
University of London

Imperial College of Science and Technology

Department of Management Science

THE OPTIMAL LOCATION OF FACILITIES

ON A NETWORK

by

ti
ROBERTO DIEGUEZ GALVAO, B.Sc., M.Sc.

A thesis submitted for the

Degree of Doctor of Philosophy and

the Diploma of Imperial College

May 1977

Abstract

Problems of optimally locating facilities on networks fall within

two main categories, namely minisum and minimax location problems.

This thesis studies the p-median problem, an uncapacitated minisum

location problem that consists of locating a given number of facilities

(say 1) on a network, so that the sum of shortest distances from each

of the nodes of the network to its nearest facility is minimized.

Two formulations of a linear programming (LP) relaxation of the

problem are examined. A general formulation produces very large linear

programmes, and is therefore unsuitable for use in large-scale networks.

A decomposition formulation produces smaller LP's but often does not

converge. The importance of this LP relaxation lies in the fact that

it often produces integer solutions that are optimal solutions to the

p-median problem itself.

Two lower bounds are then developed: a graph-theoretical bound,

based on shortest spanning trees and arborescences, and a dual bound,

based on the dual of the LP relaxation of the problem. The latter

proved to be a very good bound, and is used in the branch7and7bound

algorithm developed in Chapter 5.

The algorithm of Chapter 5 is a direct tree search algorithm.

It cascades through two lower bounds in a way designed to save

computing time, and uses an upper bound to further reduce the size of

the search. The computational results obtained through this algorithm

represent a substantial advancement over existing exact solution

procedures for the problem. It produces optimal solutions for networks

of up to 30 vertices in less than 2 minutes in a CDC 7600 computer,

for every possible value of P.

Finally, heuristic methods are investigated and tested in a

number of problems. Heuristics based on A-optimal substitution methods

are described, and computational results are given for the particular

cases of A = 1 and A = 2.

Acknowledgements

I would like to thank my supervisor, Dr. Nicos Christofides, of

the Department of Management Science, Imperial College, for his advice

and encouragement during the course of my work. I would also like to

thank Professor S. Eilon,- Head of the Department, and Dr. R.B. Flavell,

lecturer in the same department, for their help in some phases of the

research.

I am very grateful to Professor E.M.L. Beale, Department of

Mathematics, Imperial College, for his advice on linear programming

decomposition, and to Dr. A.W. Neebe, University of North Carolina,.

U.S.A., for having forwarded to me a computer code developed by him.

The financial support of the Brazilian Ministry of Education and

Culture, for a period of four years, is gratefully acknowledged.

Finally, I wish to thank Ms. Anne Usher, Anne de Sayrah and Susan Hayden

for their excellent work in typing this thesis.

To my parents, without whose help

and encouragement this thesis would

not have been possible.

To Stuart, who was never able to

complete his degree in Economics.

