35 research outputs found

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    Problemas de localização-distribuição de serviços semiobnóxios: aproximações e apoio à decisão

    Get PDF
    Doutoramento em Gestão IndustrialA presente tese resulta de um trabalho de investigação cujo objectivo se centrou no problema de localização-distribuição (PLD) que pretende abordar, de forma integrada, duas actividades logísticas intimamente relacionadas: a localização de equipamentos e a distribuição de produtos. O PLD, nomeadamente a sua modelação matemática, tem sido estudado na literatura, dando origem a diversas aproximações que resultam de diferentes cenários reais. Importa portanto agrupar as diferentes variantes por forma a facilitar e potenciar a sua investigação. Após fazer uma revisão e propor uma taxonomia dos modelos de localização-distribuição, este trabalho foca-se na resolução de alguns modelos considerados como mais representativos. É feita assim a análise de dois dos PLDs mais básicos (os problema capacitados com procura nos nós e nos arcos), sendo apresentadas, para ambos, propostas de resolução. Posteriormente, é abordada a localização-distribuição de serviços semiobnóxios. Este tipo de serviços, ainda que seja necessário e indispensável para o público em geral, dada a sua natureza, exerce um efeito desagradável sobre as comunidades contíguas. Assim, aos critérios tipicamente utilizados na tomada de decisão sobre a localização destes serviços (habitualmente a minimização de custo) é necessário adicionar preocupações que reflectem a manutenção da qualidade de vida das regiões que sofrem o impacto do resultado da referida decisão. A abordagem da localização-distribuição de serviços semiobnóxios requer portanto uma análise multi-objectivo. Esta análise pode ser feita com recurso a dois métodos distintos: não interactivos e interactivos. Ambos são abordados nesta tese, com novas propostas, sendo o método interactivo proposto aplicável a outros problemas de programação inteira mista multi-objectivo. Por último, é desenvolvida uma ferramenta de apoio à decisão para os problemas abordados nesta tese, sendo apresentada a metodologia adoptada e as suas principais funcionalidades. A ferramenta desenvolvida tem grandes preocupações com a interface de utilizador, visto ser direccionada para decisores que tipicamente não têm conhecimentos sobre os modelos matemáticos subjacentes a este tipo de problemas.This thesis main objective is to address the location-routing problem (LRP) which intends to tackle, using an integrated approach, two highly related logistics activities: the location of facilities and the distribution of materials. The LRP, namely its mathematical formulation, has been studied in the literature, and several approaches have emerged, corresponding to different real-world scenarios. Therefore, it is important to identify and group the different LRP variants, in order to segment current research and foster future studies. After presenting a review and a taxonomy of location-routing models, the following research focuses on solving some of its variants. Thus, a study of two of the most basic LRPs (capacitated problems with demand either on the nodes or on the arcs) is performed, and new approaches are presented. Afterwards, the location-routing of semi-obnoxious facilities is addressed. These are facilities that, although providing useful and indispensible services, given their nature, bring about an undesirable effect to adjacent communities. Consequently, to the usual objectives when considering their location (cost minimization), new ones must be added that are able to reflect concerns regarding the quality of life of the communities impacted by the outcome of these decisions. The location-routing of semi-obnoxious facilities therefore requires to be analysed using multi-objective approaches, which can be of two types: noninteractive or interactive. Both are discussed and new methods proposed in this thesis; the proposed interactive method is suitable to other multi-objective mixed integer programming problems. Finally, a newly developed decision-support tool to address the LRP is presented (being the adopted methodology discussed, and its main functionalities shown). This tool has great concerns regarding the user interface, as it is directed at decision makers who typically don’t have specific knowledge of the underlying models of this type of problems

    The optimal location of facilities on a network

    Get PDF
    Imperial Users onl

    Facility Location Problems: Models, Techniques, and Applications in Waste Management

    Get PDF
    This paper presents a brief description of some existing models of facility location problems (FLPs) in solid waste management. The study provides salient information on commonly used distance functions in location models along with their corresponding mathematical formulation. Some of the optimization techniques that have been applied to location problems are also presented along with an appropriate pseudocode algorithm for their implementation. Concerning the models and solution techniques, the survey concludes by summarizing some recent studies on the applications of FLPs to waste collection and disposal. It is expected that this paper will contribute in no small measure to an integrated solid waste management system with specific emphasis on issues associated with waste collection, thereby boosting the drive for e�ective and e�cient waste collection systems. The content will also provide early career researchers with some necessary starting information required to formulate and solve problems relating to FLP

