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A B S T R A C T

We do not make decisions in the void. Every day, we act in awareness of
our context, adjusting our objectives according to the situations we find.
Operating effectively under multiple goals is fundamental for appropriate
learning and decision-making, and deficiencies in this capacity can be at
the core of mental disorders such as anxiety, depression or post-traumatic
stress disorder. In this thesis, I present studies I conducted to investigate how
goals impact different stages of the decision process, from simple perceptual
choices to subjective value preferences.

Previous studies have described how animals assess alternatives and
integrate evidence to make decisions. Most of the time, the focus of this
work has been on simplified scenarios with single goals. In this thesis, my
experiments tackle the issue of how people adjust information processing in
tasks that demand more than one objective. Through various manipulations
of the behavioural goals, such as decision framing, I show that (i) attention
and evidence accumulation, (ii) brain representations, and (iii) decision
confidence were all affected by context changes.

Using behavioural testing, computational models, and neuroimaging I
show that goals have a crucial role in evidence integration and the allocation
of visual attention. My findings indicate that brain patterns adapt to enhance
goal-relevant information during learning and the valuation of alternatives.
Finally, I report the presence of goal-dependent asymmetries in the genera-
tion of decision confidence, overweighting the evidence of the most-relevant
option to fulfil the goal. In conclusion, I show how the entire process is
highly flexible and serves the behavioural demands. These findings sup-
port the reinterpretation of some perspectives, such as reported biases and
irrationalities in decisions, as attributes of adaptive processing towards goal
fulfilment.

3



I M PA C T S TAT E M E N T

Being capable of resisting the temptation of eating dessert because you are
on a diet is considered an example of “goal-directed” control. This type of
decision allows people to regulate their behaviour, following higher-level
objectives, beyond automatic habitual responses. These choices have been
connected to the capacity of individuals to generate models of their world,
beyond immediate actions. It is precisely this type of decision that may
be affected by psychiatric conditions such as obsessive-compulsive disorder
(OCD) or addiction. Given the lack of clarity on the origin of many psychiatric
conditions, it is important to have a better characterisation of the process of
goal-dependent choice to identify variables of interest or stages of processing
that may have functional deficits. Therefore, understanding the mechanisms
by which goals influence decisions is a key step in illuminating the divergent
operation of the brain in these conditions. This thesis targets three stages
of information processing in human decisions and how they are affected
by goals: information sampling, brain representations and post-decisional
metacognitive confidence.

Most of the neuroscience studies on decision-making have characterised
choices in scenarios where the objective is constant along the tasks, e.g.,
choosing the preferred item in a value-based decision or indicating the
option with higher luminosity in a perceptual choice. These studies have
been extremely important to illuminate the underlying mechanisms of choice.
Within this framework, some proposals have assumed that choices rely on
factors entirely dependent on the alternatives, such as the hedonic reward
value or perceptual evidence. However, this view does not consider that at a
more fundamental level, it is the setting of the goals of the agents that inform
how the available evidence in the alternatives is assessed and integrated for
choice. In the experiments presented in this thesis, I point to dissociating
these features of the alternatives from goals, supporting a perspective that
places goals as the primary scenario in the decision. These findings can
support a revision of the understanding of choices in neuroeconomics and
perceptual neuroscience.

How decisions are made is a topic of high interest in various areas,
beyond clinical and neuroscience circles. From a sociological, commercial,
and even political perspective, understanding why people make certain
choices, reassure their beliefs, or change their minds, is of capital importance.
For example, social phenomena such as, how people are persuaded (or not)
of getting a vaccine, or understanding the formation of financial bubbles, rely
on understanding how individuals make choices, and the factors involved
in this process. Good examples of this type of research in this thesis are
the exploration of confirmation bias and how it is influenced by the way
humans sample information, or how framing bias can be interpreted from
a goal-directed perspective. Additionally, I capitalised on computational
approaches to characterise the potential algorithms implemented by the
brain when we make decisions. This interaction can be reciprocal since our
findings can be relevant for researchers in machine learning and artificial
intelligence looking for inspiration in the solutions that biological systems
give to make choices in more complex scenarios.
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I N T R O D U C T I O N

Decisions are never made in the void. From seemingly trivial choices, e.g.,
putting ice or not into our drink, to complex choices, e.g., changing our
career, real-world decisions always appear as steps, a fragment in a bigger
picture. Decisions tend to be part of a flow of actions that point to satisfy
internal needs and external demands, with the brain orchestrating many of
these processes. Classical views in the study of behaviour, such as Bernard
or Pavlov, define the brain as a control system that maintains a metastable
balance between the internal world of the body and the external world
through action [1]. Therefore, knowing the factors that help humans to
make good decisions is fundamental to having a better understanding of
this equilibrium. Decisions can have a local impact, like assuring individual
survival by getting nutritious food [2], or have a wider influence, such as
decisions on social issues, political opinions, and beliefs [3]. Difficulties
to maintain these equilibriums are a key feature in many psychiatric and
neurological conditions. Characterising the mechanisms behind decisions is
pivotal to clarifying the origins and potential remedial measures for these
disorders. For example, to form and execute plans, humans can engage in
multistep behaviours such as preparing a cup of coffee or organizing a trip to
Chile. When patients with lesions to the prefrontal cortex (PFC) are exposed
to these complex tasks they often exhibit disordered action sequences that fail
to achieve the specified goal [4, 5, 6]. Of all the factors controlling decisions,
goals are primordial. Goals initiate the decision process, and they define the
final state that agents hope to reach through their actions. Characterising
the role of goals is not important only for humans and animals but can have
critical consequences for the development of artificial intelligence systems.
Indeed, that machines can respond in a human-like fashion may rely on their
capacity to be aware of complex contextual cues and flexibly act to reach
goals [7, 8]. In other words, the relationship between decisions and their
goals is of capital importance.

Decisions constitute a complex pipeline of information, where inputs,
such as external sensorial perception, and/or internal proprioception or
emotions [9, 10] are processed and integrated into sequential stages to gener-
ate choice and action. Overall, the objective of the present work is to shed
light on how goals impact three main stages of the decision process: (i)
how evidence is attended to and accumulated, (ii) the generation of brain
representations and, (iii) the sense of confidence (Figure 1.1).

In this introduction, I will present a general background on decision
neuroscience to set the stage for more detailed analysis and discussions in
the following chapters.

15



16 chapter 1 : introduction

Figure 1.1: Decision-making stages and the influence of goals. The present thesis
studies the influence of task goals on three main steps of the decision process. 1)
In the preliminary stage, participants integrate information about the alternatives
to make a choice, a process that is dynamically driven by attention. 2) During the
deliberation process, the brain generates representations of the alternatives, a process
that has been shown to rely on areas relevant to the decision process such as the
hippocampus, and prefrontal cortex. 3) Finally, after a choice has been made, decision
agents can generate an internal sense of how likely their selection was correct, i.e., an
internal sense of uncertainty or confidence. This involves an assessment of the choice
and the evidence employed to make a choice. In this thesis, I will show how these
three stages adapt to fulfil the goals that the decision agents have to fulfil.

1.1 perceptual decisions

Even the most trivial decisions, like choosing coffee or tea, are extremely
intricate as they involve an obscure and complex interaction of multiple
factors. For this reason, the initial efforts to formalise a methodology to
study decisions appear from the systematic analysis of perceptual choices
in psychophysics [11]. In simple perceptual decisions, the experimental
subjects use sensory stimuli, such as sound intensity or colour, to make
their choices. This setup allows the experimenter to have a high degree of
control over the evidence: it is easier and more reproducible to regulate ex-
perimentally the intensity of light or the volume of a sound than the internal
strength of a memory or the subjective valuation of an item. The objective
of psychophysics is to extract from choice behaviour (e.g., present/absent,
more/less, left/right) properties of the sensory evidence. This implies that
during the decision process, a representation of this evidence appears in the



1.1 perceptual decisions 17

brain and is compared with what is not evidence (or noise). Initial studies
in monkeys performing a demanding visual discrimination task showed
that neuronal activity in area MT/V5 of the extrastriate cortex can track
decision variability, even at a single neuronal level [12]. The intuition that
evidence and noise are tracked during decision inspired the application of
signal detection theory (SDT, [13]) to perception (please check chapter 2 for
more details on SDT). From SDT, two important concepts of the study of
the decision in neuroscience emerged: the representation of raw evidence
generates a decision variable, which is ‘used’ by the brain’s decision rule to
make the choice (e.g., left or right, yes or no).

Experiments motivated by this framework suggest that neuronal activity,
such as spikes, can be linked to the decision variable [12, 14, 15, 16]. Some
of the potential operations using these brain representations could be sub-
traction, which allows a comparison between alternatives, or integration,
which implies an evidence-processing timescale [11]. The latter operation
is a crucial aspect of decisions, e.g., animals are slower to answer difficult
choices and faster to respond to easy ones.

Sequential accumulator models have been used in psychophysics and
decision neuroscience to capture this dynamic element of choice (Figure 1.2).
This type of model can include two aspects related to timing, which can
affect the response time: (1) a required elapsed time itself (e.g., a deadline),
and (2) a level of evidence uncertainty. These two features are not mutually
exclusive. The basic intuition behind these models is that integration of
evidence could occur with neurons that “acquire” evidence in timescales
higher than pure perceptual variation. In accumulator models, thresholds
or boundaries represent the idea of a deadline that indicates the end of the
integration of evidence. Adding noise into the accumulation process captures
the uncertainty in the decision, which makes the integration more unstable
and delays reaching the final threshold (for more details on accumulator
models, please check chapter 2). Including this temporal dimension allows
using a single mechanism for accounting for cases in which a fast choice,
with a small number of samples, is favoured and in which it is better to
take due time to deliver the correct choice, i.e. the speed-accuracy trade-off
[17]. Further iterations of this model also consider choices driven by an
“urgency signal”, which translates into collapsing decision boundaries in
time, to explain behavioural signatures such as incorrect responses being
slower than correct choices [18, 19].

Most of the perceptual decision research has been developed on the
sense of vision [10], however, other sources of perceptual evidence have also
been studied using a similar psychophysics approach. Perceptual decision
processes for vibrotactile sensation in neurons of the somatosensory system
[21, 22], smell and taste [23, 24, 25], hearing [26], multisensory scenarios [27],
and even time passage [28] have been investigated. From the study of these
different modalities, some distinctive features of perception have been found,
such as the Weber-Fechner law, which states that the perceived change
of a stimulus is proportional to the initial stimulus [29, 30, 31]. Overall,
some of the general principles of decision-making computation resulting
from the study of perceptual decisions are 1) the process is not defined
by the perceptual changes in the environment as a reflex or tied to motor
responses, but it is flexible in time, which allows the integration of evidence;
2) brain activity can be associated with a probabilistic representation or
degree of belief in a choice, which favours the interpretation of the brain
building a decision variable, i.e., a low-dimensional combination of the
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Figure 1.2: Accumulator models. Drift diffusion model (DDM). A) Flowchart of
evidence integration modelled by the DDM: the perceptual information is gathered
by sensory channels and transformed to signals interpreted by the brain; a drift rate
models how fast evidence is integrated which noisily accumulates over time until a
boundary is reached. Superior or inferior boundaries represent the two alternatives in
a binary choice. The decision process defines the features of the response: speed and
accuracy. B) Noisy integration of evidence generates fast, medium, and slow responses
(red lines). The integration of all the responses can be seen in the distribution of
the reaction times (blue lines). C) Newer versions of the DDM include collapsing
decision boundaries to capture an ’urgency signal’, which could be interpreted as a
reduction in the amount of evidence required to choose as the trial time passes. From
[20], with Elsevier permission.

evidence inputs that supports the decision; 3) the continuous flow of the
evolving decision variable eventually meets a stopping rule that determines
the decision, with the possibility that partial information could also impact
downstream effectors, relevant after the decision is made [11].

1.2 value-based decisions

There is a whole world of decisions that do not depend exclusively on ex-
ternal perception but rely on internal preferences. Value-based decisions
involve choosing among different options according to the subjective va-
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lence of the alternatives. From a bee foraging to humans trading in the
stock market could be considered as making decisions in this category [32].
The field of neuroeconomics has especially focused on this type of decision
joining choice models and protocols from economics, biological principles
from neuroscience, behavioural data and theories about animal learning and
choices from psychology, and computational models from computer science.
The basis of this type of decision is the generation of internal value signals
that allow the selection of the best options. Based on collaborative efforts
from psychology and machine learning the “reward hypothesis” has been de-
veloped from the formalisation of reinforcement learning (RL). RL formalises
operant learning paradigms in humans and other animals, characterising
how the value of actions or options is learned. The RL model considers three
main stages: 1) an agent receives sensory samples from the environment;
2) the agent takes actions that influence its future states; and (3) the agent
receives a scalar reward signal generated by the environment and processed
by the agent via a dedicated input channel. In scenarios of higher complexity,
such as modelling subjective preferences in humans, methodologies from
behavioural economics have been used to capture these values nurtured by
years of experience, e.g., your favourite drink or go-to song for a karaoke
night.

The computations involved in value-based decision-making have been di-
vided into 5 general processes [32] (Figure 1.3). First, the representation stage
considers that agents have to identify internal and external states and poten-
tial actions. Second, each one of the represented actions needs to be assessed
in the valuation stage. Third, using the assigned values a comparison is
performed to inform the action selection stage. Fourth, the outcome evalua-
tion stage after choice assesses the desirability of the outcomes using the
resulting feedback. Finally, the collected outcomes are used in a learning stage
to update the three initial stages to generate better choices in the future. Note
that this sequence assumes that learning is a continuous process, i.e., each
new decision is informing the future choices.

The level of insight into these stages is quite dissimilar. Little is known
about how the brain represents internal and external states (e.g., how the
possible options are identified for each situation) since this is a complex
process that requires the integration of various sources of information. The
presence of valuation systems has been generally accepted, although their
exact neural implementation and characteristics are an ongoing area of
research. The Pavlovian valuation system assigns prominence to a restricted
set of evolutionarily relevant actions, such as preparatory behaviours for
food, or avoiding aversive stimuli, such as heat or electric shocks. For this
reason, the behavioural repertoire of Pavlovian responses is rather limited
and inflexible. In contrast, the habitual valuation system can cover a wider set
of actions assuming that they are repeatedly experienced. In the habitual
system, the associations of stimulus-response are learned, relying on past
experiences through a training process involving trial and error. This makes
habitual learning a slow process. For example, in this category includes a rat
learning to press a lever for liquids in response to a sound, or a smoker’s
desire for a cigarette after a meal. Finally, in the goal-directed valuation system,
values are associated with actions. The values in this case depend on action-
outcomes associations and the evaluation of those outcomes. Since each
action can lead to multiple results, it is commonly assumed that an average
value of all of them is representative of the action. Goal-directed behaviours
are considered to be more flexible, not relying entirely on repeated training.
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Figure 1.3: Basic computations are required for value-based choice. 1)Construction of
representations involves identifying internal and external relevant states; 2) the value
of the available options is assessed; 3) the previous evaluation is employed to choose
an action; 4) after action, the brain measures the outcome in terms of its desirability;
and 5) the outcomes of choice are used to learn and update all the stages to obtain
future success. From [32], with Springer Nature permission.

However, they may require a higher investment of cognitive resources, given
a more detailed assessment of the possibilities. In this category, we can
find decisions such as choosing a new restaurant for a date. All these three
systems can interact and be modulated by additional factors, such as risk,
uncertainty and time discounting.

Regarding the action selection stage, the proposed avenues borrow the
modelling from perceptual decisions. Diffusion and race models with termi-
nation thresholds have been used to describe this stage in value-based choice
[10]. Further innovations to the standard accumulator models have been
added to incorporate complementary dynamics during choices: e.g., how
visual attention is deployed during deliberation. These models assume that
gaze allocation boosts the accumulation of evidence [33, 34, 35]. For more
details, please see chapter 2 on General Methods. Other features of the action
selection, such as conflicts between valuation systems and the consideration
of uncertainty estimates, among other issues, have been considered as part
of the bigger ‘control assignment’ problem [32].

The assessment of the outcomes has been explored as well. Areas of the
prefrontal cortex in humans or dorsal anterior cingulate cortex (ACC) in
monkeys could be associated with this type of processing. Related to the
learning stage, most of the studies focus on the habitual system. Learning
has been formalised through the concept of the reward prediction error
(PE) from reinforcement learning, which has been supported by repeated
studies in animals and humans [36, 37, 38, 39, 40]. The main intuition is
that after observing outcomes the agent can estimate the PE, which contrasts
the preliminary forecast of reward (expected value) and the actual outcome
experienced. This assessment changes the valuation (and choice) to reduce
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the error over time, allowing the animal to learn to assign proper values to
their alternatives.

1.3 neural correlates of decisions

The characterisation of neurons or brain areas that correlate with the decision
variables must fulfil the requirement of not tracking a purely sensory or
motor response. Perceptual experiments in monkeys found that neurons in
the lateral intraparietal area (LIP) could be candidates to encode this variable
[16, 41] (Figure 1.4). After the stimuli onset, the firing rate of LIP neurons
was found proportional to the strength of evidence and choice in a random
dot motion task. Even more, the rise in average neuronal firing (build-up
rate) was also proportional to motion strength, which was interpreted as
connected to the integration of evidence in time. These findings suggest that
the integral of the sensory signal could be encoded by the neural activity,
which has been shown to start after ~200 ms of the motion onset, a long
time for a purely visual signal. The neuronal firing reaches a stereotyped
level of ~85 ms before the response, which has been associated with the
decision variable reaching an accumulation bound. It has been proposed that
alternative populations may be encoding the different options involved in
the decision like in variations of a race architecture) which allows extending
the mechanism beyond binary choices [42]. An important open question is
how the activity of this neuronal circuit is adjusted to process the evidence
relevant to each one of the multiple tasks that animals need to perform in
natural environments [11].

In value-based decisions, the finding of dopaminergic firing in response
to reward or reward prediction has been key to characterise the association
between options/actions and value [37, 43]. Studies in the human brain have
shown that areas such as the ventromedial prefrontal cortex (vmPFC) and
orbitofrontal cortex (OFC) are associated with the computation of subjective
preferences, even a “common currency”, across decision types [44, 45, 46,
47, 48]. Experiments in monkeys have confirmed the relevance of OFC
regarding the computation of the subjective value of the options during
the deliberation time [49]. In this study, OFC patterns representing each
option appear alternatively in the neuronal population during the time
leading to choice, with a predominant presence of the representation of the
chosen option. Overall, a complex picture of value-based decisions has been
proposed, including the integration of sensory and interoceptive circuits
across areas encoding reward and affective values [50] (Figure 1.5).

While in perceptual decisions the increase in decision time can be directly
connected to a longer sampling of sensory evidence, the situation in value-
based choices is less straightforward. What is the evidence integrated into
value decisions and from where is it coming? Recent perspectives have
suggested that memory could be playing a crucial role in the sampling
process, helping to rescue past events and experiences to construct value
[51]. This line of research has shown the involvement of the hippocampus
during the value-based decision, including scenarios where novel options
need to be assessed [52] and a detrimental effect on the decision in patients
with hippocampal lesions [53]. The interaction between regions involved
in value computation and memory, i.e., vmPFC and hippocampus, has also
been reported in decision paradigms [54]. Overall, these results suggest
an important integration between these two cognitive modules to generate
subjective preference decisions.
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Figure 1.4: Neural activity in the LIP area during perceptual decisions. In [41] monkeys performed a
random dot motion task, selecting left and right options through saccadic movements. The grey patch RF
indicates the location of the response field of the LIP neurons tracked in the experiment (i.e., right-direction
movement neurons). The monkey’s response time is measured after the onset of motion presentation. B)
Probability of correct choice increases, and response time (RT) is reduced with a rise in motion strength.
These results confirm that monkeys can perform the task successfully. C) Response of LIP neurons set to
stimulus presentation. The average neuronal activity is shown for different motion coherence levels. High
motion coherence trials (easier perceptual choices) generate more intense firing of neurons. The relationship
between the build-up of the firing rate and motion strength is detailed in the inset. A faster rise in firing rate
(Buildup rate) occurs in easier trials with higher coherence. This has been interpreted to represent evidence
integration as described in accumulation models. D) LIP neurons activity at the response time. Grouping
neuronal firing per response time shows a stereotyped level of firing in the time before the response (~70 ms).
This has been interpreted to represent the accumulation boundary crossed at the choice time, as presented in
the models. From [11], with Elsevier permission.

1.4 decision and confidence

In perceptual and value-based decisions every choice is coupled with an
internal level of uncertainty. Another advantage of the accumulator model is
that it allows a mapping between the decision variable and the probability
that the choice will be correct [11]. This means that in the brain, the internal
assessment of the decision can be translated into a sense of certainty or
confidence in the choice. In complex environments, decision confidence can
play a pivotal role in guiding behaviour, assessing past choices to inform
future decisions, or in changes of mind [55, 56, 57, 58]. Additionally, having
a measure of confidence can be very important to communicate uncertainty
in social decisions [59]. The study of decision confidence can be traced to
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Figure 1.5: Organisation of critical steps for value-based decision in the human brain
cortex. Tier 1 operations compute and represent the presented stimulus or object at a
perceptual level, e.g., visual features such as colour or shape across the primary visual
cortex. The processing of "what" a stimulus is, involves multiple sensory modalities.
In Tier 2 processes, the value of the stimulus is represented, which can include the
reward or affective value of the objects. Finally, in Tier 3, choices and actions are
characterised based on the value assessments. From [50], with Elsevier permission.

the early beginnings of experimental psychology (e.g. [60, 61, 62]). Most
studies on metacognitive capacities have explored well-defined perceptual
decisions, taking advantage of the systematic characterisation of choices in
psychophysics [56, 63]; other studies have focused on confidence in memory
capacity [64, 65]. Further studies have demonstrated that decision confidence
follows similar behavioural signatures in value-based choices [66, 67]. Some
of these signatures of confidence show that higher confidence is associated
with higher choice accuracy. Confidence in easy decisions has been found
higher in correct trials, while confidence was low in easy and incorrect trials.
Faster response times have been associated with high confidence in decisions
without time constraints [68].

Confidence studies are difficult to approach and are mostly confined to
humans because it relies on subjective measures and verbal reports. However,
studies in other animals using paradigms such as post-decision wagering
[23, 69] have been very important to give further support to the research on
confidence. In this experimental design, animals can opt out of uncertain
choices in favour of a “sure bet”, an option that will deliver a smaller reward
but with 100% probability. When animals choose the “sure bet” option, it
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is associated with low confidence. Otherwise, when the animal is willing
to wait for a higher magnitude reward, it is assumed as a high-confidence
response. In these animal experiments, food pellets or water is used as a
reward. Similarly to humans, these animal studies show some of the standard
signatures of confidence, e.g., higher confidence is associated with better
accuracy.

A big part of the literature on decision confidence is connected to mea-
suring participants’ metacognitive skills. This refers to the capacity of the
agents to correctly assess their own decisions, i.e., report high confidence
when a correct choice has been made, or low confidence when the response
was an error. Extremely useful metrics, such as meta-d’ [70, 71] have been
proposed to characterise this introspective skill. In this work, I did not focus
on this aspect of decision confidence, however, it is very important for its
clinical and social implications [3, 72, 73].

Various models have been suggested to characterise the generation of
decision confidence [74, 75]. The classical proposal by [76] formalises confi-
dence as a measure extracted from the accumulator models at the endpoint
of evidence integration. In this scenario, models with multiple accumulators
such as the race models, allow us to estimate the difference between each
accumulator, which can be used as a representation of confidence. The larger
the difference between accumulators the higher the predicted confidence
is. Other models, under the same framework of evidence accumulation,
propose that confidence is generated from the integration of post-decision
evidence, i.e., after choice, evidence is further integrated into confidence
reports [68]. More recent proposals using Bayesian frameworks highlight that
confidence can be described as a second-order inference process [74]. In this
proposal, the evidence used to make the choice is fed to a distinct module to
generate the confidence signal, akin to assessing the performance of another
actor. Alternatively, this view defines as first-order models those in which
decisions and confidence estimates are generated from the same internal
state. In this work, I focused on first-order models, although allowing some
departures from the standard formalisations (please see chapters 7 and 8 for
more details).

Finally, the study of the neural substrate of confidence was initially based
on metamemory studies in patients with Korsakoff’s syndrome. This dis-
order is characterised by anterograde amnesia as a result of alcohol abuse
and nutritional deficiency, damaging areas such as the OFC and thalamus.
It was found that the feeling of knowing, a metacognitive measure, was
specifically affected in Korsakoff’s relative to amnesiac controls [77]. Further
studies confirmed the role of frontal structures in metacognitive deficiencies
[65], including regions such as vmPFC [78]. In psychophysics, the use of
retrospective confidence reports and neuroimaging, lesion and neuroanatom-
ical studies, have also supported the role of frontal areas in metacognitive
processing. Areas including the dorsolateral prefrontal cortex (dlPFC) and
rostrolateral prefrontal cortex (rlPFC) have been found relevant for confi-
dence computation [79, 80, 81]. Value-based decision experiments have also
reported the involvement of PFC in confidence processing, including coding
of value and confidence in the vmPFC, and a metacognitive read-out in
rlPFC [66] (Figure 1.6). More recent studies have reported that confidence in
humans can indeed capture a probabilistic distribution of uncertainty, which
can be found in neural populations in the PFC (plus insula and ACC) [82].
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Figure 1.6: Confidence-related activity in rlPFC. A) Brain activity in right rlPFC
was correlated with decreases in subjective confidence (significant activity displayed,
P<0.005 small-volume corrected). B) Signal extracted from an ROI in rlPFC (6-mm
MNI space sphere) characterised a main effect of confidence but it was not affected
by the difference in value (DV or difficulty of the choice) in a binary value-based
choice (food items). From [66], with Springer Nature permission.

1.5 goals and contexts

It is common in decision experiments to consider simple scenarios, with
single and well-defined tasks, and rewards delivered directly by the envi-
ronment. However, in real-life settings, rewards are obtained after agents
identify the characteristics of the environment and perform the required ac-
tions to fulfil specific demands. The scenarios in natural decisions are varied
and unstable, requesting a varied repertoire of rules and actions from the
agent. For example, if we are hungry, we may take a banana to eat, however,
if the fruit is rotten, we would throw it away immediately. It is not obvious
that animals have a specific channel for the tracking of rewards, which means
that value has to be inferred by the agent from sensory information, i.e.,
extracting the proper context and goals to obtain rewards [83, 84].

[1] characterise goal-directed behaviour, in contrast to simple habitual
behaviour, as having two main requirements: 1) the agent shows knowledge
of the causal efficacy of its actions and their results given the current state or
context, and 2) the agent selects and regulates its behaviour using goal repre-
sentations. In other words, specific goals are driven by the agent’s external
(e.g. being stranded in the desert) or internal contexts (e.g. being thirsty),
motivating specific value representations (e.g. water becomes important),
and guiding actions (e.g., choosing to search for water instead of resting).
The crucial aspect of goal-directed behaviour (as previously mentioned in the
value-based section) is that it is not a stereotypical or prescribed procedure,
but it allows flexibility pointing towards the desired end-state.

Memory researchers have been interested in the study of context, given
the relevance that it has to discriminate or generalise past experiences, in-
forming the suitable course of action to fulfil the goals. Classical experiments
on the topic consider contextual fear conditioning in mice [85]. In this case,
animals learn that aversive scenarios (e.g. electric shocks) are associated with
distinct cues (e.g., contexts created by light or sounds), which makes them
display fear-specific behaviours such as freezing. Eventually, the animals
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react immediately in response to the contextual cues, even when the aversive
stimulus is not presented. More recent studies have been conducted featuring
complex, feature-rich spatial contexts [86, 87] (Figure 1.7). These studies
have highlighted the relevance of the hippocampus in the organisation of
experiences, following a hierarchical structure where context is the domi-
nant source of variance. Even when these studies have been performed in
scenarios where the spatial component is relevant, it has been proposed that
hippocampal operations play a more general role, involved in an abstract
relational mapping of objects and actions [88, 89]. These maps, including
objects or episodic memories, are constructed and organised around contexts
[90]. Furthermore, context can be defined not only by space but also by
perceptual regularities, time or reward contingencies [91, 92, 93, 94]. [95]
proposed three tenets for the formalization of contexts: 1) context should be
constant along a certain experiential dimension (e.g., time), 2) context should
be relatively complex and adaptable, 3) context should have behavioural
relevance (overt or incidental).

Figure 1.7: Context organization of neural activity in rats. A) Experimental design
in a study conducted by [86]. In this task, rats discriminated between two items
considering context and item locations to obtain a reward. Contexts were generated
using different colours and textures in the experimental rooms. Objects were terracotta
pots with distinct aromas and digging media. The reward was a small bit of cereal
buried in one of the pots. The context generated variations in the object’s reward
valence. Different object pairs (A-B and C-D) were tested in the same two contexts.
Symbol + indicates the rewarded alternative. B) Hippocampal neurons show activity
consistent with a hierarchical model, with item, position and valence nested within
context representations. Adapted from [86], with Elsevier permission.

When contexts are reencountered, the associated task demands can be
retrieved in a process supported by the PFC, allowing proactive control [96].
[96] reported that contextual identification can be supported by hippocampal
processing, such as pattern separation, which predicts a reinstatement asso-
ciated with task demands in the dlPFC. The retrieved knowledge is more
than the “what” (e.g., sensory information or semantic knowledge), it also
incorporates “how” to perform the tasks (e.g., how information is processed,
how attention is allocated and the mapping from evidence to action). The
influence that context has on the strategies used to make task-relevant choices
is a developing area of research with questions that have inspired recent
work in decision-making. For example, the processing of perceptual evi-
dence in context-dependent choices has shown prefrontal networks involved
in the filtering of task-relevant evidence [97]. New conceptualisations of
value-based decisions have reinterpreted value as the distance to goals [83]
or the usefulness of the options for a specific goal [98, 99, 84]. The latter type
of study has found that when including multiple contexts and goals, vmPFC,
the region related to hedonic value in standard decision studies, actually
encodes how task-appropriate the alternatives are. A recent perspective has
highlighted the relevance of including cognitive control (i.e., how people
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adjust their information processing to fulfil tasks, focusing on target features
and ignoring distractors) in the exploration of value-based decisions [98].
This thesis follows this lead, exploring how goals affect various stages of the
decision process.

In many of the following studies, I used a simple experimental manipula-
tion to modify the contexts and goals: the framing effect. Decision rationality,
which is based on the fulfilment of principles such as consistency or coher-
ence, is broken by the context and the way information is presented [100].
For example, if participants receive £1000 and then are given the option to
keep a sure gain of £250 versus gambling with a 70% probability of losing
all, most responders choose the former option. On the other hand, when
participants are given £1000 and then presented with the option of a sure loss
of £750 versus a bet on a 70% chance of losing all, most of the choices favour
the gamble. In this case, both choices are rationally identical, and from the
experimenter’s perspective, the presented changes should be inconsequential.
However, participant responses demonstrate changes in the decision process:
while they show risk aversion in the gain context, they are risk-seeking in
the loss context. This context effect on choices can be found at an individual
level, reflecting variations in brain activity in areas such as the amygdala or
the OFC [101]. In this thesis, I interpret that these frame manipulations elicit
different goals, causing the reported behavioural variations.

In chapter 2 of this thesis, I present an overview of the main experimental
methods I used in the conducted studies. The experimental section of
this thesis is divided into three parts. In the first part, my experiments
showed that from the inception of the decision process, goals change the way
information is integrated, serving the objective of the decision. In chapter 3
I used eye-tracking and computational modelling in value and perceptual
decisions to show how visual attention is oriented towards goal-relevant and
not merely to the “rewarding” alternatives.

The second part of my work explores how brain processing (measured
using functional Magnetic Resonance Imaging, fMRI) is affected by goals
during decisions. In chapter 4, I studied how learning efficient strategies
to fulfil goals is guided by value signals. I show that the neural patterns
reorganize during learning, representing features that are recognised as
relevant to fulfil the task. Additionally, fronto-occipital networks in the brain
may play a role in facilitating goal-relevant feature integration. In chapter
5, I explore how the change of goals reconfigures item representations,
overcoming context invariance mappings that only consider sensory features
or hedonic rewards. I show that in the value-based assessment of options,
brain representations are informed by the goal, and then by other perceptual
features.

In the third section, I explore the impact of goals in post-decision process-
ing. Together with every decision comes a sense of confidence, an internal
estimate of our level of uncertainty, fundamental to guide learning or trigger
changes of mind. In chapter 6, I exemplify the relevance of confidence for the
decision process, via the study of confirmation bias and changes of mind. I
show that confidence seems to guide future sampling behaviour to fulfil the
goal of confirming previous choices. In chapter 7, I complement the study
presented in chapter 3, showing the impact that frames have on the gener-
ation of confidence, and how this is related to the integration of evidence.
Chapter 8 is a study that deepens on the findings presented in chapter 7,
revealing that the confidence signal overweighs the evidence supporting the



28 chapter 1 : introduction

goal-relevant evidence. This chapter proposes a model plus further studies
that support the view that asymmetries in the integration of evidence could
cause this effect on confidence.

Finally, in chapter 9 I present a general review of the studies, discussing the
main implications of the findings. Overall, in my studies using behavioural
testing, computational models and neuroimaging, I show that from pre- to
post-decision operations, in the perceptual and value-based domain, the
choice process is strongly influenced by goals, demonstrating the flexibility
that the brain deploys every time we make a decision.



2
G E N E R A L M E T H O D S

2.1 summary

In this chapter, I will present some of the methodological approaches used
in the following studies. Firstly, I describe regression analysis, particularly
focusing on linear and logistic regressions. These methods are useful to
characterise the relevant factors predictive of selected variables, such as choice
or confidence. Secondly, I present a series of models used to characterise
the decision process. I begin presenting signal detection theory (SDT) and
sequential sampling models, including drift-diffusion models. I also describe
the basics of probabilistic graphical models, a versatile family of models
with multiple applications, which I use to model the pre- and post-decision
processes. I present the principles of reinforcement learning (RL), a powerful
model to characterise how animals and humans acquire the knowledge
to make value-based decisions. Finally, I introduce functional Magnetic
Resonance Imaging (fMRI), the neuroimaging technique used in this thesis.
fMRI is a non-invasive technique used to infer brain activity by detecting
changes associated with blood flow. I present some of the univariate and
multivariate methods used for the analysis of fMRI brain volumes, including
the pre-processing of these datasets.

29
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2.2 regression analysis

Regression analysis is a basic, though very powerful tool for data analysis.
It allows us to examine the relationships between two or more variables of
interest. It focuses on the association between a dependent or predicted
variable, and one or more independent variables or predictors. For example,
we may want to predict the amount of rainfall in London during January.
For that purpose, we can use different measurements we may think relevant
as predictors, e.g., the temperature during the day, the hours of sunshine,
humidity in the air, or the number of buses crossing Waterloo Bridge. We can
collect data about all those measurements for January of the last hundred
years and use them to estimate a regression model. The results of this
regression analysis can tell us if there is a relationship between the variables:
e.g., humidity in the air could be very relevant to forecast the rain, while the
traffic on Waterloo Bridge could be less informative. We can also have an
idea of the magnitude of these effects: e.g., a drop of 5° in temperature may
predict an increase in 10mm of rainfall. There are many types of regression
analysis but one of the most extended is linear regression (Figure 2.1). This
regression model summarises how the average values of the predicted (also
called the outcome) variable, vary over subpopulations of the data defined
by linear functions of the predictors [102]. This can be expressed using the
following equation for the case of a single predictor:

Y = β0 + Xβ1 + ϵ(1)

with Y a vector of the outcome of interest, X a vector with the respective
values of the predictor, and β0 and β1 are the free parameters of the model. β0

corresponds to the constant term of the prediction, also called bias, offset term,
or the y-intersect of the linear equation. β1 corresponds to the regression
coefficient associated with predictor X, also called the slope of the linear
equation. The value of β1 is informative of the effect or contribution of that
variable over the outcome: if β1>0, an increase in X will predict a higher value
of Y; if β1<0, an increase in X will predict a lower value of Y; if β1=0, it means
that change in the value of factor X will not affect the value of Y. In other
words, the regression parameter represents the change in the dependent
variable per unit of change in the independent variable. For this reason, the
unit of measurement of the variables is relevant for a correct interpretation.
The term ϵ corresponds to the deviation of Y from the predicted values by
the linear model and it is called the error. Another way of interpreting the
simple linear regression is as Y having a distribution with mean µ(X) for any
given value of X, with ϵ capturing the shape of the distribution [103]. The
univariate case can be generalised to include multiple predictors:

Y = β0 + X1β1 + X2β2 + X3β3 + . . . + Xnβn + ϵ(2)

Where n is the total number of predictors in the model. Given that the
effect of the parameters depends on the units of the specific measurements,
some problems in the interpretation of these models can arise when a corre-
lation between the predictors is found [104]. Normalisation of the variables
(e.g., using standard scores) can help to interpret and compare the effects of
multiple factors.

The proper use of regression models relies on a series of assumptions
[102]:
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Figure 2.1: Relationships between variables and regressions. A) If the properties of
Y do not change with X, no association is found. It is possible that no regression is
found, even when other types of associations are present (e.g., E(Y|X) is constant,
but the variance of Y increases with X). Linear regression can be found if the mean
of the predicted variable changes in a linear fashion with X. Nonlinear relationships
between the variables can also be found, although transformation have be applied
to adjust for the use of linear regressions. B) Example of linear regression with the
predicted variable in the Y axis and predictor in the X axis. The mean value of the
predicted variable (Precipitation) can be estimated by the regression line. From [103],
with Springer Nature permission.

1) Validity: the data analysed should map to the research question. The
outcome measure should reflect the phenomenon of interest and the
model should include all the relevant factors. The regression model
should generalise to the cases it will be applied (e.g., a model of exam
scores is not necessarily informative of child intelligence). This step
can be the most challenging for regression analysis.

2) Additivity and linearity: the model assumes its deterministic compo-
nent is a linear function of the separate predictors Y = X1β1 + X2β2

+ . . . + Xnβn. In the case linearity is violated, transformations of the
data can be used (e.g., a predictor may be added to the model as log(x)
instead of x). If additivity is violated, it is possible to add interactions
between the predictors (e.g., X1X2βn).

3) Independence of errors: the simple regression model assumes errors
from the prediction line are independent.

4) Equal variance of errors: in the case of unequal variance of errors, some
adjustments can be made to have an efficient estimation (e.g., using
weighted least squares to find the regression line). However, unequal
variance does not affect the most important aspects of the model (e.g.,
the form of the predictor Xβ).

5) Errors are normally distributed: according to [102] this is the least
important of the regression assumptions for the estimation of the
regression line, but it may be relevant for the prediction of new data.

The most common way of estimating the parameters β is using least-
squares estimators [103]. This involves the minimisation of the residual sum
of squares term (SSE). In the univariate case, this is expressed as:
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SSE = ∑(yi − [β0 + Xiβ1])
2 = ∑(yi − ŷi)

2(3)

Note here the subscript i indicates each element in the vector of outcomes
or predictors. Commonly, the term β0 + Xiβ1 is interpreted as the estimated
(or fitted) values by the regression model (Ŷ).

Standard linear regression has been proposed to deal with continuous
variables. In some scenarios, like binary choices, the variables of interest are
discrete, and they do not fulfil some of the assumptions of the regression
model, such as the normal distributions of the error. Logistic regression is an
extension of the linear regression models, which considers binary outcomes
as predicted variables [105]. The logistic prediction, in addition to indicating
the value of the variable (e.g., it will rain or not today), can also estimate the
probability of it (e.g., there is an 89% chance it will rain today). The output
variable is coded as 0 and 1 to express the two categories. To bypass the
normality assumption, the model predicts the probability of yi = 1 (Pr(yi =
1) = pi), instead of yi directly. In this way, the model of probability can be
expressed as:

Pr (yi = 1) = logit−1(β0 + Xiβ)(4)

The logit function (logit-1 (x) = ex

1+ex ) transforms the values to a range
(0,1) to adjust to the values of the probabilities. The term Xiβ, corresponds to
the linear predictor, which is a continuous variable with range (-∞, ∞). This
last expression can be rewritten as:

Pr (yi = 1) =
eβ0+ Xi β

1 + eβ0+ Xi β
(5)

Which is equivalent to:

log
(

Pr (yi = 1|Xi )

Pr (yi = 0|Xi)

)
= β0 + Xiβ(6)

In other words, the logistic regression can be interpreted as a regression to
predict the probability of the predicted variable taking one of the two values,
represented as an odds ratio. The estimation of the regression parameters
does not have an analytical solution, unlike linear regression, therefore
numerical optimisation is required [105]. One of those approaches is to use
maximum likelihood estimates (MLE), which searches iteratively the pair of
parameters β0 and β that maximise the likelihood of the observed data (or
equivalently, that reduce the negative log-likelihood) (Figure 2.2).

An important consideration when performing regression analysis is how
data will be organised in the model. In real-world situations, it is common
that the data can be arranged in various groups: e.g., within a country, we
have multiple regions with unique weather which will affect the precipitation
measurements, the grades students get in a national math exam could depend
on the high school they attend, or responses in a cognitive test depend on
each individual participant. A standard approach to this issue is to just
pool together all the possible groups and fit a single regression line that is
representative of the whole dataset (e.g., join all the participants and trials
into a single model). An alternative is to individualise each level, and fit
as many models as groups (e.g., fit a linear regression for each participant
independently). Both approaches are suboptimal since they lose relevant
information available in the data structure: for the pooled model, there is
a conflation of within and between group effects; for the unpooled model,
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Figure 2.2: Logistic regression. Different slopes of the curves correspond to different
iterations of the MLE (top panel). Each iteration shows an improved fitting, reducing
the negative log-likelihood (bottom panel). From [103], with Springer Nature permis-
sion.

the analysis is underpowered treating each group as independent when
commonalities may be present. Therefore, for the analysis of nested data, a
useful approach is to use hierarchical or multilevel regressions [102]. The main
modification relative to the standard regression approach is that in this case
each group has its own regression parameter, also called mixed or random
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effects, which are constrained by an overall parameter. Parameters that do
not vary at each group are denominated fixed effects. For example, if we
want to estimate a hierarchical regression analysis predicting confidence in a
cognitive task (y) using as a predictor the reaction time in each trial (x) we
can formalise the model as:

yi = β0 + xiβ1,j[i] + ϵi , f or j = 1, . . . , n(7)

Where j corresponds to participant number and i represents each trial.
Therefore, j[i] expresses the participant j that generated each trial i. In the
next part of the model, the value of the slope coefficients for the participants
(β1,j) depends on a common probability distribution:

β1,j ∼ N(µ, σ2) (8)

In this model both parts are fitted simultaneously, making that the pa-
rameters at the subject level are constrained by the overall distribution. In
this way, we can estimate subject-level slopes, i.e., we have as many regres-
sion lines as participants, still considering a dependency between them as
representative of a common ‘human’ sample. In the example we considered
that the slope varied at a participant level, however, the intercept and any
other extra predictor’s coefficients can be modelled hierarchically as well. In
conclusion, hierarchical modelling is a powerful extension to the standard
regression framework, taking advantage of the underlying structure in the
data to generate informative models, making it suitable for the analysis of
nested data in human experiments.

2.3 decision models : signal detection theory

Signal and noise are two fundamental ingredients in any decision. If in a
decision experiment the objective is to identify the presence or absence of
a single stimulus among noise (null stimulus), that type of task is called
detection. The original proposal of signal detection theory (SDT) was to
improve the radar identification of enemy bombers during the Second World
War. Eventually, the application of SDT was expanded to psychology, with
the initial objective of characterising decisions in psychophysics experiments
[13, 106].

In SDT the determination of each state has uncertainty on its own (e.g.,
an "it is raining" state can consider a soft drizzle or a dramatic downpour). In
the basic detection task, the presence of noise and signal entails uncertainty
in the decisions. The SDT proposal considers that the signal is constant (e.g.,
an auditory tone with constant volume and frequency) and superimposed
on noise (e.g., white noise). The objective of the task is to identify whether
the presented stimulus contains the signal or if pure noise is presented.
Therefore, SDT can be used to distinguish between two states (e.g., it is
raining / it is not raining; there is a tumour in the scan / no tumour; there is
a red light / no light). Pure noise stimulus can be represented as a probability
distribution, meaning that the signal-plus-noise stimuli is also characterised
as a distribution with a curve identical in shape to the one describing noise
alone, but shifted depending on the evidence strength of the signal (Figure
2.3). One of the main assumptions in SDT is that these distributions (signal
and noise) are Gaussian with equal variance. Once in the task, there are two
possible types of trials, ’signal’ and ’noise’ trials, with two possible responses,
’yes’ or ’no’ to the presence of the signal. When the signal is indeed presented
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and the response is ‘yes’, that trial is called a hit; if the response is ‘no’, it is
called a miss. When it is a noise trial and the response is ‘yes’, it is termed
a false alarm; if the response is ‘no’, it is a correct rejection. The basic SDT
analysis can be performed using those four categories (or alternatively using
hits and false alarms plus the total number of signal and noise trials). As
presented in Figure 2.3, the four categories can be associated with specific
sections of the signal and noise distributions.

The overlap between noise and signal distributions will depend on the
evidence strength of the signal (Figure 2.3). The horizontal axis in SDT
graphical representations displays the strength of evidence in each category,
with greater strength on average for the signal distribution. In the previous
example, evidence can be considered as the sound volume, with greater
volume when a tone is present. The largest is the difference between the
distributions, higher is the sensitivity or discriminability in target detection.
Formally, the model characterises this as the value d’, the separation between
the averages of each distribution.

Having this representation of two states, how can we determine if a
new sample contains the target signal? A simple approach would be to
set a value of the signal strength that will work as a criterion (c): if the
evidence strength of the new sample is above c, then it is categorised as
containing the signal, otherwise, it is noise. Under the assumption of equal
variance, the distance d’/2 is important since placing the criterion at this
point maximises the probability of correct identification of the signal, since
here, signal and noise samples are equally likely to happen. This corresponds
to the neutral or ’unbiased’ criterion. However, the value of c can be lowered
to favour a higher hit rate (a more liberal criterion); if c is raised, the correct
rejection rate increases (a more conservative criterion) (Figure 2.3b). These
biases generated by the placement of the criterion can be relevant in specific
decisions, e.g., a false alarm can have terrible consequences in the control of
a nuclear weapon, therefore a more conservative criterion may be used.

Figure 2.3: Signal detection theory. A) In SDT two distributions are used to identify
whether the observed stimulus contains a signal, or if it is only noise. Those two
distributions are standardly assumed to have equal variance. A criterion can be set to
report as a signal if the perceived stimulus is above that threshold and noise if the
perception is under it. B) Changing the position of the criterion can generate a liberal
(responding ‘signal’ in most of the cases but increasing the number of false alarms)
or conservative response (responding ‘noise in most of the cases, but increasing the
number of misses). From [107] with Springer Nature permission.
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Instead of the direct evidence strength, an alternative way of discriminat-
ing between the two states is using another decision variable: the likelihood
ratio [106]. Since the probability distributions for noise and signal are known,
it is possible to calculate the likelihood of a new sample for each one of them.
The likelihood corresponds to the height at the location x by the distribution
f(x). Therefore, the ratio between the likelihood of the new sample x is signal
or noise is:

LR(x) = f (x|signal)/ f (x|noise)(9)

For each point x a value of the likelihood ratio can be calculated: LR = 1

when the new sample is located between the two distributions; LR > 1 when
it is located towards the signal distribution; LR < 1 when it is located towards
the noise distributions. Setting an LR = 1, allows an unbiased criterion. In
the normal distribution model, the height of the likelihood function depends
on the distribution’s mean (µ) and standard deviation (σ):

f (x) =
1√
2πσ

e−
1
2 (

x − µ
σ )(10)

Since the LR is a ratio, an equivalent form using logarithms (log-likelihood
ratio) is employed to express the division as a subtraction. Further equivalen-
cies have shown that there is a relationship between LR and the multiplication

of criterion (c) and sensitivity (d’) (LR = ecd
′
).

To assess the accuracy of the observer (characterised by the signal and
noise distributions) it is common to use the receiving operating characteristic
(ROC) curve. This curve shows the false-alarm rates plotted against hit rates
for all the possible values of the criterion, but with constant d’. In the present
work, ROC analysis was not relevant, however, it is a crucial part of the
classic SDT approach [106, 107].

While the basic SDT is constructed for single stimulus decisions, it can
be extended to two alternative forced choice (2AFC) tasks. In this case, the
observer does not report whether a single stimulus occurred or not, since the
stimulus could be presented in any of two alternatives. 2AFC task requires
a comparison between the two alternatives to identify which one contains
the signal. An example of this type of task is a memory experiment where
various words are presented in an initial phase. Then the participants observe
pairs of words, and they report which one has been already shown and which
one is a new word [106]. Using the previous example, a task where a listener
is asked to report the side where an auditory tone is presented (i.e., right or
left ear) would also be considered a task of this type. In 2AFC the notation
of hits and false alarms needs to be repurposed to express the possibility
the choice was correct or incorrect (i.e., the selected option did or did not
contain the signal, respectively). It is assumed that the observer estimates
the evidence for each option independently, meaning that the alternative
can be treated as a separate dimension in the decision space. Since now the
distributions correspond to surfaces over a 2D space, they can be represented
as circles of equal likelihood in the plane (Figure 2.4). In the 2AFC task,
as in the detection case, the characterisation of the distance between signal
and noise distributions is denominated as d’. Arbitrarily, the mean of the
noise distribution can be set equal to zero. Therefore, the observations in
a 2AFC task trial compare the possibility that option A (represented in the
horizontal axis of a 2D plot, Figure 2.4) or B (represented in the vertical
axis of the 2D plot) contain the signal. Option A for example could be the
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option presented on the right side and Option B on the left side. When
the option with the signal is A this can be represented in the 2D plot as a
distribution centred around the coordinate (d’,0); and (0,d’) when the option
with the signal is B. The decision axis can be defined as the line between
the average of the two distributions (segmented line in Figure 2.4) and the
decision boundary (criterion) as a perpendicular line. The 2AFC can be
expressed as a unidimensional problem, along the decision axis (details can
be found in [106]). An alternative way to express the decision variable is
using the LR adapted for the two alternative scenarios:

LR (x) =
f (< A, B >)

f (< B, A >)
(11)

In this case, the equation is adapted for the two alternatives considering
the comparison of the two possibilities: the likelihood that option A contains
the signal and option B is noise vs option B contains the signal and A is
noise. In this thesis, log-likelihood ratio in a two-option scenario was used
as the basis of the model presented in Chapter 8. However, in our model, we
altered one of the main assumptions in SDT: equal variance of the probability
distributions. In our model we repurposed “noise’ and ‘signal’ categories to
fit the categories in our discrimination tasks in perceptual and value-based
binary decisions. We modified the variance of the observer distributions
for the two categories, finding that an increase in the variance of the goal-
relevant distribution generates specific behavioural effects on simulated
decision confidence. More details on the formalisation of our model can be
found in the Methods section of Chapter 8.

In this section, I have not presented important work oriented to expand
SDT to quantify the observer’s metacognitive capacities (meta-d’, [108, 74].
In these studies, participants report their confidence level after making their
choices. These reports are created to construct an additional SDT for type-2
performance, i.e., that classifies whether participants could predict if they
were correct or incorrect in their choices. The characterisation of individual or
group metacognitive capacities was beyond the scope of the studies presented
in this dissertation.

2.4 decision models : sequential sampling models and atten-
tion

Most of the insights we have on the decision process have been obtained
from binary choice experiments. In this case, the usual and straightforward
measures of performance are the probability of choosing one option or
the other (which allows estimating the accuracy) and how long it takes
to deliver the answer (which constitutes the response time, RT). Using
SDT we can model the choice behaviour; however, the timing of decisions
cannot be captured by this approach. Sequential sampling models are an
expansion of the decision models to include this dynamic aspect. This allows
us to model additional phenomena, such as the speed-accuracy trade-off
[17] or the response time distributions [109]. Sequential sampling models
can be of different varieties, but the basic building blocks include at least
one accumulator, an assumed structure that gathers evidence in favour (or
against) the decision alternatives, and a decision rule that indicates the
moment the accumulation ends and the decision is made. A detailed account
of different types of Sequential Sampling Models can be found elsewhere
(e.g., [110, 20]). In the present work, I will focus on the drift-diffusion model
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Figure 2.4: Two-dimensional interpretation of the 2AFC task. The space characterises
the decision evidence (observation strengths) for the alternatives. Distributions are
represented with concentric circles that correspond to contours of equal likelihood
for the possibility the stimulus is present. The decision boundary can be defined as
a perpendicular to the line that connects the mean of the two distributions. <A,B>
indicates that option left contains the signal, and <B,A> that the right option contains
the signal. Therefore, the observer responds left option for the region ’under’ the
boundary, and right option for the region ’above’ the boundary. The segmented line
indicates the decision axis.

(DDM) and its derivations that integrate the effect of visual attention in the
accumulation process.

The standard DDM [111, 112, 113] assumes that decisions are made by
accumulating stochastic information over time. In this model, the accumula-
tion of information begins at a starting point and continues until the total
amount of information reaches a predefined boundary. In the DDM, the
single accumulator is usually thought of as a particle that can move towards
one of two boundaries (superior or inferior boundary in Figure 2.5a), one for
each option (e.g., it could be a Yes/No question or right vs left alternative),
which will trigger the choice. The response time in the model corresponds to
the time required to reach the decision boundary. The model also can include
a non-decision time parameter (t0) which considers the constant encoding
and response-execution time. The rate at which the accumulation approaches
the boundary, i.e., the average amount of information accumulated per unit
of time, is captured by the drift rate parameter (v). The accumulation is
not constant but varies depending on a noise term, usually obtained from a
normal distribution with standard deviation σ, which is another parameter
of the model. The model considers two boundaries, with the separation
between them usually included as an additional parameter (a). The boundary
separations can characterise specific decision-making styles. A high value of
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the parameter a is related to more conservative decisions, that require more
evidence to be collected, with longer reaction times and fewer errors; a low
boundary separation is associated with a riskier style with faster response
times and a higher error rate. The starting point of accumulation (z) is an-
other parameter that can capture decisions biased towards one of the options,
e.g. if there is priming towards one of the alternatives.

Figure 2.5: Drift diffusion models (DDM). A) Visualization of the standard DDM
parameters. B) The attentional DDM. The main difference of this model with respect
to the standard DDM is that the drift rate is modulated by the alternative that is
being fixated, generating a bias in the accumulation of evidence towards the attended
alternative. In this case of binary choice, the options are presented in distinct locations
so visual fixation displacements can inform attentional variation. The inset shows
the example of a value-based experiment where two snacks are presented in a choice
trial.

An important feature of the DDM is that for the measurement of the
relative evidence in the binary case, the evidence accumulation for different
options is anti-correlated, i.e., an increase in evidence towards one option
means a decrease in evidence towards the other. This is the main difference
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with race models, another type of sequential sampling model. In race
models, each option is represented by an individual accumulator and a
single boundary indicates when the decision is made [114].

DDM has been an important model for the characterisation of the decision
process, extendedly used in perceptual, memory [110, 115] and value-based
[116] studies, in healthy and clinical populations [117, 118, 119]. However,
the observation of everyday decisions indicates the deliberation process
is likely to be more sophisticated. Consider the case of a customer in
a supermarket, deciding whether to buy chips or popcorn. Instead of
approaching the shelf and immediately choosing their preferred snack, the
customer would likely stop for a second and gaze repeatedly between the
two items, shifting their visual fixations between options. This observation
inspired an extension to the DDM to include visual attention, the attentional
DDM (aDDM; [34, 33]). The standard DDM assumes fixations do not play a
role in the accumulation process given that most of the decision experiments
keep central fixation during the experiment. Therefore, the experimental
design of the aDDM considers a presentation of the options that allow
for variations in spatial attention with a displacement of visual fixations
towards the available alternatives. The aDDM takes the period of distinct
attentional allocation to introduce temporary modulations of the drift rate,
which supports the accumulation of evidence towards the fixated item (Figure
2.5b). In other words, it generates a choice bias towards the items that
are fixated on more, which is in line with behavioural findings [120, 34].
Therefore, eye-tracking information is required during the experiment to
insert the attention component in the model.

The aDDM assumes that the brain computes a relative decision value that
evolves over the decision time as a Markov Gaussian process until one of the
boundaries is reached, in a similar way to the DDM. The main differences
are in the expression used to estimate the variation in the accumulators. In
every timestep, the drift rate is modulated by fixated and non-fixated items.
The accumulation process can be characterised by two expressions:

Xt = Xt−1 + d(rleft − θrright) + ϵt(12)

Xt = Xt−1 − d(rright − θrleft) + ϵt(13)

The first equation describes the accumulation when the item on the left
side is fixated, and the second equation is when the right-side item is fixated.
The variable X corresponds to the relative decision value which is updated
every timestep (t). The drift rate parameter defined in standard DDM is
separated into two parts in the aDDM: (1) a constant parameter d that
controls the speed of integration (units ms-1) and (2) a term for the weighted
difference between the values (r) of attended and unattended items. Since
the original presentation of aDDM was developed for value-based decision,
r corresponds to the subjective preferences for each one of the items, which
usually is quantified as the amount of money participants would be willing
to pay for the items [33]. This process can be adapted to quantify evidence
in perceptual experiments, e.g., relative angles of lines relative to a target
[121]. The second term includes the crucial attentional parameter (θ) which
takes values between 0 and 1, multiplying the unattended item evidence.
This means that the value of the unattended item is discounted favouring the
accumulation of the attended item. A white Gaussian noise term (ϵ) with
variance σ is randomly sampled every timestep.

The aDDM has been an important model to formalise the influence of
attention on the evidence accumulation process, even for multi-alternative
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choice [34]. Recent work has reported the relevance of the frontal eye field
area in the human brain on the gaze bias, which means that gaze could
indeed have a causal role in choice [122]. In the present work, I used a
model that has been inspired by the aDDM, the Gaze-weighted accumulator
model (GLAM, [35, 123]). GLAM implementation points to facilitate the
gaze-choice association at an individual level. GLAM is strictly a linear
stochastic race model, which facilitates its application in scenarios with more
than two alternatives (Figure 2.6). Another important difference is that while
aDDM focuses on the effect of individual fixations and their sequence within
a trial, GLAM consider a summary of the gaze bias effects in a trial. This
means that for GLAM the full sequence of fixations is averaged on each
trial, avoiding the complex problem of modelling and simulating the fixation
process (which can be even more difficult in multi-alternative scenarios).
These modifications allow for computations that are analytically tractable
which facilitates more complex applications, such as Bayesian parameter
estimation. An additional advantage of GLAM for our specific research
question was that the estimation of decision confidence in the model is
facilitated using race models. In race models of binary choice, the balance of
evidence approach [76, 124, 23, 66, 125] proposes that the difference between
the two accumulators at the decision time (i.e., when one of the alternatives
has reached the boundary) can be used as a measure of confidence. A higher
difference between the winning and loser accumulator indicates higher
choice confidence. Further details on the GLAM model implementation can
be found in the Methods section of Chapter 3.

Figure 2.6: Gaze-weighted linear accumulator model (GLAM). A) The fixation time
for each one of the options is extracted within the trial. B) Using the fixation time,
the average proportion of time each item is fixated is used to estimate the average
absolute evidence for each option. In this case, the value depends on a gaze bias
parameter γ. C) This is transformed into relative evidence, which compares each
item with the other available alternatives. Relative evidence is used in the equation
for the accumulation of evidence for each alternative. Note that the accumulation
of evidence includes in its value Ri the attentional discount. For more details on
the model, please check the Methods section, chapter 3 (Adapted from [35], with
Springer Nature permission).

2.5 probabilistic graphical models

Models for complex systems need to include uncertainty, an unavoidable
aspect of real-world applications. Uncertainty can be defined by various
factors, some of them described as 1) unobservable aspects of the world (e.g.,
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a patient’s true disease may not be directly identifiable, only symptoms);
2) our measurements and observations are per se noisy (e.g., there is a
degree of error in a blood sample or a PCR test). The construction of models
must include not only what is possible but also what is probable [126].
Probabilistic Graphical Models (PGM) use graph-based representations as
the basis for compactly encoding complex probability distributions over a
high-dimensional space. This helps to characterise problems with hundreds
or even thousands of relevant features (e.g., various attributes like muscle
pain or cholesterol level in a medical diagnosis) in a single probabilistic
model. There are many types of PGMs, but for this thesis, I will focus on
Bayesian Networks.

The core of the Bayesian networks is the representation of a directed
acyclical graph (unlike Markov networks where cycles are allowed). Here, the
variables of the model are represented as nodes (ovals) and the relationships
between variables are indicated by the edges of the network. For example,
we can create a model to characterise the probability a student will get a
recommendation letter from a professor, captured by a variable l with two
levels {yes, no} (Figure 2.7). In this case, we can consider that the professor
is quite distracted and does not remember well all her students, so she will
decide whether to write the letter or not by checking the student’s grade,
a variable g with possible values {low, medium, high}. On the other hand,
the grade depends on two random variables: student’s intelligence (i) and
course difficulty (d), which can be characterised by two levels {low, high}. The
conditional probability distribution that specifies the values of the variable
given the possible arrangement of joint assignment values, derived from the
parent nodes (i.e., the variables that affect the probabilities of each node) is
shown in Figure 2.7. In this way, the model allows characterising the events
from the probabilities of each one of the variables.

In the example above, the various elements of the model were defined as
discrete variables, but the model can also be constructed using continuous
variables. The example below shows a graphical model using continuous
variables to capture the generation of confidence in a perceptual decision
task, an application of Bayesian models in cognitive science [127]. In the
modelled experiment, participants complete a random dot motion task where
they should choose if most of the dots are moving towards the right or left
side of the screen. The experiments consider two stages where participants
observe the dot motion: pre-decision and post-decision, after which they
report their confidence. This model (Figure 2.8) seems more complex, but
the principles are similar to the model with discrete variables. In [127] the
variables that capture the evidence accumulated in the pre- and post-decision
stages (Xpre and Xpost) are described as Normal distributions (e.g., N(µ,σ) of
mean µ and standard deviation σ) that are informed by the true direction
of motion (d, -1 or 1 for left or right, respectively), the coherence of the dot
motion (θpre or θpost) and k, a sensitivity parameter. Note that in the standard
notation, the ~ symbol indicates that the variable "is distributed as". The
variable k demonstrates another important advantage of building up models:
it allows to describe latent variables, i.e., factors that exist in the world but
that we cannot observe or are not even aware of. While it is possible to have
a measure of the motion direction and dot coherence (they are controllable
experimental features after all), we cannot directly measure the sensitivity
parameter in participants. In Bayesian models, it is possible to propose a
range of potential values for the parameters (e.g., for parameter k it was
used a Normal distribution of µ = 0 and σ = 10). These assumed values
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Figure 2.7: Example Bayesian network. The probability a student gets a recommenda-
tion letter from their professor depends on the student’s grade, which in turn depends
on intelligence and difficulty. All the variables in the model are stochastic and can
be characterised using probabilities for each discrete state. The arrows indicate the
dependence between variables. The tables depict the probabilities for the combination
of the model variables. Recreated from [126].

are also known as the priors of the model. The modelling also includes
participant’s choices (a) using a Bernoulli distribution (bernoulli_logit(s),
with logit-transformed chance-of-success parameter, s). The logit function
implements a steep softmax relating Xpre to a and is applied for compu-
tational stability. Confidence is computed by a deterministic function that
includes a complex log odds function (LO) that depends on the evidence
accumulated and the choice (please refer to [127] for details). The mapping
between model confidence and observed confidence allowed a small degree
of imprecision (σ=0.025) in subjects’ ratings.

While the models on their own can be very informative (e.g., giving an
idea of the relationship between the factors and outputs from simulations)
the number of potential combinations between all the variables generates
a gigantic space of possible models. For that reason, it is important to
constrain the space using observations from real-life experiments. The
process of looking for models that can generate predictions that resemble
real-life data corresponds to the fitting process. In the model above, the
fitting process employs observations from human participants performing
the two-stage decision, e.g., motion directions d, motion coherences θpre and
θpost, subjects’ choices a and confidence ratings r. There are multiple methods
to search for adequate model parameters. In this work I focused on Bayesian
inference. Note that Bayesian inference and Bayesian modelling are not the
same: we are using Bayesian inference to estimate the parameters in a Bayesian
graphical model. The approach taken is the one described by Probabilistic
Programming (PP). A probabilistic program is run in both the forward
and backward direction. It runs forward to compute the consequences
of the assumptions it contains about the world (i.e., the model space it
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Figure 2.8: Bayesian graphical model for a perceptual decision experiment. Adapted
from [127], with Springer Nature permission.

represents), but it also runs backwards from the data to constrain the possible
explanations. Bayesian inference points to obtain the posterior distributions
(p (λ|x)), from Bayes theorem equation:

p (λ|x) = p (x|λ) p (λ)
p(x)

(14)

The posterior characterises the probability distribution of the set of model
parameters (λ) given the observed data (x). The likelihood (p (x|λ)) corre-
sponds to the probability distribution that the observed data was obtained
from the model given a specific set of parameters. The prior p (λ) expresses
the probability distributions of the parameters, independent of any observa-
tion. This is very important since here we can include previous knowledge
into the model. For example, the parameter k in the model proposed by [127]
was defined to take values following a Gaussian distribution with µ = 0 and
σ = 10, this corresponds to the prior for that parameter. Finally, the evidence
p(x), is the probability distribution of the observations independent of the
model and parameter values. In realistic models, it is difficult to estimate
the p(x), therefore, it is a common approach to ignore it considering that the
posterior distribution is proportional to the product the likelihood and the
prior (p (λ|x) ∝ p (x|λ) p (λ)). Since p(x) works as a normalisation factor, it
is possible to have a reasonable approximation to the posterior parameter
space without considering it. To estimate that approximation I used the
Markov Chain Monte Carlo (MCMC) approach [128] to obtain samples from
the posterior distributions. The Monte Carlo feature of this method means
that according to the Law of Large numbers, the average of the samples tends
towards the expected value of the distribution the more samples we have.
On the other hand, the Markov chain aspect indicates that the sampling is
not fully random, but it follows a strategy where the next sample depends
on the value of the present sample. This allows us to look for high-density
areas on the target distribution, i.e., it is a targeted sampling.

