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1 Introduction 

The past four decades have witnessed an explosive growth in the field of network-

based facility location modeling.  As Krarup and Pruzan (1983) point out, this is not at 

all surprising since location policy is one of the most profitable areas of applied 

systems analysis and ample theoretical and applied challenges are offered.  

Location-allocation models seek the location of facilities and/or services (e.g., 

schools, hospitals, and warehouses) so as to optimize one or several objectives 

generally related to the efficiency of the system or to the allocation of resources.  

There are several ways of classifying network-based location models and problems.  

A good taxonomy of this type of problems can be found in Daskin (1995).  The 

dichotomy between public versus private sector problems is a common way of 

classification.   

This paper concerns the location of facilities or services in discrete space or 

networks, that are related to the public sector, such as emergency services 

(ambulances, fire stations, and police units), school systems and postal facilities.  

This does not mean that these type of services necessarily belong strictly to the public 

sector, e.g., a medical emergency service may be owned by a private firm but 

regulated by a public health agency.  So the question is, What is the main difference 

between the location of public facilities and private facilities?  The answer lies in the 

nature of the objective or objectives that decision makers are considering. Public and 

private sector applications are different, because of the optimization criteria used in 

both cases. Profit maximization and capture of larger market shares from competitors 

are the main criteria in private applications, while social cost minimization, universality 

of service, efficiency and equity are the goals in the public sector. Since these 

objectives are difficult to measure, they are frequently surrogated by minimization of 

the locational and operational costs needed for full coverage by the service, or the 
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search for maximal coverage given an amount of available resources. Note that 

although it is not usual, it is perfectly allowed for a public service planner to use some 

of the tools that are typical to private investors. For example, a public health service 

could compete with private providers, and so reduce the subsidy needed from the 

state for maintaining the service (Marianov and Taborga, 2000). 

An additional problem is that in public sector location models there is no one 

overriding objective, and a variety of responses may be given to a simple question on 

the “best” locational configuration of some service.  For example, when locating 

ambulances we may be interested in siting them so as to minimize the weighted 

average response time of the system, or to cover the population at risk within a given 

time or distance. The first approach corresponds to what is known in location 

literature as a p-median problem, and the second one is a covering problem 

(Location Set Covering Problems, LSCP, or Maximal Covering Location Problems, 

MCLP). Most public facility located models use one of these approaches (or a 

combination of both) to set the foundations of the formulation at hand. In fact, both p-

median and covering problems can be considered benchmarks in the development of 

location models, and as such, we will classify our examples as belonging to one of 

these two broad categories. 

This paper is structured as follows: In the next section we will focus on public facility 

location models that use some type of coverage criterion, with special emphasis in 

emergency services.  The third section will examine models based on the P-Median 

problem and some of the problems faced by planners when implementing this 

formulation in real world problems. Finally, the last section will examine new trends in 

public sector facility location problems. 
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2. Covering Models in the Public Sector 

The Notion of Coverage 

In this subsection we will refer to public sector applications of covering models. Being 

proximity (distance or travel time2) one of the fundamental aspects of location 

analysis, many models (as the p-median, analyzed in the next subsection) seek to 

minimize the distance or travel time between a customer and the facility at which 

she/he receives a service. As opposed to those models, covering models are based 

on the concept of acceptable proximity. In covering models, a maximum value is 

preset for either distance or travel time. If a service is provided by a facility located 

within this maximum, then the service is considered adequate3 or acceptable; the 

service is equally good if provided by facilities at different distances, as long as both 

distances are smaller than this maximum value. Then, a customer is considered 

covered by the service, or just covered, if she/he has a facility sited within the preset 

distance or time. An example of this is the case in which it is desired that the 

population in a rural area have access to a health care center within, say, 2 miles. It is 

said that a customer in this area is covered if she/he has a health center within 2 miles 

of her/his home. Another example appears when dealing with fire fighting services. 

The Insurance Services Office (ISO), is an organization which rates cities according to 

their fire protection capability (ISO, 1974). They establish distance standards for fire-

fighting response. If the distance standards are not fulfilled in a city, the rating 

decreases, indicating that the risk of property loss is higher in those cities. Thus, it is 

reasonable to design fire fighting systems in such a way to assure attention of all calls 

within the time standard or, equivalently, to have an available server within a standard 

distance of each and every customer.  

                                                 
2 Most of the location models are related to geographical location. In this case, proximity refers to a distance or 
time metric. However, proximity can be defined also in other spaces; for example, two persons can have 
proximity in terms of similar opinions.  
3 Note that the distance requirement is one of the necessary conditions for an adequate service; it may not be 
sufficient to guarantee a good overall service. 
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Covering models can be classified according to several criteria. One of such criteria 

is the type of objective, which allows us to distinguish two types of formulations. In the 

first place, those seeking to minimize the number of facilities needed for full coverage 

of the population (Set Covering Models) and secondly, those that maximize covered 

population, given a limited number of facilities or servers (Maximum Covering 

Models). Covering models can also be classified in formulations for systems with 

fixed servers and systems with mobile servers. Examples of the former are schools, 

hospitals, and other systems in which customers travel to the facility to receive 

service. Examples of systems with mobile servers are emergency services, in which 

servers are initially located at depots, and whenever a call is received, they travel to 

the location of the call and back to the depot. In turn, any of these can be classified as 

capacitated or uncapacitated, depending on the capacity limits of the facilities or 

servers to be sited. These capacity limits can be for example the number of children 

that a primary school can accept in a particular year, or the number of customers that 

can be attended by an ambulance system within a reasonable waiting time.    

The notion of coverage can be extended in several ways. For example, a single 

policeman can not control alone some police emergencies. Coverage, then, must be 

defined as the response to the emergency by, say, p policemen. If fewer than p 

policemen attend the call, the emergency is not counted as covered. Similarly, the 

usual fire emergency puts people and property at risk. Then, engine fire companies 

and ladder fire companies are both needed at the scene of the fire, in order to protect 

property  and people. Furthermore, different numbers of companies are needed in 

different cases. ISO defines standard response to a fire in medium size cities as 

response by three engine companies and two ladder companies. In this case, 

coverage is defined as attendance by three engine companies and two ladder 

companies, within their respective (response) time standard. Finally, coverage could 

mean availability of a service within certain time limits, as opposed to just location of a 

server within these time limits. For example, in an emergency service, a customer 

could be considered as covered if all her/his calls find an idle server with probability, 
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say, 98%. Or, a customer might be considered as covered if, whenever she/he arrives 

at the health care center, there is a waiting line shorter than 5 people, with probability 

95%. Note that, in this case, availability is somehow related to  the capacity of the 

servers. Covering models have been used profusely in both private and public sectors 

(Schilling et al, 1993). 