    Balancing the arrival times of users in a two-stage location problem

    Get PDF
    There has been a number of facility location problems dealing with the introduction of the equity issue in the travel distances distribution. In this paper we analyze a new aspect of equity concerning the distribution of the arrival times of customers. Given a depot and a set of demand points generating flow which also represent potential locations, we consider a discrete two-stage location problem whose aim is to locate a given number of facilities and to allocate the demand points to a facility. We assume as objective the maximization of the minimum difference between two consecutive arrival times of flows to the depot through the patronized facility. This particular equity measure is introduced in order to reduce risks of congestion in the dynamic of flow arrivals at the common destination. The problem is described through two Integer Programming formulations. Computational results for solution methods based on both formulations are then shown and analyzed

    Qualitative Characteristics and Quantitative Measures of Solution's Reliability in Discrete Optimization: Traditional Analytical Approaches, Innovative Computational Methods and Applicability

    Get PDF
    The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.Siirretty Doriast

    Task Allocation and Collaborative Localisation in Multi-Robot Systems

    Get PDF
    To utilise multiple robots, it is fundamental to know what they should do, called task allocation, and to know where the robots are, called localisation. The order that tasks are completed in is often important, and makes task allocation difficult to solve (40 tasks have 1047 different ways of completing them). Algorithms in literature range from fast methods that provide reasonable allocations, to slower methods that can provide optimal allocations. These algorithms work well for systems with identical robots, but do not utilise robot differences for superior allocations when robots are non-identical. They also can not be applied to robots that can use different tools, where they must consider which tools to use for each task. Robot localisation is performed using sensors which are often assumed to always be available. This is not the case in GPS-denied environments such as tunnels, or on long-range missions where replacement sensors are not readily available. A promising method to overcome this is collaborative localisation, where robots observe one another to improve their location estimates. There has been little research on what robot properties make collaborative localisation most effective, or how to tune systems to make it as accurate as possible. Most task allocation algorithms do not consider localisation as part of the allocation process. If task allocation algorithms limited inter-robot distance, collaborative localisation can be performed during task completion. Such an algorithm could equally be used to ensure robots are within communication distance, and to quickly detect when a robot fails. While some algorithms for this exist in literature, they provide a weak guarantee of inter-robot distance, which is undesirable when applied to real robots. The aim of this thesis is to improve upon task allocation algorithms by increasing task allocation speed and efficiency, and supporting robot tool changes. Collaborative localisation parameters are analysed, and a task allocation algorithm that enables collaborative localisation on real robots is developed. This thesis includes a compendium of journal articles written by the author. The four articles forming the main body of the thesis discuss the multi-robot task allocation and localisation research during the author’s candidature. Two appendices are included, representing conference articles written by the author that directly relate to the thesis.Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 201

    Bottling plant location of microbreweries in East Midlands area, UK

    Get PDF
    Facility location decisions are critical in real-life projects, which impact on profitability of investment and service levels from demand side. In this paper, a project-based facility location problem should be resolved which refers to the establishment of a centralized bottling plant to serve microbreweries in East Midlands area of UK. This problem will be structured by firstly finding a mathematically theoretical location using the centre-of-gravity method and then formulate the problem as a multi-criteria decision making problem applying Analytical Hierarchy Process based on selection of the optimal location out of the four candidate locations where three of those have been given. The second part is modeled by considering several criteria related to both the activities before and after bottling and also issues of surrounding area of the location where the prioritization of those criteria are based on the preferences of the project investor. The final result is obtained by applying EXPERT CHOICE to approach Eigenvalue methods to enhance Analytical Hierarchy Process. The outcome can be clarified with illustration of the sensitivities resulted from the weight changes of criteria and the pull-out of certain criteria. Key Words: Facility Location, center-of-gravity method, Multi-criteria decision making, Analytical Hierarchy Proces
    corecore