Multiple algorithms have been proposed to sample the parameter space
in MCMC. One of the most used is the Metropolis-Hastings algorithm [129],
which can be widely described by the following steps: 1) start at the current
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position in the parameter space; 2) propose moving to a new position; 3)
accept/reject the new position based on the position’s adherence to the data
and prior distributions. 4.1) if it is accepted: move to the new position and
return to step 1. 4.2) if it is not accepted: do not move to the new position
and return to step 1; 5) after many iterations, return all accepted positions.

After a large number of repetitions, the sampling process is expected
to reach a steady state (i.e., a stable prediction of the parameters). The
sequence of repetitions is usually called a chain (Figure 2.9). Given that
at the beginning of the chain (i.e., the initial repetitions of the algorithm)
the initialisation of the parameters may not be representative of the steady
state (e.g., random initialisation of the parameters), it is common to define
a burn-in time, which considers samples that are discarded since they do
not follow the target probability distribution. Some other methods can
also be used to obtain more informative samples, such as thinning, where
sequential samples can be discarded to avoid internal correlation given the
path followed by the chain, generating (almost) independent samples. To
avoid initialisation problems or local zones of high density, multiple chains
are run. At the end of the sampling process, it is important to check that the
results are consistent, showing convergence to a unique set of parameters.
Standard diagnostic tests consider Gelman -Rubin (|R̂− 1 | < 0.05) or the
effective sample size (ESS>100). The Gelman-Rubin diagnostic [130] checks
the lack of convergence by comparing the variance between multiple chains
to the variance within each chain. If convergence is achieved, the between-
chain and within-chain variances should be identical. The ESS, roughly
speaking, captures how many independent draws contain the same amount
of information as the dependent samples obtained by the MCMC algorithm
[131].

Figure 2.9: Markov Chain Monte Carlo. (A) Sampling process for the estimation of
parameters (λ). Multiple chains sampling from different starting points eventually
converge, delivering samples of the posterior distribution. Burn-in samples corre-
spond to discarded samples before the chains converge. (B) Convergence of the
Metropolis–Hastings algorithm for different numbers of samples. MCMC attempts to
approximate the blue distribution with the orange distribution.
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2.6 reinforcement learning

One of the major questions in cognitive sciences is how animals learn to select
actions to obtain rewards and avoid punishment. From the psychological
perspective, this question was initially investigated through classical and
instrumental conditioning paradigms, which have been very informative in
describing how the relationship between stimuli and rewards is generated
during learning. Pavlovian conditioning is an example of prediction learning:
learning the association between features of the environment (e.g., a sweet
aroma coming out of the oven) and a desirable outcome (e.g., the fulfilling
taste of warm bread) [132]. Instrumental conditioning characterises learn-
ing to select actions that facilitate the occurrence of reward (or reduce the
possibility of aversive events). In other words, the target of instrumental con-
ditioning is to find actions that influence the environment for the subjective
benefit of the decision-maker.

The development of reinforcement learning (RL) in more recent times
has provided an important normative framework to continue analysing the
animal conditioning process [133, 134, 135]. A fundamental insight that
informs RL is that learning should occur when outcomes are surprising [136].
One of the most influential models is the Rescorla-Wagner model [137] which
characterises Pavlovian conditioning, where learning is driven by events that
violate expectations. This is formalised by the following equation, where the
associative strength between the conditioned stimulus (CS, e.g., a sound) and
the unconditioned stimulus (US, e.g., food) is characterised by V:

Vnew(CSi) = Vold(CSi) + η

[
λUS −∑

i
Vold (CSi)

]
(15)

The error learning rule indicates that learning is driven by the difference
between the expectations (∑i Vold (CSi), with i indicating all the CSs involved)
and what is actually experienced. λUS parameter indicates the magnitude of
the US, quantifying the maximal associative strength that US can support. η
corresponds to the learning rate which can depend on the salience properties
of both the US and the CS being associated. Rescorla-Wagner model can
explain a variety of behavioural phenomena like blocking or overshadowing
[132]; however, its results are based on CS and US and do not extend to
second-order conditioning. Unlike US, that have an affective effect per se
(e.g., food or electric shocks in mice experiments), second-order conditioning
allows to elicit conditioned responses with CSs that were never associated
with US. This type of conditioning is very common in human experiments,
where the motivation is given by monetary outcomes, which generates
second-order associations. Additionally, Rescorla-Wagner model assumes
that learning occurs in a single conditioning trial, ignoring any temporal
considerations.

As an answer to these shortcomings [138] proposed the temporal difference
(TD) learning rule. In TD learning the agent estimates the value of different
states or situations in terms of the future rewards (or punishments) they pre-
dict. The formalisation comes from Markov chains, a dynamic process where
different states S follow one another according to a probability distribution
P(St+1|St). In this case, St indicates the current state and St+1 the following
state. For example, for a rat moving in a maze, the states would correspond
to specific locations each one accessible (or not) from the contiguous posi-
tions, e.g., the transition probability between two positions separated by a
wall would be 0. Additionally, each state could present rewards also given
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from a probability distribution P(r|St). The value V of a state is defined as
any reward present in that state plus potential rewards accessible in future
states that can be achieved from there. The temporal difference prediction error
is expressed by the equation:

δt = P (r|St) + γ ∑
St+1

P (St+1|St)V (St+1) −V (St) (16)

Here γ is a temporal discount factor that reduces the effect of rewards
that are distant in time. As in the previous model, this equation expresses
that the discrepancy between the observed and expected values of a state
will drive the learning of V(St):

V (St)new = V(St)old + ηδt(17)

In this way, the error signals tend to sequentially improve the estimates of
the function V (St). One problem of this learning rule is that it assumes that
the dynamics of the environment are known (P(St+1|St) and P(r|St)) which
is hardly true in real-world cases. Most of the time, the agent will have to
explore the situation and the environment itself will supply this information
stochastically and incrementally. In other words, the agent “samples” the
probabilities distributions for reward and state transitions. Incorporating
this assumption, the learning rule can be expressed as:

V (St)new = V(St)old + η [rt + γVold(St+1)−Vold (St)] (18)

Where rt is the reward observed a time t, when in state St. Therefore, this
model allows learning optimal predictive values of events in the environment,
even if they are unknown. However, while these various learning processes
allow for generating correct predictions of the states, we must keep in mind
that the environment gives rewards for actions, not predictions [132]. The
steps presented above consider fixed behavioural policies, however, one of
the fundamental goals in prediction learning is to help to select the best
action. The problem of credit assignment, or how to elucidate retrospectively
what actions are relevant to reach an outcome (e.g., win or loss) is a crucial
and difficult problem to improve the behavioural policy. In RL this problem
is solved by defining action selection depending not only on the immediate
outcomes but also on future value predictions, as presented in TD learning.
In this scenario, the best action to choose is the one that leads to the state
with the highest value.

One of the methods employed for action selection considers explicitly
learning the predictive value (i.e., future expected rewards) of taking a
particular action at a specific state, in other words, to learn the value of the
state-action pair, denoted as Q(S,a). This process has been denominated
Q-learning [139]. In this case, the learning rule is similar to the one for TD
learning, only that it also includes the action:

Q (St, at)new = Q(St, at)old + ηδt(19)

Where the prediction errors are expressed as:

δt = rt + max
a

γQ(St+1, a)−Q (St, at) (20)

Here the max operator indicates that the temporal difference is calculated
with respect to the (believed) best action at the next state St+1. One of the
important consequences of learning Q-values is that it does not require to
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learn a separate policy. Furthering the interest in this model, findings of
dopaminergic neurons in non-human animals have suggested that they could
be communicating prediction error based on state-action values [37, 140].
The connection between dopaminergic systems and RL has been extensive
[141, 142, 143, 144, 135]. These circuits spark special interest given their
importance in conditions such as Parkinson’s disease or addiction. Therefore,
RL is a model that can be very useful to understand how the brain learns
values and make decisions in novel environments.

2.7 functional magnetic resonance imaging

There is a variety of methods that allow the measurement of various aspects
of brain activity. In humans, methods like electroencephalography (EEG) (or
more recently magnetoencephalography, MEG) have been used extensively,
giving access to the electromagnetic perturbations generated by neuronal
activity. These tools have been very useful to track the swift changes in brain
processes, however, they usually lack a precise spatial resolution and cover-
age. This deficiency has been saved thanks to technological breakthroughs
propelled by functional Magnetic Resonance Imaging (fMRI), which allows
reaching even the millimetric scale without relying on invasive interventions.
Since the development of its first papers in the early 1990s [145, 146, 147, 148],
this technique has fostered an explosion of research in cognitive neuroscience.
The principles of operation of MRI allow the generation of images based
on the magnetic properties of hydrogen nuclei (protons). Given the varied
composition and structure of different types of tissue, such as grey or white
matter, specific magnetic signatures can be used to generate anatomical
images of the brain.

MRI can be used both to explore the structure of the brain and to track
dynamic changes in its operation. Neurons are no different from other cells
in the body and they consume energy through oxygen and glucose. The
circulatory system supplies the brain’s metabolic demands, which overall can
take approximately 20% of all the oxygen we breathe [149]. However, that rate
of consumption is not homogeneous, and the activity of neuronal groups can
affect locally the supply of oxygen-rich blood. This variation in blood flow
when the demands increase has been characterised by the haemodynamic
response function (HRF) (Figure 2.10). The oxygen supplied to the neurons
travels bonded to haemoglobin, an iron-containing transport protein. Iron
has magnetic properties, which in this case vary depending on whether it
is part of oxygenated or deoxygenated haemoglobin. fMRI can measure the
ratio of oxygenated vs deoxygenated blood, which is referred to as the blood
oxygenation level-dependent effect, or BOLD effect [150]. When a brain area
becomes active the blood flow rises, which generates an overall increase
in the BOLD signal (Figure 2.10). The change in blood flow is slower than
neuronal activation, which means the variation in the signal takes a couple
of seconds to reach its peak after neuronal activity. Therefore, unlike EEG or
MEG, fMRI accesses brain activity indirectly, measuring metabolic changes
that appear because of neuronal activations, thanks to the conjunction of an
increase in blood flow and a change in magnetic properties.

The fMRI scanning sessions generate sequences of brain volumes, usually
sampled with a couple of seconds of separation (repetition time, TR). An
experimental session can have hundreds of volumes. The details of the
specific methods for the acquisition of the images are beyond the reach
of this work and can be found elsewhere [151]. It is relevant to note that
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Figure 2.10: Haemodynamic variations by blood flow. A) Origin of the BOLD effect
in the brain. Arterial blood is similar to tissue in terms of magnetic properties.
Deoxygenated blood is paramagnetic which causes inhomogeneities in the magnetic
field, and a decay in the MRI signal. Regions of the brain with higher activation
(blood flow) are more magnetically uniform which increases the MRI signal. B)
Canonical haemodynamic response function (HRF). The peak of the signal indicates
an increase in oxygenated blood flow. After some seconds, the needs of the neuronal
tissue are met, returning the blood flow to homeostatic levels. Time zero in the
plot corresponds to the onset of stimulus or action, which means that the peak of
activation has a couple of seconds of delay with respect to the actual brain activity.
Panel A from [150] (CC license).

the images used in fMRI analysis are mainly of two types: anatomical
images (also known as T1-weighted images) and dynamic functional images
(known as T2*-weighted images). Additionally, fieldmaps images account
for variations in the magnetic field inside the MRI machine at the moment
of scanning and are used to correct these distortions (inhomogeneities in
the field). After the acquisition of the brain volumes, the pre-processing
of images is crucial to allow a consistent and reliable extraction of brain
patterns [152, 153]. In general, the stages included in this process consider:

1. Slice-timing within brain volumes: the brain 3D volumes are acquired
as stacks of 2D images, one slice at a time. Even when the time taken
to acquire a full volume can be in the range of seconds, the internal
displacement and temporal delay can affect the capacity to identify the
desired effects. Slice-timing interpolates information in each slice to
match the timing of a reference slice (e.g., first or mean TR slice) for
each volume.

2. Motion correction across brain volumes: head motion can be a critical
confound in the analysis. The most common strategy is to realign each
volume to a reference (e.g., the mean, first or last brain volume). In
addition, when the subject-level analysis of the signal is performed
using GLM, the motion coordinates extracted from this stage are used
as regressors in the model, to control for potential motion effects.

3. Spatial transformations: given the natural anatomical differences be-
tween human brains, the volumes are transformed from the subject’s
native space to a common normalised space so proper comparison
and integration of the subject’s data can be performed. A brain-space
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commonly used is the Montreal Neurological Institute (MNI) brain
template, which is the average of the anatomical images of many sub-
jects [154]. Complementary steps like skull stripping and segmenting
non-brain areas can be useful to improve the normalisation step.

4. Spatial smoothing: to reduce the noise and boost the signal in the spatial
dimension, brain data points (the volumetric unit, voxels) are averaged
with their neighbours. This step is beneficial for the validity of statistical
tests reducing anatomical differences. However, this can be detrimental
to spatial resolution on eventual brain activity, displacing activation
peaks or extinguishing smaller local but significant activations.

Different software alternatives are available for pre-processing and analy-
sis of brain volumes (e.g., AFNI, BrainVoyager, FSL). In the current work, I
used the Statistical Parametric Mapping (SPM) package ([155]; www.fil.ion.ucl.ac.uk/spm).

2.7.1 Univariate analysis

Once the pre-processing has been completed the search for relevant brain
activations can be performed using different analysis methodologies. In
general lines, there are two main approaches: a univariate and multivariate
analysis. In this section, I will focus on the univariate type, while multivariate
is developed in the following section.

The univariate analysis relates psychological or physical dimensions with
the activation of single brain voxels, assuming they are independent of
their surroundings [156]). The most employed method for the analysis of
task-based fMRI is SPM, which is based on the general linear model (GLM;
[157, 153]). The GLM is expressed as:

Y = Xβ + ε (21)

To formalise the model, relevant onsets or periods in the experimental
time course are convolved with the canonical HRF, which quantifies the esti-
mated BOLD signal in response to the conditions of interest. These estimates
together with confounding factors such as head motion or respiratory signal
are used as independent variables (parameters) in the model. These parame-
ters are joined together in the X matrix (in equation 21) which corresponds
to the design matrix, with β the parameter estimates and ϵ being the error. The
dependent variable in the GLM (Y in equation 21) corresponds to each one
of the voxel time series. In other words, a GLM is proposed for each voxel in-
dependently, estimating the effects of the different parameters on the voxel’s
activity. This allows the estimation of a parametric map that identifies areas
in the brain affected by specific model parameters (e.g., occipital area voxels
are positively modulated by an image onset in a visual experiment). This
analysis is performed separately for each subject, and it is usually known
as the first-level analysis. To make inferences at a group level (second-level
analysis), statistical tests are performed over the first-level results. In SPM,
one-sample, two-sample and paired t-tests together with ANOVA tests are
readily available to compare across subjects’ groups.

2.7.2 Multivariate analysis

The univariate analysis is capable of determining the areas of the brain
involved in the task by measuring repeatedly thousands of locations, but by
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Figure 2.11: Univariate analysis in an auditory task. The onset of sound presentation
(names of animals) was used as a predictor in the GLM model. Voxels presenting a
significant activation at that onset time were selected, which indicates an activation of
the primary auditory cortex. Results of the second level group analysis are presented
overlapped on a high-resolution brain image in the MNI space. For details on this
analysis, please refer to the univariate analysis performed in Chapter 5.

analysing each one of them separately. This approach restricts the findings
to individual brain locations where the differences between task conditions
are sufficiently large to allow discrimination, which many times is not easy
to achieve. However, the range of human neuroimaging can be expanded by
considering full spatial patterns measured simultaneously at many locations,
an approach used in the multivariate analysis [158, 159]. Some advantages
of this approach have been listed [160]:

1. The weak information available in individual locations can be accu-
mulated across many spatial locations. In this way, two areas that
do not contain information on their own could be informative when
considered jointly.

2. In univariate analysis, variance in the brain signal in the spatial dimen-
sion is discarded through pre-processing steps as spatial smoothing.
Methods that use the pattern of activity in multiple areas simultane-
ously can take advantage of this spatial resolution.

3. The standard univariate approach requires multiple repetitions of
events to measure the average differences between conditions and
maximise statistical sensitivity. Multimodal analyses, given the higher
sensitivity, could facilitate more direct estimates of participants’ per-
ceptual or cognitive states.

In other words, the classical univariate approach allows for uncovering
the areas of the brain processing specific stimulus classes, however, it does
not reveal how those regions represent the stimuli [161, 162]. Various method-
ologies have been employed for the analysis of brain patterns, here we focus
on machine learning classifiers [163, 162] and representational similarity
analysis [164, 165].
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2.7.3 Classifiers

Each one of the conditions in fMRI experiments is associated with specific
configurations of brain activity. These multivariate samples of brain activity
can be extracted directly from the unsmoothed MRI volumes or they can
be the result of GLM analysis, encompassing the whole brain or selected
regions of interest (ROI). Each one of these samples can then be assigned
labels that associate it with the condition or category active the moment they
were acquired. For example, the selected categories can be cat or dog, and
the multiple presentations of images in those two conditions will generate
many samples of how the brain reacts to those stimuli (Figure 2.12). The
objective of the classifier is to find a way to separate the categories in the
brain pattern space, estimating a decision boundary [166]. The classification
algorithms that require a labelled organisation of the data are denominated
supervised learning (as opposed to unsupervised learning where no tags
on data are required). The estimation of decision boundary is done using
various methods, for example, linear discriminant analysis (LDA) or support
vector machines (SVM) [167]. These methods estimate a mathematical model
that contains the weights of each voxel to linearly project to a single decision
axis. The estimation of these weights is performed using only a part of the
available labelled samples as a training dataset. LDA estimates projection
weights that maximise within-class to between-class variance. On the other
hand, SVM estimates the weights that define a maximum margin hyperplane,
i.e., it projects the samples to a space where the gap between categories is
maximised. In that way, using that new voxel space the decision boundary
can be defined to generate the best classification.

The remaining part of the samples is used as a test dataset to check
whether the estimated model (i.e., weights and decision boundary) can
generalise the classification to new brain patterns. The proportion of correctly
predicted labels in the test set is called classification accuracy. The process
of partitioning the data in training and test sets in different configurations,
many times, is denominated cross-validation. All these extra considerations
are extremely relevant to avoid overfitting, i.e., the model fits its training data
exactly, which means it will most likely perform poorly on unseen data.

2.7.4 Representational similarity analysis

The decoding analysis points to revealing multivariate explicit information
in neural representations, relying on predefined categories. Representational
models go one step further in describing the representational geometry in
specific areas of the brain, i.e., defining features or conditions represented
in the area, how strongly each one of them is represented (signal-to-noise
ratio) and characterising the similarity between the different conditions [168].
Representational similarity analysis (RSA) describes the relationship between
the experimental conditions estimating how different are their brain patterns
from each other, in other words, how distant they are in representational
space. The RSA approach can be very useful when a one-to-one mapping
cannot be implemented, e.g., when comparing the brain activity between
humans and monkeys, the distinct nature of the signal and anatomy hinders
a direct comparison [161]. However, if the brain patterns are characterised
from the representational perspective, it is possible to set a common ground
for comparison. In other words, RSA does not characterise the patterns in
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Figure 2.12: Multivariate pattern classification. Brain patterns are acquired from the
presentation of different images. In this toy example, 8 voxels are shown to represent
the brain patterns. Two categories of items are relevant for the classification: cat
(A) and dog (B). Each stimulus will have a specific voxel response, which can be
represented in a voxel space (for simplicity, only two voxels are plotted in the 2-D
coordinate system). Multiple repetitions of the stimulus in each category generate
various samples of brain patterns that populate the voxel space. These samples can
be used for supervised binary classification. C) Part of the labelled samples (cat in
red and dog in green) is used as training data, which allows fitting the parameters
necessary to define the decision rule. In this example, a linear decision boundary (for
example, obtained from an SVM) is used to separate the two categories. To assess
the precision of the estimated rule, brain patterns that have not been used previously
in training are categorised. Predicted and true labels are checked to estimate the
accuracy of the classification. The proportion of correct classification can be tested
against chance performance (in this case 0.5 since it is binary classification). Usually,
the inclusion of more voxels tends to improve the accuracy of the classification. The
weights of the (linear) classifier can be tracked to their voxels, indicating which
specific brain voxels were more relevant (i.e., containing more information) to decide
the category. Adapted from [162], with permission Elsevier.

a brain area per se, but the signatures of similarity between the different
representations found in the brain area (Figure 2.13).

The first step in RSA is estimating the activity patterns. For this is
necessary to define a vector of activity amplitudes across response channels
(i.e., in the case of fMRI corresponds to voxels, but it could be neurons or
sites in cell recording) within a region of interest (ROI). Note that patterns
could also be extracted from weights or parameters in computational models,
or even features of behaviour such as reaction time or errors [164]. For
the analysis, the activity pattern typically considered is a spatial pattern,
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although it may also be a spatiotemporal pattern. The pattern associated
with each experimental condition is considered a representation. In the case
of fMRI, the activity estimate for each voxel and condition is usually obtained
from univariate analysis with the design matrix used to model each voxel’s
response based on the event sequence (e.g., each visual stimuli presented in
the experiment) and a linear model of the hemodynamic response.

The second stage considers measuring the activity pattern dissimilarity.
For this purpose, a representational dissimilarity matrix (RDM) for the ROI is
built. The matrix is constructed by pairing the representations of the experi-
mental conditions and calculating the dissimilarity between them. A measure
of activity-pattern dissimilarity that normalises for both the mean level of
activity and the variability of activity is the correlation distance, i.e., 1 minus
the linear correlation between patterns. The diagonal entries in the RDM
are 0 since they reflect the comparisons between identical conditions. The
off-diagonal values indicate the dissimilarity between the activity patterns
associated with two different stimuli/conditions. Therefore, dissimilarities
can be interpreted as distances in the multidimensional response space. The
size of the RDM matrix depends on the number of conditions represented.

Standard neuroscientific studies are mostly focused on the relationship
between stimulus properties and brain activity levels in single cells or brain
regions, also called the first-order isomorphism between stimuli and their
representations. The second-order isomorphism is related to the comparison
among the similarity structures, e.g., comparing the representations of a
series of images by the inferior temporal cortex vs the early visual cortex in
humans (Figure 2.13b, [161]). For this type of analysis, the comparison across
RDMs can be performed. As mentioned above, brain RDMs can be compared
with representational structures obtained from computational models or
other sources. For example, RDMs obtained from the visual cortex could be
compared with simulated retinotopic maps based on banks of Gabor filters
for various spatial frequencies and orientations, or conceptual models that
contain expected similarity between the objects presented in the images. An
alternative distance measure, such as the Euclidean distance, can be used for
comparing dissimilarity matrices.

Further steps in the analysis pipeline consider statistical tests using ran-
domisation measures to verify that the similarities are significant. Visualisa-
tions of the representational structures can be presented as coloured matrices,
dendrograms, or multidimensional scaling figures [165]. Overall, the RSA
approach can be very useful to get insights into the way the brain represents
information across various regions in a wide variety of neuroimaging studies.

2.8 conclusion

In this chapter, I have presented a broad recap of the main experimental
and analysis techniques used in this thesis. Initially, I presented techniques
mainly employed for the analysis of human behaviour, including the decision
processes and visual attention deployment using eye tracking. Drift diffusion
models, signal detection theory and reinforcement learning approaches will
have a central role in the characterization of the decision process. The brain
imaging experiments in this work employ the fMRI technique, therefore, I
supported further details on the fundamentals of the method and the steps
required for the pre-processing and analysis of this data. The experimental
section of this thesis has been separated into three parts: 1) information
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sampling, 2) brain representations, and 3) confidence computation, regarding
the human decision process.

Figure 2.13: Representational similarity analysis. (A) Computation of the RDM for
a single ROI from the brain activity patterns generated for each sensory stimulus.
For each pair of activity patterns, a dissimilarity is computed which corresponds
to a single element in the RDM. RDMs serve as a signature of representation that
can be compared between multiple ROIs in the brain, models, individuals and even
species. The size of the matrix is defined by the number of conditions (N images in
this example). The matrix can be represented as a graph, considering the conditions
as nodes and the distance between them as the dissimilarity value, i.e. the closer the
nodes the more similar the representations in that ROI. (B) RSA allows us to see the
representation geometry in various areas of the brain and check its variation. RDMs
were obtained in a visual human fMRI experiment with multiple images presented
[161]. The images of various objects, plants, animals, and human faces were displayed,
and activity patterns were extracted from the inferior temporal (IT) and early visual
cortex. IT can be seen to represent hierarchically animate and inanimate objects, with
further distinctions between faces and body parts in human and non-human images.
The structure of representation in the early visual cortex can be seen as distinct and
more diffuse across the presented images. Panel A from [165](CC license) and panel
B from [161], with permission from Elsevier.



Part I

I N F O R M AT I O N S A M P L I N G A N D G O A L S I N
H U M A N D E C I S I O N





Whenever we decide, e.g., picking the dessert we will get from the
supermarket, it is likely we will explore the options, looking at them to
evaluate and make our final resolution. Decisions in real life are a dynamic
process where the sampling of evidence informs the future choice. Indeed,
it has been reported that participants tend to allocate attention towards
the alternative they will eventually choose [33]. This observation has been
commonly interpreted as attention being allocated to items with higher
hedonic reward in value-based choices or targeting the presence of perceptual
evidence. However, these studies assume choices where the participants
complete a single task, conflating value/perceptual evidence and the goal of
the experiment. In the study presented in this part, I show using behavioural
testing, eye-tracking and computational modelling that attention modulates
the integration of goal-relevant evidence. Even more, the accumulation
of evidence that leads to choice also reflects the influence of goals. These
findings support a more general and flexible deliberation process at the
service of the goal, and not simply relying on fixed features of the stimuli.
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3

V I S UA L AT T E N T I O N M O D U L AT E S T H E I N T E G R AT I O N
O F G O A L - R E L E VA N T E V I D E N C E A N D N O T VA L U E

3.1 summary

When choosing between options, such as food items presented in plain view,
people tend to choose the option they spend longer looking at. The prevailing
interpretation is that visual attention increases value. However, in previous
studies, ‘value’ was coupled to a behavioural goal, since subjects had to
choose the item they preferred. This makes it impossible to discern if visual
attention influences value, or, instead, if attention modulates the information
most relevant to the goal of the decision-maker. Here, we present the results
of two independent studies—a perceptual and a value-based task—that
allow us to decouple value from goal-relevant information using specific task
framing. Combining psychophysics with computational modelling, we show
that, contrary to the current interpretation, attention does not boost value,
but instead it modulates goal-relevant information. This work provides a
novel and more general mechanism by which attention interacts with choice.

3.2 introduction

Attention is thought to play a central role, in prioritising and enhancing
which information is accessed during the decision-making process. How
attention interacts with value-based choice has been investigated in psychol-
ogy and neuroscience [33, 34, 169, 170, 171, 57, 121, 172, 173, 35] and this
question is at the core of the theory of rational inattention in economics
[174, 175, 176, 177].

Robust empirical evidence has shown that people tend to look for longer
at the options with higher values [178, 173, 171] and that they tend to
choose the option they pay more visual attention to [33, 34, 57, 169, 35]. The
most common interpretation is that attention is allocated to items based
on their value and that looking or attending to an option boosts its value,
either by amplifying it [33, 34, 179] or by shifting it upwards by a constant
amount [169]. This intuition has been elegantly formalised using models
of sequential sampling. Particularly, the attentional drift-diffusion model
(aDDM), which considers that visual attention boosts the drift rate of the
stochastic accumulation processes [33]. More recently, this same model has
been also used to study the role of attention in the accumulation of perceptual
information [121]. These lines of investigation have been extremely fruitful,
as they have provided an elegant algorithmic description of the interplay
between attention and choice.

As a consequence of this development, a predominant assumption in
the field of neuroeconomics has become that attention modulates the values
of the alternatives [179]. However, this view overlooks the fact that in the
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majority of these studies, value is coupled to the agents’ behavioural goal,
that is, participants had to choose the item they found more rewarding.
Some recent studies have called into question this assumption and have
hinted towards a flexible role of attention in sampling goal-relevant options
[180, 172]. Even further, recent studies have shown that the ‘value networks’
in the brain could be tracking not purely reward value, but goal-congruent
information [98, 181]. Considering all this, our study aimed to understand
in more detail the role of goals on visual attention during both value-based
and perceptual decisions: we aim to test the hypothesis that attention acts
flexibly upon the accumulation of goal-relevant information and to examine
the effects on the mechanism of preference formation.

Our experimental design decoupled reward value from choice using a
simple task-framing manipulation. In the eye-tracking part of our value-
based experiment, participants were asked to choose between different pairs
of snacks. We used two frame manipulations: like and dislike. In the like frame,
they had to indicate which snack they would like to consume at the end of
the experiment; this was consistent with the standard tasks used in value-
based decision studies. Whereas in the dislike frame, subjects had to indicate
the snack that they would prefer not to eat. In the latter frame, the value
was distinct from the behavioural goal of which item to select. In fact, in
the dislike frame participants needed to consider the ‘anti-value’ of the item
to choose the one to reject.

To anticipate our results, in the like frame condition we replicated the typ-
ical gaze-boosting effect: participants looked for longer at the item they were
about to choose – the item they deemed most valuable. In the dislike frame,
however, participants looked for longer at the item that they then chose
to eliminate, that is, the least valuable item. This means that agents paid
more attention to the option they selected in the task, not to the option to
which they deemed more valuable or wanted to consume. This suggests that
attention did not boost value but rather it was used to gather task-relevant
information.

To understand the mechanism via which attention interacted with value
in both frames, we used a dynamic accumulation model, which allowed us
to account for the preference formation process and its dependency on task
variables (values of the options). To test the generality of our findings, we
also conducted a new perceptual decision-making experiment with a new
set of participants. In this perceptual task, participants were asked to choose
between two circles filled with dots. In some blocks, they had to indicate
the circle with more dots – most frame; in others, the circle with fewer dots
– fewest frame. In this second study, we replicated all the effects of the first,
value-based one, corroborating the hypothesis of a domain-general role for
attention in modulating goal-relevant information driving choice.

This work questions the dominant view in neuroeconomics about the
relationship between attention and value, showing that attention does not
boost value per se but instead modulates goal-relevant information.
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3.3 methods

3.3.1 Procedure

3.3.1.1 Value experiment

At the beginning of this experiment, participants were asked to report on
a scale from £0 to £3 the maximum they would be willing to pay for each
of the 60 snack food items. They were informed that this bid would allow
them to purchase a snack at the end of the experiment, using the BDM [182],
which gave them incentives to report their true valuation. Participants were
asked to fast for 4 hr before the experiment, expecting they would be hungry
and willing to spend money to buy a snack.

After the bid process, participants completed the choice task: in each
trial, they were asked to choose between two snack items, displayed on-
screen in equidistant boxes to the left and right of the centre of the screen
(Figure 3.1A). After each binary choice, participants also rated their subjective
level of confidence in their choice (see chapter 7 for detailed results on this
item). Pairs were selected using the value ratings given in the bidding task:
using a median split, each item was categorised as high- or low-value for
the agent; these were then combined to produce 15 high-value, 15 low-
value, and 30 mixed pairs, for a total of 60 pairs tailored to the participant’s
preferences. Each pair was presented twice, inverting the position to have a
counterbalanced item presentation.

The key aspect of our experimental setting is that all participants executed
the choice process under two framing conditions: (1) a like frame, in which
participants were asked to select the item that they liked the most, that is,
the snack that they would prefer to eat at the end of the experiment and (2)
a dislike frame in which participants were asked to select the item that they
liked the least, knowing that this is tantamount to choosing the other item
for consumption at the end of the experiment. See Figure 3.1A for a diagram
of the task.

After four practice trials, participants performed a total of 6 blocks of 40

trials (240 trials in total). Like and dislike frames were presented in alternate
blocks and the order was counterbalanced across participants (120 trials per
frame). An icon in the top-left corner of the screen (‘thumbs up’ for like and
‘stop sign’ for dislike) reminded participants of the choice they were required
to make; this was also announced by the investigator at the beginning of
every block. The last pair in a block would not be first in the subsequent
block.

Participants’ eye movements were recorded throughout the choice task
and the presentation of food items was gaze-contingent: participants could
only see one item at a time depending on which box they looked at; following
[57], this was done to reduce the risk that participant, while gazing one item,
would still look at the other item in their visual periphery.

Once all tasks were completed, one trial was randomly selected from the
choice task. The BDM bid value of the preferred item (the chosen one in
the like frame and the unchosen one in the dislike frame) was compared with
a randomly generated number between £0 and £3. If the bid was higher
than the BDM generated value, an amount equivalent to the BDM value was
subtracted from their £20 payment and the participant received the food
item. If the bid was lower than the generated value, participants were paid
£20 for their time and did not receive any snacks. In either case, participants
were required to stay in the testing room for an extra hour and were unable
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to eat any food during this time other than the food bought in the auction.
Participants were made aware of the whole procedure before the experiment
began.

3.3.1.2 Perceptual experiment

The Perceptual Experiment had a design similar to the one implemented in
the Value Experiment, except that alternatives were visual stimuli instead of
food items. In this task, participants had to choose between two circles filled
with dots (for a schematic diagram see Figure 3.1), again in two frames. In
the most frame, they had to pick the one with more dots; and the one with
fewer dots in the fewest frame. The total number of dots presented in the
circles could have three numerosity levels (=50, 80 and 110 dots). For each
pair in those three levels, the dot difference between the circles varied in 10

percentage levels (ranging from 2% to 20% with 2% steps). To increase the
difficulty of the task, in addition to the target dots (blue-green coloured),
distractor dots (orange coloured) were also shown. The number of distractor
dots was 80% of that of target dots (40, 64, and 88 for the three numerosity
levels, respectively). Pairs were presented twice and counterbalanced for
item presentation. After 40 practice trials (20 initial trials with feedback, last
20 without), participants completed 3 blocks of 40 trials in the most frame
and the same number in the fewest frame; they faced blocks with alternating
frames, with a presentation order counterbalanced across participants. On
the top left side of the screen, a message indicating Most or Fewest reminded
participants of the current frame. Participants reported their confidence level
in making the correct choice at the end of each trial (see chapter 7 for the
confidence analysis). As in the previous experiment, the presentation of each
circle was gaze contingent. Eye tracking information was recorded for each
trial. Participants received £7.5 for 1 hr in this study.

Both tasks were programmed using Experiment Builder version 2.1.140

(SR Research).

3.3.2 Exclusion criteria

3.3.2.1 Value experiment

We excluded individuals that met any of the following criteria:

1. Participants used less than 25% of the BDM value scale.

2. Participants gave exactly the same BDM value for more than 50% of
the items.

3. Participants used less than 25% of the choice confidence scales.

4. Participants gave exactly the same confidence rating for more than 50%
of their choices.

5. Participants did not comply with the requirements of the experiment
(i.e., participants that consistently choose the preferred item in dis-
like frame or their average blink time is over 15% of the duration
of the trials).

3.3.2.2 Perceptual experiment

Since for the Perceptual Experiment the assessment of the value scale is
irrelevant, we excluded participants according to criteria 3, 4, and 5.
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3.3.3 Participants

3.3.3.1 Value experiment

Forty volunteers gave their informed consent to take part in this research.
Of these, 31 passed the exclusion criteria and were included in the analysis
(16 females, 17 males, aged 20–54, mean age of 28.8). One participant was
excluded for using less than 25% of the bidding scale (criteria 1). A second
participant was excluded according to criteria 2 as they frequently gave the
same bid value. A further four participants were excluded under criteria 4.
Three participants were excluded due to criteria 5. In the latter case, one
participant’s eye-tracking data showed the highest number of blink events
and made choices without fixating on any of the items; the other two did not
comply with the frame manipulation. To ensure familiarity with the snack
items, all the participants in the study had lived in the UK for 1 year or more
(average 17 years).

3.3.3.2 Perceptual experiment

Forty volunteers were recruited for the second experiment. Thirty-two
participants (22 females, 10 males, aged 19–50, mean age of 26.03) were
included in the behavioural and regression analyses. Three participants were
excluded due to the repetition of the confidence rating (criteria 4). Five
participants were removed for criteria 5: four of them had performance close
to chance level or did not follow the frame modification, and one participant
presented difficulties with eye-tracking. Due to instability in parameter
estimation (problem of MCMC convergence), four additional participants
were removed from the GLAM modelling analysis.

All participants signed a consent form, and both studies were done
following the approval given by the University College London, Division of
Psychology and Language Sciences ethics committee.

3.3.4 Eye-tracking

3.3.4.1 Value and perceptual experiments

An Eyelink 1000 eye-tracker (SR Research) was used to collect the visual
data. Left eye movements were sampled at 500 Hz. Participants rested their
chin over a head-mount in front of the screen. The display resolution was
1024 × 768 pixels. To standardise the environmental setting and the level
of detectability, the lighting was monitored in the room using a dimmer
lamp and light intensity was maintained at 4 ± 0.5 lx at the position of the
head-mount when the screen was black.

Eye-tracking data were analysed initially using Data Viewer (SR Research),
from which reports were extracted containing details of eye movements. We
defined two interest areas (IA) for left and right alternatives: two squares
of 350 × 350 pixels in the Value Experiment and two circles of 170 pixels
of radius for the Perceptual Experiment. The data extracted from the eye-
tracker were taken between the appearance of the elements on the screen
(snack items or circle with dots in experiments 1 and 2, respectively) and
the choice button press (confidence report period was not considered for eye
data analysis).

The time participants spent fixating on each IA was defined as the
dwelling time (DT). From it, we derived a difference in dwelling time (∆DT)
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for each trial by subtracting DT of the right IA minus the DT of the left IA.
Starting and ending IA of each saccade were recorded. This information was
used to determine the number of times participants alternated their gaze
between IAs, that is, ‘gaze shifts’. The total number of gaze shifts between
IAs was extracted for each trial, producing the gaze shift frequency (GSF)
variable.

3.3.5 Data analysis: behavioural data

during like/dislike and most/fewest frames were compared using statistical tests
available in SciPy. Scikit-learn toolbox in Python was used to perform logis-
tic regressions on choice data. Fixation time series analysis was performed
following [180] methodology. We segmented the time series of all the trials in
samples of 10 ms. We fixed all the trial time series to the beginning of the trial
when the participant could start exploring the gaze-contingent alternatives.
We considered an analysis window of 2000 ms after the presentation of stim-
uli for all the trials. Please note that not all the trials had the same duration
and no temporal normalisation was performed in this analysis. For each time
sample, we obtained the gaze position and the difference in evidence (i.e.
∆Value or ∆Dots) for all trials across participants and then Pearson correla-
tion was calculated. Permutation testing was used to assess the difference
between the time series in like/dislike and most/fewest frames. Instantaneous
fixations (across trials and frames) were shuffled 200 times to create a null
distribution of the difference in correlation coefficients between frames. False
discovery rate (FDR) was used to correct for multiple tests the p-values
obtained from the permutation test (α ≤ 0.01). All the hierarchical analy-
ses were performed using lme4 package [183] for R integrated in a Jupyter
notebook using the rpy2 package (https://rpy2.readthedocs.io/en/latest/).
For choice models, we predicted the log odds ratio of selecting the item
appearing at the right.

3.3.6 Data analysis: attentional model - GLAM

To get further insight into potential variations in the evidence accumulation
process due to the change in frames we used the Gaze-weighted Linear
Accumulator Model (GLAM) developed by [35]. GLAM is part of the family
of linear stochastic race models in which different alternatives (i, i.e. left
or right) accumulate evidence (Ei) until a decision threshold is reached by
one of them, determining the chosen alternative. The accumulator for an
individual option was described by the following expression:

Ei (t) = Ei (t− 1) + νRi + ϵt with ϵt ∼ N(0, σ) and Ei(t = 0) = 0(1)

With a drift term (ν) controlling the speed of relative evidence (Ri) in-
tegration and i.i.d. noise terms with a normal distribution (zero-centred
and standard deviation σ). Ri was a term that expressed the amount of
evidence that was accumulated for item i at each time point t. This term was
calculated as follows. We denoted by gi, the relative gaze term, calculated as
the proportion of time that participants observed item i:

gi =
DTi

DT1 + DT2
(2)
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with DT as the dwelling time for item i during an individual trial. Let
ri denoted the value for item i reported during the initial stage of the
experiment. We defined the average absolute evidence for each item (Ai)
during a trial:

Ai = giri + (1− gi)γri(3)

This formulation considered a multiplicative effect of the attentional
component over the item value, capturing different rates of integration
when the participant is observing item i or not (unbiased and biased states,
respectively). The parameter γ was the gaze bias parameter: it controlled
the weight that the attentional component had in determining absolute
evidence. [35] interpret γ as follows: when γ = 1, bias and unbiased states
have no difference (i.e. the same r is added to the average absolute evidence
regardless the item is attended or not); when γ <1, the absolute evidence is
discounted for the biased condition; when γ <0, there is a leak of evidence
when the item is not fixated. Following [35], in our analysis, we allowed γ to
take negative values, but our results did not change if γ is restricted to [0, 1].
Finally, the relative evidence of item i, Ri

*, was given by:

R∗i = Ai −maxj(Aj) = Ai − Aj → R∗right = −R∗left(4)

Since our experiment considered a binary choice, Ri
* from the original

formulation of the model [35], proposed for more than two alternatives,
was reduced to subtract the average absolute evidence of the other item.
Therefore, for the binary case, the Ri

* for one item was the additive inverse
of the other, for example, if the left item had the lower value, we had Rleft

*<0

and Rright
*>0. Additionally, in their proposal for GLAM, [35] noted that

Ri
* range depends on the values that the participant reported, for example,

evidence accumulation may appear smaller if the participant valued all the
items similarly, since Ri

* may be lower in magnitude. This may not represent
the actual evidence accumulation process since participants could be sensitive
to marginal differences in relative evidence. To account for both issues, a
logistic transformation was applied over Ri

* using a scaling parameter τ:

Ri =
1

1 + e−τR∗i
(5)

In this case, Ri would always be positive and the magnitude of the
difference between Rleft and Rright was controlled by τ. For example, higher τ
would imply a bigger difference in relative evidence (and hence accumulation
rate) between the left and right items. In the case that τ = 0 the participant
will not present any sensitivity to differences in relative evidence.

Given that Ri represents an average of the relative evidence across the
entire trial, the drift rate in Ei was assumed to be constant, which enabled
the use of an analytical solution for the passage of time density. Unlike
aDDM [33], GLAM does not deal with the dynamics of the attentional
allocation process in choice. Details of these expressions are available at [35].
In summary, we had four free parameters in the GLAM: ν (drift term), γ
(gaze bias), τ (evidence scaling), and σ (normally distributed noise standard
deviation).

The model fit for GLAM was implemented at a participant level in a
Bayesian framework using PyMC3 [184]. Uniform priors were used for all
the parameters:
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v ∼ Uni f orm(1−10, 0.01)

γ ∼ Uni f orm(−1, 1)

σ ∼ Uni f orm(1−10, 5)

τ ∼ Uni f orm(0, 5)

3.3.6.1 Value experiment

We fitted the model for each participant and for like and dislike frames,
separately. To model participants’ behaviour in the like frame, we used
the RTs and choices as input for GLAM, alongside BDM bid values and
relative gaze for left and right alternatives in each trial. The original GLAM
formulation (as presented above) assumed that evidence was accumulated
in line with the preference value of a particular item (i.e., ‘how much I like
this item’). When information about visual attention was included in the
model, the multiplicative model in GLAM assumed that attention boosts
the evidence accumulation already defined by value. We proposed that
evidence accumulation is a flexible process in which attention is attracted
to items based on the match between their value and task-goal (accept or
reject) and not based on value alone, as most of the previous studies have
assumed. Since in the dislike frame the item with the lower value becomes
relevant to fulfil the task, we considered the opposite value of the items
(ri,dislike = 3 - ri,like, e.g. item with value 3, the maximum value, becomes
value 0) as input for GLAM fit. For both conditions, model fit was performed
only on even-numbered trials using Markov-Chain-Monte-Carlo sampling,
using implementation for No-U-Turn-Sampler (NUTS), four chains were
sampled, 1000 tuning samples were used, 2000 posterior samples to estimate
the model parameters. The convergence was diagnosed using the Gelman-
Rubin statistic (|R̂ – 1|<0.05) and by corroborating that the effective sample
size (ESS) was high (ESS >100) for the four parameters (ν, γ, σ, and τ).
Considering all the individual models, we found divergences in less than
3% of the estimated parameters. Model comparison was performed using
Watanabe-Akaike Information Criterion (WAIC) scores available in PyMC3,
calculated for each individual participant fit.

Pointing to check if the model replicates the behavioural effects observed
in the data [185], we simulated choice and response time (RT) using par-
ticipant’s odd trials, each one repeated 50 times. For each trial, value and
relative gaze for left and right items were used together with the individual
estimated parameters. Random choice and RT (within a range of the mini-
mum and maximum RT observed for each participant) were set for 5% of
the simulations, replicating the contaminating process included in the model
as described by [35].

3.3.6.2 Perceptual experiment

In the Perceptual Experiment, we repeated the same GLAM analysis done
in the Value Experiment. Due to instabilities in the parameters’ fit for some
participants, we excluded four extra participants. Twenty-eight participants
were included in this analysis. We removed outlier trials, that is, trials with
RT higher than 3 standard deviations (within participant) or higher than 20
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s to fit the GLAM model. Overall less than 2% of the trials were removed.
For the most frame, relative gaze and perceptual evidence (number of dots)
for each alternative were used to fit choice and RT. Similarly to the dislike
case, we reassigned the perceptual evidence in the fewest frame (ri,fewest = 133

- ri,most+ 40 , considering that 133 is the higher number of dots presented
and 40 dots is the minimum) so that the options with higher perceptual
evidence in the most frame have the lower evidence in the fewest frame. The
same MCMC parameters used to fit the model for each participant in the
Value Experiment were used in this case (again, only even-numbered trials
were used to fit the model). As in the Value Experiment, model convergence
was assessed using R̂ and ESS. Overall, we observed divergences in less
than 2% of parameter estimations across participants. Behavioural out-of-
sample simulations (using the odd-numbered trials) and balance of evidence
simulations (33,600 trials simulated in the Perceptual Experiment) were
considered in this analysis.

3.4 results

In our first experiment, hungry participants (n = 31) made binary choices
between snacks in one of two task-frames, like and dislike. In the like frame,
participants had to report the item they would prefer to eat; in the dislike
frame, they chose the item they wanted to avoid eating (Figure 3.1A). After
each choice, participants reported their confidence in having made a good
choice [66, 57]. At the beginning of the experiment, participants reported the
subjective value of individual items using a standard incentive-compatible
Becker-DeGroot-Marschak mechanism (BDM; see Materials and methods).

Our second experiment was done to test whether the results observed
in value-based decisions could be generalised to perceptual decisions. A
different group of participants (n = 32) made binary choices between two
circles containing a variable number of dots (Figure 3.1D). In the most frame,
participants reported the circle containing the higher number of dots; in the
fewest frame, the one with the lower. As in the Value Experiment, at the end
of each trial participants reported their confidence in their choice.

3.4.1 The effect of attention on choice

3.4.1.1 Value experiment

Our results confirmed that participants understood the task and chose higher
value items in the like frame and lower value items in the dislike frame (Figure
3.1B,C). This effect was modulated by confidence (Figure 3.1B) similarly
to previous studies [66, 57, 58]. For a direct comparison of the differences
between the goal manipulations in the two tasks (Value and Perceptual) see
[186].

We then tested how attention interacts with choice by examining the eye-
tracking variables. Our frame manipulation, which orthogonalised choice
and valuation, allowed us to distinguish between two competing hypotheses.
The first hypothesis, currently dominant in the field, is that visual attention
is always attracted to high values items and that it facilitates their choice.
The alternative hypothesis is that attention is attracted to items whose value
matches the goal of the task. These two hypotheses make starkly different
experimental predictions in our task. According to the first one, the gaze will
mostly be allocated to the more valuable item independently of the frame.



68 chapter 3 : attention in goal-relevant evidence integration

Figure 3.1: Task and behavioural results. Value-based decision task (A). Participants
choose between two food items presented in an eye-contingent way. Before the choice
stage, participants reported the amount of money they were willing to bid to eat that
snack. In the like frame (top) participants select the item they want to consume at the
end of the experiment. In the dislike frame (bottom) participants choose the opposite,
the item they would prefer to avoid. After each choice participants reported their
level of confidence. (B) After a median split for choice confidence, a logistic regression
was calculated for the probability of choosing the right-hand item depending on the
difference in value (ValueRight– ValueLeft) for like (top) and dislike (bottom) framing
conditions. The logistic curve calculated from the high confidence trials is steeper,
indicating an increase in accuracy. (C) The slope of logistic regressions predicting
choice for each participant, depending on the frame. The shift in the sign of the slope
indicates that participants are correctly modifying their choices depending on the
frame. Perceptual decision task (D) Participants have to choose between two circles
containing dots, also presented eye-contingently. In the most frame (top), participants
select the circle with more white dots. In the fewest frame (bottom), they choose the
circle with the lower number of white dots. Distractor dots (orange) are included in
both frames to increase the difficulty of the task. Confidence is reported at the end
of each choice. We obtained a similar pattern of results to the one observed in the
Value Experiments in terms of probability of choice (E) and the flip in the slope of the
choice logistic model between the most and fewest frames (F). Reprinted from [186],
eLife Sciences Publications.

The second hypothesis instead predicts that in the like frame participants
will look more at the more valuable item, while this pattern would reverse
in the dislike frame, with attention mostly allocated to the least valuable
item. In other words, according to this second hypothesis, visual attention
should predict choice (and the match between value and goal) and not value,
independently of the frame manipulation.

Our data strongly supported the second hypothesis because we found
participants preferentially gaze (Figure 3.2A) at the higher value option
during like (t(30) = 7.56, p<0.001) and the lower value option during dislike
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frame (t(30) = -4.99, p<0.001). From a hierarchical logistic regression analysis
predicting choice (Figure 3.2B), the difference between the time participants
spent observing the right over left item (∆DT) was a positive predictor of
choice both in like (z = 6.448, p<0.001) and dislike (z = 6.750, p<0.001) frames.
This means that participants looked for longer at the item that better fits the
frame and not at the item with the highest value. Notably, the magnitude
of this effect was slightly lower in the dislike case (t(30) = 2.31, p<0.05). In
Figure 3.2B are also plotted the predictors of the other variables on choice
from the best fitting model.

Figure 3.2: Attention and choice in Value and Perceptual Experiments. (A) Gaze
allocation time depends on the frame: while visual fixations in the like frame go pref-
erentially to the item with a higher value (top), during the dislike frame participants
look for longer at the item with a lower value (bottom). Dots in the bar plot indicate
participants’ average gaze time across trials for high and low value items. Time is
expressed as the percentage of trial time spent looking at the item. Similar results
were found for gaze distribution in the Perceptual Experiment (C) participants gaze
at the circle with a higher number of dots in the most frame and the circle with a
lower number of dots in the fewest frame. Hierarchical logistic modelling of choice
(probability of choosing the right item) in Value (B) and Perceptual (D) Experiments,
shows that participants looked for longer (∆DT) at the item they chose in both frames.
All predictors are z-scored at the participant level. In both regression plots, bars de-
pict the fixed-effects and dots the mixed-effects of the regression. Error bars show the
95% confidence interval for the fixed effect. In Value Experiment: ∆Value: difference
in value between the two items (ValueRight– ValueLeft); RT: reaction time; ΣValue:
summed value of both items; ∆DT: difference in dwell time (DTRight– DTLeft); Conf:
confidence. In Perceptual Experiment: ∆Dots: difference in dots between the two
circles (DotsRight– DotsLeft); ΣDots: summed number of dots between both circles.
***p<0.001, **p<0.01, *p<0.05. Reprinted from [186], eLife Sciences Publications.
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3.4.1.2 Perceptual experiment

We then analysed the effect of attention on choice in the perceptual case to
test the generality of our findings. As in the Value Experiment, our data
confirmed that participants did not have issues in choosing the circle with
more dots in the most frame and the one with the least amount of dots in the
fewest frame (Figure 3.1D,F). Furthermore, as in the Value Experiment and
many other previous findings [66, 57], confidence modulated the accuracy of
their decisions (Figure 3.1E). Critically for our main hypothesis, we found
that participants’ gaze was preferentially allocated to the relevant option in
each frame (Figure 3.2C): they spent more time observing the circle with
more dots during most frame (t(31)=13.85, p<0.001) and the one with less dots
during fewest frame (t(31)=-10.88, p<0.001). ∆DT was a positive predictor
of choice (Figure 3.2D) in most (z = 10.249, p<0.001), and fewest (z = 10.449,
p<0.001) frames. Contrary to the results in the Value Experiment in which the
effect of ∆DT on choice was slightly more marked in the like condition (Figure
3.2B), in the Perceptual Study, the effect of ∆DT was the opposite: ∆DT had
a higher effect in the fewest frame (∆DTMost-Few: t(31)=-2.17, p<0.05)(Figure
3.2D). However, and most importantly, in both studies ∆DT was a robust
positive predictor of choice in both frame manipulations. To summarise,
these results show that in the context of a simple perceptual task, visual
attention also has a specific effect in modulating information processing in a
goal-directed manner: subjects spend more time fixating on the option they
will select, not necessarily the option with the highest number of dots.

In both Value and Perceptual Experiments, the most parsimonious models
were reported in the manuscript and in Figure 3.2B and D. For a full model
comparison and more details on the choice models please check [186].

3.4.2 Fixations effects in choice

An important prediction of attentional accumulation models is that the
chosen item is generally fixated upon last (unless that item is much worse
than the other alternative), with the magnitude of this effect related to the
difference in value between the alternatives. This feature of the decision
has been consistently replicated in various previous studies [33, 34, 187].
Therefore, we tested how the last fixation was modulated by the frame
manipulation.

3.4.2.1 Value experiment

In the Value Experiment in both frames, we replicated the last fixation effect
and its modulation by the value difference between the last fixated option
and the other one (Figure 3.3A). In the like frame, the probability of choosing
the last item fixated upon increases when the value of the last item is higher,
as is shown by the positive sign of the slope of the logistic curve (mean
βLike = 0.922). Crucially, during the dislike frame the opposite effect was
found: the probability of choosing the last seen option increases when the
value of the non-chosen item is higher, seen from the negative slope of the
curve (mean βDislike = −0.951; ∆βLike-Dislike: t(30)=7.963, p<0.001).

3.4.2.2 Perceptual experiment

We observed the same pattern of results that in the Value Experiment (Figure
3.3B). In the most frame, it was more probable that the last fixation was on
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Figure 3.3: Fixation effects on the chosen item. Last fixation effects: (A) in the
Value Experiment, a logistic regression was calculated for the probability the last
fixation is on the chosen items (P(LastFix = Chosen)) depending on the difference
in value of the item last fixated upon and the alternative item. As reported in
previous studies, in like frame, we find it is more probable that the item last fixated
upon will be chosen when the value of that item is relatively higher. In line with
the hypothesis that goal-relevant evidence, and not value, is being integrated to
make the decision, during the dislike frame the effect shows the opposite pattern:
P(LastFix = Chosen) is higher when the value of the item last fixated on is lower,
that is, the item fixated on is more relevant given the frame. (B) A similar analysis in
the Perceptual Experiment mirrors the results in the Value Experiment with a flip
in the effect between most and fewest frames. Lines represent the model predictions
and dots are the data binned across all participants. ∆Value and ∆Dots measures are
z-scored at the participant level. Gaze preference in time: (C) Pearson correlation
between gaze position and difference in value (∆Value) was calculated for each time
point during the first 2 s of the trials. In the Value Experiment, after an initial phase
of random exploration, fixations are positively correlated with the high value item
in like frame, while this effect is the opposite for dislike frame, that is, fixations are
directed to the low value item. (D) In the Perceptual Experiment, a similar pattern of
goal-relevant fixations emerges. Lines in both figures correspond to the time point
correlation considering all trials and participants. The shaded area corresponds to
the standard error. The black line indicates time points with statistically significant
differences between frames, resulting from a permutation test (p-value<0.01 for at
least 6 time-bins, 60 ms). Correction for multiple comparisons was performed using
FDR, α ≤ 0.01.Reprinted f rom[186], eLi f eSciencesPublications.

the chosen item when the fixated circle had a higher number of dots (mean
βMost = 1.581). In the fewest frame, the effect flipped: it was more likely that
the last circle seen was chosen when it had fewer dots (mean βFew = −0.944;
∆βMost-Few: t(31)=3.727, p<0.001).
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The previous set of analyses shows that the last fixation is modulated
by the difference in evidence according to the goal that the participant is
set to achieve. However, since the last fixation is in general followed by the
participant response, one could suspect that the goal-dependent modulation
of attention (i.e., ∆DT) we identified in our choice regression analysis (Figure
3.2) is entirely driven by the final fixation. This would be problematic since
one would have similar results to the one presented in Figure 3.2 even if
participants’ pattern of attention is not modulated by the goal (i.e., attention
is directed in both frames to the most valuable item) or even if the pattern of
fixation, before the last fixation, is random. To control for this possibility, we
performed a series of further analyses:

First of all, we repeated the analysis presented in the previous section
(hierarchical choice regression – Figure 3.2), removing the last two fixations
when calculating the ∆DT. Note that we removed the last two fixations and
not just the last one to avoid statistical artefacts (i.e. since the final fixation
is mostly directed towards the chosen item there would be an increased
probability that the second to the last fixation is on the unchosen item).
We found that once removed the last two fixations the pattern of results is
unchanged (please see [186] for details).

Second, we specifically investigated the middle fixations. Previous studies
[33, 34, 121] have reported that middle fixations duration increases when
the difference in value ratings (or perceptual evidence) of the fixated minus
unfixated item increases. We replicated this result for our like and most
frames but critically the effect was reversed in dislike and fewest frames (i.e.
middle fixations durations decreased when the relative value of the fixated
item was higher). The results suggesting that the goal-relevant modulation
of attention affects also the middle fixations is presented in [186].

Finally, we investigated in more detail how the relation between atten-
tional allocation and difference in value or perceptual evidence changed over
time in the context of the goal manipulation. We calculated the Pearson
correlation between fixation position (0: left, 1:right) and the difference in
evidence (i.e. ∆Value or ∆Dots, in both cases right – left item) at different
time points (Figure 3.3C). We observed that after an initial phase in which
there was no clear gaze preference for any of the items (note that given the
gaze-contingent design participants must explore both alternatives), fixations
were correlated with the frame-relevant item: during like frame, fixations
positions were positively correlated with ∆Value, that is the fixations were
directed towards the item with higher value; during dislike frame the be-
haviour was the opposite: fixations were negatively correlated with ∆Value,
indicating a preference for the option with a lower value. Note that these
results are in line with the ones reported by [180]. We see a very similar
pattern of results in the Perceptual Experiment too (Figure 3.3D).

3.4.3 Attentional model: GLAM

To gain further insights into the dynamic of the information accumulation
process, we modelled the data from both experiments by adapting a Gaze-
weighted Linear Accumulator Model (GLAM) recently developed by [35].
The GLAM belongs to the family of race models and approximates the aDDM
model [33, 34] in which the dynamic aspect is discarded, favouring a more
efficient estimation of the parameters. This model was chosen since, unlike
the aDDM, it allowed us to test the prediction of the confidence measures
as the balance of evidence [124, 23, 66]. Crucially, in both experiments,
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we used goal-relevant evidence (not the value or the number of dots) to
fit the models in the dislike and fewest frames (for further details see the
Materials and methods Attentional Model: Glam section). For further details
on the modelling results on Confidence, please refer to Chapter 7.

3.4.3.1 Parameter fit and simulations

3.4.3.1.1 Value experiment

The simulations estimated with the parameters fitted for like and dislike
frames data (even-trials) reproduced the behaviour observed in the data
not used to fit the model (odd-trials). In both like and dislike frames, the
model replicated the observed decrease of RT when |∆Value| is high, that is,
the increase in speed of response in easier trials (bigger value difference).
The RT simulated by the models significantly correlated with the RT values
observed in participants’ odd-numbered trials (Like: r(29)=0.90, p<0.001;
Dislike: r(29)=0.89, p<0.001) (Figure 3.4A). In the like frame, the model also
correctly predicted a higher probability of choosing the right item when
∆Value is higher. In the dislike frame, the model captured the change in the
task goal and predicted that the selection of the right item will occur when
-∆Value is higher, that is when the value of the left item is higher. Overall, in
both frames, the observed and predicted probabilities of choosing the most
valuable item were significantly correlated (Like: r(29)=0.80, p<0.001; Dislike:
r(29)=0.79, p<0.001) (Figure 3.4B).

In both frames, the models also predicted choice depending on the
difference in gaze (∆Gaze = gright – gleft), that is, the probability of choosing
the right item increases when the time spent observing that item is higher.
However, in this case, we cannot say if gaze allocation itself is predicting
choice if we do not account for the effect of |∆Value|. To account for the
relationship between choice and gaze, we used a measure devised by [35],
‘gaze influence’. Gaze influence is calculated by taking the actual choice (1
or 0 for right or left choice, respectively) and subtracting the probability of
choosing the right item given by a logistic regression for ∆Value calculated
from actual behaviour. The averaged ‘residual’ choice probability indicates
the existence of a positive or negative gaze advantage. Then, we compared
the gaze influence predicted by GLAM with the empirical one observed for
each participant. As in [35], most of the participants had a positive gaze
influence and it was properly predicted by the model in both frames (Like:
r(29)=0.68, p<0.001; Dislike: r(29)=0.63, p<0.001) (Figure 3.4C).

3.4.3.1.2 Perceptual experiment

As in the Value Experiment, we fitted the GLAM to the data and we con-
ducted model simulations. Again, these simulations showed that we could
recover most of the behavioural patterns observed in participants. We repli-
cated the relationship between RT and |∆Dots| (Most: r(26)=0.97, p<0.001;
Fewest: r(26)=0.98, p<0.001) (Figure 3.4D). As in the value-based experiment,
the model also predicted a higher probability of choosing the right-hand
item when ∆Dots is higher in the most frame and when -∆Dots is higher
in the fewest frame. However, in the Perceptual Experiment, the simulated
choices only in the fewest frame were significantly correlated with the ob-
served data, although we observed a non-significant trend in the most frame
(Most: r(26)=0.69, p<0.001; Fewest: r(26)=0.37, p=0.051) (Figure 3.4E). In both
frames, we observed that the model predicted that choice was linked to
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Figure 3.4: Individual out-of-sample GLAM predictions for behavioural measures
in Value (A-C) and Perceptual Experiments (D–F). In value-based decisions, (A) the
model predicts individuals’ mean RT; (B) the probability of choosing the item with
higher value in like frame, and the item with lower value in dislike frame; and (C) the
influence of gaze on choice probability. In the Perceptual Experiment, (D) the model
also predicts RT and (F) gaze influence. (E) The model significantly predicts the
probability of choosing the best alternative in the fewest frame only (in the most frame
a trend was found). The results corresponding to the models fitted with like/most
frame data are presented in blue, and with dislike/fewest frame data in red. Dots
depict the average of observed and predicted measures for each participant. Lines
depict the slope of the correlation between observations and predictions. Mean 95%
confidence intervals are represented by the shadowed region in blue or red, with full
colour representing Value Experiment and striped colour Perceptual Experiment. All
model predictions are simulated using parameters estimated from individual fits for
even-numbered trials. Reprinted from [186], eLife Sciences Publications.

∆Gaze and, as in the Value Experiment, we show that the gaze influence
predicted by the model is indeed observed in the data (Most: r(26)=0.65,
p<0.001; Fewest: r(26)=0.47, p<0.05) (Figure 3.4F). Results of the models fitted
without accounting for the change in goal-relevant evidence provided a poor
fit of the data. Additionally, we were able to mirror the results obtained with
GLAM using aDDM [33, 121]. For dislike and fewest frames, the best model
was the one fitted using goal-relevant evidence Please see [186] for further
details.

