary, can obscure complexity and 

variability in the data — as in the case of Anscombe’s dataset. It does not obviate 

the need to understand and check statistical assumptions. This can be a problem 

with large datasets, where going back and forth between raw data and summaries 

is difficult because of the amount of data.  

Moreover, high-dimensional summaries require careful checking and 

understanding of assumptions as more structure in the data is assumed (Gelman, 

2004) and overfitting — fitting to more parameters than the data can support 

resulting in lack of generalizability of results — becomes a concern. Finally, the 

sophisticated computational algorithms used to compute the summaries can 

result in errors and visualizations play an important role in catching such errors. 
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1.3.3 Interactive visualizations can help us quickly make comparisons and deal 

with complexity 

Interactive visualizations are visualizations where the viewer can 

manipulate the state of visualization — typically through the use of a computer 

mouse, keyboard or touch interface. Interaction triggers state changes that may 

provide alternate views and data, detail about a particular datapoint, or selection 

— a filtered set of the data (Heer and Shneiderman, 2012). 

For example, Google Maps is an interactive visualization that provides 

alternate views by allowing the user to zoom to see map data at different scales 

(e.g. a single street block, streets in a city, an entire state) and toggle between a 

satellite overview, a street level view, and the typical map. A user can hover the 

mouse over a location datapoint to show the name of that location. Clicking on a 

location selects that datapoint and provides even more detailed information such 

as user reviews and ratings. 

From the Google Maps example, we can see the primary advantages of an 

interactive visualization over a static visualization. Interactivity allows the user to 

navigate between alternate views with minimal delay. This allows the user to 

quickly make comparisons between complex representations of the data such as a 

map of the neighborhood and a map of the city or between satellite and mapping 

views. Compare this to using paper road atlases with hundreds of pages of static 

maps. Interactive visualization users can also gain detailed information about 

individual datapoints without losing the context of the entire map by hovering or 

https://www.google.com/maps
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clicking on a location (selection). This is particularly advantageous in a rich 

dataset with multiple levels of information, because instead of obscuring the 

complexity of the data, the interactivity reveals the complexity in manageable 

stages. 

1.3.4 Dynamic visualizations, when combined with interactivity, can help us 

understand complex data by preserving relationships between data 

Dynamics — also known as animation — are important in interactive 

visualizations because they are extremely salient and they preserve the identity of 

datapoints when the state of the visualization changes (object constancy)  (Heer 

and Robertson, 2007). They give the data analyst another perceptual dimension 

in which to display information. This can be important when dealing with the 

dimension of time, as well-designed dynamics have been shown to improve 

accuracy of estimates of change over time (Heer and Robertson, 2007). 

For example, a typical display of a network may encode nodes 

(corresponding to electrodes implanted in a brain for instance) as circles, and 

edges (corresponding to correlation between electrodes) as lines between the 

circles. One option to show changes in the network would be to show static 

“snapshots” of the network as time progresses. While this is fine for a limited 

number of time points, dynamics can extend the number of time points 

displayed, because it occupies the same amount of space on the screen. 

Dynamics can also be used to preserve a sense of place and context within 

a complex dataset (Tversky et al., 2002). In the Google Maps example, clicking on 
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an object centers the map around that object. This centering effect is achieved 

dynamically, slowly panning to the location in question to preserve the location of 

other objects relative to the object of interest. Google Maps also uses these 

dynamics with photos by first zooming in to the map location of the photo, tilting 

the perspective to imitate a landscape view, then rapidly zooming in on the photo 

— informing the user of the correspondence between map and photo. Like 

interactivity, this multi-stage dynamic helps reveal the complexity of the data in 

manageable stages. 

It must be noted that, like other perceptual encodings of data, dynamics do 

not always facilitate comprehension. Complicated dynamics, unpredictable 

dynamics, difficult to perceive dynamics (e.g. due to speed of the animation), or 

dynamics that violate the user’s internal model of the data are all cases where 

dynamics may not enhance, or even detract from, static visualizations (Heer and 

Robertson, 2007). Careful design is necessary to make sure the dynamics 

contribute to the understanding of the data. 

1.3.5 Web-enabled visualizations are familiar, easily shareable, and enable 

analysis transparency 

Web browsers are an ideal interface for interactive dynamic visualizations. 

Web browsers are nearly ubiquitous applications on computers and their usage is 

familiar to users. Additionally, users are already familiar with dynamic 

interactive visualizations in the form of “web apps” in their browsers such as the 

aforementioned Google Maps. Because “web apps” are common on the browser, 
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there already exist tools for constructing dynamic, interactive visualizations. 

Finally, because these apps are web-enabled, they are easily shareable over the 

internet. Shareability is important because science is a collaborative process. To 

maximize shareability, it is vital that communication of results require as little 

specialized software as possible. 

Basic canonical web-enabled visualizations of neuroscience data can also 

contribute to transparency in the scientific process. Journals such as Proc.  Nat.  

Acad.  Sci.  USA now require authors to make their datasets available. Two 

barriers to understanding these openly accessible datasets are that the amount of 

data provided can be overwhelming, and the time to process this data into an 

interpretable format can be costly. A possible way to alleviate these problems is to 

enforce common formats and provide basic canonical visualizations of the data 

that can be quickly accessed and understood. For example, a web-enabled raster 

plot of neuronal spiking data would be a useful visualization for understanding 

raw data in electrophysiology studies. 

This transparency is also important for high-dimensional analyses. As the 

complexity of analyses grows, the chance of making an error increases. Greater 

transparency of the underlying data and data transformations combined with 

ease of access over the internet (shareability) allows easy spotting and correction 

of errors.  

http://www.pnas.org.libproxy.mit.edu/site/authors/journal.xhtml
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1.3.6 Related Visualization Work 

There have been previous attempts to make web-enabled dynamic, 

interactive visualizations in neuroscience. Here we describe several notable 

visualizations. 

The pycortex webGL MRI viewer (Gao et al., 2015) is a web-enabled 

interactive visualization tool that displays the results from Huth et al. (2012). In 

the study, Huth and colleagues had subjects view two hours of movie trailers. 

They then categorized objects and actions in the movies, regressed the categories 

on the BOLD fMRI signals collected on the subjects watching the movies, and 

performed a principal components dimensionality reduction to recover a 

“semantic space”. The visualization displays a single subject’s color-coded 3D 

cortical surface representation of this semantic space where similar colors 

indicate similar categorical representations. The visualization also displays a map 

of the semantic space itself. 

The visualization has interactive controls that allow the user to click on a 

category to see how it is represented throughout the cortical surface. Conversely, 

the user can click on a voxel on the cortical surface to see the different categories 

associated with that voxel. The visualization also provides button controls that 

dynamically transform the view of the cortical surface (e.g. from inflated to 

superinflated or from superinflated to flat) and sliders that control the 

thresholding of the surface colors. The cortical surface can be rotated by holding 

a mouse-click on a point and moving the mouse. A user can also obtain a 

http://gallantlab.org/semanticmovies/
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permanent web link to a particular voxel of interest by clicking a button. Code for 

the pycortex viewer is available on Github. 

The Allen Cell Types Database is a visual interface for a database of 

neuronal cell types in mouse lateral geniculate nucleus and primary visual cortex. 

The visualization has several interlinked views including an anatomical cell 

location view, a parallel coordinate plot of cell features, and a list of cells with 

more detailed information about the experiment and a brief visual summary of its 

morphology and electrophysiological response pattern to a step current. 

Interactive controls allow the user to filter results for layer type, mouse 

line, and hemisphere. Clicking on cells in the anatomical cell location view, 

highlights that cell in the list of cells and in the parallel coordinate plot. The 

parallel coordinate plot provides a way to visually filter by cell features such as FI 

curve slope or rheobase. Clicking on cell summary brings the user to another web 

page with more detailed information about that neuron such as the cell’s 

response to different types of currents, and comparisons to common 

computational models (e.g. leaky integrate and fire) fit to the data. 

The Allen Mouse Brain Connectivity Atlas is a similar interface that allows 

the user to explore the results of 2173 tracer injection experiments on mouse 

brains. The visualization consists of a 3D cortical surface with labeled injection 

sites, a brain section image and whole brain projection image corresponding to a 

specific experiment, and a list of all the projection sites. A user can filter by target 

https://github.com/gallantlab/pycortex
http://celltypes.brain-map.org/
http://connectivity.brain-map.org/
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or source of the injection or click on an injection site to get the corresponding 

section and projection image. 

Lastly, Freeman and colleagues have incorporated interactive 

visualizations into their library of distributed computing tools for large scale 

neuroscience (Freeman et al., 2014). Their tools — Lightning and Thunder — 

allow for basic chart types such as line graphs, network force diagrams, and 

heatmaps and custom visualizations to be constructed and updated in real time 

from data pushed from a server. They demonstrated on whole brain zebrafish 

recordings how these can be made into interactive visualizations. For example, 

using tuning curves estimated from moving stimuli in different directions, they 

visualized the spatial layout of the preferred direction of all neurons in the 

zebrafish. Mousing over the spatial layout shows the firing rate time course of a 

neuron in that region. Code for Lightning and Thunder are also available on 

Github. 

Chapter IV of this dissertation focuses on the development of interactive 

visualizations for neuroscience data. These visualizations are unique, because 

they focus on visualizing functional, task-dependent electrophysiology data 

recorded from multiple electrodes, rather than general charting tools as with 

Freeman and colleagues, cell properties as with the Allen database visualizations, 

or neuroimaging data as with Gao et al. (2015).  

http://lightning-viz.org/
http://thunder-project.org/
http://research.janelia.org/zebrafish/tuning.html
https://github.com/freeman-lab
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1.4 Summary of Dissertation 

The rest of the dissertation is comprised of four chapters. Chapters II and III 

describe two analyses of electrophysiological data collected in the macaque 

monkey ACC and dlPFC while the monkeys performed a cued task switching 

experiment. Chapter IV describes web-enabled, interactive visualizations tools 

for the analysis of electrophysiological data, developed during the course of the 

data analyses in Chapters II and III. Chapter V again summarizes the findings of 

the dissertation and discusses future directions for the work. 

 In Chapter II, I seek to identify circuit-level coordination within and 

between ACC and dlPFC during task switching. Phase coherence is a potential 

mechanism by which ensembles of neurons communicate and functionally 

organize (Fries, 2005). I hypothesized that the phase coherence of local field 

potentials (LFPs) within and between dlPFC and ACC is context-dependent and 

is a useful mechanism for coordinating ensembles of neurons when switching 

between tasks. I find that: (1) ensembles of dlPFC neurons coordinate in the beta 

band (19-40 Hz) depending on the context, (2) ensembles of neurons in dlPFC 

that synchronized during the more dominant context also synchronized in a 

preparatory fashion in the alpha band (6-16 Hz), perhaps reflecting the inhibition 

of the more dominant rule, and (3) ACC ensembles did not show the same 

context-dependent synchronization as dlPFC neurons. 

 Chapter III investigates the functional differences between ACC and dlPFC 

at the single neuron level during the task switching paradigm. Motivated by the 
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lack of consistent task-dependent phase coherence differences in Chapter II, I ask 

(1) if there are any other aspects of the task that could be driving ACC neurons 

such as changes in cognitive demand (which may not be as easily detectible by 

coherence because coherence requires averaging over many trials to achieve 

sufficient power and cognitively demanding conditions are infrequent) and (2) if 

context-dependent differences could still be important for ACC neurons at the 

single neuron level.  

Of particular interest is the role of ACC neurons in switching between 

tasks. While previous studies have implied that ACC could be important for 

switching between tasks (Ebitz and Platt, 2015; Johnston et al., 2007; Shenhav et 

al., 2013), no study has definitely shown that the ACC neurons are responsive to 

the switch per se and not the past history of errors. I find that in a visually cued 

context switch, ACC neurons, compared to dlPFC neurons, are not responsive to 

the context switch. Rather, ACC neurons are more responsive to the past history 

of errors. In addition, I find evidence that the task context can affect ACC 

neurons at the single neuron level and is important for predicting the firing rate 

of ACC neurons.  This task context signal is preferentially boosted in preparatory 

fashion in ACC when the monkeys make an error in past trials (particularly if the 

errors were made in the previous two trials). These results support reinforcement 

learning views of ACC and highlight its importance in complex tasks where 

context matters. 
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Chapter IV is a departure from the experimental analyses of Chapters II 

and III. Chapter IV is focused on developing tools for the future of data analysis 

of electrophysiological data. In section 1.3 of this chapter, I outlined an argument 

for why web interactive visualization tools will be important as electrode 

technology and computational power increases. In Chapter IV, I discuss three 

visualization tool prototypes I developed as an extension of that argument: 

RasterVis, GLMVis, and SpectraVis. Each of these tools was developed from the 

experience of performing the data analyses in Chapters II and III. RasterVis is the 

interactive version of two canonical data plots for electrophysiological data – the 

raster plot and the peri-event time histogram. GLMVis is an interactive display 

for regression model results – allowing for compact summaries of regression 

models and linking to raw data or model-generated data via RasterVis. 

SpectraVis is a network exploration tool that allows users to quickly move 

between networks at different times and frequencies and compare individual 

electrode data to the network as a whole. 

Finally, Chapter V concludes the dissertation with a summary and a 

discussion of the significance of the work on the respective roles of ACC and 

dlPFC. I will also discuss some possible future experiments that could be 

performed to further differentiate dlPFC and ACC functioning. 

  



 

 

30 

CHAPTER II: SYNCHRONOUS OSCILLATORY NEURAL ENSEMBLES 

FOR RULES IN THE PREFRONTAL CORTEX 

2.1 Summary 

Intelligent behavior requires acquiring and following rules. Rules define how our 

behavior should fit different situations. To understand its neural mechanisms, we 

simultaneously recorded from multiple electrodes in dorsolateral prefrontal 

cortex (PFC) while monkeys switched between two rules (respond to color vs. 

orientation). We found evidence that oscillatory synchronization of local field 

potentials (LFPs) formed neural ensembles representing the rules: there were 

rule-specific increases in synchrony at ‘beta’ (19-40 Hz) frequencies between 

electrodes. In addition, individual PFC neurons synchronized to the LFP 

ensemble corresponding to the current rule (color vs. orientation). Furthermore, 

the ensemble encoding the behaviorally dominant orientation rule showed 

increased ‘alpha’ (6-16 Hz) synchrony when preparing to apply the alternative 

(weaker) color rule. This suggests beta-frequency synchrony selects the relevant 

rule ensemble while alpha-frequency synchrony de-selects a stronger, but 

currently irrelevant, ensemble. Synchrony may act to dynamically shape task-

relevant neural ensembles out of larger, overlapping, circuits. 

2.2 Introduction 

A critical cognitive ability is the flexibility to change one’s behavior based on 

context. Day-to-day life is full of such situations. For example, one often answers 

their phone when it rings, but mutes it in a lecture. These context-dependent 
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stimulus-response mappings are called “rules”. By allowing us to quickly adapt to 

specific situations, rules endow the cognitive flexibility crucial for intelligent 

behavior. 

The prefrontal cortex (PFC) is key to rule-based behaviors(Miller and 

Cohen, 2001). Rule-based tasks, especially those involving rule-switching, 

activate the human PFC (Dove et al., 2000; MacDonald et al., 2000; Sakai and 

Passingham, 2003) and are impaired following PFC damage (Milner, 1963; Stuss 

and Benson, 1984). Many PFC neurons encode task rules (Wallis et al., 2001; 

White and Wise, 1999), and can “multiplex”: encoding different task information 

(rule, stimulus, etc.) in different contexts (Cromer et al., 2010; Rainer et al., 

1999). Recent theoretical work suggests that this diversity of PFC neuron 

properties underlies the capacity to encode a large number of diverse rules 

(Rigotti et al., 2010). 

But this diversity raises the question of how PFC circuits satisfy two 

competing demands: Form the neural ensembles that represent the current rule 

while allowing for their flexible reconfiguration when the rule changes. One 

proposed solution is synchronized network oscillations. Oscillations can establish 

ensembles of neurons in a task-dependent, flexible, manner (Akam and 

Kullmann, 2010), allowing ensembles to be dynamically ‘carved’ from a greater, 

heterogeneous, population of neurons. In addition, coincident activity has a 

supralinear effect on downstream neurons (Aertsen et al., 1989), increasing the 

impact of neural ensemble activity on function (Fries, 2005). To investigate the 
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neural mechanisms underlying cognitive flexibility, we trained two monkeys to 

switch between two rules: respond to either the color or orientation of a stimulus 

(Figure 2.1A). After acquiring a central fixation target, a rule-cue indicated 

whether the color or orientation rule was now relevant. Two different cues were 

used for each rule in order to disassociate neural selectivity for the cue from the 

rule (see Materials and Methods). After a brief, randomized, interval, a test 

stimulus appeared. The test stimulus consisted of small shapes that were either 

red or blue and were either vertically or horizontally aligned (Figure 2.1A). 

Depending on the current stimulus and rule, monkeys made a leftward or 

rightward saccade (color rule: red=left, blue=right; orientation rule: 

horizontal=left, vertical=right; Figure 2.1A). On most trials (70%), the color and 

orientation of the test stimulus signaled incongruent responses to ensure that the 

animals consistently followed the rule (e.g. a red/vertical cued different saccade 

directions under different rules). The same rule was repeated for at least 20 trials 

before a probabilistic switch. 
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Figure 2.1. Task Design and Behavioral Performance. 

(A) Task timeline. Eye position indicated by blue circle.  Animals initiated trial by fixating the 
center dot.  Following presentation of a border-cue indicating the rule, the stimulus was 
presented.  The animal integrated the rule and stimulus in order to make a decision about the 
required saccade: under the color rule, red stimuli meant saccade left and blue meant saccade 
right; under the orientation rule, vertical meant saccade right and horizontal meant saccade left.  
The rule in effect was blocked and switched randomly after a minimum of 20 trials. (B) An 
asymmetric cost was observed when switching between rules, reflected in the speed at which the 
animals performed the task.  Switching from orientation to color was significantly slower, but no 
cost was observed when switching from color to orientation.  This suggests orientation was 
behaviorally dominant.  All error bars are SEM.  ***p ≤ 10-3, ** p ≤ 0.01 , *p ≤ 0.05 
 

2.3 Results 

2.3.1 Behavioral and Single Unit Evidence for the Dominance of the Orientation 

Rule 

Monkeys performed well (~90% of trials were correct) but, like humans, were 

slower to respond on the first trial after switch, compared to repeated rule trials 

(Allport et al., 1994; Caselli and Chelazzi, 2011; Rogers and Monsell, 1995). This 

reaction time “switch cost” is thought to reflect the cognitive effort needed to 

change rules. However, it was only observed after a switch from orientation to 

color rule and not vice-versa (Figure 2.1B; p=1.61*10-4, GLM, Table 2.1). This 
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suggests the orientation rule was behaviorally dominant, as the animals had more 

difficulty switching away from it. 

We quantified neural information about the cued rule using a bias-

corrected percent explained variance statistic (ωPEV, see Supplemental 

Information for details). The majority of PFC neurons carried rule information 

(Figure 2.2A, PFC: 225/313, randomization test, cluster corrected for multiple 

comparisons, see Figure 2.S1A for an example neuron). Similar numbers of 

neurons had higher firing rates during orientation and color rule trials (108 and 

117 respectively, p=0.25, binomial test). Across the population of PFC neurons, 

rule-selectivity increased following the rule cue, although some baseline rule 

information was observed due to the task-design: the rule repeated for multiple 

trials before a switch (Figure 2.2A). PFC neurons were also selective for the 

color or orientation of the test stimulus (104/313, 33%; 126/313, 40%, 

respectively). Orientation was behavioral dominant (see above) and neural 

selectivity for it was more common than color (p= 3.9*10-3, binomial test), 

stronger across the population (Figure 2.2B and Figure 2.S1C), and appeared 

slightly earlier (41.1 vs. 47.6 ms after stimulus onset; p=0.0026, permutation 

test). 
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Figure 2.2. PFC Neurons Encode Task-Relevant Information, Including the Current 
Rule and Stimulus.   

