57 research outputs found

    Fault-tolerant polyphase filters-based decimators for SRAM-based FPGA implementations

    Get PDF
    To reduce the oversampling rate of baseband signals, decimation is widely used in digital communication systems. Polyphase filters (PPFs) can be used to efficiently implement decimators. SRAM-based FPGAs provide large amounts of resources combined with flexibility and are a popular option for the implementation of communication receivers. However, they are sensitive to soft errors, which limit their application in harsh environments, such as space. An initial reliability study on SRAM-based FPGA implemented decimation shows that the soft errors on around 5% of the critical bits in the configuration memory of the decimator would degrade the decimated signal dramatically. Based on this result, this paper proposes an efficient fault tolerance scheme, in which the high correlation between adjacent PPFs outputs is utilized to tolerate the fault of a single-phase filter, and a duplicate and comparison structure is used to protect the fault tolerance logic. Hardware implementation and fault injection experiments show that the proposed scheme can drastically reduce the number of critical bits that cause severe output degradation with 1.5x resource usage and 0.75x maximum frequency relative to the unprotected decimator. Therefore, the proposed scheme can be an alternative to Triple Modular Redundancy that more than triples the use of resources.This work is supported by Natural Science Funds of China (Grant No. 62171313) and is partially supported by the ACHILLES project PID2019-104207RB-I00 funded by the Spanish Ministry of Science and Innovation and by the Madrid Community research project TAPIR-CM grant no. P2018/TCS-4496

    Designing energy-efficient computing systems using equalization and machine learning

    Full text link
    As technology scaling slows down in the nanometer CMOS regime and mobile computing becomes more ubiquitous, designing energy-efficient hardware for mobile systems is becoming increasingly critical and challenging. Although various approaches like near-threshold computing (NTC), aggressive voltage scaling with shadow latches, etc. have been proposed to get the most out of limited battery life, there is still no “silver bullet” to increasing power-performance demands of the mobile systems. Moreover, given that a mobile system could operate in a variety of environmental conditions, like different temperatures, have varying performance requirements, etc., there is a growing need for designing tunable/reconfigurable systems in order to achieve energy-efficient operation. In this work we propose to address the energy- efficiency problem of mobile systems using two different approaches: circuit tunability and distributed adaptive algorithms. Inspired by the communication systems, we developed feedback equalization based digital logic that changes the threshold of its gates based on the input pattern. We showed that feedback equalization in static complementary CMOS logic enabled up to 20% reduction in energy dissipation while maintaining the performance metrics. We also achieved 30% reduction in energy dissipation for pass-transistor digital logic (PTL) with equalization while maintaining performance. In addition, we proposed a mechanism that leverages feedback equalization techniques to achieve near optimal operation of static complementary CMOS logic blocks over the entire voltage range from near threshold supply voltage to nominal supply voltage. Using energy-delay product (EDP) as a metric we analyzed the use of the feedback equalizer as part of various sequential computational blocks. Our analysis shows that for near-threshold voltage operation, when equalization was used, we can improve the operating frequency by up to 30%, while the energy increase was less than 15%, with an overall EDP reduction of ≈10%. We also observe an EDP reduction of close to 5% across entire above-threshold voltage range. On the distributed adaptive algorithm front, we explored energy-efficient hardware implementation of machine learning algorithms. We proposed an adaptive classifier that leverages the wide variability in data complexity to enable energy-efficient data classification operations for mobile systems. Our approach takes advantage of varying classification hardness across data to dynamically allocate resources and improve energy efficiency. On average, our adaptive classifier is ≈100× more energy efficient but has ≈1% higher error rate than a complex radial basis function classifier and is ≈10× less energy efficient but has ≈40% lower error rate than a simple linear classifier across a wide range of classification data sets. We also developed a field of groves (FoG) implementation of random forests (RF) that achieves an accuracy comparable to Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) under tight energy budgets. The FoG architecture takes advantage of the fact that in random forests a small portion of the weak classifiers (decision trees) might be sufficient to achieve high statistical performance. By dividing the random forest into smaller forests (Groves), and conditionally executing the rest of the forest, FoG is able to achieve much higher energy efficiency levels for comparable error rates. We also take advantage of the distributed nature of the FoG to achieve high level of parallelism. Our evaluation shows that at maximum achievable accuracies FoG consumes ≈1.48×, ≈24×, ≈2.5×, and ≈34.7× lower energy per classification compared to conventional RF, SVM-RBF , Multi-Layer Perceptron Network (MLP), and CNN, respectively. FoG is 6.5× less energy efficient than SVM-LR, but achieves 18% higher accuracy on average across all considered datasets