 

Basic Covering Models 

There are two basic covering models. The first one is the Location Set Covering 

Model (LSCP), cast as a linear programming formulation by Toregas et al (1971), and 

Toregas and ReVelle (1973). This model seeks to locate a minimum number of 

servers needed to obtain mandatory coverage of all demands. In other words, each 

and every demand point has at least one server located within some distance or time 

standard S. The first application of this model was in the area of emergency services 

(ReVelle et al. 1976). In this context, the model positions the minimum possible 

number of emergency vehicles in such a way that the entire population has at least 

one of these vehicles initially located within the time or distance standard. Note that 

coverage is not affected by the fact that the servers (vehicles) may be busy at times. 

The formulation of the model is as follows: 

∑
∈

=
Jj

jxZ
  

   Minimize   (1) 

subject to 

Iix
iNj

j              1  
  

∈∀≥∑
∈

  (2) 

    Jjx j               1 0,  ∈∀=  (3) 

where 
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J = set of eligible facility sites (indexed by j) ; 

I = set of demand nodes (indexed by i) ; 





=
otherwise 0

 nodeat  located isfacility  a if 1 j
x j  

Ni = { j | dji ≤ S }; with dji = shortest distance from potential facility location j to demand 

node i, and S = distance standard for coverage. 

Note that Ni is the set of all those sites that are candidates for potential location of 

facilities, that are within distance S of the demand node i. If a facility is located in any 

of them, demand node i becomes covered. The objective (1) minimizes the number of 

facilities required. Constraints (2) state that the demand at each node i must be 

covered by at least one server located within the time or distance standard S. 

The solution to this model can be easily found solving its linear programming 

relaxation, with occasional branch and bound applications. Before solving, its size can 

be reduced by successive row and column reductions, as proposed by Toregas and 

ReVelle (1973). 

Church and ReVelle (1974) and White and Case (1974) formulated the second basic 

covering model, the Maximal Covering Location Problem (MCLP). Although public 

services should be available to everybody, as modeled by the LSCP, the MCLP 

recognizes that mandatory coverage of all people in all occasions and no matter how 

far they live, could require excessive resources. Thus, MCLP does not force coverage 

of all demand but, instead, seeks the location of a fixed number of facilities, most 

probably insufficient to cover all demand within the standards, in such a way that 

population or demand covered by the service is maximized. The fixed number of 

facilities is a proxy for a limited budget. Its integer programming formulation is the 

following: 
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∑
∈

=
Ii

ii yaZ Maximize               (4) 

subject to 

,     ∑
∈

∈∀≤
iNj

ji Iixy                   (5) 

∑
∈

=
Jj

j px                                     (6) 

xj, yi = 0,1         ∀j ∈ J, i ∈ I, 

where additional notation is 





=
otherwise 0

overed is   node if 1 ci
yi  

p   = the number of facilities to be deployed; 

ai  = the population at demand node i. 

and all other variables and parameters are the same as defined for LSCP. The 

objective (4) maximizes the weighted sum of covered demand nodes. Constraints (5) 

state that the demand at node i is covered whenever at least one facility is located 

within the time or distance standard S. Constraint (6) gives the total number of 

facilities that can be sited. Church and ReVelle (1974) used relaxed linear 

programming, supplemented by occasional use of branch and bound, to provide 

solutions to this problem. Other solving procedures include Greedy or Myopic 

heuristics (Daskin, 1995, Schilling et al, 1993), Lagrangean Relaxation (Daskin, 1995, 

Galvão and ReVelle, 1996) and Heuristic Concentration (Rosing, 1997, Rosing and 

ReVelle, 1997).  

Applications of these models in the public sector range from emergency services to 

location of archeological sites (Bell and Church, 1987). The set covering model has 
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been used to allocate bus stops (Gleason, 1975). The maximal covering location 

model, and different variants of it, has been used for the location of health clinics 

(Eaton et al, 1981), hierarchical health services (Moore and ReVelle, 1982), and many 

other applications. The MCLP has also been used in several non-locational problems, 

as for example, the determination of test points in the human eye, to diagnose vision 

loss in glaucoma suspects (Kolesar, 1980), or for the allocation of marketing 

resources in journals (Dwyer and Evans, 1981). 

 

Models for Mobile Emergency Services 

In the case of most emergency systems, a fundamental issue is the amount of time a 

customer waits for service. This is the case of any public emergency services, either 

medical, fire fighting or police related. In the case of medical emergencies, there is a 

correlation between life loss risk and response time. Thus, it seems to be a good 

approach to assure medical attention of all calls within a time standard or, 

equivalently, have an available server within a standard distance of each and every 

customer. The same happens in the case of fire fighting services. Since it can be 

expected that loss of property increase with time, each type of company has to 

respond within its standard time. Police emergencies are not the exception. Again, 

the best model for these services is a covering model. 

Many issues have to be considered in order to determine the performance of an 

emergency service. Response time is one of them. From the point of view of the 

geographical design of such a system, an important issue is the location of the 

depots, that is, the initial location of the emergency vehicles (servers). Another one is 

the number of servers. A third issue is the availability of servers, as opposed to just 

their initial location within time standard. Availability, in this case, is defined as the 

actual percentage of time the server is idle, as opposed to being on repair, or 
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attending other calls. Finally, the dispatching policy has also an influence on the 

efficiency of the system. 

Several approaches have been presented to attack the design of systems with mobile 

servers under congestion (or availability less than 100%). These can be classified in 

descriptive and prescriptive. Descriptive methods originate from a seminal paper by 

Larson (1974), in which a descriptive model (Hypercube) is presented for analysis of 

emergency systems. The hypercube model builds on previous developments by 

Carter, Chaiken and Ignall (1972) and Larson and Stevenson (1972) for two servers, 

and describes a spatially distributed queuing system with distinguishable servers. The 

model can be used, either in its complete version or in approximate versions (Larson, 

1975), for testing the responsiveness of an emergency system and all its parameters. 

Many iterative methods have derived from the hypercube, as Jarvis’ (1985) and  

Burwell, Jarvis and McKnew (1993) . Other descriptive models have been used for 

location of one mobile server, and can also be used in heuristics that locate multiple 

servers. Among them, the models and methods by Berman, Larson and Chiu (1985), 

Batta (1988), Batta, Larson and Odoni (1988), Batta (1989), Berman, Larson and 

Parkan (1987), Berman and Larson (1985) and Berman and Mandowsky (1986). The 

interested reader can refer to these papers or a review in Marianov and ReVelle 

(1995). However, we do not focus on these models, but rather on models derived from 

the basic coverage formulations. 

Prescriptive models are based on optimization, and derive from the basic models 

outlined above. Good reviews of optimization models presented before 1990 are 

included in the articles by Daskin, et al (1988), and ReVelle (1989). We will include 

some of them, which are representative of different classes of formulations. 

An interesting generalization of the maximal covering model, because it considers the 

simultaneous location of several types of facilities, is the FLEET (Facility Location 

and Equipment Emplacement Technique) by Schilling et al. (1979). This model was 

used for locating fire-fighting services in the city of Baltimore. The goal of this 
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formulation is to locate simultaneously two different types of fire-fighting servers 

(pump or engine brigades and ladder or truck brigades), as well as the depots 

housing them. The objective of the FLEET model was coverage of the maximum 

number of people by both an engine company sited within an engine company 

distance standard and a truck company sited within the truck company distance 

standard. Other objectives included in a multi-objective formulation of the FLEET 

model were the maximum coverage of fire frequency, maximum coverage of property 

value and maximum coverage of population at risk. 