(A) Information about the current rule (black line) is captured using a bias-corrected percent-
explained variance statistic (y-axis) and is determined in a sliding-window across the trial (x-
axis).  Shaded region indicates 95% confidence interval.  As the rule often repeated on consecutive 
trials (see Figure 2.1A) there was some expectancy of the rule encoded by PFC neurons before 
rule-cue onset (although not significant across the population of recorded PFC neurons). (B) PFC 
neurons encode stimulus identity, both its orientation (green line) and color (blue line).  Shaded 
regions indicate 95% confidence interval.  Information about the orientation of the stimulus was 
more strongly represented across the population, possibly leading to the behavioral dominance of 
the orientation rule (see Figure 2.1B). 
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Figure 2.3. Rule-Selective Synchrony in PFC. 

(A) Synchrony between electrodes within prefrontal cortex differs for rules.  Synchrony is 
quantified by the coherence in simultaneously recorded local field potentials during each rule.  
The difference in synchrony (rectified to capture synchrony differences that prefer either rule) 
was compared to a trial-shuffled null distribution, resulting in a z-score of observed rule 
difference (color axis).  Absolute synchrony differences are shown across time relative to stimulus 
onset (x-axis) and frequency (y-axis).  Two time-frequency regions of interest (ROI) are seen – an 
‘alpha’, 6-16 Hz, pre-stimulus ROI (solid outline) and a ‘beta’, 19-40 Hz, peri-stimulus ROI 
(dashed outline). (B) Percentage of recorded pairs of electrodes with a significant rule-preference 
during the ‘alpha’ and ‘beta’ time-frequency regions of interest (solid/dashed outlines in A).  
Significantly more electrode pairs prefer color within the alpha ROI and orientation within the 
beta ROI.   

2.3.2 Rule-Selective LFP Synchronization between Pairs of Electrodes 

We found rule-selective oscillatory synchronization of local field potentials 

between individual PFC electrode pairs. There were significant differences in 

synchrony between the rules in two frequency bands during two separate trial 

epochs: ‘alpha’ (6-16 Hz) after the rule cue and ‘beta’ (19-40 Hz) after test 

stimulus appeared (179/465 and 207/465 recorded pairs at p<0.05 in alpha and 

beta, respectively; Figure 2.3A and Figure 2.S2A, alpha/beta shown as 

solid/dashed outlines). This was not due to differences in evoked potential 
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(Figure 2.S2E) or oscillatory power (see Supplemental Experimental Methods). 

It was also not due to volume conduction of an evoked potential: many rule-

selective electrode pairs were spatially interspersed with electrodes with either 

the opposite or no synchronous rule preference (22/79 or 28%, see Supplemental 

Experimental Methods for details) and rule-selective synchrony did not 

monotonically decrease with distance (Figure 2.S2C). 

Beta oscillations increase with cognitive effort (Buschman and Miller, 

2007; Pesaran et al., 2008; Kopell et al., 2010). Thus, we sorted electrode pairs 

by which rule elicited significantly stronger beta synchrony. This identified two 

networks: one synchronized during the orientation rule (N=117 out of 465 pairs, 

p<10-15, binomial test against the number expected by chance) and one during 

the color rule (N=90, p<10-15, binomial test). There were significantly more 

electrode pairs with significantly stronger beta synchrony for the orientation rule 

than the color rule (Figure 2.3B, p=8.8*10-4), again consistent with orientation 

being dominant. The magnitude of rule-selective increases in synchrony were 

comparable to those previously observed during attention (Figures 2.4 and 

2.S3; Buschman and Miller, 2007; Gregoriou et al., 2009). Rule-selective 

synchrony between electrodes was not between isolated electrode pairs. Rather, 

synchrony occurred within interconnected networks: electrode sites were 

synchronized to an average of 2.6 and 1.8 other sites (out of a maximum of 5.0) 

for the orientation and color rule networks, respectively (p<10-3 for both, 

permutation test against random networks, see Supplemental Information). 
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These rule-dependent networks were highly overlapping spatially (see Figure 

2.S2D for anatomical localization of networks). The majority of recording sites 

that selectively increased synchrony with one set of electrodes during one rule 

also increased synchrony with a different set of electrodes during the other rule 

(58% of electrodes participating in an orientation-rule-preferring pair, 52% of 

color-rule-preferring, see Supplemental Information). 

 

Figure 2.4. Magnitude of Rule-Selective Changes in Synchrony 
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(A) Individual electrode pairs in the beta ROI are highly synchronous and show significant rule-
dependent change.  Coherence between rule-dependent pairs of electrodes (pink and purple 
crosses, main panel; group averages, solid circles) in the beta ROI was high overall (cumulative 
probability distribution, bottom panel) and generally reflected a 10% or greater change in 
coherence over the non-preferred rule (histogram, right panel) compared to non-rule preferring 
electrode pairs (grey x’s, main panel).  (B) Average difference in coherence between preferred and 
non-preferred rules for all beta ROI electrode pairs. 
 

2.3.3 Task-Relevant Neurons were Synchronized to the Current Rule-Network 

LFP synchrony may reflect functional networks of spiking neurons (Fries, 2005). 

Indeed, we found that both stimulus- and rule-selective neurons showed rule-

dependent spike-LFP synchrony. When the orientation or color rule was relevant, 

neurons with selectivity for the relevant test stimulus modality (Figure 2.5A) 

and/or the current rule (Figure 2.5B) were more synchronized to the currently 

activated beta-band color or orientation ensemble (see Supplemental 

Information for details). Spike-field synchrony was largely observed at beta-band 

frequencies, particularly for orientation rule trials (Figure 2.5, left column). 

During color rule trials synchrony was shifted slightly towards higher frequencies 

(Figure 2.5, right column). This may reflect differences in the underlying 

architecture of the rule-selective network either locally or between PFC and 

sensory/motor regions (Siegel et al., 2012). 
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Figure 2.5. Single Neurons Carrying Task-Relevant Information Synchronize to the 
Currently Relevant Ensemble 

Neurons encoding task-relevant information were more synchronized with the rule-selective 
ensemble preferring the current rule. Phase-locking of (A) stimulus-selective neurons and (B) 
rule-selective neurons to electrodes that either participated in the color-preferring ensemble 
(pink) or orientation-preferring ensemble (purple).   Only electrodes that were exclusive to either 
ensemble were used (i.e. those electrodes participating in both ensembles were excluded).  Phase-
locking is shown for both orientation trials (left) and color trials (right).  Shaded regions indicate 
95% confidence intervals.  Significant differences in phase-locking between the two ensemble is 
indicated at each frequency tested (*, p<0.05; **, p<0.01). 

2.3.4 Beta Orientation Network Shows Stronger Alpha Color Selectivity 

Alpha synchrony increases were primarily limited to color rule trials. Figure 

2.3B shows that most of the electrode pairs that showed significant increases in 
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synchrony in the alpha band did so when the color rule was cued. To examine this 

more closely, we plotted the beta-synchrony defined orientation and color 

ensembles separately (Figure 2.6). When separated, it is clear that while 

increases in alpha synchrony were on color trials they were primarily limited to 

the orientation rule ensemble (Figure 2.6, left column). Indeed, electrode pairs 

with increased alpha synchrony during the color rule were more likely to show 

increased beta synchrony for the orientation rule than color rule (55/117 and 

24/90 pairs, respectively; p<10-5, permutation test). Synchronized alpha activity 

may reflect inhibition of task-irrelevant processing (Haegens et al., 2011b; 

Klimesch, 1999; Palva and Palva, 2007; Pfurtscheller, 2001; Ray and Cole, 1985). 

Thus, alpha synchrony during color trials may reflect “de-selection” of the 

dominant (but currently irrelevant) orientation network, allowing the weaker 

(but currently relevant) color network to be boosted. Indeed, alpha increases in 

the orientation rule ensemble were associated with enhancement of individual 

color-rule neurons. Alpha power during the preparatory interval of color trials 

was positively correlated with the activity level of color-rule-preferring, but not 

orientation-rule-preferring, neurons during rule application to the test stimulus 

(Figure 2.S4, correlation coefficient of 0.014, p=0.0019 vs. 0.003, p=0.47, for 

color- and orientation-rule-preferring neurons, respectively, for 100 ms following 

stimulus onset; color>orientation, p=0.047, see Supplemental Information for 

details). There was no direct evidence for suppression of the orientation network 

(e.g. a negative correlation between alpha power and the activity of orientation-
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preferring neurons on color trials). However, these neurons are already 

suppressed during the color rule, so further suppression may be harder to detect. 

 

Figure 2.6. Independent, Rule-Specific PFC Ensembles.  

Ensembles within PFC can be identified by rule selective synchrony in the peri-stimulus ‘beta’ 
ROI (dashed outline).  One ensemble is more synchronous during orientation trials (A, left).  This 
difference is significantly greater than expected by chance (B, left).  A separate ensemble of 
electrodes is more synchronous during color trials (A, right).  Again, this difference is significant 
(B, right).  Alpha-band synchrony is observed in the orientation ensemble during the competing 
color rule (left panels, orange/pink), but not in the color ensemble (right) or during the 
orientation rule (Figure 2.2B).  Axes are the same as Figure 2.3A, but now color axes are no longer 
rectified: orange/pink reflects greater synchrony during color rule trials, blue/purple during 
orientation rule trials.  Please note the color axis of (B) is intentionally non-linear, showing only 
significant rule selectivity, beginning at a z-score of +/-1.67 (p=0.05) and fully saturated at +/-
1.97 (p=0.01). 

2.3.5 Rule-Dependent Synchrony Correlates with Behavioral Reaction Time 

Synchrony at both alpha and beta was correlated with behavioral reaction time, 

further suggesting their functional role. There was significantly stronger rule-
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selective synchrony in both bands on trials with shorter reaction times (Figure 

2.7; alpha: p=3.4310-10, beta: p=2.7110-3, Wilcoxon signed-rank test), even 

after controlling for the effects of preparatory time and rule on reaction time (see 

Table 2.1). This stronger synchrony with faster reaction times occurred prior to 

test stimulus for both alpha and beta (Figure 2.7; stronger selectivity in beta: -

20 to 0 ms, alpha: -240 to 0 ms prior to stimulus onset, Wilcoxon signed-rank 

test, p <.05, Bonferroni correction), suggesting preparatory facilitation of test 

stimulus processing. 

Figure 2.7. Strength of Prefrontal Synchrony Selectivity Correlates with Reaction 
Time. 

Trials in which the monkeys responded faster (left) showed stronger rule-selective synchrony in 
the ‘alpha’ and ‘beta’ regions of interest compared to trials with slower reaction times (right).  
Green lines indicate reaction time quartiles and white lines indicate the corresponding 
preparatory period quartiles.  Black lines on faster-reaction time trials (left) indicate when 
synchrony in the alpha and beta-frequency bands (gray and black diamonds, respectively) was 
significantly higher than synchrony during slower-reaction time trials. 
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2.4 Discussion 

2.4.1 Linking Task-Relevant Neurons with Rule-Dependent Synchrony 

Our results suggest distinct synchronous PFC networks support different rules. 

Rule-selective beta-band synchrony may help to dynamically link neurons in 

order to support task performance. Indeed, task-relevant (rule- and stimulus-

selective) neurons were more synchronized to the corresponding network for the 

current rule. Similar organization of neural activity by synchronous population 

oscillations have been seen during sensory processing (Lakatos et al., 2008), and 

attention (Buschman and Miller, 2009). This synchrony-based linking of neurons 

into networks could be an ideal mechanism for cognitive flexibility, allowing 

ensembles of task-relevant neurons to be dynamically formed and reformed 

(Sejnowski and Paulsen, 2006; Womelsdorf et al., 2007). 

Our results are consistent with recent evidence from humans and monkeys 

suggesting that beta oscillations play a major role in top-down organization of 

neural processing (Engel and Fries, 2010; Oswal et al., 2012). There is 

enhancement of beta oscillations in human sensorimotor cortices when 

maintaining posture (Androulidakis et al., 2007; Gilbertson et al., 2005), and 

when competing movements need to be inhibited (Pfurtscheller, 1981; Swann et 

al., 2009). Beta synchronization between frontal and parietal cortices increases 

during top-down attention (Buschman and Miller, 2009, 2007; Gross et al., 

2006) and with increased working memory load (Axmacher et al., 2008; Babiloni 

et al., 2004). Further, beta synchronization increases in anticipation of an 



 

 

45 

upcoming stimulus and is stronger when a stimulus is more predictable (Gross et 

al., 2006; Liang et al., 2002; Zhang et al., 2008). Similarly, we observed rule-

selective beta synchronization in anticipation of the test stimulus was correlated 

with the animal’s reaction time. 

2.4.2 Coordination of Neural Ensembles 

Orientation seemed to be the dominant modality. This may be due to its relative 

saliency, much like word-naming in the Stroop test (MacLeod, 1991). We found 

the orientation network, which was synchronized at beta-band frequencies 

during the orientation rule, had increased alpha-band synchrony when color was 

relevant. Recent studies in humans have suggested a role for alpha oscillations in 

working memory (Freunberger et al., 2008; Jensen et al., 2002; Palva and Palva, 

2011) and visual attention (Sadaghiani et al., 2010; Sauseng et al., 2005; Von 

Stein et al., 2000). In particular, alpha oscillations during attention are 

suppressed in the task-relevant sensorimotor cortices, enhanced in the task-

irrelevant cortices, and can influence discriminability of stimuli (Gould et al., 

2011; Haegens et al., 2011a; Worden et al., 2000). Because of this, it has been 

suggested that enhanced alpha synchronization creates an inhibition of irrelevant 

processes (Klimesch et al., 2007; Mathewson et al., 2011). Our study is consistent 

with this model: alpha synchronization may allow the weaker color network to be 

activated over the stronger (orientation) network when color is relevant. In 

support, we observed an increase in the activity of color-selective neurons 

following an increase in alpha in the orientation network. These results suggest a 
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dual model of competition between networks of neurons: beta synchrony selects 

the relevant network while alpha may de-select the irrelevant, but dominant, 

network so that a weaker, relevant one can be established. Similar dual 

mechanisms may bias competition between stimuli during focal attention, 

leading to high-frequency synchronization of neural activity representing 

attended stimuli (Fries et al., 2001) and slower-frequency synchronization of 

neural activity representing unattended stimuli (Cohen and Maunsell, 2009; 

Mitchell et al., 2009). 

In sum, our results suggest that synchronous oscillations allow dynamic 

selection of currently relevant neural ensembles. This may be particularly 

important in prefrontal cortex, where neurons have highly diverse properties and 

thus a particular ensemble must be formed from neurons that are also members 

of other ensembles (Rigotti et al., 2010). The dynamic nature of synchronized 

oscillations may provide a substrate for the ensembles that allows that their rapid 

selection and de-selection and, hence, cognitive flexibility. 

2.5 Experimental Procedures 

2.5.1 Recording Locations and Techniques 

Two macaque monkeys, one male (CC, Macaca fascicularis) and one female 

(ISA, Macaca mulatta), were trained on a cued task switching paradigm (Figure 

1A). Neural activity was simultaneously recorded during task performance from 

two frontal regions: the dorsolateral prefrontal cortex (PFC, area 9/46) and the 

anterior cingulate cortex (ACC, areas 24c and 32). Only data from the 
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dorsolateral prefrontal cortex is reported here. The recording well targeting PFC 

was placed in the left hemisphere and was centered approximately 28 mm 

anterior to the interaural plane and 21 mm lateral from the midline. Stereotaxic 

positioning of the well was guided by structural magnetic resonance imaging. 

Neural activity was recorded during 34 sessions (11 for monkey CC, 23 for 

monkey ISA). Arrays of up to sixteen epoxy-coated tungsten electrodes (FHC Inc, 

Bowdoin ME) were lowered into the PFC during each recording session (median 

# of electrodes with well-isolated single neuron activity was 5.5 per session). 

Electrodes were lowered in pairs by a custom built microdrive assembly and 

spaced at least 1 mm apart. Electrodes were lowered acutely each day through an 

intact dura and allowed to settle before recording. This ensured stable isolation of 

the single neuron activity. After each recording session, the electrodes were 

retracted and the microdrive assembly was removed from the well. 

A Plexon Multichannel Acquisition Processor (MAP; Plexon Inc, Dallas, 

TX) was used to perform electrophysiological recordings. The signal from each 

electrode was filtered by the pre-amplifier between 154 Hz and 8.8 kHz to isolate 

spiking activity and between 3.3 and 88 Hz to isolate the local field potential. 

Both spiking activity and local field potentials were referenced to earth ground 

(although the same results were observed when re-referencing locally, within 

PFC). The raw spiking waveforms were digitized at 40 kHz and subsequently 

sorted into single units offline, based on waveform shape characteristics and 

principal components analysis (Offline Sorter, Plexon Inc, Dallas, TX). During 
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recording, electrodes were lowered to maximize the signal-to-noise ratio of 

spiking activity and were not guided by the task-relevance of neural responses. 

This ensured a representative sample of neural activity without selection bias. A 

total of 313 neurons were recorded in the PFC (99 in monkey CC and 214 in 

monkey ISA). The average firing rate of neurons recorded in PFC was 7.4 Hz 

(inter-quartile range of firing rate was 1.7 to 10.1 Hz). Only local field potentials 

from electrodes with at least one isolated unit were used for all of our analyses, 

ensuring the electrode was in the appropriate cell layer. 

Animal eye position was monitored using an infrared eye-tracking system 

(Eyelink, SR Research Ltd., Ontario, Canada) which sampled the eye position at 

240 Hz. Behavioral control was handled by Cortex (http://www.cortex.salk.edu). 

Animal procedures followed all guidelines set by the Massachusetts Institute of 

Technology Committee on Animal Care and the National Institute of Health. 

Code used in the analysis was custom-written in Matlab (Mathworks, Natick, 

MA) or R (R Foundation for Statistical Computing, Vienna, Austria). 

2.5.2 Behavioral Task 

The task began with the presentation of a fixation spot at the center of the screen. 

The monkeys were required to acquire and maintain fixation within three degrees 

of this spot until making a behavioral response. Immediately after fixation was 

acquired, both the rule cue and response targets appeared and remained on 

screen for the duration of the trial. The rule cue was a colored border around the 

display indicating the feature of the stimulus the monkey needed to discriminate 



 

 

49 

on the current trial. The animals were trained to perform two different rules: 

color and orientation. Each rule was associated with two different cues in order to 

distinguish rule-related activity from cue-related activity (see Figure S1A for 

example neurons encoding the rule and not the individual cues). After the 

presentation of the rule cue, the animals were required to maintain fixation for a 

‘preparatory’ time-period before the onset of the stimulus. The duration of the 

preparatory period was randomized for each monkey (227 – 496 ms for monkey 

CC, 86 – 367 ms for monkey ISA; different ranges were the result of iteratively 

lowering the preparatory period during training while equalizing performance 

between animals). 

At the end of the preparatory period, a test stimulus, oriented either vertically or 

horizontally and colored either red or blue, appeared at the center of the screen. 

The test stimulus consisted of small shapes (colored and aligned appropriately). 

The identity of these small items changed from session to session, ensuring the 

animals generalized the rules. After the onset of the stimulus, the monkeys were 

free to make their response: a single saccade to either the left or right target. The 

correct saccade direction depended on both the stimulus identity and the current 

rule in effect (Figure 2.1A). For the color rule, a red stimulus required a saccade 

to the right, a blue stimulus a saccade to the left. For the orientation rule, a 

horizontal stimulus required a saccade to the right, a vertical stimulus a saccade 

to the left. As each stimulus consisted of both an orientation and color dimension, 

the correct saccade for the two rules could either be the same (congruent trials) 
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or different (incongruent trials). For example, a red vertical stimulus is 

incongruent, requiring a rightward saccade under the color rule and a leftward 

saccade under the orientation rule. In contrast, a red horizontal stimulus requires 

a rightward saccade for both rules. The majority (70%) of trials were incongruent, 

ensuring the animal always followed the rule. After the animal made the correct 

saccade, a juice reward was delivered via a juice tube. There was an inter-trial 

interval of approximately 100 ms before the next trial began. 