    Uncovering the Progress of Planning for Vulnerability to Sea-Level Rise & Coastal Storms: A Plan Evaluation of Norfolk, VA & New York City

    Get PDF
    In response to recent storms like Superstorm Sandy and sea-level rise influenced by climate change, cities, particularly those located at the coast, have taken initiative to combat these growing threats with adaptive urban planning. Although civilians residing in susceptible neighborhoods are often the most vulnerable socioeconomically, there has been minimal evidence that planning has accounted for the characteristics of vulnerability. This thesis evaluates the recent planning efforts and vulnerability of Norfolk, VA and New York City to gauge the progress being made toward reducing citizen vulnerability and raising adaptability and preparedness. The most recent peer-reviewed research is consulted to forge the evaluation framework and also to recognize breakthroughs and conformity. After analyzing the performance of the sets of planning documents in both cities, it is evident that the ability to effectively plan for the public’s vulnerability is contingent in part on inter-governmental capacity, but more specifically on disaster experience

    Alternative Sources of Energy Modeling, Automation, Optimal Planning and Operation

    Get PDF
    An economic development model analyzes the adoption of alternative strategy capable of leveraging the economy, based essentially on RES. The combination of wind turbine, PV installation with new technology battery energy storage, DSM network and RES forecasting algorithms maximizes RES integration in isolated islands. An innovative model of power system (PS) imbalances is presented, which aims to capture various features of the stochastic behavior of imbalances and to reduce in average reserve requirements and PS risk. Deep learning techniques for medium-term wind speed and solar irradiance forecasting are presented, using for first time a specific cloud index. Scalability-replicability of the FLEXITRANSTORE technology innovations integrates hardware-software solutions in all areas of the transmission system and the wholesale markets, promoting increased RES. A deep learning and GIS approach are combined for the optimal positioning of wave energy converters. An innovative methodology to hybridize battery-based energy storage using supercapacitors for smoother power profile, a new control scheme and battery degradation mechanism and their economic viability are presented. An innovative module-level photovoltaic (PV) architecture in parallel configuration is introduced maximizing power extraction under partial shading. A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented. The stochastic operating temperature (OT) optimization integrated with Markov Chain simulation ascertains a more accurate OT for guiding the coal gasification practice

    Applications of Power Electronics:Volume 2

    Get PDF

    Enhanced coding, clock recovery and detection for a magnetic credit card

    Get PDF
    Merged with duplicate record 10026.1/2299 on 03.04.2017 by CS (TIS)This thesis describes the background, investigation and construction of a system for storing data on the magnetic stripe of a standard three-inch plastic credit in: inch card. Investigation shows that the information storage limit within a 3.375 in by 0.11 in rectangle of the stripe is bounded to about 20 kBytes. Practical issues limit the data storage to around 300 Bytes with a low raw error rate: a four-fold density increase over the standard. Removal of the timing jitter (that is prob-' ably caused by the magnetic medium particle size) would increase the limit to 1500 Bytes with no other system changes. This is enough capacity for either a small digital passport photograph or a digitized signature: making it possible to remove printed versions from the surface of the card. To achieve even these modest gains has required the development of a new variable rate code that is more resilient to timing errors than other codes in its efficiency class. The tabulation of the effects of timing errors required the construction of a new code metric and self-recovering decoders. In addition, a new method of timing recovery, based on the signal 'snatches' has been invented to increase the rapidity with which a Bayesian decoder can track the changing velocity of a hand-swiped card. The timing recovery and Bayesian detector have been integrated into one computation (software) unit that is self-contained and can decode a general class of (d, k) constrained codes. Additionally, the unit has a signal truncation mechanism to alleviate some of the effects of non-linear distortion that are present when a magnetic card is read with a magneto-resistive magnetic sensor that has been driven beyond its bias magnetization. While the storage density is low and the total storage capacity is meagre in comparison with contemporary storage devices, the high density card may still have a niche role to play in society. Nevertheless, in the face of the Smart card its long term outlook is uncertain. However, several areas of coding and detection under short-duration extreme conditions have brought new decoding methods to light. The scope of these methods is not limited just to the credit card

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    A multi-modular second life hybrid battery energy storage system for utility grid applications

    Get PDF
    The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications
    corecore