The maximum population coverage version can be stated mathematically as 

∑
∈

=
Ii

ii yaZ Maximize               (8) 

subject to 

,     ∑
∈

∈∀≤
E
iNj

E
ji Iixy                   (9) 

,     ∑
∈

∈∀≤
T
iNj

T
ji Iixy                   (10) 

Jjxx S
j

T
j ∈∀≤                                (11) 

Jjxx S
j

E
j ∈∀≤                                (12) 

TE

Jj

T
j

Jj

E
j pxx +

∈∈

=+ ∑∑                     (13) 

∑
∈

=
Jj

SS
j px                                     (14) 

xj
E, xj

T,xj
S,yi = 0,1         ∀j ∈ J, i ∈ I, 

where 
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xj
E = 1, 0; 1 if an engine company positioned in a fire house at site j; 0 otherwise 

xj
T = 1, 0; 1 if a truck company positioned in a fire house at site j; 0 otherwise 

xj
S = 1, 0; 1 if a fire station or depot is established at site j; 0 otherwise 

NiE = { j | tji ≤ E }; set of potential engine sites j which can cover node i by virtue of 

being within the engine distance standard E 

Ni
T = { j | tji ≤ T ; set of potential truck sites j which can cover node i by virtue of being 

within the truck distance standard T 

pE+T = number of fire companies, and  

pS = number of fire stations or depots. 

The first two constraints define coverage as achievable only if both one or more 

engine companies are sited within the engine distance standard and one or more 

truck companies are sited within the truck distance standard. The third and fourth 

constraints allow housing of companies only at nodes where a depot has been sited. 

The fifth constraint limits the total number of companies, and the sixth constraint limits 

the number of stations. Schilling et al (1979) solved the linear relaxation of the 

problem. If two or more servers of each type are needed, because the attendance of 

only one of each is not enough (as in police or fire emergencies), the model can be 

modified, as in Marianov and ReVelle, (1991) and (1992). For example, if three 

engine brigades are needed at the site of the emergency, the second constraint of the 

preceding model can be changed to: 

,     
1

∑ ∑
∈ =

∈∀≤++
E
i

j

Nj

C

k

E
kj

E
i

E
ii Iixuwy                   (15) 

and the ordering constraints: 

y w i Ii i
E≤ ∀ ∈                                                       (16) 
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w u i Ii
E

i
E≤ ∀ ∈                                                     (17) 

added. Here, E
i

E
i uw ,  = 1 if demand node i is covered by a second engine, first 

engine, respectively, and 0 otherwise. Constraint (15) does not allow 

variables E
i

E
i uw , and iy  to be one unless there are three engines located within 

standard time of node i. Constraints (16) and (17) force coverage by one engine 

before coverage of two engines and coverage by two before coverage by three.  

Note that, as opposed to the models in which one server was enough for coverage, 

when multiple coverage is sought, co-location of servers at the same depots might 

become convenient. Models which limited the number of stations but allowed more 

than one server at the same site, up to a certain capacity, were suggested by Bianchi 

and Church, (1988), for one type of vehicle. Also, Marianov and ReVelle, (1991), 

propose a tighter set of constraints for siting up to Cj engines plus trucks in a depot: 

x x x j J k CC k j
E

kj
T

j
S

jj( ) ,− + + ≤ ∀ ∈ ≤1                            (18) 

x x j J k C l E Tk j
l

kj
l

j( ) , ,+ ≤ ∀ ∈ ≤ − =1 1           or       (19) 

where  

 xkj
E  = 1 if a kth engine company is located at site j, 0 otherwise; 

x kj
T  = 1 if a kth truck company is located at site j, 0 otherwise; 

These constraints, together, have three effects: first, they allow the siting of servers 

only at depots. Second, they limit to Cj the number of servers at each depot (no more 

than {Cj - k} engines plus k trucks) at a site. Finally, they state that a (k+1)th server 

must be located at a site after the kth server. 

In most cases, a server can not attend more than one call at a time. This means that, 

when a call arrives, a server can be busy attending other calls or on repair. This leads 
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to congestion, which is the dynamic equivalent to a limited capacity.  When there is 

the possibility of congestion, different approaches can be used. When congestion is 

not expected to be severe, there is an approach that does not need any analysis of 

the probabilistic characteristics of the system. This approach consists in seeking 

redundancy in the servers able to attend calls originating from a demand node. In 

other words, to allocate more than one server (say, two) to cover each demand within 

the standard time. The same construct used for attendance of more than one server to 

an emergency can be used when redundant coverage is needed, as did Hogan and 

ReVelle (1986) in their BACOP 2 model, which trades off first coverage versus 

backup coverage. Its formulation is 

Maximize Z a yi i
i I

1 =
∈
∑                     (20)   

       Z a ri i
i I

2 =
∈
∑                    (21) 

subject to 

r y x i Ii i j
j N i

+ ≤ ∀ ∈
∈
∑                         (22) 

r y i Ii i≤ ∀ ∈                                    (23) 

x pj
j J

=
∈
∑                                           (24) 

xj, ri = 0,1         ∀j ∈ J, i ∈ I, 

where ri is one if a second coverer is sited within standard time of node i. The 

objectives maximize first and second coverage, respectively. The first constraint says 

that coverage by a first and second server is not possible unless at least two servers 

are initially located in the neighborhood. The second constraint reflects the fact that 

backup coverage can not be fulfilled without first coverage. The next constraint limits 

the number of servers to be deployed. The authors report that marginal reductions in 
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first coverage improve strongly backup coverage. They solved the linear relaxation of 

the model, with occasional branch and bound. 

Berlin (1972), Daskin and Stern (1981), Benedict (1983) and Eaton et al (1986) used 

a different approach, based on the LSCP for mandatory first coverage. They solve the 

LSCP first, and, using a number of servers that is at least the needed for full first 

coverage, maximized redundant coverage maintaining mandatory first coverage for 

all demands. 

When congestion is expected to be more severe, a frankly probabilistic approach 

provides safer and more efficient system designs. In this case, a probabilistic 

modeling of the system is required, as well as the use of this probabilistic models in 

the developments of objectives or constraints of the optimization model.  

Two approaches have been used for probabilistic models: The first consists in 

maximizing expected coverage of each demand node. The second, in either 

constraining the probability of at least one server being available (to each demand 

node) to be greater than or equal to a specified level α, or to count demand nodes as 

covered if this probability is at least α. 