Although the rule was cued on each trial, the rule in effect was blocked into 

groups of trials. Each block consisted of a minimum of 20 trials of the same rule. 

After 20 trials, the rule switched randomly – with a 5% or 10% chance of 

switching rules on each trial for monkey ISA and CC, respectively. The average 

block consisted of 39 trials of the same-rule for ISA and 30 for CC. 

2.5.3 Behavioral and Neural Analysis Methods 

A generalized linear model (GLM) was used to quantify the effect of multiple 

task-related covariates on the animals’ behavioral reaction time. A Gamma 

distribution was used in the model to as it is ideal for fitting strictly positive data 

with a constant coefficient of variation, such as reaction times (McCullagh and 

Nelder, 1989). The link function, which defines a non-linear transformation 

between the linear predictors and the mean of the observations, was chosen to be 

the log function to enforce the requirement that reaction times be strictly 

positive. A complete model was developed, fitting the reaction time with the all 

task-related covariates: the rule (color/orientation), preparatory period, 
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congruency of stimulus-response association across rules, monkeys, time in 

session, and whether it was a switch trial (see Supplemental Information for 

details). A bias-corrected percent explained variance statistic (ωPEV) was used to 

evaluate neural selectivity. ωPEV determines the portion of variance of a neuron’s 

firing rate explained by a particular task variable (e.g. the current rule) but is 

analytically corrected for upward bias in percent explained variance with limited 

observations. Significance was determined by a permutation procedure (see 

Supplemental Information for details). 

2.5.4 Synchrony Analysis Methods 

The local field potential (LFP) was transformed into the time-frequency domain 

using Morlet wavelets. Synchrony was estimated by computing the spectral 

coherence between pairs of electrodes. Significant differences in coherence 

between the two rules were determined with a permutation test. The null-

hypothesis is that no significant difference exists between rules, therefore a null-

distribution was generated by permuting color and orientation trials and 

recalculating the coherence (this process was repeated at least 100 times for each 

pair of electrodes). The mean and variance of this null-distribution was used to 

estimate the likelihood of the observed synchrony (captured by a z-score 

statistic). Z-scores greater than 1.96 or -1.96 indicated significant changes in 

coherence for the color and orientation rule, respectively (see Supplemental 

Information for details). Time-frequency regions of interest (e.g. the ‘alpha’ and 

‘beta’ bands) were defined such that they encapsulated the peaks in rule-selective 
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changes in synchrony (Figures 2.2 and 2.S3). Although the bands were not pre-

defined, they closely follow the alpha and beta-bands defined in other studies, 

supporting conclusions about common mechanisms (see Discussion). 

Phase locking value (PLV) was used to estimate spike-field synchrony. The 

phase-locking of task-relevant neurons (as identified by ωPEV, see above) to the 

LFP of electrodes participating in either the color or orientation network was 

estimated in a 200 ms window around the time of stimulus onset (-50 ms to 150 

ms). In order to correct for the strong sample size bias in estimating spike-field 

synchrony, a stratification procedure was used (requiring 200 spikes in the 

window). Significant differences were determined by a permutation test, as above 

(see Supplemental Information for details). The relationship between rule-

dependent LFP synchrony and reaction time was determined by first regressing-

out the effect of preparation time on reaction time (see Supplemental 

Information for details). The resulting reaction time residuals were sorted into 

‘fast’ and ‘slow’ trials (defined as the 65th-95th and 5th–35th percentile of the 

residual distribution for each session, respectively). As above, a permutation test 

was used to estimate a z-score of the observed rule-selective differences in 

synchrony (see Supplemental Information for details). Significant differences in 

rule-selectivity between fast and slow trials were determined by comparing the 

average absolute z-score in the beta (or alpha) frequency bands using a Wilcoxon 

signed rank test. To preclude dependence between electrodes recorded in the 

same session, we bootstrap resampled the electrode pairs 1000 times. After 
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establishing rule-selectivity was stronger on average in the alpha and beta bands 

respectively, we examined rule-selectivity for differences over time by testing for 

differences in rule-selectivity at each time point, again using a Wilcoxon signed 

rank test (see Supplemental Information for further details). 

2.6 Supplemental Information 

2.6.1 Behavioral Analysis 

Both animals were able to perform the task with high performance, well above 

chance (~90% of trials were correct, p<2.20*10-16 for both animals and both 

rules, binomial test). Performance was maintained even after a switch in rule 

(Figure 2.1B). However, consistent with human behavioral results (Monsell, 

2003), there was a cost to switching between rules – both animals were 

significantly slower to respond when the rule in effect changed (Figure 2.1B). This 

suggests the animals slowed their response to maintain accuracy in the task. To 

fully quantify the effect of task switching on the reaction time, a generalized 

linear model (GLM) was fit to the data. A GLM was selected to model the reaction 

time because it allows for non-constant variance, can account for the effect of 

multiple time-dependent covariates, and can treat strictly positive data. In 

particular, we chose the Gamma distribution for our model fit because it is well-

suited to model strictly positive continuous data with a constant coefficient of 

variation (McCullagh and Nelder, 1989). For GLMs, the link function defines a 

non-linear transformation between the linear predictors and the mean of the 

observations. We chose the log link function to enforce the requirement that 
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reaction times be strictly positive. A complete model was developed, fitting the 

reaction time with the following covariates: 

log⁡(𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒)

= 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑅𝑢𝑙𝑒(𝑙𝑒𝑣𝑒𝑙𝑠: 𝐶𝑜𝑙𝑜𝑟, 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛)

+ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑦𝑃𝑒𝑟𝑖𝑜𝑑

+ 𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦(𝑙𝑒𝑣𝑒𝑙𝑠: 𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡, 𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡)

+ 𝑀𝑜𝑛𝑘𝑒𝑦(𝑙𝑒𝑣𝑒𝑙𝑠: 𝐼𝑆𝐴, 𝐶𝐶)

+ 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑙𝑒𝑣𝑒𝑙𝑠: 𝐸𝑎𝑟𝑙𝑦,𝑀𝑖𝑑𝑑𝑙𝑒, 𝐿𝑎𝑡𝑒𝑖𝑛𝑆𝑒𝑠𝑠𝑖𝑜𝑛)

+ 𝑆𝑤𝑖𝑡𝑐ℎ𝑇𝑟𝑖𝑎𝑙(𝑙𝑒𝑣𝑒𝑙𝑠: 𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛, 𝑆𝑤𝑖𝑡𝑐ℎ) + 𝑆𝑤𝑖𝑡𝑐ℎ𝑇𝑟𝑖𝑎𝑙: 𝑅𝑢𝑙𝑒 

 

Preparatory period was normalized by subtracting the mean preparatory period 

for each monkey. 

As with all of our analysis, trials in which the monkeys broke fixation and trials in 

which the monkey did not make a consistent attempt – defined as successful 

fixating in at least 80% of the five trials before the current trial – were excluded. 

Outlier reaction times (<100ms and >313ms), determined by examination of the 

raw reaction times, were also excluded. Reaction time analysis included only 

correct trials. 

Table 2.S1 shows the estimated coefficients and standard errors. Similar to Figure 

2.1B, the detailed GLM revealed a significant effect of switching rules on reaction 

time dependent on which rule was in effect: the GLM fit found that the switch 

cost occurred when the monkey switched from orientation to color but not vice-
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versa (Table 2.S1, Switch Trial). This, along with the stronger neural selectivity 

(see Figure 2.2), suggests orientation might have been the ‘default’ behavior and 

may explain the differences observed in the synchronous sub-networks (Figure 

2.6). 

Similar to human behavioral results, the preparatory period duration also 

had a strong effect on reaction time (Monsell, 2003). Longer preparatory periods 

result in faster reaction times and shorter preparatory periods result in slow 

reaction times (p<2*10-16, GLM). Finally, the model shows congruent stimuli led 

to slightly faster responding (Table 2.S1). 

Although not included in the GLM, there was a slight decrease in time to 

respond during the first few trials following a switch into the orientation rule 

(this effect can be seen in Figure 2.1B). This likely reflects the animal’s 

increased certainty for the first few trials following a rule-switch (as they are 

guaranteed the rule repeats for a limited number of trials). Although this 

provides further behavioral support for a dominant orientation rule, the effect 

was not consistent across trials (only reaching significance at p<0.05 for a few 

trials). 
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Parameter  Estimate Std. Error Pr(>|t|) 

Intercept  195.00 ms 0.18 ms < 2*10-16 

Rule Orientation 

Color 

---- 

-3.89 ms 

 

0.18 ms 

 

< 2*10-16 

Congruency 

     

Incongruent 

Congruent 

---- 

-1.88 ms 

 

0.19 ms 

 

< 2*10-16 

Switch Trial  Repetition 

Switch (Orientation) 

Switch (Color) 

---- 

0.04 ms 

4.14 ms 

 

0.77 ms 

1.11 ms 

 

0.96 

1.61*10-4 

Monkey ISA 

CC 

---- 

-26.14 ms 

 

0.20 ms 

< 2*10-16 

 

Preparation Time Per 1 ms increase 

in Preparation Time 

-0.18 ms 0.001 ms < 2*10-16 

Session Time Early-in-Session 

Mid-in-Session 

Late-in-Session 

---- 

-0.13 ms 

-0.26 ms 

 

0.11 ms 

0.11 ms 

0.23 

Table 2.S1, related to Figure 2.1. 

Estimated coefficients (the first level is included in the baseline), standard errors, and p-values 
from the reaction time GLM. Since the log link function is used, effects are multiplicative rather 
than additive as in normal linear regression. 
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Figure 2.S1, related to Figure 2.2.  

(A) Smoothed (20 ms Gaussian) firing rate histogram an example PFC neuron that responds 
differentially to the color rule (pink lines) and orientation rule (purple lines).  Solid/dashed lines 
indicate response to two cues for each rule. Black line indicates onset of rule cue, red line 
indicates median time of stimulus onset and green line indicates median reaction time. (B) 
Distribution of neuron selectivity in population of recorded PFC neurons. Selectivity was 
quantified for the rule (red), stimulus (green), and switch (blue). Neurons with selectivity in 
multiple categories combined the appropriate colors. (C) PFC neurons encode more information 
about the orientation of the stimulus than the color of the stimulus. Information is captured by a 
percent explained variance (PEV) statistic (y-axis) over time (x-axis). The black line shows the 
average difference for all recorded PFC neurons (95% CI shown by shaded region).  Vertical red 
line indicates time of stimulus onset, green line indicates median reaction time (with IQR shown 
by dashed green lines).   
 



 

 

58 

2.6.2 Rule-, Stimulus-, and Switch-Selectivity in Prefrontal Cortex Neurons 

Single neuron activity was simultaneously recorded from up to 16 electrodes 

placed across PFC (see above for recording locations and techniques). Waveforms 

were digitized at 40 kHz for isolation and then spike times for each isolated 

neuron was decimated to a 1 kHz sampling rate. We were interested in 

determining if neurons carried information about task-relevant features and if so, 

the timing of this information. Three features were of interest: the current rule in 

effect, the stimulus identity, and whether the current trial was a switch trial 

(versus a repetition). The rule was cued on every trial, although the identity of the 

rule was blocked into trials of at least 20 of the same rule (see Behavioral Task 

above). However, exactly when a switch occurred was random, and therefore 

unknown to the animal. Similarly, the color and orientation of the stimulus was 

not known to the monkey before stimulus onset. We assessed selectivity for all 

three task-relevant features for each neuron using a percent explained variance 

(PEV) statistic (see Figure 2.S1A for example rule coding neurons). 

The PEV reflects how much of the variance in a neuron’s firing rate can be 

explained by the value of a particular task variable (e.g. whether the current rule 

is color or orientation). Typically, PEV is measured by eta-squared:⁡𝜂2 =

𝑆𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝𝑠

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
, such as in an analysis of variance. Where⁡𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ (𝑁𝑖 𝑥𝑖 − 𝑥)2 and 

𝑆𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝𝑠 = ∑ 𝑛𝑔𝑟𝑜𝑢𝑝
𝐺
𝑔𝑟𝑜𝑢𝑝 (𝑥𝑔𝑟𝑜𝑢𝑝 − 𝑥)2. However, the eta-squared statistic 

has a strong positive bias, particularly for lower sample sizes. Therefore, we used 

the omega-squared statistic (ωPEV) for determining neural selectivity instead: 
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𝜔2 =
𝑆𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝𝑠 − 𝑑. 𝑓.∗ 𝑀𝑆𝐸

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 +𝑀𝑆𝐸
 

where d.f. is the degrees of freedom (i.e. the number of groups, G, minus 1) and 

MSE is the mean squared error, 𝑀𝑆𝐸 = ∑ (𝑁𝑖 𝑥𝑖 − 𝑥𝑔𝑟𝑜𝑢𝑝)
2 

Omega-squared is an unbiased measure (Keren and Lewis, 1979), resulting in a 

zero-mean statistic when there is no information (e.g. baseline of Figure 2.S2 is 

zero). This is crucial for averaging the selectivity across a population of neurons. 

The time course of ωPEV was calculated in a sliding window (a Gaussian with 20 

ms standard deviation for rule and switch information and 10 ms for stimulus 

information, allowing for greater temporal resolution). As used here, the ωPEV 

statistic makes the assumption that neurons encode information by modulating 

their average firing rate within the analyzed window of time. Importantly, the 

statistic does not make any assumption about the consistency of neural response 

over time or the nature of the change relative to other time periods. To determine 

whether and when the observed level of ωPEV was significantly different from 

chance, we used a randomization test. The association between neural activity 

and the identity of the task-relevant variable was randomly permuted and the 

ωPEV was re-calculated. By repeating this process 1000 times a null distribution 

was constructed. A cluster-correction technique was used to correct for multiple 

comparisons across time. First, a time-varying threshold was set as the 95th 

percentile of the null distribution over time. Continuous periods of time when the 

observed ωPEV exceeded the 95th percentile threshold were identified as 

clusters. The size of the cluster was then determined by integrating the area 
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between the observed ωPEV and the threshold. The same process was repeated 

for each randomly permuted ωPEV time course. Only the maximum cluster size 

was taken for each ωPEV permutation. This corrects for multiple comparisons 

across time (Nichols and Holmes, 2002) and creates a null distribution of cluster 

size. The observed clusters are then compared to the null distribution in order to 

determine the likelihood of observing a cluster of that size. Neurons were 

classified as carrying significant information if they contained at least one 

observed cluster with a low probability of occurring by chance (p≤0.05). 

Selectivity was determined for each neuron for all three task-relevant 

variables: rule, stimulus identity (either color or orientation), and 

switch/repetition. A significant number of PFC neurons carried information 

about each of the three variables (Figure 2.S1B). Individual PFC neurons often 

carried information about multiple dimensions of the task, with some neurons 

encoding all three (the white area of Figure 2.S1B). 

2.6.3 Time course of Neural Selectivity 

After the population of selective neurons were identified in each region, the time 

course of selectivity was determined for stimulus identity (Figure 2.2B and 

2.S1C). We were interested in determining the time at which the average 

information across PFC’s population of selective neurons exceeded chance, and 

whether these times were significantly different for color and orientation 

information. First, each neuron’s selectivity (as measured by ωPEV) was 

normalized by the randomly permuted, null distribution to create a z-score of 
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ωPEV over time. This allowed for selectivity to be weighted appropriately across 

the population. The time point when the population carried significant 

information was taken to be when this average z-ωPEV was significantly above 

zero (corrected for multiple comparisons across time) for at least 15 ms. It is 

important to note that the absolute time to significance is affected by non-

physiological parameters (such as the threshold chosen or the smoothing kernel 

used). Therefore, all statements about timing are relative between different 

neural populations where these parameters were held constant. In order to 

estimate the uncertainty about the time to significance, we used a bootstrapping 

procedure. A pseudo-population of neurons was created for each area by drawing 

randomly, with replacement, from the population of observed neurons. The time 

at which this pseudo-population exceeded chance was then determined. This 

process was repeated 1000 times in order to generate a distribution around the 

observed time to significance for each region. Following this process, we 

determined that orientation information occurred at 41.1 ms after stimulus onset, 

significantly earlier than color information (47.6 ms, p=0.0026). 

2.6.4 Time-Frequency Decomposition of Local Field Potentials 

The estimation of coherence during the two rules (Figures 2.2, 2.S2, 2.3, 2.4, 

and 2.6) and the estimation of spike-field synchrony (Figure 2.5) rely on 

decomposing the local field potential (LFP) into its time-frequency components. 

The time-varying spectrum of the LFP was estimated by convolving the filtered 

signal with a series of Morlet wavelets: 
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𝜓(𝑓, 𝑡) = 𝐴𝑒
𝑡2

2𝜎2𝑒2𝜋𝑖𝑓𝑡 

 

where t is time, f is the center frequency, A is a normalizing constant to ensure 

unitary power, and σ^2 is the smoothness of the kernel in time. In time-

frequency analyses, there is a necessary tradeoff between temporal and spectral 

resolution. Therefore, the smoothness in time (σ^2) is directly related to the 

smoothness in frequency 𝜎𝑓 =
1

2𝜋𝜎
. The tradeoff between temporal and spectral 

resolution is captured by the constant q, such that⁡𝜎 =
𝑓

𝑞
. We set q=3 to balance 

good frequency resolution (FWHM ~¾ of an octave) with good temporal 

specificity (FWHM ~9/8 of that frequency’s wavelength) across a wide range of 

frequencies. For example, our ‘beta’ band (19-40 Hz) is smoothed in time with a 

Gaussian with a full-width half-max of 38 ms. No further smoothing in time or 

frequency was done for any of the spectral analyses. The choice of q directly 

impacts the spread of rule-selective changes in synchrony both in time and 

frequency (e.g. Figure 2.3). In particular, in order to achieve good temporal 

resolution at low frequencies we necessarily lose some degree of frequency 

resolution, leading to a slightly wider ‘alpha’ band (6-16 Hz) then what is typically 

reported (8-12 Hz, see Discussion). Note that this does not impact the center 

frequency (10 Hz in both cases). 

The convolution of the Morlet wavelet with the local field potential 

estimated both the amplitude and phase of the ongoing LFP signal for each 
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frequency and for each time-point during the trial. Synchrony between two 

simultaneously recorded LFP signals was estimated using the coherence statistic: 

 

𝐶𝑡,𝑓
𝑋𝑌 = |

𝑆𝑡,𝑓
𝑋𝑌

√𝑆𝑡,𝑓
𝑋𝑋 ∗ 𝑆𝑡,𝑓

𝑌𝑌

| 

Where 𝑆𝑡,𝑓
𝑋𝑌 is the cross-spectrum for two time-frequency transformed signals 

𝑋𝑡,𝑓and 𝑌𝑡,𝑓 and 𝑆𝑡,𝑓
𝑋𝑋 and 𝑆𝑡,𝑓

𝑌𝑌 are their respective power spectra. 𝑋∗ indicates the 

complex conjugate of 𝑋. 

2.6.5 Identification of Synchronous Sub-networks 

For each trial, the coherence between each pair of simultaneously recorded 

electrodes was determined for the color rule and orientation rules separately (see 

Figure 2.3 for population distribution). Note that because we examined 

coherence on a trial-by-trial basis, extremely low frequency oscillations (< 3 Hz) 

are essentially “filtered out” of our analysis since one full cycle of the oscillation is 

slower than the length of the trials in the task (average trial length was 434 ms 

between monkeys). While oscillations at these frequencies are likely not 

functionally relevant on a trial-by-trial basis in this task, it is possible that these 

slower oscillations play a role across trials. However, our particular task and 

analysis leave us unable to comment on the their relevance as the oscillations 

may reflect the rhythm of the task itself. 

A permutation test was used to determine for each pair whether synchrony 

in color and orientation was significantly different. The null hypothesis is that 



 

 

64 

there is no difference between rules, and therefore the observed coherence is not 

the result of a special grouping of trials into color and orientation. Therefore, to 

generate a null distribution, trials were randomly assigned to either the color or 

orientation groups (with the relative number of trials in each group held 

constant) and the coherence statistic and its difference between groups were re-

computed. This process was repeated 100 times to estimate the mean and 

variance of the difference statistic under the null hypothesis. These were then 

used to estimate the relative likelihood of our observed difference in coherence 

under the null hypothesis (quantified in the z-score of the coherence statistic). 