4

CONTENTS

Page

ABSTRACT 	 2

ACKNOWLEDGEMENTS 	 3

CONTENTS 	 5

LIST OF TABLES 	 8

LIST OF ILLUSTRATIONS 	 9

CHAPTER 1 INTRODUCTION 	 10

1.1 Network location problems 	 10

1.2 The p-median problem as a special case of

facility location problems 	 11

1.3 Basic graph theory definitions 	 14

1.4 Outline of the thesis 	 16

CHAPTER 2 LITERATURE SURVEY 	 19

2.1 Introduction 	 19

2.2 Location with infinite solution space 	19

2.3 Location with finite solution space 	22

2.4 Location on networks 	 24

2.4.1 Minimax location on networks 	25

2.4.2 p-medians and absolute p-medians 	27

2.4.3 Generalization of Hakimi's fundamental

theorems 	 31

2.4.4 Methods for the p-median problem 	32

2.5 Conclusions 	 38

CHAPTER 3 LINEAR PROGRAMMING FORMULATIONS OF THE RELAXED p-MEDIAN

PROBLEM 	 39

3.1 Introduction 	 39

3.2 The general linear programming formulation 	40

3.3 The decomposition formulation 	 44

3.4 The decomposition formulation studied in detail 	52

3.4.1 A small example solved by hand 	52

Page

3.4.2 Computational results 	 64

3.4.3 Degeneracy and the problems with convergence 	77

3.5 Conclusions 	 83

CHAPTER 4 BOUNDS FOR THE p-MEDIAN PROBLEM 	 84

4.1 Introduction 	 84

4.2 Earlier work on bounds for the p-median problem 	85

4.3 A graph-theoretical bound 	 87

4.3.1 Trees, arborescences, shortest spanning

trees and shortest spanning arborescences 	88

4.3.2 Shortest spanning trees as lower bounds

for the p-median problem 	89

4.3.3 Further graph-theoretical properties and a

stronger lower bound 	 93

4.3.4 Generalization for weighted networks 	97

4.3.5 Dominance over the shortest distance bound 	98

4.4 A bound based on the dual of the linear programming

relaxation of the problem 	 99

4.4.1 The dual linear programme 	100

4.4.2 A heuristic method to solve the DLP 	102

4.4.3 The initialization of the heuristic procedure 106

4.5 Comparison of bounds, 	 114

4.6 Conclusions
	

120

CHAPTER 5 A BRANCH-AND-BOUND ALGORITHM 	 122

5.1 Introduction
	

122

5.2 The branch-and-bound algorithm
	 124

5.2.1 Description of the algorithm
	125

5.2.2 The embedding of the shortest distance bound 128

5.2.3 The embedding of the dual bound 	130

5.2.4 The detailed steps of the algorithm 	138

5.2.5 The algorithm illustrated 	141

Eao.
5.3 Computational results 	 151

5.4 The LP relaxation and the branch-and-bound

algorithm 	 163

5.4.1 The embedding of the LP decomposition

formulation 	 164

5.4.2 Computational experience with the embedding 	166

5.5 Conclusions 	 169

CHAPTER 6 HEURISTIC METHODS 	 171

6.1 Introduction 	 171

6.2 A review of earlier work on heuristics for the

p-median and related problems 	 172

6.2.1 The partition method of Maranzana 	172

6.2.2 - The vertex substitution method of Teitz

and Bart 	 173

6.2.3 The work of Cornuejols, Fisher and Nemhauser 175

6.3 A-optimal substitution methods for the p-median

problem 	 179

6.4 The vertex addition heuristic and its use as a

'pre-processor' for A-optimal substitution algorithms 182

6.5 Conclusions 	 200

CHAPTER 7 CONCLUSIONS 	 202

7.1 General Summary 	 202

7.2 Possible areas for further research 	204

APPENDIX DATA FOR THE TEST PROBLEMS USED IN THE THESIS 	205

'RE.NEBENCES 	 218

LIST OF TABLES Lam
Table 3.1 - LP Decomposition: random initial solution 	67

Table 3.2 - LP Decomposition: initial solution from heuristics 	71

Table 3.3 - LP Decomposition: comparison of random vs. heuristic

initial solution 	 74

Table 3.4 - LP Decomposition: CDC 6400 seconds per iteration 	77

Table 4.1 - The dual bound: computational results 	110

Table 4.2 - Comparison of bounds 	 115

Table 5.1 - The algorithm illustrated: the 4 searches compared 	150

Table 5,2 - The branch-and-bound algorithm: computational results 	154

Table 5.3 - No. of nodes examined and time spent on the dual

bound 	 157

Table 5.4 - No upper bound vs. initial upper bound 	158

Table 5.5 - Single vs. multiple optimal solutions 	161

Table 5.6 - The embedding of the LP decomposition 	167

Table 6.1 - Computational results for the X=1 and X=2 optimal

substitution methods 	 183

Table 6.2 - Computational results for the 1-optimal substitution

method [n=33] 	 186

Table 6.3 - Computational results for the 1-optimal substitution

method [n=40 and n=50] 	 187

Table 6.4 - Computational results for the combined approach

(X=1 and X=2) 	 191

Table 6.5 - Computational results for the combined approach

(X=1) [n=33] 	 194

Table 6.6 - Computational results for the combined approach

(Al)= 	[n=40 and n=50] 	 195

LIST OF ILLUSTRATIONS 	
Page

Figure 3.1 - 10-vertex network of Garfinkel et al. 	43

Figure 3.2 - Contrived cost matrix 	 45

Figure 3.3 - Distance matrix of illustrative example 	53

Figure 3.4 - Modified distance matrix 	 53

Figure 4.1 - Optimal 3-median of a 10-vertex network 	95

Figure 4.2 - % Deviation of best bound from best available solution 119

Figure 5.1 - D matrix and corresponding a vector for a 5-vertex

network 	 137

Figure 5.2 - 10-vertex network of Garfinkel et al. 	142

Figure 5.3 - Allocations of vertices to medians 	143

Figure 5.4 - The graph-theoretical bound computed at node 27 of

Fig. 5.6 	 145

Figure 5.5 - The tree search: shortest distance bound used 	146

Figure 5.6 - The tree search: graph-theoretical bound used 	147

Figure 5.7 - The tree search: dual bound used 	148

Figure 5.8 - The tree search: dual bound plus initial upper

bound used 	 149

Figure 5.9 - The tree search with the LP decomposition embedded 	168

Figure 6.1 - 1-optimal substitution: % deviations from optimal

solution 	 188

Figure 6.2 - Combined approach (A=1): % deviations from

optimal solution 	 196

Figure 6.3 - CDC 7600 seconds vs. n for A=1 	 198

Figure 6.4 - CDC 7600 seconds vs. n for A=2 	 199

10

CHAPTER ONE

INTRODUCTION

1.1 Network Location Problems

The problem of optimally locating facilities on a network falls

within two main categories, namely minisum and minimax location

problems. In minisum location problems the objective is to determine

the location of a given number of facilities (say p), so that the sum

of shortest distances from each of the network demand centres* to its

nearest facility is minimized. The objective in minimax problems is

to locate the 2 facilities so that the largest travel distance (or time)

from any network demand centre to its nearest facility is minimized.

A related problem can be defined in the minimax category. It

consists of finding the minimum number p of facilities (and their

location), so that all demand centres in the network are within a

critical distance 8 from at least one of the facilities. Minimax

problems appear in practice in the location of emergency facilities

such as hospitals and fire stations.

This thesis studies a particular case of the uncapacitated mini-

sum network location problem, often referred to as the p-median problem.

The p-median problem consists of locating 2 facilities on a network,

so that the sum of shortest distances from each of the nodes of the

network to its nearest facility is minimized. There are no restrictions

on the capacities of the facilities, and fixed costs are assumed not to

vary with the location of the facility, thus not appearing in the

problem's objective function.

Two theorems by Hakimi [48, 49] restrict the search of the optimal

A network demand centre is defined here as being a site located
either on the arcs or nodes of the network, from which demand for
goods or services is generated.

11

p-median to the nodes of the network, i.e. it can be shown that the

search for the optimal 2 points need not consider points on links

other than the two ends. If n is the number of nodes in the network,

the p-median problem has a total of [J feasible solutions, and solution
P

by complete enumeration is not feasible even for problems of moderate

size. The problem of finding the optimal p-median of a network can

be made slightly more general by associating with each node xi a

weight vi, in which case the objective function to be minimized becomes

the sum of weighted distances.

The p-median problem appears, in practice in a variety of forms:

the location of switching centres in telephone networks, substations

in electric power networks, supply depots in a road network, schools

in a rural area. Assume, for example, that the population distribution

of a given rural area is known. It is required that 2 primary schools

be built in the area, so as to minimize the total distance travelled

by the school children.

The school location problem can be represented by a network of n

nodes, each node corresponding to one region in the area. Node weights

can .be used to represent the relative sizes of the school-age population

of each of the regions. Existing roads between regions should link

the corresponding nodes of the network. Given the length of each of

the connecting roads, the problem is actually a p-median problem.

1.2 The p-median problem as a special case of facility location problems

The facility location problem consists of determining the site of

one or more facilities (supply depots, schools, hospitals, etc.) to

serve customers in a given geographical area. The selection of sites

should be made in such a way that a well defined objective function is

optimized, subject to constraints relevant to the problem.

12

Facility location problems have been classified in different

ways by different authors. In an excellent review paper, Revelle et al.

[89] attach great importance to the ownership of the facilities (private

or public) and suggest different objective functions for the two cases.

Eilon, Watson-Gandy and Christofides um have chosen to tie their
classification to the approach used to solve the problem (Infinite

Set Approach or Feasible Set Approach). They also enumerate some

advantages and disadvantages of each of the two approaches.

In a comment on the paper by Revelle et al., Robers [91] proposes

the following three-way classification:

A. Location in a Plane with Infinite Solution Space,

B. Location in a Plane with. Finite Solution Space,

C. Location on a network..

Problems in category A are characterized by (1) an infinite

solution space (facilities may be located anywhere in the plane), and

(2) distance measurement according to a particular metric. The second

type of problem is characterized by restricting the location of the

facilities to a number of predetermined sites. Finally, location on

a network is characterized by (1) a solution space consisting of points

on the network, and (2) distance measurement along the network.

The p-median problem is now shown to be a special case of the

uncapacitated facility location problem. The latter is a B problem

in the classification given above. There are no restrictions on the

permissible capacities of the facilities, and the objective function

includes both fixed and variable costs.

The uncapacitated facility location problem can be formulated

as a mixed-integer programming problem:

Minimize = E 	F. y. ie, E 	E 	c..
jEJ 1J 1J

13

Subject to
E 	i.. = 1, jEJ 	 (1.2)

iEI

1 < 	Ey.1 < p
iEI

(1.3)

Eij < y., iEI, jEJ
	

6..10

y. E {0,1 	E I 	(1.5)

•• > 0' iEI, jEJ, = (1.6)

where:

I 	= (1,2,...,n) - set of feasible location sites for the facilities;

J = (1,2,...,m) — set of user (customer) locations;

F.1 - Fixed cost associated with opening a facility at location i;

cij - Cost of supplying customer j_ from facility 1;

(ii)

.. 	- lj

p 	-

Yi 	=

If 	(i)

d. 	= c.

Fraction of the demand of customer ji supplied from facility i;

Maximum number of facilities that can be built;

{ 1 if a facility is located at site i

0 otherwise

I EJ = (1,2,...,n) coincide with the nodes of a network,

1j correspond to distances measured along the arcs of the

network, (iii) it is decided that exactly facilities must be built,

and (iv) all fixed costs Fi are equal, Equations (1.1) to (1.6) become:

Minimize 2, = 	E 	E d..
iEI jEJ 13 13

(1.7)

Subject to
E g„ = 1, ie.]. 	(1.8)

1E1 ld

E
iEI

= p (1.9)

14

13 < = 11
	iEI, jEJ
	(1.10)

1 if customer j_ is allocated
to facility i

C.. =

0 otherwise

Equations (1.7) to (1.11) correspond to the integer programming

formulation of the p-median problem (see chapter 3). In this formu-

lation gii = 1 implies that a facility is located at site i and gii = 0

otherwise. Since it is not possible to have a fractional facility

located at a site, Cii E (0,11, iEI. Furthermore, since there are

no capacity restrictions and no economies of scale, no one destination

will be supplied by more than one facility in the optimal solution.

Hence, C.. E f0,11, iEI, jEJ.
ij

The p-median problem is therefore a special case of the uncapaci-

tated facility location problem. Note that since the number of

facilities has been fixed a priori at exactly EL, and all fixed costs

F.areequal,theF.need not be included in the formulation of the

p-median problem.