3.5 discussion

In this study, we investigated how framing affects the way in which informa-
tion is acquired and integrated during value-based and perceptual choices.
Here, using psychophysics together with computational and economic mod-
els we have been able to discern between two contrasting hypotheses. The
first one, currently the dominant one in the field of neuroeconomics, proposes
that attention modulates (either by biasing or boosting) a value integration
that starts at the beginning of the deliberation process. Subsequently, at the
time of the decision, the participant would give the appropriate response (in
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our task accepting the option with the highest value or rejecting the one with
the lowest one) using the value estimate constructed during this deliberation
phase. The second hypothesis suggests that, from the very start of the de-
liberation process, the task-frame (goal) influences the type of information
that is integrated. In this second scenario, attention is not automatically
attracted to high value items to facilitate their accumulation but has a more
general role in prioritising the type of information that is useful for achieving
the current behavioural goal. Importantly, these two hypotheses make very
distinct predictions about the pattern of attention and suggest very different
cognitive architectures underpinning the decision process.

Our results favour the second hypothesis: specifically, we show that,
in both perceptual and value-based tasks, attention is allocated depending
on the behavioural goal of the task. Although our study does not directly
contradict previous findings [33, 34, 169, 179], it adds nuance to the view
that this is a process specifically tied to value integration (defined as a
hedonic or reward attribute). Our findings speak in favour of a more general
role played by attention in prioritising the information needed to fulfil
a behavioural goal in both value and perceptual choices [188, 180, 172].
Importantly, the seeking of goal-relevant information is observed during the
trial, opposing the assumption that attentional sampling is random except
for the last fixation [33, 34](see [173, 171] for additional support for this
idea). Pavlovian influences have been proposed to play a key role in the
context of accept/reject framing manipulation [101, 189, 190, 191]. In this
case, Pavlovian responses associated with predictions of reward (e.g., water
or food in deprived animals) usually involve a vigorous active approach
and engagement with the actions leading to the outcome [189]. This could
translate into a deployment of attention towards preferred options [180],
similar to a mouse looking for the button to press and obtain food. On
the other hand, in reject frames, when the animal is exposed to negative
outcomes (e.g., electric shocks or other punishment), animals express in
general a behavioural inhibition, avoiding the aversive stimulus or inhibiting
behaviour [192, 193]. However, the "reject" frame of our experiment did
not fit this description, since participants engaged more with the item they
disliked more, i.e., they paid attention to the stimulus that was relatively
more aversive before choosing it. Additionally, the fact that we found almost
identical results in a follow-up perceptual study in which the choice was not
framed in terms of ‘accept’ or ‘reject’ but using a different kind of instruction
(i.e. ‘choose the option with fewer or more dots’) suggests that attention
acts on a more fundamental mechanism of information processing that goes
beyond simple Pavlovian influences.

The idea that the goal of the task plays a central role in shaping value-
based decisions should not be surprising. Indeed, value-based decision is
often called goal-directed choice. Nevertheless, there has been a surprisingly
little amount of experimental work in which the behavioural goal has been
directly manipulated as the key experimental variable for studying the
relation between attention and value. Notable exceptions are two recent
studies from [98] and [180]. In the first study ([98]), participants were shown
a set of four items and asked, in half of the trials, to determine the best item
and, in the second half, the worst item. In line with our findings, they found
that behaviour and neural activity in the ‘value network’, including vmPFC
and striatum, was determined by goal-congruency and did not simply reflect
the expected reward. In the second study, [180] implemented a design
similar to our value-based experiment in which participants were required to
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indicate the item to keep and the one to discard. They found, similarly to our
findings in the value-based experiment, that the overall pattern of attention
was mostly allocated according to the task goal. However, in the first few
hundred milliseconds, these authors found that attention was directed more
prominently to the most valuable item in both conditions. We did not
replicate this last finding in our experiment (see Figure 3.3C and D, showing
that fixations were randomly allocated during the early moments of the trial).
One possible reason for this discrepancy is that the experiment by Kovach
and colleagues [180] presented both items on the screen at the beginning
of the task – unlike in our task, in which the item was presented in a gaze-
contingent way (to avoid processing in the visual periphery). This setting
might have triggered an initial and transitory bottom-up attention grab from
the most valuable (and often most salient) item before the accumulation
process started.

The most far-reaching conclusion of our work is that context and be-
havioural demand have a powerful effect on how information is accumulated
and processed. Notably, our data show that this is a general effect that spans
both more complex value-based choices and simpler perceptual choices.
We conclude that, given the limited computational resources of the brain,
humans have developed a mechanism that prioritises the processing or recol-
lection of the information that is most relevant for the behavioural response
that is required. This has profound implications when we think about the
widespread effect of contextual information on decision-making that has
been at the core of the research in psychology, behavioural economics and
more recently neuroeconomics [194, 195, 196, 101, 197]. Most of these con-
textual or framing effects have been labelled as ‘biases’ because, once one
strips away the context, the actual available options should remain identical.
However, this perspective may not be putting enough emphasis on the fact
that the decision-maker has to construct low-dimensional (and therefore
imperfect) representations of the decision problem. As we have shown here,
from the very beginning of the deliberation process, the context — even when
it is simple (like/dislike, most/fewest) or irrelevant from the experimenter’s
perspective — affects which information is processed, recalled, or attended
to, with effects that spread into post-decision processing such as confidence
estimation (please see Chapter 7 for details on the confidence effects). This, as
a consequence, will produce profoundly dissimilar representations according
to the behavioural goal set by the context. With this shift of perspective, it
may well be the case that many of the so-called ‘biases’ will be shown in
a new light, given that participants are dealing with very different choices
once the behavioural goal changes. This viewpoint might provide a more
encouraging picture of the human mind, by suggesting that evolution has
equipped us well to deal with ever-changing environments in the face of
limited computational resources.



Part II

B R A I N R E P R E S E N TAT I O N S A N D G O A L S I N
H U M A N D E C I S I O N S





So far, I have presented how the sampling stage in decisions is modulated
by participants’ goals. But the dynamic attentional component is just an
external aspect of the entire process of deliberation. For any decision, the
accumulation of evidence should be reflected in internal processes in the
brain, appearing as specific brain activity patterns. In the following section, I
focus on how the brain generates representations of the task to be completed
and the available alternatives during goal-dependent decisions. In the fol-
lowing neuroimaging studies, I concentrate on two important aspects of the
decision process: abstraction learning and preference evaluation. In Chapter
4, I studied how participants generate abstractions from multiple sensory
features, adjusting them to the goal of the task. I showed how brain regions
computing value signals, e.g., the ventromedial prefrontal cortex (vmPFC),
guide the selection of relevant features, hinting at a goal-dependent role
during learning. In the second study (Chapter 5), I presented the evaluation
of single items and their brain representations in a value-based context. Item
representations in brain regions were affected by the task, not only by the
features of the items. Specific areas represented context information and
hippocampal activity seems to represent specific features for each context.
These results support that at the level of subjective preferences, goals impact
brain representations to generate task-appropriate mappings.
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G O A L - D I R E C T E D R E P R E S E N TAT I O N S I N L E A R N I N G :
VA L U E S I G N A L G U I D E S A B S T R A C T I O N D U R I N G
L E A R N I N G

4.1 summary

The human brain excels at constructing and using abstractions, such as rules,
or concepts. This is a fundamental step to efficiently identify the relevant
features and strategies to fulfil the goals. In the present study, we used
neuroimaging to show a mechanism of abstraction built upon the valuation
of sensory features. Human volunteers learned novel association rules based
on simple visual features. Reinforcement-learning models revealed that high-
value abstract representations increasingly guided participant behaviour
along the learning process, resulting in better choices and higher subjective
confidence. We also found that the brain area computing value signals
– the ventromedial prefrontal cortex – prioritised and selected latent task
elements during abstraction, both locally and through its connection to the
visual cortex. These findings provide a novel interpretation of value as a
goal-dependent, key factor in forging abstract representations.

4.2 introduction

Successful interaction with our environment is based on the capacity to
correctly perform our goals. For example, if our goal is to drive from A to B,
to achieve it involves many important steps such as navigating the traffic (e.g.,
knowing that a red light indicates to stop) or operating the automobile (e.g.,
pressing the gas and not the brake when the green light appears). Therefore,
fulfilling a goal involves a process of learning where we highlight relevant
aspects and silence irrelevant features.

The unique ability of the human mind to organise information beyond the
immediate sensory reality is the basis of the process of abstraction. Abstrac-
tions are everywhere, from high art and government plans to online shopping
and city maps. Goal implementation relies on these abstractions, which are
ultimately represented in the human brain. The need for abstractions is well
exemplified in reinforcement learning (RL). Classic RL algorithms rapidly
collapse when an agent has to deal with complex and/or multidimensional
problems [198, 199, 200]. However, when the agent can ‘abstract’ the current
state to a lower dimensional manifold, representing only relevant features,
responses become more flexible and efficient [201, 202, 135].

From a psychological or neuroeconomic point of view, the process of
learning is guided by task goals that determine what is valuable [203, 204,
205]. For example, if I want to reach my destination, the brand of air freshener
in my car is not as important to fulfil the goal as the level of gasoline [99].
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Hence, we hypothesised that valuation processes are directly related to the
construction of abstractions.

Value representations have been linked to neural activity in the ventrome-
dial prefrontal cortex (vmPFC) in the context of economic choices [205, 44].
Recently, the role of the vmPFC has been further expanded including its
role in the computation of confidence [66, 206, 67, 207]. However, in these
cases, the characterisation of value has mostly been focused on the hedonic
and rewarding aspects instead of its broader functional role. In the field of
memory, vmPFC plays a crucial role in the formation of schemas or con-
ceptual knowledge [88, 208, 209, 210, 211], as well as generalisations [212].
The vmPFC also combines goal-relevant information from elsewhere in the
brain [213]. Considering its connectivity pattern [214], the vmPFC is well
suited to serve a pivotal function in the circuit that involves the hippocampal
formation (HPC) and the orbitofrontal cortex (OFC), dedicated to extracting
latent task information and regularities important for navigating behavioural
goals [135, 215, 216, 217, 218]. Thus, this study aims to show how abstraction
emerges during learning and to investigate how the brain, and specifically the
vmPFC, uses valuation upon low-level sensory features to generate abstract
representations.

We designed a task in which human participants repeatedly learned
novel association rules to perform their goal, while fMRI recorded their
brain activity. Reinforcement learning (RL) modelling was used to track
participants’ valuation processes and to distinguish at a behavioural and
neural level between two potential learning strategies: the full representation
of sensory features or the dimensionality reduction through abstractions.
Participants’ confidence in having performed the task well was positively
correlated with their ability to abstract. We found that vmPFC and its
connection to the visual cortex constructed abstract representations through
a goal-dependent valuation process that is implemented as top-down control
of sensory cortices.

4.3 methods

4.3.1 Participants

Forty-six participants with normal or corrected-to-normal vision were re-
cruited for the main experiment (learning task). The sample size was chosen
according to prior work and recommendations on model-based fMRI studies
[219]. Based on pilot data and the available scanning time in one session
(60 min), we set the following conditions of exclusion: failure to learn the
association in three blocks or more (i.e., reaching a block limit of 80 trials
without having learned the association), or failure to complete at least 11

blocks in the allocated time. Eleven participants were removed based on
the above-predetermined conditions, 2 of which did not go past the initial
practice stages. Additionally, two more participants were removed due to
head motion artifacts. Thus, 33 participants (22.4 ± 0.3 y.o.; eight females)
were included in the main analyses. All results presented up are from the 33

participants who completed the learning task.
All experiments and data analyses were conducted at the Advanced

Telecommunications Research Institute International (ATR) in Japan. The
study was approved by the Institutional Review Board of ATR with ethics
protocol numbers 18–122, 19–122, 20–122. All participants gave written
informed consent.
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4.3.2 Learning task

The task consisted of learning the fruit preference of Pacman-like characters.
These characters had three features, each with two levels (colour: green
vs red, stripe orientation: horizontal vs vertical, mouth direction: left vs
right). On each trial, a character composed of a unique combination of the
three features was presented. The experimental session was divided into
blocks, for each of which a specific rule directed the association between
features and preferred fruits. There were always two relevant features and
one irrelevant feature, but these changed randomly at the beginning of each
block. Blocks could thus be of three types: CO (colour-orientation), CD
(colour-direction), and OD (orientation-direction). Furthermore, to avoid
a simple logical deduction of the rule after one trial, we introduced the
following pairings: The four possible combinations of two relevant features
with two levels were paired with the two fruits in both a symmetric or
asymmetric fashion - 2x2 or 3x1. The appearance of the two fruits was
also randomly changed at the beginning of each new block (see Figure
4.1B,e.g., green-vertical: fruit 1, green-horizontal: fruit 2, red-vertical: fruit 1,
red-horizontal: fruit two or green-vertical: fruit 2, green-horizontal: fruit 2,
red-vertical: fruit 1, red-horizontal: fruit 2).

Each trial started with a black screen for 1 s, followed by the character
presented for 2 s. Then, while the character continued to be at the centre of
the screen, the two fruit options appeared below, to the right and left sides.
Participants had 2 s to indicate the preferred fruit by pressing a button (right
for the fruit to the right, left for vice versa). Upon registering a participant’s
choice, a coloured square appeared around the chosen fruit: green if the
choice was correct, red otherwise. The square remained for 1 s, following
which the trial ended with a variable ITI - bringing the trial to a fixed 8 s
duration.

Participants were simply instructed that they had to learn the correct
rule for each block, and the rule itself (relevant features + association type)
was hidden. Each block contained up to 80 trials, but a block could end
earlier if participants learned the target rule. Learning was measured as a
set of correct trials (between 8 and 12, determined randomly in each block).
Participants were instructed that each correct choice added one point, while
incorrect choices did not alter the balance. They were further told that points
obtained would be weighted by the speed of learning on that block. That is,
the faster the learning, the greater the net worth of the points. The end of
a block was explicitly signalled by presenting the reward obtained on the
screen. Monetary reward was computed at the end of each block according
to the formula:

R = A ∗ (∑ pts/ ∑ tr)− (∑ tr−mcs) ∗ a(1)

where R is the reward obtained in that block, A the maximum available
reward (150JPY),Σpts the sum of correct responses,Σtr the number of trials,
mcs the maximum length of a correct strike (12 trials), and a is a scaling
factor (a = 1.5). This formula ensures time-dependent decay of the reward
that approximately follows a quadratic fit. In case participants completed a
block in less than 12 trials, the reward was capped at 150JPY.

The maximum terminal monetary reward over the whole session was
set at 3,000 JPY. On average, participants earned 1251 ± 46 JPY (blocks in
which participants failed to learn the association within the 80-trial limit were
not rewarded). For each experimental session, there was a sequence of 20
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blocks that was pre-generated pseudo-randomly, and on average, participants
completed 13.6 ± 0.3 blocks.

For sessions done in the MR scanner, participants were instructed to
use their dominant hand to press buttons on a dual-button response pad
to register their choices. Concordance between responses and buttons was
indicated on the display, and importantly, randomly changed across trials
to avoid motor preparation confounds (i.e. associating a given preference
choice with a specific button press). The task was coded with PsychoPy
v1.82.01 [220].

4.3.3 Computational modelling part 1: mixture-of-experts RL model

We built on a standard RL model [200] and prior work in machine learning
and robotics to derive the mixture-of-experts architecture [221, 222, 223]. In
this work, the mixture-of-experts architecture is composed of several ‘expert’
RL modules, each tracking a different representational space, and each with
its own value function. In each trial, the action selected by the mixture-of-
experts RL model is given by the weighted sum of the actions computed by
the experts. The weight reflects the responsibility of each expert, which is
computed from the SoftMax of the squared prediction error. In this section,
we define the general mixture-of-expert RL model and in the next section
we define each specific expert, based on the task-state representations being
used.

Formally, the mixture-of-expert RL model global action is defined as:

At =
N

∑
j=1

λ
j
ta

j
t(2)

where N is the number of experts, λ the responsibility signal, and a the
action selected by the jth-model. Thus, λ is defined as:
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j
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where N is the same as above, ν is the RPE (reward prediction error)
variance. Expert uncertainty RPEt is defined as:

RPEj
t = γRPEj

t−1 + (1− γ)(RPEj
t)

2
(4)

where γ is the forgetting factor that controls the strength of the impact of
prior experience on the current uncertainty estimate. The most recent RPE is
computed as:

RPEj
t = O−Qj(St, At)(5)

where O is the outcome (reward: 1, no reward: 0), Q is the value function,
S the state for the current expert, and A is the global action computed with
Equation (2). The update to the value function can therefore be computed as:

∆Qj(St, At) = λ
j
tαRPEj

t(6)

where λ is the responsibility signal computed with Equation (3), α is the
learning rate (assumed equal for all experts), and RPE is computed with
Equation (5). Finally, for each expert, the action a at trial t is taken as the
argmax of the value function, as follows:
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aj
t = argmax[Qj(St, a)](7)

where Q is the value function, S the state at current trial, and a the two
possible actions.

Hyperparameters estimated through likelihood maximisation were the
learning rate α, the forgetting factor γ, and the RPE variance ν.

4.3.4 Computational modelling part 2: Feature RL and Abstract RLs

Each (expert) RL algorithm is built on a standard RL model [200] to derive
variants that differ in the number and type of states visited. Here, a state
is defined as a combination of features. Feature RL has 2

3 = eight states,
where each state was given by the combination of all three features (e.g.
colour, stripe orientation, mouth direction: green, vertical, left). Abstract
RL is designed with 2

2 = four states, where each state was given by the
combination of two features.

Note that the number of states does not change for different blocks, only
features used to determine them. These learning models create individual
estimates of how participant action-selection depended on features they
attended and their past reward history. Both RL models share the same
underlying structure and are formally described as:

Q(s, a)← Q(s, a) + α(r−Q(s, a))(8)

where Q(s,a) in Equation (8) is the value function of selecting either fruit-
option a for Pacman-state s. The value of the action selected in the current
trial is updated based on the difference between the expected value and the
actual outcome (reward or no reward). This difference corresponds to the
reward prediction error (RPE). The degree to which this update affects the
expected value depends on the learning rate α. For larger α, more recent
outcomes will have a strong impact. On the contrary, for small α recent
outcomes will have little effect on expectations. Only the value function of
the selected action, which is state-contingent in Equation (8), is updated.
Expected values of the two actions are combined to compute the probability
p of predicting each outcome using a SoftMax (logistic) choice rule:

Psi ,A = 1/(1 + exp(−β(Q(si, a1)−Q(si, a2))))(9)

The greediness hyperparameter β controls how much the difference
between the two expected values for a1 and a2 influences choices. Hyperpa-
rameters estimated through likelihood maximisation were the learning rate
α, and the greediness (inverse temperature) β.

4.3.5 Procedures for model fitting, simulations

Hierarchical Bayesian Inference (HBI) was used to fit the models to partic-
ipant behavioural data, enabling precise estimates of hyperparameters at
the block level for each participant [224]. Hyperparameters were selected by
maximising the likelihood of estimated actions, given the true actions. For the
mixture-of-experts architecture, we fit the model on all participants block-by-
block to estimate hyperparameters at the single-block and single-participant
level. For the subsequent direct comparison between Feature RL and Abstract
RL models, we used HBI for concurrent model fitting and comparison at the
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single-block and single-participant basis. The model comparison provided
the likelihood that each RL algorithm best explained participants’ choice data.
That is, it was a proxy to whether learning followed a Feature RL or Abstract
RL strategy. Because the fitting was done block-by-block, with a hierarchical
approach considering all participants, blocks were first sorted according to
their lengths, from longer to shorter, at the participant level. This ensured
that each block of a given participant was more similar to the blocks of all
other participants, thus avoiding unwanted effects in the fitting due to block
length. The HBI procedure was then implemented on all participant data,
proceeding block-by-block.

We also simulated model action-selection behaviours to benchmark their
similarity to human behaviour, and in the case of Feature RL vs Abstract
RL comparisons, to additionally compare their formal learning efficiency. In
the case of the mixture-of-experts RL architecture, we simply used estimated
hyperparameters to simulate 45 artificial agents, each completing 100 blocks.
The simulation allowed us to compute, for each expert RL module, the mean
responsibility signal, and the mean expected value across all states for the
chosen action. Additionally, we also computed the learning speed (time to
learn the rule of a block) and compared it with the learning speed of human
participants.

In the case of the simple Feature RL and Abstract RL models, we added
noise to the state information in order to have a more realistic behaviour
(from the perspective of human participants). In the empirical data, the action
(fruit selection) in the first trial of a new block was always chosen at random
because participants did not have access to the appropriate representations
(states). In later trials, participants may have followed specific strategies.
For model simulations, we simply assumed that states were corrupted by a
decaying noise function:

nt = n0(1/t1/rte)(10)

where nt is the noise level at trial t, n0 the initial noise level (randomly
drawn from a uniform distribution within the interval [0.3 0.7]), and rte was
the decay rate, which was set to 3. This meant that in early trials in a block,
there was a higher chance of basing the action on the wrong representation
(at random), rather than following the appropriate value function. Actions
in later trials had a decreasing probability of being chosen at random. This
approach is a combination of the classic ϵ-greedy policy and the standard
SoftMax action-selection policy in RL. Hyperparameter values were sampled
from obtained participant data maximum likelihood fits. We simulated 45

artificial agents solving 20 blocks each. The procedure was repeated 100 times
for each block with new random seeds. We used two metrics to compare
the efficiency of the two models: learning speed (same as above, the time to
learn the rule of a block), as well as the fraction of failed blocks (blocks in
which the rule was not learned with the 80-trials limit).

4.3.6 fMRI scans: acquisition and protocol

All scanning sessions employed a 3T MRI scanner (Siemens, Prisma) with a
64-channel head coil in the ATR Brain Activation Imaging Centre. Gradient
T2*-weighted EPI (echoplanar) functional images with blood-oxygen-level-
dependent (BOLD)-sensitive contrast and multi-band acceleration factor six
were acquired [225, 226]. Imaging parameters: 72 contiguous slices (TR =
1 s, TE = 30 ms, flip angle = 60 deg, voxel size = 2×2×2 mm3, 0 mm slice
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gap) oriented parallel to the AC-PC plane were acquired, covering the entire
brain. T1-weighted images (MP-RAGE; 256 slices, TR = 2 s, TE = 26 ms, flip
angle = 80 deg, voxel size = 1×1×1 mm3, 0 mm slice gap) were also acquired
at the end of the first session.

4.3.7 fMRI scans: standard and parametric general linear models

BOLD-signal image analysis was performed with SPM12 [http://www.fil.ion.ucl.ac.uk/spm/],
running on MATLAB v9.1.0.96 (r2016b) and v9.5.0.94 (r2018b). fMRI data
for the initial 10 s of each block were discarded due to possible unsaturated
T1 effects. Raw functional images underwent realignment to the first image
of each session. Structural images were re-registered to mean EPI images
and segmented into grey and white matter. Segmentation parameters were
then used to normalise (MNI) and bias-correct the functional images. Nor-
malised images were smoothed using a Gaussian kernel of 7 mm full-width
at half-maximum.

GLM1: regressors of interest included ‘High value‘, ‘Low value’ (trials
were labelled as such based on the median split of the trial-by-trial expected
value for the chosen option computed from the best fitting algorithm -
Feature RL or Abstract RL), ‘Feature RL’, ‘Abstract RL’ (trials were labelled
as such based on the best fitting algorithm at the block level). For all, we
generated boxcar regressors at the beginning of the visual stimulus (character)
presentation, with a duration of 1 s. Contrast of [1 -1] or [−1 1] were applied
to the regressors ‘High value’ - ‘Low value’, and ‘Feature RL’ - ‘Abstract
RL’. Specific regressors of no interest included the time in the experiment:
‘early’ (all trials falling within the first half of the experiment), and ‘late’ (all
trials falling in the second half of the experiment). The early/late split was
done according to the total number of trials: taking as ‘early’, trials from the
first block onward, adding blocks until the trial sum exceeded the total trials
number divided by two.

GLM2 (psychophysiological interaction, PPI): the seed was defined as
a sphere (radius = 6 mm) centred around the individual peak voxel from
the ‘High value’ > ‘Low value’ group-level contrast, within the vmPFC
(peak coordinates [2 50 -10], radius 25 mm). The ROI mask was defined
individually to account for possible differences among participants. Two
participants were excluded from this analysis because they did not show
a significant cluster of voxels in the bounding sphere (even at very lenient
thresholds). The GLM for the PPI included three regressors (the PPI, the
mean BOLD signal of the seed region, and the psychological interaction), as
well as nuisance regressors described below.

For all GLM analyses, additional regressors of no interest included a para-
metric regressor for reaction time, regressors for each trial event (fixation,
fruit options presentation, choice, button press [left, right], ITI), block regres-
sors, the six head motion realignment parameters, framewise displacement
(FD) computed as the sum of the absolute values of the derivatives of the six
realignment parameters, the TR-by-TR mean signal in white matter, and the
TR-by-TR mean signal in cerebrospinal fluid.

Second-level group contrasts from all models were calculated as one-
sample t-tests against zero for each first-level linear contrast. Statistical maps
were z-transformed, and then reported at a threshold level of P(fpr) < 0.001 (Z
> 3.09, false positive control meaning cluster forming threshold), unless other-
wise specified. Statistical maps were projected onto a canonical MNI template
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with MRIcroGL [https://www.nitrc.org/projects/mricrogl/] or a glassbrain
MNI template with Nilearn 0.7.1 [https://nilearn.github.io/index.html].

4.3.8 fMRI scans: pre-processing for decoding

As above, the fMRI data for the initial 10 s of each run were discarded
due to possible unsaturated T1 effects. BOLD signals in native space were
pre-processed in MATLAB v7.13 (R2011b) (MathWorks) with the mrVista
software package for MATLAB [http://vistalab.stanford.edu/software/]. All
functional images underwent 3D motion correction. No spatial or temporal
smoothing was applied. Rigid-body transformations were performed to
align functional images to the structural image for each participant. One
region of interest (ROI), the HPC, was anatomically defined through cortical
reconstruction and volumetric segmentation using the Freesurfer software
[http://surfer.nmr.mgh.harvard.edu/]. Furthermore, VC subregions V1, V2,
and V3 were also automatically defined based on a probabilistic map atlas
[227]. The vmPFC ROI was defined as the significant voxels from the GLM1

‘High value’ > ‘Low value’ contrast at p(fpr) < 0.0001, within the OFC. All
subsequent analyses were performed using MATLAB v9.5.0.94 (r2018b). Once
ROIs were individually identified, time-courses of BOLD signal intensities
were extracted from each voxel in each ROI and shifted by 6 s to account
for the hemodynamic delay (assumed fixed). A linear trend was removed
from time-courses, which were further z-score-normalised for each voxel in
each block to minimise baseline differences across blocks. Data samples for
computing individual feature identity decoders were created by averaging
BOLD signal intensities of each voxel over two volumes, corresponding to
the 2 s from stimulus (character) onset to fruit options onset.
4.3.9 Decoding: multivoxel pattern analysis (MVPA)

All ROI-based MVP analyses followed the same procedure. We used sparse
logistic regression (SLR) [228], to automatically select the most relevant
voxels for the classification problem. This allowed us to construct several
binary classifiers (e.g. feature id.: colour - red vs green, stripes orientation -
horizontal vs vertical, mouth direction - right vs left).

Cross-validation was used for each MVP analysis to evaluate the predic-
tive power of the trained (fitted) model. In the primary analysis (reported
in Figure 4.5C), cross-validation was done with a leave-one-run-out scheme,
whereby each run was iteratively held out as a test set, and all other runs
were used for training the algorithm. The final accuracy was taken as the
averaged accuracy across the runs. This approach is generally used because
there may be subtle differences across runs: holding out one run as a test
ensures higher generalizability of the results while avoiding within-run in-
formation leaks. Yet, because of the nature of our task and experiment,
the leave-one-run-out cross-validation leads to other confounds due to the
varying number of training trials across classes (e.g. colour red vs green) or
conditions (Feature RL vs Abstract RL blocks). To control for this idiosyn-
cratic feature of our design, we performed a second cross-validation scheme.
Here, we first merged the data from all blocks for each condition, and then
computed the lowest bound of trial number from the minority class across
conditions (e.g. if Feature RL had 128 trials labelled as ‘green’, and 109 as
‘red’, while Abstract RL had 94 trials labelled as ‘green’, and 99 labelled as
‘red’; then the minority class lowest bound was 94). In each fold (N folds
= 20), a number of trials equivalent to 80% of the minority class lowest
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bound were assigned to the training set from each class, and the remaining
trials to the test set. The training samples were randomly chosen in each
fold. Furthermore, for all MVP analysis, SLR classification was optimised
by using an iterative approach [229] In each fold of the cross-validation, the
feature-selection process was repeated 10 times. In each iteration, selected
features (voxels) were removed from pattern vectors, and only features with
unassigned weights were used for the next iteration. At the end of the
cross-validation, test accuracies were averaged for each iteration across folds,
to evaluate accuracy at each iteration. The number of iterations yielding
the highest classification accuracy was then used for the final computation.
Results report the cross-validated average of the best-yielding iteration.

4.4 results

Our experiment generated a scenario where the goal of the task was clear
but the relevant features to achieve it had to be identified. In particular,
the learning task we designed could be solved according to two strategies,
based on the sampled task-space dimensionality. A simple, slower strategy
akin to pattern recognition, and a more sophisticated one that required
abstraction to use the underlying structure. Participants (N = 33) learned
the fruit preference of Pacman-like characters formed by the combination of
three visual features (colour, mouth direction, and stripe orientation, Figure
4.1A–B). The preference was governed by a combination of two features,
selected randomly by our computer program for each block (Figure 4.1A–
B). Learning the block rules essentially required participants to uncover
hidden associations between features and fruits. Although participants were
instructed that one feature was irrelevant, they did not know which. A block
ended when a sequence of 8–12 (randomly set by our computer program)
correct choices was detected or upon reaching its upper limit (80 trials).
Variable stopping criteria were used to prevent participants from learning
that a fixed sequence was predictive of block termination. During each
trial, participants could see the outcome after selecting a fruit. A green box
appeared around the chosen fruit if the choice was correct (red otherwise).
Additionally, participants were instructed that the faster they learned a block
rule, the higher the reward. At the end of the session, a final monetary reward
was delivered, commensurate with participant performance (see Materials
and methods). Participants failing to learn the association in three blocks
or more (i.e. reaching a block limit of 80 trials without having learned the
association), and/or failing to complete more than 10 blocks in the allocated
time, were excluded (see Materials and methods). All main results reported
in this chapter are from the included sample of N = 33 participants.

4.4.1 Behavioural accounts of learning

First, we verified that participants completed and learned the task properly.
Within blocks, performance was higher than chance as early as the second
trial (Figure 4.1C, one-sample t-test against the mean of 0.5, trial 2: t32 =
4.13, P(FDR) < 10

−3, trial 3: t32 = 2.47, P(FDR) = 0.014, all trials t>3: P(FDR) <
10

−3). Considering the whole experimental session, learning speed (i.e., how
quickly participants completed a given block) increased significantly across
blocks (Figure 4.1D, N = 11 time points, Pearson’s r = 0.80, p = 0.003). These
results not only confirmed that participants learned the task rule in each
block, but also that they learned to use more efficient strategies. Notably, in
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Figure 4.1: Learning task and behavioural results. (A) Task: participants learned
the fruit preferences of Pacman-like characters, which changed on each block. (B)
Associations could form in three ways: colour – stripe orientation, colour – mouth
direction, and stripe orientation – mouth direction. The left-out feature was irrelevant.
Examples of the two types of fruit associations. The four combinations arising from
two features with two levels were divided into symmetric (2x2) and asymmetric (3x1)
cases. f1-3: features 1 to 3; fruit: rule refers to the fruit as being the association rule.
Both block types were included to prevent participants from learning rules by simple
deduction. If all blocks had symmetric association rules and participants knew this,
they could simply learn one feature-fruit association (e.g. green-vertical), and from
there deduce all other combinations. Both the relevant features and the association
types varied on a block-by-block basis. (C), Trial-by-trial ratio-correct improved as
a measure of within-block learning. Dots represent the mean across participants,
while error bars indicate the SEM, and the shaded area represents the 95% CI (N =
33). Participant-level ratio correct was computed for each trial across all completed
blocks. (D), Learning speed was positively correlated with time, among participants.
Learning speed was computed as the inverse of the max-normalised number of trials
taken to complete a block. Thin grey lines represent the least square fits of individual
participants, while the black line represents the group-average fit. The correlation was
computed with group-averaged data points (N = 11). Average data points are plotted
as coloured circles, the error bars are the SEM. (E), Confidence judgements were
positively correlated with learning speed, among participants. Each dot represents
data from one participant, and the thick line indicates the regression fit (N = 31 [2
missing data]). The experiment was conducted once (n = 33 biologically independent
samples), **p<0.01. Reprinted from [230], eLife Sciences Publications.

this task, the only way to solve blocks faster was by using the correct subset
of dimensions (the abstract representation). When at the end of a session,
participants were asked about their degree of confidence in having performed
the task well, their self-reports correlated with their learning speed (N =
31 [2 missing data], robust regression slope = 0.024, t29 = 3.27, p = 0.003,
Figure 4.1E), but not with the overall number of trials, or the product of the
proportion of successes (learning speed: Pearson’s r = 0.53, p = 0.002, total
trials: r = −0.13, p = 0.47, test for difference in r: z = 2.71, p = 0.007; product
of the proportion of successes: r = −0.06, p = 0.75, test for difference in r: z =
2.43, p = 0.015). We confirmed that block type (defined by relevant features,
e.g., colour-orientation) or association type (e.g. symmetric 2x2) did not
systematically affect learning speed, by pooling block-wise learning speed
from all participants for each block or association type. None of the pairwise



90 chapter 4 : value guides abstraction learning

tests survived multiple comparison correction (FDR). Excluded participants
(see Materials and methods) had overall lower performance, although some
had comparable ratios correct (Wilcoxon rank sum test, z = 2.76, p = 0.006).

4.4.2 Discovery of abstract representations

Figure 4.2: Mixture of reinforcement learning (RL) experts and value computation.(A)
Outline of the representational spaces of each RL algorithm comprising the mixture-
of-experts architecture. (B) Illustration of the model architecture. See Methods for a
formal description of the model. All experts had the same number of hyperparam-
eters: the learning rate α (how much the latest outcome affected agent beliefs), the
forgetting factor γ (how much prior RPEs influenced current decisions), and the RPE
variance v, modulating the sharpness with which the mixture-of-expert RL model
should favour the best performing algorithm in the current trial. (C) The approach
used for data analysis and model simulation. The model was first fitted to partic-
ipant data with Hierarchical Bayesian Inference [224]. Estimated hyperparameters
were used to compute value functions of participant data, as well as to generate
new, artificial choice data and to compute simulated value functions. (D) Averaged
expected value across all states for the chosen action in each RL expert, as well as
responsibility signal for each model. Left: simulated data, right: participant empirical
data. Dots represent individual agents (left) or participants (right). Bars indicate
the mean and error bars depict the SEM. Statistical comparisons were performed
with two-sided Wilcoxon signed rank tests. ***p<0.001. AbRL: Abstract RL, FeRL:
Feature RL, AbRLw1: wrong-1 Abstract RL, AbRLw2: wrong-2 Abstract RL. (E) RPE
variance was negatively correlated with learning speed (outliers removed, N = 29).
Dots represent individual participant data. The thick line shows the linear regression
fit. The experiment was conducted once (n = 33 biologically independent samples), *
p<0.05. Reprinted from [230], eLife Sciences Publications.

Was participants’ learning behaviour guided by the selection of accu-
rate representations? To answer this question, we built upon a classic RL
algorithm (Q-learning) [231] in which state-action value functions (beliefs)
used to predict future rewards, are updated according to the task state of a
given trial and the action outcome. In this study, task states were defined
by the number of feature combinations that the agent may track; hence, we
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devised algorithms that differed in their state-space dimensionality. The first
algorithm, called Feature RL, explicitly tracked all combinations of three
features, 2

3 = eight states (Figure 4.2A, top left). This algorithm is anchored
at a low feature level because each combination of the three features re-
sults in a unique fingerprint – one simply learns direct pairings between
visual patterns and fruits (actions). Conversely, the second algorithm, called
Abstract RL, used a more compact or abstract state representation in which
only two features are tracked. These compressed representations reduce the
explored state-space by half, 2

2 = four states (Figure 4.2A, top right). In this
task, as many as three Abstract RL in parallel were possible, one for each
combination of two features.

The above four RL algorithms (Feature RL + three Abstract RL) were
combined in a mixture-of-experts architecture [232, 222, 223] (Figure 4.2B
and Materials and methods). The key intuition behind this approach was
that at the beginning of a new block, the agent did not know which abstract
representation was correct (i.e., which features were relevant). Thus, the
agent needed to learn which representations were most predictive of reward,
to exploit the best representation for action selection. While all experts com-
peted for action selection, their learning uncertainty (RPE: reward prediction
error) determined their strength in doing so [221, 223, 233]. This architecture
allowed us to track the value function of each RL expert separately while
using a unique, global action in each trial.

Estimated hyperparameters (learning rate α, forgetting factor γ, RPE
variance ν) were used to compute value functions of participant data, as well
as to generate new, artificial choice data and value functions (Figure 4.2C,
and Materials and methods). Simulations indicated that the expected value
and responsibility were highest for the appropriate Abstract RL, followed
by Feature RL, and the two Abstract RLs based on irrelevant features as the
lowest (Figure 4.2D). Participant empirical data displayed the same pattern,
whereby the value function and responsibility signal of the appropriate
Abstract RL were higher than in other RL algorithms (Figure 4.2D, right
side). Note that the large difference between appropriate Abstract RL and
Feature RL was because the appropriate Abstract RL was an ‘oracle’: it had
access to the correct low-dimensional state from the beginning. The RPE
variance (hyperparameter ν) adjusted the sharpness with which each RL’s
(un)certainty was considered for expert weighting. Crucially, the variance v
was associated with participant learning speed, such that participants who
learned block rules quickly were sharper in expert selection (Figure 4.2E, N
= 29, robust regression slope = −1.02, t27 = −2.59, p = 0.015). These modelling
results provided a first layer of support for the hypothesis that valuation is
related to abstraction.

4.4.3 Behaviour shifts from Feature- to Abstraction-based reinforcement learning

The mixture-of-experts RL model revealed that participants who learned
faster relied more on the best RL model value representations. Further, the
modelling established that choices were mostly driven by either the appro-
priate Abstract RL or Feature RL, which had higher expected values (but
note that the other Abstract RLs had mean values greater than a null level of
0.5), and higher responsibility λ. It is important to highlight though that the
mixture-of-experts RL might not reflect the actual algorithmic computation
used by the participant in this task, but it provides a conceptual solution to
the arbitration between representations/strategies. The model comparison
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Figure 4.3: Feature RL vs Abstract RL are related to learning speed and the use
of abstraction increases with experience. (A) Simulated learning speed and % of
failed blocks for both Abstract RL and Feature RL. To make simulations more
realistic, arbitrary noise was injected into the simulation, altering the state (see
Materials and methods). N = 100 simulations of 45 agents. Right plot: bars represent
the mean, error bars the SEM. (B) The relationship between the block-by-block, best-
fitting model and learning speed of participants. Each dot represents one block from
one participant, with data aggregated across all participants. Note that some dots
fall beyond p=one or p=0. This effect occurs because dots were scattered with noise
in their x-y coordinates for better visualisation. (C) Between participant correlations.
Top: abstraction level vs learning speed. The abstraction level was computed as
the average over all blocks completed by a given participant (code: Feature RL
= 0, Abstract RL = 1). Bottom: confidence vs abstraction level. Dots represent
individual participants (top: N = 33, bottom: N = 31, some dots are overlapping). (D)
The learning rate was not symmetrically distributed across the two algorithms. (E)
Greediness was not symmetrically distributed across the two algorithms. For both
(D and E), each dot represents one block from one participant, with data aggregated
across all participants. Histograms represent the distribution of data around the
midline. (F) The number of participants for which Feature RL or Abstract RL best
explained their choice behaviour in the first and last blocks of the experimental
session. (G) The abstraction level was computed separately with blocks from the
first half (early) and the latter half (late) sessions. (H) Participants count for the best
fitting model, in each block. The experiment was conducted once (n = 33 biologically
independent samples), * p<0.05, ** p<0.01, *** p<0.001. Adapted from [230], eLife
Sciences Publications.

showed that Abstract RL and Feature RL in many cases offered a more
parsimonious description of the participants behaviour. This is unsurprising
since Feature RL is a simple model and Abstract RL is an oracle model –
knowing which are the relevant feature. Hence, we next sought to explicitly
explain participant choices and learning according to either Feature RL or
Abstract RL strategy. Given the task space (Figure 4.2A), the only way to
solve a block rule faster was to use abstract representations. As such, we
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expect to observe a shift from Feature RL toward Abstract RL to occur with
learning.

Both algorithms had two hyperparameters: the learning rate α and greed-
iness β (inverse temperature, the strength that expected value has on deter-
mining actions). Using the estimated hyperparameters, we generated new,
synthetic data to evaluate how fast artificial agents, implementing either Fea-
ture RL or Abstract RL, solved the learning task (see Materials and methods).
The simulations attested that Feature RL was slower and less efficient (Figure
4.3A), yielding lower learning speed and a higher percentage of failed blocks.

Model comparison at the single participant and block levels [224] pro-
vided a direct way to infer which algorithm was more likely to explain
learning in any given block. Overall, similar proportions of blocks were
classified as Feature RL and Abstract RL. This indicates that participants
used both learning strategies (binomial test applied to all blocks: proportion
of Abstract RL = 0.47 vs. equal level = 0.5, P(212|449) = 0.26, Figure 4.3B;
two-sided t-test of participant-level proportions: lower, but close to 0.5, t32 =
−2.87, p = 0.007, Figure 4.3B inset).

As suggested by the simulations (Figure 4.3A), the strategy that best
explained participant block data accounted for the distribution of learning
speed measures in each block. Where learning proceeded slowly, Feature RL
was consistently predominant (Figure 4.3B), while the reverse happened in
blocks where participants displayed fast learning (Figure 4.3B). Among par-
ticipants, the degree of abstraction (propensity to use Abstract RL) correlated
with the empirical learning speed (N = 33, robust regression, slope = 0.52,
t31 = 4.56, p = 7.64x10

−5, Figure 4.3C top). Participant confidence in having
performed the task well was also significantly correlated with the degree of
abstraction (N = 31, robust regression, slope = 0.026, t29 = 2.69, p = 0.012,
Figure 4.3C, bottom). In addition to the finding that confidence related to
learning speed (Figure 4.1E), these results raise intriguing questions about
the function of metacognition, as participants appeared to comprehend their
own ability to construct and use abstractions [234].

The two RL algorithms revealed a second aspect of learning. Considering
all blocks regardless of fit (paired comparison), feature RL appeared to have
higher learning rates α compared with Abstract RL (two-sided Wilcoxon
rank sum test against median 0, z = 14.33, p < 10

−30, Figure 4.3D). A similar
asymmetry was found with greediness (Figure 4.3E, two-sided Wilcoxon
rank sum test against median 0, z = 7.14, p < 10

−10). Yet, more specifically,
considering only the model (Feature RL or Abstract RL) which provided the
best fit on a given block, resulted in Feature RL displaying lower learning
rates and greediness. The order inverted entirely when considering the
model which provided the worst fit (e.g. using Feature RL in a block that was
better fit by Abstract RL): higher learning rates and greediness for Feature
RL. These differences can be explained intuitively as follows. In Feature
RL, exploration of the task state-space takes longer - in short blocks (best
fit by the Abstract RL strategy) a higher learning rate is necessary for the
Feature RL agent to make larger updates on states that are infrequently
visited. Results also suggest that action selection tends to follow the same
principles – more deterministic in blocks that are best fit by Abstract RL (i.e.
large β for shorter blocks).

We predicted that the use of abstractions should increase with learning
progress. Initially, the brain should rely on the full representation of features,
as captured by Feature RL, since participants are not familiar with the
structure or strategies to learn the task efficiently. With more experience, they
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should become proficient in constructing a reduced mapping where only
relevant features are represented, as in Abstract RL. To test this hypothesis,
we quantified the number of participants using a Feature RL or Abstract RL
strategy in their first and last blocks. On their first block, most participants
relied on Feature RL, while the pattern reversed in the last block (two-sided
sign test, z = −2.77, p = 0.006, Figure 4.3F). Computing the abstraction level
separately for the session median split of early and late blocks also resulted
in higher abstraction in late blocks (two-sided sign test, z = −2.94, p = 0.003,
Figure 4.3G). These effects were complemented by a block-by-block analysis,
displaying an increase in abstraction from early to late blocks (Figure 4.3H).

Supporting the current modelling framework, the mean expected value
of the chosen action was higher for Abstract RL, and model hyperparameters
could be recovered in the presence of noise [185]. Given the lower learning
speed in excluded participants, the distribution of strategies was also differ-
ent among them, with a higher ratio of Feature RL blocks. Please see [230]
for more details on this analysis.

4.4.4 The role of vmPFC in constructing goal-dependent value from sensory fea-
tures

The computational approach confirmed that participants relied on both a
low-level feature strategy and a more sophisticated abstract strategy (i.e.,
Feature RL and Abstract RL; Figures 4.2D and 3B). Besides proving that
abstract representations were generally associated with a higher expected
value, the modelling approach further allowed us to explicitly classify blocks
as belonging to either learning strategy. In this section, our objective was to
dissociate neural signatures of these distinct learning strategies to show how
abstract representations are constructed by the human brain.

First, we reasoned that an anticipatory value signal might emerge in the
vmPFC at stimulus presentation [235]. We performed a general linear model
(GLM) analysis of neuroimaging data with regressors for ‘High-value’ and
‘Low-value’ trials, selected by the block-level best fitting algorithm (Feature
RL or Abstract RL, while controlling for other confounding factors such as
time and strategy itself; see Materials and methods). As predicted, activity in
the vmPFC strongly correlated with value magnitude (Figure 4.4A). That is,
the vmPFC indexed the anticipated value constructed from Pacman features
at stimulus presentation time. We used this signal to functionally define, for
ensuing analyses, the subregion of the vmPFC that was maximally related to
task computations about value when Pacman visual features were integrated.
Concurrently, activity in insular and dorsal prefrontal cortices increased
under conditions of low expected value. This pattern of activity is consistent
with previous studies on error monitoring and processing [236, 237](Figure
4.4D).

For the vmPFC to construct goal-dependent value signals, it should re-
ceive relevant feature information from other brain areas and specifically
from visual cortices, given the nature of our task. Thus, we computed a
psychophysiological interaction (PPI) analysis [238], to isolate regions in
which functional coupling with the vmPFC at the time of stimulus presen-
tation was dependent on the magnitude of the expected value. Supporting
the idea that the vmPFC based its predictions on the integration of visual
features, only connectivity between the visual cortex (VC) and vmPFC was
higher on trials that carried large expected values, compared to low-value
trials (Figure 4.4B). Strikingly, the strength of this VC - vmPFC interaction
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Figure 4.4: Neural substrates of value construction during learning. (A) Correlates
of anticipated value at Pacman stimulus presentation time. Trials were labelled
according to a median split of the expected value for the chosen action, as computed
by the best fitting model, Feature RL or Abstract RL, at the block level. Mass
univariate analysis, contrast ‘High-value’ > ‘Low-value’. vmPFC peaks at [2 50

-10]. The statistical parametric map was z-transformed and plotted at p(FWE) <
0.05. (B) Psychophysiological interaction, using as seed a sphere (radius = 6 mm)
centred around the participant-specific peak voxel, constrained within a 25 mm
sphere centred around the group-level peak coordinate from the contrast in (A).
The statistical parametric map was z-transformed and plotted at p(fpr) < 0.001 (one-
sided, for positive contrast - increased coupling). (C) The strength of the interaction
between the vmPFC and VC was positively correlated with the participant’s ability
to learn block rules. Dots represent individual participant data points, and the
line is the regression fit. The experiment was conducted once (n = 33 biologically
independent samples). (D) Neural correlates of (predicted) low value at visual
stimulus presentation time. Trials were labelled according to a median split of the
expected value for the chosen option as computed by the best-fitting model, at the
participants and block level. The statistical parametric map was z-transformed, and
false-positive means of cluster formation (fpr) correction was applied. p(fpr) < 0.001,
Z > 3.09. * p<0.05. Adapted from [230], eLife Sciences Publications.

was associated with the overall learning speed among participants (N = 31,
robust regression, slope = 0.016, t29 = 2.55, p = 0.016, Figure 4.4C), such that
participants with stronger modulation of the coupling between the vmPFC
and VC also learned block rules faster. The strength of the vmPFC - VC
coupling showed a non-significant trend with the level of abstraction (N =
31, robust regression, slope = 0.013, t29 = 1.56, p = 0.065 one-sided). However,
this study was not optimised to detect between-subject correlations that
normally require a larger number of subjects. Therefore, future work is
required to confirm or falsify this result.

4.4.5 A value-sensitive vmPFC subregion prioritises abstract elements

Having established that the vmPFC computes a goal-dependent value signal,
we evaluated whether the activity level of this region was sensitive to the
strategies that participants used. To do so, we used the same GLM introduced
earlier, and estimated two new statistical maps from the regressors ‘Abstract
RL’ and ‘Feature RL’, while controlling for idiosyncratic features of the task,
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Figure 4.5: Neural substrate of abstraction. (A) Regions of interest for univariate
and multivariate analyses. The HPC was defined through automated anatomical
labelling (FreeSurfer). The vmPFC was functionally defined as the cluster of voxels
found with the orthogonal contrast ‘High value’ > ‘Low value’, at P(unc) < 0.0001.
(B) ROI activity levels corresponding to each learning mode were extracted from the
contrasts ‘Feature RL’ > ‘Abstract RL’, and ‘Abstract RL’ > ‘Feature RL’. Coloured
bars represent the mean, and error bars the SEM. (C) Multivariate (decoding) analysis
in three regions of interest: VC, HPC, vmPFC. Binary decoding was performed for
each feature (e.g. colour: red vs green), by using trials from blocks labelled as Feature
RL or Abstract RL. Colour bars represent the mean, error bars the SEM, and grey
dots represent individual data points (for each individual, taken as the average across
all three classifications, i.e., of all features). Results were obtained from leave-one-
run-out cross-validation. The experiment was conducted once (n = 33 biologically
independent samples), (D) Classification was performed for each feature pair (e.g.
colour: red vs green), separately for blocks in which the feature in question was
relevant or irrelevant to the block’s rule. The statistical map represents the strength of
the reduction in accuracy between trials in which the feature was relevant compared
to irrelevant, averaged over all features and participants. (E) Classification of the rule
(2x2 blocks only). For each participant, classification was performed as fruit 1 vs fruit
2. In (D–E), statistical parametric maps were z-transformed, false-positive means of
cluster formation (fpr) correction was applied. p(fpr) < 0.01, Z > 2.33. * p<0.05, **
p<0.01. Adapted from [230], eLife Sciences Publications.

that is, high/low value and early/late trials (see Materials and methods).
We extracted the peak activity at the participant level, under Feature RL
and Abstract RL conditions, in two regions-of-interest (ROI). Specifically,
we focused on the vmPFC and the HPC, as both have been consistently
linked with abstraction, and feature-based and conceptual learning. The
HPC was defined anatomically (Figure 4.5A top), while the vmPFC was
defined as voxels sensitive to the orthogonal contrast ‘High value’ > ‘Low
value’ from the same GLM (Figure 4.5A bottom). A linear mixed effects
model (LMEM) with fixed effects ‘ROI’ and ‘strategy’ [LMEM: ‘y ~ ROI *
strategy + (1|participants)’, y: ROI activity] revealed significant main effects
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of ‘ROI’ (t128 = 2.16, p = 0.033), and ‘strategy’ (t128 = 3.07, p = 0.003), and
a significant interaction (t128 = −2.29, p = 0.024), illustrating different HPC
and vmPFC recruitment (Figure 4.5B). Post-hoc comparisons showed vmPFC
activity levels distinguished Feature RL and Abstract RL cases well (LMEM:
t64 = 2.94, p(FDR) = 0.009), while the HPC remained agnostic to the style
of learning (LMEM: t64 = 0.62, p(FDR) = 0.54). Alternative explanations are
unlikely, as there was no effect in terms of both the correlation between
value-type trials and algorithms, and task difficulty, measured by reaction
times.

The next question we asked was, ‘Can we retrieve feature information
from HPC and vmPFC activity patterns?’ To abstract and operate in the
latent space, an agent is still bound to represent and use the features, because
the rules are dictated by feature combinations. One possibility is that feature
information is represented solely in sensory areas. What matters then is
the connection with and/or the read-out of vmPFC or HPC. Accordingly,
neither HPC nor vmPFC should represent feature information, regardless
of the strategy used. Alternatively, feature-level information could also be
represented in higher cortical regions under Abstract RL to explicitly support
(value-based) relational computations [239]. To resolve this question, we
applied multivoxel pattern analysis to classify basic feature information
(e.g. colour: red vs green) in three regions of interest: the VC, HPC, and
vmPFC, separately for trials labelled as Feature RL or Abstract RL. We found
that classification accuracy was significantly higher in Abstract RL trials
compared with Feature RL trials in both the HPC and vmPFC (two-sided
t-test, HPC: t32 = −2.37, p(FDR) < 0.036, vmPFC: t32 = −2.51, p(FDR) = 0.036,
Figure 4.5C), while the difference was of opposite sign in VC (t32 = 1.61,
p(FDR) = 0.12, Figure 4.5C). The increased feature decodability in Abstract RL
was significantly larger in the HPC and vmPFC compared to the VC (LMEM
model ‘y ~ ROI + (1|participants)’, y: difference in decodability, t97 = 3.37, p
= 0.001). Due to the nature of the task, the number of trials in each category
could vary and thus confounds the analysis. A control analysis equating
the number of training trials for each feature and condition replicated the
original finding. These empirical results support the second hypothesis. In
Abstract RL, features are represented in the neural circuitry incorporating the
HPC and vmPFC, beyond a simple read-out of sensory cortices. In Feature
RL, representing feature-level information in sensory cortices alone should
suffice because each visual pattern mapped to a task-state.

We expanded on this idea with two searchlight multivoxel pattern anal-
yses. In short, we inquired which brain regions are sensitive to feature
relevance, and whether we could recover representations of the latent rule
itself (the fruit preference). Besides the occipital cortex, significant reduction
in decoding accuracy was also detected in the OFC, ACC, vmPFC and dorso-
lateral PFC when a feature was irrelevant to the rule, compared to when it
was relevant (Figure 4.5D). Multivoxel patterns in the dorsolateral PFC and
lateral OFC further predicted fruit class (Figure 4.5E).

4.5 discussion

To accomplish goals, it is fundamental for agents to generate representations
of the environment that reduce its complexity and highlight relevant aspects
of it. The construction of abstractions, i.e., the identification of simplified
representations of the tasks, is an integral part of this process, crucial to
allow complex behaviours to appear [240, 201, 241]. In the present study,
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we show how humans can effectively generate abstractions from sensory
information, employing a strategy that reduces dimensionality according
to task demands. We used computational models to track the underlying
changes in the value predictions, which operate as a guiding factor in the
learning process. We found that participants gained experience during the
task which helped them to be more proficient in generating the abstractions.
Plus, we found that participants that relied more on the abstract strategy
(Abstract RL) had better performance and higher confidence in their actions.
This is indicative of the construction of an efficient representation of the task.

The construction of summary representations of the environment in
higher-order areas has been supported by many studies [135, 215, 210]. We
further endorse this view by pointing out the functional connection between
frontal areas involved in value computation, such as vmPFC, and sensory
regions relevant to the task. Indeed, we also found that the learning speed
was correlated with the coupling between vmPFC and VC. It has been shown
that in complex environments, learning the reward of single features is a
useful heuristic to facilitate value learning [242]. We complement this finding
by showing that irrelevant features of the environment are discarded while
the important ones are incorporated into abstractions.

Previous work has highlighted the important role of HPC in the formation
and update of conceptual information [212, 209, 210, 86]. While the role
of the HPC is to store, index, and update conceptual/schematic memories
[210, 243, 211] the ’creation’ of new concepts or schemas may occur elsewhere.
Medial PFC or the vmPFC in humans [244, 243] could play this creative
role, which is confirmed by recent findings showing how value signals are
modulated by cognitive requirements and goals in the vmPFC [99]. This
study suggests that the influence of vmPFC in the valuation of relevant
low-level features in VC eventually feeds higher-order areas such as HPC,
helping to create these goal-relevant representations. Supporting this view
is the finding of higher univariate activation of vmPFC during Abstract
RL blocks, while a similar activation of HPC was found in Abstract and
Feature RL blocks, i.e., HPC engagement seems constant across feature
and abstraction-based strategies. The increase of HPC feature decodability
during Abstract RL could also be a sign of the prefrontal “tagging” of
relevant features feeding up the higher-order representations. We also found
that the decodability of patterns in OFC and DLPFC was enhanced for the
goal-relevant features and also for the specific latent rule, supporting the role
of pre-frontal regions in the construction and tracking of goal-relevant task
states [245, 246, 247, 215, 248].

It is not yet clear if it is feasible for the brain to keep various potential
representations in parallel or if a simpler “hypothesis-testing” regime favours
the current best model for learning. Our mixture-of-experts RL is a simple
algorithm to arbitrate between parallel models, with a trial-to-trial update
that depends on the estimated responsibility of each expert. If it was com-
putationally efficient for the brain to keep several models, it would be very
convenient from the data perspective to give multiple uses to each one of
the samples, like in the mixture-of-experts model. There is circumstantial
evidence of multiple strategies being computed in parallel but deployed
one at a time [249, 250]. Furthermore, in many scenarios, the brain may
have access to only limited data points, while parallel processing is a major
feature of neural circuits [251, 252, 253]. Further analysis of our experiment
shows that a model comparison between mixture-of-experts and “simple”
Feature-RL or Abstract-RL models favours the more parsimonious models
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(see [230] for details), shedding doubts on parallel processing. However,
our study may not be ideally designed to capture this given the relatively
straightforward and well-defined rules and reduced number of features that
encourage a simpler representation. Further studies will need to explore the
strategies implemented by the brain during learning, especially in scenarios
where goals are not explicit.

The success of RL models relies on the adequate characterisation of the
task states, which allows learning through updates on their value. However,
how those states are defined is one of the major questions not only in neuro-
science but also in machine learning and artificial intelligence [8]. Our study
does not directly tackle this question, but it approximates it by using various
possible state combinations to define the agent’s actions (e.g., the mixture-of-
experts model). However, our approach still includes simple stimuli, with
a manageable number of features. In real life, the relevant features may be
multiple, and states are far from being well-defined. Deep RL has been used
as an alternative method that leverages the representational power of deep
learning to organize the features of the task in low dimensional space [254],
although the obscure way deep networks create these representations keeps
this approach open for further research.

It could be argued that the generation of abstractions as described by
our RL model is a mere deployment of attention. If this was the case, we
suggest that an increased feature decodability should have been found in
the VC during the Abstract RL blocks [255, 256], which was not true. We
can further dismiss the attention interpretation based on the results of an
additional neurofeedback experiment conducted by our group (see [230] for
details). In fMRI neurofeedback, it is possible to train participants to generate
specific brain activity via the presentation of cues that reflect the real-time
variation of patterns in the brain. For example, a disc of varying size or a
thermometer could act as feedback indicating how close the participant’s
brain activity is to the desired target pattern [257]. Participants are instructed
to “raise” the feedback signal to obtain a monetary reward, which they
will try to achieve using various mental strategies [258]. Crucially, human
participants can learn to control their brain activity even when they do not
have explicit knowledge of the brain area or potential function (e.g., motor
or visual areas) of the intended patterns. In this study, participants were
trained to generate a target activity in the VC associated with one of the task
features, e.g., stripe orientation. This added value to some of the task features.
We found that in a learning test after neurofeedback training, participants
increased their abstraction level on the blocks where the neurofeedback
target feature was relevant for the rule, while no change was found for the
blocks where the trained feature was irrelevant. This means that tagging
value to certain low-level features facilitates abstraction, a process that is
likely to occur early on in visual information processing. Neurofeedback
training is constrained to only a VC ROI and is experienced by participants
in an unconscious way, discarding the possibility of a mere top-down effect.
The manipulation indicates that value tagging of early representation has
a causal effect on abstraction and consequently on the learning strategy.
That is not to say that attention does not significantly mediate this type of
abstract learning; however, attention could most likely be an effector of the
abstraction and valuation processes [259]. Indeed, the decoding analysis
shows stronger representations of relevant over irrelevant features in the
VC (Figure 4.5D). The previous chapter in this thesis (Chapter 3) further
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complements the dynamic role that visual attention has in the selection of
goal-relevant information.

Overall, this study presents how goal-oriented processes guide the learn-
ing of representations to characterise the task in a parsimonious way. Further
experience in the task helps participants to create better abstractions, thus
impacting performance and internal confidence. These findings illustrate
value as having a function beyond the standard role described in decision-
making and neuroeconomics. The role of vmPFC valuation seems to drive
feature selection to create abstractions in coordination with sensory cortices.
Furthermore, our findings tie reports from the decision-making and memory
literature, in which vmPFC is attributed to a central position, for reward
value computation and schema formation, respectively. The value signal
could be more than just a proxy for reward, it could encompass a dynamic
representation of the goal-specific demands, acting as a compass in the
development of the appropriate learning strategies.
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G O A L A F F E C T S B R A I N R E P R E S E N TAT I O N S I N
P R E F E R E N C E E VA L UAT I O N

5.1 summary

Many decisions rely on extracting perceptual information to identify the most
advantageous options, e.g., in the previous chapter, visual features like colour
or orientation in a Pacman character cued the most valuable alternative.
However, in most value-based decisions, the source of information may not
be straightforward, since we can rely on personal memories and experiences
to construct the value of items. Assessing our personal preferences involves
the creation of representations containing diverse features of the object. The
standard view in value-based decisions is that we represent options according
to how rewarding they are. A more general perspective is that subjective
representations depend on the goals the agent must fulfil. That is to say,
object representations should be constrained primarily by goals, rather than
depending mainly on visual or hedonic reward features that are invariant to
context. To test these views, we designed an fMRI study where participants
assessed the positive and negative aspects of pets while looking at naturalistic
images of them. Participants completed the tasks in two different frames
to decouple goals and rewards. Multivariate analyses show that while
representations in the visual ventral stream capture a goal-independent
representation of pet identity, activity in prefrontal areas, such as vmPFC
or OFC, encoded goal-relevant information. Additionally, hippocampal
patterns showed higher similarity between images aligned with the goal
of the task frame. Overall, these results align with the construction of
brain representations of subjective preferences serving agents’ behavioural
demands.

5.2 introduction

Imagine that you are planning to get your first pet. You would probably do
some research online on the pros and cons of different animals. You will
think how fun it will be to play with puppies, observe the personality of
cats or remember how beautiful was the parrot you saw during your holiday
in Brazil. This may help you to have an idea of the options before making
the decision. Unlike perceptual choices that rely on external information,
in value-based decisions internal representations are especially important
since they will be the main drivers of choice. The current understanding
is that internal representations are formed thanks to complex mechanisms
involving perception, attention and memory [32, 260, 52, 51].

The study of visual processing in neuroscience has revealed some mecha-
nisms behind the construction of internal representations [261, 161, 262, 263].
The ventral visual stream, starting in the occipital cortex and reaching the
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anterior parts of the temporal cortex contributes to the construction of com-
plex and invariant representations using simple retinal input in the posterior
areas of the brain [262]. This line of research has mostly been informed
by experimental designs where human and non-human animals passively
observe varieties of images (from simple objects to celebrities) in decontex-
tualised scenarios, detached from further behavioural demands or goals
[264, 265, 266, 267, 161]. In real-life scenarios, visual processing actively
interacts with other cognitive operations, such as emotion, attention or motor
functions [268, 269, 270].

Studies on the neural mechanisms and networks relevant for value-based
choices have been focused on finding representations of reward, revealing
the importance of prefrontal areas such as ventromedial prefrontal cortex
(vmPFC) and orbitofrontal cortex (OFC) [32, 271, 272]. These experiments
typically instruct participants to choose the options they prefer the most,
i.e., the alternatives with higher hedonic reward [33, 66, 273, 274]. This
approach has overlooked the possibility that these value representations
could be coding more than the reward but the the ability of the option to
fulfil the person’s goals, i.e., choices are not just as an indicator of subjective
preferences. Targeting this gap, a new wave of studies has expanded value-
based decisions to probe the role of these preferences at the service of
the behavioural demands [98, 275, 84] . We have shown that attentional
profiles and evidence accumulation in value-based decisions change to satisfy
goals, even when the alternatives are identical (Chapter 3 in this thesis
and [186]). Areas in the brain’s value network also track goal-congruent
values in addition to pure reward during multi-alternative choices [98, 99].
Outside value-based decisions, it has been shown that goals and contextual
information play an important role in stabilizing memory encoding and
acting as an organizing principle in hierarchical memory structures [91, 86,
276, 95]. Memory processes could be fundamental for value-based decisions
since the evidence employed to construct the representations is likely to be
extracted from previous experiences and impressions, and not merely from
"current” perceptual inputs [51, 53].

These findings suggest that the way the brain represents objects in value
choice is flexible and it is reorganised depending on the needs of the task.
For example, an owner of multiple pets in financial strain may not be able to
maintain all her animals, having to choose one of them to give away. In this
scenario, the way she assesses the value of the animals may change relative to
what would happen in a normal situation. During this crisis, she may think
or remember the negative aspects, like the times her cat woke her up at night
sitting on her face or how aloof the hamster was to her friendly gestures.
Therefore, while the animals are the same as before (from the perspective
of a vision scientist, maybe identical), the shift in the goals will make her
appreciate them in a completely different light.