The average absolute-value of the z-coherence across the population of pairs of 

simultaneously recorded PFC electrodes can either be aligned on rule-cue onset 

(Figure 2.S2A) or stimulus-onset (Figure 2.3A). Both alignments show two 

time-frequency periods of interest where the synchrony between electrodes 

significantly differed between the two tasks: a 6-16 Hz, ‘alpha’ band that is time-

locked to the onset of the rule cue and ends around the time of stimulus 

presentation (solid outline in Figure 2.3A and Figure 2.S2A) and a 19-40 Hz, 

‘beta’ band around the presentation of the stimulus (dashed outline in Figure 

2.3A and Figure 2.S2A). The differences in time course of the observed rule-

selective synchrony when aligning trials on stimulus (Figure 2.3A) or rule-cue 

onset (Figure 2.S2A) suggests the beta band occurs around the stimulus onset 

while the alpha band follows rule-cue onset. The average coherence for each pair 

of electrodes within these regions of interest was compared to the null 
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distribution (see above), resulting in a z-score of the coherence (zCoh) observed 

for both the alpha and beta regions of interest. Based upon the zCoh for each pair, 

the pairs were classified as either being more synchronized during the color or 

orientation rule (117 pairs significantly preferred the orientation rule, 90 

preferred the color rule; see Figure 2.3B for population and Figure 2.S2B for 

an example electrode pair). 

One possible source of the observed rule-selective sub-networks is that the 

onset of the stimulus evokes a potential that differs between the rules for each 

group of recording sites. We controlled for this by subtracting each electrode’s 

average evoked potential (for a given rule) from the local field potential recorded 

on every trial (of that rule). This was done before calculating the coherence 

statistic. Therefore, any remaining changes in coherence are due to trial-to-trial 

variability in the local field potential that co-varies within a subset of recording 

sites for each rule. In addition, the existence of two separate, but simultaneously 

observed, sub-networks, each with greater coherence during one of the learned 

rules, excludes a common, general source of this trial-to-trial variability (such as 

arousal). 
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Figure 2.S2, related to Figure 2.3. 

(A) Synchrony within PFC differed depending on which rule was in effect. Color axis indicates the 
average z-score of the observed difference between synchrony during the color and orientation 
rule. Synchrony is shown relative to rule-cue onset (gray vertical line) across frequency (y-axis). 
As seen relative to stimulus onset (Figure 2), two time-frequency regions of interest were found to 
carry rule information: a 6-16 Hz ‘alpha’ band (solid outline) and a 19-40 Hz ‘beta’ band (dashed 
outline). Median time and interquartile range of stimulus onset and saccade are shown in red and 
green, respectively.  (B) Example local field potential traces of a prefrontal electrode pair (3 mm 
apart) participating in the orientation sub-network during example orientation (left) and color 
(right) trials.  Local field potentials show peri-stimulus beta synchrony (purple) during 
orientation trials and rule-locked alpha synchrony (pink) during color trials. Red and green 
vertical lines indicate stimulus onset and time of saccade. (C) Rule-selective synchrony was 
observed on a high proportion of electrodes (y-axis) over all recorded distances between 
electrodes (x-axis).  Error bars indicate STE over recording sessions.  This distribution is not 
monotonically decreasing, arguing against the possibility the observed effects are due to volume 
conduction of local field potentials.  (D) Spatial distribution and connectivity of synchronous 
electrodes.  PFC electrode pairs within the rule-selective networks are spatially overlapping and 
often span the principal sulcus. Each circle represents an electrode location and each line 
represents significant rule selective coherence between two electrode locations.  Electrodes from 
monkey ISA alone (precise anatomical locations for Monkey CC relative to sulci are unknown, 
only relative position were recorded). PS = principal sulcus, AS-inf = arcuate sulcus inferior, AS-
sup = arcuate sulcus superior. (E) Average power distribution of the evoked field in both time and 
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frequency, relative to stimulus onset (top) and rule cue onset (bottom), for all PFC electrodes.  

White traces show average evoked potential across all PFC electrodes (gray scale bar is 5 V).  The 
time-frequency response does not show the same structure as observed in the coherence between 
electrodes (Figure 3), suggesting the observed rule-selective synchrony is not a direct modulation 
of the evoked potential. 

2.6.6 Synchronous Sub-networks do not Reflect Differences in Evoked Potential 

Two different mechanisms could underlie the observed rule-selective synchrony 

in the color and orientation networks. One possible mechanism is that the 

observed rule-selective coherence could reflect a preparatory process, similar to 

attending to the current rule in effect. Alternatively, the observed synchronous 

sub-networks could alter the processing of the stimulus (modulating the evoked 

field) in order to facilitate the execution of a given rule. Our current results 

provide evidence for a preparatory mechanism: although the beta-band 

synchrony occurred around stimulus presentation, Figure 2.3A shows an early 

peak in coherence before the stimulus onset, excluding the possibility of a purely 

evoked response. We isolated this peak by defining the sub-networks using only 

the pre-stimulus beta-band coherence (i.e. a window of -50 to 0 ms instead of the 

-50 to 100 ms window previously used). Indeed, the majority of electrodes pairs 

were still significantly rule-selective in both sub-networks (81/117 for orientation, 

55/90 for color). Finally, the time-frequency power distribution of the average 

evoked field itself does not show the same structure as our observed coherence 

(Figure 2.S2E), suggesting the frequency response of the synchronous sub-

networks are not just modulations of the stimulus response. 



 

 

68 

Figure 2.S3, related to Figure 2.4. Raw coherence plots showing rule-selective 
changes in synchrony between pairs of prefrontal cortex electrodes.   

Color axes indicate the average coherence observed for all rule-selective electrode pairs.  
Coherence is shown relative to stimulus onset (white vertical line) across frequency (y-axis). Black 
boxes indicate the two time-frequency regions of interest (ROI) found to carry rule information 
(see Figure 3).  Median time and interquartile range of saccade is shown by vertical green lines.  
The rule preference of an electrode pair was defined by their beta-band ROI, as for Figure 6.  (A) 
Coherence for all pairs of PFC electrodes that were rule-selective (regardless of rule preference) 
during color rule trials (left) and orientation rule trials (right).  Coherence is dominated by 1/f 
component due to referencing to earth ground.  As both color- and orientation-preferring 
electrodes (defined by the beta ROI as in Figure 2.6), changes in coherence are largely canceled by 
each ensemble. (B) Coherence for all rule-selective electrode pairs during their preferred (left) 
and non-preferred (right) rules. 

2.6.7 Quantification of Synchronous Sub-network Structure 

As noted in the main text, our results indicate that abstract rules are not only 

encoded by the activity of single neurons in frontal cortex, but also in the pattern 

of synchronous activity within a sub-network. In addition to being rule-selective, 

these sub-networks showed non-random structure. For the orientation network 

each ‘node’ (i.e. recording site) in the network was synchronized with an average 
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of 2.57 other sites (in other words, the average ‘degree’ of the orientation sub-

network was 2.57). In contrast, each recording site in the color network was 

synchronized with 1.76 other sites. The average number of possible pairs that an 

electrode could participate in was 5.05. The degree of both networks was greater 

than expected when compared to a randomly connected network with the same 

edge likelihood (p<10-3, randomization test where the observed coherence values 

are randomly assigned to pairs of electrodes). In addition, the observed network 

degree was significantly greater than random networks generated by shuffling 

coherence values within a given recording day (a more stringent test, p<10-3 for 

orientation, p=0.032 for color). Although the orientation network had more pairs 

of synchronous recording sites, each site was synchronized with a greater number 

of other sites, resulting in less individual recording sites participating in the 

network (N = 91 for orientation, N = 102 for color). As noted in the main text, the 

two networks were not exclusive at the level of individual recording sites: the 

majority of recording sites that selectively increased synchrony during one rule 

with one set of electrodes also increased synchrony during the second rule with a 

different set of electrodes (N=53). However, to fully test this possibility, we also 

limited our analysis to recording sites that showed no rule-selective changes in 

local LFP power. Although this quartered our population of electrode pairs 

(N=108), we still found a highly significant number of pairs of these sites were 

synchronized in a rule-selective manner (p=0.0015 for orientation, p = 8.1*10-5 

for color, binomial test). Furthermore, across the entire population of electrode 



 

 

70 

pairs, there was no obvious correlation between the rule-preference (if any) of the 

local LFP power at each recording site in a pair and their rule-selective 

coherence. For example, 28% of pairs of recording sites where both electrodes, 

individually, showed an increase in beta LFP power during the orientation rule, 

were more synchronized with each other during the color rule, again arguing 

against rule-selective differences in local power as the sole explanation for the 

observed rule-selective synchrony and highlighting the dynamic nature of the 

observed sub-networks. As noted in the main text, such dynamic re-organization 

of neural activity is ideal for supporting cognitive flexibility. 

Further support for our hypothesis that these rule-selective networks play 

a functional role comes from analysis of the electrode locations and their relative 

distances. Estimates of the area of integration for cortical field potentials vary 

from 250 μm to 3 mm (Berens, 2008; Katzner et al., 2009) meaning high spatial 

clustering of sub-network electrode pairs within this range would indicate our 

observed coherences and networks are spurious (although see (Kajikawa and 

Schroeder, 2011) for a challenge to the locality of the field potential). However, 

half of the sub-network electrode pairs are greater than 3 mm apart (color sub-

network interquartile range = [2 mm, 3 mm, 4.24 mm], orientation sub-network 

interquartile range= [3 mm, 3.16 mm, 5.62 mm]) and we observe rule-selective 

synchrony as far as 10 mm apart in both sub-networks (see Figure 2.S2 for full 

distribution). Moreover, many of the sub-network electrode pairs (with known 

anatomical location) were located on opposite sides of the principal sulcus and 
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there was little spatial difference between the networks (Figure 2.S2D). 

Therefore, even under more liberal estimates for field potential integration area 

(3 mm), our analysis of electrode locations indicates that the observed networks 

are not entirely the result of common field signals at nearby electrodes. 

One final possibility is that there are remote processes in other brain areas 

generating fields that differentially affect the recorded electrodes, causing the 

observed differences in coherence. However, several observations about the 

nature of our networks discount this possibility. First, the interdigitated nature of 

the rule-selective sub-networks (Figure 2.S2D) argues against a remote 

process, because presumably, a remote process should affect electrodes in the 

same way spatially. This is not what we observed. We quantified this more 

carefully by examining the selectively of electrode pairs spatially located in-

between rule-selective electrodes. Because “spatially in-between” can be difficult 

to define, we restricted our search to electrode pairs on the same columns, rows 

and diagonal of the recording array as the current electrode pairs (Recall that 

recording sites are spaced in a 1 mm grid located over the principal sulcus, see 

Figure 2.S2D). As reported in the main text, many electrode pairs had at least 

one pair of electrodes spatially interposed with either no differences in synchrony 

between the rules or the opposite preference. Second, we observed no rule-

selective synchrony in the nearby anterior cingulate cortex, which should be 

affected by remote processes as well. Third, our results were qualitatively similar 

when using a common average reference instead of earth ground. Finally, as 
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discussed in the main text, task selective neurons synchronize more with the 

electrodes that showed task selective coherence (Figure 2.5) which would be 

unlikely if the coherences were not intrinsic to prefrontal cortex. 

2.6.8 Alpha-Band Synchrony May Reflect a Suppressive Mechanism 

Previous work suggests oscillations in the alpha-band (6-16 Hz) represent a de-

selection process during sensation (see main text references, particularly (Palva 

and Palva, 2007)). Our results extend this model to cognitive processing: we 

observe increase alpha-band synchrony in the sub-network of the ‘dominant’ 

orientation rule during the competing color rule. We test two predictions of this 

model. First, we show that greater alpha coherence is correlated with a faster 

reaction time (Figure 2.6, see below for details on methods). Second, we show 

synchrony in the alpha-band during color trials is positively correlated with the 

strength of color rule representation later in the trial (Figure 2.S4). As 

coherence is a measure of correlation, it is difficult to estimate on a trial-by-trial 

basis. Therefore, for this analysis we used LFP power at a given frequency as our 

measure of synchrony. The LFP power on each trial was estimated for each 

frequency during a 200 ms window before the onset of the stimulus (i.e. during 

the preparatory period, see Figure 2.S4A). The trial-by-trial variability in this 

power was then correlated with the firing rate of rule-selective neurons on the 

same electrode. A shuffle-correction was used to remove the effect of correlations 

over time due to co-varying baselines. This process also determined the z-score of 

the observed correlation (z-correlation). The average z-correlation was 
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determined for rule-selective neurons that either preferred the color-rule (greater 

firing rate during color trials over orientation trials, Figure 2.S4A, left) or rule-

selective neurons that preferred the orientation-rule (Figure 2.S4A, right). As 

can be seen in Figure 2.S4B, left, alpha-power before stimulus onset was more 

strongly correlated the activity of color-preferring neurons later in the trial, after 

stimulus onset. This difference was significant (Figure 2.S4B, right, p-value 

determined by unpaired t-test between z-correlation values). Summary 

correlation statistics presented in the main text were taken from the first 100 ms 

after stimulus onset. The observed correlation between power and firing rate is 

consistent with our model: preparatory alpha power during color trials increases 

the strength of color-rule representations later in the trial, during rule execution. 
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Figure 2.S4, related to Figure 2.6. 

(A) Trial by trial LFP power at different frequencies (y-axis) was determined for the 200 ms 
window preceding stimulus onset (indicated by bracket under the x-axis).  The power observed on 
each trial was correlated with the firing rate of rule-selective neurons in 100 ms windows slid over 
time (x-axis marks the center of this window).  The z-score of the resulting correlation is shown 
for both color-rule-preferring neurons (left) and orientation-rule-preferring neurons (right). (B) 
Difference in correlation observed for color-preferring neurons and orientation preferring 
neurons.  Greater pre-stimulus alpha synchrony was significantly more correlated with an 
increase in firing rate of color-selective neurons later in the trial (after the stimulus appeared and 
the animal was executing the rule). 

2.6.9 Rule-Selective and Stimulus-Selective Neurons Synchronize with Currently 

Relevant Rule Sub-network 

Synchrony between the spiking activity from individual neurons and the ongoing 

local field potential were estimated for simultaneously recorded, neighboring 

electrodes (N = 465 pairs). Spikes were taken from a 200 ms wide peri-stimulus 
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time period starting 50 ms before the onset of the stimulus. This time-period was 

selected for when the greatest differentiation of rule-selective sub-networks is 

observed (Figure 2.3). Within this time window spike-field synchronization was 

estimated using the phase-locking value (PLV) statistic: 

𝑃𝐿𝑉(𝑓) = |
1

𝑁𝑆
∑𝑒𝑖𝜙(𝑓,𝑠𝑡)

𝑆𝑡∈𝑆

| 

where 𝜙(𝑓, 𝑠𝑡) is the phase of the local field potential for frequency 𝑓 at the time 

of the spike (𝑠𝑡), as estimated from the wavelet-based time-frequency 

decomposition, 𝑁𝑆 is the number of spikes, and 𝑆 is the set of all observed spike 

times. 

The phase-locking value is known to be strongly biased by the number of 

observations (e.g. a single spike would mistakenly be taken as perfect phase-

locking). Therefore we required a minimum of 200 spikes to be observed for 

inclusion in the dataset. Furthermore, the total number of spike-phase estimates 

was balanced for all comparisons using a stratification procedure. When 

comparing across different neuron populations all estimates of PLV were made 

with the required minimum number of 200 observations. A null-distribution of 

phase-locking values was estimated by shuffling the trial associations between 

the neural activity and LFP, disrupting any trial-by-trial co-variation, and 

recalculating the PLV. This process was repeated 100 times and the mean and 

standard deviation of the resulting distribution was used to normalize observed 

phase-locking values. 
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One hypothesis is that the observed rule-selective sub-networks act to 

dynamically structure neural activity in order to support the current behavior. To 

test this hypothesis we determined whether neurons involved in the task were 

significantly more synchronized to the local-field potentials of electrodes involved 

in the currently cued rule sub-network (Figure 2.5). Both stimulus-selective 

(Figure 2.5A) and rule-selective (Figure 2.5B) neurons were significantly 

synchronized with the color- and orientation-preferring sub-networks in the 

beta-band. Furthermore, which network these neurons were synchronized to 

shifted with the current task: during execution of the orientation rule (Figure 

2.5A/B, left column) both populations of neurons were more synchronized to the 

orientation-preferring sub-network. This preference was reversed during color 

trials (Figure 2.5A/B, right column). 

2.6.10 Sub-network Synchrony Changes with Behavior 

Our results suggest the observed rule-selective synchronous sub-networks encode 

the current rule and organize the activity of single neurons carrying task-relevant 

information (Figure 2.5). If true, then the animal’s ability to perform the task 

should be correlated with the strength of synchrony in the observed sub-

networks. In order to determine whether this was the case, we compared the rule-

selective coherence in each sub-network for trials when the animal responded 

quickly or slowly (Figure 2.6). This procedure is detailed here. 

The largest impact on reaction time was the preparation time between rule-cue 

onset and stimulus onset. Longer preparation times resulted in faster reaction 
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times and shorter preparation times resulted in slower reaction times. In 

addition, there were slight differences in the animal’s reaction time for the two 

rules (Table 2.S1, Figure 2.1B). However, we were interested in the 

relationship between the strength of synchrony in the rule-selective sub-networks 

and the animal’s behavioral performance, not the preparatory time or current 

rule. Therefore, we accounted for the effect of the rule and preparatory time on 

reaction time by regressing out their effect. Specifically, we fit the linear model 

𝑙𝑜𝑔(𝑅𝑇𝑖) = 𝐴 ∗ (𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑦𝑃𝑒𝑟𝑖𝑜𝑑𝑖) + 𝐵 ∗ (𝑅𝑢𝑙𝑒𝑖) + 𝐶 where log of the reaction 

time was used to stabilize the variance of the skewed reaction time distribution. 

After fitting this model, the residual difference between the observed reaction 

time and the fit reaction time captures the intrinsic variability in the animal’s 

performance. These residuals were sorted into ‘fast’ and ‘slow’ trials (defined as 

the 65th-95th and 5th–35th percentile of the residual distribution for each 

session, respectively) and the rule-selective coherence was determined, as before 

(see above). As noted in the main text, synchrony in both the preparatory ‘alpha’ 

band and the rule-execution ‘beta’ bands was significantly greater when the 

animal performed the task quicker (Figure 2.6). Strength of rule selectivity was 

determined by taking the absolute value of the average zCoh within the alpha and 

beta regions of interest. A Wilcoxon signed rank test compared the zCoh values 

for fast and slow reaction times at each time point during the trial. We required at 

least 2 consecutive time points for the rule selectivity to be considered significant. 

As the black (significant beta differences) and grey lines (significant alpha 



 

 

78 

differences) on Figure 2.6 indicate, faster reaction times were accompanied by 

stronger selectivity in both the alpha and beta bands (p<0.05, Bonferonni 

corrected for multiple comparisons) before the onset of the test stimulus. These 

results support the hypothesis that the observed synchronous sub-networks are 

involved in representing and implementing the current rule. 
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CHAPTER III: THE ROLE OF ACC IN TASK SWITCHING 

3.1 Summary 

Adjusting attention to changing task demands is a key component of intelligent 

behavior. The dlPFC and ACC are prefrontal subdivisions implicated in the 

adjustment and directing of attention, but it remains unclear whether they are 

more important for certain types of task demands. To investigate this, we trained 

two monkeys on a cued task switching paradigm, which allows us to investigate 

several types of task demand such as attentional context switching, errors, and 

response conflict. We found that ACC neurons responded to the past history of 

errors, but not the switching of context or response conflict. dlPFC neurons 

responded to the switching of attention and the first trial after the error, but not 

the history of errors. We also found that ACC neurons can respond to the task 

attentional context, even in a visually cued task. Our results show that the ACC is 

not always responsible for identifying and switching the context -- different 

prefrontal subdivisions are important for switching between different types of 

internal / external signals (i.e. errors versus visual cues) and argue against the 

role of ACC as a task conflict detector. 