1.3 Basic graph theory definitions

The basic graph theory concepts defined in the present section

are the ones used throughout this thesis. The definitions given

generally correspond to those of [12].

A graph (or network) G is a collection of vertices or nodes

xl, x2, 	, xn (denoted by the set X), and a collection of lines

al, a2, 	, am (denoted by the set A) joining all or some of the

vertices. The graph G is then fully described and denoted by the

doublet (X,A).

If the lines in A have a direction they are called arcs and the

resulting graph is called a directed graph. If the lines have no

15

orientation they are called links and the graph is nondirected. In

cases where G = (X,A) is a directed graph but it is desirable that

the direction of the arcs in A be disregarded, the nondirected counter-

part of G will be written as d = (X,74).

A path in a directed graph is any sequence of arcs where the

final vertex of one arc is the initial vertex of the next arc. A

simple path is a path which does not use the same arc more than once.

An elementary path is a path which does not use the same vertex more

than once. An elementary path is also simple, but the reverse is not

necessarily true.

A graph is said to be arc-weighted if a cost (length,weight) c. 1j

is associated with every arc (x.,x.) of the graph. If a weight vi is

associatedwitheveryvertexx.of a graph the resulting graph is then

called vertex-weighted. A nonweighted graph is defined in this thesis

as an arc-weighted graph whose vertices have all unit-weights, i.e. an

arc-weighted graph for which vi = 1 V i.

Thenumberofarcswhichhaveavertexx.as their initial vertex 1

is called the outdegree of vertex xi (call this outdegree do(xi)),

Similarly, the number of arcs which. have xi as their final vertex is

called the indegree of vertex x.I (dt Cx./). For a nondirected graph.

the degree of a vertex xi is equal to the number of links connected

to xi. When no confusion can arise it will be denoted simply by
1 d..

A graph G = (X,A) is said to be complete if, for every pair of

vertices.x.andx.in X, there exists a link Cx.;xj) in G =

i.e. there must be at least one arc joining every pair of vertices.

The complete nondirected graph of n vertices is denoted by K
-h

A graph G = (X,A) is said to be symmetrical if, whenever an arc

(x.,xj) is one of the arcs in the set A, the opposite arc (x.,x.1
) is

also in A.

16

Matrices of a Graph

A convenient way of representing a graph G = (X,A) algebraically

is through its adjacency matrix. The adjacency matrix of G is denoted

by A = [aij] and is given by

au = 1 if arc (x.,x.) exists in G

aij 	

1 j

= 0 if arc (x.,x.) does not exist in G. 1 j

If a cost cij is associated with every arc (x.,x.) of the graph,

it is possible to calculate the shortest path between all pairs of

vertices of the graph [34, 83]. A matrix can then be formed with the

corresponding shortest distances d(x.,x.). The matrix D(G) = [d(x.,x
j)]

is called the distance matrix of the graph.

Whenaweightv.isassociatedwitheveryvertex.x.of a graph, •

this graph must be transformed into a complete graph before a corres-

ponding p-median problem can be solved. Any graph can be transformed

into a complete graph through the computation of its distance matrix.

In the case of vertex-weighted graphs, the computation of the distance

matrix must be followed by the multiplication of each element of every

row or column by the appropriate vertex weight*. The resulting weighted

matrix can be then represented by a complete symmetrical graph. The

arcs of this graph represent the weighted lengths of the corresponding

shortest paths.

1.4 Outline of the thesis

This thesis is concerned with the p-median problem. The emphasis

is on exact solution methods for the problem, although some heuristic

In a network location problem for which the flow is directed into
the facilities - as, for example, when the facilities are schools
to which children must travel - the rows of the distance matrix
must be weighted. If the reverse is true and the flow is from the
facilities, the columns of the distance matrix must be weighted.

17

procedures are also investigated.

Chapter 2 is a literature survey. The survey covers the broader

field of facility location problems, but its main part is dedicated

to the p-median problem and related minisum and minimax network loca-

tion problems.

In Chapter 3 two different formulations of the LP relaxation of

the p-median problem are investigated. The general LP formulation

produces very large linear programmes. This disadvantage is overcome

by a recent LP decomposition formulation. The very degenerate nature

of the decomposition formulation and the ensuing convergence problems

are analysed and tested.

Chapter 4 is dedicated to lower bounds. Two new- lower bounds

are developed for the problem, namely the "graph-theoretical bound"

and the "dual bound". Unlike other existing bounds, the graph-

theoretical bound makes use of the graph-theoretical properties of the

problem. The dual bound is based on the dual of the LP relaxation of

the problem. The latter is a very good bound, a fact of decisive

importance in branch-and-bound algorithms.

'A direct tree search algorithm is the object of Chapter 5. The

principles on which this algorithm is based are discussed, and the

embedding of the bounds of Chapter 4 into the search is explained.

Computational results for networks ranging from 10 to 30 vertices,

and for a wide range of values of E are then given.

Heuristics are investigated in Chapter 6. The existing vertex

substitution method of Teitz and Bart [98] is extended into a family

of heuristics, the A-optimal substitution heuristic methods. The

particular cases of A = 1 and A = 2 are studied in detail. A simple

vertex addition heuristic is introduced, and its use as a 'pre-processor'

for the A-optimal substitution methods is described. Computational

results are given for the resulting heuristics.

18

The main contributions of this thesis to the field of optimal

location of facilities on a network are:

(i) The development of new and "tight" lower bounds for the

p-median problem;

(ii) their use in a direct tree search algorithm that represents

a substantial advancement in the area of exact solution methods for

the problem; and

(iii) the detailed investigation of the LP decomposition formu-

lation of Garfinkel et al. [41], and in particular the problems arising

from the large-scale degeneracy of this formulation.

The branch-and-bound algorithm produces optimal solutions for

30-vertex networks in less than 2 minutes in a CDC 7600 computer, for

every possible value of 2. It is both faster (in terms of time) and

much more efficient (in terms of number of nodes) than other branch-

and-bound algorithms available in the literature [30, 55]. While other

exact solution methods [41, 78] may on occasion solve the problem for

n = 30, these other methods cannot guarantee an optimal solution for

every possible value of P, and may in fact fail on much smaller net-

works.

As for the LP decomposition of Garfinkel et al., the extensive

testing of their algorithm carried out in this thesis has uncovered

serious convergence problems, and shown that this lack of convergence

is due to the very degenerate nature of the LP decomposition master

problem. The hope that the embedding of this formulation into the

branch-and-bound algorithm of Chapter 5 would overcome the convergence

problems did not materialize, in spite of the large perturbations

caused by the branching.

19

CHAPTER TWO

LITERATURE SURVEY

2.1 Introduction

Historically, contemporary location analysis started with Alfred

Weber [101], who examined the location of a plant with the objective

of minimizing transportation costs in relation to three points (two

sources of raw materials and a single market). In one form or another,

this is a very old problem in pure mathematics. It was considered as

early as 1647 by Cavalieri. Fagnano, Tedenat, Heinen and Steiner

made important contributions to its solution from the middle of the

18th to the middle of the 19th century [.us].

It is not the objective of this survey to make a very detailed

review of the literature on facility location. Detailed surveys are

available elsewhere, such as those by Eilon et al. [27, Chapter 2],

Revelle et al. 09] and Domschke [23]. The vastness of published

work on location analysis is atested by the 226 papers listed by

Francis and Goldstein [35] in their selective bibliography. Elshafei

[28] gives a total of 82 references in a recent survey of facility

location studies.

After a brief review of the general area of location analysis,

the present survey concentrates on the p-median and related minisum

network location problems.

2.2 Location with infinite solution space

The facility location problem with a minisum objective and in-

finite solution space is examined in depth in chapters 3 to 6 of [21.