In the present fMRI imaging study, our objective was to study how goal
shapes brain representations in the assessment of individual alternatives.
Participants in this experiment were instructed to think of themselves in the
scenario of searching for a new pet between four options: dog, cat, parrot
or hamster. Similarly to the study presented in Chapter 3 (and[98, 186]), we
implemented a frame manipulation to decouple reward from goals by asking
participants to perform the tasks in two scenarios: like and dislike. In an
imagination task, participants were asked to just observe naturalistic images
of animals, while they thought of the positive and negative aspects of select-
ing that pet, in the like and dislike frames, respectively. We presented various
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images of different animals, performing different actions and from different
angles, pointing to elicit representations that were not stereotypical or depen-
dent on the specific features of a single visual stimulus. Based on the analysis
of brain pattern similarities [164], we found that representations in the visual
ventral stream encoded animal identities, and potentially included frame
information as well. We found the vmPFC and OFC contained goal-relevant
value representations during the appraisal of the options. Hippocampus ac-
tivity also changed its representations according to the behavioural demands,
generating stable representation in images aligned with the objective of the
task. The experiment also included simple choice trials to check that the
participants were consistent in their preferences in both frames: in like trials
participants chose the animal they preferred and in dislike trials the animal
they wanted to reject. These binary decisions were based on auditory stimuli,
to avoid contamination of the visual patterns from the imagination stage.
We found that the shift in the relevance of the sensory modality for the task,
i.e., an attentional displacement between visual and auditory information,
impacted the representations in the specific sensory cortex. Overall, this
work shows that object representation is not constructed in isolation, purely
dependent on perceptual features, but it is shaped and organised according
to one’s own goals.

5.3 methods

5.3.1 Experimental paradigm

Participants were presented with four animals (cat, dog, hamster and parrot)
in two types of trials inside the MR scanner: imagination and choice. These
two types of trials were also presented in two frames: like and dislike (Figure
1A).

In the imagination condition, participants were presented with a variety
of photos of different individual animals (e.g., different breeds of dogs),
doing various activities (e.g., sleeping, eating), and taken from different
angles. A total of 8 photos per animal were presented during the training
block, and 24 photos per animal were presented during the experimental
blocks. During imagination trials, participants were presented with one
picture at a time and were instructed to think of positive aspects (in the
like frame) or negative aspects (in the dislike frame) of having that animal
as a pet. Importantly, they were instructed not to focus on the specific
animal presented in the current trial picture, but to use it as a cue to think
about the whole animal category (i.e., they were not asked to think if they
liked the specific dog in the presented picture, but if they liked the idea of
having a dog). The images were presented with a blue or red frame and
the words LIKE or DISLIKE on it. A beeping sound indicated the beginning
of an imagination trial with a high (800 Hz) or low pitch (400 Hz) sound
depending on the frame. The correspondence of blue-red/high-low pitch
tones and like-dislike frames was inverted for half of the participants. On
25% of the imagination trials, participants were also asked to rate on a 1-4
scale (with 4 being the highest value) how much they liked or dislike the
animal, depending on the frame. The objective of the rating was to check the
participant’s attention and consistency. In the like frame, an animal would be
rated 4 if participants had a strong preference for it; whereas in the dislike
frame an animal would be rated 4 if they strongly prefer to avoid having it
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as a pet. The beginning of rating time was announced by a beeping sound
(400Hz).

In imagination trials the images were presented for 4.5s and, in case
rating was required, participants had extra 3s to report their rating level
using a 4-option button-box, and one second to show feedback of the chosen
rating or a message indicating the missed trial). The inter-trial time after
imagination trials was 2s ± 1s. A total of 192 imagination trials (96 per frame)
were presented in the experiment.

During choice trials, participants heard two animal names played in
stereo through MR-compatible in-ear headphones. One name was played
to the right ear only and the other one to the left ear only, with a delay of
0.5s of difference between them to avoid interference. Participants selected
the animal they preferred to have as a pet in the like frame, and the animal
they would prefer to avoid having as a pet in the dislike frame. High or
low-pitch sounds, identical to the ones used in imagination trials, were used
to indicate the start of a choice trial and its respective frame. The symbol of
a speaker was presented in red or blue colour during the trial to indicate
the respective frame of the decision, keeping the same frame colour coding
employed during imagination trials. Participants were allowed to choose a
left or right option after they listened to both sounds, which was indicated by
two white circles appearing on the screen. After participants chose an option
by pressing a button, the circle corresponding to the side of the selected
alternative was coloured light green. Participants had 2.5s to listen to both
alternatives and after that, they had 3.5s to respond. An extra 1s were used
to highlight the selected option or to show a “too slow” message in case the
choice was missed. The inter-trial time after choice trials was 3s ± 1s. A total
of 144 choice trials (92 per frame) were presented in the experiment.

Participants read the instructions and completed a training block before
starting the experiment in the MR scanner. The MR experiment was sepa-
rated into 6 blocks with 32 imagination trials and 24 choice trials each. The
presentation of trials was pseudorandomised to maintain a similar number
of trial types across blocks. Within blocks, imagination and choice, like and
dislike trials were fully randomised. The full experimental session inside the
MR scanner lasted around 1.5 hours. The images of the four animals were
selected from various online resources. The sound files with animals’ names
were generated using a text-to-sound generator available online (soundof-
text.com, UK English selected). The transformation to dichotic stimuli was
done using custom MATLAB code. The full MR experiment was coded using
the Python toolbox PsychoPy [277].

An additional online questionnaire was filled out by the participants after
they completed the experimental session. Participants indicated how much
they liked each one of the individual animal images (not the animal cate-
gory) presented during the experiment. They also reported their familiarity
and ranked their preference for the four animals. The questionnaire was
implemented using the Gorilla platform (https://gorilla.sc/).

5.3.2 Participants

We recruited 36 healthy volunteers (age: 27.94 ± 4.36 years; 18 females).
Three participants were left-handed. All participants were fluent in English
and had a normal or corrected-to-normal vision. We excluded 2 participants
because of excessive head motion during the scanning; 1 participant because
of artefacts in the brain images (in the prefrontal area); and 4 participants
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because their behaviour was inconsistent with the changes in frames (e.g.,
identical rating for like and dislike frames). Therefore, a total of 29 par-
ticipants were included in the final analysis. The study was conducted in
accordance with the Declaration of Helsinki and was approved by the Re-
search Ethics Committee of the University College London. Before starting
the experiment, all participants gave written consent. After the experiment,
they were compensated £30 for their participation.

5.3.3 fMRI

Brain imaging data were acquired at the Wellcome Trust Centre for Human
Neuroimaging using a Siemens (Erlangen, Germany) Prisma 3.0-T MRI
scanner with a 64-channel head coil. We measured BOLD activity over six
experimental blocks with a T2*-weighted multiband EPI sequence (voxel size
= 2 x 2 x 2 mm; matrix size = 106 x 106; repetition time (TR) = 1.450 s; echo
time (TE) = 35 ms; acceleration factor = 4, flip angle = 70°) with 72 slices
parallel to AC-PC. Each block contained around 400 volumes (the variability
given the jitter in trial onsets), resulting in a total block duration of ≈ 9.6
min. We discarded the first five volumes of each session, during which no
stimuli were presented, to allow for the stabilization of the magnetic field.
An anatomical T1-weighted MPRAGE scan (1.0-mm isotropic) and field maps
were also acquired for each subject.

The pre-processing of brain images was completed using the MATLAB
toolbox Statistical Parametric Mapping (SPM12; www.fil.ion.ucl.ac.uk/spm)
and custom code. Raw volumes were slice time-corrected, realigned, and
then unwarped using the data from field maps. Multivariate analyses were
performed using native space images. For the univariate analysis, each
subject’s anatomical image was further segmented into grey and white
matter, cerebrospinal fluid, bone, soft tissue, and air images. The same
deformation map was then used to normalise the EPIs to the MNI template,
which were lastly smoothed with a Gaussian kernel with full width at half
maximum (FWHM) of 8 mm.

5.3.4 Univariate analysis

Univariate analyses were performed with SPM12 and custom code. In
our main general linear model (GLM), the first regressor was an indicator
function of the onsets of all the imagination trials in like and dislike frames.
The second regressor was an indicator function of all the onsets of the second
sound during choice trials, also in both frames. We selected the second
sound since at this point participants had available the full information
for their decisions. Regressors were not orthogonalized but were left to
compete for variance. To extract auditory ROIs, we fitted an additional
GLM including the onset of each sound as a regressor. In all GLMs, we also
corrected motion artifacts by including six subject-specific parameters from
image realignment (corresponding to three rigid-body translations and three
rotations) as covariates of no interest. All regressors were then convolved
with a canonical hemodynamic response function. A high-pass filter with
a cutoff of 1/128 Hz was applied to the time series to remove slow drifts.
Temporal autocorrelation was estimated with a first-order autoregressive
model (AR-1). Clusters were detected with a cluster-defining threshold of
P < 0.001 and FWE-corrected for multiple comparisons at P < 0.05. The
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main GLM was constructed for representational similarity analysis (RSA)
and fitted to unsmoothed and unwarped EPIs.

5.3.5 Representation Similarity Analysis (RSA)

Multivariate analysis was performed using RSA. This method allows us
to explore how different brain regions represent the information in a task,
observing the relationship between a hypothesis model and brain activity
patterns [164, 168]. Hypotheses about the neural representations are specified
in terms of Representational Dissimilarity Matrices (RDMs). An RDM is a 2D
matrix where rows and columns correspond to the experimental conditions,
with the elements representing the pairwise dissimilarity (or distance) under
those conditions. In this way, conditions that are similarly represented will
have low dissimilarity. RDMs can be constructed using activity patterns
from participants’ brains during the experimental conditions or created as
hypothetic models describing the representational structures. To construct
the brain-based RDMs, the pairwise distance was computed using 1 −Pear-
son’s correlation coefficient r between the brain patterns representative of the
experimental conditions. In a second-level similarity analysis, a comparison
between RDMs was possible, model and brain-based. This similarity estima-
tion was done using 1 - rank correlation coefficient (i.e., 1 - ρ), as a measure
of distance. The second-level similarity allowed inferring to what extent
the activation pattern in a specified ROI correlated with a model prediction.
In the present study, the RSA was carried out with a dedicated MATLAB
toolbox [165] plus custom code. In our task, the brain patterns to estimate
similarities were extracted from the univariate analysis. Here we defined a
GLM using as regressors the onsets for all the imagination and choice trials
(details above). Since the task included 192 imagination trials and 144 choice
trials means we used 336 separated β-maps (for each individual participant),
generated from the GLM. Unwarped and unsmoothed brain images were
used to fit the GLM, with β-maps in the native subject space.

5.3.5.1 RSA Searchlight

The RSA searchlight analysis explored the entire brain looking for areas with
a specific representational structure of the experimental conditions (captured
by an RDM model). Searchlight was performed within grey matter masks
obtained for each participant. In line with previous approaches [278], these
masks were defined as a set of voxels with a probability of including grey
matter exceeding 0.3 according to the tissue segmentation step. A spherical
ROI with a radius of 15 mm was defined around each voxel in the grey matter
mask. Brain-based RDMs were built in each one of these spherical ROIs. For
each brain position, the model and brain-based RDMs were reshaped to a
vector and compared using Spearman’s ρ correlation coefficient, assigned
to the centre of the sphere. We used the imagination condition to run the
searchlight. For each subject, we calculated the average β-maps for each
animal from all its exemplars, separated by frame. This produced a single
representative pattern for each one of the four animals in like and dislike (8
conditions in total, 4 for each frame). Our main RDM model for searchlight
characterised pet identity, meaning that the pairwise elements for the same
animal in the matrix were assigned 0 (i.e., high similarity) and all the other
elements were 1 (i.e., low similarity) (Figure 5.3A). By comparing this model
RDM with the brain-based RDMs we generated a subjective correlation
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map (Spearman’s ρ), which encoded the correlation between the model and
brain representation across the whole grey matter mask. The maps were
lastly normalised to MNI space with the deformation map from the tissue
segmentation for each participant and then smoothed with a Gaussian kernel
with FWHM of 8 mm. Group-level statistics were performed with a non-
parametric cluster-level permutation test implemented in SnPM (statistical
nonparametric mapping) [279], with a cluster detection threshold at P < 0.001

and no variance smoothing. Clusters were considered significant if they
survived an FWE correction at P < 0.05 [280].

We additionally performed a searchlight analysis using a model for goal-
relevant valuation in imagination trials (Figure 5.5): for each participant
we created an RDM using as distance the difference between their animal
preferences, i.e., dij = |∆Rankingij|=|Ri −Rj|, with R the preference ranking
for each animal category (not the exemplar value). Importantly, for dislike
frame the ranking was the opposite of for like frame, i.e., Rlike = 5 – Rdislike.
Based on previous findings [99] we constrained our search to 20-mm vmPFC
ROI, applying a small-volume correction to determine the significant clusters.

5.3.5.2 ROI analysis

We performed a multivariate analysis in regions of the brain important for
goal-oriented decisions. Binary masks were created based on ROIs from
one of our previous studies on goal-oriented decision making [99]. In that
study a multivariate analysis reported goal-dependent representations in
the prefrontal cortex: vmPFC: [−10, 54, 2] and OFC: [-32, 38, -14], both
relevant in the valuation circuit. From that same study, we also extracted a
visual ROI located in Brodmann 37 (right fusiform area, [28, -54, -12]) which
was the peak voxel resulting from a multivariate analysis on the perceptual
representation of the task stimuli. Given the relevance of sound stimuli in
our choice trials, we also created an ROI in the primary auditory cortex. This
was extracted from a group-level univariate analysis considering the onset
of choice sounds (pet names) (peak activity in BA41: [64, -24, 6]) (details
above). We created 10mm spheres centred at the MNI coordinates for all
these ROIs and then we warped them to each participant’s native image
space. All ROIs were generated using MarsBar toolbox in MATLAB [281]. To
extract bilateral hippocampus ROIs, cortical reconstruction and volumetric
segmentation were performed for each participant using Freesurfer 7 image
analysis suite (http://surfer.nmr.mgh.harvard.edu/). Using the processed
images, we used the tool for segmentation of hippocampal subfields and
nuclei of the amygdala, also available in Freesurfer [282]. We separated the
hippocampus from the segmentation and custom code was used to transform
the mask to the participant’s native space in SPM.

We performed an RSA analysis within these ROIs using both, imagination
and choice conditions. For imagination, we defined the conditions as in the
searchlight analysis, averaging patterns for the 4 animals in the like and
dislike frames. For choice condition, we averaged across all the trials that
presented the same pair of animals, independent of the side (e.g., all the trials
where the choice between dog-cat or cat-dog was presented were averaged
together) generating 12 activity patterns (6 for each frame). Given that the
number of exemplar trials to average is higher in imagination trials than in
choice trials (24 trials vs 12 trials), for the RSA analysis including both tasks
simultaneously we subsampled 12 of the imagination trials and calculated
the respective average. We constructed an RDM model to use for the ROI
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analysis. This model assigned a high similarity within imagination and
choice conditions, and low similarity across conditions ignoring the frame,
e.g., two imagination trials are similar to each other, and dissimilar to choice
trials (justTask model). We constructed other models but we did not find
significant relationships with the RDM models: 1) a model that assigned
high similarity within the same task and frames, but low similarity across
tasks and frames (e.g., the high similarity between all the like imagination
trials, and low similarity with dislike frame and choice task) (frameSplitTask
model); 2) a model that assigned high similarity to pet identity, independent
of the frame and conditions, considering for choice trials the pet identity of
the presented animals (petId model); 3) similar to 2) but considering high
similarity for conditions within the same frame (framPetId model), and 4)
a random value RDM as control. In this report, we did not present the
results for all these analyses, but they were mostly non-related with the brain
ROIs. We compared the relatedness of the brain RDMs with the models
RDMs using Kendall’s rank correlation coefficient τA. Randomization tests,
with FDR correction for multiple testing (FDR p<0.05) were used to infer a
single model relatedness with the ROI RDM. Comparison of the difference
of relatedness between models was performed using subjectRFXsignedrank
(two-sided Wilcoxon signed-rank test) in the RSA toolbox [165] with FDR
p<0.05 correction for multiple comparisons.

We also used the results from the searchlight analysis to create an ROI. In
this case, only imagination trials were considered. With this we calculated a
dendrogram and activity patterns MDS scaling (computed with metric stress
criterion) using the default settings in the RSA toolbox [165].

In our RSA analysis described above we averaged the patterns of animal
and frame categories. This was done mainly to facilitate the analysis given
the big number of exemplars (96 images duplicated by the frames) in the
imagination task, which made it unfeasible for us to run a full searchlight.
As a second approach, to obtain a more detailed view of the effect of frames
in the imagination stage, we estimated the similarity between imagination
trials using the ROIs described in the previous section. The similarity was
calculated using Pearson’s correlation r considering independently the activ-
ity patterns for all the trials (photo exemplars), not just an average for each
animal. The correlation values considering the trials where the same photo
was presented were compared with the similarity between trials showing
different photos of the same animal. Additionally, within trials presenting
the same pet category (e.g., all the trials presenting dogs), we compared if
trial patterns were more similar to other trials with the same frame (congru-
ent trials) vs trials with a different frame (incongruent trials). Further, we
separated the imagination trials into high and low exemplar values (i.e., the
value preference of the photo, not the animal category), as obtained from
the post-test questionnaires. We compared the internal similarity of high
vs low-value trials, separately for like and dislike frames. The correlation
coefficients between individual trials were averaged at a participant level.
We used the Wilcoxon signed-rank test, a non-parametric statistical test that
relaxes the normality assumption often violated by correlation coefficients,
to compare the differences between samples.
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5.4 results

5.4.1 Behavioural results

Participants were exposed to two frames: like and dislike. For each frame,
participants were required to complete two types of trials: imagination and
choice (Figure 5.1A). During imagination trials, they were shown naturalistic
images of four pet categories: dog, cat, hamster or parrot. There were 8

pictures of different animals for each category; we will refer to each of them
as an ‘exemplar’ hereafter. While observing an exemplar, participants were
instructed to focus on the positive or negative aspects of having that animal
as a pet, in the like or dislike frames, respectively. In choice trials, participants
listened to the names of two animals, on the left and right speakers, and
they were instructed to report the side (left or right) corresponding to the
animal of their preference. In the like frame, they chose the animal they
would prefer to have as a pet, and the animal they would prefer to avoid in
the dislike frame.

We wanted to make sure that participants performed the tasks correctly
during our experimental sessions, considering the changes in the frame.
Therefore, in 25% of the imagination trials, we asked them to rate how much
they liked or disliked the animals on a 1-4 scale. In the like frame, a high
response (e.g., 4) should go to an animal that was much preferred; while
in the dislike frame, a non-wanted animal should be the one to get a high
response. Importantly, they were asked to rate their preference for the animal
category, not the specific animal photo. The main objective of this rating was
to measure participants’ engagement with the frames in the imagination task.
We found participants responded consistently to the task goal, with ratings
reported in the like frame inversely correlated to the rating reported in the
dislike frame (r = -0.622, p<0.001) (Figure 5.1B). We also asked participants
to rank the pets according to their preferences in an online questionnaire
after the scanning session. There was a clear relationship between in-task
and off-task preference reports (r = 0.68, p<0.001) (Figure 5.1D). In the online
questionnaire participants additionally used a rating scale (1 – 100) to indicate
their preference (i.e., how much they liked) each one of the exemplar images
presented in the imagination trials (24 exemplars in total). Note that in
this case, the report corresponded to the preference for the photo itself, not
necessarily for the animal category. Still, the exemplar images of animals
with higher preference tended to be reported as preferred (i.e., if dogs were
preferred, dog photos were rated higher) (r = 0.296, p <0.001) (Figure 5.1F).
The objective of using different photos during the imagination trials was
to elicit a wide range of emotions or memories in participants, showing
attractive but also undesirable photos of the animals. From figure 5.1F we
can see that participants assigned a wide range of values to the photos,
even in the preferred animal category. The variability in exemplar values
was similar across animal ranking levels (one-way ANOVA on participants’
exemplar value standard deviation; F(3, 25) = 0.868, p = 0.460). Overall, dog
and cat were the preferred animals for most of the participants, and parrot
and hamster the least preferred (considering 1 the least preferred and 4 the
most preferred animal, average rank across participants: dog = 3.5; cat = 2.89;
hamster = 1.87; parrot = 1.75).

We also checked that participants correctly selected their most or least
preferred animals according to the frame in choice trials. Accuracy on the
choice was similar for like and dislike frames (accuracylike: 0.909 ± 0.079,
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accuracydislike: 0.894 ± 0.116; t28 =1.263, p =0.217, ns). This can also be
observed as a flip in the slope of the logistic regressions of participants’
choices predicted from differences in ranking (average slopelike: 5.48 ± 5.39,
slopedislike: -6.43 ± 7.02, t =6.11, p < 0.001) (Figure 5.1C), showing a change
in choice behaviour depending on the frame. For the logistic regressions,
we used ∆Ranking = Rankright – Rankleft (using rankings obtained from the
online responses). Participants had slightly higher reaction times for choices
in the dislike frame (RTlike: 4.158 ± 0. 176 [s], RTdislike: 4.232 ± 0. 208 [s], t28 =
-4.291, p<0.001). Similarly, in the imagination trials with ratings, participants
were slower in the dislike frame (RTlike: 1.448 ± 0.32 [s], RTdislike: 1.59 ± 0.37

[s], t28 = -4.742, p<0.001). Therefore, we concluded that participants had no
problems performing the task inside the scanner, with consistent behaviour
in tests administered after the experiment.

5.4.2 Representation of imagination and choice tasks

The behavioural data showed that participants were effectively tracking
animal preferences and frame contingencies. Our main objective in this
experiment was to study how the brain representations flexibly adapt to the
experimental demands. For this purpose, we used RSA which characterises
the representational content of brain activity [161, 164, 165, 99]. This method
uses the similarity of neural patterns across various experimental conditions
to infer the structure of representations in specific brain areas. For example,
if a brain area represents the type of object that is presented in a task
displaying images of houses and faces, then its activity patterns during
"houses" trials should be more like other trials of the same type relative to
"faces" trials. RSA uses matrices containing similarity information between
the experimental conditions called Representational Dissimilarity Matrices
(RDMs). Given the simile to distance, dissimilarity measures (i.e., 1- Pearson’s
r) are used to construct these matrices: the higher the value, the more "distant”
in the representational space are the conditions. Since RDMs represent
the similarity between all the combinations of the selected experimental
conditions, it forms a square matrix (NxN) with the dimensions of the N
experimental conditions.

While our experiment was focused on the assessment of the animal cate-
gories in different frames, the design per se involved a meta-category: the
separation of the task in imagination and choice trials. We proceeded to in-
vestigate the representation of these two tasks in the brain. We extracted ROIs
from a previous independent experiment on goal-relevant decision-making
from our group [99]. From here we selected areas involved in a higher-level
processing of goal-directed decisions: the ventromedial prefrontal cortex
(vmPFC) and orbitofrontal cortex (OFC). Also, we extracted another ROI
from that previous study related to visual processing, in particular, the area
identified for the perceptual representation of object identity (ROI located
in the fusiform area in [99], MNI coordinates: [28, -54, -12]). We will refer
to this area as visual ROI in the following analyses. Additionally, given
the relevance of the hippocampus in feature representations [283, 276], and
evidence sampling for value assessment [51, 53], we performed a subject-
based segmentation of this area (see Methods for details on the ROIs). In
addition, given that choices were made on the pet names delivered through
auditory stimuli, we included an auditory ROI. This was extracted from
a univariate analysis based on a GLM using the onset of the pet names
audio as regressors. We constructed the RDMs for all these areas including
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Figure 5.1: Task and behavioural analysis. (A) Design of the fMRI experiment: Imagination and choice trials were presented randomly in like and dislike
frames. In imagination trials (top) participants were instructed to think about either positive or negative aspects of having that animal as a pet, in like and
dislike frames respectively. In these trials, they observed a single exemplar (animal photo), with a red or blue frame indicating if the trial corresponded to
a like or dislike frame (colours were counterbalanced between participants). A high and low pitch sound also indicated if the current trial was part of the
like or dislike frame (also counterbalanced between participants). Each exemplar was presented twice, once for each frame. After the presentation of the
exemplar, one-quarter of the trials requested the participant to insert a rating on a 1- 4 scale to indicate the preference of the animal category (not photo
exemplar). These ratings measured how much they liked or disliked the animal, depending on the frame. A distinct beep sound was presented when the
rating scale appeared. In choice trials (bottom), participants made binary choices, selecting the animal they preferred (in the like frame) or the one they
wanted to discard (in the dislike frame). Importantly, the options were presented using sound stimuli: the name of the animal was played on the left or
right side using MR-compatible earplugs. The sounds were presented with a separation of 0.5 s to allow a correct recognition of both sounds. The frame
for each trial was indicated using the colour of a speaker icon presented in the centre of the screen. Red or blue indicated the frame in the same way as in
imagination trials. The same high and low pitch sound as in imagination trials was presented at the beginning of the choice trials to highlight the current
frame. The selected option (right or left) was highlighted for a second before initiating the next trial. (B) Relationship between like and dislike ratings
in imagination trials. The negative correlation between like and dislike ratings shows that participants were inverting their reports depending on the
frame. (C) Logistic regression for choice trials in like and dislike frames. The plots show the probability of choosing the right option with respect to the
difference in preference for each animal (∆Ranking = rankright – rankleft). Each line represents an individual participant, and blue and red lines indicate

the group average. The change from positive to negative slope indicates that participants were correctly shifting their responses with the frames. (D) The
animal ranking was extracted from an online questionnaire completed after the fMRI session. Each participant arranged the animals from highest to
lowest preference. Subject-level rankings were correlated with the ratings given during the fMRI experiment, after the imagination trials. (F) Additionally,
participants completed another questionnaire with their preference for each one of the exemplar images (not the animal as a category). We found that the
preference for the photos was correlated with the preference of each one of the animals.

imagination and choice trials (Figure 5.2A). We found across these ROIs
separate representations of imagination and choice tasks, with higher sim-
ilarity within tasks relative to between tasks. This can be observed from
the RDMs obtained for these areas (Figure 5.2A). To check this finding, we
compared the ROIs with a model RDM that captured high similarity within
imagination and choice tasks, and low similarity between tasks. We found
significant relatedness between this model and all the selected ROIs (ROI
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RDM relatedness with model RDMs tested using randomization test, p<0.05,
with multiple testing FDR adjustment). Note that brain and model RDM
relatedness was calculated using rank correlations, to avoid assuming a
linear relationship between the dissimilarities [165]. Therefore, the brain
organises imagination and choice tasks separately, even when the trials were
randomized to exclude potential block effects or temporal correlations [284].

An important feature of our experiment was that each task relied on
a different stimulus type (visual in imagination and auditory stimuli in
choice). We checked whether the representational structure in visual and
auditory ROIs reflected this difference. As can be seen from the MDS plot
(Figure 5.2B), we found that the internal similarity between the imagination
trials was higher than between choice trials in the visual ROI (fusiform
area). We confirmed this by comparing the dissimilarity extracted from the
brain RDM showing significantly lower values (i.e., more similar patterns) in
imagination relative to choice trials (F(2, 27) = 19.728, p < 0.001; Imagination
vs Choice: FDR p<0.001) (Figure 5.3D). The opposite pattern was observed
in the auditory ROI: choice trials’ patterns were closer to each other, in
comparison with the internal relationship observed within the imagination
trials (Figure 5.2C). This was also found in the dissimilarity comparison
(F(2, 27) = 82.979, p < 0.001; Imagination vs Choice: FDR p < 0.001) (Figure
5.3E). These results show how behavioural demands cue the reorganisation
of brain patterns, orienting the activity of the relevant sensorial cortices.
Previous studies have reported higher pattern similarity as a result of the
stabilization of brain activity product of visual attention [285, 286], and
neurons in the auditory cortex can sharpen their spatial tunning following
attentional adaptations useful to capture relevant features [287]. Additionally,
neural gain has been associated with focused attention, higher functional
connectivity and tightly clustered patterns across the brain networks [288].

5.4.3 Representational structure in imagination task

5.4.3.1 Animal category analysis

After describing how the brain captures the differences between the two
tasks, in the following section we present in more detail the brain represen-
tations of the animal assessment during the imagination task. In addition
to the ROI approach used in the previous section, RSA also allows us to
look for brain areas that contain specific representational structures. This
methodology is known as a volumetric searchlight. This requires defining
a model RDM that contains the desired relationship structure between the
experimental conditions and to correlate it with RDMs extracted from voxels
sampled covering the entire brain. In particular, we used a moving sphere
to estimate multiple RDMs and check which regions contained the desired
representational structure.

Firstly, we searched for a representation of the pet alternatives in imag-
ination trials, independent of the frames. We constructed a model RDM
where each row of the matrix (or column since it is symmetrical) corresponds
to one of the pets in one of the frames, e.g., column one corresponds to a
dog in a like frame (Figure 5.3A). We used that model RDM in a searchlight
analysis. Due to computational constraints, for each one of the selected
experimental conditions we averaged the brain activity patterns related to
all the exemplars of the same animal into a single pattern and used it to
calculate the brain RDMs. We used a volumetric searchlight in which the
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Figure 5.2: Imagination and choice trials RSA in selected ROIs. (A) RDMs calculated for the selected ROIs. Imagination and choice conditions were
included in the same matrix. Blue and red squares represent the conditions for like and dislike frames, respectively. The blue, red and grey areas
represent the conditions inside the tasks, imagination and choice. The separation between conditions is observed for most of the ROIs, which can be seen
as areas of high dissimilarity in the elements of the matrix corresponding to the choice and imagination relatedness. (B) MDS plot for the visual ROI
(fusiform area). A separation between the choice and imagination conditions was found. The choice condition was characterised as the pair of animals
presented, independent of the side (e.g., hamVpar, hamster vs parrot). The blue circle in the brain insets indicates the sphere ROI. (C) MDS plot for the
auditory cortex. Red: like frame; blue: dislike frame. Par: parrot. Ham: hamster. (D) Distance between activity patterns extracted from RDM for choice
and imagination tasks in the visual ROI. Bar plot presents dissimilarity measures calculated for the patterns representing the imagination conditions only
(Within Imag), choice condition only (Within Cho) and including the dissimilarity between imagination and choice conditions. A higher similarity was
found in imagination for visual ROI. (E) Distance between conditions in the auditory ROI. A higher similarity was found in the choice of auditory ROI.
Dots represent the participant average of dissimilarity measures. Black bars represent the standard error of the mean (95% confidence interval). Like and
dislike frames were included together to calculate the dissimilarity measures. *** p < 0.001. Brain image templates, copyright 137 (C) 1993–2004 Louis
Collins, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University.

correlation between model- and brain-based RDMs was computed within a
15-mm-radius spherical region centred in each voxel of the participant-level
grey matter mask. The obtained correlation coefficient (Spearman’s ρ) was
then assigned to the central voxel, generating subject-level correlation maps.
Group-level statistics were performed using a nonparametric permutation
test: all the reported clusters were identified with a cluster detection criterion
of P < 0.001 and FWE-corrected at p < 0.05. We found activity in a large
cluster covering various bilateral occipital regions reaching structures in the
ventral stream like the fusiform gyrus (peak voxel in MNI space: [12, -82,
4]; t28 = 9.04, p < 0.001) (Figure 5.3B). These areas are relevant to visual pro-
cessing and have been reported to play a role in object recognition [262, 99].
As a reference, the visual ROI used in the previous analysis obtained from
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[99] had a more anterior location in the ventral pathway than the peak voxel
found in this searchlight.

Figure 5.3: Imagination searchlight RSA. Pet identity. (A) RDM model for animal
identity used in the RSA searchlight. (B) Brain regions following the activation pattern
indicated in the model as obtained from the searchlight procedure. Brain image
templates, copyright 137 (C) 1993–2004 Louis Collins, McConnell Brain Imaging
Centre, Montreal Neurological Institute, McGill University.

To further analyse this activity, we extracted a 10-mm sphere centred in
the peak voxel of the searchlight and extracted the RDM for the brain activi-
ties in the ROI (Figure 5.4A). We found that this area not only represented
animal identity but also frame information. ROI patterns similarity within
frame conditions was higher than across frames (Wilcoxon signed-rank test,
z = -2.3029; p<0.05) (Figure 5.4D). This can be also appreciated from the
darker colours in the elements of the RDM corresponding to like-like or
dislike-dislike animal similarities. A hierarchical binary cluster tree analysis
represented in the dendrogram [289, 86, 215] also found a clear grouping of
animal pattern representations by frame (Figure 5.4B). A multidimensional
scaling (MDS) analysis also showed two clusters, one for like and another for
dislike frame (Figure 5.4C). This result does not constitute double-dipping
since we constructed the searchlight purely based on animal identity, agnos-
tic to like and dislike frames. However, it is important to consider that in our
task each frame was presented with different colours (e.g., blue and red for
like and dislike frames, respectively). This means that the encoding of colour
and not frame could be driving this specific similarity pattern. We keep this
result tentative, although a frame coding could be supported by previous
findings of areas involved in early visual processing affected by top-down
goal-directed settings [230].

Since the imagination task also involved the evaluation of the animals
(i.e., thinking about positive or negative features), we searched for areas
representing the value relationships between the options across frames.
We constructed another model RDM using the differences in subject-level
animal rankings, a measure of the valuation of each animal. Importantly,
in the dislike frame we used the opposite ranking to capture a goal-relevant
valuation, e.g., the animal with the highest ranking (rank 4) became the lowest
ranked option (rank 1) in the dislike frame. This means that each animal
had different rankings depending on the frame, i.e., the distance between
the representations of the same animal in the like and dislike frame was not
zero. We run a searchlight analysis using this goal-relevant value RDM. In
previous work from our group [99] we have performed a similar analysis,
capturing in an RSA searchlight the usefulness of various everyday items to
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Figure 5.4: Frame representations in the occipital cortex. (A) We constructed an ROI
selecting the peak of the searchlight cluster on pet identity in imagination trials. The
blue circle in the brain inset indicates the ROI. We see the high similarity for the
elements of the matrix corresponding to like-like and dislike-dislike conditions. (B)
The dendrogram on dissimilarity measures extracted from the ROI analysis shows
the clustering of animal patterns within the two frames, like and dislike. (C) MDS
plot presenting the dissimilarity as distances between the animal representations. (D)
Dissimilarity within the frame was found significantly lower than between frames.
Notation in the dendrogram and MDS plot: par: parrot; ham: hamster; L: like frame;
D: dislike frame.

solve two distinct goals (i.e., light a fire or anchor a boat). In this work, frontal
brain regions, in particular vmPFC, were found to represent goal-relevant
usefulness. The role of vmPFC in value computation [290, 291, 98] and the
deployment of goal-relevant associative networks (often termed schemas)
[208] have been extensively reported, supporting these goal-dependent neural
representations. We constrained our searchlight to a 20 mm. sphere around
the vmPFC peak reported in [99] (MNI coordinates: [−10, 54, 2]). We found
significant similarity with the model RDM in the vmPFC (peak voxel in MNI
space: [-16,60, -2]; t28 = 3.48, pFWE-corr < 0.05, small volume corrected). We
run a whole-brain searchlight but no significant clusters were identified. Our
results are in line with previous reports of vmPFC encoding, not simply a
hedonic reward (how much participants like an alternative), but also the
relevance of the option within the current task demands (see also Chapter 4;
[98, 99, 230])

5.4.3.2 Image exemplar analysis

In the previous analyses, we have shown task representations across our
selected ROIs in imagination and choice trials. However, in the case of imagi-
nation trials, due to the averaging at the animal level, we lose an important
part of the richness of our experimental design: the various exemplars of
the animals presented in both frames. Although we instructed participants
to think about the general category of animals, we still expected that the
presentation of multiple animal exemplars elicited different features or as-
pects of the pets in the participant’s evaluation. Therefore, in the following
section, we investigated the brain representations during the imagination
condition considering each individual trial separately. For this analysis,
we used the ROIs employed in the previous section using the individual
activity patterns for each one of the trials (in both frames) of the imagination
task. We focused in particular on the hippocampus and OFC as areas of
interest in the representation of goal-relevant information, and visual areas
for the stimuli representation. First, we checked if these areas displayed
goal-independent representation of the visual stimuli, i.e., areas that encoded
with a high similarity the presentation of the same photo exemplar relative
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Figure 5.5: Imagination searchlight RSA. Goal-relevant value. (A) Using participant
ranking of the animals we estimated the goal relevance of each option in the like
frame (i.e., the preferred animal to have as a pet). We inverted the ranking in the
negative frame to capture the shift in task relevance (e.g., the animal with lower
preference in the like frame becomes the animal with the higher ranking in the
dislike frame). (B) Using frame-dependent rankings, we estimated the dissimilarity
(dij = |∆Rankingij|) between each animal in the separate frames. (C) A searchlight
in a vmPFC mask found significant similarity with the goal-relevant value RDM.
Brain image templates, copyright 137 (C) 1993–2004 Louis Collins, McConnell Brain
Imaging Centre, Montreal Neurological Institute, McGill University.

to other photos of the same animal. Note that in this experiment each photo
was repeated twice (once in each frame). We found that only a visual ROI,
located in the fusiform area (extracted from [99]), showed a high similarity
in activity patterns when the same image vs a different image (of the same
animal) was presented (Wilcoxon signed-rank test, Visual: z = - 3.75; p<0.001)
(Figure 5.6A). This is consistent with the result found in searchlight and not
surprising regarding visual processing.

We then checked whether we could find goal-dependent representations
in our selected ROIs from the analysis of the animal exemplars. Within the the
same animal, we compared the activity patterns in the same frame (congruent
exemplars) and across frames (incongruent exemplars). We expected that the
similarity of animals represented in goal-dependent areas should be higher in
the same frame, e.g., the activity pattern of a dog presented in the like frame
must be closer in the representational space to another dog in the like frame
than to a dog presented in the dislike condition. We found indications of this
pattern of activity in the OFC (Wilcoxon signed-rank test, z = - 2.38; p<0.05),
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that showed a significantly higher pattern similarity between images of the
same animal in the congruent frame relative to the incongruent frame (Figure
5.6B). We did not find a significant effect in the hippocampus (considering
an ROI including both, left and right sides), however, a significant effect
appeared for left hippocampus only (Wilcoxon signed-rank test, z = - 2.21;
p<0.05). We focused this analysis on areas known to potentially play a role
in context processing (e.g., [86, 215]), however, the results should be taken
with caution given the small size of the sample (n = 29).

Figure 5.6: Pattern similarity in imagination trials. (A) Comparison of trials with the
same exemplar (i.e., the same photo) vs trials with the same animal, but a different
photo. Only the visual ROI presented a significant similarity for the same exemplar
relative to the different pictures of the animal. (B) Comparison of trials with the
same frame (congruent) vs trials with different frames (incongruent), within the same
animal. Hippocampus (HPC) and OFC presented higher similarity for the congruent
relative to incongruent trials. Dots represent participant average similarity. Black bars
represent the standard error of the mean (95% confidence interval). ***: p<0.001; **:
p<0.01, *: p<0.05.

Previous studies have shown that brain representations flexibly adapt to
behavioural demands [99, 98]. The hippocampus, traditionally associated
with memory, has been found to have a central role in the construction of
representations guided by context [292, 86, 95]. Furthermore, hippocampal
involvement has been suggested for the construction of value, acknowledging
that it is likely that the information used to construct this abstract value is fed
from previous experiences [52, 51, 293, 53, 294]. Further findings have shown
that hippocampus processing can be influenced by attentional shifts, focusing
on the representation of relevant features for the demanded task [295, 286,
276, 296]. Our imagination task required participants to assess the value of
animals as pets, in two contexts, like and dislike. This means that participants
had to evaluate their alternatives, focusing on positive or negative aspects
depending on the frame. We presented a variety of animal photos hoping to
elicit in participants various memories or features of each animal. In the post-
test questionnaire, we asked participants to report their preference ratings for
each one of the images in isolation. We expected that these exemplar value
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ratings could be a good proxy to characterise the type of memory/features
that the photo evoked in the participants, e.g., a photo of a dirty dog or
an aggressive cat with a low score by participants may be associated with
negative aspects of having the animal as a pet. Therefore, we separated all
the images by high and low exemplar values using a median split for each
participant. Previous studies have reported that attention and successful
memory retrieval stabilizes hippocampal representations, which is translated
into a higher similarity between brain patterns of the same condition [297, 285,
286]. In our task, we hypothesised that high-value exemplars captured the
relevant features for the like frame, while in the dislike frame, the low-value
exemplars should elicit features that were worthy of attention. We calculated
the pattern similarities between pairs of hippocampal patterns corresponding
to high-high or low-low value exemplars separately in both frames (Figure
5.7A). We expected that patterns of the frame-relevant condition (i.e., high-
high the similarity in like and low-low similarity in dislike frame) should be
more similar to each other, as a consequence of the attentional effect driven
by the goal. We found that the right hippocampus encoded a significant
interaction between the difference in pattern similarity between high-high
and low-low value exemplars (∆Similarity) and the frames (Wilcoxon signed-
rank test, like: z = 2.45; p<0.05, dislike: z = -2.37, p<0.05, paired samples
Wilcoxon signed-rank test, like vs dislike: z = 2.5840; p < 0.01) (Figure 5.7B).
Specifically, we found that in the like frame, the high-value exemplars were
more similar to each other than the low-value exemplars; while in the dislike
frame, the signature was inverted, with a higher similarity between low-
value exemplars. In other words, more stable representations were found
in the images that were coherent with the active frame, e.g., photos of cute
puppies and cats generated similar representations in the like frame, while
photos of ugly parrots or hamsters were more closely represented during
the dislike frame. We repeated this same analysis considering instead the
full hippocampus ROI and we also found a significant difference between
like and dislike frames similarities (like vs dislike: z = 2.367; p < 0.05).
Overall, this result supports the role that goal-directed attention has on
hippocampal representations, which may be an important mechanism to
help the construction of value encoding the usefulness to fulfil the objective
of the task [98, 99].

5.4.4 Goal-relevant representations in choice task

The information to make value-based choices does not necessarily depend on
the perceptual characteristics of the stimuli but it should be extracted from
internal sources, potentially using memory to accumulate information on
the suitability of the alternatives [51]. Activity in the hippocampus [53] and
prefrontal cortex areas, such as OFC [49] have been suggested to support
neural reinstatement or the appearance of brain patterns associated with
the decision alternatives during the choice deliberation period. To capture
this possibility, we estimated the similarity between imagination patterns,
which we used as a proxy for the memory and experiences of the participants
with each one of the animals, and the binary choice trials. An additional
advantage of having multiple images during the imagination trials was to
capture pattern representations that did not rely on particular features of
a single photo, but that could capture some generality of the animal cate-
gory. We expected that during choice, those brain patterns would appear
again, with a prevalence of activity associated with the chosen animal. A
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Figure 5.7: Goal-directed pattern similarity in the hippocampus during imagination
trials. (A) Each participant was asked to rate how much they liked each one of the
photos presented during imagination trials, independent of task frames or animal
categories. Using this information, we separated all the imaginations trials into two
groups: 1) trials with high-value exemplars and 2) trials with low-value exemplars.
These two groups were specific for each participant, depending on their preferences.
For each frame, we separated the imagination trials in those two groups, depending
on the value of the exemplar presented. We calculated the similarity of hippocampal
activity patterns for pairs of imagination trials, extracting specifically the similarity
between high-high and low-low value exemplar trials. (B) We estimated the difference
in the similarities between high-high value exemplars and low-low value exemplars
(∆Similarity). In the right hippocampus, during the like frame, the imagination trials
with high-value exemplars were "closer” to each other (i.e., higher pattern similarity)
than the trials with low-value exemplars. On the other hand, in the dislike frame,
the similarity of low-low value exemplars presented higher similarity to each other,
relative to the high-high value exemplars’ similarities. The brain inset shows the
hippocampus ROI in blue. Dots represent participant average similarity. Black bars
represent the standard error of the mean (95% confidence interval). **: p<0.01.; *:
p<0.05.

key aspect of our choice trials was that they relied on auditory stimuli, to
avoid the confounding factor of visual stimuli presented across imagination
and choice trials. This is because if we presented images in imagination
and choice trials, the pattern similarities could be due to the deployment of
online visual attention toward specific features of the animal (e.g., the bright
colours of parrots) and not an actual memory reinstatement. We expected
that the similarity between imagination and choice trials would be based on
the actual recovery of the patterns relevant to the choice. Therefore, using
the dissimilarity values obtained from the RDM (including imagination and
choice trials) we estimated the similarity of brain activity for each animal
imagination (at a participant level) with each choice trial pair (Figure 5.8A).
Previous reports have indicated that neural activity associated with the cho-
sen option is preferentially reinstated during the decision [49]. Therefore, we
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estimated the dissimilarity of the chosen and unchosen animals with their
respective imagination patterns. For this analysis, we joined the dissimilari-
ties for both frames. We could not find any significant differences between
the similarity of the choice trials and imagination templates associated with
the chosen and unchosen animals. In the hippocampus, we only found a
trend showing higher similarity for the chosen than the unchosen animal
(two-sided Wilcoxon signed-rank test, like vs dislike: z = 1.632, p = 0.10) (Fig-
ure 5.8B). We additionally compared the dissimilarities between the animals
shown in each binary choice trial and the animals not presented, but we
did not find significant differences in hippocampus or OFC. We performed
a similar analysis for chosen and unchosen options, this time considering
each animal and frame (e.g., for a choice of dog or cat in the like frame, we
compared with imagination templates only in the like frame vs templates in
the dislike frame). We calculated if choice trial patterns were more similar
to the imagination patterns of the chosen option in the respective frames
(e.g., the choice of a dog in dislike, is more similar to the imagination pattern
of a dog in dislike than to like frames). Again, we did not find significant
differences. The lack of significant results may be due to the high variability
of the patterns we elicited in imagination trials and the insufficient number
of samples in imagination trials and choice. Furthermore, as presented above,
the patterns elicited by visual and auditory modalities were quite distinct
making even more difficult to identify a significant reinstatement.

Figure 5.8: Choice trials brain patterns reinstatement. (A) We used the RDM matrix
containing imagination and choice trials for each participant. We extracted the
dissimilarity value between the imagination templates and the animals presented
in each binary choice combination. For example, for a binary choice of dog versus
cat, we selected in the RDM the value of the elements in green (chosen) and yellow
(unchosen) in the matrix corresponding to the dissimilarity of the choice patterns
with the imagination patterns observed for chosen (dog) and unchosen (cat) animals,
respectively. (B) Comparing the dissimilarity between chosen and unchosen animals
and their respective imagination templates, we did not find a significant difference,
although the hippocampal patterns for the chosen animals were more similar to
the imagination activity than the unchosen animals. In the presented analysis we
included both frames together. A posterior analysis performed on patterns separated
by the frames did not report significant differences in pattern dissimilarity.
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5.5 discussion

Assessing our personal preferences involves pondering the diverse features
of an object. While perceptual information in the environment can inform
the subjective evaluation (e.g., if an apple is rotten, we will not rate it highly)
most of the information used to construct these representations likely comes
from internal sources (e.g., our previous experience eating apples). The
retrieval of internal information is a process far from understood and likely
to be highly susceptible to the conditions in which it occurs [51]. In this
study, we investigated how the brain represents information during the
appraisal of options when exposed to contexts that change the goal of its
evaluation. In our study, participants observed diverse naturalistic images
of animals, while considering how good or bad would be to have them
as pets (imagination trials). In some additional trials, participants made
choices between animals only using auditory information (choice trials). We
found that the brain was involved in tracking the change in the experimental
context, using the perceptual information adaptively to satisfy the internal
goals and preferences.

We found that in our imagination task, the visual cortex was encoding
information regarding the identity of the animals or photos presented during
the imagination task. This activity was spread across areas in the ventral
stream traditionally related to item recognition. In standard visual perception
tasks in neuroscience, stimuli (simpler or complex) are tracked passively by
the experimental subjects, like monkeys observing big arrays of animate and
inanimate objects [161]. In our study, we included a variable behavioural
goal (imagining positive or negative aspects of the animals) that we expected
could generate differences at the level of object representations, even when
the images were identical. This is in line with results suggesting that goals
more than retinotopic maps could be the organizing principles in visual
processing areas [161, 262]. We found that frames seemed to be organising
object representations in frame-dependent structures (Figure 5.4), which
could hint at the effect of higher-level processes, and top-down control over
the activity of sensory cortices [278, 298, 299, 230, 300]. However, this result
should be taken with caution since the frame information in our experiment
was cued using a colour coding (e.g., blue for like, red for dislike). Colour can
be found along the visual dorsal stream, with representations of chromatic
retinal stimulus in the early visual cortex and perceptual experienced colours
in higher regions [301]. The location of frame colour at a higher level of the
representation hierarchy could be a manifestation of the cognitive importance
of the frame over other object features, i.e., animal identity (please check
Figure 5.4B to see the dendrogram). This adaptation of sensory cortices
would be appropriate for the specific demands we introduced in this task:
representing the frames [230]. Therefore, although our analysis suggests
an impact of goals on visual processing, we cannot assert this with more
certainty given the confounds with colour coding. The motivation to include
distinct colours to identify the contexts was to avoid participants from
confusing the current frame, since we did not use a block design and the
trial frames were fully randomized.

On the other hand, anterior regions of the brain encoded higher-level
aspects of the assessment process, incorporating goal-relevant information.
We found higher similarity of brain patterns between trials within the same
frame in the OFC during the imagination trials. This is in line with reports
of the OFC representing task states and context in decision-making [302, 215,
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303, 99, 304, 294]. Additionally, we found that a model of goal-relevant value
preferences was similar to the structure of the representations found in the
vmPFC, specifically in an area reported in one of our previous studies [99].
These findings confirm that activity patterns in this area could represent
beyond purely hedonic reward, they could capture value information in a
context-aware manner, i.e., encoding the usefulness of the options in the
vmPFC.

The hippocampus is important for the encoding of information in distinct
attentional states [286, 276]. In those studies, the representation of the
same stimuli (e.g., virtual rooms with paintings) changed depending on the
objective of the task (e.g., to search for a similar type of art or identical spatial
layout) and impacted eventual memory retrieval. In our experiment, each
frame generated a different attentional state in participants, i.e., thinking in
positive or negative features. While our study was not a memory task (not
requiring the encoding of the stimuli for later retrieval), the involvement
of the hippocampus in the construction of value representations has been
hinted as an important piece in the subjective value decision process [51, 53].
This role of the hippocampus in goal-relevant valuation is supported by our
results that indicate an enhanced similarity between the activity patterns
that are relevant to the task. We found that photo exemplars with high
preference values were closer to each other in the representation space for
the like frame, while exemplars with low values were more similar to each
other in the dislike frame. We considered that high-value exemplars (e.g.,
photos of charming puppies) could elicit positive memories or features in
participants, which would be features that facilitate the valuation process
in the like frame. On the other hand, low-value exemplars (e.g., images of
dirty or violent cats) could foster participants’ thoughts of negative aspects
of the animal, which was beneficial in the dislike frame. Therefore, the
images presenting goal-relevant features (e.g., photos of playful kitties in like
frame) may have generated less conflictive representations (relative to the
task frame), which translated into more stable brain patterns (i.e., patterns
more similar to each other). On the other hand, conflictive scenarios (e.g.,
a photo of a cute puppy in the dislike frame) could have produced more
diffuse representations. Previous studies have highlighted the importance
of the hippocampus in the integration of goal-relevant features [210]. Plus,
the high similarity between patterns has been reported as a result of the
stabilization of brain activity product of attention or successful memory
retrieval [297, 285, 286].

Of particular interest is the interaction of prefrontal regions with the
hippocampus in the memory encoding and retrieval of valued alternatives
within specific contexts [289]. OFC and hippocampus have an important
role in the implementation of cognitive maps intimately linked to adequate
context-aware performance [241]. Furthermore, the vmPFC and its interac-
tion with the hippocampus and posterior neocortex have been associated
with the processing of memory schemas [305, 306]. We did not explore these
interactions in this work, but it is a key point to be revisited in future analysis
of this study.

Since we utilized distinct sensory modalities in our imagination and
choice trials, we found an additional adaptation of brain processing to these
task demands. While we reported high similarity in the visual cortex patterns
during imagination trials, patterns in the auditory cortex were closer to each
other during the choice tasks. Note that the imagination task was based on
the visual presentation of images and the choice task required participants
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to discriminate between sounds (animal names). This means that the sensory
modality associated with the focus of attention generated higher pattern
stability in its respective sensory cortex. This result is coherent with enhanced
cognitive processing of the relevant type of stimuli [285, 286], only that this
time it was captured across sensory modalities. Neurons in the auditory
cortex can sharpen their spatial tunning by attentional adaptations to the
task [287]. In a visual-semantic task, the neural gain has been associated
with focused attention, generating tightly clustered patterns across networks
[288], which implies a higher similarity of brain activity. Therefore, higher
engagement of the visual cortex in imagination trials and auditory cortex in
the choice trials may generate more stable activity patterns in those regions
reflecting directed processing of information. A previous study in the visual
modality reported that more consistent and reproducible patterns are related
to conscious cognitive processing vs more scattered patterns in response
to non-conscious stimuli [307, 308]. Our results complement this finding,
showing that top-down attentional control can help drive brain activity to
generate representations adapted to task demands.

One of the objectives of our study was to characterise the brain pattern
reinstatement during choice. This means that activity associated with the
options would appear again during the deliberation stage of the decision,
with a predominance of the chosen option [49]. We expected to use imagina-
tion trials showing single animals as templates to test the reappearance of
animal-related brain patterns during the binary choice. In the same way, we
hypothesised that brain patterns associated with the frame representations
should be similar across the imagination and choice tasks. Although we
predicted that brain patterns between imagination and choice trials would
be different because of the visual and auditory modalities, we anticipated
we could find at least some level of similarity across experimental tasks.
However, none of this could be confirmed in our results. One of the reasons
for this could be the small sample that we had for choice and imagination
tasks. We could have used a bigger sample to create more robust category
templates, as in other visual studies where hundreds of images are presented
to a low number of subjects (e.g., [161, 309]). Another potential reason could
be that process that participants perform during imagination trials (e.g.,
thinking about positive aspects) was not representative of the mechanism
employed during the choice task (e.g., deciding that a dog is preferred over
a cat). Alternatively, choice trials may have been too simple and repetitive
(since we had only four possible animals), not requiring major assessments
at the moment of the decision, i.e., it was more like an automatic report
of a brief list of preferences than an actual consideration of the features
of both alternatives. It has been described that choice and appraisal may
involve distinct processes, which in our case may contribute to the difficulty
in tracking cross-task frame effects [310, 98].

Overall, our study offers some insights into how goals and context infor-
mation affects brain processing during the subjective assessment of options.
Although we could not support the full-exempt of our predictions, we still
found some interesting effects that suggest that tasks and frames perme-
ate the assessment process at different levels in the brain, modulating the
selection of goal-relevant information to generate internal representations.
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C O N F I D E N C E A N D G O A L S I N H U M A N
D E C I S I O N





With every decision comes an internal measure that reflects the level of
uncertainty in our choice. Humans and other animals can generate an assess-
ment of the quality of their choice and outcomes. This capacity to introspect
is not merely anecdotical since it is fundamental to guide future choices and
changes of mind. The factors that are integrated into the confidence signal
and the specific role that it plays in human behaviour is an important open
question in cognitive neuroscience. In the third part of this dissertation, I
studied the post-decision confidence stage. The study presented in Chapter 6

exemplifies the relevance of confidence in the decision process. Here I focus
on confirmation bias or the tendency of agents to overweight information
related to their previous choices. I found that confidence is instrumental in
this bias, guiding the occurrence of changes of mind and the exploration
of alternatives in future decisions. Indeed, when participants were more
confident in their choice, they tended to keep exploring the information
that aligned with their preliminary selection, instead of paying attention to
evidence that could prove them wrong. This intriguing behaviour could
have its root in subtle changes in the participant’s endogenous context: the
objective during a revision stage is not only to be correct but to validate their
previous decision. The standard studies in confidence have not considered
scenarios where the goals change, which can help to understand the overall
role of these metacognitive reports. In Chapter 7, I presented more directly
the effect that goals have on the generation of confidence. Based on the ex-
periment presented in Chapter 3, I showed that decision frame manipulation
affected confidence reports. In particular, I presented that confidence was
enhanced by the overall amount of information aligned with the goal of the
task. A typical view of confidence is that it reflects the accuracy of choices
and the difficulty of the decision independently of other contextual factors.
The modulation by goal-coherent evidence is in line with novel studies that
suggest a more nuanced view of the generation of confidence. In Chapter
8, I connected my findings with another phenomenon recently described
in the literature on confidence and metacognition: the positive evidence
bias. This bias reported in perceptual studies considers that confidence is
unbalanced towards the evidence supporting the decision, disregarding the
unchosen evidence. I showed in a series of experiments that this effect can
be also found in the value-based decision and it depends on the goals of the
agent. I found that this effect does not depend on the presence of evidence
per se but it could be driven by the absence of evidence (i.e., a “negative”
evidence bias) if the task requires it. I developed a computational model to
capture the effect of goals on confidence, based on a framework of signal
detection theory and goal-dependent asymmetry in the variance of state
representations. Finally, I hint that this goal-relevant behaviour in confidence
can be a consequence of processes occurring during the deliberation process,
such as variation of attention and internal expectations.
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6
AT T E N T I O N A N D C O N F I D E N C E I N C O N F I R M AT I O N
B I A S

6.1 summary

No one likes to be wrong. Committing to a decision changes the way we
appreciate the initial problem. For example, if we decided to move to London,
it is unlikely we will try to look for reasons that New York is a better city.
The choice event seems to change an endogenous context in the decision-
maker, which affects the future integration of information. Confirmation
bias is the phenomenon where people tend to underweight information
incompatible with previous choices. In the present work, we argue that a
similar bias exists in the way information is actively sought, as this signature
of human choice could be rooted in the basic mechanism of the decision
process. We investigate how choice influences information gathering using a
perceptual choice task and find that participants sample more information
from a previously chosen alternative. Furthermore, the higher the confidence
in the initial choice, the more biased information sampling becomes. As
a result, when faced with the possibility of revising an earlier decision,
participants are more likely to stick with their original choice, even when
incorrect. Critically, we show that agency controls this phenomenon. The
effect disappears in a fixed sampling condition where the presentation of
evidence is controlled by the experimenter, suggesting that how confirmatory
evidence is acquired critically impacts the decision process. These results
suggest active information acquisition and confidence in the decisions play
an important role in the propagation of strongly held beliefs over time.

6.2 introduction

As presented in previous chapters, how we explore our environment and
sample information is intimately connected with our goals, e.g., attending the
snack we would like to eat or reject; identifying the features of a video game
character that will maximize the score. In these examples the goals have been
set by external circumstances (i.e., the experimenter), however, subtle changes
taking place in the agents’ internal context, can also have an impact on their
decision process. A behavioural measure that reflects these internal processes
is the sense of confidence that accompanies every choice. It is known that
confidence plays an important role in the modulation of decisions [311, 58, 57,
312, 313]. Reducing uncertainty is central to making efficient choices, so this
should guide the selection of information [314, 315, 316]. At the same time,
biases and information sampling that deviates from the proposed optimal
behaviours have been widely reported [317, 318, 319, 203, 320, 321, 322, 323].

Confirmation bias is defined as the tendency of agents to seek out or
overweight evidence that aligns with their beliefs while avoiding or un-
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derweighting evidence that contradicts them [324, 325, 326, 327, 328, 329].
Recently, cognitive scientists have realised confirmation bias may reveal
a fundamental property of how the brain drives information search. In
this line, confirmation bias has been found not only in complex decisions
where people choose media channels to get their news and information
[330, 331, 332] but also in much simpler perceptual or value-based choices
[333, 334, 185, 335, 336]. The origin of the bias has been suggested to be
in the weighting of incoming information or the search for confirmatory
evidence [319, 337, 338, 329]. However, the role of information sampling
generated autonomously by the agent has not been studied. This offers a
way to explicitly explore how the sampling strategy is implemented to fulfil
the internal objectives of the decision.

Confidence likely influences information sampling before choice, poten-
tially interacting with the confirmation bias. [339] recently showed that
confidence indeed affects a neural signal of confirmatory evidence integra-
tion. The standard view of confidence implies that the higher the decision
confidence, the stronger the decision-makers’ belief is in the correctness of
this choice [70, 340]. The objective of this study is to explore the relevance
that confidence has on this phenomenon, in particular the role that it has
on information sampling. We predict that confirmation bias in information
sampling will be stronger after choices are made with high confidence.

To approach this question, we designed a perceptual binary decision
task that includes two choice phases separated by a sampling phase. We
tracked sampling patterns using eye-tracking. The purpose of the sampling
step was to test our hypotheses that confirmation bias arises from biased
information sampling, that this effect influences future choice and, crucially,
that confidence mediates this behavioural tendency. We additionally explored
whether the participant’s autonomous generation of the sampling patterns
affects confirmation bias. We found that freely allocated sampling was
more connected with confirmation bias, which was also reflected in the
computational modelling of attention in the decision. Overall, our findings
highlight a central role played by confidence reflecting participants’ beliefs,
which is echoed in the sampling of the alternatives.

6.3 methods

6.3.1 Participants

Twenty-three participants completed this experiment, of which two were
excluded from the analysis because they gave the highest possible confidence
rating on more than 75% of trials. Another three participants were excluded
because their confidence was a poor predictor of their accuracy in the task
(lower than two standard deviations under the mean coefficient predicting
accuracy in a logistic regression). Participants were reimbursed £30 for their
time as well as an additional amount between £0 and £20 that could be
gained in the task. Participants had a normal or corrected-to-normal vision,
and no psychiatric or neurological disorders. We obtained written informed
consent from all participants before the study. This experiment was approved
by the University of Cambridge Psychology Research Ethics Committee.
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6.3.2 Experiment

Participants completed a perceptual decision task where two sequential
choices were made. Each trial involved a first stage where two dot patches
were presented, and participants were instructed to choose the one with a
higher number of dots. In the second stage, participants could resample
the patches before confirming or changing their initial decision. For the
first choice, the stimulus was presented for 500ms each, with a randomised
presentation order for the left and right options. Participants’ responses
were elicited through eye movements. To make a choice they looked at
one of the patches and to rate their confidence they looked at a position
inside a rating scale. After this first choice, the sampling phase between
the two choices randomly varied duration, and it was either 3, 5, or 7 s.
This was not cued to the participants, so at the start of the sampling phase,
they did not know how much time they would be given to sampling the
alternatives. Sampling was completely gaze-contingent meaning that the
dots in a circle were only visible when the participant fixated inside that
circle and participants could only see one circle at a time. This was done
by tracking when the participant’s gaze was within one of two pre-defined
square areas of interest (AI) centred on the two stimuli. Between each phase
of the trial, participants had to fixate on a central fixation cross. Furthermore,
we introduced a control condition in which participants were not free to
sample the circles however they liked during the sampling phase. Instead,
in one-third of trials the patches were shown for an equal amount of time
each and in two-thirds of trials one patch was shown three times longer than
the other (50% of trials the left was shown longer, 50% of trials the right was
shown longer). Participants were constantly reminded of their initial choice
by the circle surrounding the chosen patch changing colour. Participants
took part in two sessions, each consisting of 189 trials. In one session, they
performed the main task and in the other the control condition of the task.
The order of these two sessions was pseudo-random. This experiment was
programmed using the SR Research Experiment Builder version 1.10.1630

(SR Research Experiment Builder, 2017).

6.3.3 Eye-tracking

Eye movements were recorded at a rate of 1000 Hz using an EyeLink 1000

Plus eye-tracker. Areas of Interest (AI) for the eye tracking analyses were
pre-defined as two squares centred on the gaze-contingent circles in the
experiment. The sides of the squares were the same as the diameter of
the gaze-contingent circles. For each decision period, we derived the total
dwell time in each AI from the eye-tracking data. The computer used in
this experiment had a screen size of 68.58 × 59.77 cm and participants were
seated 60 cm away from the screen.

6.3.4 Analyses

We studied the effect of choice on the time spent on each of the two stimuli
using paired sample t-tests on the mean sampling times spent on each
stimulus from each participant. Trials with the shortest sampling phase
length of 3000ms were excluded from all analyses because it became apparent
that this time was too short for participants to be able to saccade to each
circle more than once.
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6.3.5 Hierarchical models

Hierarchical regression models were conducted using the lme4 package
in R [183, 102]. All models allowed for random effects (at the participant
level) intercepts and slopes. We computed degrees of freedom and p-values
with the Kenward-Roger approximation, using the package pbkrtest [341].
We predicted the sampling time difference between the two circles using a
hierarchical linear regression model. To predict choice in the second-choice
phase, hierarchical logistic regressions were used to predict the log odds
ratio of picking the left circle on a given trial. Confidence and sampling time
were z-scored on the participant level.

6.3.6 Attentional model - GLAM

The Gaze-weighted Linear Accumulator Model [35, 123] is part of the family
of linear stochastic race models in which different alternatives (i; left or right)
accumulate evidence (Ei) until a decision threshold is reached by one of
them, determining the chosen alternative (the details of this model have been
presented in the Methods section of Chapter 3).