The maximization of expected coverage was proposed by Daskin (1983), who utilized 

the notion of a server busy fraction, or probability of being busy, to formulate the 

Maximum Expected Covering Location Problem, (MEXCLP). Daskin assumed a 

single system-wide busy fraction (probability of a server being busy or fraction of the 

time during which it is busy) q, as well as independence between the probabilities of 

different servers being busy, which leads to a binomial distribution of the probability of 

k servers being busy. The MEXCLP maximized the expected value of population 

coverage within the time standard, given that p facilities are to be located on the 

network. Daskin computed the increase in the expected coverage of a demand, when 

a kth server is added to its neighborhood, which turns out to be just (1 - q)qk-1. Then, 
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the expected coverage for all possible number of servers k at each neighborhood, 

and for all demand nodes weighted by their demand, is maximized: 

Maximize Z a q q yi
k

ik
k

n

i I

i

= − −

=∈
∑∑ ( )1 1

1

                    (25)   

subject to 

y x i Iik
k

n

j
j N

i

i= ∈
∑ ∑≤ ∀ ∈

1

                                             (26) 

x pj
j J

=
∈
∑                                                                (27) 

yik  = 0,1          ∀i,k, 

xj = integers ∀ j 

where  

yik  is one if node i has at least k servers in its neighborhood, zero otherwise, 

xj is the number of servers at site j, and 

ni is the maximum number of servers in Ni. 

The first constraint says that the number of servers covering demand i is bounded 

above by the number of servers sited in the neighborhood. The second constraint 

limits the number of servers to be deployed. Declining weights (1 - q)qk-1 on the 

variables yik  make unnecessary any ordering constraints for these variables, and 

help to the integrality of these variables in the solution, if the linear relaxation of the 

model is solved. Daskin proposed a heuristic method of solution of the MEXCLP, 

which gives solutions for the system for different ranges of values of q. More details on 

this important model, can be found in Daskin (1995). 
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Later, Bianchi and Church (1988), modified MEXCLP to consider location of vehicles 

and depots as well, referring to their model as the Multiple cover, One-unit Facility 

Location, Equipment Emplacement Technique (MOFLEET). Recognizing the need for 

relaxing the assumption of independence between probabilities of servers being 

busy, Batta et al (1989) proposed a modified MEXCLP, in which the factors (1 - q)qk-

1 are corrected by an approximation to a queuing system, based on the approximated 

hypercube of Larson (1975). In that model, called AMEXCLP, the busy fraction of 

servers is still assumed to be the same over the whole system. Another model, by 

Goldberg and Paz (1991), maximizes the expected number of calls reached within a 

set time threshold. The model is nonlinear, based on Jarvis' (1975) mean service time 

computation. The service time depends on call location, and independence is 

assumed between probabilities of servers being busy. The authors present a heuristic 

method of solution. 

Instead of maximizing expected value of coverage, Chapman and White (1974) 

formulated a probabilistic version of the LSCP in which the probability that at least 

one server being available to each demand node was constrained to be greater than 

or equal to a reliability level α. To compute such a probability, they make use of 

estimates derived from simulations of the busy fraction q. Again, each server’s busy 

fraction is assumed to be independent of the probability of other servers being busy. 

Chapman and White's model could not be solved to convergence because busy 

fractions of individual servers were difficult to estimate. Later, ReVelle and Hogan 

(1988, 1989a) formulated a new form of Probabilistic LSCP (PLSCP), basically a 

LSCP with an added constraint on the availability of servers to each demand node, 

which utilized region-specific (local) estimates of the busy fraction, and binomial 

distribution. Unfortunately, it is not possible to determine the busy fraction of the 

servers before knowing the final locations of all of them. To go around this problem, 

ReVelle and Hogan computed a local estimate of the busy fraction in the 

neighborhood of demand node i, as the demanded service time in the region, divided 

by the available service time in the region, that is: 
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where 

t = average duration of a single call, in hours; 

fk = frequency of calls for service at demand node k, in calls per day;  

Mi = set of demand nodes located within S of node i; 

Ni = { j | tji ≤ S }; that is Ni is the set of nodes j located within the time or distance 

standard of demand node i; and 

ρi = utilization ratio. 

The probability that at least one server is available within time standard S when node i 

requests service is 1 minus the probability of all servers within S of node i being busy. 

Since ReVelle and Hogan assumed the binomial distribution for the probability of one 

or more servers being busy, this probability is 

1 - P[all servers of node i are busy] = 

∑

∈

∈

















−
∑

iNj
j

i

x

Nj
j

i

x
ρ

1  

Requiring this probability of at least one server being available to be greater than or 

equal toα, a nonlinear probabilistic constraint is obtained. This probabilistic constraint 

does not have an analytical linear deterministic equivalent. However, ReVelle and 

Hogan found the numerical deterministic equivalent to be 

x bj
j N

i

i∈
∑ ≥                     (28) 

where bi is the smallest integer which satisfies 
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The resulting PLSCP has a formulation that is identical to LSCP, with constraint (2) 

replaced by constraint (28). Marianov and ReVelle (1994), maintaining a 

neighborhood-specific busy fraction estimate, relaxed the independence assumption 

in PLSCP, considering each neighborhood as a M/M/s-loss queuing system, and 

computing the parameter bi as the smallest integer satisfying 
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The probabilistic constraint can be also modified for situations in which full coverage 

is not mandatory, that is, maximal covering models. In this case, a demand node is 

counted as covered only if a server is available, within time or distance S, with 

probability α or more. This was what ReVelle and Hogan (1989b) did with their 

Maximum Availability Location Problem, MALP. This model sought to maximize the 

population which had service available within a desired travel time with a stated 

reliability, given that only p servers are to be located. Using the same reasoning as in 

PLSCP, ReVelle and Hogan computed the number bi of servers needed for reliable 

coverage of node i, and maximized the population in nodes i with bi or more servers. 

Their MALP is stated as follows: 

Maximize Z a yi ib
i I

i
=

∈
∑                    (29) 
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xj, yik  = 0,1         ∀j ∈ J, i ∈ I,           

The variable yik is one if k servers are potential coverers of node i. The objective 

maximizes the population in nodes with at least bi coverers, where this parameter is 

computed as in ReVelle and Hogan’s PLSCP, considering independence between 

availability of servers. Constraint (30) states that there are at most as many potential 

coverers as servers sited within the neighborhood of node i. Constraint (31) is an 

ordering constraint, which forces a node to have k-1 coverers before having k 

coverers. In the fire protection arena, ReVelle and Marianov (1991), formulated a 

comparable model, the Probabilistic Facility Location, Equipment Emplacement 

Technique, PROFLEET. This model considered the deployment of several types of 

vehicles, simultaneously covering each emergency, as well as the siting of depots or 

stations. The model considered independence between availabilities of engines and 

trucks, so Marianov and ReVelle (1992) presented a second version, in which 

availabilities of engines and trucks were no longer independent. Later, Marianov and 

ReVelle (1994) formulated a new version of MALP (the QMALP), in which the 

independence assumption is relaxed through a treatment of each neighborhood as a 

queuing system, keeping a neighborhood-specific busy fraction. 

Meanwhile, Ball and Lin (1993), formulated a new version of the PLSCP, in which a 

desired level of reliability is mandatory for each demand, condition that is achieved by 

an upper bound of the "uncoverage probability" of each demand. In their model, Ball 

and Lin consider the worst case of busy fraction, which occurs when each server is 

attending all calls from its neighborhood, as if it was alone in the system. In their 

model, independence is assumed between probabilities of servers being busy.  

