39,361 research outputs found

    Evaluation of the relationships between computed tomography features, pathological findings, and rrognostic risk assessment in gastrointestinal stromal tumors

    Get PDF
    Objectives The aim of this study was to correlate computed tomography (CT) findings with pathology in gastrointestinal stromal tumors (GISTs). Methods A retrospective evaluation of CT images of 44 patients with GISTs was performed. Computed tomography findings analyzed were location, size, margins, degree and pattern of contrast enhancement, angiogenesis, necrosis, signs of invasion, peritoneal effusion, peritoneal implants, surface ulceration, and calcifications. Associations between CT features and mitotic rate, Miettinen classes of risk, lesions size, and among CT features were investigated. χ 2 Test and Fisher test were performed. Results Mitotic rate was associated with margins (P = 0.016) and with adjacent organ invasion (P = 0.043). Pattern of contrast enhancement (P = 0.002), angiogenesis (P = 0.006), necrosis (P = 0.006), invasion of adjacent organs (P = 0.011), and margins (P = 0.006) were associated with classes of risk. Several associations (P < 0.05) between lesion size and CT features and among all the investigated CT features were found. Conclusions Computed tomography features could reflect GIST biology being associated with the mitotic rate and with classes of risk

    Mutations in evolution algebras by means of isotopisms

    Get PDF
    Any mutation of genotypes that occurs during the mitotic cell cycle in an eukaryotic cell can be algebraically represented by an isotopism of the evolution algebra that describes the genetic pattern of the inheritance process. This talk deals with the theory of isotopisms of non-associative algebras and, particularly, with the distribution of evolution algebras into isotopism classes in order to determine the spectrum of genetic patterns, up to mutation, that describe the mentioned inheritance process of a mitotic cell cycle.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Autosegregation of enzyme loci Me1 and Gpi2 in agamospermous progenies of triploid sugarbeet plants

    Get PDF
    Ratios of malic-enzyme (ME1) and glucosephosphate isomerase (GPI2) phenotypic classes were studied in agamospermous progenies of triploid sugar beet plants. It was shown that the ratio of enzymes phenotypic classes quite well accords with the calculations based on the supposition about reduplication of chromosome sites carrying alleles of enzyme loci accompanied by a loss of excessive allelic copies in the first cell division under embryogenesis. Polyteny – conditioned allelic dose increase leads to the occurrence of alleles – absent in the initial parent – at a certain frequency in the developing progeny. The notions of “meiotic autosegregation” and “mitotic autosegregation” – typical of meiotic and mitotic agamospermy, respectively, – were introduced; the term locus “polygenotype” characterizing the allelic composition of locus, number of chromosomes and a copies number of chromatides sites carrying marker-locus alleles in the cell before entering embryogenesis was also introduced

    Induction of chromosome shattering by ultraviolet light and caffeine

    Get PDF
    Synchronized and asynchronously growing cells of a V79 sub-line of the Chinese hamster were either partial-cell irradiation (λ, 254 nm) or laser-UV-microirradiated (λ, 257 nm). Post-incubation with caffeine (1–2 mM) often resulted in chromosome shattering, which was a rare event in the absence of this compound. In experiments with caffeine, the following results were obtained. Shattering of all the chromosomes of a cell (generalized chromosome shattering, GCS) was induced by partial-cell irradiation at the first post-irradiation mitosis when the UV fluence exceeded and “threshold” valued in the sensitive phases of the cell cycle (G1 and S). GCS was also induced by laser-UV-microirradiation of a small part of the nucleus in G1 of S whereas microirradiation of cytoplasm beside the nucleus was not effective. An upper limit of the UV fluence in the non-irradiated nuclear part due to scattering of the microbeam was experimentally obtained. This UV fluence was significantly below the threshold fluence necessary to induce GCS in whole-cell irradiation experiments. In other cells, partial nuclear irradiation resulted in shattering of a few chromosomes only, while the majority remained intact (partial chromosomes shattering, PCS). G1/early S was the most sensitive phase for induction of GCS by whole-cell and partial nuclear irradiation. The frequency of PCS was observed to increase when partial nuclear irradiation was performed either at lower incident doses or at later stages of S. We suggest that PCS and GCS indicate 2 levels of chromosome damage which can be produced by the synergistic action of UV irradiation and caffeine. PCS may be restricted to microirradiated chromatin whereas GCS involves both irradiated and unirradiated chromosomes in the microirradiated nucleus

    High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast.

    Get PDF
    In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination

    Importin-beta and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function

    Get PDF
    Protein conjugation with small ubiquitin-related modifier (SUMO) is a post-translational modification that modulates protein interactions and localisation. RANBP2 is a large nucleoporin endowed with SUMO E3 ligase and SUMO-stabilising activity, and is implicated in some cancer types. RANBP2 is part of a larger complex, consisting of SUMO-modified RANGAP1, the GTP-hydrolysis activating factor for the GTPase RAN. During mitosis, the RANBP2–SUMO-RANGAP1 complex localises to the mitotic spindle and to kinetochores after microtubule attachment. Here, we address the mechanisms that regulate this localisation and how they affect kinetochore functions. Using proximity ligation assays, we find that nuclear transport receptors importin-β and CRM1 play essential roles in localising the RANBP2–SUMO-RANGAP1 complex away from, or at kinetochores, respectively. Using newly generated inducible cell lines, we show that overexpression of nuclear transport receptors affects the timing of RANBP2 localisation in opposite ways. Concomitantly, kinetochore functions are also affected, including the accumulation of SUMO- conjugated topoisomerase-IIα and stability of kinetochore fibres. These results delineate a novel mechanism through which nuclear transport receptors govern the functional state of kinetochores by regulating the timely deposition of RANBP2

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists

    A dynamic mode of mitotic bookmarking by transcription factors.

    Get PDF
    During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking

    Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.

    Get PDF
    In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers
    corecore