Numeric-analytic heuristic methods can handle non-linear cost functions,

provided that the cost functions are monotonic and continuous. 	In a

more recent paper, Watson-Gandy and Eilon [100] investigate dis-

20

continuous delivery costs.

Multifacility location problems with infinite solution space are

also called multisource Weber problems. They are divided into

Euclidean and rectilinear distance problems, depending on the metric

according to which distances are measured. 	In Euclidean distance

problems distances are measured according to

dlj = (x. - x.)2 + (Y 	Y)2 , 	(2.1) - 	j

where

(13.
.j - distance between points i and

and
th

(xi' y.) - coordinates of the .
	

point in a rectangular

system.

Rectilinear distance problems have their distances measured by

d..
1J

= lx. 1 - x. 	1 	J
1 + I y. - Y-1 . J

(2.2)

The multisource Weber problem has been investigated by Cooper

[16, 17, 18] , Kuenne and Soland [66, 67] and Morris [82] among

others. A related problem, that of locating new facilities in

relation to existing ones has been the object of several papers, by

Cabot, Francis and Stlry [11] , Rao [88] and Juel and Love [56].

In its simplest form, the Weber problem involves m customers with

known location on a plane, the location of customer being determined

by a pair
(xj'j

y) of cartesian coordinates. The problem is to

determine the coordinates (xi,y1) of each of a given number P of

facilities to serve the m customers, so as to minimize the following

cost function:

p m
C = E 	Ev. d.

ij 	lj ' j=1 i=1 =1
(2.3)

where

21

v. 	- weighting factor related to customer ,j,,.

d..
1j
 - distance between facility i and customer ,j., given by:

Equation (2.1) [Euclidean metric] , or

Equation (2.2) [Rectilinear metric].

dij
=

{

1 if customer _i_ is served from facility i

0 otherwise

If there are no capacity or other constraints, the solution to

the above *problem can be found through partial differentials with

respect to xi and yi:

ax. 	j = E [E..vj (x.1
-x.) di 	

= 0, i = 1,...,p
ij j=1

3C 11 - Ej 	j 	
ij = 0, i = 1,...,p

3C

If equations (2.1) and (2.5) are solved for xi and yi it follows

that

x. = E (..v.x./d..) / E 	i = 1,...,p
1 	lj 	10 	. 	lj 	10

j=1 	j=1
(2.6)

y. = E (..v.y./d.) / E (..v./d..), i = 1,...,p 	(2.7)
1 ._ ij 	ij

J-1 	j=1 lj j lj

These equations can be solved iteratively, as shown by Eilon et al.

	

[27] and Cooper [16]. 	Let the superscript k indicate the iteration

parameter.Theiterationequationsforx.1 and y.1 are simply [16]:

m 	m
k+1 	k . / 	k .
x. 	.=. E (..v.x./d..) / 	E (..v./d..), 	i = 1,...,p 	(2.8)
1 	. 	ij j j lj 	j=1 13 	13 j=1

Yi
k+1 	k / / = 	j 10 E (2 .v.y/d..) 	E 	

13 	
i = 	...,p 	(2.9)

j=1 	j 	j=1 lj j

After each iteration the customers are reallocated to the relocated

22

facilities,andthe. li sare modified prior to the next iteration. E

It has been shown by Palermo [85] , Kuhn and Kuenne [70] and

Haley [51], that Equation (2.3) is convergent in the case of a single

facility (p=1): the cost function being convex, it has a single

unique optimal solution. 	In the general case (p > 1) Equation'(2.3)

has multiple local minima and the iterative scheme of Equations (2.8)

and (2.9) only converges to a local minimum.

2.3 Location with finite solution space

A simplified definition of the facility location problem with

finite solution space is as follows. 	Given a number of demand points

for a certain product, each with a demand Dj, 	 - a number of alternative

sites where facilities may be built to satisfy these demands, determine

where the facilities should be placed, and which demand points are to

be served by each of the facilities [87, 89]. There may or may not

be restrictions on the size (capacity) of the facilities. The

objective is to minimize the sum of the fixed costs of the facilities

plus the variable transportation costs.

When there are restrictions on the size of the facilities the

problem is usually called the capacitated facilities location problem.

If these restrictions do not exist, the problem is known as the un-

capacitated (or the simple) facility location problem [61, 971. A

general formulation for the uncapacitated facility location problem was

given in Section 1.2. The general case in which there are restrictions

on the size of the facilities can be formulated as [62];

Minimize

Z = E F. y. + E 	E c. X. 1 	1j 1j iEI 	 ieI jEJ

Subject to

(2.10)

23

E X.. > D., j e J
iEI 1J - J

E X
i
 < S.y., i E I

jEJ j = 1 1

y. E {0,1}, i E I

X. > 0, i E I, j E J
ij -

(2.11)

(2.12)

(2.13)

(2.14)

where

X.. Amount supplied to customer i from facility i;

D
j
 - Demand at area .i;

Si - Capacity of facility i.

The cost functions included in the objective function can be made

more general than the one shown in Equation (2.10). Instead of the

fixed costs associated with opening and operating a facility, and linear

transportation costs, it may be necessary, in the case where the

facility is a warehouse, to consider variable warehousing and delivery

costs which are nonlinear [4, 5, 25, 31, 33, 65].

Perhaps the first algorithm to guarantee an optimal solution for the

uncapacitated case was the one by Efroymson and Ray [25]. They assume

thatthefixedcostF.is a single fixed charge. Their method can be

also extended to include the case in which F. is concave and consists

of several linear segments.

Efroymson and Ray utilize a tree search algorithm.* They use

a linear programming formulation that can be solved by inspectibn to

resolve the subproblems at the nodes of the tree.

Tree search or branch-and-bound algorithms are examined in more
detail in Chapter Five. A good survey on branch-and-bound methods
is provided by Lawler and Wood [71].

24

Spielberg [94, 95] has considered essentially the same problem,

but his algorithms contain added features that speed up computation

and can accommodate some side conditions. Khumawala [60] reports

good computational results for this class of problem.

Algorithms for the capacitated case have been proposed by. Davis

and Ray [201 , Gray [46], Marks [77] , Sat:' [92] and Akinc and Khumawala

M. Marks' model is more general in that he considers the facilities

to be intermediate points between sources of productand the customers

to whom these products are to be sent. 	In all algorithms of the

above mentioned references for the capacitated case, transportation

costs are assumed to be linear, and a fixed cost Fi is associated

with facility i. More general cost functions are considered by

Soland [93] in a recent paper. 	All exact procedures mentioned above

are branch-and-bound methods.

2.4 Location on networks

It was mentioned in Section 1.2 that location on networks is a

special case of location in a plane with finite solution space. 	In

network location problems the solution space is restricted to the

arcs and vertices of the network, and distances must be measured along

the arcs of the network.

Network location problems are characterized by the nature of the

objective function to be optimized. 	In problems involving the

location of emergency facilities, such as hospitals and fire stations,

the objective is to locate a given number of facilities so that the

largest travel distance (or time) from any network demand centre to its

nearest facility is minimized. These are the minimax network location

problems. 	In other cases, such as in the location of depots in a

distribution network, a more appropriate objective is to minimize the

total distance travelled. The latter are the minisum location problems,

25

of which the p-median problem is a special case.

Minimax network location problems are briefly reviewed in

Section 2.4.1. 	This is followed by a much more detailed review

of minisum problems, with special emphasis given to the p-median

problem.

2.4.1 Minimax location on networks

There are a large variety of minimax network location problems.