Models for Fixed Services 
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Although the LSCP and MCLP models have been used more frequently for locating 

mobile servers, there are some exceptions. For example, Goodchild and Lee (1989), 

locate the minimum number of observation points for monitoring an entire 

geographical region. Meyer and Brill (1988), locate the least number of monitoring 

wells for detecting contamination in ground water. Bell and Church (1987), locate 

archeological settlements. Other fixed server application is the location of bus stops 

that minimize the walking distance for customers (Gleason, 1975). A review of these 

and other applications can be found in Schilling et al (1993). An interesting feature of 

the LSCP, is that it can be used for solving the p-center problem, which consists on 

finding the locations of p facilities in such a way as to minimize the maximum distance 

between a customer and its allocated facility (Daskin, 1995). This problem is 

adequate for its use in applications in the public sector, because it tends to generate 

certain equity in the access to facilities by their users.  

Besides the applications, it is interesting to give some attention to the variations that 

have been made to the basic covering models. Set covering models can be 

formulated for covering arcs, as well as nodes. Also, they can be rewritten for 

situations in which the demand changes or is uncertain over time. Coverage models 

can be merged with other models, as Current and Schilling (1989) did with routing, in 

their covering salesman problem. Coverage, in its usual sense of proximity, can also 

be reversed, for example when locating obnoxious facilities, which should be located 

as far as possible from population. Capacity of the facilities is an important issue, and 

several authors have presented capacitated versions of covering models. Among 

them, Pirkul and Schilling (1991) propose a Lagrangian Relaxation method for the 

solution of a maximal covering problem with a capacity constraint.  

In some cases, fixed facilities can also suffer from congestion. This is the case of 

health care services, including hospitals, and, in general, public services of any nature 

that have fixed offices serving users or customers. The latest developments in 

capacitated covering models for fixed servers are due to Marianov and Serra (1998 

and 2001). In these papers, they develop several probabilistic maximal covering 
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location-allocation models with constrained waiting time for queue length in order to 

consider service congestion.  The first paper addresses the issue of the location of 

the least number of single-server centers such that all the population is served within a 

standard distance, and nobody stands in line for a time longer than a given time-limit, 

or with more than a predetermined number of other clients. They then formulate 

several maximal coverage models, with one or more servers per service center.  In 

the second paper they address the issue of locating hierarchical facilities in the 

presence of congestion. Two hierarchical models are presented, where lower level 

servers attend requests first, and then, some of the served customers are referred to 

higher level servers. In the first model, the objective minimizes the number of servers 

and finds their locations so that they will cover a given region with a distance or time 

standard. The second model is cast as a Maximal Covering Location formulation. In 

both models they develop a capacity-like constraint to control for congestion in the 

second level of the hierarchy.   
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3. P-Median Models in Public Facility Location 

The P-Median Problem belongs to a class of formulations called minisum location 

models.  This class of problems was first formulated in its discrete form by Kuehn and 

Hamburguer (1963), Hakimi (1964), Manne (1964) and Balinski (1965).  The problem 

can be stated as: 

Find the location of a fixed number of  p  facilities so as to minimize the weighted 

average distance of the system. 

The first explicit formulation of the P-Median Problem is attributed to Hakimi (1964).  

Hakimi not only stated the formulation of the problem but he also proved that in a 

connected network were the triangle inequality is observed, optimal locations can 

always be found at the nodes.  So it is only necessary to consider as potential 

locations the nodes of a given network under certain geometric conditions.  The 

model formulated by Hakimi was not applied to a public sector location problem, 

since was used in the field of telecommunications, more precisely in the location of 

switching centers on a graph.  Four years later, ReVelle and Swain (1970) gave the 

formulation as an integer linear program and studied its integer properties when 

solving it with linear programming and branch and bound. As mentioned before, even 

though the first known proposed application of Hakimi was not for public services and 

facilities, the P-Median Problem has been since then extensively used as a basis to 

build problems related to public sector facility location-allocation modeling.  A very 

similar model, the Uncapacitated or Simple Plant Location Problem has been used in 

private sector location settings4.  

The integer programming formulation of the P-Median Problem is as follows: 
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4 An excellent presentation of classical Minisum Location Problems can be found in Krarup and Pruzan (1983) 
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where: 

i  Index of demand points 

m  Total number of demand points in the space of interest 

j  Index of potential facility sites 

n   Total number of potential facility locations 

ai  Weight associated to each demand point. 

di j  Distance between demand area i and potential facility at j. 

xi j  Variable that is equal to 1 if demand area i is assigned to a facility at j, and 0 

otherwise.    

In this formulation it is assumed that all demand points are also potential facility sites 

(m=n). The first set of constraints forces each demand point to be assigned to only 

one facility.  The second set of constraints allows demand point i to assign to a point j 

only if there is an open facility in this location.  Finally, the last constraint sets the 

number of facilities to be located. 

The second set of constraints is known as the “Balinski” constraints, since he was the 

first to write them in this form in 1965, when studying the Simple Plant Location 
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Problem.  An alternative condensed version of the problem can be formulating by 

substituting the “Balinski” constraints with the following set: 
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This constraint states that no demand node can assign to point j, unless there is a 

facility open there.  While this set of constraints substantially reduces the size of the 

problem, when solving it using linear programming without any integer requirements 

will nearly produce all xjj fractional.  On the other hand, the “Balinski” set of constraints 

makes the problem at hand quite large as the number of constraints required together 

with the number of variables are very large even in relatively small problems.  

Nevertheless, when solving the P-Median Problem in its extended form using linear 

programming relaxation, most solutions are integer.  ReVelle and Swain (1970) 

observed that when branch-and-bound was required to resolve fractional variables 

produced by linear programming, the extent of branching and bounding needed was 

very small, always less than 6 nodes of a branch-and-bound tree.  Therefore, the 

expanded form of the constraint makes integer solutions far more likely.  Morris 

(1978), solved 600 randomly generated problems of the very similar Simple Plant 

Location Problem with the extended form of the constraint and found that only 4% did 

require the use of branch-and-bound to obtain integer solutions. Rosing et al. (1979c) 

proposed several ways to reduce both the number of variables and constraints in 

order to make the P-Median Problem more tractable.  An extended discussion of 

“integer friendly” location formulations can be found in ReVelle (1993). 

 The P-Median Problem, due to its mathematical structure, is NP-hard5, and therefore 

cannot be solved in polynomial time.  Our experience shows that complete 

enumeration can be used in a network with up to 50 nodes and 5 facilities in 

reasonable computer time. Even though the size of the problems that can be solved 

by using Linear Programming and Branch and Bound (LP+BB), as proposed by 
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ReVelle and Swain (1970), has been rapidly increasing with the advances in 

hardware and software technologies and algorithmic sophistication, there is still a 

strong need for exact and heuristic methods for large and realistic P-Median 

Problems. Therefore, since its early formulation in 1964, the  P-Median Problem has 

been a fertile ground for innovative approaches and algorithms to obtain solutions.  