The model fit with GLAM was implemented at a participant level in a
Bayesian framework using PyMC3 [184]. Uniform priors were used for all
the parameters:

v ∼ Uni f orm(1−6, 0.01)

γ ∼ Uni f orm(−1, 1)

σ ∼ Uni f orm(1−6, 5)

τ ∼ Uni f orm(0, 5)

We fitted the model for each individual participant and for free and
fixed sampling conditions separately. To model participants’ behaviour, we
used as input for GLAM the reaction times (RT) and choices obtained from
phase 3, and relative gaze for left and right alternatives for each trial during
sampling phase 2. For fixed sampling trials, the presentation times of the dot
patches were used to calculate the relative gaze time. For both conditions,
model fit was performed only on even-numbered trials using Markov-Chain-
Monte-Carlo sampling, we used implementation for No-U-Turn-Sampler
(NUTS), four chains were sampled, 1,000 tuning samples were used, and
2000 posterior samples were used to estimate the model parameters. The
convergence was diagnosed using the Gelman-Rubin statistic (| R̂ – 1| < 0.05)
for the four parameters (ν, γ, σ, and τ). Considering all the individual models
(18 participants), we found divergences in ~20% of the estimated parameters
(~16% in free: ~ 25% in the fixed condition). We removed the participants
that presented divergent parameters (7 participants) to check whether the
results we found were driven by these data. The significantly higher gaze
bias in free-viewing condition was maintained even after removing these
participants. Model comparison was performed using Watanabe-Akaike
Information Criterion (WAIC) scores available in PyMC3, calculated for each
individual participant fit. Note that in the fixed condition a model without
gaze bias was more parsimonious than the model including the γ parameter.
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The fact that the gaze model was not the most appropriate to capture the
data in the fixed condition may explain why we observed more parameter
divergences in that case.

To check how well the model replicates the behavioural effects observed
in the data [185], simulations for choice and RT were performed using
participants’ odd trials, each one repeated 50 times. For each trial, number
of dots and relative gaze for left and right items were used together with the
individually fitted GLAM parameters to simulate the trials. Random choice
and RT (within a range of the minimum and maximum RT observed for
each particular participant) were set for 5% of the simulations, replicating
the contaminating process included in the model as described by [35].

6.4 results

To test the hypothesis that confirmation bias is echoed in the sampling pro-
files, we designed a perceptual experiment where participants would have to
possibility to confirm or change their minds on previous decisions. Partici-
pants performed a two-alternative forced choice (2-AFC) on the presentation
of two patches of dots (Figure 6.1). In the first stage (phase 1), participants
had to choose whether the left or right-side patch had a higher number of
dots, after a quick presentation of 500 ms for each alternative. To explore the
relevance of internal certainty estimates in confirmation bias, participants
rated their confidence in the phase 1 choice immediately after their choice.
After their initial decision, we tested how participants behaved when they
could interact again with the alternatives (phase 2). Crucially, during this
second stage participants could explore again the same patches as in phase 1

in a sampling phase, after which a new choice and confidence were reported.
The length of the sampling phase was manipulated to be either 3s, 5s, or
7s, to control for exposure time. Furthermore, we wanted to check whether
biased evidence accumulation was caused by differential exposure to the
perceptual evidence, or if the sampling choices themselves drive the effect. In
other words, would the same choice bias appear if participants were passive
recipients of biased sampling, or does the choice bias require that participants
make their own sampling decisions? Therefore, the phase 2 sampling stage
considered two conditions: in a free sampling condition participants could
explore the patches without constraints; in the fixed sampling conditions the
time of exposure to the dots patches was predefined by the experimenter.
Eye-movement information was recorded during the whole experiment, in
both conditions.

6.4.1 Free sampling condition

Firstly, participants were sensitive to the difficulty of the given trials (Figure
1B) and were more accurate on the second choice compared to the first choice
(t17 = 6.80, p < 0.001). In the free sampling condition, patch presentation was
completely gaze-contingent, showing that participants spent more time view-
ing the patch they just chose (Figure 6.1C; t17 = 3.52, p < 0.01). Furthermore,
the size of this sampling time bias was proportional to the total amount of
sampling time available (please check [342] for details).

Confidence in a choice reflects the strength of the participant’s belief that
their choice was correct. This experiment also showed a mediating effect of
confidence on how sampling bias affects the second choice. A significant
interaction between choice and confidence in the first choice was found
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(Figure 6.2A–B; t16.97=4.29, p < 0.001), indicating that higher confidence
leads to a higher sampling bias towards the chosen option. We also found
a main positive effect of choice and evidence difference (difference in the
number of dots) on sampling time difference (Figure 6.2B; main effect of
choice: t16.97=2.90, p < 0.01; main effect of evidence difference: t16.97=9.21, p
< 0.001). Confidence was also shown to negatively predict the total amount
of time spent sampling, that is, the total time actually spent gazing at the
two stimuli during the sampling phase (rather than the central fixation
cross; t22.99=-4.01, p < 0.001). We also explored the effects on second choice
confidence. In a regression analysis, we found that change of mind negatively
predicted confidence in the second choice phase (t16.59=-6.39, p < 0.001), i.e.,
participants reported lower confidence after they changed their choice in the
second stage. No effect of sampling time difference on the second confidence
rating was found (t161.30=-0.78, p = 0.44).

Our choices are determined by the evidence we accumulate before making
a decision. Therefore, biased sampling in the free sampling phase (phase 2)
was expected to affect decisions in the second decision phase. Specifically,
we hypothesised that the more strongly participants preferred sampling their
chosen patch, the more likely they were to choose it again. In other words,
participants would not change their mind when they had a higher sampling
bias. Following this hypothesis, we found a negative effect of sampling bias
on subsequent change of mind (Figure 6.2C; z = −7.20, p < 0.001 ) as well as
the main negative effects of evidence difference and (first choice) confidence
on change of mind (Figure 6.2C; main effect of evidence difference: z = −2.66,
p < 0.01; main effect of confidence: z = −8.73, p < 0.001).

It has been shown that the uncertainty around internal estimates scales
with numerosity [343]. As such, an alternative explanation for the sampling
biases found in this experiment might be that participants were minimising
uncertainty by sampling the option with more dots (the correct choice al-
ternative) for longer. To exclude this scenario, we run additional regression
analysis predicting the difference in sampling time, including numerosity
(the total number of dots present on the screen) as a predictor. Choice
and evidence difference were also included as predictor, as in the analysis
presented above. We found that neither total numerosity (t25.07=0.62, p =
0.54) or the number of dots of the chosen option (t87.40=0.25, p = 0.81) had
a significant effect on sampling bias, meaning that participants’ sampling
was not biased by a drive to reduce uncertainty by sampling the option with
more dots. Furthermore, we reanalysed data from a previous perceptual
decision study ([186] and Chapter 3 of this thesis) where participants also
had to choose between two circle stimuli with dots (but were not requested
to resample the stimuli and choose for a second time). In this study, on
some trials participants had to choose the option with the most dots (the
‘most’ frame), and on other trials the option with the least dots (the ‘fewest’
frame). In this dataset, we found a significant effect of choice on sampling
time difference in both frames (‘most’ frame: t57.54=24.01, p < 0.001; ‘fewest’
frame: t33.72=14.97, p < 0.001) and no significant effect of the total number of
dots on sampling time difference (‘most’ frame: t31.41=-0.37, p = 0.72; ‘fewest’
frame: t40.01=1.49, p = 0.14), meaning that participants’ sampling was not
biased by numerosity. Overall, these results seem to indicate that numerosity
is not significantly affecting the sampling process in this task.

The sequential order of presentation in the initial sampling phase before
the first choice might also be expected to affect sampling. To exclude this
possibility, we performed a regression analysis predicting sampling time
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difference as a function of presentation order and found no effect (t49.65=0.08,
p = 0.93). It is also important to note that the stimulus chosen in the first
choice phase was highlighted throughout the trial. This was done to reduce
the likelihood of working memory being a confound on this task, but we
recognise the possibility that it may have interacted with the main effect of
choice on sampling.

6.4.2 Fixed sampling condition

An important point is to distinguish whether the difference in sampling
effect is a product of a biased evidence accumulation caused by differential
exposure to the perceptual evidence, or if the sampling choices themselves
drive the effect. In other words, would the same choice bias appear if par-
ticipants were passive recipients of biased sampling, or does the choice bias
require that participants make their own sampling decisions? We addressed
this question by including a separate set of trials in which we introduced
a control task, a ‘fixed-viewing condition’. Here participants did the same
two-stage decision task but did not have the possibility to freely sample the
patches in phase 2. Instead, the dot patches were shown for a set amount
of time. In one-third of trials, the patches were shown an equal amount of
time; in two-thirds of trials, one patch was shown three times longer than the
other. Participants completed during the same experiment fixed-sampling
and free-sampling sessions, with the order pseudo-randomised between par-
ticipants. If the effect of confirmation bias on subsequent choice is observed
when confirmatory evidence is passively presented, we would expect to see
the same effect in the fixed-viewing condition (in which asymmetric infor-
mation is provided by the experimenter) as in the free-sampling condition.
Alternatively, if it is required that confirmatory evidence is actively sought by
the decision-maker to observe a confirmation bias, we would expect that the
effect of biased information sampling on the subsequent choice disappears
in the fixed-viewing condition.

In line with the second prediction, we found that in the fixed-viewing
condition, contrary to the free-sampling condition, the amount of time spent
viewing the patches in the sampling phase did not significantly affect subse-
quent choice. In a hierarchical logistic regression predicting the change of
mind from the first to the second choice within a given trial, the main effect
of sampling bias on change of mind was completely offset by the positive
effect of the interaction term between sampling bias and a dummy variable
that was set to 1 if a trial was in the fixed-viewing condition (Figure 6.2C–D;
z = 6.77, p < 0.001). This means that there was no effect of sampling bias on
change of mind in the fixed-viewing condition. To check that participants
were engaging in this version of the task, we looked at whether the number
of saccades made within each patch during the sampling phase was similar
between the two tasks. We found that the number of saccades was actually
higher in the fixed-viewing condition than in the main experiment (t17 =
−4.22, p < 0.001), which means participants were indeed exploring the infor-
mation in this condition. Furthermore, no significant difference in accuracy
was observed between the two conditions (t17 = 1.51, p = 0.14), though sensi-
tivity to decision evidence was slightly higher in the second choice in the free
sampling condition compared to the fixed sampling condition. The number
of changes of mind was also equal between the two conditions (t17 = 0.75,
p = 0.47) as well as both confidence ratings (confidence in first choice: t17 =
−1.38, p = 0.19; confidence in second choice: t17 = 0.5, p = 0.62).
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Figure 6.1: Task design and
participant behaviour for
the experiment. (A) Task
structure. Participants had
to choose which of two
dot patches contained the
most dots after viewing each
for 500ms (phase 1) and
rate their confidence in this
choice. Then participants
were given 3000ms, 5000ms,
or 7000ms to view the dots
which they could allocate be-
tween the two patches in
whichever way they liked
(phase 2) by looking inside
the circles. Finally, partici-
pants made a second choice
about the same set of stim-
uli and rated their confi-
dence again (phase 3). (B)
Participants effectively used
the stimuli to make correct
choices and improved their
performance on the second
choice. This psychometric
curve is plotting the proba-
bility of choosing the left op-
tion as a function of the evi-
dence difference between the
two stimuli for each of the
two choice phases. (C) In
the free sampling condition
during the sampling phase
(phase 2) participants spent
more time viewing the stimu-
lus they chose in the preced-
ing choice phase than the un-
chosen option. Data points
represent individual partici-
pants. Reprinted from [342],
eLife Sciences Publications.
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Figure 6.2: The effect of choice on sampling behaviour is mediated by confidence in experiment. Participants were less likely to change their minds if
they showed a strong sampling bias for their initially chosen option in the sampling phase, but this was only the case in the free sampling condition. (A)
Sampling bias in favour of the chosen option increases as a function of confidence in the initial choice. Confidence and sampling bias towards the chosen
option are both normalised at the participant level in this plot. (B-C) Plotted are fixed-effect coefficients from hierarchical regression models predicting
the sampling time (how long each patch was viewed in the sampling phase) difference between the left and right stimuli. Data points represent regression
coefficients for each individual participant. (B) There is a significant main effect of choice on the sampling time difference, such that an option is sampled
for longer if it was chosen, and a significant interaction effect of Choice x Confidence, such that options chosen with high confidence are sampled for even
longer. (C) There is a main negative effect of sampling bias on change of mind, such that participants were less likely to change their mind in the second
decision phase (phase 3) the more they sampled their initially chosen option in the free sampling phase (phase 2). The main effect of sampling bias on
change of mind disappears in the fixed sampling condition, which can be seen by the positive interaction term Sampling bias x Fixed sampling which
entirely offsets the main effect. The analysis includes a dummy variable ‘Fixed Sampling’ coding whether the trial was in the fixed-viewing condition. (D)
The probability that participants change their minds on the second-choice phase is more likely if they looked more at the unchosen option during the
sampling phase. The plot shows the probability that participants changed their minds as a function of the time spent sampling the initially chosen option
during phase 2. The lines are polynomial fits to the data, while the data points indicate the frequency of changes of mind binned by sampling bias.
Note that the actual gaze time of the participants is plotted here for both task conditions. The same pattern can be seen when instead plotting the fixed
presentation times of the stimuli for the fixed task condition. Reprinted from [342], eLife Sciences Publications.

6.4.3 Attentional evidence accumulation modelling

To further investigate how attention, when freely allocated, shapes the ac-
cumulation of evidence and choice bias, we modelled the data from both
viewing conditions using the Gaze-weighted Linear Accumulator Model
(GLAM; [123, 186, 35]). GLAM belongs to the family of race models with
an additional modulation by visual attention (Figure 6.3A). It is an approx-
imation of a widely used class of models – the attentional Drift Diffusion
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Model (aDDM; [33, 344]) in which the full dynamic sequence of fixations
is replaced by the percentage of time spent fixating the choice alternatives.
Even-numbered trials were used to fit the model while odd-numbered trials
were used to test it. See the Materials and methods section for further details.

GLAM is defined by four free parameters: ν (drift term), γ (gaze bias),
τ (evidence scaling), and σ (normally distributed noise standard deviation).
The model correctly captured the reaction times (RT) and choice behaviour
of the participants at group-level both in the free-sampling (Figure 6.3B)
and fixed-viewing conditions (Figure 6.3C). More specifically, we found that
the model predicted faster RTs when trial difficulty was low (|∆Dots| is
high; Figure 6.3B–C, top left). The model also reproduced overall choice
behaviour as a function of the number of dots in the patches (∆Dots = DotsLeft
– DotsRight) in both conditions (Figure 6.3B–C, top right). Furthermore, we
found gaze allocation (∆Gaze = gLeft – gRight) predicted the probability
of choosing the correct patch in the free-sampling condition (Figure 6.3C,
bottom left). However, to properly test how predictive gaze allocation is of
choice, we must account for the effect of evidence (∆Dots) on choice. As such,
we used the gaze influence (GI) measure [35], which reflects the effect of gaze
on choice after accounting for the effect of evidence on choice. GI is calculated
by taking the actual choice (0 or 1 for right or left choice, respectively) and
subtracting the probability of choosing the left item as predicted by a logistic
regression with ∆Dots as a predictor estimated from behaviour. The averaged
residual choice probability reflects GI. We found GI estimated purely from
the participant’s behaviour was higher in the free-sampling than in the
fixed-viewing condition (comparing average GI by participant, free-sampling
condition: Mean = 0.148, SD = 0.169; fixed-viewing condition: Mean = 0.016,
SD = 0.14; t17 = 2.708, p < 0.05). This suggests the effect of visual attention
on choice was higher in the free-sampling condition. In line with this, the
model also predicted a higher GI on corrected choice probability in the free-
sampling condition (comparing average GI by individual model predictions,
free-sampling condition: Mean = 0.112, SD = 0.106; fixed-viewing condition:
Mean = 0.033, SD = 0.028; t17 = 2.853, p < 0.05; Figure 6.3B–C, bottom right).

We then tested whether attention affected information integration more
when information was actively sought (i.e., the free-sampling condition)
compared to when information was given to the participants (i.e. the fixed-
viewing condition). We compared the parameters obtained from the individ-
ual fit in the free-sampling and fixed-viewing conditions (Figure 6.3D). We
found a significant variation in the gaze bias parameter (Mean γ Free = 0.81,
Mean γ Fixed = 0.98, t17 = –3.934; p < 0.01), indicating a higher influence of
gaze on choice in the free-sampling condition. Note that during the fixed-
viewing condition, the parameter γ ≈ 1 indicates that almost no gaze bias
was present in those trials. Conversely, there was no significant difference for
the other parameters between the conditions (Mean τFree = 1.44, τFixed=1.13,
t17 = 1.003; p = 0.32, n.s.; Mean σFree = 0.0077, Mean σFixed=0.0076, t17 = 0.140;
p = 0.89, n.s.; νFree=8.07x10

–5, νFixed=8.70x10
–5, t17 = −1.201; p = 0.24, n.s.).

These results suggest that gathering information actively (i.e., free-sampling
condition) does not affect the overall speed at which information is integrated,
but it specifically modulates the likelihood of choosing the gazed-at option.
Finally, to test that the identified effect did not depend on a less variable
gaze time range we resampled the data from the free-sampling condition
to match the gaze time range in the fixed-viewing condition and fitted the
GLAM again. We replicated our finding even when the gaze time range in
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Figure 6.3: Gaze impacted evidence accumulation (for the 2
nd choice) more strongly in the free than in the fixed sampling condition. (A) Free and fixed

sampling condition trials were fitted separately using a Gaze-weighted Linear Accumulator Model (GLAM). In this model, there are two independent
accumulators for each option (left and right) and the decision is made once one of them reaches a threshold. The accumulation rate was modulated by
gaze time when the gaze bias parameter is lower than 1 (γ < 1). In that case, the accumulation rate will be discounted depending on γ and the relative
gaze time to the items, within the trials. Gaze information from the free sampling trials and presentation times from the fixed sampling trials were used
to fit the models. The panel depicts an example trial: patch sampling during phase 2 (left panel) is used to estimate the relative gaze for that trial (central
panel), and the resulting accumulation process (right panel) Note the GLAM ignores fixations dynamics and uses a constant accumulation term within a
trial (check Methods for further details). The model predicted the behaviour in free (B) and fixed (C) sampling conditions. The four panels present four
relevant behavioural relationships comparing model predictions and overall participant behaviour: (top left) response time was faster (shorter RT) when
the choice was easier (i.e. bigger differences in the number of dots between the patches); (top right) probability of choosing the left patch increased
when the number of dots was higher in the patch at the left side (∆Dots = DotsLeft – DotsRight); (bottom left) the probability of choosing an alternative

depended on the gaze difference (∆Gaze = gLeft – gRight); and (bottom right) the probability of choosing an item that was fixated longer than the other,

corrected by the actual evidence ∆Dots, depicted a residual effect of gaze on choice. Note that in the free condition, the model predicted an effect of
gaze on choice in a higher degree than in the fixed condition. Solid dots depict the mean of the data across participants in both conditions. Lighter
dots present the mean value for each participant across bins. Solid grey lines show the average for model simulations. Data was z-scored/binned for
visualisation. (D) GLAM parameters fitted at the participant level for free and fixed sampling conditions. Free sampling condition presented a higher
gaze bias than fixed sampling, while no significant differences were found for the other parameters. γ: gaze bias; τ: evidence scaling; ν: drift term; σ:
noise standard deviation. **: p < 0.01. Reprinted from [342], eLife Sciences Publications.
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the free-sampling condition was reduced to match that in the fixed-viewing
condition.

6.5 discussion

In this work, we have demonstrated that a form of confirmation bias exists
in active information sampling, and not just in information weighting as
previously thought. Using a novel experiment we showed that this effect is
robust for simple perceptual choice (for an additional study confirming the
presented findings please check [342]). Critically we show that the sampling
bias affects future choice and that the presence of confirmation bias is also
modulated by participants’ internal beliefs, captured by decision confidence.
Furthermore, we demonstrated that this effect is only present in the free-
sampling condition, showing that agency is essential for biased sampling to
affect subsequent choice.

Preference for confirmatory evidence has been previously studied in the
context of strongly held political, religious, or lifestyle beliefs, and not in
perceptual decision-making [330, 324, 325, 326, 327, 328, 329]. Our results,
together with the recent work of others [334, 345, 336], show that confirmation
bias in information search is present even in simple perceptual decisions that
have no meaningful impact in participant’s daily lives. This supports that
confirmation bias might be a fundamental property of information sampling
and the decision process, existing irrespective of how important the belief is
to the agent.

We show that confidence modulated the confirmation bias effect: choices
made with higher confidence led to the increased sampling of the chosen
option and an increased likelihood of choosing the same option again in
the second choice phase. This shows that the strength with which a belief
is held determines the size of the confirmation bias in active information
sampling. Confidence has been shown to affect the integration of confir-
matory evidence as reflected in MEG recordings of brain activity during
evidence accumulation [339]. Even more, recent studies in economics and
neuroscience have given theoretical and experimental proof of a relation-
ship between overconfidence, and extreme political beliefs [346, 3]. Our
results suggest that altered information sampling could be the missing link
between confirmation bias and overconfidence. Specifically, given that we
have shown that increased confidence leads to increased confirmation bias, it
follows that overconfidence in a belief would lead to an increased sampling
of confirmatory evidence in line with that belief, which in turn would lead
to even higher confidence. We also found that high confidence impacted
negatively on the time that participants spent in overall sampling, reflecting
a decreased urgency by participants for sampling new information. In other
words, confidence plays an important role in specifying future sampling
behaviours and, consequentially, in future choices.

Recent findings suggest that biases in information sampling might arise
from the Pavlovian approach, a behavioural strategy that favours approach-
ing choice alternatives associated with reward [319, 347]. Furthermore, the
number of hypotheses an individual can consider in parallel is likely to
be limited [348]. As such, it may be advantageous to first attempt to rule
out the dominant hypothesis before going on to sample from alternative
options. In this vein, the sampling bias we see could be the solution to an
exploit-explore dilemma in which the decision-maker must decide when to
stop ‘exploiting’ a particular hypothesis (on which stimulus has the most
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dots) and instead ‘explore’ different ones. An additional view is that the first
choice is an action that fundamentally changes the decision process of the
subsequent choice. In [342], we presented an economic model that proposes
that the first choice influences the prior fed into the active sampling stage
which generates an imbalance in attention towards the previously selected
option. This means that the first action modified the expectations in the
second decision, which affected the sampling and second choice. This shift
in the expectation could be indicative of changes in the internal goals that
participants implicitly try to fulfil with their new choices: in addition to
finding the correct answer participants have to corroborate their committed
selection in the first phase. In this interpretation, confidence is indicative of
participants’ adherence to their preliminary decision and "goal" shift: if their
confidence was low, participants’ commitment to the previously selected
alternative was low, therefore their prior was not altered to favour it. In
Chapter 8, the effect that task goals may have on expectations is followed
up using computational models and pupillometry, showing that changes in
decision frame impact participant’s priors and evidence integration.

An important aspect of this task is that participants were able to freely
sample information between choice phases, providing a direct read-out of
confirmation bias in the active sampling decisions made by the participants.
Previous accounts of confirmation bias in perceptual choice have instead
focused on an altered weighting of passively viewed information as a function
of previous choice [333, 339, 334]. However, from these findings, it remained
unclear to what extent this bias manifests in the processing of information
compared to the active sampling of information. Our findings show that
active information sampling plays a key role in the amplification of beliefs
from one decision to the next and that changes in evidence weighting likely
only account for part of observed confirmation bias effects.

The results from the GLAM model show that, in line with previous studies
[33, 186, 121, 35], a specific boost in the accumulation of evidence of the
visually attended items was found in the free sampling condition. Conversely,
a disconnection between an item’s sampling time and evidence accumulation
was found in the fixed condition (i.e., the absence of gaze bias in GLAM
implies that visual fixations did not affect evidence integration when the
sampling was not controlled by the decision-maker). One explanation for
this result is that attentional allocation itself is directed towards the options
that the participants reckon are more relevant for the task to be performed,
i.e., aligned with the goal (Chapter 3 and [186]). In our experiment, the goal
of the task was theoretically identical for the first and second choice (i.e., to
find the patch with more dots). However, as discussed above, it could be that
participants perceived the goal of the second choice to be slightly different
from the goal of the first: in the second case, they had to verify whether their
initial choice was correct, as well as to find the patch with the most dots.
This resembles the economic model of confirmation bias mentioned above
[342]. Accordingly, the chosen option is bestowed with higher relevance and
then more attention (consequently boosting evidence accumulation). On
the other hand, since in the fixed sampling condition participant’s attention
allocation is not necessarily associated with their goals, the difference in
display time of the items is ignored or cannot be consistently integrated into
their decision process. A complementary perspective has been given in recent
work by Jang et al. [349] and Callaway et al. [350]. Their models characterise
attention’s role as lowering the variance of the accumulated evidence towards
the attended option, which in turn updates the internal belief. Crucially,
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they have characterised attention as an internally generated factor that is
allocated following optimal sampling policies, unlike other models that take
attention as an exogenous factor [33, 34, 35]. Perhaps, in a similar way to
the proposition above concerning internal goals, it could be the case that the
exogenous sampling pattern we imposed in our experiment was not aligned
with the optimal evolution of the internal beliefs of participants, therefore,
the ‘offered’ evidence was misaligned and therefore did not impact choice.
Further modelling work testing Jang and Callaway’s proposals in regimes
where attention is exogenously controlled can give insight into the relevance
of attentional agency. An alternative hypothesis is that gaze allocation itself
is used as additional evidence in favour of a choice alternative. This would
mean that when an agent has previously attended to a choice alternative,
this is used as evidence in favour of that option in and of itself. Therefore,
when gaze allocation is not under the agent’s control, as in the fixed-viewing
condition, it is not used to inform choice.

Our findings imply that agency plays a clear role in evidence accumula-
tion, and consequently in confirmation bias. It also suggests that common
experimental designs in which information is provided by the experimenter
and passively sampled by the participant might not be an ecological way
to study decision-making. These tasks mask the potentially large effect of
active information search on belief formation and choice. [351] recently
showed that people were less likely to share false information online if they
had been asked to rate the accuracy of a headline just previously. It may
therefore be possible to reduce confirmation bias in information search in
a similar way by priming participants to attend more to accuracy instead
of confirmatory evidence. More complex behavioural tasks are required to
improve our understanding of the different drivers of information sampling
and how sampling in turn guides future choices [352].

To summarise our findings, we observed that participants sampled more
information from chosen options in a perceptual choice paradigm and that
this sampling bias predicted subsequent choice. Asymmetric sampling in
favour of the chosen alternative was stronger when participants’ confidence
in their first choice was higher. We discuss how this variation in the sampling
bias could be driven by changes in participants’ internal goals given that they
need to corroborate their previous choices. The more committed participants
are to their previous selection, as reflected by confidence, the more changed
their expectations and sampling behaviour for the second choice. This is
in line with our findings in Chapter 3 of this thesis, sampling biases were
associated with the setting of goals. Furthermore, the effect of information
on subsequent choice was only seen in a version of the task where partici-
pants could sample freely, suggesting agency plays an important role in the
propagation of strongly held beliefs over time. In other words, if the evi-
dence offered to participants was not aligned with their internal goals, their
decision process did not integrate that information. Overall, these findings
suggest that confirmatory information processing might stem from a general
information sampling strategy used to seek information to strengthen prior
beliefs rather than from altered weighting during evidence accumulation
only and that active sampling is essential to this effect. Biased sampling may
cause a continuous cycle of belief reinforcement that can be hard to break,
which could be manifested more extremely in psychiatric conditions, such as
major depression [353]. Improving our understanding of this phenomenon
can also help us better explain the roots of extreme political, religious and
scientific beliefs in our society.



7

D E C I S I O N G O A L S A N D T H E I R I M PA C T I N C O N F I D E N C E

7.1 summary

As presented in previous chapters, goals have a critical role in the modulation
of attentional deployment and brain representations during the deliberation
period before choice. In the present chapter, we show that goal’s influence
extends into the post-decision processes as well. Each decision generates an
internal estimate of its certainty, a confidence measure. Although typically
confidence is considered as the probability the choice is correct, recent
findings have shown a more nuanced perspective on the factors involved in
its generation. In the following experiment, we changed the decision frame
to probe how confidence is affected by goals, in value-based and perceptual
binary choice experiments. We show that confidence was modulated not
only by the difficulty of the choice but also by the overall amount of evidence
presented for the decision. Confidence was enhanced specifically by the
goal-relevant evidence, showing that frame manipulation played a role in
confidence generation. We simulated confidence using accumulator models,
capturing participants’ behaviour only if the model included an attentional
bias. These results show that goals have a pervading influence on the decision
process, reaching participants’ estimation of uncertainty.

7.2 introduction

Humans can introspect on their decisions by monitoring their uncertainty
and reporting their level of confidence [340, 57, 75, 66]. According to the
standard view, confidence is defined as the probability a choice is correct.
This definition implies that confidence refers to a single trial and the evi-
dence available for this choice, not to a general ability to perform a task or
other contextual information. From this perspective, confidence is typically
obtained as a measure of the difficulty of the choice, e.g., the difference in
evidence between the alternatives (∆Evidence). Decisions with more distinct
alternatives (e.g., a rotten banana vs a fresh apple) should be reported with
higher confidence, while closer alternatives in terms of evidence (e.g., a ripe
banana vs a fresh apple) should generate more difficult choices with lower
confidence.

As presented in previous chapters, goals and context are important fac-
tors that influence the decision process. We have described how simple frame
manipulations have an impact on evidence accumulation, affecting atten-
tional allocation during the deliberation process [186]. In the experiments
presented in Chapter 3, we introduced a positive and negative frame where
participants had to choose the best (i.e., the option with higher evidence)
or worst alternative (i.e., the option with lower evidence). According to the
canonical definition of confidence, such framing manipulation should not
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influence confidence. However, since most of the perceptual and value-based
studies of confidence have not manipulated goals, this hypothesis has not
been tested. Additionally, dynamic factors in the decision, such as attentional
allocation, most of the time are not included in the analysis of decision
confidence (although see [354, 355]). From our previous findings on attention
and goals, we expected that goal-oriented gaze biases could be relevant to
the construction of participants’ confidence reports.

The main objective of this chapter is to probe whether goals affect the
construction of confidence in value-based and perceptual choices. The results
presented here are the second part of the findings on our value-based and
perceptual experiments presented in Chapter 3, i.e., this is new data obtained
from the same experiment. Here participants completed binary choices in
two frames: they indicated the food item that was liked or disliked in a
value-based decision; and selected the patch with the most or fewest number
of dots in a perceptual experiment. Participants reported their confidence
after each choice. We found a significant effect of overall evidence (i.e.
the evidence presented together in the chosen and unchosen alternatives)
on confidence reports, which was dependent on the goals. This result is
in opposition to the canonical understanding of confidence where frames
should be irrelevant.

The second objective of this chapter is to capture the computational
underpinnings of goal-relevant choices and the generation of confidence.
Sequential sampling models have been extremely successful in giving a
computational account of the decision process, including accuracy and reac-
tion times (RT) measures. The Drift Diffusion Model (DDM) describes the
stochastic sampling of evidence represented by a single accumulator of evi-
dence [110, 20]. In binary choices, this accumulator, after gathering enough
evidence, reaches an upper or lower boundary, which indicates the chosen
option and RT. Although widely popular, this model cannot capture confi-
dence straightforwardly, since the terminating criteria always request the
same level of evidence, without making a distinction between difficult and
easy decisions. Alternatively, in race models, each alternative is described by
separate accumulators, with all of them sharing a single boundary. The first
accumulator crossing the boundary finalizes the evidence integration and
defines the choice and decision time. At the endpoint, the difference between
the accumulators can be used as a model representation of the confidence
level, denominated the Balance of Evidence [76, 23, 66]. In this chapter, we
used this methodology to calculate confidence in our goal-dependent task.
We used a race model that included an attentional parameter modulating
the accumulation of evidence [35] to test the hypothesis that attention played
a role in the goal-dependent confidence effects. Using balance of evidence
simulations, we captured the goal-dependent pattern of results found for
confidence. Furthermore, we showed that this behaviour was present only
if visual gaze modulation was included in the model. Considering these
results, we discovered that goals affected not only the deliberation stage but
also the post-decision processes such as the construction of metacognitive
reports.
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7.3 methods

7.3.1 Experiment Design

The data used for the analysis in this chapter was collected together with
the experiment presented in Chapter 3. In this experiment, a group of
participants completed binary choices in value-based choices (food item
preferences) and another group of individuals performed a perceptual choice
task (dot numerosity). Two frames were defined in both experiments: in
value-based like and dislike frames cue participants had to choose the snack
they would prefer to eat or the one they wanted to reject, respectively; in
the perceptual task, participants completed most and fewest frames where
they had to choose the dot patch with a higher or a lower number of dots,
respectively. After each choice, at the end of the trial, participants reported
their confidence in the decision using a slider. Participants moved the slider
to the left to indicate low confidence trials and to the right side to report
high confidence. Visual attention was measured using eye tracking during
all the trials. For more details on the experimental setup and on choice
behaviour and its associated visual attention patterns, please check Chapter
3. In this study, we focused on the confidence reports given by participants.
Eye tracking was not considered during the confidence report stage, but gaze
allocation information obtained during the choice stage was included in the
analysis.

7.3.2 Participants and Exclusion criteria

Participants used in this analysis are the same as in Chapter 3. Please
check Chapter 3 for the details on the exclusion criteria. In the value-based
experiment, 31 participants passed the exclusion criteria and were included
in the analysis (16 females, 17 males, aged 20–54, mean age of 28.8). For
the perceptual experiment, 32 participants (22 females, 10 males, aged 19–
50, mean age of 26.03) were included in the behavioural and regression
analyses. Due to instability in parameter estimation (problem of MCMC
convergence), four additional participants were removed from the GLAM
modelling analysis in the perceptual experiment.

7.3.3 Data analysis: behavioural data

The analysis of the behavioural data for confidence was performed using
hierarchical regression analysis. Fixed-effects confidence intervals were
calculated by multiplying standard errors by 1.96 [102]. The value of 1.96 is
extracted from the standard normal distribution, where P(-1.96 < Z < 1.96)
= 0.95, i.e., there is a 95% probability that Z, a standard normal variable,
will fall between -1.96 and 1.96. Because these confidence intervals are
estimates that do not take the covariance between parameters into account,
they should not be interpreted too strictly, but rather serve to give the
reader a sense of the precision of the fixed-effect coefficients [57]. We used
the mixed-effect parameters obtained for each participant to calculate the
significant differences between frames in both experiments. Predictors were
all z-scored at the participant level. Matplotlib/Seaborn packages were
used for visualisation. All the hierarchical analyses were performed using
lme4 package [183] for R integrated into a Jupyter notebook using the rpy2

package (https://rpy2.readthedocs.io/en/latest/).

https://rpy2.readthedocs.io/en/latest/
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7.3.4 Modelling

7.3.4.1 Value Experiment

We fitted the GLAM model [35] to capture participants’ behaviour. For
details on the model, please check the Methods section of Chapter 3. Choices,
item preference values and RT were used as input to the model, separately
for like and dislike frames, as presented in Chapter 3. Note that for the
dislike frame, we fitted the model using the opposite value of the items, the
goal-relevant evidence. In Chapter 3 we simulated choice behaviour using
the model fitted to each participant’s data. In this analysis, using those same
model parameters at the participant level, we simulated the accumulation
process in each trial to obtain a measure of the balance of evidence [76, 124].
Balance of evidence in accumulator models has been used previously as an
approximation to the generation of confidence in perceptual and value-based
decision experiments [124, 356, 66]. The purpose of this analysis was to
replicate the effect of the overall evidence (ΣValue) on confidence (please
see the Results section for the behavioural results on confidence). Given that
GLAM includes a parameter biasing evidence accumulation by the gaze
allocation, we also checked whether the behaviour observed at the level
of confidence depends on considering the information of the attentional
patterns. Consequently, using the value of the items and gaze ratio from
odd-numbered trials, we simulated two accumulators (Equation 1 in Chapter
3), one for each alternative. Our simulations used the GLAM parameters
obtained from the participant’s fit. Once the boundary was reached by
one of the stochastic accumulators (fixed boundary = 1), we extracted the
simulated RT and choice. The absolute difference between the accumulators
when the boundary was reached (∆e = |Eright(tfinal) - Eleft(tfinal)|) delivered
the balance of evidence for that trial. In total 37,200 trials were simulated
(10 repetitions for each one of the trials completed by the participants). A
linear regression model to predict simulated ∆e using |∆Value|, simulated
RT and ΣValue as predictors was calculated with the pooled data from the
simulations. This model was selected because it was the most parsimonious
in predicting participants’ confidence in the Value Experiment, i.e., model
with lower Bayesian information criteria (BIC) in the model comparison. The
best model predicting confidence includes the gaze shift frequency (GSF) as
a predictor in the regression, but since GLAM does not consider the gaze
dynamics we removed it from the model. ∆e simulations using a GLAM
without gaze influence (i.e., equal gaze time for each alternative) were also
generated, to check if gaze difference was required to reproduce ΣValue
effect over confidence. The parameters fitted for individual participants were
also used in the no-gaze difference simulation. The same linear regression
model (∆e ∼ |∆Value| + simulated RT + ΣValue) was used with the data
simulated with no-gaze difference. Note that our simulations of the decision
process generated synthetic response times and ∆e for the same decisions
performed by human participants.

7.3.4.2 Perceptual experiment

We performed confidence simulations for the Perceptual Experiment in
a similar way to the Value-based Experiment, fitting the GLAM model
separately for most and fewest frames. We adapted the evidence input
to the model to capture goal-relevant information in the fewest frame, as
indicated in the Methods section in Chapter 3. We tested the effect of ΣDots
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on confidence in the simulations with a similar linear regression model to the
one used in the Value Experiment. The regression predicted the simulated
∆e using |∆Dots|, simulated RT and ΣDots as parameters, pooling the data
across simulations. ∆e simulations using a GLAM without gaze asymmetry
were also calculated in this case. All the figures and analysis were done in
Python using GLAM toolbox and custom scripts.

7.4 results

The results presented here correspond to the analysis of the confidence re-
sponses in the choice tasks presented in Chapter 3. That chapter describes
two experiments where participants completed binary choice decisions on
value-based (i.e., food items) or perceptual input (i.e., dot numerosity).
Choices were made in two frames: in the value experiment, a like or dislike
frame; in the perceptual experiment, the most or fewest dot frames. Addi-
tionally, eye-tracking information was recorded during the deliberation stage
for each decision. After each choice, participants reported their confidence in
having made the correct decision. In this section, the results of the analysis
of confidence reports are presented. For details on the deliberation process
and choice, please check Chapter 3.

7.4.1 Which factors determine confidence?

7.4.1.1 Value experiment

To analyse how participants’ goals affected the generation of confidence, we
fitted a hierarchical linear model (Figure 7.1A). We presented here the most
parsimonious model for value-based decisions (i.e., the model with lower
BIC in the model comparison, with alternative models including partial
configurations of the same parameters, please check [186] for the details).
In the model, confidence was predicted by decision difficulty (∆Value, the
difference in preference value between the two alternatives), reaction time
(RT), the summed value considering both presented alternatives (ΣValue),
and the gaze shifts made before choice (gaze shift frequency, GSF). As was
the case for the results presented in Chapter 3 for the choice regression, the
results for the confidence regression in the like frame replicated all the effects
reported in a previous study from our lab [57]. We found that the magnitude
of ∆Value (|∆Value|) had a positive influence on confidence in like (z = 5.465,
p<0.001) and dislike (z = 6.300, p<0.001) frames, indicating that participants
reported higher confidence when the items had a larger difference in value;
this effect was larger in the dislike frame (t(30) = -4.72, p<0.01). RT had a
negative effect on confidence in like (z = −6.373, p<0.001) and dislike (z =
−7.739, p<0.001) frames, that is, confidence was lower when the RTs were
longer. Additionally, we found that, in both conditions, a higher number of
gaze switches during the decision time predicted lower values of confidence
in like (z = −2.365, p<0.05) and dislike (z = −2.589, p<0.05) frames, as reported
in [57].

We then looked at the effect of the summed value of both options, ΣValue,
on confidence. As in [57], we found a positive effect of ΣValue on confidence
in the like frame (z = 3.206, p<0.01); that is, participants reported a higher
confidence level when both options were high in value. Interestingly, this
effect was inverted in the dislike frame (z = −4.492, p<0.001), with a significant
difference between the two frames (t(30)=9.91, p<0.001). Contrary to what
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Figure 7.1: Hierarchical linear regression model to predict confidence. (A) In Value
Experiment, a flip in the effect of ΣValue over confidence in the dislike frame was
found. (B) In Perceptual Experiment a similar pattern was found in the effect of ΣDots
over confidence in the fewest frame. The effect of the other predictors on confidence in
both experiments and frames coincides with previous reports [57]. All predictors are
z-scored at the participant level. In both regression plots, bars depict the fixed-effects
and dots the mixed-effects of the regression. Error bars show the 95% confidence
interval for the fixed effect. In Value Experiment: ∆Value: difference in value between
the two items (ValueRight– ValueLeft); RT: reaction time; ΣValue: summed value of both
items; ∆DT: difference in dwell time (DTRight– DTLeft); GSF: gaze shift frequency;
∆DT: difference in dwell time. In Perceptual Experiment: ∆Dots: difference in dots
between the two circles (DotsRight– DotsLeft); ΣDots: summed number of dots between
both circles. ***: p<0.001, **: p<0.01, *: p<0.05. Reprinted from [186], eLife Sciences
Publications.

happened in the like frame in which confidence was boosted when both items
had high value, in the dislike frame confidence increased when both items
had low value. This novel finding reveals that the change in context also
triggered a reassessment of the evidence used to generate the confidence
reports, i.e., confidence also tracks goal-relevant information.

7.4.1.2 Perceptual experiment

We repeated the same regression analysis in the perceptual decision experi-
ment. In this task, evidence was defined instead of subjective value by dot
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numerosity. The difficulty was calculated using the absolute difference in the
number of dots (|∆Dots|) and the sum of evidence from the overall number
of dots displayed on the screen (ΣDots). We directly replicated all the results
of the Value Experiment, generalising the effects we isolated to the perceptual
realm (Figure 7.1B). Specifically, we found that |∆Dots| had a positive influ-
ence on confidence in most (z = 3.546, p<0.001) and fewest frames (z = 7.571,
p<0.001), indicating that participants reported higher confidence when the ev-
idence was stronger. The effect of absolute evidence |∆Dots| on confidence
was bigger in the fewest frame (t(31)=-4.716, p<0.001). RT had a negative
effect over confidence in most (z = −7.599, p<0.001) and fewest frames (z =
−5.51, p<0.001), that is, faster trials were associated with higher confidence.
We also found that GSF predicted lower values of confidence in most (z =
−4.354, p<0.001) and fewest (z = −5.204, p<0.001) frames. Critically (like in the
Value Experiment), the effect of the sum of evidence (ΣDots) on confidence
also changes its sign depending on the frame. While ΣDots had a positive
effect on confidence in the most frame (z = 2.061, p<0.05), this effect is the
opposite in the fewest frame (z = −7.135, p<0.001), with a significant differ-
ence between the parameters in both frames (t(31)=14.621, p<0.001). The
magnitude of the ΣDots effect was stronger in the fewest frame (t(31)=-10.438,
p<0.001). This means that the effect we observed is not something specific to
the value-based choice, but it is a robust effect across decision modalities.

7.4.2 Attentional Model: GLAM

To understand the potential mechanisms behind the effect of context on
confidence, we used computational models. Accumulator models charac-
terise the decision as stochastic integration of evidence which can capture
various features of the process, such as choice accuracy, response time, and
confidence. The model employed in this analysis, the GLAM [35], belongs to
the family of race models in which evidence is independently accumulated
for each option. This integration is modulated by the allocation of visual
attention, boosting the speed of evidence accumulation towards the fixated
items (for the modelling details on choice data, please see Chapter 3). We
hypothesised that goal-relevant integration of evidence could capture the
signature effects we observed in participants’ confidence reports. Based on
our previous findings that highlight the effect of goals on evidence sampling
patterns (Chapter 3), we also hypothesised that the preference of attention
for goal-relevant information might drive the context effects we found in
confidence.

7.4.2.1 Balance of evidence and confidence

Balance of evidence is a proxy for decision confidence used in accumulator
models [124, 76, 23, 66]. Balance of evidence is defined as the absolute
difference between the accumulators for each option at the moment of
choice, which is when one of them reaches the decision threshold (i.e., ∆e
= |Eright(tfinal) - Eleft(tfinal)|) (Figure 7.2A). We used the GLAM to estimate
the balance of evidence from model choices and check if it captured the
pattern of confidence observed in participants. To estimate ∆e, we performed
a large number of computer simulations using the fitted parameters for each
participant in both experiments.
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Figure 7.2: Balance of evidence (∆e) simulated with GLAM reproduces ΣValue and
ΣDots effects over confidence. (A) GLAM is a linear stochastic race model in which
two alternatives accumulate evidence until a threshold is reached by one of them.
∆e has been proposed as a proxy for confidence and it captures the difference in the
evidence available in both accumulators once the choice for that trial has been made.
(B) Using ∆e simulations, we captured the flip of the effect of ΣValue over confidence
between like and dislike frames. ∆e simulations were calculated using the model
with parameters fitted for each participant. A pooled linear regression model was
estimated to predict ∆e. The effects of ΣValue predicting ∆e are presented labelled
as ’Model Sim’. A second set of simulations was generated using a model in which
no asymmetries in gaze allocation were considered (i.e., no attentional biases). This
second model was not capable of recovering ΣValue effect on ∆e and is labelled as
’Model Sim No Bias’. ΣValue coefficients for a similar model using participants’ data
predicting confidence are also presented and labelled as ‘Human’ for comparison.
(C) A similar pattern of results is found in the Perceptual Experiment, with the
model including gaze bias being capable of recovering ΣDots effect on ∆e. This novel
effect may suggest that goal-relevant information is also influencing the generation
of second-order processes, such as confidence. This effect may be originated from
the attentional modulation of the accumulation dynamics. Coloured bars show the
parameter values for ΣValue and ΣDots and the error bars depict the standard error.
The solid colour indicates the Value Experiment and the striped colours indicate the
Perceptual Experiment. All predictors are z-scored at the participant level. Reprinted
from [186], eLife Sciences Publications.

7.4.2.1.1 Value experiment

To confirm that the relationship between confidence and other experimental
variables was captured by the balance of evidence simulations, we con-
structed a linear regression model predicting ∆e as a function of the trial
values and the simulated RTs (∆e ∼ |∆Value| + simulated RT + ΣValue).
We found that this model replicated the pattern of results we obtained ex-
perimentally (Figure 7.2). We then explored whether the model was able
to recover the goal-dependent effect of ΣValue on confidence (Figure 7.2B).
Similarly to the participant’s behaviour, ΣValue boosted ∆e in the like frame
(βΣValue = 0.071, t(37196) = 14.21, p<0.001) and reduced ∆e in the dislike frame
(βΣValue = −0.061, t(37196) = −12.07, p<0.001). In other words, the effect of
ΣValue on confidence was replicated in the simulations with an increase of
∆e when high value options are available to choose from. In the dislike frame,
the fitted model also replicated the adaptation to the context which predicts
higher ∆e when both alternatives have low value.
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We additionally explored the relevance that the attentional modulation
had on ΣValue effect. We found the replication of the effect for ΣValue
over ∆e with GLAM did not hold when the gaze bias was taken out of
the model in like (βΣValue = −0.007, t(37196) = −1.495, p=0.13, ns) and dis-
like (βΣValue = −0.002, t(37196) = −0.413, p=0.679, ns) frames (Figure 7.2B).
We also found that the effect of |∆Value| on confidence was replicated
by the simulated balance of evidence, increasing ∆e when the difference
between item values was higher (i.e., participants and the model simulations
were more ‘confident’ when the items had a higher difference in value).
Higher Simulated RT predicted lower ∆e, similarly to slower participant’s RT
predicted lower confidence. |∆Value| and simulated RT effects were also
present in the simulations with no gaze effect (Figure 7.3A and D).

7.4.2.1.2 Perceptual experiment

We conducted a set of similar analyses and model simulations in the Per-
ceptual Experiment (Figure 7.2C). We found that ΣDots boosted ∆e in the
most frame (Most : βΣDots = 0.029, t(33596) = 4.71, p<0.001) and reduced ∆e
in the fewest frame (Fewest : βΣDots = −0.088, t(33596) = −14.41, p<0.001). As
in the Value Experiment, this effect disappeared when the gaze bias was
taken out of the model (Most: βΣDots = −0.0002, t(33596) = −0.04, p=0.96,
ns; Fewest: βΣDots = −0.006, t(33596) = −1.03, p=0.29, ns). |∆Value| and
simulated RT effects were also present in the simulations with and without
gaze bias, following the patterns observed in participant’s behaviour (Figure
7.3B and E).

Figure 7.3: Pooled linear regressions to predict the balance of evidence (∆e) sim-
ulations. Here the full model results from Figure 7.2 are displayed. In the Value
Experiment, the full simulations of ∆e replicated the pattern of results obtained in
human data (confidence results), that is, there was a flip in the sign of ΣValue effect
on confidence between like (A) and dislike (D) frames. However, if the gaze asymmetry
is removed, we found the effect of ΣValue over ∆e disappears. The results in the
Perceptual Experiment, most (B) and fewest (E) frames, mirror the findings in the
Value Experiment. Reprinted from [186], eLife Sciences Publications.

Overall, these results show how the model is capable of capturing the
novel empirical effect on participants’ confidence reports, giving computa-
tional support to the hypothesis that goal-relevant evidence is fed to second-
order processes like confidence. It also hints at a potential origin to the effects
of the sum of evidence (i.e. ΣValue, ΣDots) on confidence: asymmetries in
the accumulation process, in particular the multiplicative effect of attention
over-accumulation of evidence, may enhance the differences between items
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that are more relevant for the frame. This consequentially boosts the level of
confidence that participants have in their decisions.

7.5 discussion

The objective of this chapter was to gain a deeper insight into the impact of
goals on the generation of post-decision measures of uncertainty. Here we
analysed the second part of the data collected in the decision experiments
introduced in Chapter 3. After each choice, we measured the trial-by-trial
fluctuations of confidence in value-based and perceptual decisions. Most of
the studies on confidence and metacognition have used tasks with single
goals, where participants choose the option with higher evidence, i.e., an item
with a higher subjective value or the patch with more dots [66, 56, 68]. In this
study, to manipulate the goals we included a frame where participants had to
choose the options with lower evidence. We found that the role of confidence
goes beyond that of simply tracking the probability of an action being correct
[340], as proposed in standard signal detection theory. Instead, it was also
influenced by the perceived sense of uncertainty in the evaluation process
[357, 358], and contextual cues [219]. In previous work [57], we reported
how, in value-based choice, confidence was related not only to the difference
in value between the two items, but also to the summed value (∆Value
and ΣValue using the current notation), and we found that confidence was
higher if both items had a high value [57]. Here, we replicate this effect in
both experiments in the like and most conditions. However, this effect flips
in the dislike or fewest frame: in these cases, confidence increases when the
summed value or number of dots is smaller. This result is particularly striking
since the frame manipulation should be irrelevant for the purpose of the
decision and has little effect on the objective performance. This suggests that
similarly to attention (as reported in Chapter 3), the sense of confidence is
also shaped by the behavioural goal that participants are set to achieve. The
complex nature of confidence is relevant since it influences future behaviours
and information-seeking patterns ([57, 359, 127, 3, 342] and Chapter 6).

To capture the potential mechanisms behind this goal-relevant pattern
in confidence we used accumulator models. In this type of model, evidence
supporting each one of the choices was integrated across time, until one of
the options crosses the decision threshold. In particular, we used a model
(the GLAM, [35]) that included an attentional component that decreases the
speed of integration of the unattended options. In both experiments, the
incorporation of goal-relevant evidence to fit the GLAM resulted in a better
model fit compared with the model in which the value or perceptual evidence
was integrated independently of the frame (please see Chapter 3 for details).
We then modified the GLAM to include a measure of confidence defined
as the balance of evidence (∆e) [124, 23, 66]. ∆e was obtained from the
difference between accumulators at the endpoint of the evidence integration
(i.e., choice time): a higher ∆e was interpreted as higher decision confidence.
By calculating this measure, we confirmed that our model can replicate all
the main relations between confidence, choice and RT. We then tested if the
model simulation was also recovering the flip in the relationship between
confidence and summed evidence (ΣValue or ΣDots) triggered by the frame
manipulation. We found the model captures this effect only if the attentional
bias is included in the simulations. The boost in ∆e when goal-relevant
evidence in both alternatives is high can be attributed to the architecture
of the model: in the GLAM, gaze has a multiplicative effect over evidence



7.5 discussion 151

accumulation. For example, consider a case with two items of value A1 = 2

and A2 = 1, and a discount factor for the unattended item u = 0.3. Assuming
the item with a higher value is gazed more we could express, in a very
simplified way, the ∆e for this choice as ∆eA = A1-A2*u = 2–1*0.3 = 1.7.
Consider now two new items with identical ∆Value but a higher magnitude
of the ΣValue, B1 = 10 and B2 = 9. Note that since ∆Value is the same,
this choice in absence of attentional effect should be considered of identical
difficulty than in case A (A1-A2 = B1-B2 = 1), and therefore the agent should
be neither more, nor less confident. But, keeping the same attentional factors
as for the first set, we have that the ∆eB between the items increases, ∆eB =
B1-B2*u = 10–9*0.3 = 7.3 (∆eA<∆eB). This effect would not be observed if
attention affected evidence accumulation in an additive way (A1-(A2-u) =
B1-(B2-u)). Our empirical confidence data, therefore, provide further support
for a multiplicative instead of an additive effect of attention into goal-relevant
information [179]. Overall, these data speak in favour of a coding scheme in
which the goal sets, from the beginning of the task, the allocation of attention
and, by doing so, influences first-order processes such as choice, but also
second-order processes such as confidence. Further empirical data will be
required to test this idea more stringently.

Overall, our results show that the influence of goals goes beyond direct
choices and reaches post-decision processes as the generation of confidence.
This confirms confidence as an integral part of the decision pipeline fed
by information the same way the decision is. Our previous findings show
that the sampling of information is dependent on changes in the context,
which generates asymmetries in evidence integration. Here our analysis
suggests that those same goal-directed asymmetries can be at the root of the
ΣEvidence bias on confidence. In the next chapter, this idea will be further
explored. Understanding the mechanisms used by these supposedly trivial
contextual manipulations to influence choice uncertainty can be of great
relevance in tasks where confidence in previous stages feeds the following
decisions (e.g., transactions in the stock market).



8
G O A L S M O D U L AT E T H E E V I D E N C E B I A S I N H U M A N
C O N F I D E N C E

8.1 summary

In standard signal detection theory, the degree of confidence in a decision
should be solely driven by the absolute difference in evidence between the
available alternatives. However, recent work has shown that confidence is
also strongly modulated by the overall amount of evidence available – an
effect named the positive evidence bias - and associated with a disproportionate
focus on evidence in favour of one’s choice. In the first instance, these
findings are extremely puzzling. Why, in a binary decision, should one be
more confident when there is stronger evidence for both options? And why
should people neglect evidence in favour of an unchosen option in their
confidence estimates? Well-tuned metacognitive confidence is critical for
guiding behaviour; so why do such biases exist? In this work, we show
through a series of experiments that these so-called ‘anomalies’ or ‘biases’
are not driven by positive evidence per se, but are instead modulated by
the behavioural goal (i.e., task) of the decision-maker. We then develop a
novel model (grounded in signal detection theory) that allows asymmetries
in internal belief variance. We show that such a model can capture all
the idiosyncratic patterns of confidence we observe in our data. Using
pupillometry analysis in an auditory task, we found that goals seem to
change the expectations in the processing of incoming information, reflected
in lower pupil sizes when choices are aligned with the task’s objective. We
suggest a novel computational mechanism by which the facilitated processing
of information in line with goals modulates metacognitive confidence.

8.2 introduction

Our decisions, on perceptual features or personal preferences, are always ac-
companied by an internal sense of certainty. Confidence plays a fundamental
role in allowing us to assess past actions (e.g., “I’m sure I did not miss the
red light!”) and to inform future choices (e.g. “I’m quite confident I’ll come
back to this restaurant”). An adequate generation of confidence could be
disrupted in many psychiatric disorders [360, 358, 73, 361, 362]. Therefore,
understanding the factors driving confidence is of central importance in the
study of human decisions.

Standard models of decision confidence characterise it as the probability
a decision was correct [340], commonly captured by the contrast of evidence
in favour and against the decision [23, 363]. In these scenarios, the central
assumption is that confidence incorporates equal evidence related to the
selected and unselected options. Recent studies in perceptual decisions have
nuanced this interpretation showing that human confidence deviates from
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this interpretation [364, 68, 365, 366, 75]. One of these biases shows that
confidence tends to overweight the evidence that supports the chosen option
relative to the unchosen (Positive Evidence Bias, PEB) [63, 367, 368, 369, 370,
371].

One of the implications of the positive evidence bias is that confidence
is modulated by the mere presence of evidence. Recent observations sup-
port this view showing that the overall decision evidence (ΣEvidence) in-
deed boosts confidence reports [57, 186, 125]. ΣEvidence is usually captured
by the sum of evidence of all the options available in the decision (e.g., the
total number of dots displayed in a random dot kinetogram). This indicates
that subjects tend to report higher confidence when the available alternatives
have overall higher levels of evidence. Value-based and perceptual decisions
present a positive effect of ΣEvidence on confidence (Chapter 7 of this thesis;
[57, 186, 125]). Some of the models proposed to capture the positive evidence
bias also predict this ΣEvidence effect in confidence [368, 372]. These models
attribute this phenomenon to a detection-like behaviour in discrimination
decisions, which is commonly interpreted as dependent on the features of
the stimuli, such as the strength of perceptual evidence (e.g., visibility of
Gabor patches; [373, 368, 372]).

While the positive evidence bias has been described in a variety of per-
ceptual tasks, these experiments usually consider decision experiments with
a single goal: to choose the alternative with higher evidence. Goals and
contexts impact powerfully information sampling and evidence accumula-
tion [186]; therefore, it is expected they also play a role in the estimation of
the confidence signal. The main target of the present work is to show the
impact that task goals have on the evidence bias in confidence. In particular,
we devised experimental frames that make it possible to dissociate positive
evidence from behavioural choice: in addition to the standard decisions
where participants pick the option with more evidence, we included further
choices where the option with lower evidence was relevant. We tested this in
the value-based and perceptual domains.

We both reanalysed previous datasets and conducted new experiments.
We show that frames in which participants choose high and low evidence,
display distinct evidence effects on confidence. While confidence was boosted
by the presence of evidence in the High Evidence frame, confidence was
diminished by evidence in the Low Evidence frame. Our findings highlight
that the impact of evidence on confidence may not arise from the purely
perceptual features of the alternatives, since in our “negative” frames the
lack of evidence seems to be driving an increase in confidence. In addition,
we show that this evidence bias in confidence is not valid only for the
perceptual decision but is found in value-based choices as well. We propose
a computational framework based on signal detection theory [13], where
asymmetries in evidence assessment allow the model to capture the goal-
relevant evidence effect on confidence.

In previous work, we reported that attention may be playing an impor-
tant role in generating the asymmetries that could drive the evidence bias
(Chapter 3 and [186]). These experiments consider a value-based and per-
ceptual decision-making task both reanalyzed in this chapter. In our third
experiment included in this chapter, we show that this effect on confidence
is robust and does not rely on spatial attention displacements, hinting at a
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more general attentional mechanism. To further support the hypothesis that
attention plays a role in gating the evidence effect in confidence, we analysed
pupil changes in a decision-making auditory task. Pupillometry has been
shown to track attentional processes [374] with pupil variations related to
uncertainty, surprise, and expectancy [375, 376, 377, 378]. In our last experi-
ment, we found a frame-dependent pupil variation, with a reduction in pupil
size when the chosen evidence was in line with the objective of the task.
This could indicate that goals orient attention in subtle ways, generating
expectations towards relevant aspects of the choice, which ultimately impacts
confidence.

Overall, our results highlight that the goals impact the decision process
generating asymmetries in information processing, which is reflected in the
construction of confidence. These changes could be indicative of a system
that adapts to the demands of real situations, more than a simple “bias”.

8.3 methods

8.3.1 Procedure

8.3.1.1 Experiment 1- Value-based decision

The datasets from experiments 1 and 2 have been employed in a previous
study by our group [186] presented in chapters 3 and 7. At the beginning
of this experiment, participants were asked to report on a scale from £0 to
£3 the maximum they would be willing to pay for each of the 60 snack food
items. They were informed that this bid would give them the opportunity
to purchase a snack at the end of the experiment, using the BDM [182]. The
BDM procedure incentivizes participants to report their true valuation of the
items. Participants were asked to fast for 4 hr previous to the experiment
following an established protocol for this type of experiment [33, 2, 57].

Following the bid process, participants completed the choice task: in
each trial, they were asked to choose between two snack items, displayed
on-screen in equidistant boxes to the left and right of the centre of the screen
(Figure 8.1A). After each binary choice, participants also rated their subjective
level of confidence in their choice. Pairs were selected using the value ratings
given in the bidding task: using a median split, each item was categorised
as high-value or low-value for the participant; these were then combined to
produce 15 high-value, 15 low-value, and 30 mixed pairs, for a total of 60

pairs tailored to the participant’s preferences. Each pair was presented twice,
inverting the position to have a counterbalanced item presentation.

The key aspect of this experimental setting was that all participants
executed the choice process under two framing conditions: (1) a like frame,
in which participants were asked to select the item that they liked the most,
that is, the snack that they would prefer to eat at the end of the experiment
and (2) a dislike frame in which participants were asked to select the item
that they liked the least, knowing that this is tantamount to choosing the
other item for consumption at the end of the experiment.

After four practice trials, participants performed a total of 6 blocks of 40

trials (240 trials in total). Like and dislike frames were presented in alternate
blocks and the order was counterbalanced across participants (120 trials per
frame). An icon in the top-left corner of the screen (‘thumbs up’ for like and
‘stop sign’ for dislike) reminded participants of the choice they were required
to make; this was also announced by the investigator at the beginning of
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every block. The last pair in a block would not be first in the subsequent
block.

Eye movements were recorded throughout the choice task and the pre-
sentation of food items was gaze-contingent: participants could only see one
item at a time depending on which box they looked at. This was done to
reduce the risk that participants while gazing at one item, would still look at
the other item in their visual periphery.

Once all tasks were completed, one trial was randomly selected from the
choice task. The BDM bid value of the preferred item (the chosen one in the
like frame and the unchosen one in the dislike frame) was compared with
a randomly generated number between £0 and £3. If the bid was higher
than the BDM generated value, an amount equivalent to the BDM value was
subtracted from their £20 payment and the participant received the food
item. If the bid was lower than the generated value, participants were paid
£20 for their time and did not receive any snacks. In either case, participants
were required to stay in the testing room for an extra hour and were unable
to eat any food during this time other than the food bought in the auction.
Participants were made aware of the whole procedure before the experiment
began.

8.3.1.2 Experiment 2 - Perceptual decision (dot number patch)

Experiment 2 had a design similar to the one implemented in Experiment
1, except that alternatives were visual stimuli instead of food items. In this
task, participants had to choose between two circles filled with dots, again
in two frames. In the most frame, they had to pick the one with more dots;
and the one with fewer dots in the fewest frame. The total number of dots
presented in the circles could have three numerosity levels (=50, 80 and
110 dots). For each pair in those three levels, the dot difference between
the circles varied in 10 percentage levels (ranging from 2% to 20% with 2%
steps). To increase the difficulty of the task, in addition to the target dots
(blue-green coloured), distractor dots (orange coloured) were also shown.
The number of distractor dots was 80% of that of target dots (40, 64, and
88 for the three numerosity levels, respectively). Pairs were presented twice
and counterbalanced for item presentation. After 40 practice trials (20 initial
trials with feedback, last 20 without), participants completed 3 blocks of 40

trials in the most frame and the same number in the fewest frame; they faced
blocks with alternating frames, with a presentation order counterbalanced
across participants. On the top left side of the screen a message indicating
‘Most’ or ‘Fewest’ reminded participants of the current frame. Participants
reported their confidence level in making the correct choice at the end of
each trial. As in the previous experiment, the presentation of each circle was
gaze contingent. Participants received £7.5 for 1 hr in this study.

Experiments 1 and 2 were programmed using Experiment Builder version
2.1.140 (SR Research). Although gaze information was gathered in these
tasks, it was not considered for the current analyses.