In a thorough and comprehensive study of the subject, Handler [52]

identified ten different models for such problems. In order to

facilitate the identification of the several models, Handler proposed

the following notation:

Facility Location Demand Location No. of Centres/ Network Type
Set 	Set 	Max. Distance

{} 	 {N} 	 P 6-1'

where N,P denote the node and point sets,*, T, G denote tree and cyclic

graphs, and p,s5 refer to the number of facilities and to the critical

distance respectively. The critical distance is the maximal allowed

distance between a demand centre and its nearest facility. The

symbol "(3 	is used for inverse problems. 	In inverse problems what

is sought is the determiniation of the minimal number of facilities (and

their location), so that all demand centres are within a critical

distance S from at least one of the facilities (see Section 1.1).

The best known minimax network location problem is P/N/p/G.

Demand centres are restricted to the vertices of the network, but

facilities may be located either on vertices or on arcs connecting

the vertices. This problem is known as the multi-centre problem or the

The node set includes all vertices of the network.. The point set
comprises all points of the network, either vertices or points on
arcs connecting the vertices.

26

absolute p-centre problem. 	In its formulation the number p. of

centres is fixed, and what is required is their location so that

the maximal distance between any vertex of the network and its

nearest facility is minimized.

The inverse of the absolute p-centre problem, denoted by

P/N/6
-1

/G, can be stated as follows: 	For a given critical distance 6,

find the smallest number (and location) of facilities, so that all

vertices of the network lie within this critical distance from at

least one of the facilities. This problem is closely related to the

absolute p-centre problem, and usually the same method can be used to

solve both problems.

The State of the Art

The vertex centre (N/N/l/G) and the absolute centre (P/N/l/G)

problems were introduced and solved by Hakimi [48]. 	Goldman [44] also

presented an algorithm for P/N/l/G, but the algorithm does not guarantee

an optimal solution. As a special case of his algorithm, Goldman

derived an efficient algorithm for P/N/1/T.

• The absolute p-centre problem (P/N/p/G) was also proposed by

Hakimi [49]. 	Subsequently, solution algorithms for this problem were

produced by Minieka [80] and Christofides and Viola [15]. An

algorithm for N/N/p/G was given by Toregas, Swain, Revelle and Bergman

[sm. All algorithms mentioned above involve repeated solutions of

generalized set covering problems.

The work of Handler [52] represents a substantial advancement in

the field of minimax network location problems. He developed better

algorithms and studied problems that had previously received very

little attention, such as P/P/p/G and N/P/p/G.

Minimax problems can be also defined for the more general case of

location in a plane, with distances measured according to either the

Euclidean or the rectilinear metric systems. These formulations have

27

the characteristics of the models discussed in 2.2 and 2.3.

They were the object of papers by Dearing and Francis [21], Elzinga,

Hearn and Randolph [32] and Wesolowsky [103] , among others.

2.4.2 p-Medians and absolute p-medians

Minisum network location problems can take several forms, depending

on the costs included in the objective function and the form of the

constraints. In these problems the optimal locations of the

facilities are called the medians of the network. The difficulty in

solving such problems is not due to variations in the objective function

or to additional constraints, but is inherent in the pure median problem

itself. This thesis is concerned with the pure p-median problem.

The generalized p-median problem, however, is briefly discussed at the

end of this section.

The Median and Multiple Medians

For a given network N = (X,A) it is possible to define two trans-

missimariumbersforeveryvertexx.
1
 E X. 	Let

and

a (x.) = 	v. d(x.,x.) ,
x.EX 0 1 	j 	j

J

(2.15)

where

at (x.) =
	E 	v. d(x.,x.) ,

1 	J J 1 x.EX
(2.16)

d(x.,x.) - shortest distance from vertex x.1 to vertex x.;

v. 	- weight of vertex x..

The numbers a01 (x.) and at(xi) (x.) are called respectively the outtransmission

and the intransmission of vertex x.. 	The number a0 (x.) is the sum of

theentriesofrowx.1 of a matrix obtained by multiplying every column

of the distance matrix D(N) = [d (xi,xj)] by vj; at(xi) is the sum

oftheentriesofcolumnx.of a matrix obtained by multiplying every

row j of the distance matrix D(N) by vj.

28

A vertex x
0
 for which

a0(0) = Min [50(xi)]
x.EX
1

(2.17)

is called the outmedian of the network N, and a vertex
t for which

at(;t) = Nin [nt(xi)] x.EX
1

(2.18)

is called the inmedian of N.

The single median can be readily generalized to the p-median.

Let Xp be a subset of the set X of the vertices of the network

N(X, A), and let X contain 2 vertices. 	Define:

d(X
PJ j
, x.) = Min [d(x., x.)] ,

x.EX
(2.19)

and p

d(x., X) = Min [d(x., x.)] .
J P

x.EX

j
1 p

(2.20)

If x!
1 is the vertex of X which produces the minimum in equations

(2.19) or (2.20), it can be said that vertex x. is allocated to x!
1.

The transmission members for the set X of vertices are then defined
p

in ways analogous to those for a single vertex, i.e.

and

a (X) = E 	v. d(X , x.) ,
x 0 P

x.EX J P J j

(2.21)

a (X) = E 	v. d(x., X) ,
t x.EX J J P

(2.22)

where a0(p)and at(Xp) are the outtransmission and the intransmission

of the set X of vertices.
p

A set 5C
P0 for which

a0 (TpU) = Min [.T10(Xp
)]

X CX
P-

(2 .23)

is called the p-outmedian of.the network N, and similarly for the

29

p-inmedian.

It is not computationally practical to use Equations (2.19)

through (2.23) directly to find p-medians of networks of even

moderate size. Hence the need to develop more practical methods

for the computation of p-medians.

Absolute p-Medians

In order to simplify the discussion consider a nondirected

network N, drop the suffices 0 and t and take the case of the 1-median

first. 	The question arises as to whether there exists a point on

some link (not necessarily a vertex) of N so that the transmission

a(y) = 	E v. d(y, x.)
	

(2.24)
x:EX

is less than that of the median of N. The point y with the minimum

c(y) would then be called the absolute median of N.

Goldstein [45] proved that an absolute median of a tree is always

at a vertex of the tree. Hakimi [48] generalized Goldstein's result

and proved that there is no point y with a(y) < a(x), i.e.

Theorem 2.1 - There exists at least one vertex x of N'= (X, A) for which

a(x) < a(y) for any arbitrary point y. on N.

In a later paper, Hakimi [49] generalized Theorem 2.1 to the case

of absolute p-Mdians:

Theorem 2.2 - There exists at least one subset X C X containing 2.
P

vertices, such that c(X
P
) < a(Y

P
) for any arbitrary set Y

P
 of p points

=

on the links or vertices of the network N = (X, A).

The proofs of Theorems 2.1 and 2.2 are given in [48] and [49]

respectively.

In view of Theorems 2.1 and 2.2 the search for optimal solutions

to the p-mcdian problem can be limited to the vertices of the network.

As a consequence, in the p-median problem the location of both demand

30

centres and facilities is restricted to the vertices of the network.

The Generalized p-Median

In the pure p-median problem the only costs to be minimized are

variable costs associated with distances between vertices. 	The p-

median problem can be made more general if fixed costs F. are

associated with the vertices of the network, in the same way fixed

costs are associated with potential facility location sites in the

models of Section 2.3. The generalized p-median problem can be then

defined as follows [12].

Given a network N = (X, A), with distance matrix D(N) = [d(xi, xj)],

vertexweightsv.and vertex fixed costs F., the problem is to find a

subset 3E containing 11 vertices so that

Z = 	E 1
 +. a(X)

x.EX p

(2.25)

is minimized.

Thus the objective is to minimize not just the transmission a(X)

of)C but the total function Z which includes a fixed cost F. for every

vertex x. in X . The p-median problem then corresponds to the case in

which all F. are equal (say F) so that the first term of Equation (2.25)

becomes a constant (equal to pF), and does not influence the search for

the optimal set I .

A version of the p-median problem that is often encountered in

practice is one in which Xp is not required to contain exactly E. vertices,

but any numbpr less than or equal to p. The problem becomes then to

minimize Equation (2.25) subject to IX
P
 I < p.