3.2 Introduction 

Complex behavior involves recognizing and adjusting for situations that demand 

more attention. This entails a careful balancing between maintaining goals in the 

face of distractions, switching between task contexts, and relinquishing control 

when behaviors are sufficiently automatic in order to minimize cognitive load. 
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The prefrontal cortex is necessary for supporting context-dependent behavior — 

prefrontal lesions result in perseverative, context-inappropriate behavior (Stuss 

and Benson, 1984) and neurons in prefrontal cortex are selective to context and 

behavioral responses (Wallis et al., 2001) — but how prefrontal subdivisions 

utilize context-related information with changing cognitive task demands is still 

not understood. 

Recent models suggest that two subdivisions of the prefrontal cortex, the 

dorsal anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (dlPFC) 

play functionally distinct, complementary roles in enabling the mapping of 

context to behavior. The dlPFC is responsible for maintaining and biasing 

attention to context-relevant sensorimotor information and the ACC is 

responsible for selecting the relevant context and signaling the amount of 

attention needed to perform the task (Shenhav et al., 2013). These models predict 

that in situations where more attention is needed — such as when the expected 

value of meeting task demands increases (Shenhav et al., 2013), when there are 

multiple tasks or responses to choose from (Botvinick et al., 2004), or when 

unexpected outcomes occur (Alexander and Brown, 2011)— ACC and dlPFC act 

together to strengthen the contextual link between relevant sensory information 

and the appropriate response. 

However, the role of ACC is still controversial. While it is well established 

that ACC neurons respond to multiple aspects of errors and reward (Kennerley et 

al., 2011, 2009; Niki and Watanabe, 1979; Shima and Tanji, 1998) — including 



 

 

81 

responding to errors several trials in the past (Johnston et al., 2007; Kennerley et 

al., 2011; Michelet et al., 2009; Seo and Lee, 2007; Shen et al., 2014) — and 

behavioral responses (Hayden and Platt, 2010; Luk and Wallis, 2013; Shima and 

Tanji, 1998), it is not clear that the ACC is important for (1) selecting the relevant 

task (as Shenhav and colleagues suggest) and (2) selecting the amount of 

attention needed in all cognitively demanding situations.  

For example, a typical situation in which cognitive demand is thought to 

increase is when there are multiple potential competing responses, creating 

response conflict. However, numerous electrophysiologic studies of the macaque 

ACC have failed to find evidence of increased single neuron activity related to 

response conflict (Ebitz and Platt, 2015; Ito et al., 2003; Nakamura et al., 2005). 

Another situation in which cognitive demand is thought to increase is around the 

time of a context switch — this being an especially important event if ACC selects 

the relevant task.  However, Rushworth et al. (2003) found that lesioning the 

ACC did not impair switching between task contexts, but did impair the ability to 

correct behavior after errors have been made. One important neurophysiological 

study in the macaque, Johnston et al. (2007), found task-selective ACC neurons 

that increased their selectivity both when the task changed and after errors on the 

preceding trial, but their experimental design limited their ability to distinguish 

between effects of errors on previous trials, response conflicts, and task switches. 

In particular, their experiment involved un-cued, error-driven switches between 

two tasks: pro-saccade and anti-saccade. Because the ACC is sensitive to errors in 
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previous trials, their finding of increased task selectivity after task switches could 

have been driven by an interaction between errors in previous trials, by 

anticipated response conflict between the saccade and anti-saccade, and/or by 

switching between the tasks. If ACC is important for selecting the relevant task 

and adjusting amount of attention needed to perform that task, then we would 

expect to see a task selectivity increase after a task switch even after controlling 

for errors in previous trials and response conflict. 

Therefore, we sought to separate out the contributions of task switching, 

response conflict and errors by training two monkeys on a cued task switching 

paradigm. The cued task switching paradigm is ideal for probing cognitive 

demand because it can experimentally disassociate these cognitively demanding 

factors and we can explicitly model the effect of multiple task factors. Controlling 

for multiple task factors is particularly important for prefrontal neurons, because 

they often “multiplex” — they can be sensitive to combinations of task factors 

(Fusi et al., 2016; Rigotti et al., 2013). Surprisingly, our analyses reveal that while 

ACC neurons selectively respond to task context, the effect of changing between 

tasks does not increase task selectivity in a preparatory fashion. Instead, we find 

that with a visually cued task switch, the activity of ACC is more consistent with 

tracking the relevant rule and the past history of reward and errors. 

3.3 Results 
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Figure 3.1 Task description and factors that can change cognitive demand 

(a) Sequence of trial events. After a 100 ms intertrial interval (ITI), each trial begins with the 
presentation of a fixation spot. After fixation is acquired, one of two rules is cued, signaling the 
task context with a purple or pink border. A test stimulus is then presented after a variable delay. 
The combination of the test stimulus and rule stimulus informs the subject about the appropriate 
saccade direction. A juice reward is given after the correct saccade. (b) Factors that could affect 
cognitive demand. Error History encodes the impact of recent errors on current performance – 
making more errors should require more control. The Stimulus Congruency encodes whether 
attention to the rule is necessary to make the correct response. Incongruent trials require 
knowledge of the rule and are presumably harder and more demanding. Finally, the Number of 
Rule Repetitions encodes the number of trials since the rule has changed. The first rule repetition 
is of particular interest, because the initial switching of the rules typically causes increases in 
reaction time and deficits in accuracy and involves reconfiguration of the task context. 
 

3.3.1 Cognitively demanding factors affect task performance 

Two monkeys performed the cued task switching paradigm (Figure 3.1a, see 

Methods and  Buschman et al. (2012) for more detail) at a high level – Monkey 

CC performed 85% trials correctly and Monkey ISA performed 88% trials 

correctly (Figure 3.2a). Although there was some variability in performance 

over sessions, none of these sessions were performed at chance (Figure 3.2a).  
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Cognitive demand is associated with task difficulty – in general, harder 

tasks are considered to require more executive control. To quantify the effect of 

cognitive demand factors on task performance, we fit a binomial generalized 

linear model to the correct / incorrect responses. We considered three different 

sources of demand (Figure 3.1b): Error History, Stimulus Congruency, and the 

Number of Rule Repetitions. 

Our behavioral model revealed that all three cognitively demanding factors 

under consideration impacted task performance. Both monkeys were more likely 

to make errors on the first trial after the rule changed (Figure 3.2c, Number of 

Rule Repetition, Rep. 1, Monkey CC: 42% reduction in odds of correct response, 

p=3.3*10^-7, Monkey ISA: 16% reduction, p=0.01, compared to greater than five 

rule repetitions), even as performance remained above chance levels (monkey CC 

: median 77% correct trials for on the first repetition, interquartile range [74%, 

84%], monkey ISA: median 90% correct, interquartile range [77%, 94%], only 

one session with monkey CC at chance). Subsequent trials after the rule changed 

(Rule Repetitions 2-4) had a smaller effect on the odds of a correct response and 

were not significantly different from rule repetitions greater than 5. Stimulus 

congruency also significantly affected the monkeys’ ability to perform the trials 

correctly. Trials with incongruent stimuli, where there was more than one 

possible response, were harder to perform correctly than congruent trials 

(Figure 3.2d, Monkey CC: 29% reduction in odds of correct response compared 

to congruent trials, p=5.5*10^-12, Monkey ISA: 8% reduction, p=5.8*10^-4). 
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Finally, making an error led to a greater chance of making an error on the next 

trial, but had minimal effect on two to four trials after the initial error (Figure 

3.2b, Error History, Error+1 trial compared to No Error+1 trial, Monkey CC: 

52% reduction in odds of correct response, p=1.85*10^-22, Monkey ISA: 24% 

reduction in odds of a correct response, p=1.23*10^-9). Although this effect was 

strong, like Rule Repetition, making an error on the previous trial did not result 

in chance behavior (monkey CC : median 74% correct trials for on the first trial 

after an error, interquartile range [73%, 75%], monkey ISA: median 86% correct, 

interquartile range [81%, 89%]) 

Figure 3.2. Effect of cognitive demand factors on behavior. 

(a) Average performance of the monkeys over sessions. Both monkeys, ISA (green) and CC 
(purple), averaged over 80% correct (green and purple lines) over all sessions and only a few 
sessions were performed below 70% correct. (b) Model estimated change in performance due to 
making an error in the past five trials. Both monkeys performed better after making an error 
(although not better than if there was no error in the previous trial) and returned to baseline 
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performance one to two trials after the error. (c) The trial immediately after the rule changed 
(Rep.1) was more likely to result in an error and performance returned to baseline (five or more 
repetitions, Rep 5+) by the second repetition of the rule. (d) Incongruent stimuli were more likely 
to result in an error for both monkeys (big dots), but the session-to-session variability of monkey 
ISA (smaller, faded purple dots) indicated that incongruency didn’t always result in more errors. 
All uncertainty intervals are standard error of the mean. 
 

 

Figure 3.3 Examples of single neurons responding to cognitive demand in ACC (left 
two columns) and dlPFC (right two columns). 
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Each neuron is displayed relative to the onset of the rule cue (columns 1, 3) and test stimulus cue 
(columns 2, 4), except for congruency (bottom row), which is only a property of the test stimulus 
and therefore only displayed relative to the test stimulus. Each column displays a random sample 
of the spike raster corresponding to the cognitive demand factor of interest, with the condition 
corresponding to the highest cognitive demand at the top and the lowest at the bottom. A 
corresponding peri-event time histogram for each cognitive demand position is displayed directly 
below the spike raster. 

3.3.2 Single neurons respond to cognitive demand 

Neurons in ACC and dlPFC showed varied responses during the cue epoch (from 

the onset of the rule cue to the initiation of the saccade, which includes the test 

stimulus cue onset, see Figure 1) — with dlPFC neurons generally showing more 

sensory responses to the cues and ACC neurons more ramping and tonic 

responses. Figure 3.3 shows typical firing patterns for single neurons in ACC 

and dlPFC in response to our three cognitive demand factors of interest. 

First, regardless of the activity pattern, we observed neurons in both areas 

that increased their firing rate in response to errors in the preceding trials for up 

to three or four trials, gradually returning to the firing rate in which no previous 

error was committed (see Figure 3.3, Example Neurons 1-4). Second, we also 

observed neurons in both areas that exhibited increased firing in response to the 

switching of the rule — particularly on the first repetition of the rule after the rule 

had changed (see Figure 3.3, Example Neurons 5-8, Repetition1). Much like the 

response to the error, some of these neurons maintained an increased firing rate 

for the second and third repetitions (Repetition2 and Repetition3) of the rule 

before returning to a steady state (Repetition5+). Finally, we found test stimulus 

congruency had small effects on ACC neurons and inconsistent effects on dlPFC 

neurons (Figure 3.3, Example Neurons 9-12). For example, ACC example 
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neuron 9 in Figure 3.3 does show a congruency related response. The neuron 

increases its firing rate roughly 50 ms after the onset of the test stimulus, its 

change in firing consistent with a prefrontal neuron selective for a visual 

stimulus, and its firing rate is higher for the incongruent condition. However, the 

increase in firing rate is small. For dlPFC, we observed larger changes in firing 

rates, but some of the neurons were more selective for the congruent condition 

(Figure 3.3, Example Neuron 11) than the incongruent condition, suggesting 

that the dlPFC neurons are more sensitive to visual features of the test stimulus 

rather than the increased cognitive demand created by having to pay attention to 

both the rule and the test stimulus to make the correct response. 
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Figure 3.4 Average firing rate for each dlPFC and ACC neuron comparing high and 
low cognitive demand for the entire cue epoch (after the rule is cued and before the 
saccade is initiated) except for Congruency, which only considers the within-trial 
time epoch after the test stimulus appeared.  

For each cognitive demand factor, the ordinate displays the firing rate for the higher cognitive 
demand condition (Error+1, Error+2, etc.) compared to the firing rate of the lowest cognitive 
demand condition (No Error, etc.) on the abscissa in spikes per second. Neurons that showed 
significant changes in firing rate using a permutation test are highlighted in non-grey colors 
(corrected for multiple comparisons using false discovery rate of q=0.5, see Methods for details) 
and the total number of significant neurons is noted below the condition name (below Error+1 for 
example). Both ACC and dlPFC populations had neurons that significantly changed in the highest 
demand condition for Error History and Rule Repetition (Error+1, Repetition1), but the ACC 
showed more significant changes in the Error+2 condition and the dlPFC showed more 
significant changes in the Repetition1 condition. Most ACC neurons did not significantly change 
firing rate for incongruent versus congruent conditions. 

3.3.3 ACC and dlPFC populations respond to cognitive demand 

To more quantitatively characterize the neural responses of ACC and 

dlPFC neurons in response to different sources of cognitive demand (Error 
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History, Rule Repetition, Congruency), we first used univariate permutation tests 

(corrected for multiple comparisons with false discovery rate, q = 0.5) to test for 

differences in firing rate between a high cognitive demand situation (such as the 

first few trials after the rule has changed or after an error has been made) versus 

a lower cognitive demand situation (such as when no error has been made in the 

previous trial or rule has not changed for more than five trials) during the cue 

epoch (onset of the rule cue to initiation of saccade). Figure 3.4 shows the firing 

rate in the high cognitive demand situation (ordinate) compared to the low 

demand situation (abscissa) with the significant changes highlighted in color.  

Many ACC neurons showed evidence of responding to errors in past trials, 

particularly one and two trials after an error (Figure 3.4, Error History, ACC). 

21% (56 / 262) of ACC neurons significantly changed their firing rate on the first 

trial after an error compared to when there was no error in the past trials and 8% 

(20 / 262) of ACC neurons significantly changed their firing rate two trials after 

an error. There was little support for firing rate changes due to errors made more 

than three trials in the past (Error+3: 4% or 10 / 262 ACC neurons; Error+4: 4% 

or 10 / 262 neurons; Error+5: 3% or 9 / 262 neurons).  

dlPFC neurons also showed evidence of responding to errors in past trials, 

particularly on the first trial after the error (Figure 3.4, Error History, dlPFC). 

17% (54 / 313) of dlPFC neurons significantly changed their firing rate on the first 

trial after an error compared to not making an error in the previous trial. There 

was little evidence that errors made more than one trial in the past affected the 
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firing rate of dlPFC neurons (Error+2: 3% or 10 / 313 dlPFC neurons; Error+3: 

1% or 4 / 313 neurons; Error+4: 1% or 4 / 313 neurons; Error+5: 1% or 2 / 313 

neurons). Overall, our data suggests the firing rate of both ACC and dlPFC 

neurons can be modulated by errors in past trials. 

We next examined if the change of rules could affect the firing rate of 

prefrontal neurons. There was little evidence of ACC neurons changing their 

firing rate in response to the rule change (Figure 3.4, Rule Repetition, ACC). 

Only 5% (14 / 262) of ACC neurons were compatible with the hypothesis of a 

difference in firing rate on the first trial after the rule change (Repetition1) 

compared to the firing rates of five or more trials after the rule change 

(Repetition 5+). ACC neuronal firing rates for subsequent trials after the rule 

change (Repetitions 2-4) compared to the firing rates of five or more trials after 

the rule change (Repetition 5+) were also incompatible with the hypothesis of a 

change in firing rate for those trials (Repetition2: 3% or 7 / 262 ACC neurons 

with significant changes; Repetition3: 1% or 3 / 262 neurons; Repetition4: 1% or 

2 / 262). 

Some dlPFC neurons showed evidence of responding to the change in 

rules. 12% (39 / 313) of dlPFC neurons significantly changed their firing rate on 

the first trial after the rule changed (compared to five or more trials after the rule 

change). Subsequent trials after the rule change did not significantly modulate 

firing rates of dlPFC neurons compared to five trials or more trials after the rule 

change (Repetition2: 3% or 8 / 313 dlPFC neurons significantly changed; 
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Repetition3: 1% or 3 / 313 neurons; Repetition4: 1% or 2 / 313 neurons). So, our 

data shows that dlPFC neurons can change their firing rate in response to a rule 

change, but provides no support for a similar change in ACC neurons. 

Finally, there was little evidence of stimulus congruency affecting the 

firing rate of ACC neurons. Only 1% of ACC neurons were compatible with the 

hypothesis of a difference in firing rate between incongruent conditions and 

congruent conditions. dlPFC neurons also showed little evidence of firing rate 

changes due to stimulus congruency (8% or 24 / 313 of dlPFC neurons 

significantly changed due to stimulus congruency). 

Figure 3.5 Neuronal model estimated changes in firing rate over the trial for each 
cognitive demand factor. 

The top row ordinate displays the average normalized population percentage change in firing rate 
relative to the low demand condition (e.g. Error+1 versus No Error or Repetition1 versus 
Repetition5+). All confidence intervals are 95% confidence intervals. The bottom row ordinate 
shows the percentage of significant neurons for those conditions, corrected for multiple 
comparisons using a false discovery rate, q=0.5. The abscissa corresponds to the events in the 
trial as defined by Figure 3.1: ITI – intertrial interval, Fix. – fixation dot onset to rule cue onset, 
Rule – rule cue onset to test stimulus onset, Test Stimulus – test stimulus onset to saccade 
initiation, Sacc. – saccade initiation to reward, and Reward – reward to end of trial. The ACC has 
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stronger firing rate changes on average to Error+1 and Error+2. Those error-related changes 
come primarily in the rule epoch.  dlPFC neurons show stronger firing rate changes on the first 
trial after the rule changes (Repetition1) and there are more neurons that are selectively 
significant for the Repetition1 condition. Congruency for both areas is not strongly biased toward 
increased or decreased firing rates and more neurons are significantly selective for incongruency 
in dlPFC compared to ACC. 

3.3.4 Within trial dynamics of cognitive demand selectivity 

Next, we were interested in characterizing the relative contributions of the 

different cognitive demand factors to changes in firing rate over the course of the 

trial. We were particularly interested in the portion of the trial after the rule was 

cued, but before the test stimulus was presented. This “preparatory epoch” 

(which we denote by Rule in Figure 3.5) is important because it represents the 

time epoch in which the animal can proactively adjust the amount of attention 

needed in the current trial in response to increased cognitive demand (Alexander 

and Brown, 2010; Rogers and Monsell, 1995; Ruge et al., 2013). We fit 

multivariate generalized linear models to each time epoch in the trial (as defined 

in Figure 3.1a) that accounted for the contributions of the cognitive demand 

factors of interest (see Methods for a full description of the model). This analysis 

yielded important differences between ACC and dlPFC neuronal populations.  

On the first trial after an error, the average firing rate of the population of 

ACC neurons increased (relative to no error on the previous trial) from the 

intertrial interval to the initiation of the saccade, with the highest firing rate 

increases sustained in the intertrial and rule cue intervals (Figure 3.5, Error 

History, ACC, Error+1, average change in ACC neurons firing rate, intertrial 

interval: 10% [8%, 13%]; rule cue epoch: 9% [7%, 11%]). This increase was not 

due to large firing rate differences from only a few neurons. More ACC neurons 
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increased their firing rate than decreased their firing rate during the cue epoch 

(Figure 3.6, Error+1, ACC). Although the time between trials was brief, this 

firing rate increase did not seem to be solely a response to the omission of 

reward, but rather it seemed to serve a more functional role. Supporting this, two 

trials after the error (Figure 3.5, Error+2, rule cue epoch, ACC firing rate 

change: 6% [4%, 8%]), the average firing rate of the ACC neurons also showed an 

increase in firing rate during the preparatory epoch, but not during the intertrial 

interval, fixation, or when the test stimulus was shown. Similar to the first trial 

after the error, there were more neurons that increased their firing rate in 

response to an error two trials in the past than decreased (Figure 3.6, Error+2, 

ACC). 

In contrast, the population of dlPFC neurons only showed a significant 

increase in firing rate during the rule epoch (the preparatory epoch) on the first 

trial after an error (Figure 3.5, Error History, dlPFC, Error+1, average change in 

dlPFC neurons firing rate: 5% [3%, 7%]) and not on the subsequent trials after 

the error (Figure 3.5, Error+2, Error+3, Error+4, and Error+5).  The average 

increase in firing by the dlPFC neurons on errors one or two trials in the past was 

smaller than the ACC neurons (Figure 3.5, average difference between ACC and 

dlPFC, Error+1: 4% [1%, 7%], p < 0.05; Error+2: 6% [4%, 9%], p < 0.05). 