8.3.1.3 Experiment 3 - Perceptual decision (random dot motion)

A new web-based random dot kinematogram (RDK) experiment was de-
signed to support our findings in experiments 1 and 2. In traditional RDK
tasks, a cloud of moving dots is displayed on the screen with a certain pro-
portion of dots moving coherently in a single direction while the rest drifts
randomly. To keep better control of the evidence in favour and against the
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decision, we constrained the dot movement to the left and right directions
only. The coherence measure in RDK tasks characterises the proportion
of dots moving in the same direction; note that in our particular setup, a
coherence of 50% would mean an equal number of dots moving in the left
and right directions. Participants were instructed to select the direction of
dot movement considering two frames. In a high motion frame, participants
selected the direction where most of the dots were moving; and the direction
where fewer dots were moving in a low motion frame. The total number of
dots presented on the screen was 20, 40, 60, 80, 100, 120, and 140 dots, with
an equal number of trials for each category. For each dot numerosity level, 8

coherence levels were used: 51%, 52%, 55%, 60%, 65%, 70%, 80%, and 90%.
For each one of these combinations of dot number and coherence, the move-
ment direction was set to left and right. Therefore, each experimental block
contained 112 trials with unique dot movement patterns. The full experiment
consisted of 2 blocks for each one of the frames (224 trials per frame, 448

trials in total). At the beginning of each block, participants were informed
of the type of frame they had to consider for their answers and the screen
background during the trials was modified: blue background (hex colour
#b5cce9) for high motion frame and red background (hex colour #e9b5b5)
for low motion frame. The background colours were selected to keep similar
brightness in both frames. The moving dots were presented at the centre of
the screen inside an aperture with an ellipse shape (500 x 350 pixels), the
dot radius was 2 pixels, the dot life was set to 20 frames and the dot colour
was black in both frames. The presentation of the experimental blocks (112

trials) was interleaved between high motion and low motion frames: half
of the participants were shown a high motion block first and the other half
started with a low motion block. In each trial, the cloud of moving dots was
presented until the participants made their choice. Participants reported their
selected direction using their keyboards (‘a’ key for left and ‘l’ for right) in a
self-paced fashion within 5 seconds. If the participant did not answer the trial
was considered as missed and not repeated. After each choice participants
were asked to report their confidence in their decision using the numerical
keys (1 to 9). Before the task, participants were given the instructions and
exposed to 32 training trials, with the option of repeating the full training in
case some aspect was not clear. Online participant performance was assessed
when half of the trials had been completed; if the participants’ accuracy was
under 60% the experiment was stopped and the participant was rejected from
the study. Participants were reimbursed £6 for participating and an extra £4

for completing the full experiment. All payments were done through the Pro-
lific recruitment platform (https://www.prolific.co/). This experiment was
implemented online using the Gorilla research platform (https://gorilla.sc/)
and JavaScript code JsPsych (de Leeuw, 2015). RDK plugin for JsPsych [379]
was modified to restrain dot movement to only left and right directions.
Other parameters of dot motion were kept as the default settings given by
the plugin.

8.3.1.4 Experiment 4 - Perceptual decision (auditory clicks)

This new experiment considered a two-alternative forced choice on auditory
stimuli [376]. Participants used headphones during the experiment while
they observed the screen located at a distance of 1 mt. Participants listened
to two streams of auditory clicks of duration 1s, presented simultaneously
one to the left and the other to the right ear. Clicks were generated as
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periods of 40ms of silence on a white noise background. The number of
clicks presented on each stream varied between 1 and 10. Pairs of click audio
streams were generated using all the potential combinations, excluding the
case in which both audio streams contained the same number of clicks.
Participants made choices in two decision frames: in the high click frame,
participants selected the side that contained more audio clicks, while in
the low click frame participants reported the side with the lower number of
clicks. An arrow pointing up or down located at the centre of the screen
indicated whether the trial was a high or low click frame. After each choice,
participants were shown a scale to indicate their level of confidence in their
decision. Frames were presented in a block design with 2 blocks of high
clicks and 2 blocks of low clicks trials. Participants completed in total 180

experimental trials (45 trials per block, 90 trials per frame) with short breaks
in between. Twenty practice trials (10 for each frame) were presented before
the experimental trials. Practice trials included feedback (correct/error).
Each stimulus pair was presented twice during the experimental trials in
each frame to counterbalance the position. The sequence of frame-blocks
was randomly assigned across participants.

Participants were seated with their chin and forehead resting on a head
support, to maintain a stable pupil recording during the experiment. At
the beginning of each trial, participants needed to fixate on the centre of
the screen to initiate the presentation of the stimuli (drift correction was
estimated using this fixation). For the choice phase of the trial, participants
were instructed to always focus on the centre of the screen. After a 2s period
(used to calculate pupil baseline) the pair of sounds was presented for 1s.
Participants made their choices without time restrictions using the M and
Z keys for the right and left options, respectively. After the choice key was
pressed a 3s delay was presented. The arrow cue indicating the frame was
presented at the centre of the screen during the entire choice phase of the trial.
After the decision, participants could move on the confidence scale using the
keyboard (M and Z keys) and select their confidence level by pressing the
spacebar. No time limit was imposed on confidence reports.

In this experiment, pupil diameter was sampled at 500 Hz using an
EyeLink 1000 eye-tracker system (SR Research). The experiment was pro-
grammed using Experiment Builder version 2.3.38 (SR Research). The display
resolution was 1024 × 768 pixels. Sound stimuli were created using custom
Matlab scripts. The clicks were located randomly inside the 1s duration of
the audio stimuli sampled at 44.1kHz.

8.3.2 Participants

8.3.2.1 Experiment 1

Forty volunteers gave their informed consent to take part in this research.
Of these, 31 passed the exclusion criteria and were included in the analysis
(16 females, 17 males, aged 20–54, mean age of 28.8). One participant was
excluded for not using the full value scale when bidding for the snack items.
A second participant was excluded given they frequently reported the same
bid value. A further four participants were excluded due to reporting the
same confidence in most of their choices. Three participants were excluded
due to not complying with the instructions of the experiments. In the latter
case, one participant’s eye-tracking data showed the highest number of blink
events and made choices without fixating on any of the items; the other two
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did not comply with the frame manipulation. All participants reported not
being under the treatment for mental health disorders. To ensure familiarity
with the snack items, all the participants in the study had lived in the UK for
1 year or more (an average of 17 years).

8.3.2.2 Experiment 2

Forty healthy volunteers were recruited for the second experiment. Thirty-
two participants (22 females, 10 males, aged 19–50, mean age of 26.03) were
included in the behavioural and regression analyses. Three participants
were excluded for the repetition of the confidence rating across trials. Five
participants were removed for not complying with the instructions of the
task: four of them had performance close to chance level or did not follow
the frame modification, and one participant presented difficulties with eye-
tracking.

Please check [186] and Chapter 3 (Methods) for full details on the exclu-
sion criteria for experiments 1 and 2. All participants signed a consent form,
and both studies were done following the approval given by the Univer-
sity College London, Division of Psychology and Language Sciences ethics
committee.

8.3.2.3 Experiment 3

Experiment 3 was conducted online with participants recruited using the
Prolific platform [380]. Participants were screened for age (minimum age 18

years old), not having a diagnosed or ongoing mental health condition and
normal (or corrected to normal) vision. Forty healthy participants in total
were recruited, but three were rejected online (i.e., they did not complete
the experiment) due to low performance. The full experimental data were
available for 37 participants (7 females, 29 males, aged 18–19, mean age of
18.18). Of the 37 participants, 3 extra participants were excluded due to low
performance once the full experiment was completed. Four participants were
excluded due to repetitive confidence ratings (>60% of trials with the same
confidence value) and 1 participant was excluded because of not using the
full range of confidence (<50% of the full range). After the exclusion, 29

participants were included in the hierarchical regression analysis and model
fit (4 females, 24 males, aged 18–19, mean age of 18.20).

Since we excluded a considerable number of participants from the analysis
of the online experiment, we repeated the hierarchical regression analysis
presented in figure 8.1F including all 37 participants to check the evidence
effect on confidence is still present despite the lower performance in those
subjects. The main effect (i.e., change in sign of the effect of ΣMotionStr on
Confidence between frames) was still present in the analysis of the whole
dataset, hinting at the robustness of the finding.

All participants completed an online consent form before starting the
experiment. This online experiment was completed following the approval
given by the University College London, Division of Psychology and Lan-
guage Sciences ethics committee. All data were collected during April 2021.

8.3.2.4 Experiment 4

Experiment 4 was conducted as an in-person experiment in an eye-tracking
setup. Thirty-eight subjects participated in this study, but 32 participants
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were included for analysis (24 females, 8 males, aged 18–52, mean age of
28.8). Exclusion criteria considered:

1. Participants had performance inferior to 65% accuracy.
2. Participants used less than 25% of the choice confidence scales.
3. Participants gave the same confidence rating for more than 50% of

their choices.
4. Participants did not comply with the requirements of the experiment

(i.e., participants that failed to change the frame).
Six participants were excluded due to having low performance (criteria

1). All participants completed a consent form before starting the experiment.
This experiment was completed following the approval given by the Univer-
sity College London, Division of Psychology and Language Sciences ethics
committee. All data were collected from April to October 2022.

8.3.3 Data analysis: behavioural data

Behavioural measures during like/dislike, most/fewest, high/low motion,
and high/low clicks frames were compared using statistical tests available in
SciPy. Sklearn toolbox in Python was used to perform logistic regressions
on choice data. All the hierarchical analyses were performed using lme4

package [183] for R integrated into a Jupyter notebook using the rpy2 package
(https://rpy2.readthedocs.io/en/latest/). For choice models, we predicted
the log odds ratio of selecting the item appearing at the right. Additionally,
we predicted confidence using a linear mixed-effects model. Fixed-effects
confidence intervals were calculated by multiplying standard errors by 1.96.
Predictors were all z-scored at the participant level. Matplotlib/Seaborn
packages were used for visualisation.

8.3.4 Bayesian Models

We developed a series of models inspired by standard bidimensional signal
detection theory to describe choice and confidence behaviour in our experi-
ments. In this type of model, the alternatives are commonly designated as
target and non-target, with two distributions characterising each one of these
stimuli [381]. These two distributions have been traditionally modelled as
Gaussian distributions with a mean (µ) and variance (σ2). In this standard
approach, the mean of the target option is larger than the non-target (µTarget >
µNontarget) and the variance of both distributions is equal (σTarget = σNontarget).
In the typical use of these models, the goal of the task is not modified, which
means the target option is always the one with more evidence (e.g., the num-
ber of dots, visual contrast, etc.). Since in our experiment the manipulation
of the goal was the key aspect of the task, target and non-target options were
not fixed categories from the perspective of the amount of evidence. There-
fore, in this paper, we refer to the two distributions, target and non-target, as
high or low evidence, respectively, with µHigh > µLow. Besides this change
in terminology, the central modification in our models was to allow high
and low evidence distributions to have different variances, to capture the
goal-oriented changes of the ΣEvidence effect on confidence.

In this section, we describe the details of Bayesian graphical models used
for the simulations and to fit each one if the four experiments. All model
simulations and fits were implemented in Bayesian framework using Python
library PyMC3 [184].
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8.3.4.1 Model Simulations

We simulated a Bayesian observer in a generic binary decision experiment
(figure 8.2B). The agent is exposed to two options, with different amounts
of evidence (right and left evidence, Er, and El respectively). The objective
of the task was for the simulated agent to report the option (left or right)
with higher evidence in a High Evidence frame and the alternative with lower
evidence in a Low Evidence frame. For each simulated trial, we generated the
side of the item with higher evidence (side; 0: left; 1: right) from a Bernoulli
distribution (High Ev Opt variable in Figure 8.2B). The evidence for each
option was extracted from a Gaussian distribution for the right and left
possible directions:

side ∼ Bernoulli(0.5)

Er ∼ N(side, 1)

El ∼ N(1− side, 1)

The observer also had two internal distributions that characterise their
beliefs, a Gaussian distribution to describe high evidence samples and another
one for low evidence samples (figure 8.2A), Ehigh and Elow, respectively:

Ehigh ∼ N(µhigh, σhigh)

Elow ∼ N(µlow, σlow)

Therefore, for each trial, the simulated agent observed the pair of ev-
idence <El, Er> and determined the likelihood they were generated from
a distribution <High Evidence, Low Evidence> or <Low Evidence, High
Evidence>. The logarithm of the ratio of these two likelihoods (L) was used
as the decision variable for the observer:

L = log
p(< Er, El > | < HighEv, LowEv >)

p(< Er, El > | < LowEv, HighEv >)
= log

p(Er|Ehigh)p(El |Elow)

p(Er|Elow)p(El |Ehigh)
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Note that for all these simulations we assumed µHigh = 1 and µLow = 0.
Depending on the frame that was simulated, the observer selected the option
with lower or higher evidence. When high evidence was to be picked, the
agent chose the right option if L ≥ 0 and the left option when L < 0. In the
frame in which low evidence had to be selected, right option was chosen if L
≤ 0 and left option when L > 0.

We simulated three different models to study how the generation of
confidence is affected by decision parameters. Our main model to probe, the
asymmetric variance model (AVM), considers that σhigh and σlow can vary
independently. Crucially, the asymmetry was dependent on the goal of the
task, in high evidence frame σhigh > σlow, and in low evidence frame σhigh <
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σlow. With this configuration, confidence was calculated from the magnitude
of the ratio term:

con f idence = |L|(2)

Simulations were performed considering various combinations of σHigh
and σLow variances. Both, σhigh and σlow, were assigned values in a range
between [0.5 ,1.9] with a step of 0.2. One thousand samples were extracted
from each simulated model for each σhigh and σlow combination. For the
analysis presented for a single noise combination in the Results section, we
selected σhigh =1.2 and σlow = 1 to represent the high evidence frame and
σhigh =1 and σlow = 1.2, for the low evidence frame. In this case, 2000 samples
were extracted from the posterior distribution.

To compare our model with the standard approach used in decision-
making studies, we simulated an equal variance model (EVM) with σhigh
=1 and σlow = 1. Choice decision variable (equation 1), decision threshold
and confidence (equation 2) were calculated in a similar way to the AVM.
Simulated evidence was also generated identically to the AVM simulations.
Two thousand samples were extracted from the posterior to generate the data
for analysis. This model would be commonly associated with a Balance of
Evidence model which cannot reproduce the effects generated by evidence
(i.e., overweighting chosen evidence and ΣEvidence) on confidence.

Finally, we simulated a third model, the response-congruent heuristic
model [368] which was proposed to characterise evidence biases on confi-
dence. In this model, confidence is generated by discarding completely the
evidence supporting the unchosen option. In other words:

con f idence = Echosen(3)

With Echosen the evidence of the chosen option. For the HM simulations,
the model architecture is identical to EVM, except by the confidence defini-
tion. In all the models, simulated choice and confidence were characterised
using logistic and linear regressions using sklearn and statsmodels toolboxes
in Python. All the predicted and predictors values were normalised (z-scored)
before fitting to the linear models.

8.3.4.2 Model fitting

We used Markov chain Monte Carlo (MCMC) methods implemented in
PyMC3 [184] to sample posterior distributions of the parameters considering
the inputs: actual evidence supporting the left and right option (EVleft and
EVright, respectively), subjects’ confidence reports (r) and choices (c). To
account for the stochasticity of human responses, we included in the AVM
an extra parameter to characterise the noise in the encoding of the options
(sampling variance, σ2

s) [382, 383, 125] and a logit function that transforms
the decision variable L in the choice c [127, 3].

σhigh ∼ Uni f orm(0.5, 5)

σlow ∼ Uni f orm(0.5, 5)

σs ∼ Uni f orm(0.5, 5)

El ∼ N(EVleft, σs)

Er ∼ N(EVright, σs)

β ∼ N(0, 31.62)
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The lower bound was set to 0.5 to exclude the convergence of noise
parameters to 0, which generated deterministic choices that failed to replicate
human behaviour. The parameter controlling the prior of β was defined in
terms of precision instead of standard deviation (precision τ = 0.001 → σ =
31.62). Choice was determined from the Bernoulli logit function defined as:

c ∼ Bernoullli
(

1
1 + exp (β L)

)
(4)

With L the log-likelihood term calculated as in equation 1. To construct
confidence in the model we additionally accounted for the effect of empirical
reaction time (RT) which was included together with the estimated value of
|L| (the magnitude of the log-likelihood term):

βconf ~ N (0 , 31.62)
βRT ~ N (0 , 31.62)
The value of |L| and RT went into a logit function to generate a confi-

dence rating in 0-1 scale. The two additional weighting parameters (βconf
and βRT) were included in a deterministic expression to account for the
contribution of both terms to the final reported confidence:

conf =
1

1 + exp(βconf |L| + βRT RT)
(5)

r ∼ N(con f , 0.025)

Following [127], the mapping between model confidence and observed
confidence allowed a small degree of imprecision (σ = 0.025) in subjects’
ratings, roughly equivalent to grouping continuous ratings made on a 0-1
scale into ten bins.

The fitting of the model proceeded in two stages [384]. In the first
stage, σs and β were fitted using choice behaviour from participants. The
mean value of the posterior distribution for both parameters were used
as fixed parameters in the second stage. The remaining parameters were
fitted to participants’ choice and confidence in the second stage. The fitting
was performed at a pooled-participant level. EVleft, EVright, and RT were
normalised (z-scored). Confidence r was normalised at the participant level
and transformed to the 0-1 range.

In experiment 1, the model used as evidence input into the model (EVleft
and EVright) the willingness to pay reported by the participants for each
item. In experiment 2, EVleft and EVright corresponded to the number of dots
presented in the left and right circles, respectively. Since in experiment 3, the
evidence was controlled by dot coherence (coh) but also by dot numerosity
(we called this summed motion strength in our analysis, ΣMotionStr) we
slightly modified the way evidence was input into the model. Coherence
information for each trial was considered to calculate the proportion of dots
moving in each one of the two possible directions: cohleft = coh, and cohright
= 1 – coh, when the higher movement of dots was towards the left; and
cohleft = 1 – coh, and cohright =coh, when most dots were moving in the
right direction. Note that coh could take values 0.51, 0.52, 0.55, 0.60, 0.65,
0.70, 0.80, and 0.90; the proportion of dots moving in the specified direction.
Remember in our task, dot movement was fixed to left or right directions,
therefore 1-coh describes the proportion of dots moving in the opposite
(lower movement) direction.

El,0 ∼ N(cohleft, σs)
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Er,0 ∼ N(cohright, σs)

Over and above the evidence obtained from coherence we included
ΣMotionStr evidence, modulated by a parameter (η).

El = El,0 + ηΣMotionStr(6)

Er = Er,0 + ηΣMotionStr(7)

The remaining parameters and priors in the model used for experiment
3 were identical to experiments 1 and 2. Finally, in experiment 4 EVleft and
EVright correspond to the number of auditory clicks presented in the left and
right speakers, respectively. Model structure and priors for the parameters
in experiment 4 were identical to experiment 1 and 2. While σhigh and σlow
were considered free parameters in the fitting process, µHigh and µLow were
extracted from a median split on participant’s evidence, which were value
reports in experiment 1, or experimenter-controlled perceptual stimulus: dot
number, coherence levels, and number of auditory clicks , in experiments 2,
3, and 4, respectively. The average of higher and lower splitted evidence was
assigned as µHigh and µLow, respectively, and they were used as constants
in the models. Graphical representations of the fitted models for the 4

experiments are presented in Figure 8.7.
Data were fitted to even-numbered trials. We fitted each model by gener-

ating 8,000 samples in each of the 4 chains using the Metropolis sampling
method. We discarded 800 samples per chain for burn-in, resulting in a total
of 28,800 samples.

Convergence was assessed using Gelman-Rubin statistic (|R̂− 1| < 0.05),
with the criteria unmet in some of the parameters. This indicates that
the fitting process had difficulties in identifying the precise value of the
parameters. However, we are not making any claims on the specific value of
the parameters but on the sign of the relationship between σhigh and σlow,
Therefore, we calculated σBel= σhigh - σlow, for all the samples in the trace
resulting from the fitting process. We found that although the convergence
value was not clear the sign of the parameter was always in line with our
hypothesis: σBel was positive in the high evidence frame and negative in the
low evidence frame of the experiments. In Figure 8.6, for the comparison of
σhigh and σlow for each model 1,000 samples were drawn from the posterior.
Regression analysis for simulated trials and participants trials was presented.
The number of posterior samples for the analysis depended on the number
of trials used to fit the model: experiment 1: 93,000 total samples (1,860 trials
x 50); experiment 2: 96,000 total samples (1,920 trials x 50); experiment 3:
161,000 total samples (3,258 trials x 50), experiment 4: 72,000 total samples
(1,440 trials x50).

8.3.5 Data analysis: pupillometry experiment

8.3.5.1 Pupil dilation pre-processing

Eye data were organised using DataViewer 4.2.1 (SR Research) generating
reports containing details of the pupil area variations for all the participants.
Pupil time series were subsampled to 100Hz. Pre-processing of eye data
included the interpolation of eye blinks [376, 377]. The effect of blinks
and saccades on pupil response was estimated through deconvolution and
removed using linear regression [385]. Each trial was z-scored and baseline
corrected subtracting the average pupil area in the 2s before the appearance
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of the sound stimuli. For visualisation, the pupil was epoched around
relevant onsets: stimuli presentation and response time. The analysis was
completed using the pre-processed pupil data.

8.3.5.2 GLM analysis

We fitted a General Linear Model (GLM) at each time point to track the
modulation of the pupil trace by decision evidence. We focused our analysis
on the time participants reported their choice, considering a 4s window (2s
before and after this event). We separated trials for the High and Low Clicks
frames. At a participant level, we extracted the pupil trace around choice
time across trials. We estimated a GLM to predict the relative pupil size
at each time point within the trials, with parameters (1) chosen evidence,
(2) unchosen evidence, (3) reaction time of the trial and (4) the position
of the fixation at that timepoint (expressed as X-Y coordinates). Evidence
was considered as the number of clicks presented on the selected and non-
selected sides. The latter predictors were included to control for nuisance
covariates [377]. Group-level parameters for chosen evidence predicting
pupil size are presented in Figure 8.9. Statistical test was performed using
a permutation analysis: for each time-sample (400 samples in total) and
participant (n = 32) we fitted 50 GLMs from different permutations of the
dataset. We used the individual parameters estimated from the permutation
to calculate a null distribution of the group-level parameters in both frames.
The subtraction of the chosen evidence parameters between High Clicks
and Low Clicks frames was calculated to characterise the null distribution
and used to estimate the significance of the difference between the frame
parameters, i.e, the effect of chosen evidence is higher in the low clicks frame.
The p-values for the parameter difference at each time sample were corrected
using a false-discovery rate (α = 0.01). A cluster size of at least 6 contiguous
time samples was considered for significance [186].

8.4 results

In this work, we present the re-analysis of two datasets from a previous study
by our group [186] together with the findings from two new experiments. In
these four experiments, participants had to perform either value-based or
perceptual decisions within two task frames and then report their confidence
level in each one of their choices.

In the first value-based experiment(n = 31) hungry participants made
binary choices between food items in like and dislike frames (Figure 8.1A).
In the former, participants indicated the item they preferred to eat; in the
latter, the snack they wanted to avoid eating. After each choice participants
reported their confidence in the decision using a slider. Before starting
the decision task, participants indicated their subjective value rating for
each one of the available food items, using a standard incentive compatible
Becker-DeGroot-Marschak mechanism (BDM) [182].

In the second perceptual experiment, a different group of participants (n
= 32) performed a binary perceptual discrimination task (Figure 8.1C). Two
circles with a different number of dots were presented in each trial. During
the “most” frame, participants reported the circle with a higher number of
dots whereas, in the “fewest” frame, they reported the circle with a lower
number of dots. Confidence was reported after each choice, as in Experiment
1.
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The third perceptual experiment was completed using a web-based plat-
form (n=29) and consisted of a binary choice task involving decisions about
random dot kinetograms (RDK). Participants visualized a single aperture at
the centre of the screen where dots were moving in two directions: left or
right (Figure 8.1E). Unlike standard RDKs we constrained the dot motion
to those two directions to be able to control for the evidence in favour and
against the selected option. In the “high motion” frame participants indi-
cated the direction in which a majority of dots were moving, and in the “low
motion” frame they selected the direction in which a minority of dots were
moving. They reported their confidence level for each motion judgment.

The fourth perceptual experiment used sound evidence as the basis for the
choice, while participants’ pupil variation was tracked (n = 32). Participants
visualized an invariant screen of constant luminosity while they listened to
sounds (click sequences) coming from their left and right speakers (Figure
8.1G). Participants had to indicate the side with the higher number of clicks
in a “high clicks” frame, or the option with a lower number of clicks in the
¨low clicks” frame.

8.4.1 Evidence bias on confidence depends on frame

8.4.1.1 Experiment 1

In this section, we performed regression analysis to show the effects that
experimental evidence had on participants’ confidence and the impact that
frames have on them. As reported in previous work from our group [186, 57]
and others [125], the difference in evidence (as predicted by SDT) but also
the overall evidence for both alternatives in a trial (ΣValue), modulated
confidence reports. In the like frame (blue), confidence increased when
ΣValue was higher (bΣValue = 0.09 ± 0.03, p<0.01) (Figure 8.1B). This effect
has been interpreted in different ways in those articles, but here we propose
that ΣValue effect is just another way of observing a positive evidence bias
[63, 367, 368, 369, 371, 370]. For completeness, in this regression analysis
we also found that an increase in the value difference between the items
(|∆Value|, controlling for the difficulty of the trials) had a positive effect on
confidence (b|∆Value| = 0.13±0.12, p<0.001), while increases in reaction time
(RT) reduced the level of confidence (bRT = -0.30±0.04, p<0.001). For more
details on the PEB effect in this experiment, we unpacked the ΣValue on the
contributions of chosen and unchosen evidence components. We fitted a
hierarchical linear model for confidence including as separated predictors
the evidence supporting the chosen and the unchosen snacks (chosen and
unchosen item preference value, respectively). We found the magnitude
of the effect of chosen value was significantly higher than unchosen value,
indicating an overweighting of the selected alternative on the confidence
reports (mean |bChosenVal| = 0.22; mean |bUnchosenVal| = 0.09; t(30) = 4.819 ;
p <0.001). Importantly, while an increase in chosen value boosted confidence
(positive effect of the predictor on confidence), an increase in the unchosen
value decreased the participant’s confidence level. In other words, the
imbalance in the contribution of chosen and unchosen options eventually
leads to an overall ΣValue confidence boost. This suggestion will be also
supported by our model simulations in the following section.

Our key analysis was to test how the changes in task goals impacted the
positive evidence bias. In previous work [186] we show that goal manip-
ulation influences attention and consequently shapes the decision process,
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Figure 8.1: Tasks and hierarchical linear regressions predicting confidence. (A) Experiment 1: Value-based decision. Hungry participants select in binary
choice the item they prefer to eat at the end of the experiment in a like frame; and the item they prefer to avoid eating in a dislike frame. Subjective value
for each item was reported by participants during the initial part of this experiment. (B) Evidence bias in confidence is affected by the goal of the task: in
like frame, ΣValue has a boosting effect over confidence, while in dislike frame, an increase in ΣValue impacts negatively on confidence. (C) Experiment
2: Dots numerosity. Participants choose between two circles with dots. In most frame they select the circle with higher number of dots; in fewest frame
they select the circle with lower number of dots. (D) In experiment 2, the frame also influenced how evidence is incorporated in confidence reports: in a
similar way to experiment 1, the frame generated a flip from positive to negative effect of ΣDots on confidence. (E) Experiment 3: Dots motion. In a dot
motion task participants indicate the direction (right or left) most of the dots move in a High Motion (HM) frame, and the direction with fewer dots
move in a Low Motion (LM) frame. (F) In this case, evidence bias that depends on frame is also observed, with ΣMotionStr affecting confidence reports
positively in HM frame, and negatively in LM frame. (G) Experiment 4: Sound. In a sound task participants indicate the side of the speaker (right or
left) that contains higher or lower number of clicks depending on the frame: High Clicks (HC) or Low Clicks (LC). (H) Hierarchical regression shows a
significant difference of the effect of ΣClicks on confidence across HC and LC frames. Confidence after each decision was reported in the 4 experiments.
In regression plots, bars depict the fixed-effects and dots the mixed-effects of the regression. Error bars show the 95% confidence interval for the fixed
effect. *: p<0.05 ; **: p<0.01; ***p<0.001.

including the generation of confidence. Considering only the dislike frame,
we fitted another hierarchical linear model for confidence that reflected a
flip of the ΣValue effect on confidence in the dislike frame (bΣValue = -0.15 ±
0.03, p<0.001; like vs dislike bΣValue: t(30) = 9.91 ; p <0.001). This means that
in the dislike frame, an increase in overall evidence reduced the reported
confidence in the choice, a result first reported in [186] (Figure 8.1A). As in
the like frame, we separated chosen and unchosen values to predict their
individual influence on confidence. We found that again the chosen alterna-
tive was overweighted in the confidence reports (mean |bChosenVal| = 0.27;
mean |bUnchosenVal| = 0.1; t(30) = 5.783 ; p <0.001), however, in this case an
increase in the chosen item value generated a decrease in confidence. The
opposite was found for the non-selected option: the higher the value of the
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unchosen item, the higher the confidence. Note this change in the sign of
the effect was not found for |∆Value| and RT (dislike: b|∆Value| = 0.16±0.03,
p<0.001; bRT = -0.31±0.04, p<0.001)

In conclusion, our results show that the positive evidence effect is not
necessarily driven by “positive” evidence, i.e., higher value of the option.
Instead, we found that it was modulated by how evidence was used to
achieve the goal of the task. In the dislike frame of our task, an increase in
the value of the chosen option decreased participant’s confidence, leading to
a negative evidence bias. Some models to explain PEB have considered that
positive evidence depends on the stimulus, associated with a physical feature,
e.g., stimulus visibility. Therefore, the evidence effect would be driven by a
decision system that is prone to detection operations [368, 372, 373]. More
recent work has suggested biologically inspired models, where neurons
with lower normalisation-tunning are responsible of confidence signal [372].
However, this model is still driven by bottom-up stimulus strength. Our
findings offer another perspective, suggesting that the effect could be driven
by the negative evidence, i.e., the lack of evidence or stimulus, when the
goal of the task requires it. It could be argued that this negative effect
occurs because in the value domain the “detection” operation is not relevant
for the choice. To rule out this possibility, we used a similar experimental
design but in perceptual decisions. It is important to highlight that, to our
knowledge, this experiment shows for the first time that PEB is not exclusive
to perceptual decisions but can be extended to value-based decisions.

8.4.1.2 Experiment 2

We found a similar pattern of behavioural results in our second experiment in
the perceptual domain. In this dot numerosity task, the frame modulated the
effect of ΣDots on confidence, with a positive impact of the overall evidence
on the most frame confidence, and a negative effect in the fewest frame (most:
bΣDots = 0.04 ± 0.02, p<0.001; fewest: bΣDots = -0.17 ± 0.02, p<0.001; most vs
fewest bΣDots: t(31) = 14.58, p <0.001, Figure 8.1B). Participants’ confidence
overweighted the evidence (number of dots) in favour of the chosen option
vs unchosen in the most (mean |bChosenDots| = 0.49; mean |bUnchosenDots| =
0.44; t(31) = 8.776 ; p <0.001) and fewest frames (mean |bChosenDots| = 0.6;
mean |bUnchosenDots| = 0.43; t(31) = 13.271; p <0.001). However, while an
increase in the number of dots in the chosen patch boosted confidence in
the most frame, the same increase of chosen evidence in the fewest frame
reduced the level of confidence. The inverse pattern was observed for the
unchosen alternative. This result shows that the evidence bias on perceptual
confidence is also affected by goal manipulations, similarly to the results
of the value experiment. When less physical evidence was presented (i.e., a
lower number of dots) in the fewest frame, confidence was boosted. As in
experiment 1, the frame did not change the sign of the effect of trial difficulty
and RT on confidence (most: b|∆Dots| = 0.08±0.02, p<0.001; bRT = -0.32±0.03,
p<0.001; fewest: b|∆Dots| = 0.14±0.02, p<0.001; bRT = -0.32±0.05, p<0.001)

8.4.1.3 Experiment 3

The third experiment was to test if the effects we observed in our previous
experiments were not exclusive to experimental setups requiring spatial
allocation of attention (i.e., gaze displacement to the right or left on the
screen). In this case, we used a dot motion task, which has been reported to
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also elicit PEB effects [63, 367, 339]. Given that previous findings hinted at
an important role of attention in the generation of goal-dependant evidence
effects [186], we thought that the use of a task that does not require spatial
attentional displacement might make this effect disappear. Using motion
discrimination in a single aperture allows a subtler probe of the frame effects
since supporting and opposing evidence were presented at the same screen
location. We constrained motion in this task to only right and left directions,
to capture the amount of evidence in favour and against choice.

As in our previous analyses, we fitted a hierarchical linear model pre-
dicting confidence controlling for reaction time (RT) and task difficulty. We
characterised difficulty using motion coherence, i.e., the proportion of dots
moving in the same direction. The evidence on each trial was captured by
ΣMotionStr, overall motion strength, which accounts for the total number
of dots presented. We found again a significant interaction of frame with
the ΣEvidence effect on confidence, increasing confidence when more dots
were displayed in the high motion frame (high motion: bΣMotionStr = 0.06 ±
0.02, p<0.001), and when fewer dots were on screen in the low motion frame
(low motion: bΣMotionStr = -0.09 ± 0.02, p<0.001; most vs fewest bΣMotionStr:
t(28) = 8.671, p <0.001, Figure 8.1C). Separating ΣMotionStr evidence in
each alternative (chosen and unchosen motion direction), we found that
confidence overweighted the chosen option over the unchosen in the high
motion (mean |bChoMotionStr| = 0.32; mean |bUnchoMotionStr| = 0.23; t(28) =
4.628 ; p <0.001) and low motion frames (mean |bChoMotionStr| = 0.43; mean
|bUnchoMotionStr| = 0.27; t(28) = 6.812; p <0.001). The effect of the chosen evi-
dence on confidence was found to be positive in the high motion frame (i.e.,
more confidence when more dots are moving in the chosen direction) and
negative in the low motion frame (i.e. lower confidence when more dots are
moving in the chosen direction), replicating experiments 1 and 2. The inverse
pattern was observed in the unchosen option. This means that while in the
high motion frame confidence was boosted in decisions involving movement
of a higher number of dots, in the low motion frame confidence increased
when there was motion of fewer dots on the screen. Again, the frame did
not change the sign of the effect of trial difficulty and RT on confidence
(high motion: bCoherence= 0.23±0.02, p<0.001; bRT = -0.31±0.03, p<0.001; low
motion: bCoherence = 0.35±0.02, p<0.001; bRT = -0.29±0.03, p<0.001). These
results show that the goal-dependent evidence effect was robust, even in a
design with subtler frame manipulations.

8.4.1.4 Experiment 4

The fourth experiment was an auditory decision experiment. The aim of
this task was to further explore the PEB beyond visual tasks, in particular,
to focus on attentional control through the modulation of pupil size in a
goal-relevant fashion. For more details, please check section 4 below. We
fitted a hierarchical linear model predicting confidence, again using evidence
(ΣClicks, the sum number of clicks presented in left and right speakers), RT
and difficulty as predictors. Choice difficulty was captured by the difference
in auditory clicks |∆Clicks|. We found a significant interaction of frame
with the ΣClicks effect on confidence, (high clicks: bΣClicks = -0.06 ± 0.03, p =
0.03; low: bΣClicks = -0.15 ± 0.02, p<0.001; high vs low clicks, bΣClicks: t(31)
= 5.36, p <0.001, Figure 8.1H). In this experiment, ΣClicks did not generate
a significant positive effect in the high clicks frame. We characterised the
evidence in favour of chosen and unchosen options using the number of
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clicks in each one of the alternatives. In the high clicks frame, we did not
find that the chosen evidence was overweighted over unchosen, considering
the group estimates (mean |bChoClicks| = 0.18; mean |bUnchoClicks| = 0.26;
t(31) = -2.52 ; p <0.05). In the low clicks frame we found the asymmetry, with
confidence being affected mostly by the chosen evidence (mean |bChoClicks|
= 0.23; mean |bUnchClicks| = 0.006; t(31) = 9.42 ; p <0.001). The effect of the
chosen evidence on confidence was found to be positive in the high clicks
frame (i.e., higher confidence when more clicks are presented in the chosen
alternative) and negative in the low clicks frame (i.e. lower confidence when
more clicks are presented in the chosen direction), replicating the previous
experiments. The unchosen evidence had a negative effect on confidence only
in the high clicks frame, we did not find a significant effect of the unchosen
evidence on confidence in the low clicks frame.

We attribute the lack of a positive effect of ΣClicks on confidence (and
the absence of overweighted chosen evidence) in the high clicks frame to a
slightly different design of the auditory task relative to the previous experi-
ments. While in visual tasks participants could sample both options freely
until the choice was delivered, in the auditory experiment the presentation
of evidence was constrained to one second. After that, free response time
was allowed, but without sampling new evidence. It has been reported that
restriction on decision time may interfere with the relationship of confidence
with other behavioural measures, such as RT [68]. We consider this could be
the case for evidence in the positive frame (please see discussion for further
comments).

As in previous experiments, we found that the frame did not change
the sign of the effect of trial difficulty and RT on confidence (high clicks:
b|∆Clicks|= 0.25±0.03, p<0.001; bRT = -0.32±0.03, p<0.001; low clicks: b|∆Clicks|
= 0.17±0.02, p<0.001; bRT = -0.39±0.04, p<0.001). Overall, despite the dif-
ference in the high clicks condition described above, we still found that
frame modulated the relationship between evidence and confidence, with a
higher impact of the low evidence option (the lack of auditory events) in the
negative (low clicks) frame.

8.4.2 Simulations of asymmetric variance can generate evidence bias

The previous analysis demonstrates a robust positive evidence effect on
confidence which depended on the goal of the task. To understand the
algorithmic mechanisms behind this effect we developed a Bayesian graphical
model based on signal detection theory (SDT). Here we assume an observer
that has certain preliminary knowledge of the statistics of the evidence in
the task and generates two relevant categories: high and low evidence. For
example, in a value-based task, the observer should have internal beliefs
that characterise the expected values for a high-preference alternative and
another set of expected values of the low-preference items. In this work, we
refer to these as the belief distributions (Figure 8.2A). Therefore, when the
observer makes a binary decision, she contrasts the available options with
her internal belief distributions and picks the most likely option (e.g., that
the left option belongs to the low value distribution and the right option to
the high value one vs left option is high value and right option is low value).
In practical terms, we model this comparison as a decision variable using a
log-likelihood ratio (L): if L ≥ 0, the right-sided option was chosen, and if
L<0, the left-sided option was selected, assuming the observer reports the
option with higher evidence. In the negative frame, the model made choices
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Figure 8.2: Bayesian observer model – asymmetric variance model (AVM). (A) The
model proposed in this work is grounded on SDT. AVM considers an observer with
internal belief distributions that categorizes the alternatives as high evidence and low
evidence options. These two belief distributions were modelled as Gaussians with
parameters (µhigh, σhigh ) and (µlow, σlow ). This separation into two categories can
be applied to the evidence for each one of our experiments. As stated in its name,
AVM allows variances to vary independently which replicated the evidence effects
on confidence observed in human experiments and its task-goal dependency. In
high evidence frames (e.g., like, most, high motion, or high clicks frames) the model
predicts σhigh > σlow. In the opposite low evidence frames, σhigh < σlow can generate
the behavioural effects found in humans. (B) Graphical Bayesian model used for
simulations. For details see Methods- Model simulations. High Ev Opt (L/R): for
simulations, the direction of high evidence was generated from random samples
of a Bernoulli distribution; Er: observed evidence for the right-side alternative; El:
observed evidence for the left-side alternative; LLR: log-likelihood ratio term (L).

in the opposite direction: when L ≥ 0, the left-sided option was chosen, and
if L<0, the right-sided option was selected (Figure 8.2B).

While the standard assumption in SDT is the equal variance for target
and non-target evidence distributions [13, 106, 368, 127, 386] our model
allows the distributions to have asymmetric variances. It has been suggested
that unequal variance, in particular, higher variance for the target option
(σ2

target/σ2

nontarget >1), should be expected in more ecological situations or
when a target signal emerges from background noise [387, 381]. The novelty
of our proposal is that the task we are modelling allows for a change of what
constitutes a target distribution depending on the frame: in some cases, the
target is the option with higher evidence, and in others, the target is the
alternative with lower evidence. Therefore, goal-dependent asymmetries
should be reflected in a dynamic change in the variance of these belief
distributions: in the high frame we expect σ2

high/σ2

low >1 and in the low
frame σ2

low/σ2

high >1. In the following sections, we show how simulations
of the asymmetric variance model (AVM) captured both the evidence bias
on confidence and the goal-dependent flip of that effect. We additionally
reported simulations of an equal variance model (EVM) that represented the
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predictions made by a model with standard SDT assumptions. Finally, we
also included an additional model that predicted PEB based on a heuristic
definition of confidence (heuristic model, HM, [368]). In this case, the
evidence that characterises the chosen option was used in the computation of
confidence, while evidence supporting the unchosen option was discarded.
See Methods for more details on the simulation models. For each model, we
simulated 5000 trials and we fitted logistic and linear models to characterise
synthetic choice and confidence behaviour, respectively, in the high and low
evidence frames.

8.4.3 Asymmetric variance model

The simulations for the AVM model generated goal-dependent choice be-
haviour given changes in the decision variable threshold (i.e., the selected
options for L ≥ 0 and L < 0 changed depending on the frame, see details
for simulations in Methods – Model simulations). From a logistic regression
predicting choice we showed that in the high frame, the option with higher
evidence was selected in the simulated choices, while in the low frame the
alternative with lower evidence was selected (Figure 8.3A). The step-like
feature of the logistic curve in the simulations was due to the deterministic
nature of the choice threshold (e.g., if L ≥ 0 right option is chosen, otherwise
left option is picked). Confidence was calculated as the magnitude of the
likelihood ratio (|L|), and this step was identical for both simulated goals.
In both frames, simulated confidence presented a U-shape relative to the
difference in evidence between the alternatives, a standard signature of hu-
man confidence signal [67] (Figure 8.3A). From a linear regression predicting
confidence from the evidence in support of the chosen and unchosen options,
we found the simulations indicated that confidence was mostly affected by
the chosen alternatives in both frames, with unchosen options having a lesser
effect (high frame: βchosen= 0.994± 0.003, p<0.001, βunchosen=-0.597± 0.003,
p<0.001; low frame: βchosen= -0.986± 0.004, p<0.001; βunchosen=0.606± 0.004,
p<0.001). Note the model also predicted that in a high frame, the influence of
chosen evidence on confidence was positive while in a low frame, the effect
of the chosen evidence was negative. The opposite pattern was observed for
the unchosen evidence (Figure 8.3B). This replicates the findings in humans,
reported in the previous section. The AVM also predicts the modulation of
confidence by ΣEvidence and its interaction with the frame (Figure 8.3C).
While in the high frame ΣEvidence had a positive effect on confidence, in
the low frame the effect was negative (high frame: βΣEvidence = 0.317± 0.003,
p<0.001; low frame: β ΣEvidence = -0.332± 0.003, p<0.001). For an additional
visualization of the effects, we plotted confidence over the evidence space,
defined by the evidence for left and right options (Figure 8.3D). It was no-
ticeable that lower confidence values were found at the bottom left quadrant
in the high frame and at the top right quadrant in the low frame, coincident
with a goal-dependent effect on confidence. All these results were obtained
using asymmetrical belief variance in high (σhigh =1.2, σlow =1) and low
evidence (σhigh =1, σlow =1.2) frames. We further corroborated similar effects
were observed for various possible combinations of σhigh and σlow, with the
constraint that the variance asymmetry was defined in a goal-dependent way
(i.e., higher variance for the goal-relevant distribution in the task).
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Figure 8.3: Asymmetric Variance Model (AVM) simulations. Frames in which the
model selects high evidence (blue) or low evidence (red) are presented. (A) Simulated
choice and confidence. (B) Linear regressions predicting confidence using chosen and
unchosen evidence as predictors indicated an overweighting of chosen evidence in
both frames. (C) Simulated trials predicted the flip in ΣEvidence effect on confidence.
(D) Confidence in the evidence space, defined by (binned) evidence for left and right
options. Displacement of higher confidence levels towards the high evidence values
is observed in the high evidence frame. High confidence towards lower values is
visualized in the low evidence frame.

8.4.4 Equal variance model

As a reference, we also ran simulations for the model with symmetric vari-
ance. The only difference between EVM and AVM is that the variance values
for high and low evidence distributions were constrained to be equal in EVM;
all the other elements of the model were identical (e.g., L as the decision vari-
able, |L| as confidence). We found this model also generated choices depend-
ing on task frames and simulated confidence presented a U-shape (Figure
8.4A). In EVM confidence was equally affected by chosen and unchosen evi-
dence, in both frames (high frame: βchosen= 0.856, p<0.001, βunchosen=-0.859,
p<0.001; low frame: βchosen= -0.853± 0.004, p<0.001; βunchosen= -0.865± 0.004,
p<0.001) (Figure 8.4B). Consequently, the model did not predict a ΣEvidence
modulation of confidence in either of the frames (high frame: βΣEvidence =
-5.378×10

-17 ≈ 0, p = 0.585, ns; low frame: β ΣEvidence = -3.643×10
-17 ≈ 0, p

= 0.108, ns) (Figure 8.4C). The bidimensional evidence plot did not present
any specific displacement of confidence depending on frames (Figure 8.4D).
These results were obtained using a single symmetrical variance (σhigh =1,
σlow =1), but further simulations for various values of equal variance (σhigh =
σlow) presented similar effects. The EVM model predicts a behaviour in line
with a confidence signal generated by the balance of evidence rule [368, 386].

8.4.5 Heuristic model

Finally, we simulated trials from a model that considers a metacognitive
heuristic in which only evidence supporting the chosen option is used to
generate the confidence signal [368, 388, 386]. In our modelling, the heuristic
model (HM) shares a similar architecture with the EVM at the choice level
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Figure 8.4: Equal Variance Model (EVM) simulations. Frames in which the model
selects high evidence (blue) or low evidence (red) are presented. (A) Simulated
choice and confidence. (B) Linear regressions predicting confidence using chosen
and unchosen evidence as predictors indicated an equal weight of both streams of
evidence. (C) Simulated trials predicted no ΣEvidence effect on confidence. (D)
Confidence in the evidence space, defined by (binned) evidence for left and right
options.

which allows replicating the frame-dependent flip in choice behaviour (Figure
8.5A). However, since in this model confidence is calculated differently,
generated directly from the chosen evidence, HM predicted an inverted U-
shape for confidence in the low frame (Figure 8.5A). This means confidence
in the negative frame was lower when one of the alternatives had much lower
evidence than the other, which occurs on the extremes of the ∆Evidence axis.
In other words, when evidence for the chosen option was very low in the
low evidence frame, this model predicts low confidence. Participants did
not show this pattern, since they presented higher confidence when lower
evidence was selected in the negative frames, as shown in our previous
analysis. Note that in EVM and AVM, confidence is extracted from the
likelihood ratio, i.e., how likely a decision was correct considering evidence
plus statistical information of the belief distributions. The confidence in
HM depends exclusively on the chosen evidence (high frame: βchosen= 1,
p<0.001, βunchosen= -1.926×10-16 ≈ 0, p<0.001; low frame: βchosen= 1, p<0.001;
βunchosen= 1.743×10-17 ≈ 0, p<0.001). Unlike human data, the effect of chosen
evidence on confidence was always positive, disregarding the change in the
frame (Figure 8.5B). In line with these results, we found the simulations
with HM could replicate the modulation of confidence by ΣEvidence, but not
the flip of the effect in the low frame (high frame: βΣEvidence = 0.813, p<0.001;
low frame: βΣEvidence = 0.811, p<0.001) (Figure 8.5C). The bidimensional
evidence plot shows how the heuristic definition is not flexible enough to
account for the changes in confidence when the goal of the task shifts (Figure
8.5D). It could be argued that we are presenting an unfair representation of
the heuristic model, which could be easily adjusted to capture the confidence
effects in the low evidence frames. For example, adapting evidence at the
input so the low evidence cases become relevant in the negative frames
[186]. This is certainly the case, however, implementing this type of change
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means that the main rationale behind the heuristic model would not hold,
i.e., stimulus strength is driving confidence computation.

Figure 8.5: Heuristic Model (HM) simulations. Frames in which the model selects
high evidence (blue) or low evidence (red) are presented. (A) Simulated choice
and confidence. HM fails to simulate a standard U-shape for confidence in the
low evidence frame. (B) Linear regressions predicting confidence using chosen and
unchosen evidence as predictors indicated that only chosen option contributes to
confidence. (C) Simulated trials predicted modulation of confidence by ΣEvidence,
but not the change (flip) of the effect in the low evidence frame. (D) Confidence in
the evidence space, defined by (binned) evidence for left and right options.

8.4.6 Asymmetric variance model fit to human data

In the previous section, we showed that AVM can generate a goal-dependent
evidence bias on confidence as observed in human behaviour. In this model,
the asymmetry of belief variance is crucial to generate this effect. In the
following analysis, we established whether the model fitted to experimental
data is sufficient to generate variance asymmetries that follow the same
patterns predicted by the simulations. To account for the stochasticity of
human responses we included additional parameters in the model (e.g.,
sampling variance), but the core architecture used in the simulations was
maintained for the analysis of all the experiments (see Methods – Model fitting
for details). Additionally, the generation of confidence reports in this version
of the model also incorporated reaction time (RT) information, such that the
fitting process controls for its influence. Model fitting was performed in a
Bayesian framework pooling together all the even-numbered trials across
participants. Samples from the posterior distribution of fitted parameters
were used to generate synthetic choices and confidence (Simulations). Anal-
ysis of the participant’s behaviour (Human) were presented as a reference
(Figure 8.6). Note that the main objective of this step was to replicate the
patterns of results we observed in human participants (e.g., the sign of the
effect of ΣEvidence on confidence), however, we are not making any claim
on the magnitude of the effects in simulations compared with the magnitude
of human regressions parameters.
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Figure 8.6: AVM model fit. Regression analysis predicting confidence for human data and model simulations. Asymmetries in the value of the latent
parameters, belief variance (σbel), were found in the model fitted to participants’ data. (A) Experiment 1: model simulations for like and dislike
frames. Simulations replicate the pattern of results obtained from the regression analysis on participants’ behaviour. Specifically, the model captures the
frame-dependent variation of the ΣValue effect on confidence (left panel). Latent parameters, σhigh and σlow, display asymmetry with the variance

of the goal-relevant alternative (i.e., high value in like frame and low value in dislike frame) relatively higher (right panel, top for like frame, bottom
for dislike frame). (B) Experiment 2: model simulations for most and fewest frames, replicate the behavioural effect of ΣDots on confidence, and its
interaction with the frame (left panel). Belief variance also presents the expected asymmetry, with higher variance for the goal-relevant option (right
panel top for most, bottom for fewest frames). (C) Experiment 3: model simulations for high motion and low motion frames. Simulations replicate
human behaviour in confidence (right panel) and the asymmetry of the latent variables (left panel, top for high motion, bottom for low motion frames).
(D) Experiment 4: model simulations for the auditory experiment in high and low clicks frame (right panel). In this experiment, we did not find a
positive effect of ΣClicks on confidence in the high clicks frame. We reckon this can be due to a slightly different design of the auditory task relative to
the visual experiment, with a short period for the presentation of evidence instead of free exploration of visual alternatives (please see main text for
further discussion). Given these behavioural results, the model simulations show that the asymmetry of the latent parameter for the variance has a
higher magnitude for σlow in both frames. Linear regression models are presented for confidence in participants (human, hierarchical linear regression,
presented in Figure 8.1) and model simulations (pooled linear regression). For human analysis, the dots indicate the participant’s mixed-effects in the
regression. ∆σBel distributions were generated considering 1000 samples of (σhigh - σlow) from posterior distributions of the fitted models. In both

frames and in all the experiments, the totality of ∆σBel samples was found to be over or under 0, depending on the relevant goal of the task (*** does not
indicate frequentist p-values).

8.4.6.1 Experiment 1

The AVM model fitted to the value-based experiment’s data replicated goal-
dependent changes in behaviour. From a logistic model predicting simulated
choices we found that in the like frame the high value item was preferentially
selected, while in the dislike frame the low value item was picked (logistic
function slope, βlike =0.534, βdislike= - 0.92). Splitting the synthetic trials
by confidence levels we found that high confidence choices resulted in
better discrimination between item’s value, which is observed from a steeper
slope of the logistic curve (low confidence: βlike = 0.224, βdislike =-0.427;
high confidence: βlike = 0.735, βdislike = -1.574). From a linear regression
model predicting confidence, we found the simulated trials also displayed
a goal-dependent bias effect (Figure 8.6A, left panel), with a rise in ΣValue
predicting an increase in confidence during like frame, and a decrease of
confidence in the dislike frame (like: βΣValue = 0.088± 0.003, p<0.001; dislike:
βΣValue = -0.277± 0.002, p<0.001) (Figure 8.6A, left panel). Crucially, the
model predicted asymmetry in the latent variables σhigh and σlow (Figure
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8.6A, right panel), with the difference of the belief variances (∆σbel = σhigh -
σlow) indicating that the high value distribution had higher variance in the
like frame (mean σlow = 4.65; mean σhigh = 4.97; mean ∆σbel = 0.32 , p<0.001)
and the low value distribution presented higher variance in the dislike frame
(mean σlow = 3.24; mean σhigh = 2.43; mean ∆σbel = -0.81 , p<0.001). Note
we present in the figure the distribution of ∆σbel which indicates that in each
one of the simulated trials (1000) a goal-dependent ∆σbel asymmetry was
observed.

8.4.6.2 Experiment 2

In the perceptual experiment on dot numerosity, the AVM was also successful
in capturing participant’s behaviour. The model predicted frame-dependent
choice behaviour (logistic function slope, βmost =1.219, βfew = - 1.644), in-
cluding an increase in choice discrimination sensitivity for high confidence
trials (low confidence: βmost = 0.49, βfew =-0.856; high confidence: βmost =
1.829, βfew =-2.766). The simulations for this experiment also captured a
goal-dependent evidence bias on confidence (Figure 8.6B, left panel), with a
boost of confidence when ΣDots was higher in the most frame (most: βΣDots
= 0.124 ± 0.003, p<0.001) and an increase in confidence when ΣDots was
lower in fewest frame (fewest: βΣDots = -0.329 ± 0.003, p<0.001). In this
experiment the latent variables of the AVM, σhigh and σlow, also presented
asymmetries depending on the frame (Figure 8.6B, right panel): in the most
frame the distribution characterising higher evidence presented higher vari-
ance (mean σlow = 4.217; mean σhigh = 4.990; mean ∆σbel = 0.773 , p<0.001),
while in the fewest frame the low evidence distribution was found to have the
higher variance (mean σlow = 4.998; mean σhigh = 3.499; mean ∆σbel = -1.499

, p<0.001). Similarly, to experiment 1, the simulations reported asymmetries
of ∆σbel distributions in every instance.

8.4.6.3 Experiment 3

We again found a similar pattern of results for the simulated trials using
the AVM model fitted to our dot motion experiment. From the logistic
regression analysis, we found that synthetic choices selected high motion
and low motion directions depending on the trial frame (logistic function
slope, βhighMotion = 0.733, βlowMotion = -0.629) and confidence modulated the
precision of the choices (low confidence: βhighMotion = 0.376, βlowMotion = -
0.354; high confidence: βhighMotion = 0.930, βlowMotion = -0.741). We also found
the simulations of confidence displayed the flip of ΣMotionStr depending on
the frame (Figure 8.6C, left panel), which indicated that the model captured
the goal-dependent evidence bias (high motion: βΣMotionStr = 0.067 ± 0.002,
p<0.001; low motion: β ΣMotionStr = -0.113 ± 0.001, p<0.001). The asymmetry
of belief variance was again observed in this experiment (Figure 8.6C, right
panel): the high evidence distribution had a higher variance in the high
motion frame (mean σlow = 1.074; mean σhigh = 1.185; mean ∆σbel = 0.111,
p<0.001) and the low evidence distribution had higher variance in the low
motion frame (mean σlow = 1.946.; mean σhigh = 1.859; mean ∆σbel = -0.0865,
p<0.001).

8.4.6.4 Experiment 4

Finally, we found that the AVM model could capture the behavioural signa-
tures we observed in the sound discrimination experiment. From the logistic
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regression analysis, we found that simulated choices selected high clicks and
low clicks directions depending on the trial frame (logistic function slope,
βhighClicks = 0.693, βlowclicks = -0.755) and confidence modulated the preci-
sion of the choices (low confidence: β highClicks = 0.251, βlowClicks = -0.300;
high confidence: β highClicks = 1.043, βlowClicks = -1.154). The simulations
of confidence captured the effect ΣClicks observed in participants (Figure
8.6D, right panel), with a negative effect in both frames, although of lower
magnitude in the high motion frame (high clicks: βΣClicks = -0.205 ± 0.002,
p<0.001; low clicks: β ΣClicks = -0.236 ± 0.001, p<0.001). The asymmetry of
belief variance was observed in this experiment (Figure 8.6D, right panel),
however, the model predicted a higher value of the low evidence distribution
in both frames, in line with the behavioural findings for the ΣClicks effect on
confidence (high clicks: mean σlow = 4.938; mean σhigh =2.722; mean ∆σbel
= -2.216, p<0.001 ; low clicks: mean σlow = 4.996.; mean σhigh = 2.031; mean
∆σbel = -2.964, p<0.001).

Overall, these results show that AVM can replicate goal-dependent ev-
idence biases on confidence across a spectrum of decision tasks, hinting
that a modulation of the variance of latent variables could provide a uni-
fying explanation of this phenomenon in human perception and decision
making. We present the graphical representations of the models for the 4

models in Figure 8.7. Further analyses showed that simulated confidence
also overweighted chosen over and unchosen evidence. Additionally, a direct
comparison with the alternative model that could capture evidence biases in
confidence, HM, favoured the AVM (Figure 8.8).

8.4.7 Attention as the cognitive mechanism

Our AVM model is agnostic of the cognitive process that drives the asym-
metry in variance and triggers the effect on confidence. Here we test the
hypothesis that selective attention might underpin this process generating
an imbalance in information processing. In previous work [186], we reported
that visual attention is preferentially allocated towards the alternatives that
have higher relevance for the goal of the task. This was found in the original
analysis of the data reported here in experiments 1 and 2, e.g., in value-based
and perceptual tasks. Furthermore, in that same work, we reported that
gaze-weighted accumulator models [35] could capture the overall evidence
effect estimating confidence from a balance of evidence [124]. Though, this
behaviour was captured only if the attentional information was used by the
model. These results, in line with our current SDT-inspired model, hint that
goal-directed asymmetries in the integration of evidence for the decision are
key for confidence.

In this section, we further investigate this hypothesis, considering the
result from our experiment 3: in the dot motion experiment with a single
aperture, the goal-relevant evidence bias in confidence was present even
when the spatial displacement of attention was not required. This finding
hints at a more general attentional process. Pupil variation has been em-
ployed extendedly in neuroscience and psychology as a method to study
the unfolding of cognitive processes over time [391, 374]. The pupils of
the eye are constricted in response to light and dilated when exposed to
darkness, however, these variations can also be due to autonomic arousal.
The dilation of pupils is controlled by the noradrenergic locus coeruleus (LC),
a small brainstem nucleus with an important role in task-related processes
[392]. Phasic LC activation has been proposed to facilitate behaviours that
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Figure 8.7: Bayesian graphical model indicating the formalization of the asymmetric
variance model (AVM) for model fitting in the experiments. See details in Methods –
Model fitting.

help to optimize task performance, alerting, orienting and other higher-level
processes [374]. Pupillometry in decision-making has revealed increases in
pupil size in response to effort, low confidence choices, and higher levels of
uncertainty and surprise [375, 376, 393, 377, 378, 394].

In our fourth experiment (n = 32), participants completed an auditory
binary choice task in two frames, following a similar design to the ones
used in experiments 1-3. In this perceptual experiment, participants were
presented with auditory click sequences, separately in the left and right-side
speakers, while pupil size variation was tracked [376]. Left and right clicks
were presented simultaneously. In the High Clicks frame, participants were
instructed to select the side where more clicks were presented; in the Low
Clicks frame, the alternative with the lower number of clicks was to be chosen
(Figure 8.1G).

In a hierarchical regression (Figure 8.1H), we analysed the effect of evi-
dence on confidence reports in the audio task. We found a negative effect
of ΣClicks on confidence in the High Clicks (βΣClicks = -0.06 ± 0.03, p<0.05)
and Low Clicks frames (βΣClicks = -0.16 ± 0.02, p<0.001). Although the mag-
nitude of the effect in the High Clicks frame was closer to zero, it was still
a significant negative effect. This lack of a positive effect in High Clicks, in
contrast to the other experiments, may be due to some particularity in the
processing of auditory stimuli, given that experiments 1-3 were performed
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Figure 8.8: Model Comparison asymmetric variance model (AVM) and heuristic
model (HM). (A) Value-based experiment; (B) perceptual experiment, dots numeros-
ity; (C) perceptual experiment, dot motion; and (D) perceptual experiment, sound dis-
crimination. AVM was most parsimonious in all the experiments and frames. Model
comparison used the Widely-applicable Information Criterion (WAIC; [389, 390]).

on visual information. We performed a separate hierarchical regression
analysis using chosen and unchosen evidence as predictors of confidence.
In this case, chosen evidence did have a positive effect on confidence in
the High Clicks frame, while a negative in the Low Clicks condition (High
Clicks frame: βChosenClicks = 0.18±0.02, t = 6.75, p<0.001; Low Clicks frame:
βChosenClicks = -0.22±0.03, t = 6.58, p<0.001 ). Despite the discrepancy in the
overall evidence effect relative to previous experiments, we still could see a
significant difference in the ΣEvidence effect on confidence, depending on
frames (t(31)=5.364, p<0.001). These findings reassure us that the frame still
has an impact on the processing of evidence in the auditory dimension. For
completeness, in this regression analysis, we also found that an increase in
the clicks difference (|∆Clicks|, controlling for the difficulty of the trials)
had a positive effect on confidence in both frames (High Clicks: β|∆Clicks|
= 0.26±0.02, p<0.001; Low Clicks: β|∆Clicks| = 0.18±0.02, p<0.001), while
increases in reaction time (RT) reduced the level of confidence (High Clicks:
βRT = -0.32±0.03, p<0.001; Low Clicks:βRT = -0.39±0.03, p<0.001).

After these behavioural checks, we analysed the variation of relative pupil
traces in the task (please check Methods for the details). We found that after
the presentation of the sound stimuli, pupil size increased reaching a peak
around choice time, following a similar pattern of results in other decision
experiments [376, 377]. Overall, trials reported with low confidence had
on average higher pupil size at decision time (average relative pupil area,
high confidence = 0.79 ± 0.07; low confidence = 0.88 ± 0.08, t(31) = -3.08,
p<0.01). Trials of higher difficulty (i.e., lower differences in the number of
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clicks between the options) also presented higher pupil sizes relative to easier
trials at decision time (average relative pupil area, high |∆Clicks|= 0.81 ±
0.07; low |∆Clicks|= 0.86 ± 0.07, t(31) = -2.34, p<0.05). Correct trials also
had on average lower pupil size during the decision period compared with
error trials (average relative pupil area, correct = 0.82 ± 0.07; incorrect = 0.91

± 0.09, t(31) = -3.09, p<0.01).
Given that we found difficulty and confidence effects at decision time,

we centred our pupil analysis on this period, separately for each frame.
Additionally, pre-decision time is important since it should characterise the
deliberation stage, where we expect to find asymmetries in the evidence
integration. We focused our analysis on the effect of chosen evidence on
pupil variation since the results above highlighted the relevance of this factor
on confidence. We separated trials using a median split of the number of
clicks in the chosen option (Figure 8.9B). We found that when participants’
goal was to choose the higher evidence alternative (High Clicks frame), their
pupil area was smaller in trials with a higher number of clicks. Conversely,
in the Low Clicks frame, their pupil size was reduced in trials with a lower
number of clicks. In other words, we found that the frame affected the way
the pupil responded to the selected evidence. To corroborate this finding, we
fitted a linear regression model predicting relative pupil size at each time
point at the individual participant level. We included chosen and unchosen
evidence as predictors, in addition to reaction time and pupil position in
the X-Y coordinates [377]. We found that during the pre-decision period,
chosen evidence had a negative effect on pupil size in the High Clicks frame,
while this effect was positive in the Low Clicks frame (Figure 8.9C). The
participants’ regression coefficient was significantly different between frames
around 1s before the choice (average regression coefficient for the time points
with a significant difference between frames: βHighClicks = -0.052± 0.005,
βLowClicks = 0.033± 0.009, ∆β FDR-corrected permutation test p<0.01, cluster
size = 6, indicated with black line in Figure 8.9C).

This confirms that in the positive frame, an increase in chosen evidence
reduces the pupil size, while in the negative frame, the increase in chosen
evidence boosts pupil size. We repeated this analysis using ΣEvidence
instead of chosen evidence, however, we could not capture a significant
difference between the frames.