Finally, the capacitated p-median problem can be also defined. A

restriction on the maximum value that the number

E 	vj
x. allocated to x.

(2.26)

31

cantakefor'dxi
 EXpl can be added to the formulation of the p-

median problem. Equation (2.26) is a measure of the throughput

transmitted from x., and is therefore also a measure of the physical

size of a facility located at vertex xi.

As already pointed out, the main difficulty in solving minisum

network location problems rests with the pure p-median problem.

Until this problem is satisfactorily resolved, there is little point

in attempting to solve generalized p-median problems.

2.4.3 Generalization of Hakimi's fundamental theorems

Since Hakimi first proved Theorems 2.1 and 2.2 his results have

been generalized by several authors.

Transmission functions v()() defined as the sum of arbitrary concave

functions of weighted distances are studied by Levy [73] , Goldman N1

and Hakimi and Maheshwary M. Levy [73] proves that Theorems 2.1 and

2.2 are valid for transmissions that are concave with respect to

distance. 	In a later paper, Hakimi and Maheshwari [50] show that,

under fairly general assumptions, one could, without loss of optimality,

restrict the location of facilities to the vertices of the network in

a wide range of minisum network location problems. Conclusions drawn

by Hakimi and Maheshwari are:

1. Theorems 2.1 and 2.2 hold when capacity constraints are placed

on the arcs of the networks;

2. The theorems will generally not hold for the capacitated case,

unless the location of more than one facility at a single vertex

is allowed.

Wendell and Hurter [102] establish some necessary and sufficient

conditions for optimal solutions to minisum network location problems

to occur at the vertices of the network. They show that for problems

in which:

32

1. There exist constraints on arc capacities, and

2. Transportation costs are nondecreasing concave (this has been

generalized to include cases in which these costs differ from

arc to arc),

Theorems 2.1 and 2.2 remain valid. 	These sufficiency conditions

are very similar to some of the results obtained by Hakimi and

Maheshwari [50].

Whereas some theoretical advances have been made in minisum

network location problems, computational difficulties abound even for

the pure p-median problem. A survey of solution methods available

in the literature for the p-median problem is provided in the next

section.

2.4.4 Methods for the p-median problem

Several algorithms, both exact and heuristic solution methods,

have been proposed for the solution of the p-median problem. The

exact solution methods are:

1. Branch-and-bound algorithms [30, 55] ;

2. Two different formulations of the linear programming (LP) relaxation

of the integer programming (IP) formulation of the problem [41, 90];

3. An alternative approach via linear programming [78], based on

Lagrange multipliers and parametric linear programming.

Heuristic methods are reviewed in greater detail in Chapter Six.

The more fundamental heuristics proposed for the problem, however, are

briefly described in this section.

Branch-and-bound Methods

Jarvinen, Rajala and Sinervo [55] appear to have been the first to

solve the p-median problem through branch-and-bound. Their algorithm

33

starts with all facilities "open".* A lower bound defined by the

authors is then used to successively"close" facilities until exactly

E. facilities are left "open". 	The iterative process continues until

all feasible solutions have been implicitly evaluated.

A different branch-and-bound procedure was developed by El-Shaieb

[30]. 	In his algorithm the tree branches represent assignments of

sources (facilities) and destinations. 	Locations are added one at a

time to either the source or the destination set to form the next

branches. 	From each node of the tree there are two branches. One

of the branches corresponds to adding a location to the source set,

while the other branch corresponds to adding the same location to the

destination set. At the end of each branch there is a node that

contains the corresponding source and destination sets.

Two lower bounds were developed by El-Shaieb for his algorithm.

One of the bounds is reported to be efficient for small values of 2,

whereas the other is shown to perform better for the larger values of

The algorithm was tested for the 10, 20 and 30 major metropolitan

centres in the United States, with p=2, 4 and 6.

It is very difficult to compare the efficiency of El-Shaieb's

algorithm to that of Jarvinen et al. Not only the test problems of

the two papers are different, but also the computers and even the

level of the programming languages used by the respective authors differ

substantially.

Khumawala, NEebe and Dannenbring [63] attempt to compare El-

Shaieb's algorithm with other exact and heuristic procedures for the

p-median problem. In this attempt El-Shaieb's results are tabulated

alongside results obtained through the following methods:

An "open" facility is defined here as a vertex of the network
temporarily assigned to be one of the medians. A "closed"
facility is a vertex of the network temporarily assigned to the
nonmedian set.

34

1. The Teitz and Bart heuristic method D8];

2. An algorithm originally designed for minimax network

location problems;

3. The Linear Programming/Group Theoretic algorithm of Garfinkel,

Neebe and Rao [41]. This algorithm is reviewed below in some detail.

Khumawala et al. conclude that a comparative evaluation is very

difficult, and content themselves with making a few comments on each

of the methods considered by them.

A Linear Programming Relaxation of the Integer Programming Formulation

of the Problem •

The integer programming formulation of the p-median problem has

already been given in Section 1.2 [Equations (1.7) to (1.11)1. 	For

the sake of convenience this formulation is repeated below:

Minimize

= E 	E d.. F.. iEI jEJ 13 13

Subject to

E E.. = 1, j e J
iEI 13

E g.. p
iEI 11

(2.27)

(2.28)

(2.29)

13 .. 	E. 1.1, =
iEI, j EJ C ;4_ t 	(2.30)

{

1 if customer i is allocated to facility i

0 otherwise

If the {0,1} constraints represented by Equation (2.31) are relaxed

to

ij > 0, 	i E I, j E J 	 (2.32)
=

glj.. = (2.31)

35

the resulting problem is a linear programming problem. Note that

in the LP relaxation an upper bound of value 1 on'.. is not necessary, ij

since ij
 < 1 is implied by Equation (2.28).
=

Revelle and Swain [Mused the IBM Mathematical Programming

System (MPS) package to solve the general LP formulation given by

Equations (2.27) to (2.30) and (2.32). 	They report that a 30-vertex,

6-median problem required 173 MPS iterations and 1.51 minutes of

computer time to converge to an optimal integer solution on an IBM

360/65.

The solution to the LP is not necessarily all-integer and

fractionalvaluesof. lj
 can and do occur. Revelle and Swain report,

E

however,thatfractionalvaluesof.occur, 	rarely. In the unlikely

event of a non-integer solution, they recommend a branch-and-bound

scheme to resolve the problem with integers. Unfortunately, very

little computational experience is reported with respect to the

branch-and-bound scheme.

The main problem with the general LP formulation above is that it

produces very large linear programmes. For a network of n vertices,

the number of variables n2 and the number of constraints n2 + 1. Revelle

and Swain suggest cutting down the number of constraints by adding the

assignment constraints given by Equation (2.30) only as needed. 	In a

generalization of the LP relaxation to a class of location-allocatiOn

problems, Morris [81] experimented with this technique. 	He concludes

that even when this procedure is used, the use of LP for large scale

problems is precluded.

Garfinkel, Neebe and Rao [11:0 solve the LP relaxation by decomposition,

thus considerably reducing the size of the problem. 	In their decomposition

formulation the LP basis of the master problem contains only n + 2 rows,

and each of the n subproblems can be solved by inspection. Due to the

very degenerate nature of the LP basis of the master problem, however,

36

in many cases the algorithm fails to converge. This lack of

convergence is a very serious problem, and prevents the decomposition

formulation from effectively solving the problem.

Difficulties with convergence are practically not mentioned by

the authors of [41]. An extensive study of this phenomenon is made

in Chapter Three of this thesis. The general LP formulation of Revelle

and Swain is also discussed in the same chapter.

In the Garfinkel et al. paper, the LP decomposition formulation

represents only part of the work. In cases of non-integer termination

of the LP, the integer formulation of the problem is attacked through

group theoretic techniques and a dynamic programming recursion.