 A different pattern emerged when considering the effect of changing the 

rule. On the first trial after the rule changed, dlPFC neurons on average increased 

their firing rate by 8% [5%, 11%] when the rule was cued and 9% [5%, 12%] after 
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the test stimulus was cued (Figure 3.5, Repetition1). This was also not due to a 

few extreme neurons in the population. More dlPFC neurons increased their 

firing rate in response to the rule change than decreased (Figure 3.6, 

Repetition1, dlPFC). On the next trial (Figure 3.5, Repetition2), much like ACC 

on the second trial after an error, the dlPFC population firing rate only 

significantly changed when the rule was cued (rule cue epoch, 6% [3%, 9%]), but 

not in any other time epoch during the trial. 

ACC neurons followed a similar pattern of change on the first and second 

rule repetition (Figure 3.5, Repetition1: rule cue epoch, ACC average change in 

firing rate 3% [0%, 6%], test stimulus epoch, 4% [1%, 7%], Repetition2, rule cue 

epoch: 3% [0%, 6%]), but these changes were smaller than dlPFC in the rule cue 

and test stimulus epochs of the first rule repetition trial (Repetition1, average 

difference between ACC and dlPFC, rule cue epoch: -5% [-8%, 1%], p < 0.05, test 

stimulus epoch: 4%, [-8, 0%], p < 0.05), but not the subsequent repetitions (all p 

> 0.05). 

 Finally, ACC neurons show little difference in firing rate between 

congruent and incongruent stimuli and any change in neural activity tends to be 

stronger for the congruent, not the incongruent condition (Figure 3.5, ACC 

incongruent). dlPFC neurons did show changes in firing rate for incongruent 

versus congruent stimuli, but these changes were not preferentially biased toward 

congruent or incongruent stimuli (Figure 3.5, dlPFC incongruent and Figure 

3.6, dlPFC congruency), indicating that they were more likely related to the 
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visual features of the test stimulus, rather than reflecting increased cognitive 

demand. 

 

Figure 3.6. The majority of neurons increased their firing rate in response to recent 
errors and the change of the rule during the cue epoch.  

Green lines represent the average percentage of neurons that increased their firing rate during the 
rule cue epoch or test stimulus epoch in response to a cognitively demanding factor. Orange lines 
represent the average percentage of neurons that decreased their firing rate in response to a 
cognitively demanding factor. The average percentage was calculated by computing the 
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percentage of neurons that exceeded an effect size threshold (e.g the percentage of neurons that 
increased by 1% for a cognitively demanding situation or the percentage of neurons that 
decreased by 1% for a cognitively demanding situation) over a range of thresholds (1-150% for 
increases and decreases). The integral over the range of effect size thresholds divided by the total 
range yielded the average percentage of neurons that increased or decreased. Uncertainty about 
this estimate was captured by repeating this procedure over 10000 estimates generated from the 
fitted models of each neuron (parametric bootstrap). 

3.3.5 Does the ACC care about the number of trials from error (error distance) 

or the recent history of errors?  

 
Figure 3.7 Taking into account the past history of errors (Error History) rather than 
the number of trials from the error (Error Distance) improves spike prediction 
accuracy in ACC, but not dlPFC.  

Spike prediction accuracy is measured in terms of area under the curve (AUC) and averaged over 
all neurons in the population of interest (dlPFC, left column, ACC, right column). Confidence 
intervals are 95% confidence intervals derived from the five fold cross-validation used to evaluate 
spike prediction accuracy. 

We next investigated whether the effect of the recent error history was a function 

of the number of errors made in the past five trials (Error History) — that is, 

whether the monkey making consecutive errors influenced the firing rate — or 

was more simply a function of the number of trials from the error (Error 

Distance).  
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To determine which was the better model, we compared the spike 

prediction accuracy of the two different models (Error History vs. Error Distance) 

using the area under the curve metric (AUC, see Methods for further details on 

the metric and specific models used). For dlPFC neurons, the average spike 

prediction accuracy for the population was similar between the Error History and 

the Error Distance (Figure 3.7, dlPFC) and the model including Error Distance 

predicted better for 47% of the neurons compared to 45% for Error History 

(Models that predicted spikes worse than chance at 0.5 were considered to have 

no effect and excluded). In contrast, Error History was the better predictor on 

average for ACC neurons (Figure 3.7, ACC) and predicted better for 47% of the 

ACC neurons (compared to 41% for Error Distance). While admittedly, this is 

hardly decisive for deciding between Error History and Error Distance, it is worth 

noting that even in a well-trained task, many ACC neurons were better fit by a 

model that takes into account the number of errors in the recent trials. 
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Figure 3.8 Representative neurons showing rule-related activity in ACC (left two 
columns) and dlPFC (right two columns) relative to the rule cue onset and test 
stimulus onset.  

Figure conventions are the same as Figure 3.3. There are two cues for each rule, represented in 
different shades of the same color for the same rule. The color rule cues are in pink and the 
orientation rule cues are in purple. dlPFC neurons typically show individual cue related activity 
compared to ACC neurons.  

3.3.6 Can the current context affect ACC neurons? 

We next investigated the role of task rule in dlPFC and ACC. While it has been 

established that dlPFC neurons can respond selectively to task rules, even if those 

rules are cued by different modalties (Wallis et al., 2001), only one previous study 

has investigated the effect of rule on ACC neurons and importantly, that rule cue 

was signaled by error (Johnston et al., 2007). Given that task information can be 

signaled by sensory modalities and rule selectivity is crucial to many current 

theories of ACC function (Alexander and Brown, 2011; Shenhav et al., 2013), we 

wanted to know if ACC would respond to a visually cued rule. In our task, each 
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rule was signaled by two different visual cues, allowing us to differentiate rule 

selectivity from differences caused by visual features of the rule stimulus.  

 Figure 3.8 shows six representative neurons that responded differentially 

to rule in ACC (left column) and dlPFC (right column). Each of these neurons 

have roughly similar responses to both rule cues, although there are some 

differences between the individual cues for each rule, particularly in dlPFC, 

presumably due to different visual features of the rule cue such as in example 

neuron 2 and 8. Firing rate differences between the rules for both ACC and dlPFC 

were also comparable (Figure 3.9, top) and the number of neurons selective for 

the rule cue increased during the cue interval of the trial (Figure 3.9, bottom), 

indicating that they were relevant for the task. Furthermore, including rule in the 

generalized linear model substantially improved the prediction of spikes for each 

area  (Figure 3.10). Indeed, a model with the rule factor by itself on average 

predicted better than the cognitive demand factors by themselves (Figure 

3.10b,e), models including the rule and one or both of the cognitive demand 

factors predicted better than one or both of the cognitive demand factors (Figure 

3.10b,e), and the best predicting model for each neuron included the rule factor 

more than the other factors (Figure 3.10c,f). Moreover, the best predicting 

models for each neuron included the rule and at least one other cognitive demand 

factor for 55%  of ACC neurons and 61% of dlPFC neurons, suggesting that most 

ACC and dlPFC neurons were well modeled by consideration of the rule and a 

change in cognitive demand. 
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Figure 3.9 Average rule-related differences and percentage of significantly changing 
neurons for the rule.  

Figure conventions are the same as Figure 3.5, except that in the topmost row percentage change 
in firing rate is the absolute change in firing rate for either rule. This is to capture the rule-related 
change regardless if the neuron fired more for the orientation or color rule. 
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Figure 3.10 Comparison of spike prediction accuracy for a set of models for ACC 
(top row) and dlPFC (bottom row) during the rule cue epoch. 

We consider whether neurons are better predicted by models containing individual factors (rule, 
rule repetition, error history) or by a combination of the factors. UpSet diagrams, which are an 
extension of Venn Diagrams, display the combination of the factors included in the model in a, b, 
d, and e. (a,d) Percentage of neurons for which that model was the best predicting model. (b,e) 
Average AUC for that model over all neurons. (c,f) The percentage of best predicting models (in a 
and d) that contained that individual factor. 
 

3.4 Discussion 

We report three main results. First, in a visually cued task switch, dlPFC neurons 

respond more strongly than ACC neurons in response to changing the contextual 

rule. Second, ACC activity is more responsive to and is better predicted by errors 

in recent trials than dlPFC. Third, ACC neurons can respond to rules even when 
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the rule is signaled by a visual cue (and not by an error) and furthermore, their 

activity is better predicted by a combination of recent error history and rule. 

 A recent model by Shenhav et al. (2013) proposed that ACC identifies the 

appropriate control signal (in our experiment, the contextual rule) and predicts 

changes in that signal (i.e. a task switch). Supporting this, Johnston et al. (2007) 

found that in a uncued error-driven task switch, rule-selective ACC neurons 

discriminated between the rule conditions more strongly and earlier than rule-

selective dlPFC neurons around the time of the switch – a pattern which reversed 

(dlPFC neurons more strongly and led ACC) after the same task was repeated 

approximately 10 or more times. Our results are more similar to the pattern 

Johnston et al. (2007) observed after 10 or more repetitions of the same rule. 

This highlights an important subtlety not captured by the model of Shenhav et 

al.; namely, that in a visually cued task switch, dlPFC is more important for 

identifying and predicting the task to be performed than ACC. Different 

prefrontal subdivisions may be important for different types of switching. It is 

also possible that the ACC is not important for switching between tasks at all.  For 

example, Kennerley et al. (2006) found that lesioning the ACC in a motor-reward 

reversal task did not impair their subjects ability to switch between motor-reward 

associations. 

Our results may also be further evidence of an important functional 

distinction between the prefrontal subdivisions. Rushworth and colleagues 

(2006; 2011) proposed that prefrontal subdivisions learn different types of 
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associations: dlPFC is more important for stimulus-response associations and 

anterior cingulate for response-outcome associations. Our results are partially 

consistent with this proposal because ACC, in our study and in the Johnston et al. 

(2007) study, was responsive to the recent pattern of errors and ACC seems to 

play a more important role in switching between the tasks when the task switch is 

signaled by an error. However, Rushworth’s distinction does not account for the 

role of context. We have shown that context signals, whether signaled by error or 

visual cue, can have a meaningful impact on the firing rate of ACC neurons. 

 Our results are inconsistent with another recent study by Ebitz and Platt 

(2015), that suggested ACC was important for signaling goal-related task conflict. 

Ebitz and Platt found that task-relevant visual distractors induced higher firing 

rates in ACC neurons than task-irrelevant distractors or the absence of 

distractors. They suggested that this conflict was of the same sort that would be 

observed in a task switch, in which goal-irrelevant information from the previous 

rule would conflict with the current rule. However, our study also goes against 

this interpretation. If ACC were primarily involved in signaling task conflict, then 

we would have expected to see much stronger ACC activity around the time of the 

switch compared to dlPFC and more neurons selective for the switch – at least 

compared to the activity we found induced by errors. It is possible that, in our 

well-trained visually cued task, this task conflict was not as strong, and we did 

observe some increase in activity around the switch; however, the number of 

errors around the switch indicates that switching between the tasks was still 
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challenging. Furthermore, we had the advantage of comparing two prefrontal 

areas, dlPFC and ACC. We would expect the conflict induced by task switching to 

have at least an equal effect on ACC firing rate as dlPFC and/or the response to 

error. 

 We did not observe any response conflict induced by the congruency of the 

stimulus. 70% of our trials had incongruent stimuli, so it is possible that the 

monkeys were always expecting incongruent trials. However, as discussed in the 

introduction, most electrophysiologic studies have failed to find evidence of 

response conflict in the dorsal ACC of non-human primates (Ebitz and Platt, 

2015; Ito et al., 2003; Nakamura et al., 2005), so we did not expect to find 

response conflict in our data. Several human functional neuroimaging studies 

and one electrophysiologic study have found an effect of response conflict on 

both the current trial and the past trial (Kerns et al., 2004; MacDonald et al., 

2000; Sheth et al., 2012). Given that the recent history of errors also seems to 

have an effect on ACC activity, it would be interesting to see the relative 

contributions of the past history of congruency versus those of the history of 

errors. At the very least, our study and others show that it is important to account 

for the recent error history when considering ACC functioning, because of its 

large effect on the firing rate of the current trial. 

3.5 Materials and Methods 

This dataset and experiment were previously described in a report focusing on 

the dlPFC local field potentials (Buschman et al., 2012). Some information from 
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that report is summarized here with additional detail as it pertains to this 

analysis. 

3.5.1 Subjects and Recordings 

Two monkeys — a male Macaca fascicularis (Monkey CC) and a female Macaca 

mulatta (Monkey ISA) — were subjects. We recorded from extracellular 

electrodes in ACC (areas 24c and 32) and dlPFC (area 9/46). There were 34 total 

recording sessions (11 for monkey CC, 23 for monkey ISA) with most sessions 

containing simultaneous recordings in ACC and dlPFC. Up to eight electrodes 

were placed in both ACC and dlPFC each session with a maximum of 16 

simultaneous electrodes. 262 ACC neurons (117 neurons in monkey CC, 145 

neurons in monkey ISA) and 313 dlPFC neurons (99 neurons in monkey CC, 214 

neurons in monkey ISA) were recorded. The average firing rate of dlPFC neurons 

was 7.4 Hz (interquartile range: 1.7 to 10.1 Hz) and the average firing rate of ACC 

neurons was 6.7 Hz (interquartile range: 2.0 to 9.6 Hz). Further details of the 

recording and spike sorting can be found in (Buschman et al., 2012). 

3.5.2 Task 

Each trial began with the presentation of a fixation spot. After the monkeys 

acquired fixation, one of four rule cues was presented as a border stimulus 

around the screen — two for the color rule, two for the orientation rule — along 

with two response targets to the left and right of the fixation spot. The color rule 

cues indicated that the monkey should pay attention to the color (red or blue) of 

the upcoming test stimulus to make the correct saccade response, the orientation 
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rule cues indicated the monkey should pay attention to the orientation (vertical 

or horizontal) of the test stimulus. Each rule was cued in consecutive blocks of 

trials with at least 20 trials in each block — the rule switching with a 5% or 10% 

probability (monkey ISA and CC, respectively) after 20 trials. Rules appeared 

with equal frequency during the session. By cueing the rule on each trial, we can 

disambiguate the neuronal response to switches between the rules from errors on 

previous trials, because the task switches are not error-driven. 

After the rule cue, the monkeys maintained fixation for a randomized 

duration (monkey CC: 227 to 496-ms, monkey ISA: 86–367 ms) until the test 

stimulus appeared on the screen. A “congruent” test stimulus meant the correct 

saccade direction was the same regardless of the rule cue (e.g. if the test was 

vertical and blue, the correct saccade direction is the right target). An 

“incongruent” test stimulus required knowledge of both the rule and test stimulus 

to make the correct response. Separation of test stimulus and rule cue allowed us 

to disambiguate the contributions of congruency and response direction from the 

rule cues in terms of timing. This is important because ACC neurons may be 

responsive to response conflict (Botvinick et al., 2004, 2001; Kerns et al., 2004; 

Sheth et al., 2012) — the increased demand caused by multiple potential 

responses. 70% of the trials had congruent test stimuli and 30% of the trials had 

incongruent test stimuli, so the monkey could not anticipate the response 

conflict. 
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The two monkeys performed an average of 2473 correct trials per 

recording session (range: 689 to 4093 trials). They successfully switched between 

blocks of rules in each session an average of 64 times (average of 41 correct 

switches for Monkey CC, 76 for Monkey ISA). The average number of correct 

color-to-orientation rule switches and orientation-to-color rule switches is 32 

trials per session (color-to-orientation range: 9 to 54, orientation-to-color range: 

9 to 55 trials per session). 

Correct trials for which the previous trial was an error averaged 129 trials 

per session. The average number of color rule trials with an error on the previous 

trial is 64 and the average number of orientation rule trials with an error in the 

previous trial is 64 (color range: 11 to 174 trials, orientation range: 16 to 138 

trials). All correct trials were rewarded with juice. 

3.5.3 Behavioral Analysis 

Reaction time and error analysis were previous reported in (Buschman et al., 

2012). We expanded upon the analysis of errors by fitting a binomial generalized 

linear model with a logit link function with a 1 encoding a correct response and a 

0 encoding an incorrect response in the task. 

The model has five covariates from the task: Rule, Error History, Rule 

Repetition, and Congruency. Rule is an indicator function with 1 

corresponding to the Orientation Rule and a 0 corresponding to the Color Rule. 

Error History is a lagged indicator that corresponds to whether the subject 

made an error in the previous N-1, N-2, N-3, N-4, N-5 trials where N represents 
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the current trial – 1 for an error, 0 for no error. Rule Repetition is an indicator 

function corresponding to the number of repetitions of the rule in the current 

block up to four repetitions (0 corresponds to repetitions of 5 or more trials, 1 

corresponds to 1,2,3, or 4 repetitions of the same rule respectively). Congruency 

is an indicator function with 1 indicating an incongruent test stimulus and 0 

corresponding to a congruent test stimulus. 

In Figure 3.2, we present the effects of errors as a percentage change, 

100 ∗ (𝑒𝛽 − 1), in odds ratio — the probability of a correct response divided by 

the probability of an incorrect response – where the coefficient β is the linear 

coefficient estimated from the model. Effects are presented on a linear scale so as 

to give equal visual weight to decreases in odds ratios as increases in odds ratios, 

but units are labeled on the axis as the percentage change. 

3.5.4 Permutation Analysis 

Average firing rate differences between a high cognitive demand condition and 

the corresponding low cognitive demand condition in Figure 3.4 were 

compared using a permutation test. We formed a null distribution by shuffling 

trial labels between the high cognitive demand condition of interest and the low 

cognitive demand condition and then recomputing the difference of the averge 

firing rates in those conditions. We repeated this 10,000 times. A p-value was 

obtained by comparing the absolute observed difference between conditions to 

the shuffled null distribution of absolute differences. These p-values were 
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corrected using the false discovery rate (Benjamini and Hochberg, 1995) with 

q=0.5. 

3.5.5 Spiking Model Parameters and Fitting 

Generalized linear models were used for the results presented in Figures 3.5-

3.7 and Figures 3.9-3.10. Models were fit to each neuron using a Poisson 

distribution and a log link function to describe the relative contribution of factors 

to the instantaneous spike rate of each neuron. Spikes were parameterized by an 

indicator function over time in the trial with a 1 representing a spike and 0 

representing no-spike in a 1-ms time bin. Covariates Rule, Rule Repetition, 

Error History and Congruency were parameterized in the same way as the 

behavioral analysis described in 3.5.3. Response Direction encoded the 

direction of the saccade with a leftward saccade corresponding to a 1 and a 

rightward saccade corresponding to a 0. We used the model Rule + Error History 

+ Rule Repetition for within trial time epoch before the test stimulus (ITI, 

Fixation, and Rule) and the model Rule + Error History + Rule Repetition + 

Congruency + Response Direction for within trial time epochs after the test 

stimulus was cued (Test Stimulus, Saccade, Reward). 

We fit only trials where the subject made a correct response. Trials with 

incorrect responses, fixation breaks, or reaction times less than 100 ms and 

greater than 313 ms were also excluded from the analysis. 

Estimated effect sizes, such as those in Figures 3.5 and 3.7, are given 

percentage change from the low cognitive demand condition. As in the behavioral 
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analysis, this corresponds to 100 ∗ (𝑒𝛽 − 1) where the coefficient β is the linear 

coefficient estimated from the model. Effects are presented on a linear scale so as 

to give equal visual weight to decreases in odds ratios as increases in odds ratios, 

but units are labeled on the axis as the percentage change. 