Garfinkel et al. (1974) and Swain (1974) used the Dantzig -Wolfe decomposition to 

obtain solutions. Another approach, lagrangian relaxation, was used by Gnarl et al. 

(1977) and Cornuejols et al. (1977) and extended with the use of the linear 

programming dual by Galvão (1980).  See Galvão (1993) for an excellent review on 

Lagrangian Relaxation applied to uncapacitated facility location problems.   

Another class of heuristics, – and most widely used in applications to large problems 

– are the ones based in interchange methods.  Maranzana (1964) presented the first 

known local search procedure that was extremely fast, but with a weak search 

strategy.  His heuristic begins by finding a feasible solution, that is, locating p facilities 

and then dividing the space into p subsets, each one associated with a specific 

location.  Successive relocation within the subset, followed by redivision of the points 

into clusters, produced stable solutions. 

The most widely used heuristic for the problem is the Teitz and Bart (1968).  The 

procedure starts with an initial solution to obtain the initial facility set (for example the 

Maranzana procedure can be used to obtain the p initial locations) and the p-median 

objective is computed.  The second phase of the heuristic seeks the improvement of 

the initial solution by exchanging members of the facility set for members of the non-

facility set.  Each exchange is evaluated by computing the new objective value. 

Trades are only allowed if the objective improves.  The heuristic terminates when, 

after a full cycle of exchanges, no improvement in the objective is found.  Rosing  et al. 

(1979a, 1979b) and Cornuejols et al.. (1977), among others, extensively analyzed the 

performance of the Teitz and Bart heuristic in relatively small networks and obtained 

                                                                                                                                                     
5 For a discussion of NP hardness, see Krarup and Pruzan (1990) 
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excellent results.  Nevertheless, later on, Rosing (1997) showed that the Teitz and Bart 

heuristic did not behave in large networks as efficient as in small ones.    

Other heuristics with similar search strategy have been proposed by Goodchild and 

Noronha (1983), with similar results.  Whitaker (1983) modified the Teitz and Bart 

heuristic and developed a greedy stepwise exchange heuristic for which he claims 

good results.  Nevertheless, the heuristic developed cannot be used with different 

random starts, since they always end in the same solution.   That is, either heuristic 

will produce a single local optimum when applied to any given problem setting 

(Rosing et al. 1999).  Densham and Rushton (1992a, 1992b) developed a very 

efficient version in computer time of the Teitz and Bart heuristic for very large P-

Median Problems, namely, the global/regional interchange algorithm (GRIA).  Despite 

its speed, GRIA was not as good as the Teitz and Bart in finding optimal solutions, 

since some exchanges are missed (Horn 1996).  Rolland et al. (1997) designed a 

tabu search heuristic to solve the p-median problem that improved both speed and 

results efficiency over the existing heuristics.  In essence, Tabu search is an 

interchange heuristic that tries to escape from a local optimum, and then continues on 

towards the global optimum by employing a memory of where it has been already.  

This memory makes specific, already investigated, interchanges illegal in the hope 

that a possible short-term degradation of the objective function will lead to an 

uninvestigated region of the solution space and hence to further improvement of the 

objective function (Rosing et al. 1998).  Full details of this metaheuristic can be found 

in Glover (1986, 1989, 1990; Glover and Laguna, 1993) and details of its 

implementation in the p-median context can be found in Rolland et al. (1996).  Another 

very similar Tabu Search approach for Uncapacitated Facility Location Problems 

(and therefore p-median problems) has been proposed by Al-Sultan and Al-Fawzan 

(1999).   

Another recent heuristic, baptized as Heuristic Concentration, has been developed by 

Rosing and ReVelle (1997).  Basically, this heuristic has two phases.  In the first 

phase, several random trials of an interchange heuristic such as Teitz and Bart are 
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executed.  This allows in the second phase the development of a construction set as 

the union of the sets of facilities (each consisting of p nodes) found in each of the 

random trials.  Then, the best set of facilities is obtained from the concentrated set, by 

means of LP+BB.  In other words, in the second phase the P-Median is solved to 

optimality using the nodes in the concentrated set as the potential facility locations.  

Rosing et al. (1998) compared the Heuristic Concentration with the Tabu Search 

developed by Rosing et al. (1998) and concluded that the first one was superior in 

finding optimal solutions.  On the other hand, it was not clear its efficiency in terms of 

computer time.   Rosing et al. (1999) modified the second phase of the Heuristic 

Concentration by using a 2-opt algorithm. 

Genetic algorithms have also been proposed to solve the problem.  A excellent review 

and a new proposed genetic algorithm can be found in Bozcaya, Zhang and Erkut, 

2001. 

Since its formulation in the late sixties – early seventies, the p-median problem has 

been modified to be adapted to specific location problems or to allow a better “real 

world” implementation in the public sector.  Services such as public libraries, schools, 

pharmacies, primary health care centers have benefited from this model.  

Nevertheless, in most cases, when implementing the location of such services, it has 

been necessary to modify the p-median in relation both to its parameters and its 

basic formulation. 

One of the first rigidities of the p-median problem is that it presents a complete 

inelastic demand with respect to distance.  People travel to the closest facility 

regardless of the distance or time traveled. As early as 1972, Holmes et al.  

presented a formulation that considered that people would not travel beyond a given a 

distance or time threshold.  In essence the P-Median objective was replaced by the 

following one: 
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where S is the threshold distance beyond no one will travel.  It is also necessary to re-

write constraint number 2 with a “ ≤ ” sign, since not everyone will be assigned to a 

facility.  The model was applied to locate public day care facilities in Columbus, Ohio.  

In this work, Holmes et al. also introduced the Capacitated P-median problem.  In this 

model, facilities have a limited capacity and therefore the following constraint needs 

to be added: 

∑
=

=≤
m

i
iji njCxa

1

)6(,,1 L  

where C is the maximum capacity level.  Computational experience shows that that by 

adding this constraint the number of fractional variables increases considerably when 

using linear programming and branch and bound. 

Another problem when implementing the p-median problem is related to the distance 

parameter.  The model supposes that distances (or travel times) do not change with 

time.  But, what happens when we want to locate, for example, fire stations in a city? 

Travel times change during the day and therefore an optimal location during traffic 

peak hours may be very deficient in valley hours.  On the other hand, the demand may 

also change during the day.  CBD areas may be crowded during daytime while 

residential areas are empty, and vice-versa during night time. Serra and Marianov 

(1998) introduced the concept of regret and minmax objectives when locating fire 

stations in Barcelona (Spain) taking into account what they called “changing 

networks”.  Basically, uncertainty was treated using the classic scenario approach, in 

which different patterns of demand or travel times are realized in different scenarios.  