Garfinkel et al. report some computational experience with their

proposed procedures.

Finally, an alternative approach via linear programming is given,

by Marsten rm. He shows that the solution corresponding to the

optimal p-median of a network [as described in Equations (2.27) to

(2.31)] , is an extreme point of a certain polyhedron H, and that

all other p-medians for 1 < p < n are also extreme points of H. Using

Lagrange multipliers and parametric linear programming, Marsten gives a

method of traversing a path among a few of the extreme points of H.

This path successively generates the p-medians of the network N in

descending order of p, although for some values of pt the solution may

be missed and never generated, or, conversely, extreme points of H may

be generated which do not correspond to p-medians of N, i.e. contain

fractional values of E...
1]

Thus, although Marsten's method is both theoretically and

computationally attractive, it may fail to produce the p-median of a

network for the specific value of 1L that may be required. 	In [78]

Marsten reports the case of a complete 33-vertex network, all of whose

optimal p-medians were successfully generated for p = 33,32,...,10,

37

but whose optimal 9-median and 8-median could not be obtained by

his method.

Heuristic Methods

Heuristic methods for the p-median problem first appeared in

papers by Maranzana [76] and Teitz and Bart [98]. 	The method put

forward by Maranzana parallels in several respects one of the heuristics

devised by Cooper in [17] for the continuous case. 	This method is

referred to as the partition method, and in essence is approaches the

p-median by finding successive single vertex medians of p subsets of

destination vertices, each associated with one source, and then adjusting

the subsets before repeating the process. A similar approach was later

studied by Surkis [96].-

Teitz and Bart [98] describe a heuristic method based on vertex

substitution. The method proceeds by choosing any p vertices at random

to form an initial set S, which is assumed to be an approximation to the

optimalp-mediansetX
P
.Themethodthentestsifanyvertexx.E(X-S)

can replace a vertex x. E S and so produce a new set S' = S U {x.} - ix.}

yielding a better solution to the problem than the solution implied by

the set S. 	If so, vertex xi is replaced by vertex xi and a new set S'

is obtained which is a better approximation to R. . The same tests are

now performed on the new set S', and the procedure is repeated until a

set S is finally obtained for which no replacement of any vertex in S

by a vertex in (X - §) produces a set whose implied solution is better

than the solution produced by S. This final set S is then taken to be the

required approximation to 3c .

Contrary to what was initially conjectured by Revelle et al. msq,

the vertex substitution method does not produce an optimal solution in

all cases. 	Counter examples to this conjecture can be found in [12] and

[551

38

Due to the importance of the methods of Maranzana [76] and

Teitz and Bart [0], they will be described in greater detail in

Chapter Six.

2.5 Conclusions

Thep-median and related network location problems have been

surveyed in the present chapter. In addition, network location

models haVe been related to more general models in location analysis,

of which they are a special case. The survey was not only concerned

with models and methods of solution, but also with definitions,

theorems and cost functions of interest for the problems covered in

the survey.

The fundamental theorems for the p-median problem are those of

Hakimi [48, 1i9] , and their extensions by Goldman [42] , Levy [73] ,

Hakimi and Maheshwari[50] and Wendell and Hurter taxxl. These results

were reviewed, and this was followedbya survey of exact and heuristic

solution methods currently available to solve the p-median problem.

Although remarkable theoretical progress has been made in relation

to the p-median and other minisum network location problems, much remains

to be done in the computational side. This is particularly true for the

pure p-median problem.

For this problem, branch-and-bound algorithms were developed, but

the lack of efficient lower bounds only allow them to solve the problem

for medium-size networks. There are yet unsolved problems in both

formulations of the LP relaxation of the p-median problem. Existing

heuristic procedures can be further extended.

The following chapters attempt to overcome these difficulties.

New ideas and solution procedures are developed, and they represent

a contribution towards solving the computational difficulties of the

p-median problem.

39

CHAPTER THREE

LINEAR PROGRAMMING FORMULATIONS OF

THE RELAXED p-MEDIAN PROBLEM

3.1 Introduction

The integer programming formulation of the p-median problem -

and its corresponding LP relaxation - have been introduced in

Chapter 2. 	Garfinkel et al. [L1] solved the LP relaxation by

decomposition, thus considerably reducing the size of the linear

programme. Due to the very degenerate nature of the master

problem, however, serious difficulties with convergence prevent

the relaxed p-median problem from being solved by decomposition

in many cases.

The importance of the linear programming formulations stems

from the fact that in the majority of the cases the solution to the

linear programme is all-integer, thus also being a solution to the

p-median problem. 	It is true that fractional LP solutions do occur,

but these occurrences are rare. Fractional solutions generally

occur for highly contrived cost matrices, difficult to represent in

terms of an actual network. The data in these contrived matrices

follow the pattern of the cost counter-cycles mentioned by Revelle

and Swain [90].

In the present chapter both the general formulation of Revelle

and Swain and the decomposition formulation of Garfinkel et al. are

studied in detail. Some computational experience is reported for the

general formulation. An example of a contrived cost matrix is also

presented.

The decomposition formulation is studied in far greater detail.

In order to illustrate the method, a small example is solved by hand.

Then computational results show the extent of the difficulties with

n
E g.. = 	j = 1,...,n
1=1 "

E gii = P i=1

13 .- 	g1.1., = i,j = 1,...,n, ij

40

convergence. Finally comments of a general nature are made in

relation to the convergence of the algorithm.

The importance of eventually overcoming the convergence

problems of the decomposition formulation explains why the main

part of this chapter has been dedicated to this method. If the

difficulties arising from the lack of convergence of the algorithm

can be solved, then the decomposition formulation, in conjunction

with its embedding into branch-and-bound algorithms, can be used

to solve the p-median problem for large-scale networks.

3.2 The General Linear Programming Formulation

The integer programming formulation of the p-median problem has

already been given in the first two chapters of this thesis. A

formal statement of this formulation [12, Chapter 6] is now given

in the following.

Let[Ei j] 	if

vertexx.isallocatedtovertexx.,.=0 otherwise. gli

Further, let gii = 1 imply that vertex xi is a median vertex

and let E..11 = 0 otherwise. The p-median problem can be then

stated as follows:

Minimize
n n

= E 	E d.. g.
j.1 13 13

Subject to

(3.1)

and

C.. = 0 or 1, ij

la

(3.5)

where [d..13] is the weighted distance matrix of the network, i.e. the

distance matrix of the network with every column sl multiplied by a

weight v..

It is worthwhile to discuss the meaning of the constraints of

this integer programme. • Equation (3.2) ensures that any vertex x.

is allocated to one and only one median vertex x.. 	Equation (3.3)

guarantees that there are exactly E medians, and Equation (3.4) makes

sure that C.. = 1 only if C..11 = 1, i.e. non-median vertices are only
ij

allocated to vertices that are in the median set. 	If [C..] is the
ij

allocation matrix corresponding to the optimal solution, the optimal

p-median is given by

p
= {x. I

11 = 1}. 	 (3.6)

As already noted, if Equation (3.5) is replaced by

ij
> 0, 	i,j = 1,...,n , 	 (3.7)

the resulting problem is the linear programming relaxation of the p-

median problem. It has also been already pointed out that in the LP

ij

relaxation an upper bound of value 1 on ij is not necessary, since

< 1, i,j = 1,...,n, is implied by Equation (3.2).
=

Solving the linear programme

Revelle and Swain [90] used a standard IBM mathematical programming

package (MPS) to solve the formulation given by Equations (3.1) to (3.4)

and (3.7). 	Their experience with this formulation was reported in

Chapter 2. The main interest of this research in the general formulation

is not in the formulation per se, but in the possibility of embedding it

42

into the branch-and-bound algorithm of Chapter 5. It was decided

therefore that a simple computer code should be used to solve the

LP, i.e. a code that could be easily adapted to be activated at

every node generated by the branch-and-bound algorithm.