3.5.6 Spike Prediction 

To estimate how well the models were expected to generalize to new datasets, we 

used 5-fold cross-validation. Trials for each recording session were randomly 

assigned to five groups, four of which were used to fit the model and fifth used to 

validate the model. This was then repeated for each fold. In order to evaluate how 

well the model predicted on the test fold, we used the receiver operating 

characteristic (ROC). Using the model fit on the training folds, we can estimate a 

predicted instantaneous firing rate for the test fold. This instantaneous firing rate 

can be separated into two distributions: one corresponding to predicted 

instantaneous firing rates when a spike occurred and one corresponding to 

predicted instantaneous firing rates when a spike did not occur. If the model 

predicts well, then these two populations should be more discriminable than if 

the model did not predict well. The ROC gives us a measure of this 

discriminability by telling us the ratio of true positives and false negatives along 

the extent of the data, forming a ROC curve. We can then summarize this 

measure using the area under the ROC curve. 

For Figure 3.7, we compared the predictions of two models over the cue 

epoch: 
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 1. Rule + Error History + Rule Repetition + Congruency + Response 

Direction. 

 2. Rule + Error Distance + Rule Repetition + Congruency + Response 

Direction. 

The Error Distance factor was encoded by an indicator function on the 

number of trials since an error occurred — up to five trials. So, like Rule 

Repetition, 0 corresponds to five or more trials since an error occurred, 1 

corresponds to 1,2,3, or 4 trials since an error occurred. 

For Figure 3.10, we compared eight models in the preparatory epoch before 

the test stimulus was cued: 

1. Rule 

2. Error History 

3. Rule Repetition 

4. Rule + Error History 

5. Rule + Rule Repetition 

6. Error History + Rule Repetition 

7. Rule + Error History + Rule Repetition 

8. No Effect 

Where No Effect corresponds to a model with only an intercept term, which 

encodes the average firing rate over that interval. We do not display the No Effect 

Model in Figure 3.10, but it does affect the results.  For example, in Figure 
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3.10a, the percentages do not add up to 100% because, for a subset of the 

neurons, the best predicting model for those neurons was the No Effect model. 

 



 

 

114 

CHAPTER IV: NEW TOOLS FOR WEB-ENABLED INTERACTIVE 

VISUALIZATIONS OF ELECTROPHYSIOLOGICAL DATA 

4.1. Summary 

Electrophysiology datasets in neuroscience are becoming richer and more 

complex as data is collected on multiple scales, dataset sizes increase, and more 

sophisticated questions are asked of the data. Visualization is an essential tool for 

understanding these datasets at all stages of analysis, but current practices in 

visualization of electrophysiological data are limited in their ability to efficiently 

compare between visualizations (such as between a raster plot of neuronal 

spiking to a visualization of a regression model of the same neuron) and filter 

complex data (for example, by limiting a visualization to specific brain areas on 

demand). Such difficulties are only magnified as the amount of data increases. 

This chapter describes a set of composable, web-enabled interactive 

visualization tools developed for use in electrophysiological studies. These tools 

were developed to facilitate (1) exploratory data analysis, (2) checking of raw data 

and statistical modeling assumptions, and (3) data presentation in the context of 

large, complex and multi-scale neuroscience data. Data from several experiments 

were used to test the tools. These visualization tools are viewable in the web 

browser and open-source, making them easily shareable online and allowing for 

modification and development by the neuroscience community. 
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4.2. Introduction 

Current theories of brain functioning ascribe different roles to different scales: 

neurons, cortical layers, brain areas, networks between brain areas. For example, 

the Communication-through-Coherence Hypothesis postulates that 

communication in the brain happens primarily through phase coordination 

between groups of neurons (Fries, 2005). This phase coordination between 

groups of neurons may differ between different layers, frequencies, within-brain 

areas, and between brain areas (Buffalo et al., 2011; Buschman et al., 2012; 

Gregoriou et al., 2009). Through the use of multiple electrode arrays and laminar 

probes, we are beginning to collect data at these different scales and understand 

how they interact (Miller and Wilson, 2008). However, as electrode technology 

progresses, our understanding of the data is not limited by the amount of data we 

can collect, but by our ability to efficiently understand and model relationships in 

the data. 
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Figure 4.1 Example of an electrophysiological dataset. 

(a) A human brain with electrode positions from intracranial electrodes marked as 
circles with numbers inside. The colors of the electrodes represent different brain 
areas. (b) Field potentials recorded from electrodes in part (a). Each line represents 
a field potential from a different electrode in part (a). In a typical analysis, these 
signals may be aggregated at different levels such as by brain area in part (a). They 
may also be compared to various events that occur over the time course such as trial 
event #1 and trial event #2. 
 

Take, for example, a typical analysis of an electrocorticography (ECoG) 

dataset in which grids of intracranial electrodes are placed across large portions 

of cortex. These grids span multiple brain areas (Figure 4.1a) and are often 

combined with microelectrode grids to measure both local field potentials and 

action potentials from individual neurons (Figure 4.1b). Given enough data, 

this allows us to ask questions about the properties at different spatial scales 
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(units, multiunits, local field potentials, brain region summaries) and how they 

relate (e.g. correlation and coherence between local field potentials, local field 

potentials and neurons, neurons and neurons). Moreover, we can ask questions 

about how these change over time and/or relate to experimental conditions (e.g. 

comparing trial event #1 versus trial event #2 in Figure 4.1b). This results in a 

dataset with many complex interrelations. 

Understanding a dataset such as this becomes even more challenging as 

we record from more electrodes. For example, when assessing relationships 

between recorded signals, the number of possible associations scales 

quadratically with the number of signals. That is, 10 electrodes means analyzing 

100 relationships between electrodes. Implantation of multielectrode arrays with 

upwards of 100 electrodes is becoming common (Einevoll et al., 2012; Miller and 

Wilson, 2008; Siegel et al., 2015) and the number of simultaneously recorded 

neurons is projected to double every seven years (Stevenson and Kording, 2011). 

Visualization of data is one way that we can reduce data complexity — 

allowing us to make multiple simultaneous comparisons, easing the cognitive 

burden on working memory by efficiently encoding properties of the data into 

features salient to the visual system (Cleveland and McGill, 1984; Healey and 

Enns, 2012). In addition, visualization is important in the understanding and 

checking of statistical assumptions — it helps reveal differences between the 

expected structure of the data (the model) and the observed data (Anscombe, 

1973; Tukey, 1977). This is important, from the initial stages of analysis to 
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publication, for revising our assumptions and models and for understanding and 

communicating where and how our models do not adequately explain the data 

(Gelman, 2004). 

However, current practice with electrophysiologic data relies on static 

visualization — requiring the generation of figures for each particular view. This 

makes it difficult to explore and check the data efficiently. For example, Liu and 

Heer (2014) found that even a 500 millisecond delay between visualizations 

could reduce the amount of the dataset explored and affect the number of 

hypotheses and observations formed. 

Adding interactivity allows the user to change perspectives and modify 

analyses on demand, facilitating comprehension and hypothesis generation (Liu 

and Heer, 2014). Neuroimaging studies, which generate large datasets with 

complex interrelations, make extensive use of interactive visualization tools (e.g. 

the Freeview module in Freesurfer, Pysurfer, SPM), but there are no such tools 

for electrophysiology studies. One can design user interfaces using MATLAB, but 

these are hard to share and require commercial software. 

We present a set of three tools aimed at providing basic interactive 

visualizations for electrophysiology studies: SpectraVis is a tool aimed at 

exploring task-related functional networks over time and frequency; RasterVis 

is a tool for dynamically displaying and sorting spike raster plots and peri-event 

histograms; and GLMVis is a tool for displaying coefficients from generalized 

linear models (GLMs) — which are commonly used to describe the receptive 
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fields of neurons. Each visualization allows examination of the 

electrophysiological signals (or summary statistic of the signal) over time relative 

to task-relevant events, comparison of different subjects or recording sessions, 

and aggregation or filtering of signals. The visualizations are composable — two 

or more of the visualizations can be linked together to give a more comprehensive 

view of the dataset — and static visualizations can be exported for use in papers. 

Finally, all visualizations are web-based and open-source, making them easily 

shareable and operating system independent, and allowing for modification and 

repurposing by the neuroscience community. 

4.3 Materials and Methods 

4.3.1 Design 

In order to make our set of tools accessible to a large number of users, we 

identified a set of design principles that would make them maximally useful to 

developers — who may want to extend the visualization code based on our toolkit 

— and to the end-users of the visualizations (Sherif et al., 2015). To that end, our 

approach is to create interactive visualizations that are: 

1. Configurable — so visualizations can dynamically display different 

datasets or be preset to a particular view state. 

2. Shareable — so others can easily view the visualizations online or in 

print. 

3. Modular — so the visualizations can be used independently or linked 

together to provide an integrated view of an electrophysiological dataset. 
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4. Extendable — so others can implement their own visualization 

algorithms and modify the visualizations for their own use. 

4.3.2 Configurable 

Configurability ensures that developers will be able to set up the visualizations 

using their own datasets and customize settings for their own needs. The 

visualizations are configurable in three ways: parameters can be passed through 

the URL, parameters can be preset using Javascript via the init function for each 

visualization, and data and data labels can be loaded using the JSON file format. 

The JSON file format (see Figure 4.2b) is a readable, XML-like format 

that allows the visualization to display different datasets — the visualization 

dynamically adjusts the axes, labels, and the display for each dataset based on the 

JSON file it receives. Each visualization has a standardized format for the JSON 

file, details of which are documented on the wiki located in the Github repository. 

Importantly, JSON files can be exported from MATLAB data structures 

(using, for example, the open-source toolbox JSONlab) and Python — providing a 

bridge between commonly used analysis tools and the visualizations. An example 

workflow might be to perform data analysis in MATLAB, format the data into 

MATLAB structures that correspond with the visualization format, use JSONlab 

to export the MATLAB structures to the JSON format, and use the visualization 

tools to explore the implications of the analysis on the dataset (Figure 4.2a). 

This is often an iterative process — requiring several cycles of data analysis and 

data visualization — which highlights the utility of the interactive visualizations. 

http://www.mathworks.com/matlabcentral/fileexchange/33381-jsonlab--a-toolbox-to-encode-decode-json-files-in-matlab-octave
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Each successive analysis may require an adjustment: an addition of an 

experimental condition, investigation of a different statistic, or fixing a mistake in 

the analysis. Example MATLAB scripts for exporting JSON in the correct format 

are included in the Github repositories to make it easier for the user to get 

started. 

Figure 4.2. An example workflow (a) and JSON data structure (b). 

(a) A typical analysis involves examining the raw data (basic analysis, such as 
examining spike rasters), performing intermediate analyses (e.g. computing 
spectra, coherences, regression models), and comparing the results of those 
analyses to the raw data (model checking). Typically, this process is iterative, so 
intermediate and basic analyses must repeated. The three visualizations, RasterVis, 
GLMVis, and SpectraVis, aid in the iterative process by allowing rapid exploration 
of the raw data and intermediate analyses. To view the visualizations, data from the 
analyses must be output in the JSON format. Then a web server must be started to 
host the JSON files. This can be done locally or over the web. The visualizations can 
then be viewed in a web browser. (b) The JSON data format is a structured, easily 
understood data format for the visualizations.  This example shows  a part of a 
JSON file for RasterVis. 
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4.3.3 Shareable 

To make the visualizations shareable, the visualizations were written with 

modern web technologies — HTML, CSS, and Javascript. The Javascript code 

relies heavily on the D3 visualization library (Bostock et al., 2011). The 

visualizations can be deployed via a local or remotely hosted web server and 

viewed with any modern browsers (Firefox 4+, Chrome 4+, Safari 4+, Opera 9.5+ 

and IE9+). As a result, the visualizations require no specialized software (beyond 

a browser) to view. 

Users can share a particular state of the visualization using permanent 

links (permalinks) — each visualization has a button which provides the URL 

containing the parameters necessary to generate the current view. For example, 

SpectraVis can show correlation networks across time. If a user wanted to share a 

snapshot of the correlation network at a specific time (e.g. 100 ms after stimulus 

onset), clicking on the link button would provide a URL that could then be shared 

with colleagues. 

Additionally, static visualizations can be saved for publication purposes. 

Each visualization includes a button to download the current view of the 

visualization in scalable vector graphics (SVG) format. This format has the 

advantage that it can be resized without loss of resolution — making it useful for 

both presentations and publications — and can be imported into a graphics 

program of choice such as Inkscape or Adobe Illustrator for further modification. 

The New York Times, which frequently uses interactive graphics online and in 
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print, has used this workflow successfully and we used it for many of the figures 

in this chapter as well. 

4.3.4 Modular and Extendable 

Each visualization is self-contained and works independently of the other 

visualizations. The visualizations can be selectively linked together by using the 

permalinks — which allow specification of a particular state of the linked 

visualization. For example, GLMVis might display a neuron’s receptive field 

response to several experimental stimuli. By a simple modification of the code, 

this can be linked to the neuron’s raster plot in RasterVis — showing the spiking 

response of the neuron to each experimental stimulus. This makes the 

visualizations composable — the visualizations can be mixed and matched to 

provide a desired view of the dataset. 

The visualizations’ internal code is also constructed modularly — 

separating the internal visualization modules from data loading modules and 

from user interface elements such as buttons. Developers can import and export 

these modules selectively or make their own modules, making the visualization 

customizable to the developers’ needs. For example, in SpectraVis, a developer 

might want to customize the layout of the correlation networks, spatially 

grouping nodes by brain area or another desired metric. Constructing the code 

modularly allows a developer to implement this new layout without interfering 

with the rest of the code internals. 

http://chartsnthings.tumblr.com/post/47670081904/climate-change-crowbars-and-strikeouts


 

 

124 

Finally, each visualization has its own online software repository. The 

repositories are hosted on Github and can be downloaded and installed — 

including all software dependencies — using the node package manager (npm). 

This ensures that the development tools, such as deploying a local web server 

(allowing the user to view the visualization on their own computer without having 

to host it remotely), are included. This helps developers extending the 

visualizations to get started developing as quickly as possible. These repositories 

are also open-sourced under the GNU General Public License (version 2), 

meaning the code is available to anyone to use and develop as long as the code 

remains open-source. 

4.4 Results 

Here we describe the functionality and interface for the visualizations and explain 

why they are useful for analyzing electrophysiological data. 

4.4.1 SpectraVis 

http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
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Figure 4.3. A screenshot of the SpectraVis interface.  

There are three main parts of the user interface: the network view, the individual sensor pair 
view, and the controls. The controls alter the network view. Using the controls, the user can 
change the subject or metric used for the network, display the network at other time-frequency 
bins, or change the spatial layout of the network, or “play” the network forward in time — a movie 
of how the network changes. A dynamic legend which updates based on the data and the edge 
statistic used is below the controls. Users can click on nodes or edges of the network in the 
network view to get a more detailed view in the individual sensor pair view, displaying all the 
time-frequency bins of the spectra and coherences (or other associative measure such as 
correlation) corresponding to the sensor pair selected. Mousing over a time-frequency bin in the 
individual sensor pair view will display the network at that time-frequency bin in the network 
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view. The individual sensor pair view also shows the change over time of the edge statistic and 
spectra at the current frequency of the network view (bottom). 

Functional network analysis is a growing area of neuroscience research, driven in 

part by technological improvements allowing us to record from more sensors 

simultaneously. However, as researchers record from more sensors, network 

analyses can become unwieldy and hard to interpret, because the number of 

possible network connections scales quadratically with the number of sensors 

(e.g. electrodes). Further, we expect neural processes to form dynamic networks 

that vary over time, frequency, and spatial scales (e.g. within and between brain 

regions), adding numerous dimensions to network analyses. 

SpectraVis is an interactive visualization aimed at enhancing exploratory 

analysis of networks by allowing the user to efficiently: (1) compare task-related 

functional networks over time and frequency, (2) compare individual and 

associative measures on all sensor pairs (e.g. spectra, coherences), and (3) 

compare different measures of association (e.g. correlation vs. coherence, binary 

vs. weighted networks). The different views of SpectraVis are dynamically linked, 

highlighting relationships between the metrics in response to user interaction. 

Figure 4.3 shows a typical view of SpectraVis. The network view shows 

the anatomical location of the sensors (circles with sensor number) and edges 

(lines) weighted by the edge statistic (color of the line, measure of association 

between the sensors). In this example, the edges are binary, representing 

significant changes in local field potential coherence between Speech — subjects 

reading aloud the words of a famous speech or nursery rhyme — and Silence at a 

particular frequency (10 Hz) and time (187.5 ms after speech onset). The network 
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has dense connectivity within and between primary motor and primary 

somatosensory cortices (M1 and S1). Users can compare between binary edge 

statistics (see Figure 4.4, middle and right image), which categorically declare 

associations between sensors, and weighted edge statistics (see Figure 4.4, left 

image), which use continuous measures such as the raw coherence difference and 

z-scored coherence difference, specified via the edge statistic dropdown. 

The controls can also be used to examine the evolution of the network over 

time using either the time slider, which can be dragged to a time of interest, or 

the play button, which will automatically advance the time slider. Examining the 

network over time can potentially reveal differences in network structure that 

could result from an experimental cue or event. SpectraVis enables quick 

comparison between all time points. The user can also compare networks at 

different frequency bands (for example, comparing a 10 Hz alpha band network 

to a 20 Hz beta band network) using the frequency slider. This is important 

because different frequency bands may have different functional roles (Ainsworth 

et al., 2012; Engel and Fries, 2010; Kopell et al., 2010; Palva and Palva, 2007). 

One difficulty of analyzing networks is interpreting the edges between 

sensors, particularly if the network is a weighted network and there are many 

sensors. There often is not enough room in a visualization to display all the edges 

without much overlap. To solve this problem, we use two strategies: layout and 

filtering. 
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The network layout toggle controls where nodes are positioned (and 

consequently the edges between nodes). The anatomical layout places the nodes 

according to the anatomical position defined in the JSON files (Figure 4.4, left 

and middle image). For example, in an ECoG dataset the network nodes often 

correspond to electrodes, which can be displayed over an image of the brain to 

give the end-user a sense for the sulci and gyri underlying each electrode. In some 

cases the anatomical locations of the nodes may be less important than their 

position induced by the network topology: for example, a node with strong 

connections to other nodes may serve as a hub. To help with this kind of 

interpretation, SpectraVis offers a topological layout that models the nodes and 

edges as a physical system to limit the number of overlapping edges (Figure 4.4, 

right image). Node numerical labels are preserved across choices of layout. 

Figure 4.4 Different layouts for understanding associative networks.  

Left layout draws edges between all nodes. The color of the edges corresponds to a relative weight 
— in this case a difference of coherence between speech and no-speech conditions in the 
experiment. Middle layout only shows the edges that correspond to statistically significant 
changes in coherence (binary network). This network is easier to understand (compare to the left 
weighted network) because there are fewer edges, although it is subject to the choice of statistical 
thresholding — there might be meaningful changes that are not shown due to the choice of 
threshold or vice versa. A topological layout (right layout) removes the constraint of spatial 
anatomical location and attempts to position the nodes so that connected nodes are closer 
together and overlapping of edges is minimal, so the user can better see which edges and nodes 
are well-connected (hubs). 
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The second strategy to make edges more visible allows the user to isolate 

subsets of the network by filtering edges and sensors, thus reducing the number 

of comparisons needed in any one view. Using the edge filter dropdown, the user 

can isolate the edges between sensors that reside within the same brain area 

(e.g. only auditory cortex - auditory cortex sensor pairs) or between sensors that 

have non-matching brain areas (e.g. only auditory cortex – motor cortex sensor 

pairs). 

Once the desired network view has been obtained, users can get further 

detail by clicking on a pair of sensors. This loads a sensor view (dotted box) which 

depicts the relationship (spectra and coherences) between a selected pair of 

sensors (circled in black, network view, sensors 85 and 90) at all times and 

frequencies. Here, the edge between M1 (sensor 90) and S1 (sensor 85) 

represents a 10 Hz increase in speech coherence relative to silence. The increase 

co-occurs with higher frequency beta (15-25 Hz) power suppression on the M1 

sensor. The user can investigate the relationship between the sensor pair and the 

network view by mousing over a time-frequency bin in the sensor view, which 

correspondingly updates the network view to the time-frequency bin under the 

cursor. 
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4.4.2 RasterVis 

 
Figure 4.5 A screenshot of the RasterVis interface.  