This result is in line with our AVM model, where goals affect internal
beliefs and the assessment of the evidence. Previous studies have shown that
increases in pupil size are related to encountering surprising events [393, 394,
395]. In these cognitive experiments, surprise has been operationalized as
the difference between the agent’s expectations and the actual observations.
In other words, the more certain one had been about an expectation that
turned out to be wrong, the higher the surprise. In our experiment, we can
consider that the different goals change the expectations that participants
have on the objective of their choices. For example, in the positive frame,
participants expect to find a High Number of clicks, this will satisfy the
objective of the search. Therefore, when they indeed choose an option with
a relatively high number of clicks (compared to all the possible trials and
clicks possibilities) they are less surprised than when picking the option with
a low number of clicks (even when the answer could have been correct). The
frame reverses this expectation for the negative frame, which is reflected
in the flip in pupil behaviour. Overall, we show that an increase in pupil
size reflects the trials where the frame expectations were unmet, given that
participants chose alternatives with evidence that was relatively further away
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from the goal of the task. The frames cue attentional states in participants
that are adequate to gather the relevant information for the task, changing
participants’ expectations, which reflects the goal-dependent change of priors
in our model.

Figure 8.9: Pupil variations depend on the task goal. A) Auditory decision ex-
perimental design. In each trial, sequences of click sounds were presented to left
and right-side speakers and participants were instructed to select the option with a
higher or lower number of clicks, depending on the frame. Response time was not
constrained. They reported their confidence in the decision at the end of each trial.
Pupillometry was tracked throughout the whole process. B) Pupil traces by frame.
Trials were separated using the median split of the number of clicks in the chosen
alternative: the trials with more clicks selected (Top) and less clicks selected (Bottom).
For the pre-decision time, while in the High Clicks frame, participants showed lower
pupil size in the trials with a higher number of clicks, in the Low Clicks frame the
participants had a lower pupil size when they chose the most appropriate evidence
for that trial, the option with lower clicks. Lines represent average pupil trace across
all participants’ trials. The shaded area indicates standard error. C) We corroborated
the pupil results with a linear regression analysis predicting relative pupil area at
each time point. The effect of chosen clicks on the pupil is presented in the figure.
During the pre-decision time, a significant difference in the effect of chosen clicks was
found between High and Low Clicks frames. Lines represent the average effect of the
chosen evidence parameter estimated at a participant level. The shaded area indicates
the standard error, estimated from the participant’s β group sample. The black line
indicates a significant difference between frames, estimated from an FDR-corrected
permutation test.
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8.5 discussion

Confidence in humans has been traditionally characterised as capturing the
accuracy of people’s choices. However, multiple reports have found that
the actual confidence signal displays various patterns that deviate from this
straightforward interpretation. The sources of variability in confidence have
been attributed to random noise or systematic influences, which can impact
the entire decision process or just the confidence computation [396]. In this
study, we focus on the phenomenon named “positive evidence bias”, or the
fact that confidence is affected mainly by the amount of evidence in favour
of a choice, unlike objective choice [63, 367, 368, 388]. We show in a series of
experiments that this evidence bias is a sophisticated effect that depends not
only on the perceptual features of the alternatives but could be driven by an
adaptation to integrate evidence that is useful for the internal goals of the
observer.

One explanation for this apparently suboptimal strategy in confidence
is that in discrimination tasks, where the choice requires comparing two
or more options, the decision system operates in a detection-like fashion,
i.e., identifying the “physical” presence of the stimulus [368, 372, 373]. The
idea behind this is that in natural environments the number of stimulus
alternatives is not always certain, meaning that the observer needs to compare
against the possibility that the stimulus is absent. This causes a bias in favour
of the options with more evidence, which has been captured by heuristic
models that discard the information of the unchosen alternatives to compute
confidence. However, in most of these studies, the goal of the tasks is to
choose the alternatives with higher strength of evidence, e.g., more dots,
motion, or light intensity. Thanks to the use of decisions in multiple frames,
where participants must choose the option with the most or least evidence, we
can disentangle evidence from choice. Our results show that the confidence
“bias” is driven by goals, which is particularly intriguing in the case of the
“negative” frames, where the absence of evidence in the chosen alternative
boosted confidence. In this way, we hint that the evidence bias in confidence
is more general, driven by the internal objectives that the agents want to
fulfil.

To our knowledge, this work is the first one in expanding the evidence
biases in confidence, commonly studied in perceptual decisions, to value-
based choices. In value decision it has been suggested the evidence used to
make choices is extracted from representations of higher-level concepts, not
necessarily relying on low-level sensory features as the perceptual decision
does [397, 51, 383, 382]. This further supports the view that the impact of
evidence in confidence is not defined purely on the concrete perceptual
features or visibility of the stimuli. The observation of similar patterns in
the generation of confidence across different decision domains demonstrates
the robustness of these effects and it may also hint at general mechanisms
underlying the metacognitive assessments, if not to decisions as a whole
[398, 399, 400] .

In our computational framework, we proposed a Bayesian graphical
model grounded on SDT to characterise the confidence behaviour. These
types of models, sometimes referred to as an ideal observer [381], consider
the agent knows the underlying statistics of the experiment, with internal
distributions that characterise expected target signal and noise. SDT models
commonly assume equal variance for the target and non-target (Gaussian)
distributions [368, 127, 3]. We characterised the target/ non-target distribu-
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tions as high and low evidence distributions to capture the binary choices.
This means that to make a choice the observer estimates the probability
that one of the sampled options “belongs” to the high evidence distribu-
tion and the other to the low evidence distribution or vice versa. The model
used the magnitude of these probabilities to estimate a confidence signal.
We found that including asymmetric variance of the belief distributions in
the model, specifically higher variance for the goal-relevant distribution,
allowed the prediction of the goal-relevant behaviour in confidence, includ-
ing the effect of ΣEvidence and the predominance of chosen evidence. A
higher variability of the target beliefs distributions has been observed in
ecological decisions [387, 381]. For example, it is expected that the target
options contain the desired signal plus noise while the non-target alternative
contains only noise. This intuition is clear in standard perceptual experiments
where “signal” can be properly quantified (e.g., luminosity, contrast, number
of dots) over background noise, but it surprising something similar could
be observed in higher-level value decisions and the negative frames of the
tasks. That is why our interpretation is that goals change the prior beliefs,
inserting asymmetries in the assessment of the evidence. In this case, the
increase in the belief variance could be understood as the agent being more
lenient in categorizing the evidence in the goal-relevant category. The results
of our pupillometry experiment are in line with this interpretation, showing
that frame-dependent modulations of the autonomic surprise response hint
at a change in participants’ expectations towards the relevant evidence for
the goal. It is not surprising that humans adapt their internal representa-
tions to become more receptive to the evidence relevant to task demands
[401, 275, 99, 230]. The presence of asymmetries in the beliefs, which eventu-
ally influence how information is integrated into the decision variable, seems
crucial in the determination of confidence.

As previously reported, confidence generated from models akin to a
balance of evidence with standard assumptions (i.e., equal belief variance
or symmetric integration evidence) cannot capture the biases observed in
human confidence, since they represent decision accuracy only [63, 368, 386,
186]. To characterise these biases in confidence reports, models in which
agents implement heuristic strategies that assume blindness to disconfirming
evidence have been proposed [368, 372, 373]. These models can predict
evidence bias towards chosen evidence and, as we show in our simulations,
the modulation of confidence by ΣEvidence. However, we found that the
heuristic model, in its native specification, cannot account for confidence
behaviour with changes in task frame, fundamentally given that confidence
is directly calculated from the strength of evidence. Since the heuristic
model was proposed based on observations from perceptual experiments
with a single task goal, the connection of evidence and confidence, without
any intermediate stage, did not generate any issues. However, adding
“opposing” goals, as in our case, hinders the model’s capacity to account for
the behaviour, unless it is assumed that evidence itself can vary depending on
the context (e.g., agents integrate the lack of dots in the fewest frame decision).
It is certainly possible to adapt this heuristic model to incorporate evidence in
the negative frames, however, this would be outside the central assumption
of the model: the decision system is confusing a discrimination task with
a detection task which in turn generates the bias. The other important
assumption of the heuristic model is that unchosen evidence is ignored by
the confidence computation. Our analysis of value-based and perceptual
experiments showed that although confidence indeed overweighted the
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evidence of the chosen option, the evidence of the unchosen alternative was
not fully discarded. A novel model allows a flexible weighting of unchosen
evidence still giving privilege to the chosen evidence [402]. However, must
be seen if this new version can explain the experimental evidence produced
by shifting in goals.

Our previous findings [186] have shown that asymmetries in evidence
accumulation generated by visual attention are key to generating goal-
dependent biases in confidence. Along the same lines, other studies have
proposed that visual attention could be affecting the evidence accumula-
tion reliability of the visually fixated options in sequential sampling models
[349, 350]. Therefore, we propose that attention plays a critical role in the
presence of evidence biases in confidence, given that the sampling or as-
sessment of evidence is already oriented towards gathering information for
options and features that serve the goal. This attentional focus does not
rely entirely on a (visual) spatial displacement of attention, as shown by our
dot-motion and auditory tasks. We consider that the increased expectation of
goal-relevant evidence indeed could be characterised as an attentional effect,
that influences how decision evidence is integrated to make a choice. This
strategy makes sense from the perspective of naturalistic decisions where
limited cognitive resources and time are available to assess the best option,
usually among a multitude of alternatives [186]. Note that according to
this view, the evidence bias is born from the decision process itself [396],
which is in line with recent reports that confidence is not affected by the
noisy encoding of the options [125] and that positive evidence bias does not
depend on post-decisional processing [371].

Our pupil study further supports that goals shape internal beliefs and
attentional states. We show that lower pupil sizes appeared in the trials
where participants chose the options containing evidence aligned with the
goal of the task. Previous reports on pupil dilation have linked it to surprise
[393, 394, 395], the violation of prior beliefs and conflictual decisions [378,
403]. Considering that participants set their expectations to find the evidence
relevant for the frame, these results show that congruent choices elicited less
surprise, measured by the pupil size in the time leading to the response.
Previous studies have shown differences in participants’ pupil responses
at the pre-decision time (e.g., differences between error and correct trials)
[169, 376, 377, 378], potentially a reflection of the deliberation process [404].
The relationship between attention and pupil variations has been widely
explored [288, 405, 374]. Pupil measures have also been connected to the
operation of the noradrenergic system, with implications on how agents
engage in exploration or exploitation behaviours [406, 392]. These results
confirm the effect of goals in the way evidence is integrated into the decision,
in line with the findings on attentional gain, not exclusively linked to visibility
or spatial location of the decision options. However, it must be noted that
with the current experimental design (i.e., displaying both audio options
simultaneously) it is not possible to probe some of the predictions of our
model, such as the specific variance increment linked to the goal-relevant
alternative. Future studies that disentangle the processing of the alternatives
could be useful to explore how these changes in specific priors operate
during the deliberation. For example, presenting the alternatives sequentially
would allow exploring the reaction to individual options, tracking whether
the “surprise” measured from pupil dilation is lower for the goal-relevant
alternatives, indicating facilitated processing of this specific information.
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We found that all the experiments displayed a similar signature in confi-
dence, with the effect ΣEvidence modulated by the frame. While ΣEvidence
had a positive influence on confidence in the high evidence frame in all
the visual experiments, this effect was negative in the auditory task. We
think this variation emerges from the approach we used for the presentation
of the evidence: as in previous work [376] participants could listen to the
auditory stimuli for a limited time, unlike all our visual tasks where the
available time for sampling the alternatives was not constrained. This means
that participants may have not adjusted their sampling time for trials with
more clicks and the tight presentation of the sequential sound cues may have
complicated their identification as single clicks. All these factors could have
added extra difficulty to these trials, which translated into a negative bias on
the perceived confidence for decisions with an overall high number of clicks.
Previous studies have shown that confidence modulation can be affected
by time limitations on decisions [68]. For example, while faster response
times are associated with higher confidence in free response tasks, there is
a monotonically increasing relationship between confidence and response
time when the decision time is manipulated [407]. Despite this confound,
the goal-relevant evidence bias was robust enough so we could still find a
modulation of ΣEvidence by frame, with the low evidence option having a
higher influence on confidence in the low clicks frame.

One of the implications of the evidence overweighting of chosen alterna-
tives is the possible decoupling between task performance and metacognitive
sensitivity [367, 368, 372]. For example, it is possible to have two decisions
with similar difficulty (e.g., the same difference in dot numbers between two
patches) but one of them displaying higher overall evidence (e.g., a higher
number of dots in total). In this case, participants report higher confidence
in the higher evidence case even when the performance at the decision level
may be identical. This means variation of confidence is not aligned with
objective changes in decision accuracy, making confidence less informative
on the actual performance, i.e., there is a drop in metacognitive sensitivity
[368]. In our experiments, we studied confidence reports, but we did not
account for further metacognitive measures. Standard studies to measure
metacognition maintain a constant performance (d’) to avoid the confound-
ing influence of difficulty on confidence. In our design, we used multiple
levels of difficulty to cover a wide evidence space. It has been reported
[381] that metacognitive sensitivity (meta-d’) could increase in observers
that assume unequal bidimensional variance (e.g., σ2

Target / σ2

Nontarget > 1),
however future work needs to probe in more detail the impact in metacogni-
tion, especially in scenarios with shifting goals. Our frame design could be
advantageous for this type of study, since it does not require changing the
presentation of evidence, allowing to keep identical choices and performance,
even when shifting the goal of the task.

In conclusion, our work expands the understanding of the origin of
the confidence signal, across value and perceptual domains. Thanks to
the manipulation of goals in the tasks we have shown that confidence is
influenced mainly by the evidence that is most relevant or useful for the
behavioural objective of the participants. This is not necessarily dependent
on the visibility or perceptual features of the options, since choices for
low or absent evidence can also display a boost in confidence. Even more,
we show that decisions involving higher-level constructs such as value-
based choices also present a goal-relevant bias on confidence. We proposed
a simple Bayesian model that includes goal-relevant asymmetries of the



186 chapter 8 : decision goals and their impact in confidence

internal beliefs, which captures the idiosyncratic patterns observed in human
confidence reports. Our final pupillometry experiment adds further evidence
to these asymmetries in the assessment of information by showing that
internal expectations could be affected by behavioural goals. In real-life
environments there are no choices made in isolation, they are always oriented
to fulfil specific behavioural demands. Our results suggest that in this same
vein, confidence is more than just tracking the accuracy of the single choice,
it could check to which degree the choice is satisfying the demands imposed
by the goal. This means that how we integrate information is already tinged
by our inner motivations, akin to a confirmation bias occurring before every
choice, i.e., we assess information from the angle that helps us to confirm the
success of our goal. Given that this evidence effect appears as a consequence
of adaptive adjustments to complex goal demands, it may be questionable
to refer to it as a “bias”. What seems useless in our simple and artificial
experimental scenarios, could be implemented to obtain (from the agent’s
perspective) an advantageous position in real-world decisions.
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G E N E R A L D I S C U S S I O N

9.1 summary

In this work, I have shown how goals and contextual information impact the
decision-making process of healthy humans. By integrating the results of
multiple experiments across value-based and perceptual modalities, I have
described how cognitive processing, attention allocation, brain representa-
tions, and ultimately choices and metacognitive reports flexibly adapt to
the demands of the task. In this section, I present the results of my studies
from the perspective of the wider literature and discuss the implications and
directions that this line of research may offer in the future.

9.2 decisions and the goal perspective

A central question in value-based decision-making is how the brain com-
putes and compares the value of alternatives. To answer this, we need to
understand what the relevant representations are and how the brain encodes
them. Neuroscience research has uncovered fundamental aspects of this
value variable, pushing forward the idea that the brain constructs a common
currency in which options of different natures can be mapped onto a single
scale. For example, the value of an apple can be compared to that of the
Mona Lisa [408]. The standard view of value in neuroeconomics has been
associated with the concept of reward, the pleasure that a specific alternative
can deliver to an agent. Dissimilar options can be expressed in a common
hedonic scale in a process that transforms the item’s multiple features and
joins them into a single value measure. The brain seems to construct the
value of an object from the combination of many of its fundamental features.
For example, the preference value of food items can be traced back to their
nutritious components [409], and the aesthetic preference of paintings and
photographs can be extracted from visual features such as contrast, satura-
tion, or concreteness [410]. While information about features has been found
at various levels in the brain (e.g., the occipital cortex representing low-level
visual features or nutritious features of food in the lateral OFC), specific
brain representations for value have been found in prefrontal cortex areas
such as the OFC and vmPFC [66, 411, 409, 309]. Indeed, representations
of the alternatives involved in value-based decisions have been found in
frontal regions, with stronger patterns for the most desirable option [49]. The
construction of value can reflect disorders affecting the decision process, e.g.,
food choices in patients with eating disorders. Food features such as taste,
and health can be decoded from the prefrontal regions such as OFC [412].
While in healthy populations food valuation is mainly influenced by taste,
health-related features are mostly correlated with subjective choices in eating
disorders patients. Even more, a characteristic of the maladaptive decisions
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in these patients is an aversion towards fatty and caloric food. This result
is a good example that additional factors besides pleasure and reward are
relevant for choices based on subjective preferences.

The findings presented in this work add an extra layer to our under-
standing of human decisions, pointing out that value also incorporates a
dimension indicating how coherent or useful the options are to fulfil the
current goals of the agent [84, 275]. This means that there is an online process
that is deployed every time a decision is made to adjust the representation,
silencing irrelevant and amplifying relevant information. This involves a
process of dimensionality reduction to simplify the representations and re-
duce computational demands on the brain, facilitating the separation of core
aspects useful for generalization to other scenarios [401]. The research on
cognitive control has historically focused on how task demands impact the
processing of information, however with a focus on perceptual decisions
[275]. My results across the value-based and perceptual domains (for ex-
ample in Chapter 3) support the idea that common mechanisms operate to
favour the selection of relevant information as a domain general feature of
the decision process.

Throughout my thesis, I researched numerous ways in which attention
influences information selection in order to create efficient and useful rep-
resentations that allow a decision to be made with the goal in mind. The
interaction of value and attention has been a fruitful line of research showing
that in simple choices, people tend to look at the most valuable items in the
time leading to the decision [33, 34, 179]. In Chapter 3, I worked on that
knowledge to show that a frame modification, even when apparently trivial,
displaces attention so that the agent spends more time on the valuation of
alternatives that are relevant to the task demand, and not purely focusing
on the item with higher hedonic value. This finding is in line with other
studies that have demonstrated that information sampling is affected by this
type of contextual manipulation [180, 98]. The study presented in Chapter
6, on confirmation bias and attention, also reflects the impact of contextual
changes. However, in this study, context change was not a product of an
external manipulation (i.e., change in like/dislike cue) but an evolution of
participants’ internal state as a consequence of their earlier choices. Confir-
mation bias was manifested in the exploration of alternatives, favouring the
sampling of previously selected options. Indeed, the fact that the bias varies
as a function of participants’ confidence in their first choice supports that
internal states (context) drive the allocation of attention and the bias during
the confirmation decision. This strategy may be advantageous in naturalistic
scenarios where we must be sure that the selected option is consistently
better, and innumerable alternative options cannot be fully explored, making
it relevant to assess the selection already committed [342]. Attention is also
known to play a fundamental role in learning, tracking the reliability of the
features in the prediction of the desired outcomes [188]. In the study pre-
sented in Chapter 4, I showed how consistent reward guides the extraction
of the features associated with it, helping the construction of abstractions
that can be used to facilitate learning. I showed that activity in the sensory
cortices of the brain was modulated by learning, potentially mediated by at-
tention informed by abstractions. It is well known that attention strengthens
brain representation and processing of the attended stimuli, e.g., reflected
in controlling the adaptive gain of neuronal populations [392, 288] or hemo-
dynamic activity in the brain [413]. The findings in Chapter 5 show how
the attention to auditory or visual evidence reorganise representations in
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both sensory cortices, in this case showing higher similarity (more consistent)
patterns in the area of the brain relevant for the processing of the specific
stream of information (i.e., higher similarity in visual cortex patterns when
visual information is relevant for choice).

While attention is important to select information, especially when per-
ceptual evidence needs to be identified, the construction of value memory
is possibly the main source of information. It has been suggested that in
a similar way to the sampling of visual evidence, memories are sampled
to construct the value of options [51], a process that could rely on some
type of internal attention [295, 276]. The hippocampus is a fundamental
area involved with memory and has recently been related to the circuits
operating during the value-decision process [52, 293, 53, 294]. My findings
in Chapter 4 support the involvement of the hippocampus during value
learning representing relevant task features, especially in the case that par-
ticipants utilize the acquired abstractions. Other reports have found that
brain representations, in the hippocampus but also other higher-order areas
such as OFC, could be organised by the context and behavioural demands
[86, 95, 98, 99]. In Chapter 5, I further highlighted that the hippocampus
and OFC patterns seem to be modulated by context. Options that elicit
frame-relevant memories seem to generate more stable hippocampal repre-
sentations, possibly an indication of attentional influence over the internal
sampling of information for the valuation process. In Chapter 4, I showed
that vmPFC seems to influence the activity of the visual cortex in a top-down
manner to organize the representation of goal-relevant features. Overall,
the shift of brain representations by the influence of goals could reflect the
internal sampling process of relevant information.

Recent work has shown that hierarchically structured models can cap-
ture the learning of various rules and abstractions, i.e., organize learned
associations according to contexts [414, 415]. In Chapter 4 I showed that
reinforcement learning (RL) based on goal-relevant features as states cap-
tured participant’s behaviour across learning. This resembles the proposal
of hierarchical reinforcement learning [414] where sensory events (e.g., vi-
sual cues) are clustered into single latent rule/task sets, driven by common
behavioural goals (actions). For example, according to this type of model a
train station in Varanasi in India and the underground in Russell Square in
London, despite their evident sensory differences, could be represented as
similar latent contexts sets since the actions associated are similar, i.e., wait
for the train and board when the doors open. A similar principle of context
organisation seems to extend to motor learning [416], e.g., a novice cook
may learn to chop a potato which creates a latent context, and the same set
of skills can be employed to also chop tomatoes, yams, onions, and cheese.
Overall, learned latent contexts can be used to rapidly respond to known
contexts or to estimate responses in novel scenarios, a fundamental advan-
tage of structuring information this way in the brain. Learning the latent
context was part of the idea behind the study on abstractions in Chapter
4 (learning the task rules) but further studies analysing more variable and
complex contexts are needed that deeply probe the adaptation process.

These findings of goal modulation of the decision process could be also
interpreted as reflecting changes in agents’ expectations, e.g., hoping to find
the item with a higher or lower value. These goal expectations are reflected in
asymmetries in the way attention is deployed and how evidence is integrated
(i.e., the agent is more "receptive" to goal-coherent evidence), as described
in Chapter 3. In Chapter 6, the internal expectations of the agents after
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having chosen an option modified future assessment of evidence, which was
translated into confirmation bias.

In Chapters 7 and 8 I further presented how goals influence the post-
decision stage, during the evaluation of confidence. Confidence and metacog-
nition play a fundamental role in the monitoring, and assessment of choices
and changes of mind [66, 57, 127, 234]. In Chapter 7, I showed that against
standard models, confidence captured more than the direct accuracy of a
choice or difficulty of the tasks, but also how close the alternatives are to the
objective of the decision (i.e., I showed that overall evidence of the presented
options displayed a goal-dependent effect on confidence). In Chapter 8, I
expanded this finding, indicating that the so-called positive evidence bias in
confidence depends on the agent’s goals and not merely on the perceptual
features of the options. This effect means that goal-relevant information tends
to be overweighted by confidence, and I show through complementary ex-
periments and computational modelling that the change in goal expectations
from the beginning of the decision process (i.e., changes in decision priors)
could drive this phenomenon. It may be further suggested that evidence
bias on confidence is akin to an “instantaneous” confirmation bias: setting
a goal favours the integration of evidence that aligns with the participant’s
goals. My results do not support the perspective of confidence ignoring part
of the choice information to construct confidence in a post-decision stage
[396, 371], but presents confidence being fed by evidence that is biased quite
early on the pre-decision stage. Overlapping signals encoding value and con-
fidence have been found in various subregions of the prefrontal and cingulate
cortices, including vmPFC [56, 66]. This commonality could be associated
with a deeper algorithmic role of confidence in adaptive behaviour and the
control of internal representations. My research in this thesis and other work
from my research group suggest that confidence, usefulness, reliability, or
value might be partially overlapping aspects of the same algorithm dedicated
to implementing goals and deploying actions that are effective in specific
contexts [99, 84].

Monitoring the quality of the representations for each goal is one of the
aspects of confidence. Another important role of this signal is to be capable
of changing between goals when one of them stops being appropriate. I
did not cover this aspect in this thesis, however, it is an important avenue
for future research. Confidence could also operate as a way to prioritize
the selection between multiple tasks [417, 418]. An insightful experiment
on this topic was recently presented by [419]: here monkeys made choices
in a perceptual task that considered two rules or goals. These rules were
hidden from the animals throughout the experiment and were continuously
shifting. The sensory evidence used to make the decisions was also noisy
and monkeys received positive or negative feedback after their choices.
Therefore, monkeys’ errors had two possible origins: they could be mistaken
because their selected rule was incorrect or because their sensory evidence
was confusing. This work showed that monkeys (as humans) relied on
their confidence to attribute the mistake to themselves or a hidden goal
switch, with confidence controlling the accumulation of evidence in favour
of a behaviour switch to the alternative strategy. Areas in the dorsomedial
prefrontal cortex were suggested as accumulating this switch evidence. This
is only one of the approaches to tackle the problem of task shift, an area
of research of great interest not only for neuroscience but also for artificial
intelligence [8] and psychiatry (please see below for clinical examples).
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My findings are important to understand biases in human decisions, from
the perspective of psychology and behavioural economics [420, 101]. For
example, in the framing bias, the experimenter assumes that decisions can
be made in a rational and balanced way, not affected by the way that the
information is presented. What I found across these multiple studies was
that frames actually change how the brain samples, represent and assign
confidence in the alternatives. This means that, for example, the mental
representation of a cat when we think of the best pet for our children may
not be identical to perhaps the same cat when we think of a companion for
our deadliest enemy. My studies attempted to build a platform to further
explore the mechanisms behind this possibility.

9.3 contexts and goals

Goals and context are two concepts intimately related and sometimes used
interchangeably. In general lines, context refers to specific configurations
of the (internal or external) environment that influence an agent’s actions.
For example, the context of cooking may involve internal (e.g., hunger) and
external (e.g., being in a kitchen) states, with specific actions and results
(e.g., mixing ingredients, getting the dough, turning on the oven, baking the
pizza). Goals are the final objective of the agent’s effort, requiring some level
of intentionality from their side (e.g., to eat freshly baked pizza). However,
the interplay between context and goals is quite fluid. If the agent decides to
pursue a different goal the context immediately changes, even if the external
environment is identical (e.g., while you are cooking, suddenly a robber
breaks into the kitchen) [99]. It is still an open question what the specific
differences between these two categories are, or if this separation of context
and goals maps onto different psychological constructs at all [84].

In this thesis, contexts were defined by simple changes in frame explicitly
presented as cues and also through implicit changes, such as the variation of
the rules to select Pacman characters in a learning task (Chapter 4). In both
cases, contexts influenced the states in which agents made choices and the
deployment of the strategies and actions. Modification of an agent’s internal
state and choice history can also be considered as changes in context, as
discussed in Chapter 6, where confirming a previous decision impacted the
way people sampled and accumulated evidence in future instances. Context
has been extensively studied in Pavlovian conditioning where it plays a
key role in learning [421]. In these tasks, context usually is operationalized
as the specific experimental chambers or the presentation of specific cues.
Multiple functions for context have been proposed such as summation (con-
text enhances the strength of conditioned responses, adding associate value
to stimulus) or occasion setting (context-distinctive features gate specific
associations between cues and unconditioned stimuli, US, i.e., rewards or
punishments). Early in training, context, cues and US may be processed
as separate elements but later in training, these three elements tend to be
integrated and represented jointly [421].

Context has also been important in the study of memory and the construc-
tion of schemas. [95] have proposed 3 pillars of context research: context is
1) stable in time, 2) associatively complex and evolving, and 3) behaviourally
relevant. These principles mainly apply to the learning process, such as
the study presented in Chapter 4. In this experiment, participants after
experiencing the same context (decision rule) steadily during some trials
could generate a specific set of representations that efficiently evolved to
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satisfy the behavioural demands. Longer studies tracking the learning in
more complex scenarios could be informative of the gradual evolution of the
contexts, with a focus on the factors driving the construction of contexts. In
line with Stark proposal and others [414], my experiments hint at a central
role of the behavioural demands on brain processing, which could transfer
to context learning.

The perspective of context as described above is much related to cognitive
maps for spatial and non-spatial environments, which relies on the multiple
functions supported by hippocampal neurons [88, 89]. In this model, the
context determines specific relationships between various elements in the
task-relevant spaces. A recent study has proposed that mesolimbic dopamin-
ergic firing could also be a mechanism that reflects causal relationships
between cues and relevant events in the environments, such as rewards and
punishments [422]. In this model, dopamine is not just tracking reward pre-
diction error, as standardly described [142, 143, 133], but it is accounting for
causal contingencies of reward in a "retrospective" fashion. In the standard
temporal difference reinforcement learning (TDRL) interpretation, dopamine
firing encodes cues’ prospective predictions of reward and updates of these
expectations occur if outcomes deviate from the expectations. In this new
model, each reward or relevant event is primarily identified as meaningful
causal targets (MCTs), which triggers a search for potential preliminary cues
that could be “causing” the reward, i.e., estimate the contingency between
cues and reward. In this way, dopaminergic firing indicates that cues with
enough “causal power” become MCTs themselves. Eventually, a reward may
have many causal targets that predict its appearance forming a causal cogni-
tive map between cues and reward. It is possible, that for different rewards
each one of them will generate alternative mappings with relationships con-
trolled by DA activity (e.g., a causal map to cook a pizza, a causal map to
defend ourselves in a robbery). In other words, we could interpret these
sets of cues and rewards/punishments as what we have defined as contexts
and goals. These maps could operate in various ways, for example, if a
particular goal gains preponderance in the agent’s mind (e.g., quench thirst),
the search for elements that could help to cause the goal completion will also
become targets in the mind (e.g., water). This favours other causal targets
in the cognitive map to be highlighted by the agent’s cognitive systems via
dopaminergic firing (e.g., finding signs of water such as the sound of a river,
finding items that can be used to contain water). Further exploration of
this model can be extremely relevant to understand the fluid relationship
between contexts, goals and decision-making in animals.

In most of my experiments, as in general in the literature, goals were
unambiguous and communicated through simple cues, such as the back-
ground colour or arrows on the screen. The process of recognizing contexts
and goals in real life is far from simple since we need to extract them from a
multisensory and continuous world, many times with scarce or inexistent
feedback. Yet, humans and other animals are extremely proficient in per-
forming this context identification operation in a short time [416, 423]. For
example, when we leave home in the morning, in a second we can notice
that it has been raining combining information from the sight of puddles, the
sound of rain and the touch of drops on the skin. At the same time, whenever
a novel situation appears, e.g., leaving the airport in a foreign country for the
first time, we can immediately initiate the construction of new contexts, e.g.,
identifying the words to greet in the local language, the important landmarks
in the city and the favourite dishes of the new cuisine. Implementing a
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goal or learning a context involves a process of dimensionality reduction,
where only the relevant aspects of the environment are used to construct the
contextual mapping. In the real world, given that perception is generally a
multisensory process means that those various streams of information are
reorganized into distinct features useful for context identification. Previous
studies have shown that multisensory stimuli foster an enhancement in neu-
ronal firing which consequently improves detection, relative to unisensory
integration [424]. An interesting avenue for future research is to assess how
the construction of contexts and the identification of goals facilitates mul-
tisensory integration or vice versa, and how sensory integration predicts
the appearance of specific context representations in the brain. As hinted
above, the study of the relevant factors for context creation and inference is
still scarce and it is certainly a fundamental avenue for future research, e.g.,
understanding the origin of addiction.

9.4 psychiatric implications

Many psychiatric conditions have their root in decision-making limitations
that could be originated from deficits in context inference, hindering the
correct deployment of behavioural strategies, coping mechanisms, and mov-
ing away from detrimental goals [425, 353]. For example, patients with
anxiety have difficulties when dealing with uncertain scenarios, staying in
suboptimal states even when more rewarding alternatives are offered [426].
A similar principle may drive post-traumatic stress disorder (PTSD), where
new scenarios can trigger old contexts where terrifying events have been ex-
perienced [427]. A signature of this condition is that the mere removal of the
threatening factor does not generate the disappearance of the stress-related
responses, in a similar way to fear extinction experiments where after the re-
moval of the aversive stimuli (e.g. electric shock) animals still spontaneously
display defensive behaviours (e.g., freezing). Proposals from neuroscience
research have pointed out that in the case of extinction, it could take place a
process of context creation while the old traumatic context remains intact,
readily available to be reawakened [135]. It has been suggested that the
gradual removal of the aversive stimuli can keep the old context states active,
providing non-confirming information to update the predictions contingent
on that state [428]. Further study of these mechanisms can be important
to understanding memory-modification methods in cognitive behavioural
therapy for PTSD.

In substance use disorders, after periods of abstinence, the reappearance
of intense craving and eventual relapse can be triggered by cues associated
with the context of addiction, e.g., passing by the street where the pub is
located [429]. This craving can increase patient motivation to fulfil goals
related to the object of addiction, to the detriment of other objectives, such as
social responsibilities and even own survival. Indeed, the misidentification of
context can have fatal consequences, as observed in a high proportion of drug
overdose events reported in cases where drugs were consumed in atypical
environments or circumstances, e.g., someone that usually consumes heroin
alone at home does it at a party [430, 431, 432]. In this case, it is speculated
that anticipatory signals in the usual context allow the body to express
conditioned tolerance to handle the high doses of the drug. However, when
the drug is consumed in unfamiliar contexts these responses are not deployed,
risking intoxication. Further experiments in mice have corroborated the
importance of these contextual factors in drug response [433, 434, 435].



194 chapter 9 : general discussion

As hinted by my studies (Chapters 7 and 8), confidence is central to guide
behaviour, including the shift between goals and context identification [419].
Deficits in higher-order processes such as metacognition and introspective
assessment of the implementation of strategies have been associated with
various psychiatric conditions [358, 73, 362]. This could be another avenue for
further insight into the underlying mechanisms of psychiatric conditions. For
example, people with obsessive-compulsive disorder (OCD) were found to be
capable of tracking the volatility of environments using internal confidence,
useful to identify the moment to change the target behaviour. However,
their actions did not reflect this information, meaning a disociation between
actions and beliefs, with OCD patients failing to use their models of the
environment [358].

9.5 conclusion

The capacity of our brain to instantly adapt to the unlimited contexts and
goals we encounter in our life is possibly one of its most unique features. The
brain is so proficient that makes it look like a simple and seamless process
when there is actually a multitude of steps operating backstage, from the
first gaze to the latest confidence. Comprehending the mechanisms that the
biological machinery uses to achieve this tremendous task is one of the main
targets of neuroscience. Progress in this question can have ramifications
that range from understanding and finding solutions to brain disorders that
impact the mental health of millions to the potential development of science-
fiction-like systems capable of expressing general artificial intelligence. My
work in this thesis is a tiny but hopefully constructive contribution to this
momentous challenge.



B I B L I O G R A P H Y

[1] Paul FMJ Verschure, Cyriel MA Pennartz, and Giovanni Pezzulo. The
why, what, where, when and how of goal-directed choice: neuronal
and computational principles. Philosophical Transactions of the Royal
Society B: Biological Sciences, 369(1655):20130483, 2014.

[2] Todd A Hare, Jonathan Malmaud, and Antonio Rangel. Focusing
attention on the health aspects of foods changes value signals in vmpfc
and improves dietary choice. Journal of neuroscience, 31(30):11077–11087,
2011.

[3] Max Rollwage, Raymond J. Dolan, and Stephen M. Fleming. Metacog-
nitive Failure as a Feature of Those Holding Radical Beliefs. Current
Biology, 28(24):4014–4021.e8, December 2018.

[4] Adrian M Owen, John J Downes, Barbara J Sahakian, Charles E Polkey,
and Trevor W Robbins. Planning and spatial working memory fol-
lowing frontal lobe lesions in man. Neuropsychologia, 28(10):1021–1034,
1990.

[5] Timothy Shallice. Specific impairments of planning. Philosophical Trans-
actions of the Royal Society of London. B, Biological Sciences, 298(1089):199–
209, 1982.

[6] TIM Shallice and Paul W Burgess. Deficits in strategy application
following frontal lobe damage in man. Brain, 114(2):727–741, 1991.

[7] Yael Niv. Learning task-state representations. Nature neuroscience,
22(10):1544–1553, 2019.

[8] Matthew Botvinick, Jane X Wang, Will Dabney, Kevin J Miller, and
Zeb Kurth-Nelson. Deep reinforcement learning and its neuroscientific
implications. Neuron, 107(4):603–616, 2020.

[9] Antonio Rangel, Colin Camerer, and P Read Montague. A framework
for studying the neurobiology of value-based decision making. Nature
reviews neuroscience, 9(7):545–556, 2008.

[10] Joshua I. Gold and Michael N. Shadlen. The Neural Basis of Decision
Making. Annual Review of Neuroscience, 30(1):535–574, July 2007.

[11] Michael N Shadlen and Roozbeh Kiani. Decision making as a window
on cognition. Neuron, 80(3):791–806, 2013.

[12] William T Newsome, Kenneth H Britten, and J Anthony Movshon.
Neuronal correlates of a perceptual decision. Nature, 341(6237):52–54,
1989.

[13] David Marvin Green, John A Swets, et al. Signal detection theory and
psychophysics, volume 1. Wiley New York, 1966.

[14] Kenneth H Britten, Michael N Shadlen, William T Newsome, and
J Anthony Movshon. The analysis of visual motion: a comparison
of neuronal and psychophysical performance. Journal of Neuroscience,
12(12):4745–4765, 1992.

195



196 BIBLIOGRAPHY

[15] Mark E Mazurek, Jamie D Roitman, Jochen Ditterich, and Michael N
Shadlen. A role for neural integrators in perceptual decision making.
Cerebral cortex, 13(11):1257–1269, 2003.

[16] Michael N Shadlen and William T Newsome. Motion perception:
seeing and deciding. Proceedings of the national academy of sciences,
93(2):628–633, 1996.

[17] Richard P Heitz. The speed-accuracy tradeoff: history, physiology,
methodology, and behavior. Frontiers in neuroscience, 8:150, 2014.

[18] Milica Milosavljevic, Jonathan Malmaud, Alexander Huth, Christof
Koch, and Antonio Rangel. The drift diffusion model can account for
value-based choice response times under high and low time pressure.
Judgment and Decision making, 5(6):437–449, 2010.

[19] David Thura, Julie Beauregard-Racine, Charles-William Fradet, and
Paul Cisek. Decision making by urgency gating: theory and experi-
mental support. Journal of neurophysiology, 108(11):2912–2930, 2012.

[20] Roger Ratcliff, Philip L. Smith, Scott D. Brown, and Gail McKoon.
Diffusion Decision Model: Current Issues and History. Trends in
Cognitive Sciences, 20(4):260–281, April 2016.

[21] Ranulfo Romo and Emilio Salinas. Touch and go: decision-making
mechanisms in somatosensation. Annual review of neuroscience,
24(1):107–137, 2001.

[22] Ranulfo Romo, Adrián Hernández, and Antonio Zainos. Neuronal
correlates of a perceptual decision in ventral premotor cortex. Neuron,
41(1):165–173, 2004.

[23] Adam Kepecs, Naoshige Uchida, Hatim A. Zariwala, and Zachary F.
Mainen. Neural correlates, computation and behavioural impact of
decision confidence. Nature, 455(7210):227–231, September 2008.

[24] Paul Miller and Donald B Katz. Stochastic transitions between neural
states in taste processing and decision-making. Journal of Neuroscience,
30(7):2559–2570, 2010.

[25] Roberto Vincis, Ke Chen, Lindsey Czarnecki, John Chen, and Alfredo
Fontanini. Dynamic representation of taste-related decisions in the
gustatory insular cortex of mice. Current Biology, 30(10):1834–1844,
2020.

[26] Yi Zhou and Xiaoqin Wang. Cortical processing of dynamic sound
envelope transitions. Journal of Neuroscience, 30(49):16741–16754, 2010.

[27] Léon Franzen, Ioannis Delis, Gabriela De Sousa, Christoph Kayser, and
Marios G Philiastides. Auditory information enhances post-sensory
visual evidence during rapid multisensory decision-making. Nature
communications, 11(1):1–14, 2020.

[28] Peter Janssen and Michael N Shadlen. A representation of the hazard
rate of elapsed time in macaque area lip. Nature neuroscience, 8(2):234–
241, 2005.



BIBLIOGRAPHY 197

[29] Gustavo Deco, Leandro Scarano, and Salvador Soto-Faraco. Weber’s
law in decision making: integrating behavioral data in humans with a
neurophysiological model. Journal of Neuroscience, 27(42):11192–11200,
2007.

[30] Gustav Theodor Fechner. Elemente der psychophysik, volume 2. Breitkopf
u. Härtel, 1860.

[31] Andreas Nieder and Earl K Miller. Coding of cognitive magnitude:
Compressed scaling of numerical information in the primate prefrontal
cortex. Neuron, 37(1):149–157, 2003.

[32] Antonio Rangel, Colin Camerer, and P. Read Montague. A framework
for studying the neurobiology of value-based decision making. Nature
Reviews Neuroscience, 9(7):545–556, July 2008.

[33] Ian Krajbich, Carrie Armel, and Antonio Rangel. Visual fixations and
the computation and comparison of value in simple choice. Nature
Neuroscience, 13(10):1292–1298, October 2010.

[34] I. Krajbich and A. Rangel. Multialternative drift-diffusion model
predicts the relationship between visual fixations and choice in
value-based decisions. Proceedings of the National Academy of Sciences,
108(33):13852–13857, August 2011.

[35] Armin W. Thomas, Felix Molter, Ian Krajbich, Hauke R. Heekeren,
and Peter N. C. Mohr. Gaze bias differences capture individual choice
behaviour. Nature Human Behaviour, 3(6):625–635, June 2019.

[36] Wolfram Schultz. Responses of midbrain dopamine neurons to behav-
ioral trigger stimuli in the monkey. Journal of neurophysiology, 56(5):1439–
1461, 1986.

[37] Wolfram Schultz, Peter Dayan, and P Read Montague. A neural
substrate of prediction and reward. Science, 275(5306):1593–1599, 1997.

[38] John P O’Doherty, Peter Dayan, Karl Friston, Hugo Critchley, and
Raymond J Dolan. Temporal difference models and reward-related
learning in the human brain. Neuron, 38(2):329–337, 2003.

[39] Kareem A Zaghloul, Justin A Blanco, Christoph T Weidemann, Kathryn
McGill, Jurg L Jaggi, Gordon H Baltuch, and Michael J Kahana. Human
substantia nigra neurons encode unexpected financial rewards. Science,
323(5920):1496–1499, 2009.

[40] Jeremiah Y Cohen, Sebastian Haesler, Linh Vong, Bradford B Lowell,
and Naoshige Uchida. Neuron-type-specific signals for reward and
punishment in the ventral tegmental area. nature, 482(7383):85–88,
2012.

[41] Jamie D Roitman and Michael N Shadlen. Response of neurons in
the lateral intraparietal area during a combined visual discrimination
reaction time task. Journal of neuroscience, 22(21):9475–9489, 2002.

[42] Marius Usher and James L. McClelland. The time course of perceptual
choice: The leaky, competing accumulator model. Psychological Review,
108(3):550–592, 2001.



198 BIBLIOGRAPHY

[43] Wolfram Schultz. Getting formal with dopamine and reward. Neuron,
36(2):241–263, 2002.

[44] Camillo Padoa-Schioppa and John A Assad. Neurons in the or-
bitofrontal cortex encode economic value. Nature, 441(7090):223–226,
2006.

[45] Lesley K Fellows and Martha J Farah. The role of ventromedial pre-
frontal cortex in decision making: judgment under uncertainty or
judgment per se? Cerebral cortex, 17(11):2669–2674, 2007.

[46] Jonathan D Wallis et al. Orbitofrontal cortex and its contribution to
decision-making. Annual review of neuroscience, 30(1):31–56, 2007.

[47] Vikram S Chib, Antonio Rangel, Shinsuke Shimojo, and John P
O’Doherty. Evidence for a common representation of decision val-
ues for dissimilar goods in human ventromedial prefrontal cortex.
Journal of Neuroscience, 29(39):12315–12320, 2009.

[48] Oscar Bartra, Joseph T McGuire, and Joseph W Kable. The valuation
system: a coordinate-based meta-analysis of bold fmri experiments
examining neural correlates of subjective value. Neuroimage, 76:412–427,
2013.

[49] Erin L Rich and Jonathan D Wallis. Decoding subjective decisions from
orbitofrontal cortex. Nature neuroscience, 19(7):973–980, 2016.

[50] Fabian Grabenhorst and Edmund T Rolls. Value, pleasure and choice
in the ventral prefrontal cortex. Trends in cognitive sciences, 15(2):56–67,
2011.

[51] Michael N. Shadlen and Daphna Shohamy. Decision Making and
Sequential Sampling from Memory. Neuron, 90(5):927–939, June 2016.

[52] Helen C Barron, Raymond J Dolan, and Timothy EJ Behrens. Online
evaluation of novel choices by simultaneous representation of multiple
memories. Nature neuroscience, 16(10):1492–1498, 2013.

[53] Akram Bakkour, Daniela J Palombo, Ariel Zylberberg, Yul HR Kang, Al-
lison Reid, Mieke Verfaellie, Michael N Shadlen, and Daphna Shohamy.
The hippocampus supports deliberation during value-based decisions.
eLife, 8:e46080, July 2019.

[54] Sebastian Gluth, Tobias Sommer, Jörg Rieskamp, and Christian Büchel.
Effective Connectivity between Hippocampus and Ventromedial Pre-
frontal Cortex Controls Preferential Choices from Memory. Neuron,
86(4):1078–1090, May 2015.

[55] Reka Daniel and Stefan Pollmann. Striatal activations signal prediction
errors on confidence in the absence of external feedback. Neuroimage,
59(4):3457–3467, 2012.

[56] Stephen M Fleming and Raymond J Dolan. The neural basis of metacog-
nitive ability. Philosophical Transactions of the Royal Society B: Biological
Sciences, 367(1594):1338–1349, 2012.

[57] Tomas Folke, Catrine Jacobsen, Stephen M. Fleming, and Benedetto
De Martino. Explicit representation of confidence informs future value-
based decisions. Nature Human Behaviour, 1(1):0002, January 2017.



BIBLIOGRAPHY 199

[58] Annika Boldt, Charles Blundell, and Benedetto De Martino. Confi-
dence modulates exploration and exploitation in value-based learning.
Neuroscience of Consciousness, 2019(1):niz004, January 2019.

[59] Dan Bang, Laurence Aitchison, Rani Moran, Santiago Herce Castanon,
Banafsheh Rafiee, Ali Mahmoodi, Jennifer YF Lau, Peter E Latham,
Bahador Bahrami, and Christopher Summerfield. Confidence matching
in group decision-making. Nature Human Behaviour, 1(6):0117, 2017.

[60] Charles Sanders Peirce and Joseph Jastrow. On small differences in
sensation. Memoirs of the National Academy of Sciences, 3, 1884.

[61] Harold Griffing. On sensations from pressure and impact. The Monist,
6(a), 1895.

[62] Vivian Allen Charles Henmon. The relation of the time of a judgment
to its accuracy. Psychological review, 18(3):186, 1911.

[63] Ariel Zylberberg, Pablo Barttfeld, and Mariano Sigman. The construc-
tion of confidence in a perceptual decision. Frontiers in integrative
neuroscience, 6:79, 2012.

[64] Arthur P Shimamura. Toward a cognitive neuroscience of metacogni-
tion, 2000.

[65] Jasmeet K Pannu and Alfred W Kaszniak. Metamemory experiments in
neurological populations: A review. Neuropsychology review, 15(3):105–
130, 2005.

[66] Benedetto De Martino, Stephen M Fleming, Neil Garrett, and Ray-
mond J Dolan. Confidence in value-based choice. Nature Neuroscience,
16(1):105–110, January 2013.

[67] Maël Lebreton, Raphaëlle Abitbol, Jean Daunizeau, and Mathias Pes-
siglione. Automatic integration of confidence in the brain valuation
signal. Nature Neuroscience, 18(8):1159–1167, August 2015.

[68] Rani Moran, Andrei R Teodorescu, and Marius Usher. Post choice
information integration as a causal determinant of confidence: Novel
data and a computational account. Cognitive psychology, 78:99–147,
2015.

[69] Adam Kepecs and Zachary F Mainen. A computational framework
for the study of confidence in humans and animals. Philosophical
Transactions of the Royal Society B: Biological Sciences, 367(1594):1322–
1337, 2012.

[70] Stephen M Fleming and Hakwan C Lau. How to measure metacogni-
tion. Frontiers in human neuroscience, 8:443, 2014.

[71] Stephen M. Fleming and Nathaniel D. Daw. Self-evaluation of decision-
making: A general bayesian framework for metacognitive computation.
Psychological review, 124(1):91–114, 2017.

[72] Tricia XF Seow, Marion Rouault, Claire M Gillan, and Stephen M
Fleming. How local and global metacognition shape mental health.
Biological psychiatry, 90(7):436–446, 2021.



200 BIBLIOGRAPHY

[73] Marion Rouault, Tricia Seow, Claire M Gillan, and Stephen M Flem-
ing. Psychiatric symptom dimensions are associated with dissociable
shifts in metacognition but not task performance. Biological psychiatry,
84(6):443–451, 2018.

[74] Stephen M. Fleming and Nathaniel D. Daw. Self-evaluation of decision-
making: A general Bayesian framework for metacognitive computation.
Psychological Review, 124(1):91–114, January 2017.

[75] Pascal Mamassian. Confidence forced-choice and other metaperceptual
tasks. Perception, 49(6):616–635, 2020.

[76] D. Vickers. Evidence for an Accumulator Model of Psychophysical
Discrimination. Ergonomics, 13(1):37–58, January 1970.

[77] Arthur P Shimamura and Larry R Squire. Memory and metamemory:
a study of the feeling-of-knowing phenomenon in amnesic patients.
Journal of Experimental Psychology: Learning, Memory, and Cognition,
12(3):452, 1986.

[78] David M Schnyer, Mieke Verfaellie, Michael P Alexander, Ginette
LaFleche, Lindsay Nicholls, and Alfred W Kaszniak. A role for right
medial prefrontal cortex in accurate feeling-of-knowing judgments:
Evidence from patients with lesions to frontal cortex. Neuropsychologia,
42(7):957–966, 2004.

[79] Hakwan C Lau and Richard E Passingham. Relative blindsight in
normal observers and the neural correlate of visual consciousness.
Proceedings of the National Academy of Sciences, 103(49):18763–18768,
2006.

[80] Antoine Del Cul, Stanislas Dehaene, P Reyes, E Bravo, and Andrea
Slachevsky. Causal role of prefrontal cortex in the threshold for access
to consciousness. Brain, 132(9):2531–2540, 2009.

[81] Stephen M Fleming, Rimona S Weil, Zoltan Nagy, Raymond J Dolan,
and Geraint Rees. Relating introspective accuracy to individual differ-
ences in brain structure. Science, 329(5998):1541–1543, 2010.

[82] Laura S Geurts, James RH Cooke, Ruben S van Bergen, and Janneke FM
Jehee. Subjective confidence reflects representation of bayesian proba-
bility in cortex. Nature Human Behaviour, 6(2):294–305, 2022.

[83] Keno Juechems and Christopher Summerfield. Where does value come
from? Trends in cognitive sciences, 23(10):836–850, 2019.

[84] Benedetto De Martino and Aurelio Cortese. Goals, usefulness and
abstraction in value-based choice. Trends in Cognitive Sciences, 2022.

[85] Jeansok J Kim and Michael S Fanselow. Modality-specific retrograde
amnesia of fear. Science, 256(5057):675–677, 1992.

[86] Sam McKenzie, Andrea J Frank, Nathaniel R Kinsky, Blake Porter,
Pamela D Rivière, and Howard Eichenbaum. Hippocampal repre-
sentation of related and opposing memories develop within distinct,
hierarchically organized neural schemas. Neuron, 83(1):202–215, 2014.



BIBLIOGRAPHY 201

[87] Christopher S Keene, John Bladon, Sam McKenzie, Cindy D Liu, Joseph
O’Keefe, and Howard Eichenbaum. Complementary functional organi-
zation of neuronal activity patterns in the perirhinal, lateral entorhinal,
and medial entorhinal cortices. Journal of Neuroscience, 36(13):3660–3675,
2016.

[88] Alexandra O Constantinescu, Jill X O’Reilly, and Timothy EJ Behrens.
Organizing conceptual knowledge in humans with a gridlike code.
Science, 352(6292):1464–1468, 2016.

[89] Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley
Mark, Alon B Baram, Kimberly L Stachenfeld, and Zeb Kurth-Nelson.
What is a cognitive map? organizing knowledge for flexible behavior.
Neuron, 100(2):490–509, 2018.

[90] Howard Eichenbaum and Neal J Cohen. Can we reconcile the declara-
tive memory and spatial navigation views on hippocampal function?
Neuron, 83(4):764–770, 2014.

[91] Youssef Ezzyat and Lila Davachi. Similarity breeds proximity: pattern
similarity within and across contexts is related to later mnemonic
judgments of temporal proximity. Neuron, 81(5):1179–1189, 2014.

[92] David Clewett, Sarah DuBrow, and Lila Davachi. Transcending time
in the brain: How event memories are constructed from experience.
Hippocampus, 29(3):162–183, 2019.

[93] David Clewett, Camille Gasser, and Lila Davachi. Pupil-linked arousal
signals track the temporal organization of events in memory. Nature
communications, 11(1):1–14, 2020.

[94] Nina Rouhani, Kenneth A Norman, Yael Niv, and Aaron M Bornstein.
Reward prediction errors create event boundaries in memory. Cognition,
203:104269, 2020.

[95] Shauna M Stark, Zachariah M Reagh, Michael A Yassa, and Craig EL
Stark. What’s in a context? cautions, limitations, and potential paths
forward. Neuroscience letters, 680:77–87, 2018.

[96] Jiefeng Jiang, Shao-Fang Wang, Wanjia Guo, Corey Fernandez, and An-
thony D Wagner. Prefrontal reinstatement of contextual task demand
is predicted by separable hippocampal patterns. Nature communications,
11(1):1–12, 2020.

[97] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T New-
some. Context-dependent computation by recurrent dynamics in pre-
frontal cortex. nature, 503(7474):78–84, 2013.

[98] Romy Frömer, Carolyn K. Dean Wolf, and Amitai Shenhav. Goal con-
gruency dominates reward value in accounting for behavioral and
neural correlates of value-based decision-making. Nature Communica-
tions, 10(1):4926, December 2019.

[99] G Castegnetti, M Zurita, and B De Martino. How usefulness shapes
neural representations during goal-directed behavior. Science Advances,
7(15):eabd5363, 2021.



202 BIBLIOGRAPHY

[100] Amos Tversky and Daniel Kahneman. The framing of decisions and
the psychology of choice. In Behavioral decision making, pages 25–41.
Springer, 1985.

[101] B. De Martino, D. Kumaran, B. Seymour, and R. Dolan. Frames,
Biases, and Rational Decision-Making in the Human Brain. Science,
313(5787):684–687, August 2006.

[102] Andrew Gelman and Jennifer Hill. Data analysis using regression and
multilevel/hierarchical models. Cambridge university press, 2006.

[103] Naomi Altman and Martin Krzywinski. Points of significance: Simple
linear regression. Nature methods, 12(11), 2015.

[104] Martin Krzywinski and Naomi Altman. Multiple linear regression.
Nature methods, 12(12):1103–1104, 2015.

[105] Jake Lever, Martin Krzywinski, and Naomi Altman. Logistic regres-
sion: Regression can be used on categorical responses to estimate
probabilities and to classify. Nature Methods, 13(7):541–543, 2016.

[106] Neil A Macmillan and C Douglas Creelman. Detection theory: A user’s
guide. Psychology press, 2004.

[107] Rupert Oliver, Otto Bjoertomt, Richard Greenwood, and John Rothwell.
’noisy patients’—can signal detection theory help? Nature Clinical
Practice Neurology, 4(6):306–316, 2008.

[108] Brian Maniscalco and Hakwan Lau. A signal detection theoretic ap-
proach for estimating metacognitive sensitivity from confidence ratings.
Consciousness and cognition, 21(1):422–430, 2012.

[109] Roger Ratcliff and Gail McKoon. The diffusion decision model: theory
and data for two-choice decision tasks. Neural computation, 20(4):873–
922, 2008.

[110] Roger Ratcliff and Philip L Smith. A comparison of sequential sampling
models for two-choice reaction time. Psychological review, 111(2):333,
2004.

[111] Roger Ratcliff. A theory of memory retrieval. Psychological Review,
85(2):59–108, 1978.

[112] Roger Ratcliff. A theory of order relations in perceptual matching.
Psychological Review, 88(6):552, 1981.

[113] Roger Ratcliff and Jeffrey N Rouder. Modeling response times for
two-choice decisions. Psychological science, 9(5):347–356, 1998.

[114] Birte U Forstmann, Roger Ratcliff, and E-J Wagenmakers. Sequential
sampling models in cognitive neuroscience: Advantages, applications,
and extensions. Annual review of psychology, 67:641, 2016.

[115] Julia Spaniol, David J Madden, and Andreas Voss. A diffusion model
analysis of adult age differences in episodic and semantic long-term
memory retrieval. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 32(1):101, 2006.



BIBLIOGRAPHY 203

[116] Mili Milosavljevic, Jonathan Malmaud, Alexander Huth, Christof Koch,
and Antonio Rangel. The Drift Diffusion Model Can Account for the
Accuracy and Reaction Time of Value-Based Choices Under High and
Low Time Pressure. SSRN Electronic Journal, 2010.

[117] Corey N White, Roger Ratcliff, Michael W Vasey, and Gail McKoon.
Using diffusion models to understand clinical disorders. Journal of
Mathematical Psychology, 54(1):39–52, 2010.

[118] Don van Ravenzwaaij, Gilles Dutilh, and Eric-Jan Wagenmakers. A
diffusion model decomposition of the effects of alcohol on perceptual
decision making. Psychopharmacology, 219(4):1017–1025, 2012.

[119] Vahid Nejati, Amir Hosein Hadian Rasanan, Jamal Amani Rad,
Maryam Movahed Alavi, Shahin Haghi, and Michael A Nitsche. Tran-
scranial direct current stimulation (tdcs) alters the pattern of informa-
tion processing in children with adhd: Evidence from drift diffusion
modeling. Neurophysiologie Clinique, 52(1):17–27, 2022.

[120] K Carrie Armel, Aurelie Beaumel, and Antonio Rangel. Biasing simple
choices by manipulating relative visual attention. Judgment and Decision
making, 3(5):396–403, 2008.

[121] Gabriela Tavares, Pietro Perona, and Antonio Rangel. The Attentional
Drift Diffusion Model of Simple Perceptual Decision-Making. Frontiers
in Neuroscience, 11:468, August 2017.

[122] Ian Krajbich, Andres Mitsumasu, Rafael Polania, Christian C Ruff,
and Ernst Fehr. A causal role for the right frontal eye fields in value
comparison. Elife, 10:e67477, 2021.

[123] Felix Molter, Armin W Thomas, Hauke R Heekeren, and Peter NC
Mohr. Glambox: A python toolbox for investigating the association be-
tween gaze allocation and decision behaviour. PloS one, 14(12):e0226428,
2019.

[124] D. Vickers. Decision processes in visual perception. Academic Press series
in cognition and perception. Academic Press, New York ; London,
1979.

[125] Jeroen Brus, Helena Aebersold, Marcus Grueschow, and Rafael Polania.
Sources of confidence in value-based choice. Nature communications,
12(1):1–15, 2021.

[126] Daphne Koller and Nir Friedman. Probabilistic graphical models: princi-
ples and techniques. MIT press, 2009.

[127] Stephen M. Fleming, Elisabeth J. van der Putten, and Nathaniel D.
Daw. Neural mediators of changes of mind about perceptual decisions.
Nature Neuroscience, 21(4):617–624, April 2018.

[128] Charles J Geyer. Practical markov chain monte carlo. Statistical science,
pages 473–483, 1992.

[129] Siddhartha Chib and Edward Greenberg. Understanding the
metropolis-hastings algorithm. The american statistician, 49(4):327–335,
1995.



204 BIBLIOGRAPHY

[130] Andrew Gelman and Donald B Rubin. Inference from iterative sim-
ulation using multiple sequences. Statistical science, pages 457–472,
1992.

[131] Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and
Paul-Christian Bürkner. Rank-normalization, folding, and localization:
An improved r for assessing convergence of mcmc (with discussion).
Bayesian analysis, 16(2):667–718, 2021.

[132] Yael Niv. Reinforcement learning in the brain. Journal of Mathematical
Psychology, 53(3):139–154, 2009.

[133] Peter Dayan and Nathaniel D Daw. Decision theory, reinforcement
learning, and the brain. Cognitive, Affective, & Behavioral Neuroscience,
8(4):429–453, 2008.

[134] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[135] Yael Niv. Learning task-state representations. Nature neuroscience,
22(10):1544–1553, 2019.

[136] Leon J Kamin. Predictability, surprise, attention, and conditioning. In
Symp. on Punishment, number TR-13, 1967.

[137] Robert A Rescorla. A theory of pavlovian conditioning: Variations
in the effectiveness of reinforcement and non-reinforcement. Classical
conditioning, Current research and theory, 2:64–69, 1972.

[138] Richard S Sutton and Andrew G Barto. Time-derivative models of
pavlovian reinforcement. 1990.

[139] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards. 1989.

[140] Matthew R.; Calu Roesch Donna J.; Schoenbaum, Geoffrey. Dopamine
neurons encode the better option in rats deciding between differently
delayed or sized rewards. Nature neuroscience, 10(12):1615–1624, 2007.

[141] Tomas; Apicella Ljungberg Paul; Schultz, Wolfram. Responses of
monkey dopamine neurons during learning of behavioral reactions.
Journal of neurophysiology, 67(1):145–163, 1992.

[142] P R; Dayan Montague Peter; Sejnowski, Terrence J. A framework
for mesencephalic dopamine systems based on predictive Hebbian
learning. The Journal of neuroscience : the official journal of the Society for
Neuroscience, 16(5):1936–1947, 1996.

[143] Wolfram Schultz. Predictive Reward Signal of Dopamine Neurons.
Journal of neurophysiology, 80(1):1–27, 1998.

[144] Peter; Niv Dayan Yael. Reinforcement learning: The Good, The Bad
and The Ugly. Current opinion in neurobiology, 18(2):185–196, 2008.

[145] Seiji Ogawa, Tso-Ming Lee, Alan R Kay, and David W Tank. Brain mag-
netic resonance imaging with contrast dependent on blood oxygenation.
proceedings of the National Academy of Sciences, 87(24):9868–9872, 1990.



BIBLIOGRAPHY 205

[146] Seiji Ogawa, David W Tank, Ravi Menon, Jutta M Ellermann, Seong G
Kim, Helmut Merkle, and Kamil Ugurbil. Intrinsic signal changes
accompanying sensory stimulation: functional brain mapping with
magnetic resonance imaging. Proceedings of the National Academy of
Sciences, 89(13):5951–5955, 1992.

[147] Peter A Bandettini, Eric C Wong, R Scott Hinks, Ronald S Tikofsky,
and James S Hyde. Time course epi of human brain function during
task activation. Magnetic resonance in medicine, 25(2):390–397, 1992.

[148] Kenneth K Kwong, John W Belliveau, David A Chesler, Inna E Gold-
berg, Robert M Weisskoff, Brigitte P Poncelet, David N Kennedy, Ber-
nice E Hoppel, Mark S Cohen, and Robert Turner. Dynamic magnetic
resonance imaging of human brain activity during primary sensory
stimulation. Proceedings of the National Academy of Sciences, 89(12):5675–
5679, 1992.

[149] Michael S. Gazzaniga, editor. The Cognitive Neurosciences. The MIT
Press, 4 edition, September 2009.

[150] John C Gore et al. Principles and practice of functional mri of the
human brain. The Journal of clinical investigation, 112(1):4–9, 2003.

[151] Stephan Ulmer and Olav Jansen. fMRI. Springer, 2010.

[152] Edson Amaro Jr and Gareth J Barker. Study design in fmri: basic
principles. Brain and cognition, 60(3):220–232, 2006.

[153] José M Soares, Ricardo Magalhães, Pedro S Moreira, Alexandre Sousa,
Edward Ganz, Adriana Sampaio, Victor Alves, Paulo Marques, and
Nuno Sousa. A hitchhiker’s guide to functional magnetic resonance
imaging. Frontiers in neuroscience, 10:515, 2016.

[154] John Mazziotta, Arthur Toga, Alan Evans, Peter Fox, Jack Lancaster,
Karl Zilles, Roger Woods, Tomas Paus, Gregory Simpson, Bruce Pike,
et al. A probabilistic atlas and reference system for the human brain:
International consortium for brain mapping (icbm). Philosophical
Transactions of the Royal Society of London. Series B: Biological Sciences,
356(1412):1293–1322, 2001.

[155] William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel,
and Thomas E Nichols. Statistical parametric mapping: the analysis of
functional brain images. Elsevier, 2011.

[156] Tyler Davis, Karen F LaRocque, Jeanette A Mumford, Kenneth A Nor-
man, Anthony D Wagner, and Russell A Poldrack. What do differences
between multi-voxel and univariate analysis mean? how subject-, voxel-
, and trial-level variance impact fmri analysis. Neuroimage, 97:271–283,
2014.