Frist, over a range of possible demand scenarios, facilities are deployed to site in 

such a way to minimize the maximum average travel time in a given scenario (minmax 

approach).  Second, over that same range of scenarios, facilities are positioned in 

such a way as to minimize the maximum regret.  Regret is defined as the difference 

between (1) the optimal average travel time that would be obtained had the decision 
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maker planned its sites for the scenario that actually occurred; and (2) the value of 

average travel time that was actually obtained (regret approach). 

The minmax p-median problem formulation is as follows: 

Min M       (39) 
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where additional notation is defined as follows:  k and K is the index and number of 

scenarios respectively, aik is the population at node i in scenario k, Wk the total 

population in scenario k and di j
k the travel time between i and j in scenario k.  

Variables of the model are: 
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The first constraint is directly related to the objective.  Since the maximum average 

travel time across scenarios is to be maximized, we want to find a set of locations that 

will give the smallest maximum average travel time possible when evaluated for all 

scenarios.  The left side of each constraint (one for each scenario) represents the 

demand weighted average travel time that will be achieved in the corresponding 
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scenario.  The right-hand side, M, is the same in each constraint.  The objective of the 

model is to minimize M.  That is, the model will try to find a set of locations that 

minimizes the largest total trave l time achieved in each scenario.  The rest of the 

constraints are very similar to the constraint set of the p-median problem. 

If the regret objective is used, constraint set (40) is replaced by the following: 
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where Zk is the optimal objective, a known value, found when p facilities are located 

optimally in each scenario.  Its value is found by applying the original p-median 

formulation to each scenario individually.  The unknown variable M represents the 

largest regret evaluated over all scenarios. 

The authors developed a one-opt exchange heuristic to find solutions to both 

formulations.  The regret model was used to locate fire stations in the city of 

Barcelona. 

Another problem related to the p-median is data aggregation.  When selecting 

locations for facilities, the p-median takes  (as most location models do) into account 

the demand for the service provided by the facility.  When implementing the discrete 

problem in a real world setting, it is necessary to identify the demand areas that will 

be modeled as “nodes” or points”.  Therefore, some spatial aggregation of the 

demand is performed.  This is especially true when locating facilities in urban areas.  

In general, census tracks are aggregated to form demand areas.  In the location of fire 

stations above mentioned, Barcelona has around 1800 census tracks.  An 

aggregation was performed to reduce the problem to 200 demand areas.  This 

aggregation leads to three types of source errors (Hillsman and Rhoda, 1978).  

Source A errors are a direct result of the loss of locational information.  When 

performing the aggregation, the distance or travel time is modified since it is 

considered only from the centroid of the area to the potential facility site.  Therefore, 
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an over or under estimation of this parameter may occur.  Source B errors are a 

special case of source A errors.  If a facility is positioned in a given aggregated 

demand area, the corresponding weight in the objective function is set to zero since 

the corresponding distance is set to 0.  But in reality it should not be 0, since at the 

desaggregated level some areas will have to travel to the closest facility.  Source B 

errors always yield a measured weighted travel distance less than the true weighted 

travel distance.  Finally, type C source errors appear when part of an aggregated area 

is not assigned to its closest facility. Several methods have been proposed to reduce 

or eliminate these errors (Hillsman and Rhoda 1978; Goodchild 1979; Bach 1981; 

Current and Schilling 1987; Bowerman et al. 1997 among others). For an excellent 

overview and new methods of reduction see Erkut and Bozkaya (1999).   In this 

reference, demand point aggregation is examined in detail for the planar p-median 

problem. 

When planning public facilities it may be necessary not only to obtain a good location, 

but to achieve also a balanced demand assignment level.  Sometimes, in order to be 

efficient, facilities need to have a minimum demand threshold level.  An area of 

application where the concept of threshold is relevant involves to the provision of 

services that are considered merit goods, but that are services by the private sector.  

This is specially relevant for merit services that have been publicly owned or controlled 

in several countries and are being transferred to the private sector, such as postal 

services, gas stations, fire departments and pharmacies.  While the planner seeks to 

maintain good service quality by keeping a balanced spatial distribution of services, 

these need to have a minimum service threshold level that will allow them to survive.  

In the p-median formulation, this is achieved by adding to the original problem the 

following constraint set: 
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Carreras and Serra (1999) used this formulation to examine the impact of the spatial 

deregulation of pharmacies in a region of Spain.  They showed that by de-regulating 

the sector, the number of pharmacies would increase by at least 20%. 

Sometimes, the location of new facilities is conditioned by the existence of districts in 

the region of interest.  Demand areas within a given district can be assigned only to a 

facility within the same district.  This problem would arise in the allocation of schools 

in a county, in voting-machine siting among voting districts, or large-scale facility-

siting studies for regions encompassing many counties or states.  The problem has 

two aspects.  First, to decide how many facilities are assigned to each district.  

Secondly, where to locate these facilities.  ReVelle and Elzinga (1989) developed an 

algorithm that solved optimally this problem. 

The p-median model assumes that facilities are alike or of a single type. 

Nevertheless, it is widely accepted that many facility systems and institutions are 

hierarchical in nature, providing several levels of service.  More specifically, a 

hierarchical system is one in which services are organized in a series of levels that 

are somehow related to one another in the complexity of function/service. 

The organizational structure of hierarchical systems may vary considerably.  There 

may be institutional ties between levels, whereby lower levels are administratively 

subordinate to higher ones (e.g., health care delivery systems, banking systems).  On 

the other hand, there are several hierarchical systems that have no such inter-level 

linkages, different levels being distinguished solely by the range of goods and/or 

services they provide (e.g., educational systems, production-distribution systems, 

waste collection systems) (Hodgson 1986). 

The p-median model locates p facilities such that the average distance from the users 

to their closest facility is minimized.  In a hierarchical setting it has been generally 

used to locate a given number of facilities for each level, one at a time.  Several 

hierarchical models based on the p-median have been formulated. 
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Calvo and Marks (1973) constructed a multiobjective integer linear model to locate 

multi-level health care facilities: the model minimized distance (travel time), user 

costs, and maximized demand or utilization, and utility.  It was based on assumptions 

that (1) users go to the closest appropriate level; (2) there is no referral to higher 

levels; and (3) all facilities offer lower level services. 

Tien et al. (1983) argued that the approach taken by Calvo and Marks resulted in 

deficient organization across hierarchies.  In order to resolve this deficiency, they 

presented models derived from Calvo and Mark's formulation: nested and non-nested 

models. They also introduce a new feature whereby a demand cannot assign to a 

place more than once even if additional service levels may available at that point. 

Both models, unlike Calvo and Marks', can be solved by standard integer 

programming solution procedures.  Mirchandani (1987) extended the hierarchical p-

median formulation of Tien et al. model, allowing various allocation schemes by 

redefining the cost parameter in the objective. 

Harvey et al. (1974) used a p-median formulation to determine the number and 

optimal locations of intermediate level facilities in a central place hierarchy.  The p-

median model was used in one-level problem, but consideration was given on the 

interaction among lower and higher levels. 