Controls in the upper left hand corner allow for easing linking and exporting of 
figures. The current neuron displayed is also labeled next to the RasterVis title. The 
left column of the interface contains the control panel, where users can control the 
figure displayed. Users can manually scroll through the available neurons or search 
for specific neurons using the text box. Below that, drop down menus allow sorting 
by experimental factor or aligning the timing of the spikes to an event of interest (in 
this case the Rule Cue, whose onset is marked by the pink to green transition). 
Binning of the peri-event time histogram is controlled by the Line Smoothing scroll 
bar. The spikes and peri-event time histogram can be toggled on and off using the 
Show lines and Show spikes checkbox. The right hand column displays the raster 
plot and the peri-event time histogram. Trials are arranged in rows with black 
filled-in circles representing the time of the spike relative to the event of interest. 
The background colors — purple, pink, green, etc. — for each row represent the 
onset and offset of a trial event such as visual stimulus appearing. Blank trials 
where there is no background color represent trials in which the subject did not 
complete the trial (because of a break in fixation in this case). The black line 
represents the perievent histogram – which spans the entire height of the figure 
(The full length of the figure is cut-off because the figure spans more than the 
screen size. The user can scroll to see the entire figure or toggle off the display of the 
spikes, which shortens the figure to just display the peri-event time histogram). 
Mousing over a trial shows a tool-tip display that gives further information about 
that trial condition. 
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RasterVis incorporates two canonical visualizations for single and multiunit 

spiking data — the raster plot and peri-event time histogram. The raster plot 

shows spike times for each trial relative to a trial event. The peri-event time 

histogram sums the raster over trials, showing the count of spikes that occurred 

in each time bin relative to the time of a trial event (Ventura et al., 2002). 

Because these two types of visualizations are familiar and represent the “raw” 

spiking data, they are an ideal building-block visualization. Furthermore, they 

can be used to compare raw spiking data to statistical model-generated data in 

order to check statistical modeling assumptions — so they can be useful in 

understanding how statistical models capture or do not capture features of the 

data. 

RasterVis uses interactivity and animation to supplement the raster plot 

and peri-event time histogram in order to make it easier for the user to 

accomplish typical tasks in the analysis of spiking data (see Figure 4.5 for a 

screenshot of the RasterVis interface). 

For example, RasterVis allows for dynamic alignment of spike times and “on-the-

fly” computation of peri-event histograms relative to experimental trial events 

(e.g. visual stimuli, timing of rewards, presentation of fixation points). Animated 

transitions emphasize how spike timing relative to one trial event relates to 

another trial event. This helps a user quickly compare the timing of individual 

spikes and aggregate spiking (via histogram) to different cues (Figure 4.6, top 

vs. right row) and conditions. Different levels of aggregation of the spikes over 
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time for the histogram can be compared as well (Figure 4.6, left column vs. 

right column). 

 

Figure 4.6. RasterVis can align the raster plots to different trial events (saccade 
onset in darker pink vs. visual stimulus onset in light blue) and aggregate the spikes 
with different amounts of precision (15 ms standard deviation Gaussian smoothed 
kernel density estimate left, 50 ms standard deviation Gaussian smoothed kernel 
density estimate right). 

RasterVis can dynamically sort trials by experimental task factors (Figure 

4.7, left vs. right column). This creates on-demand plots for each condition 

within the task factor. For example, if a task factor is a visual cue with two 

experimental conditions — the color cue and the orientation cue — sorting by the 

visual cue creates two plots for the color condition and the orientation condition 

(Figure 4.7, left column). This is essential for multidimensional analysis, which 

involves comparison of several different factors and conditions. 

Figure 4.7 Dynamic sorting by task factors.  

This example shows the user sorting by two different experiment task factors for a single neuron: 
The “Rule” factor (left column) and the “Response Direction” factor (right column). The Rule 
factor shows the same pattern for both conditions, but the Response Direction factor shows a 
differential response for the right response vs. the left response. 
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Finally, users can quickly search for neurons by subject, recording session, 

brain area or name. This is useful for fast comparison between neurons, linking 

to other visualizations (other visualizations can directly link to a specific neuron 

by name via a parameter passed via the URL), and general exploratory analysis of 

the dataset. 

 

4.4.3 GLMVis 

 
Figure 4.8. A screenshot of the GLMVis interface.  

The top row shows the controls — buttons which change the model displayed (in this case relative 
to different stimuli) or filter the neurons by subject. Below are the parallel coordinate plots, which 
are separated by brain area (left column ACC, right column dlPFC). Each blue line represents a 
neuron. Each dotted parallel line represents a dimension that has been fit by the GLM (they 
correspond to a particular trial condition). The labels on the left group the conditions by color, 
which correspond to the factor the condition belongs to. For example, the Rule by Rule Repetition 
interaction is colored green, because Rule @ Repetition1, Rule @ Reptition2, etc. all correspond 
to the same factor. 
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A common analysis framework for characterizing the spiking response of neurons 

is the generalized linear model (GLM) (Fernandes et al., 2014; Harris et al., 

2003; Mayo et al., 2015; Park et al., 2014; Pillow, 2005; Truccolo, 2004). GLMs 

can simultaneously estimate effects of experimental conditions, spike history 

(refractory period, bursting), non-linear firing rate changes over time, and 

dependence on other neurons (Truccolo, 2004) — making them useful for 

analyzing a wide range of experiments. GLMs are especially useful in situations 

where conditions of interest are interdependent, making them difficult to tease 

apart using simple tools like peri-event time histograms(MacDonald et al., 2011). 

One consequence of being able to estimate many factors simultaneously is 

that the relationship of the effects becomes hard to understand because of the 

number of dimensions — particularly if the factors change over time and there 

are many neurons. Moreover, understanding the relationship between multiple 

factors may be important to understanding mixed selectivity neurons (Cromer et 

al., 2010; Fusi et al., 2016; Rigotti et al., 2010). These neurons are sensitive to a 

combination of sensory, motor and cognitive processes, appear in higher-order 

association brain regions such as parietal and prefrontal cortex (Park et al., 2014; 

Rigotti et al., 2013), and may underlie the computation of complex behavior 

(Rigotti et al., 2010). 

Therefore, we built GLMVis, an interactive visualization for GLMs, that: 

(1) shows the relationship between the multiple dimensions of the model fit over 

time, (2) allows filtering of neurons by effect size, brain area, and experimental 
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subject, and (3) can be used to compare estimates from different models. To show 

the relationship between multiple dimensions, we use parallel coordinate plots 

(Inselberg, 1985; Wegman, 1990) — a compact representation of multivariate 

data that links each dimension on parallel axes by a line. 

Figure 4.8 shows a screenshot of the GLMVis interface. Each axis is a 

black horizontal line that corresponds to a dimension of the GLM. Non-parallel 

lines connect the dimensions and represent a single neuron. The intersection of 

the axes and non-parallel lines is the effect size of the neuron at that dimension. 

The user can investigate correlations between dimensions in two ways: clicking 

on a line, which highlights only that neuron along the dimensions of the model 

(Figure 4.9c, Figure 4.9d), or by “brushing” along a desired axis — holding 

and dragging the mouse to filter neurons by effect size in the range of values of 

the dimension (Figure 4.9a no brushing, Figure 4.9b with brushing). Multiple 

axes can be “brushed” in order to compare the associations between effects in 

different dimensions. To further isolate the neurons involved, the user can use 

dropdown menus to filter the neurons by brain area or experimental subject or 

compare different models (Figure 4.9d). 
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Figure 4.9 Interacting with parallel coordinate plots on GLMVis. 

(a) Parallel coordinate plot with no brushing. (b) User brushes along the Previous Error – No 
Previous Error dimension, selecting a group of neurons that co-vary with the Repetition1 – 
Repetition11+ dimension. (c) User selects a single neuron that varies along the Previous Error – 
No Previous Error dimension and Repetiton1 – Repetition11+ dimension. (d) User investigates 
how this model changes with the inclusion of more task factors. 

Finally, the user can use GLMVis in conjunction with RasterVis to better 

understand how the model fits the data. Because parameters can be passed to 

RasterVis via URL — that is, a URL link can specify the state of RasterVis such as 

one that corresponds to a dimension of interest for GLMVis — one can easily 

modify GLMVis such that clicking on a dimension that corresponds to a 

particular neuron can take the user to that neuron’s raster plot sorted by the 

dimension of interest. Furthermore, RasterVis can be modified such that the user 

can make a side-by-side comparison of the actual data and the model-generated 
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data, allowing for a deeper understanding of the reported effect in conjunction 

with how well that reported effect captures the structure of the data. This type of 

deeper understanding between model and data is hard to achieve with static 

figures, particularly when there is a lot of data and there are many dimensions, 

because figures for each set of models and data must be generated and then 

searched for on a file system. Interactivity and the combination of RasterVis and 

GLMVis allows the user to quickly move back and forth between model and data, 

gaining insights they might not have otherwise because of the ability to make fast 

comparisons. 

4.5 Discussion 

We developed a novel interactive visualization toolkit for investigating 

electrophysiological data. This toolkit allows users to quickly explore raw data via 

RasterVis and intermediate analysis such as receptive fields and networks via 

GLMVis and SpectraVis. We believe these tools will be important going forward 

as electrode technology progresses and scientists form more complicated 

hypotheses. 

4.5.1 Importance of Visualization for Open Neuroscience 

Online interactive visualization tools such as ours may provide a way for quick 

exploration of datasets online — enabling users to understand the datasets before 

performing more in-depth analyses. Indeed, the Allen Brain Institute — which 

shares massive neuroscience datasets online — makes extensive use of online 

visualizations to enable users to find the appropriate datasets. Because our tools 
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encompass many common types of analysis for electrophysiological data, we 

hope our tools and future extensions can be used in a similar manner. 

Sharing datasets is important because (1) it can help ensure the 

reproducibility of results, (2) it makes the data available for meta-analyses, (3) 

the data can be used as benchmarks for computational models, and (4) the data 

can be used in new ways, maximizing its utility (Poldrack and Gorgolewski, 

2014). This is particularly important for datasets that are hard to collect, such as 

those from non-human primates. 

One challenge for the sharing of datasets is providing users with a way to 

find the datasets they want. Datasets provided in numerical form in non-

standardized formats are hard to navigate and limit the usefulness of sharing the 

data. As electrophysiology dataset sharing becomes more common, it will be 

important to have tools to do preliminary investigations of these open datasets. 

4.5.2 Future Directions 

As data formats for sharing electrophysiologic data are standardized, we would 

like to change our JSON data structures to match those formats in order to make 

visualizing data as simple as possible. Unfortunately, there is no dominant 

standard currently. 

We would also like to provide additional “plugin” layout options for 

SpectraVis, GLMVis, and RasterVis. In particular, there are numerous open 

source network layouts such as Group-in-a-box layouts, which clusters nodes 

according to group membership, and edge bundling layouts, which group similar 

https://github.com/john-guerra/forceInABox
https://github.com/upphiminn/d3.ForceBundle
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edges together — all with the goal of improving understanding of the network 

structure. Likewise, with GLMVis, alternative views of the GLMs such as scatter 

plot matrices (SPLOMs) and dimensionality reduction algorithms such as t-

Distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten and 

Hinton, 2008) could help identify multivariate patterns in the data. 

Lastly, we would like to add more visualizations to the toolbox. Laminar 

electrodes, which have contacts spaced along the shank of the electrode and 

provide cortical layer information, pose an interesting challenge in terms of 

incorporating the extra dimension of depth information. As more studies 

incorporate laminar electrodes, finding effective visualizations and filtering of 

networks between different cortical layers, with the many possible associations 

between the layers, could be another good use case for interactive visualizations. 
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CHAPTER V: CONCLUSION 

5.1 Summary 

One important focus of this dissertation is to functionally dissociate the roles of 

prefrontal subdivisions with respect to the control of attention. 

In Chapter II, I showed evidence that groups of neurons within dlPFC are 

linked together in a rule-dependent manner via synchronous oscillations. 

Moreover, the specific frequency of these oscillations might relate to the selection 

of the current rule (beta frequencies) or de-selection of the irrelevant rule (alpha 

frequencies). ACC did not show the same context-dependent linking of neurons 

via synchronous oscillations. 

In Chapter III, I showed that – unlike dlPFC neurons and contrary to the 

conclusion of several recent studies (Ebitz and Platt, 2015; Johnston et al., 2007; 

Shenhav et al., 2013) – individual ACC neurons show little change in firing rate in 

response to the switching of rule. Instead, ACC neuronal activity is driven by the 

past history of errors. Additionally, I found that ACC neurons respond to visually 

cued rules as well as the past history of errors. dlPFC neurons were only  sensitive 

to only the most recent error. 

Finally, in Chapter IV, I developed visualization tools for the analysis of 

large, complex electrophysiological data. The three visualization tools – 

RasterVis, GLMVis, and SpectraVis – are aimed at making exploratory analysis 

and model checking of electrophysiological data more efficient through the use of 
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interactivity and making data analyses more shareable and transparent using web 

technologies. 

5.2 Significance 

The body of work presented in this dissertation is significant in several ways. 

First, the study in Chapter II is the first evidence of a rule-based role for 

synchronous oscillations within the prefrontal cortex. It presents a new 

framework for thinking about the mechanisms of attentional control within the 

prefrontal cortex. Previous studies have considered the effects of oscillations 

between distant regions in the brain. The results of Chapter II suggest that there 

could be an even more local effect of synchronous oscillations – coordinating 

groups of neurons within the same anatomical brain region. Prior studies 

investigating context-dependent dynamics in the prefrontal cortex have also only 

focused on the average effects of neuronal firing rate. Chapter II shows that there 

might be an additional layer of structure imposed by prefrontal oscillations that 

is important for selecting the relevant rule.  

Second, the results of Chapter III make an important contribution to our 

understanding of the prefrontal subdivisions. Current theories of prefrontal 

cortex attribute different functions to anatomical subdivisions (Dias et al., 1996; 

Miller and Cohen, 2001; Rushworth et al., 2011; Rushworth and Behrens, 2008). 

Because these functions are thought to underlie some of our more complex and 

diverse behavior, research is needed to tease apart the specific contributions of 

prefrontal subdivisions. Despite the wealth of studies on ACC, there is little 
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agreement on its function (Shenhav et al., 2013) – primarily due to the diversity 

of findings of its involvement in processing errors, reward, conflict and attention. 

This has led to a number of attempts to unify these findings under a single 

overarching function of cognitive demand (Alexander and Brown, 2015, 2011; 

Holroyd and Yeung, 2012; Shenhav et al., 2013), but the complexity of this 

function requires careful accounting of the numerous factors that could affect 

ACC. Our study is unique in that we are able to study the relative effect of errors, 

reward, conflict, and attention. We show that not all cognitively demanding 

situations produce changes in ACC activity. We also provide further evidence that 

ACC neurons are involved in higher-level cognitive functions. Neurons in ACC 

had properties consistent with tracking the current context and using that 

information to proactively boost information about the rule when errors are 

made in the recent past. This is significant because it helps distinguish its 

functioning from other reinforcement learning associated areas like the 

subcortical basal ganglia. 

Last, the interactive visualizations developed in Chapter IV are the first 

interactive visualization tools developed for multi-electrode neurophysiological 

data. Interactive visualization tools should become more important as datasets 

become larger and more complex, because they allow users to navigate between 

alternate views with minimal delay and make comparisons between complicated 

representations. The interactive visualizations in Chapter IV serve as more than 
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proof-of-concept. The visualizations are functional and freely available on Github 

for use, modification or inspiration for future visualizations. 

5.3 Future Directions 

5.3.1 The Role of Alpha Oscillations 

Chapter II suggested that synchronized alpha oscillations may have a role in de-

selecting the more dominant rule. Although alpha oscillations are often 

associated with inhibition (Palva and Palva, 2007), it is not clear how oscillations 

in the alpha frequency band relate to the beta band synchronization. Do the alpha 

oscillations directly suppress beta synchronization within prefrontal cortex, or is 

it interaction with distal cortical and subcortical areas that prevent the beta band 

selection from occurring? Alpha could be generated by excitatory-inhibitory (or 

possibly purely excitatory) interactions in the deeper layers of a cortical column, 

it could be entrained by thalamus, or it could be through an interaction with 

thalamus (Buffalo et al., 2011; Jones et al., 2000; Silva et al., 1991; Sun and Dan, 

2009; van Aerde et al., 2009). Computational modeling work and further 

experimental work will be important in establishing possible mechanisms by 

which this could happen.  

5.3.2 Cognitive Demand in Monkeys versus Humans 

A central finding of Chapter III is that ACC neurons respond to the past history of 

errors, not to response or cognitive conflict. However, it is important to 

acknowledge that the non-human primate brain is different from the human 

brain. Non-human primate studies to date have not found evidence of response 
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conflict (Ebitz and Platt, 2015; Ito et al., 2003; Nakamura et al., 2005), but 

numerous human functional neuroimaging studies have found evidence of 

response conflict (Kerns et al., 2004; MacDonald et al., 2000) and crucially, one 

human electrophysiologic study (Sheth et al., 2012). This has led to speculation 

about whether there are fundamental differences – both functional and 

anatomical – that could lead to the discrepancy between studies of the non-

human and human primate brains (Cole et al., 2009). Therefore, it is important 

that there be more electrophysiology studies of the human ACC. It is possible that 

human ACC neurons are more responsive to the switching of context than those 

in the monkey, but those human studies also need to take into account the effect 

of the past history of errors. 

5.3.3 Task Switching and the Auditory Connections of ACC 

A principal argument for the primacy of errors and reinforcement learning in the 

ACC is its anatomical connections: strong dopamine inputs, connections to 

primary motor areas and the ventral spinal horn, and lack of direct connection to 

visual areas (Rushworth et al., 2011; Rushworth and Behrens, 2008). Consistent 

with this, Johnston et al. (2007) found that ACC neurons more strongly 

discriminate the task context compared to dlPFC around the time of the switch in 

error-driven task switching and in Chapter III, I have found that dlPFC neurons 

have greater activity than ACC neurons around the time of the switch in visually 

cued task switching. This suggests that ACC is more important for error-driven 

switches and dlFPC is more important for visually cued switches. However, no 
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study thus far has considered auditory cues. ACC (areas 25 and 32) has strong 

auditory connections with the rostral superior temporal gyrus (Barbas et al., 

1999; Medalla and Barbas, 2014, 2010). dlPFC, in contrast, has a more variable 

connection to auditory areas – following a rostral-caudal gradient of strong-to-

weak that is inversely related to the strength of visual connections (Barbas et al., 

1999; Medalla and Barbas, 2014). One possibility is that an auditorily cued task 

switch may result in stronger ACC activation than dlPFC – which would argue 

against a purely reinforcement learning view of ACC. Future research should 

investigate the role of auditory cues on ACC. 

5.3.4 Building Better Interactive Visualizations 

Interactive visualizations are unfamiliar as of now to the neuroscientific 

community and any barrier to setup and use of software will prevent widespread 

adoption. More user-focused testing is needed to identify which features of the 

visualization are useful, elements of the user interface that are unintuitive or hard 

to discover, and common stumbling blocks to the setup of the visualizations. 

Although user-focused testing is common with commercial level software, a big 

challenge going forward will be to figure out ways to get feedback on the software 

without commercial level resources. Dedicated early adopters often drive open 

source software development of tools, which is one reason that it is important 

that the tools are available on Github. It will be interesting to see if the tools 

developed in this dissertation and elsewhere are able to build the community and 

resources necessary to be useful. 
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 Another area for future development is finding the appropriate balance of 

web technologies to provide fast user interactivity. As discussed in Chapter IV, 

delays in visualizations in response to user interaction can result in less 

engagement and exploration on the part of the user. Currently, the tools in 

Chapter IV use SVG – which is a vectorized image format. This format does not 

perform well if many data elements are displayed on the screen. HTML5 Canvas 

and WebGL are two alternative formats that have much better performance with 

many elements, but tradeoff nice features such as ease of programming, some 

forms of user interaction, and easy export into graphics programs such as Adobe 

Illustrator or Inkscape. Additionally, displaying many data elements is not always 

useful in terms of the user understanding the visualization. Future development 

work will need to consider these tradeoffs and figure out the appropriate blend of 

web technologies in order to provide smooth user interactions
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