[157] Karl J Friston, Andrew P Holmes, JB Poline, PJ Grasby, SCR Williams,
Richard SJ Frackowiak, and Robert Turner. Analysis of fmri time-series
revisited. Neuroimage, 2(1):45–53, 1995.

[158] James V. Haxby, Andrew C. Connolly, and J. Swaroop Guntupalli.
Decoding Neural Representational Spaces Using Multivariate Pattern
Analysis. Annual Review of Neuroscience, 37(1):435–456, 2014. Publisher:
Annual Reviews.



206 BIBLIOGRAPHY

[159] James V. Haxby, Maria Ida Gobbini, Maura L. Furey, Alumit Ishai,
Jennifer L. Schouten, and Pietro Pietrini. Distributed and overlapping
representations of faces and objects in ventral temporal cortex. Science,
293:2425 – 2430, 2001.

[160] John-Dylan Haynes and Geraint Rees. Decoding mental states from
brain activity in humans. Nature reviews neuroscience, 7(7):523–534, 2006.

[161] Nikolaus Kriegeskorte, Marieke Mur, Douglas A Ruff, Roozbeh Kiani,
Jerzy Bodurka, Hossein Esteky, Keiji Tanaka, and Peter A Bandettini.
Matching categorical object representations in inferior temporal cortex
of man and monkey. Neuron, 60(6):1126–1141, 2008.

[162] John-Dylan Haynes. A primer on pattern-based approaches to fmri:
principles, pitfalls, and perspectives. Neuron, 87(2):257–270, 2015.

[163] Elia Formisano, Federico De Martino, Milene Bonte, and Rainer Goebel.
" who" is saying" what"? brain-based decoding of human voice and
speech. Science, 322(5903):970–973, 2008.

[164] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Rep-
resentational similarity analysis-connecting the branches of systems
neuroscience. Frontiers in systems neuroscience, page 4, 2008.

[165] Hamed Nili, Cai Wingfield, Alexander Walther, Li Su, William Marslen-
Wilson, and Nikolaus Kriegeskorte. A toolbox for representational
similarity analysis. PLoS computational biology, 10(4):e1003553, 2014.

[166] Christopher M. Bishop. Neural networks for pattern recognition. 1995.

[167] Francisco Pereira, Tom Mitchell, and Matthew Botvinick. Machine
learning classifiers and fmri: A tutorial overview. NeuroImage, 45(1,
Supplement 1):S199–S209, 2009. Mathematics in Brain Imaging.

[168] Jörn Diedrichsen and Nikolaus Kriegeskorte. Representational mod-
els: A common framework for understanding encoding, pattern-
component, and representational-similarity analysis. PLoS computa-
tional biology, 13(4):e1005508, 2017.

[169] James F. Cavanagh, Thomas V. Wiecki, Angad Kochar, and Michael J.
Frank. Eye tracking and pupillometry are indicators of dissociable
latent decision processes. Journal of Experimental Psychology: General,
143(4):1476–1488, 2014.

[170] Rafael Polanía, Ian Krajbich, Marcus Grueschow, and Christian C. Ruff.
Neural Oscillations and Synchronization Differentially Support Evi-
dence Accumulation in Perceptual and Value-Based Decision Making.
Neuron, 82(3):709–720, May 2014.

[171] Sebastian Gluth, Nadja Kern, Maria Kortmann, and Cécile L. Vitali.
Value-based attention but not divisive normalization influences deci-
sions with multiple alternatives. Nature Human Behaviour, February
2020.

[172] Moshe Glickman, Konstantinos Tsetsos, and Marius Usher. Attentional
Selection Mediates Framing and Risk-Bias Effects. Psychological Science,
29(12):2010–2019, December 2018.



BIBLIOGRAPHY 207

[173] Sebastian Gluth, Mikhail S Spektor, and Jörg Rieskamp. Value-based
attentional capture affects multi-alternative decision making. eLife,
7:e39659, November 2018.

[174] Christopher A. Sims. Implications of rational inattention. Journal of
Monetary Economics, 50(3):665–690, April 2003.

[175] Christopher Sims. Rational Inattention and Monetary Economics. In
Benjamin M. Friedman and Michael Woodford, editors, Handbook of
Monetary Economics, volume 3, pages 155–181. Elsevier, 1 edition, 2010.
Section: 04.

[176] Andrew Caplin and Mark Dean. Revealed Preference, Rational Inatten-
tion, and Costly Information Acquisition. American Economic Review,
105(7):2183–2203, July 2015.

[177] Benjamin Hébert and Michael Woodford. Rational Inattention and
Sequential Information Sampling. Technical Report w23787, National
Bureau of Economic Research, Cambridge, MA, September 2017.

[178] B. A. Anderson, P. A. Laurent, and S. Yantis. Value-driven attentional
capture. Proceedings of the National Academy of Sciences, 108(25):10367–
10371, June 2011.

[179] Stephanie M. Smith and Ian Krajbich. Gaze Amplifies Value in Decision
Making. Psychological Science, 30(1):116–128, January 2019.

[180] Christopher K. Kovach, Matthew J. Sutterer, Sara N. Rushia, Adrianna
Teriakidis, and Rick L. Jenison. Two systems drive attention to rewards.
Frontiers in Psychology, 5, 2014.

[181] Gaurav Suri, James Jonathan Gross, and James L. McClelland. Value-
based decision making: An interactive activation perspective. Psycho-
logical review, 2020.

[182] Gordon M. Becker, Morris H. Degroot, and Jacob Marschak. Measuring
utility by a single-response sequential method. Behavioral Science,
9(3):226–232, 1964.

[183] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting
Linear Mixed-Effects Models Using lme4. Journal of Statistical Software,
67(1), 2015.

[184] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Proba-
bilistic programming in Python using PyMC3. PeerJ Computer Science,
2:e55, April 2016.

[185] Stefano Palminteri, Valentin Wyart, and Etienne Koechlin. The Impor-
tance of Falsification in Computational Cognitive Modeling. Trends in
Cognitive Sciences, 21(6):425–433, June 2017.

[186] Pradyumna Sepulveda, Marius Usher, Ned Davies, Amy A Benson,
Pietro Ortoleva, and Benedetto De Martino. Visual attention modulates
the integration of goal-relevant evidence and not value. Elife, 9:e60705,
2020.

[187] Ian Krajbich, Dingchao Lu, Colin Camerer, and Antonio Rangel. The
Attentional Drift-Diffusion Model Extends to Simple Purchasing Deci-
sions. Frontiers in Psychology, 3, 2012.



208 BIBLIOGRAPHY

[188] Jacqueline Gottlieb. Attention, learning, and the value of information.
Neuron, 76(2):281–295, 2012.

[189] Marc Guitart-Masip, Quentin J.M. Huys, Lluis Fuentemilla, Peter
Dayan, Emrah Duzel, and Raymond J. Dolan. Go and no-go learn-
ing in reward and punishment: Interactions between affect and effect.
NeuroImage, 62(1):154–166, August 2012.

[190] Marc Guitart-Masip, Emrah Duzel, Ray Dolan, and Peter Dayan. Action
versus valence in decision making. Trends in Cognitive Sciences, 18(4):194–
202, April 2014.

[191] Peter Dayan. Instrumental vigour in punishment and reward: Vigour
in punishment and reward. European Journal of Neuroscience, 35(7):1152–
1168, April 2012.

[192] Philippe Soubrié. Reconciling the role of central serotonin neurons in
human and animal behavior. Behavioral and Brain Sciences, 9(2):319–335,
1986.

[193] JA Gray and N McNaughton. The neuropsychology of anxiety: An
enquiry into the functions of the septo-hippocampal system, 2nd edn
oxford: Oxford university press. 2000.

[194] Daniel Kahneman and Amos Tversky. Choices, values, and frames.
American Psychologist, 39(4):341–350, 1984.

[195] Daniel Kahneman and Amos Tversky, editors. Choices, values, and
frames. Russell sage Foundation ; Cambridge University Press, New
York : Cambridge, UK, 2000.

[196] Colin Camerer, George Loewenstein, and Matthew Rabin, editors.
Advances in behavioral economics. The roundtable series in behavioral
economics. Russell Sage Foundation ; Princeton University Press, New
York : Princeton, N.J, 2004.

[197] Paul W. Glimcher and Ernst Fehr, editors. Neuroeconomics: decision
making and the brain. Elsevier/AP, Academic Press is an imprint of
Elsevier, Amsterdam : Boston, second edition edition, 2014. OCLC:
ocn868677826.

[198] Richard Bellman. Dynamic programming. Science, 153:34 – 37, 1957.

[199] Mitsuo Kawato and Kazuyuki Samejima. Efficient reinforcement learn-
ing: computational theories, neuroscience and robotics. Current opinion
in neurobiology, 17(2):205–212, 2007.

[200] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An
introduction, 2nd ed. Reinforcement learning: An introduction, 2nd ed.
The MIT Press, Cambridge, MA, US, 2018. Pages: xxii, 526.

[201] Mark K. Ho, David Abel, Thomas L. Griffiths, and Michael L. Littman.
The value of abstraction. Current Opinion in Behavioral Sciences,
29(NA):111–116, 2019.

[202] George Konidaris. On the necessity of abstraction. Current opinion in
behavioral sciences, 29(NA):1–7, 2018.



BIBLIOGRAPHY 209

[203] Kenji Kobayashi and Ming Hsu. Common neural code for reward and
information value. Proceedings of the National Academy of Sciences of the
United States of America, 116(26):13061–13066, 2019.

[204] Shari Liu, Tomer Ullman, Joshua B. Tenenbaum, and Elizabeth S.
Spelke. Ten-month-old infants infer the value of goals from the costs
of actions. Science (New York, N.Y.), 358(6366):1038–1041, 2017.

[205] Daniel McNamee, Antonio Rangel, and John P. O’Doherty. Category-
dependent and category-independent goal-value codes in human ven-
tromedial prefrontal cortex. Nature neuroscience, 16(4):479–485, 2013.

[206] Sabina Gherman and Marios G. Philiastides. Human vmpfc encodes
early signatures of confidence in perceptual decisions. eLife, 7(NA):NA–
NA, 2018.

[207] Allison D. Shapiro and Scott T. Grafton. Subjective value then
confidence in human ventromedial prefrontal cortex. PloS one,
15(2):e0225617–NA, 2020.

[208] Asaf Gilboa and Hannah Marlatte. Neurobiology of schemas and
schema-mediated memory. Trends in cognitive sciences, 21(8):618–631,
2017.

[209] Dharshan Kumaran, Jennifer J. Summerfield, Demis Hassabis, and
Eleanor A. Maguire. Tracking the emergence of conceptual knowledge
during human decision making. Neuron, 63(6):889–901, 2009.

[210] Michael L Mack, Bradley C Love, and Alison R Preston. Dynamic up-
dating of hippocampal object representations reflects new conceptual
knowledge. Proceedings of the National Academy of Sciences, 113(46):13203–
13208, 2016.

[211] Dorothy Tse, Rosamund F. Langston, Masaki Kakeyama, Ingrid Bethus,
Patrick A. Spooner, Emma R. Wood, Menno P. Witter, and Richard
G. M. Morris. Schemas and memory consolidation. Science (New York,
N.Y.), 316(5821):76–82, 2007.

[212] Caitlin R. Bowman and Dagmar Zeithamova. Abstract memory rep-
resentations in the ventromedial prefrontal cortex and hippocampus
support concept generalization. The Journal of neuroscience : the official
journal of the Society for Neuroscience, 38(10):2605–2614, 2018.

[213] Roland G. Benoit, Karl K. Szpunar, and Daniel L. Schacter. Ven-
tromedial prefrontal cortex supports affective future simulation by
integrating distributed knowledge. Proceedings of the National Academy
of Sciences of the United States of America, 111(46):16550–16555, 2014.

[214] Franz-Xaver Neubert, Rogier B. Mars, Jerome Sallet, and Matthew F. S.
Rushworth. Connectivity reveals relationship of brain areas for reward-
guided learning and decision making in human and monkey frontal
cortex. Proceedings of the National Academy of Sciences of the United States
of America, 112(20):201410767–704, 2015.

[215] Nicolas W Schuck, Ming Bo Cai, Robert C Wilson, and Yael Niv.
Human orbitofrontal cortex represents a cognitive map of state space.
Neuron, 91(6):1402–1412, 2016.



210 BIBLIOGRAPHY

[216] Kimberly L. Stachenfeld, Matthew Botvinick, and Samuel J. Gershman.
The hippocampus as a predictive map. Nature neuroscience, 20(11):1643–
1653, 2017.

[217] Simone Viganò and Manuela Piazza. Distance and direction codes
underlie navigation of a novel semantic space in the human brain. The
Journal of neuroscience : the official journal of the Society for Neuroscience,
40(13):2727–2736, 2020.

[218] Robert C. Wilson, Andra Geana, John Myles White, Elliot Andrew
Ludvig, and Jonathan D. Cohen. Humans use directed and random
exploration to solve the explore–exploit dilemma. Journal of experimental
psychology. General, 143(6):2074–2081, 2014.

[219] Maël Lebreton, Karin Bacily, Stefano Palminteri, and Jan B. Engelmann.
Contextual influence on confidence judgments in human reinforcement
learning. PLOS Computational Biology, 15(4):e1006973, April 2019.

[220] Jonathan W. Peirce. Generating stimuli for neuroscience using psy-
chopy. Frontiers in neuroinformatics, 2(NA):10–10, 2009.

[221] Kenji Doya, Kazuyuki Samejima, Ken’Ichi Katagiri, and Mitsuo Kawato.
Multiple model-based reinforcement learning. Neural computation,
14(6):1347–1369, 2002.

[222] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E.
Hinton. Adaptive mixtures of local experts. Neural computation, 3(1):79–
87, 1991.

[223] Norikazu Sugimoto, Masahiko Haruno, Kenji Doya, and Mitsuo
Kawato. Mosaic for multiple-reward environments. Neural compu-
tation, 24(3):577–606, 2011.

[224] Payam Piray, Amir Dezfouli, Tom Heskes, Michael J. Frank, and
Nathaniel D. Daw. Hierarchical bayesian inference for concurrent
model fitting and comparison for group studies. PLoS computational
biology, 15(6):1–34, 2019.

[225] David A. Feinberg, Steen Moeller, Stephen M. Smith, Edward J. Auer-
bach, Sudhir Ramanna, Matthew F. Glasser, Karla L. Miller, Kamil
Ugurbil, and Essa Yacoub. Multiplexed echo planar imaging for
sub-second whole brain fmri and fast diffusion imaging. PloS one,
5(12):e15710–NA, 2010.

[226] Junqian Xu, Steen Moeller, Edward J. Auerbach, John P. Strupp,
Stephen M. Smith, David A. Feinberg, Essa Yacoub, and Kamil Ugurbil.
Evaluation of slice accelerations using multiband echo planar imaging
at 3 t. NeuroImage, 83(NA):991–1001, 2013.

[227] Liang Wang, Ryan E. B. Mruczek, Michael J. Arcaro, and Sabine Kastner.
Probabilistic maps of visual topography in human cortex. Cerebral
cortex (New York, N.Y. : 1991), 25(10):3911–3931, 2014.

[228] Okito Yamashita, Masaaki Sato, Taku Yoshioka, Frank Tong, and
Yukiyasu Kamitani. Sparse estimation automatically selects voxels rele-
vant for the decoding of fmri activity patterns. NeuroImage, 42(4):1414–
1429, 2008.



BIBLIOGRAPHY 211

[229] Satoshi Hirose, Isao Nambu, and Eiichi Naito. An empirical solution
for over-pruning with a novel ensemble-learning method for fmri
decoding. Journal of neuroscience methods, 239(NA):238–245, 2014.

[230] Aurelio Cortese, Asuka Yamamoto, Maryam Hashemzadeh,
Pradyumna Sepulveda, Mitsuo Kawato, and Benedetto De Martino.
Value signals guide abstraction during learning. Elife, 10:e68943, 2021.

[231] Chris Watkins and Peter Dayan. Technical note : \cal q -learning.
Machine Learning, 8(3):279–292, 1992.

[232] Michael J. Frank and David Badre. Mechanisms of hierarchical rein-
forcement learning in corticostriatal circuits 1: Computational analysis.
Cerebral cortex (New York, N.Y. : 1991), 22(3):509–526, 2011.

[233] Daniel M. Wolpert and Mitsuo Kawato. Multiple paired forward and
inverse models for motor control. Neural networks : the official journal of
the International Neural Network Society, 11(7):1317–1329, 1998.

[234] Aurelio Cortese, Hakwan Lau, and Mitsuo Kawato. Unconscious
reinforcement learning of hidden brain states supported by confidence.
Nature communications, 11(1):4429, 2020.

[235] Brian Knutson, Jonathan Taylor, Matthew T. Kaufman, Richard Peter-
son, and Gary H. Glover. Distributed neural representation of expected
value. The Journal of neuroscience : the official journal of the Society for
Neuroscience, 25(19):4806–4812, 2005.

[236] Julien Bastin, Pierre Deman, Olivier David, Maëlle C. M. Gueguen,
Damien Benis, Lorella Minotti, Dominique Hoffman, Etienne Com-
brisson, Jan Kujala, Marcela Perrone-Bertolotti, Philippe Kahane, Jean-
Philippe Lachaux, and Karim Jerbi. Direct recordings from human
anterior insula reveal its leading role within the error-monitoring net-
work. Cerebral cortex (New York, N.Y. : 1991), 27(2):1545–1557, 2017.

[237] Cameron S. Carter, Todd S. Braver, M Deanna, Matthew Botvinick,
Douglas C. Noll, and Jonathan D. Cohen. Anterior cingulate cortex,
error detection, and the online monitoring of performance. Science
(New York, N.Y.), 280(5364):747–749, 1998.

[238] Karl J. Friston, Christian Buechel, Gereon R. Fink, John C. Morris,
Edmund T. Rolls, and Raymond J. Dolan. Psychophysiological and
modulatory interactions in neuroimaging. NeuroImage, 6(3):218–229,
1997.

[239] Mariann Oemisch, Stephanie Westendorff, Marzyeh Azimi,
Seyed Alireza Hassani, Salva Ardid, Paul H. E. Tiesinga, and
Thilo Womelsdorf. Feature-specific prediction errors and surprise
across macaque fronto-striatal circuits. Nature communications,
10(1):176–176, 2019.

[240] Aurelio Cortese, Benedetto De Martino, and Mitsuo Kawato. The
neural and cognitive architecture for learning from a small sample.
Current opinion in neurobiology, 55(NA):133–141, 2019.

[241] Andrew M Wikenheiser and Geoffrey Schoenbaum. Over the river,
through the woods: cognitive maps in the hippocampus and or-
bitofrontal cortex. Nature Reviews Neuroscience, 17(8):513–523, 2016.



212 BIBLIOGRAPHY

[242] Shiva Farashahi, Katherine Rowe, Zohra Aslami, Daeyeol Lee, and
Alireza Soltani. Feature-based learning improves adaptability without
compromising precision. Nature communications, 8(1):1768–1768, 2017.

[243] Dorothy Tse, Tomonori Takeuchi, Masaki Kakeyama, Yasushi Kajii,
Hiroyuki Okuno, Chiharu Tohyama, Haruhiko Bito, and Richard G. M.
Morris. Schema-dependent gene activation and memory encoding in
neocortex. Science (New York, N.Y.), 333(6044):891–895, 2011.

[244] Michael Mack, Alison R. Preston, and Bradley C. Love. Ventrome-
dial prefrontal cortex compression during concept learning. Nature
communications, 11(1):46–46, 2020.

[245] Rei Akaishi, Nils Kolling, Joshua W. Brown, and Matthew F. S. Rush-
worth. Neural mechanisms of credit assignment in a multicue envi-
ronment. The Journal of neuroscience : the official journal of the Society for
Neuroscience, 36(4):1096–1112, 2016.

[246] Sara L. Bengtsson, John-Dylan Haynes, Katsuyuki Sakai, Mark J. Buck-
ley, and Richard E. Passingham. The representation of abstract task
rules in the human prefrontal cortex. Cerebral cortex (New York, N.Y. :
1991), 19(8):1929–1936, 2008.

[247] Matthew K. Mian, Sameer A. Sheth, Shaun R. Patel, Konstantinos
Spiliopoulos, Emad N. Eskandar, and Ziv Williams. Encoding of rules
by neurons in the human dorsolateral prefrontal cortex. Cerebral cortex
(New York, N.Y. : 1991), 24(3):807–816, 2012.

[248] Jonathan D. Wallis, Kathleen C. Anderson, and Earl K. Miller. Sin-
gle neurons in prefrontal cortex encode abstract rules. Nature,
411(6840):953–956, 2001.

[249] Philippe Domenech, Jérôme Redouté, Etienne Koechlin, and Jean-
Claude Dreher. The neuro-computational architecture of value-based
selection in the human brain. Cerebral cortex (New York, N.Y. : 1991),
28(2):585–601, 2018.

[250] Maël Donoso, Anne G. E. Collins, and Etienne Koechlin. Foundations
of human reasoning in the prefrontal cortex. Science (New York, N.Y.),
344(6191):1481–1486, 2014.

[251] Garrett E. Alexander and Michael D. Crutcher. Functional architecture
of basal ganglia circuits: neural substrates of parallel processing. Trends
in neurosciences, 13(7):266–271, 1990.

[252] Heekyung Lee, Douglas GoodSmith, and James J. Knierim. Parallel
processing streams in the hippocampus. Current opinion in neurobiology,
64(NA):127–134, 2020.

[253] Mehran Spitmaan, Hyojung Seo, Daeyeol Lee, and Alireza Soltani.
Multiple timescales of neural dynamics and integration of task-relevant
signals across cortex. Proceedings of the National Academy of Sciences of
the United States of America, 117(36):22522–22531, 2020.

[254] Timo Flesch, Keno Juechems, Tsvetomira Dumbalska, Andrew Saxe,
and Christopher Summerfield. Orthogonal representations for robust
context-dependent task performance in brains and neural networks.
Neuron, 110(7):1258–1270, 2022.



BIBLIOGRAPHY 213

[255] Matthias Guggenmos, Volker Thoma, John-Dylan Haynes, Alan
Richardson-Klavehn, Radoslaw Martin Cichy, and Philipp Sterzer. Spa-
tial attention enhances object coding in local and distributed represen-
tations of the lateral occipital complex. NeuroImage, 116(NA):149–157,
2015.

[256] Yukiyasu Kamitani and Frank Tong. Decoding the visual and subjective
contents of the human brain. Nature neuroscience, 8(5):679–685, 2005.

[257] Ranganatha Sitaram, Tomas Ros, Luke Stoeckel, Sven Haller, Frank
Scharnowski, Jarrod Lewis-Peacock, Nikolaus Weiskopf, Maria Laura
Blefari, Mohit Rana, Ethan Oblak, et al. Closed-loop brain training: the
science of neurofeedback. Nature Reviews Neuroscience, 18(2):86–100,
2017.

[258] Pradyumna Sepulveda, Ranganatha Sitaram, Mohit Rana, Cristian
Montalba, Cristian Tejos, and Sergio Ruiz. How feedback, motor
imagery, and reward influence brain self-regulation using real-time
fmri. Human brain mapping, 37(9):3153–3171, 2016.

[259] Richard J. Krauzlis, Anil Bollimunta, Fabrice Arcizet, and Lupeng
Wang. Attention as an effect not a cause. Trends in cognitive sciences,
18(9):457–464, 2014.

[260] G Elliott Wimmer and Daphna Shohamy. Preference by association:
how memory mechanisms in the hippocampus bias decisions. Science,
338(6104):270–273, 2012.

[261] Doris Y Tsao, Winrich A Freiwald, Tamara A Knutsen, Joseph B Man-
deville, and Roger BH Tootell. Faces and objects in macaque cerebral
cortex. Nature neuroscience, 6(9):989–995, 2003.

[262] James J DiCarlo, Davide Zoccolan, and Nicole C Rust. How does the
brain solve visual object recognition? Neuron, 73(3):415–434, 2012.

[263] Dwight J Kravitz, Kadharbatcha S Saleem, Chris I Baker, Leslie G
Ungerleider, and Mortimer Mishkin. The ventral visual pathway: an
expanded neural framework for the processing of object quality. Trends
in cognitive sciences, 17(1):26–49, 2013.

[264] David H Hubel and Torsten N Wiesel. Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex. The
Journal of physiology, 160(1):106, 1962.

[265] Nancy Kanwisher, Josh McDermott, and Marvin M Chun. The fusiform
face area: a module in human extrastriate cortex specialized for face
perception. Journal of neuroscience, 17(11):4302–4311, 1997.

[266] R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and
Itzhak Fried. Invariant visual representation by single neurons in the
human brain. Nature, 435(7045):1102–1107, 2005.

[267] Roozbeh Kiani, Hossein Esteky, Koorosh Mirpour, and Keiji Tanaka.
Object category structure in response patterns of neuronal popula-
tion in monkey inferior temporal cortex. Journal of neurophysiology,
97(6):4296–4309, 2007.



214 BIBLIOGRAPHY

[268] Patrik Vuilleumier and Jon Driver. Modulation of visual processing
by attention and emotion: windows on causal interactions between
human brain regions. Philosophical Transactions of the Royal Society B:
Biological Sciences, 362(1481):837–855, 2007.

[269] Georg B Keller, Tobias Bonhoeffer, and Mark Hübener. Sensorimotor
mismatch signals in primary visual cortex of the behaving mouse.
Neuron, 74(5):809–815, 2012.

[270] Philip A Kragel, Marianne C Reddan, Kevin S LaBar, and Tor D Wager.
Emotion schemas are embedded in the human visual system. Science
advances, 5(7):eaaw4358, 2019.

[271] Camillo Padoa-Schioppa. Neurobiology of economic choice: a good-
based model. Annual review of neuroscience, 34:333, 2011.

[272] Laurence T Hunt, Nils Kolling, Alireza Soltani, Mark W Woolrich,
Matthew FS Rushworth, and Timothy EJ Behrens. Mechanisms under-
lying cortical activity during value-guided choice. Nature neuroscience,
15(3):470–476, 2012.

[273] Rafael Polanía, Marius Moisa, Alexander Opitz, Marcus Grueschow,
and Christian C Ruff. The precision of value-based choices depends
causally on fronto-parietal phase coupling. Nature communications,
6(1):1–10, 2015.

[274] M. Andrea Pisauro, Elsa Fouragnan, Chris Retzler, and Marios G.
Philiastides. Neural correlates of evidence accumulation during value-
based decisions revealed via simultaneous EEG-fMRI. Nature Commu-
nications, 8(1):15808, August 2017.

[275] Romy Frömer and Amitai Shenhav. Filling the gaps: Cognitive control
as a critical lens for understanding mechanisms of value-based decision-
making. Neuroscience & Biobehavioral Reviews, 2021.

[276] Mariam Aly and Nicholas B Turk-Browne. Attention promotes episodic
encoding by stabilizing hippocampal representations. Proceedings of the
National Academy of Sciences, 113(4):E420–E429, 2016.

[277] Jonathan W. Peirce. Psychopy–psychophysics software in python. Jour-
nal of neuroscience methods, 162(1):8–13, 2007.

[278] Xiaosha Wang, Yangwen Xu, Yuwei Wang, Yi Zeng, Jiacai Zhang,
Zhenhua Ling, and Yanchao Bi. Representational similarity analysis
reveals task-dependent semantic influence of the visual word form
area. Scientific reports, 8(1):1–10, 2018.

[279] Thomas E Nichols and Andrew P Holmes. Nonparametric permutation
tests for functional neuroimaging: a primer with examples. Human
brain mapping, 15(1):1–25, 2002.

[280] Chris B Martin, Danielle Douglas, Rachel N Newsome, Louisa LY Man,
and Morgan D Barense. Integrative and distinctive coding of visual and
conceptual object features in the ventral visual stream. elife, 7:e31873,
2018.



BIBLIOGRAPHY 215

[281] Matthew Brett, Jean-Luc Anton, Romain Valabregue, Jean-Baptiste
Poline, et al. Region of interest analysis using an spm toolbox. In
8th international conference on functional mapping of the human brain,
volume 16, page 497. Sendai, 2002.

[282] Juan Eugenio Iglesias, Jean C Augustinack, Khoa Nguyen, Christo-
pher M Player, Allison Player, Michelle Wright, Nicole Roy, Matthew P
Frosch, Ann C McKee, Lawrence L Wald, et al. A computational atlas
of the hippocampal formation using ex vivo, ultra-high resolution
mri: application to adaptive segmentation of in vivo mri. Neuroimage,
115:117–137, 2015.

[283] Stephanie Theves, Guillén Fernandez, and Christian F Doeller. The
hippocampus encodes distances in multidimensional feature space.
Current Biology, 29(7):1226–1231, 2019.

[284] Ming Bo Cai, Nicolas W Schuck, Jonathan W Pillow, and Yael Niv.
Representational structure or task structure? bias in neural represen-
tational similarity analysis and a bayesian method for reducing bias.
PLoS computational biology, 15(5):e1006299, 2019.

[285] Katherine S Moore, Do-Joon Yi, and Marvin Chun. The effect of
attention on repetition suppression and multivoxel pattern similarity.
Journal of Cognitive Neuroscience, 25(8):1305–1314, 2013.

[286] Mariam Aly and Nicholas B Turk-Browne. Attention stabilizes repre-
sentations in the human hippocampus. Cerebral Cortex, 26(2):783–796,
2016.

[287] Chen-Chung Lee and John C Middlebrooks. Auditory cortex spatial
sensitivity sharpens during task performance. Nature neuroscience,
14(1):108–114, 2011.

[288] Eran Eldar, Jonathan D Cohen, and Yael Niv. The effects of neural gain
on attention and learning. Nature neuroscience, 16(8):1146–1153, 2013.

[289] Anja Farovik, Ryan J Place, Sam McKenzie, Blake Porter, Catherine E
Munro, and Howard Eichenbaum. Orbitofrontal cortex encodes mem-
ories within value-based schemas and represents contexts that guide
memory retrieval. Journal of Neuroscience, 35(21):8333–8344, 2015.

[290] Matthew FS Rushworth and Timothy EJ Behrens. Choice, uncertainty
and value in prefrontal and cingulate cortex. Nature neuroscience,
11(4):389–397, 2008.

[291] John P O’Doherty, Jeffrey Cockburn, and Wolfgang M Pauli. Learning,
reward, and decision making. Annual review of psychology, 68:73–100,
2017.

[292] Peter C Holland and Mark E Bouton. Hippocampus and context in
classical conditioning. Current opinion in neurobiology, 9(2):195–202,
1999.

[293] Dagmar Zeithamova, Bernard D Gelman, Lea Frank, and Alison R
Preston. Abstract representation of prospective reward in the hip-
pocampus. Journal of Neuroscience, 38(47):10093–10101, 2018.

[294] Eric B Knudsen and Joni D Wallis. Hippocampal neurons construct a
map of an abstract value space. Cell, 184(18):4640–4650, 2021.



216 BIBLIOGRAPHY

[295] Marvin M Chun, Julie D Golomb, and Nicholas B Turk-Browne. A
taxonomy of external and internal attention. Annual review of psychology,
62:73–101, 2011.

[296] Mariam Aly and Nicholas B Turk-Browne. Flexible weighting of diverse
inputs makes hippocampal function malleable. Neuroscience Letters,
680:13–22, 2018.

[297] Gui Xue, Qi Dong, Chuansheng Chen, Zhonglin Lu, Jeanette A Mum-
ford, and Russell A Poldrack. Greater neural pattern similarity across
repetitions is associated with better memory. Science, 330(6000):97–101,
2010.

[298] Abhishek Banerjee, Giuseppe Parente, Jasper Teutsch, Christopher
Lewis, Fabian F Voigt, and Fritjof Helmchen. Value-guided remapping
of sensory cortex by lateral orbitofrontal cortex. Nature, 585(7824):245–
250, 2020.

[299] Dechen Liu, Juan Deng, Zhewei Zhang, Zhi-Yu Zhang, Yan-Gang
Sun, Tianming Yang, and Haishan Yao. Orbitofrontal control of visual
cortex gain promotes visual associative learning. Nature communications,
11(1):1–14, 2020.

[300] Domenica Veniero, Joachim Gross, Stephanie Morand, Felix Duecker,
Alexander T Sack, and Gregor Thut. Top-down control of visual
cortex by the frontal eye fields through oscillatory realignment. Nature
communications, 12(1):1–13, 2021.

[301] Insub Kim, Sang Wook Hong, Steven K Shevell, and Won Mok Shim.
Neural representations of perceptual color experience in the human
ventral visual pathway. Proceedings of the National Academy of Sciences,
117(23):13145–13150, 2020.

[302] Stephanie CY Chan, Yael Niv, and Kenneth A Norman. A probability
distribution over latent causes, in the orbitofrontal cortex. Journal of
Neuroscience, 36(30):7817–7828, 2016.

[303] G Elliott Wimmer and Christian Büchel. Learning of distant state pre-
dictions by the orbitofrontal cortex in humans. Nature communications,
10(1):1–11, 2019.

[304] Nir Moneta, Mona M Garvert, Hauke R Heekeren, and Nicolas W
Schuck. Representations of context and context-dependent values in
vmpfc compete for guiding behavior. bioRxiv, pages 2021–03, 2021.

[305] Vanessa E Ghosh and Asaf Gilboa. What is a memory schema? a his-
torical perspective on current neuroscience literature. Neuropsychologia,
53:104–114, 2014.

[306] Anna M Monk, Marshall A Dalton, Gareth R Barnes, and Eleanor A
Maguire. The role of hippocampal–ventromedial prefrontal cortex
neural dynamics in building mental representations. Journal of cognitive
neuroscience, 33(1):89–103, 2021.

[307] Aaron Schurger, Francisco Pereira, Anne Treisman, and Jonathan D
Cohen. Reproducibility distinguishes conscious from nonconscious
neural representations. Science, 327(5961):97–99, 2010.



BIBLIOGRAPHY 217

[308] Aaron Schurger, Ioannis Sarigiannidis, Lionel Naccache, Jacobo D Sitt,
and Stanislas Dehaene. Cortical activity is more stable when sensory
stimuli are consciously perceived. Proceedings of the National Academy of
Sciences, 112(16):E2083–E2092, 2015.

[309] Kiyohito Iigaya, Sanghyun Yi, Iman A Wahle, Sandy Tanwisuth, Logan
Cross, and John P O’Doherty. Neural mechanisms underlying the
hierarchical construction of perceived aesthetic value. Nature Communi-
cations, 14(1):127, 2023.

[310] Amitai Shenhav and Uma R Karmarkar. Dissociable components of
the reward circuit are involved in appraisal versus choice. Scientific
reports, 9(1):1–12, 2019.

[311] Rafal Bogacz, Eric-Jan Wagenmakers, Birte U. Forstmann, and Sander
Nieuwenhuis. The neural basis of the speed–accuracy tradeoff. Trends
in neurosciences, 33(1):10–16, 2009.

[312] Patrick Rabbitt. Errors and error correction in choice-response tasks.
Journal of experimental psychology, 71(2):264–272, 1966.

[313] Nick Yeung and Christopher Summerfield. Metacognition in hu-
man decision-making: confidence and error monitoring. Philosophical
transactions of the Royal Society of London. Series B, Biological sciences,
367(1594):1310–1321, 2012.

[314] Eric Schulz and Samuel J. Gershman. The algorithmic architecture
of exploration in the human brain. Current opinion in neurobiology,
55(NA):7–14, 2018.

[315] Philipp Schwartenbeck, Johannes Passecker, Tobias U. Hauser, Thomas
H. B. FitzGerald, Martin Kronbichler, and Karl J. Friston. Computa-
tional mechanisms of curiosity and goal-directed exploration. eLife,
8(NA):1–45, 2019.

[316] Scott Cheng-Hsin Yang, Daniel M. Wolpert, and Máté Lengyel. The-
oretical perspectives on active sensing. Current opinion in behavioral
sciences, 11(NA):100–108, 2018.

[317] Kfir Eliaz and Andrew Schotter. Experimental testing of intrinsic pref-
erences for noninstrumental information. American Economic Review,
97(2):166–169, 2007.

[318] Filip Gesiarz, Donal Cahill, and Tali Sharot. Evidence accumulation is
biased by motivation: A computational account. PLoS computational
biology, 15(6):e1007089–NA, 2019.

[319] Laurence T. Hunt, Robb B. Rutledge, W. M. Nishantha Malalasekera,
Steven W. Kennerley, and Raymond J. Dolan. Approach-induced biases
in human information sampling. PLoS biology, 14(11):e2000638–NA,
2016.

[320] J. A. Max Rodriguez Cabrero, Jian-Qiao Zhu, and Elliot Andrew Lud-
vig. Costly curiosity: People pay a price to resolve an uncertain gamble
early. Behavioural processes, 160(NA):20–25, 2019.

[321] Tali Sharot. The optimism bias. Current biology : CB, 21(23):R941–5,
2011.



218 BIBLIOGRAPHY

[322] Maya Zhe Wang and Benjamin Y. Hayden. Monkeys are curious about
counterfactual outcomes. Cognition, 189(NA):1–10, 2019.

[323] Lieke L. F. van Lieshout, Annelinde R. E. Vandenbroucke, Nils C. J.
Müller, Roshan Cools, and Floris P. de Lange. Induction and relief of
curiosity elicit parietal and frontal activity. The Journal of neuroscience :
the official journal of the Society for Neuroscience, 38(10):2579–2588, 2018.

[324] William Hart, Dolores Albarracín, Alice H. Eagly, Inge Brechan,
Matthew J. Lindberg, and Lisa A. Merrill. Feeling validated versus
being correct: a meta-analysis of selective exposure to information.
Psychological bulletin, 135(4):555–588, 2009.

[325] Charles G. Lord, Lee Ross, and Mark R. Lepper. Biased assimila-
tion and attitude polarization: The effects of prior theories on subse-
quently considered evidence. Journal of Personality and Social Psychology,
37(11):2098–2109, 1979.

[326] Raymond S. Nickerson. Confirmation bias: A ubiquitous phenomenon
in many guises:. Review of General Psychology, 2(2):175–220, 1998.

[327] Natalie Jomini Stroud. Media use and political predispositions: Revis-
iting the concept of selective exposure. Political Behavior, 30(3):341–366,
2007.

[328] P. C. Wason. On the failure to eliminate hypotheses in a conceptual
task. Quarterly Journal of Experimental Psychology, 12(3):129–140, 1960.

[329] P. C. Wason. Reasoning about a rule. The Quarterly journal of experimental
psychology, 20(3):273–281, 1968.

[330] Eytan Bakshy, Solomon Messing, and Lada A. Adamic. Exposure to
ideologically diverse news and opinion on facebook. Science (New York,
N.Y.), 348(6239):1130–1132, 2015.

[331] W. Lance Bennett and Shanto Iyengar. A new era of minimal effects?
the changing foundations of political communication. Journal of Com-
munication, 58(4):707–731, 2008.

[332] Eli Pariser. The filter bubble: What the Internet is hiding from you. penguin
UK, 2011.

[333] Zohar Z. Bronfman, Noam Brezis, Rani Moran, Konstantinos Tset-
sos, Tobias H. Donner, and Marius Usher. Decisions reduce sen-
sitivity to subsequent information. Proceedings. Biological sciences,
282(1810):20150228–NA, 2015.

[334] Bharath Chandra Talluri, Anne E Urai, Konstantinos Tsetsos, Marius
Usher, and Tobias H. Donner. Current biology - confirmation bias
through selective overweighting of choice-consistent evidence. Current
biology : CB, 28(19):3128–3135, 2018.

[335] Tor Tarantola, Tomas Folke, Annika Boldt, Omar D Pérez, and
Benedetto De Martino. Confirmation bias optimizes reward learn-
ing. BioRxiv, pages 2021–02, 2021.

[336] Germain Lefebvre, Christopher Summerfield, and Rafal Bogacz. A
normative account of confirmation bias during reinforcement learning.
Neural Computation, 34(2):307–337, 2022.



BIBLIOGRAPHY 219

[337] Laurence T. Hunt, N Malalasekera, Archy O. de Berker, Bruno Miranda,
Simon F. Farmer, Timothy E. J. Behrens, and Steven W. Kennerley. Triple
dissociation of attention and decision computations across prefrontal
cortex. Nature neuroscience, 21(10):1471–1481, 2018.

[338] M. A. Tolcott, F. F. Marvin, and Paul E. Lehner. Expert decision-
making in evolving situations. IEEE Transactions on Systems, Man, and
Cybernetics, 19(3):606–615, 1989.

[339] Max Rollwage, Alisa Loosen, Tobias U Hauser, Rani Moran, Raymond J
Dolan, and Stephen M Fleming. Confidence drives a neural confirma-
tion bias. Nature communications, 11(1):1–11, 2020.

[340] Alexandre Pouget, Jan Drugowitsch, and Adam Kepecs. Confidence
and certainty: distinct probabilistic quantities for different goals. Nature
Neuroscience, 19(3):366–374, March 2016.

[341] Ulrich Halekoh and Søren Højsgaard. A kenward-roger approximation
and parametric bootstrap methods for tests in linear mixed models:
The r package pbkrtest. Journal of Statistical Software, 59(9):1–32, 2014.

[342] Paula Kaanders, Pradyumna Sepulveda, Tomas Folke, Pietro Ortoleva,
and Benedetto De Martino. Humans actively sample evidence to
support prior beliefs. Elife, 11:e71768, 2022.

[343] Benjamin B. Scott, Christine M. Constantinople, Jeffrey C. Erlich,
David W. Tank, and Carlos D. Brody. Sources of noise during accumu-
lation of evidence in unrestrained and voluntarily head-restrained rats.
eLife, 4(NA):e11308–NA, 2015.

[344] Ian Krajbich and Antonio Rangel. Multialternative drift-diffusion
model predicts the relationship between visual fixations and choice in
value-based decisions. Proceedings of the National Academy of Sciences,
108(33):13852–13857, 2011.

[345] Stefano Palminteri, Germain Lefebvre, Emma J. Kilford, and Sarah-
Jayne Blakemore. Confirmation bias in human reinforcement learning:
Evidence from counterfactual feedback processing. PLoS computational
biology, 13(8):e1005684–NA, 2017.

[346] Pietro Ortoleva and Erik Snowberg. Overconfidence in political behav-
ior. American Economic Review, 105(2):504–535, 2015.

[347] Robb B. Rutledge, Nikolina Skandali, Peter Dayan, and Raymond J.
Dolan. Dopaminergic modulation of decision making and subjective
well-being. The Journal of neuroscience : the official journal of the Society
for Neuroscience, 35(27):9811–9822, 2015.

[348] Ryan D. Tweney, Michael E. Doherty, Winifred J. Worner, Daniel B.
Pliske, Clifford R. Mynatt, Kimberly A. Gross, and Daniel L. Arkkelin.
Strategies of rule discovery in an inference task. Quarterly Journal of
Experimental Psychology, 32(1):109–123, 1980.

[349] Anthony I Jang, Ravi Sharma, and Jan Drugowitsch. Optimal policy
for attention-modulated decisions explains human fixation behavior.
Elife, 10:e63436, 2021.



220 BIBLIOGRAPHY

[350] Frederick Callaway, Antonio Rangel, and Thomas L. Griffiths. Fixation
patterns in simple choice reflect optimal information sampling. PLoS
computational biology, 17(3):1–29, 2021.

[351] Gordon Pennycook, Ziv Epstein, Mohsen Mosleh, Antonio A. Arechar,
Dean Eckles, and David G. Rand. Shifting attention to accuracy can
reduce misinformation online. Nature, 592(7855):590–595, 2021.

[352] Jacqueline Gottlieb and Pierre-Yves Oudeyer. Towards a neuroscience
of active sampling and curiosity. Nature reviews. Neuroscience, 19(12):758–
770, 2018.

[353] Winfried Rief, Julia A Glombiewski, Mario Gollwitzer, Anna Schubö,
Rainer Schwarting, and Anna Thorwart. Expectancies as core features
of mental disorders. Current opinion in psychiatry, 28(5):378–385, 2015.

[354] Phillipp Kurtz, Katharine A Shapcott, Jochen Kaiser, Joscha T Schmiedt,
and Michael C Schmid. The influence of endogenous and exogenous
spatial attention on decision confidence. Scientific reports, 7(1):1–9, 2017.

[355] Rachel N Denison, William T Adler, Marisa Carrasco, and Wei Ji Ma.
Humans incorporate attention-dependent uncertainty into perceptual
decisions and confidence. Proceedings of the National Academy of Sciences,
115(43):11090–11095, 2018.

[356] Philip L Smith and Douglas Vickers. The accumulator model of two-
choice discrimination. Journal of Mathematical Psychology, 32(2):135–168,
June 1988.

[357] Joaquin Navajas, Chandni Hindocha, Hebah Foda, Mehdi Keramati,
Peter E. Latham, and Bahador Bahrami. The idiosyncratic nature of
confidence. Nature Human Behaviour, 1(11):810–818, November 2017.

[358] Matilde M. Vaghi, Fabrice Luyckx, Akeem Sule, Naomi A. Fineberg,
Trevor W. Robbins, and Benedetto De Martino. Compulsivity Reveals a
Novel Dissociation between Action and Confidence. Neuron, 96(2):348–
354.e4, October 2017.

[359] Matthias Guggenmos, Gregor Wilbertz, Martin N Hebart, and Philipp
Sterzer. Mesolimbic confidence signals guide perceptual learning in
the absence of external feedback. eLife, 5:e13388, March 2016.

[360] Anthony S David, Nicholas Bedford, Ben Wiffen, and James Gilleen.
Failures of metacognition and lack of insight in neuropsychiatric disor-
ders. Philosophical Transactions of the Royal Society B: Biological Sciences,
367(1594):1379–1390, 2012.

[361] Madeleine E Moses-Payne, Max Rollwage, Stephen M Fleming, and
Jonathan P Roiser. Postdecision evidence integration and depressive
symptoms. Frontiers in psychiatry, 10:639, 2019.

[362] Monja Hoven, Maël Lebreton, Jan B Engelmann, Damiaan Denys, Judy
Luigjes, and Ruth J van Holst. Abnormalities of confidence in psy-
chiatry: an overview and future perspectives. Translational psychiatry,
9(1):268, 2019.

[363] Roozbeh Kiani and Michael N Shadlen. Representation of confidence
associated with a decision by neurons in the parietal cortex. science,
324(5928):759–764, 2009.



BIBLIOGRAPHY 221

[364] Amos Tversky and Daniel Kahneman. Judgment under uncertainty:
Heuristics and biases: Biases in judgments reveal some heuristics of
thinking under uncertainty. science, 185(4157):1124–1131, 1974.

[365] Dobromir Rahnev, Ai Koizumi, Li Yan McCurdy, Mark D’Esposito,
and Hakwan Lau. Confidence leak in perceptual decision making.
Psychological science, 26(11):1664–1680, 2015.

[366] Joaquin Navajas, Bahador Bahrami, and Peter E Latham. Post-
decisional accounts of biases in confidence. Current opinion in behavioral
sciences, 11:55–60, 2016.

[367] Ai Koizumi, Brian Maniscalco, and Hakwan Lau. Does perceptual
confidence facilitate cognitive control? Attention, Perception, & Psy-
chophysics, 77:1295–1306, 2015.

[368] Brian Maniscalco, Megan AK Peters, and Hakwan Lau. Heuristic
use of perceptual evidence leads to dissociation between performance
and metacognitive sensitivity. Attention, Perception, & Psychophysics,
78(3):923–937, 2016.

[369] Megan AK Peters, Thomas Thesen, Yoshiaki D Ko, Brian Maniscalco,
Chad Carlson, Matt Davidson, Werner Doyle, Ruben Kuzniecky, Orrin
Devinsky, Eric Halgren, et al. Perceptual confidence neglects decision-
incongruent evidence in the brain. Nature human behaviour, 1(7):0139,
2017.

[370] Jason Samaha, Missy Switzky, and Bradley R Postle. Confidence boosts
serial dependence in orientation estimation. Journal of Vision, 19(4):25–
25, 2019.

[371] Jason Samaha and Rachel Denison. The positive evidence bias in
perceptual confidence is unlikely post-decisional. Neuroscience of Con-
sciousness, 2022(1):niac010, 2022.

[372] Brian Maniscalco, Brian Odegaard, Piercesare Grimaldi, Sang-Hun Cho,
Michele A Basso, Hakwan Lau, and Megan A Peters. Tuned inhibition
in perceptual decision-making circuits can explain seemingly subop-
timal confidence behavior. PLoS computational biology, 17(3):e1008779,
2021.

[373] Manuel Rausch, Sebastian Hellmann, and Michael Zehetleitner. Confi-
dence in masked orientation judgments is informed by both evidence
and visibility. Attention, Perception, & Psychophysics, 80(1):134–154, 2018.

[374] Christoph Strauch, Chin-An Wang, Wolfgang Einhäuser, Stefan Van der
Stigchel, and Marnix Naber. Pupillometry as an integrated readout of
distinct attentional networks. Trends in Neurosciences, 2022.

[375] Matthew R Nassar, Katherine M Rumsey, Robert C Wilson, Kinjan
Parikh, Benjamin Heasly, and Joshua I Gold. Rational regulation of
learning dynamics by pupil-linked arousal systems. Nature neuroscience,
15(7):1040–1046, 2012.

[376] Karolina M Lempert, Yu Lin Chen, and Stephen M Fleming. Relating
pupil dilation and metacognitive confidence during auditory decision-
making. PLoS One, 10(5):e0126588, 2015.



222 BIBLIOGRAPHY

[377] Anne E Urai, Anke Braun, and Tobias H Donner. Pupil-linked arousal
is driven by decision uncertainty and alters serial choice bias. Nature
communications, 8(1):14637, 2017.

[378] Joanne C Van Slooten, Sara Jahfari, Tomas Knapen, and Jan Theeuwes.
How pupil responses track value-based decision-making during and af-
ter reinforcement learning. PLoS computational biology, 14(11):e1006632,
2018.

[379] Sanjeev Rajananda, Hakwan Lau, and Brian Odegaard. A random-dot
kinematogram for web-based vision research. Journal of Open Research
Software, 6(1):6, 2018.

[380] Stefan Palan and Christian Schitter. Prolific. ac—a subject pool for
online experiments. Journal of Behavioral and Experimental Finance, 17:22–
27, 2018.

[381] Kiyofumi Miyoshi and Hakwan Lau. A decision-congruent heuris-
tic gives superior metacognitive sensitivity under realistic variance
assumptions. Psychological Review, 127(5):655, 2020.

[382] Joseph A Heng, Michael Woodford, and Rafael Polania. Efficient
sampling and noisy decisions. Elife, 9:e54962, 2020.

[383] Rafael Polanía, Michael Woodford, and Christian C. Ruff. Efficient
coding of subjective value. Nature Neuroscience, 22(1):134–142, January
2019.

[384] Stephen M Fleming, Laurence T Maloney, and Nathaniel D Daw.
The irrationality of categorical perception. Journal of Neuroscience,
33(49):19060–19070, 2013.

[385] Tomas Knapen, Jan Willem de Gee, Jan Brascamp, Stijn Nuiten, Sylco
Hoppenbrouwers, and Jan Theeuwes. Cognitive and ocular factors
jointly determine pupil responses under equiluminance. PloS one,
11(5):e0155574, 2016.

[386] Kiyofumi Miyoshi, Ayumi Kuwahara, and Jun Kawaguchi. Comparing
the confidence calculation rules for forced-choice recognition memory:
A winner-takes-all rule wins. Journal of Memory and Language, 102:142–
154, 2018.

[387] John A Swets. Form of empirical rocs in discrimination and diagnos-
tic tasks: implications for theory and measurement of performance.
Psychological bulletin, 99(2):181, 1986.

[388] Jason Samaha, Luca Iemi, and Bradley R Postle. Prestimulus alpha-
band power biases visual discrimination confidence, but not accuracy.
Consciousness and cognition, 54:47–55, 2017.

[389] Sumio Watanabe. Asymptotic equivalence of bayes cross validation
and widely applicable information criterion in singular learning theory.
Journal of machine learning research, 11(12), 2010.

[390] Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical bayesian
model evaluation using leave-one-out cross-validation and waic. Statis-
tics and computing, 27(5):1413–1432, 2017.



BIBLIOGRAPHY 223

[391] Maria K Eckstein, Belén Guerra-Carrillo, Alison T Miller Singley, and
Silvia A Bunge. Beyond eye gaze: What else can eyetracking reveal
about cognition and cognitive development? Developmental cognitive
neuroscience, 25:69–91, 2017.

[392] Gary Aston-Jones and Jonathan D Cohen. An integrative theory of
locus coeruleus-norepinephrine function: adaptive gain and optimal
performance. Annu. Rev. Neurosci., 28:403–450, 2005.

[393] Kerstin Preuschoff, Bernard Marius ’t Hart, and Wolfgang Einhäuser.
Pupil dilation signals surprise: Evidence for noradrenaline’s role in
decision making. Frontiers in neuroscience, 5:115, 2011.

[394] James W Antony, Thomas H Hartshorne, Ken Pomeroy, Todd M
Gureckis, Uri Hasson, Samuel D McDougle, and Kenneth A Norman.
Behavioral, physiological, and neural signatures of surprise during
naturalistic sports viewing. Neuron, 109(2):377–390, 2021.

[395] Jan Willem de Gee, Konstantinos Tsetsos, Lars Schwabe, Anne E Urai,
David McCormick, Matthew J McGinley, and Tobias H Donner. Pupil-
linked phasic arousal predicts a reduction of choice bias across species
and decision domains. Elife, 9:e54014, 2020.

[396] Medha Shekhar and Dobromir Rahnev. Sources of metacognitive
inefficiency. Trends in Cognitive Sciences, 25(1):12–23, 2021.

[397] Daphna Shohamy and Nathaniel D Daw. Integrating memories to
guide decisions. Current Opinion in Behavioral Sciences, 5:85–90, 2015.

[398] Lisa M Fitzgerald, Mahnaz Arvaneh, and Paul M Dockree. Domain-
specific and domain-general processes underlying metacognitive judg-
ments. Consciousness and Cognition, 49:264–277, 2017.

[399] Marion Rouault, Andrew McWilliams, Micah G Allen, and Stephen M
Fleming. Human metacognition across domains: insights from indi-
vidual differences and neuroimaging. Personality neuroscience, 1:e17,
2018.

[400] Audrey Mazancieux, Stephen Fleming, Céline Souchay, and Chris
Moulin. Retrospective confidence judgments across tasks: domain-
general processes underlying metacognitive accuracy. 2018.

[401] David Badre, Apoorva Bhandari, Haley Keglovits, and Atsushi Kiku-
moto. The dimensionality of neural representations for control. Current
Opinion in Behavioral Sciences, 38:20–28, 2021.

[402] Medha Shekhar and Dobromir Rahnev. How do humans give confi-
dence? a comprehensive comparison of process models of metacogni-
tion. 2022.

[403] Alexandre Zénon. Eye pupil signals information gain. Proceedings of
the Royal Society B, 286(1911):20191593, 2019.

[404] Jan Willem de Gee, Tomas Knapen, and Tobias H Donner. Decision-
related pupil dilation reflects upcoming choice and individual bias.
Proceedings of the National Academy of Sciences, 111(5):E618–E625, 2014.



224 BIBLIOGRAPHY

[405] G Wainstein, D Rojas-Líbano, NA Crossley, X Carrasco, Francisco
Aboitiz, and Tomás Ossandón. Pupil size tracks attentional perfor-
mance in attention-deficit/hyperactivity disorder. Scientific reports,
7(1):1–9, 2017.

[406] J Yu Angela and Peter Dayan. Uncertainty, neuromodulation, and
attention. Neuron, 46(4):681–692, 2005.

[407] Timothy J Pleskac and Jerome R Busemeyer. Two-stage dynamic signal
detection: a theory of choice, decision time, and confidence. Psychologi-
cal review, 117(3):864, 2010.

[408] Dino J Levy and Paul W Glimcher. The root of all value: a neural
common currency for choice. Current opinion in neurobiology, 22(6):1027–
1038, 2012.

[409] Shinsuke Suzuki, Logan Cross, and John P O’Doherty. Elucidating the
underlying components of food valuation in the human orbitofrontal
cortex. Nature neuroscience, 20(12):1780–1786, 2017.

[410] Kiyohito Iigaya, Sanghyun Yi, Iman A Wahle, Koranis Tanwisuth, and
John P O’Doherty. Aesthetic preference for art can be predicted from a
mixture of low-and high-level visual features. Nature Human Behaviour,
5(6):743–755, 2021.

[411] Seung-Lark Lim, John P O’Doherty, and Antonio Rangel. Stimulus
value signals in ventromedial pfc reflect the integration of attribute
value signals computed in fusiform gyrus and posterior superior tem-
poral gyrus. Journal of Neuroscience, 33(20):8729–8741, 2013.

[412] Alice M Xue, Karin Foerde, B Timothy Walsh, Joanna E Steinglass,
Daphna Shohamy, and Akram Bakkour. Neural representations of
food-related attributes in the human orbitofrontal cortex during choice
deliberation in anorexia nervosa. Journal of Neuroscience, 42(1):109–120,
2022.

[413] Masataka Watanabe, Kang Cheng, Yusuke Murayama, Kenichi Ueno,
Takeshi Asamizuya, Keiji Tanaka, and Nikos Logothetis. Attention
but not awareness modulates the bold signal in the human v1 during
binocular suppression. Science, 334(6057):829–831, 2011.

[414] Anne Gabrielle Eva Collins and Michael Joshua Frank. Neural signa-
ture of hierarchically structured expectations predicts clustering and
transfer of rule sets in reinforcement learning. Cognition, 152:160–169,
2016.

[415] Maria K Eckstein and Anne GE Collins. Computational evidence for
hierarchically structured reinforcement learning in humans. Proceedings
of the National Academy of Sciences, 117(47):29381–29389, 2020.

[416] James B Heald, Máté Lengyel, and Daniel M Wolpert. Contextual
inference underlies the learning of sensorimotor repertoires. Nature,
600(7889):489–493, 2021.

[417] David Aguilar-Lleyda, Maxime Lemarchand, and Vincent De Gardelle.
Confidence as a priority signal. Psychological Science, 31(9):1084–1096,
2020.



BIBLIOGRAPHY 225

[418] Nomi Carlebach and Nick Yeung. Subjective confidence acts as an
internal cost-benefit factor when choosing between tasks. Journal of
Experimental Psychology: Human Perception and Performance, 46(7):729,
2020.

[419] Morteza Sarafyazd and Mehrdad Jazayeri. Hierarchical reasoning by
neural circuits in the frontal cortex. Science, 364(6441):eaav8911, 2019.

[420] Daniel Kahneman and Amos Tversky. Choices, values, and frames. In
Handbook of the fundamentals of financial decision making: Part I, pages
269–278. World Scientific, 2013.

[421] Peter Balsam and Arthur Tomie. Context and learning. Psychology Press,
2014.

[422] Huijeong Jeong, Annie Taylor, Joseph R Floeder, Martin Lohmann,
Stefan Mihalas, Brenda Wu, Mingkang Zhou, Dennis A Burke, and
Vijay Mohan K Namboodiri. Mesolimbic dopamine release conveys
causal associations. Science, 378(6626):eabq6740, 2022.

[423] James B Heald, Máté Lengyel, and Daniel M Wolpert. Contextual
inference in learning and memory. Trends in Cognitive Sciences, 2022.

[424] Barry E Stein and Terrence R Stanford. Multisensory integration:
current issues from the perspective of the single neuron. Nature reviews
neuroscience, 9(4):255–266, 2008.

[425] Leonie Koban, Peter J Gianaros, Hedy Kober, and Tor D Wager. The self
in context: brain systems linking mental and physical health. Nature
Reviews Neuroscience, 22(5):309–322, 2021.

[426] Jessica Aylward, Claire Hales, Emma Robinson, and Oliver J Robinson.
Translating a rodent measure of negative bias into humans: the impact
of induced anxiety and unmedicated mood and anxiety disorders.
Psychological medicine, 50(2):237–246, 2020.

[427] Edna B Foa and Michael J Kozak. Emotional processing of fear: expo-
sure to corrective information. Psychological bulletin, 99(1):20, 1986.

[428] Samuel J Gershman, Carolyn E Jones, Kenneth A Norman, Marie-
H Monfils, and Yael Niv. Gradual extinction prevents the return of
fear: implications for the discovery of state. Frontiers in behavioral
neuroscience, 7:164, 2013.

[429] Rita Z Goldstein and Nora D Volkow. Dysfunction of the prefrontal
cortex in addiction: neuroimaging findings and clinical implications.
Nature reviews neuroscience, 12(11):652–669, 2011.

[430] József Gerevich, Erika Bácskai, Lajos Farkas, and Zoltán Danics. A case
report: Pavlovian conditioning as a risk factor of heroin’overdose’death.
Harm reduction journal, 2(1):1–4, 2005.

[431] J. Gutiérrez-Cebollada, Rafael de la Torre, Jordi Ortuno, José María
Garcés, and Jordi Camí. Psychotropic drug consumption and other
factors associated with heroin overdose. Drug and alcohol dependence,
35 2:169–74, 1994.



226 BIBLIOGRAPHY

[432] Shepard Siegel. Pavlovian conditioning and heroin overdose: Reports
by overdose victims. Bulletin of the Psychonomic Society, 22(5):428–430,
1984.

[433] Christine L Melchior. Conditioned tolerance provides protection
against ethanol lethality. Pharmacology Biochemistry and Behavior,
37(1):205–206, 1990.

[434] Shepard Siegel, Riley E. Hinson, Marvin D. Krank, and Jane McCully.
Heroin "Overdose" Death: Contribution of Drug-Associated Environ-
mental Cues. Science, 216(4544):436–437, April 1982.

[435] Javier Vila. Protection from pentobarbital lethality mediated by Pavlo-
vian conditioning. Pharmacology Biochemistry and Behavior, 32(1):365–366,
January 1989.


	Abstract
	Impact Statement
	Acknowledgements
	Statement of Publications
	UCL Research Paper Declaration Form




	Introduction
	Perceptual decisions
	Value-based decisions
	Neural correlates of decisions
	Decision and confidence
	Goals and contexts

	General Methods
	Summary
	Regression analysis
	Decision models: Signal Detection Theory
	Decision models: Sequential Sampling Models and Attention
	Probabilistic Graphical Models
	Reinforcement learning
	Functional Magnetic Resonance Imaging
	Univariate analysis
	Multivariate analysis
	Classifiers
	Representational similarity analysis

	Conclusion

	Information sampling and goals in human decision
	Visual attention modulates the integration of goal-relevant evidence and not value
	Summary
	Introduction
	Methods
	Procedure
	Exclusion criteria
	Participants
	Eye-tracking
	Data analysis: behavioural data
	Data analysis: attentional model - GLAM

	Results
	The effect of attention on choice
	Fixations effects in choice
	Attentional model: GLAM

	Discussion


	Brain representations and goals in human decisions
	Goal-directed representations in learning: Value signal guides abstraction during learning
	Summary
	Introduction
	Methods
	Participants
	Learning task 
	Computational modelling part 1: mixture-of-experts RL model
	Computational modelling part 2: Feature RL and Abstract RLs
	Procedures for model fitting, simulations
	fMRI scans: acquisition and protocol
	fMRI scans: standard and parametric general linear models
	fMRI scans: pre-processing for decoding
	Decoding: multivoxel pattern analysis (MVPA)

	Results
	Behavioural accounts of learning
	Discovery of abstract representations
	Behaviour shifts from Feature- to Abstraction-based reinforcement learning
	The role of vmPFC in constructing goal-dependent value from sensory features
	A value-sensitive vmPFC subregion prioritises abstract elements

	Discussion

	Goal affects brain representations in preference evaluation
	Summary
	Introduction
	Methods
	Experimental paradigm
	Participants
	fMRI
	Univariate analysis
	Representation Similarity Analysis (RSA)

	Results
	Behavioural results
	Representation of imagination and choice tasks
	Representational structure in imagination task
	Goal-relevant representations in choice task

	Discussion


	Confidence and goals in human decision
	Attention and confidence in confirmation bias
	Summary
	Introduction
	Methods
	Participants
	Experiment
	Eye-tracking
	Analyses
	Hierarchical models
	Attentional model - GLAM

	Results
	Free sampling condition
	Fixed sampling condition
	Attentional evidence accumulation modelling

	Discussion

	Decision goals and their impact in confidence
	Summary
	Introduction
	Methods
	Experiment Design
	Participants and Exclusion criteria
	Data analysis: behavioural data
	Modelling

	Results
	Which factors determine confidence?
	Attentional Model: GLAM

	Discussion

	Goals modulate the evidence bias in human confidence
	Summary
	Introduction
	Methods
	Procedure
	Participants
	Data analysis: behavioural data
	Bayesian Models
	Data analysis: pupillometry experiment

	Results
	Evidence bias on confidence depends on frame
	Simulations of asymmetric variance can generate evidence bias
	Asymmetric variance model
	Equal variance model
	Heuristic model
	Asymmetric variance model fit to human data
	Attention as the cognitive mechanism

	Discussion

	General Discussion
	Summary
	Decisions and the goal perspective
	Contexts and goals
	Psychiatric implications
	Conclusion