Narula et al. (1975) developed a nested hierarchical health care facility location model 

that located on a network a fixed number of facilities.  At each level, the objective was 

to minimize patients' total travel.  They considered referrals between levels, based on 

the proportion of patients treated at each level.  Narula and Ogbu (1979) gave some 

heuristic procedures for the solution of the problem.  Later, Narula and Ogbu (1985) 

solved a two-level mixed-integer p-median problem using the same objective and 

referral pattern. 

Berlin et al. (1976) studied two hospital and ambulance location problems.  The first 

one focused on patient needs by minimizing (1) average ambulance response time 

from ambulance bases to demand areas and (2) average distance to hospitals from 



   New trends in facility location modeling                35         

demand areas.  The second model added a new objective to take into account the 

efficiency of the system: minimization of (3) distance from ambulance bases to 

hospitals.  It was named the "dual-facility" location problem: the locations of both 

hospitals and ambulance depots were basic to determine response times.  It is 

interesting to note that although two levels are defined (stations or depots where 

ambulances sit, and hospitals), the formulation can be decomposed into independent 

hospital and ambulance location problems and solved optimally.  It is not a clear 

hierarchical model since relations among levels differ from the traditional regionalized 

models. 

Fisher and Rushton (1979) and Rushton (1984) used the average and maximum 

distance from any demand area to its closest health care center to study and compare 

actual and optimal hierarchical location patterns in India.  The Teitz and Bart heuristic 

was used in three ways to determine hierarchies: constructing top-down hierarchical 

procedure (same as Banergi and Fisher 1974); constructing a bottom-up hierarchical 

procedure (opposite of top-down); and constructing a hierarchical procedure where 

the first step was to locate a middle-level of the hierarchy optimally, and then proceed 

as the bottom heuristic for upper levels, and use the top-down heuristic for lower 

levels. 

Tien and El-Tell (1984) defined a two-level hierarchical LP model consisting of village 

and regional clinics.  It is a top-down formulation in the sense that the flow patterns 

start at the hospitals.  That is, health professionals go from hospitals to village centers.  

Both village and regional clinics are located using a criterion of minimizing the 

weighted distance of assigning villages to clinics and village clinics to regional clinics.  

The model was applied to 31 villages in Jordan. 

Hodgson (1984) demonstrated that the use of top-down or bottom-up techniques to 

locate hierarchical systems generally leads to suboptimal locational patterns.  By a 

top-down (bottom-up) technique is meant the location first of the highest (lowest) level 

of the hierarchy and then successive location of facilities in the following level.  
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Hodgson used both the p-median model and a formulation based on Reilly's 

gravitational law (Reilly, 1929) to compare both techniques with the simultaneous 

location of all hierarchies. 

As mentioned before, sometimes it is necessary to obtain not only good locations but 

also an efficient district for each facility.  Serra and ReVelle (1993) introduced the 

concept of coherence in hierarchical models.  A coherence in a hierarchical system is 

defined as follows: all areas assigned to a particular facility at one hierarchical level 

should belong to one and the same district in the next level of the hierarchy. The 

authors developed the pq-median model.  This formulation locates two types of 

facilities by combining two p-median formulations.  Each level has the objective of 

minimizing the average distance or travel time from the demand areas to the nearest 

facility whilst ensuring coherence.  Hence, a trade off between access to each 

hierarchical level is expected.  The model was used to design the location and 

districting hierarchical primary health care services in Barcelona (Serra 1996). 

The implementation of location-allocation problems in third world areas may present 

different problems that the ones implemented in developed countries.  Perhaps the 

most notorious problem involves data limitations.  An excellent review of application of 

p-median and covering problems in the real word can be found in Oppong (1996).  

The work by Oppong also examines the location of hierarchical Primary Health Care 

Centers in Suhum District, Ghana.  This region is affected by strong climate 

differences during the year.  There is a strong seasonal variation in road surface 

conditions.  Therefore, this problem is similar to some extent to the one of locating fire 

stations in a city: there are different networks according to the season of the year.  He 

developed a decision support tool to improve the solutions given by the p-median 

formulations. 

 

1.4.   Conclusions 
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The development of models and methodological frameworks to design or reconfigure 

emergency and non-emergency systems has taken place over the span of a quarter 

century. It has developed alongside and in concert with the evolution of the modern 

computer as it transited from a room-filling behemoth to a desk-top associate. And 

like the computer on which the models must rely, the models and methods are not 

done evolving. The shape of the next models can be predicted by simply observing 

how the current generation still falls short of perfectly describing reality. We will focus 

on live areas. 

First, we should begin to see a new generation of models that deal with the issue of 

co-location of servers from different emergency systems. ReVelle and Snyder 

(forthcoming) introduce this line of research in the FAST (fire and ambulance siting 

technique) model that examines the link between ambulance and fire company siting. 

In the United States, ambulance deployment has traditionally taken place either at 

hospitals or at fire stations or both, but rarely have ambulances been positioned at 

free standing ambulance stations. ReVelle and Snyder, in a deterministic covering 

model, examine the consequences of allowing the ambulances to be sited free of 

constraints on the location of other services. These models should eventually develop 

all the probabilistic sophistication and nuances of the models discussed above. 

Second, we can expect that the estimate of server or region-specific busy fraction will 

be refined. Although we have moved from deterministic to redundant to probabilistic 

models, and although within this last category we have moved from a system-wide 

busy fraction to a region-specific busy fraction using queuing concepts, we still have 

not precisely matched the busy fractions estimated by simulation. Unless the 

challenge exceeds the imaginative powers of investigators, we will soon see server-

specific busy fractions or more refined region-specific busy fractions. 

Third, we should see focus developing on workload issues, a topic that has largely 

been ignored till now and one that greatly concerns emergency and non emergency 
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system planners. The issues of busy fraction, workload and threshold levels are tightly 

connected so progress on the former should bring achievement on the latter as well. 

Fourth, we should see a gradual melding of the two lines of evolution, queuing and 

location. It is hard to predict how this will take place, but certainly the use of heuristics 

offer the descriptive queuing models an opportunity to compete with the location 

models in the arena of design. And the introduction of queuing concepts by Marianov 

and ReVelle, as well as Batta, into location models, suggest movement from the other 

side as well. 

Fifth, most of the models we have examined consider that customers always 

patronize the closest facility.  That is, distance (or travel time) is the only parameter 

considered by customers.  But there may be other decision parameters related to 

service quality such as service speed, cleanness or efficiency that may influence 

customers’ decisions.  New models have been developed to examine this issue 

(Serra et al. 1999, Colome and Serra 1999). 

Sixth, the evolution of public sector deregulation is gradually introducing competition 

between providers.  For example, the deregulation of a health care system may 

introduce some level of competition among providers at the primary (and secondary) 

level to attract patients.  Therefore, the dichotomy between public and private location 

modeling is being diffused and Location Capture Models can be adapted to 

accommodate public sector issues. 

Last but not least, this paper has not addressed the development of public sector 

location-allocation models that consider the siting of undesirable facilities.  There is a 

considerable volume of literature on this topic.  A good starting point to interested 

readers can be found in Murray et al. (1998). 
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