The code chosen for this purpose was a Nottingham Algorithms

Group (NAG) subroutine. 	This subroutine is not especially

efficient, as it stores all the data for the LP in the central

processing unit of the computer. 	Consequently, due to the size of

the linear programmes generated by the general formulation, it was

not possible to go beyond a 10-vertex network when using the NAG

subroutine to test this formulation of the LP.

The experience with the embedding of the general formulation

into the branch-and-bound algorithm of Chapter 5 is described in

that chapter. In the present chapter only some computational

results of general interest to this approach are given.

Computational experience

It was not easy to find a small network for which the LP relaxation

of the p-median problem would yield a fractional solution for a given

1 <p < n. 	Confirming the experience of B.velle and Swain [90], non-

integer solutions were only obtained for highly contrived matrices

with cost counter-cycles. Garfinkel et al., however, do provide in

their paper [41, p. 231] a 10-vertex network for which the LP relaxation

yields a fractional solution for p = 3. This network is shown in

Figure 3.1.

In Figure 3.1, the numbers alongside the arcs are distances

between vertices. All vertices have unit weights. The LP relaxation

of the problem was solved and the following solution was obtained for

P = 3:

Figure 3.1

10-vertex network of Garfinkel et al. [41, p.231]

144

E11 = E12 = E1,10 = 0.5

E21 = 22 = C23 = 0.5

E53 = E

•

54 = E

•

55 = E56 = E

•

57 = 0• .5

.714 = E

•

75 = E

•

76 = E77 ='E

•

78 = 0• .5

E99
= 0.5

E10,8 = E10,9 = E10,10 . 0.5

The value of the objective function for the solution above is

35.5. The solution to the optimal 3-median of the network of Figure

3.1 consists in fact of six different 3-vertex sets, all with an

objectiv'e function equal to 36. 	It is interesting to note that for

this network, for all other possible values of 2 the solution to the

LP is all-integer, and therefore also a solution to the corresponding

p-median problem.

It took 153 iterations of the simplex method and 70.69 CDC 6400

seconds for the LP to converge to the fractional solution shown above.

Thus, the solution to the general LP formulation is not particularly

fast.

It has been pointed out that non-integer solutions to the LP

relaxation of the p-median problem are often obtained for highly

contrived matrices with cost counter-cycles. An example of this

type of matrix is given in Figure 3.2.

3.3 The Decomposition Formulation f41]

Consider the LP relaxation of the IP formulation of the p-

median problem (Equations (3.1) to (3.4) and (3.7) of Section 3.2).

It is possible to decompose the LP on the index i. The linking

constraints will be (3.2) and (3.3), which together with the

objective function will constitute the master problem, the basis of

which contains only n+2 rows. Rewriting the LP in a form suitable

for decomposition, the following results:

TO

X1 X2 X3 X4 x5 x6
 X7 x

8
x

9
x10

145

0 0.5 N N 6.0 N N N

7.0 0 1.5 N N N N N N N

N 12.0 0 2.5 N N N N N N

N 10.0 0 2.0 N N N N N

1.0 N N 8.0 0 N N N N N

N N N N N 0 1.5 N N 6.0

N N N N N 7.0 0 2.5 N N

N N N N N N 8.0 0 3.0 N

NNNNNNN9.0 0 3.5

N .N N N N 4.0 N N 10.0 0

X 1

X2

x3
x
4

x
5

x
6

x
7

x
8

x9
x10

0

FIGURE 3.2

Contrived Cost Matrix

N = Large Number

16

Minimize
n

Z = E D. X. 1 1 i=1

Subject to
n
E A. X. =b0 1 	0 i=1

B. X. < 0 , 	i = 1,...,n 1 1 =

X. > 0, 	i = 1,...,n 1 =

where*

D. . = Cd.
,—i

,d)
11n

T
1 	in

I
Ai = [-41-1

e. 1

b0 =
	,...,1, p] T

(3.8)

• (3.9)

(3.10)

(3.11)

B. = [e ,e ei,...,en_11 1 	1 2"'"ei-1, Pn-1'

0 = 10,...,01T .

	

identity matrix, In isthenth 1dentitymatrix,e.is the 	unit column vector of • 1

appropriate dimension, pk is a row vector containing k l's, and T

denotes transpose.

Note that the constraint set

S. = X. 	B. X. < 0, X. > 0} 	(3.12) 1 	1 1= 	1=

has one extreme point for each subproblem defined by (3.10) and (3.11),

namely Xi = 0. Then, if the null vector is considered to be a

degenerate extreme ray, at any iteration one of the extreme rays of Si

will be found. Thus the usual convexity constraints can be omitted

from the master problem.

() denotes a row vector, and [] a column vector.

47

Now let y1, k = 1,...,T, be the extreme rays of S
i. 	Then,

using the notation of Hadley [47], the modified master problem is

Minimize T.
n

= E ED.
1 1 1 i=1 k=1

Subject to

T. n
E 	E p. A. y. = b

1 	0 i=1 k=1 1

p. > 0 for all i,k 1 =

(3.13)

(3.14)

(3.15)

Given a feasible basis B to the master problem above, n subproblems of

the form

Maximize

0.
1
 = F.

1 (3.16)

Subject to

B.
1
 y.

1
 < 0
	

(3.17)

y. > 0
	

(3.18)

must be solved. An optimal solution to the subproblem above will be

anextremerayofSi,andF.=crA.-D. is the row vector of dual slack 1 	1 	1

variables associated with the basis B. Because of the simple structure

of A-
1, given a it is trivial to calculate F.1

 without matrix multiplication,

since

F.=a. - D. ,
1 	1 	1 (3.19)

where
a. = 	, a. + 1 	1-1 	an+1, ai+1,—"an)

If yt is an optimal solution to subproblem i with value 0t for a 1 	 — 	1

given a.
1, then

0 = Max 	01
1<i<n 1 (3.20)

48

If 0 = 0, an optimal solution to the LP has been found. 	If 0 > 0,

that vector y1 which yields 0 is brought into the basis. 1

The subproblems can be solved by inspection. Letting

(f in) and y.1 	1 = (y.1'in)' the subproblems are of Fi 	il'

the form

Maximize
n

0. 	= 	E 	f.
• 1 	ij 	ij j=1

Subject to

y..
ij - y1

.. 	< 0, 	j 	= 1,...,n 1 1

y..ij 	> 0,
	j 	= 1,...,n

In order to solve the subproblems above, calculate

t. 	= f.. 	+ 	E 	Max (0, f..) i 	11 iAj 	10

(3.21)

(3.22)

(3.23)

(3.24)

If t.
1
 < 0, then y1
=

for all iAj

Y
* 	_

-

i j

1

0

= 	j =

if. f. 	>

if f. 	<
ij =

1,...,n.

0

0

If t; > 0, then yli = 1 and,

(3.25)

It should be noted here that 0. will also be maximized if, for
1

1
t.1 > 0, y1. = 1, and, for all i0j 1

1 if fij ? 0
Y* - - - ij

0 if f. 	0 ij (3.26)

This second possibility is not mentioned in [41], and although apparently

not very significant, it has proved to be of some importance, especially

when the convergence of the algorithm is studied. This point will be

brought to attention again in Section 3.4.3.

Thus if t. > 0, y1 is a binary n-vector with a one in the 1 Ah 1 	1

	

{

d!. = d.. 	w
11 	11

0
d!.10 = d1

.. for i0j , 	 (3.28)

149

position. The column introduced into the basis is easily seen to

be

1-14fr = A. y =
1 1 1

yi (3.27)
1

Since Ht is a binary vector, premultiplication by B 1 involves nothing

more than addition of the columns of B 1 corresponding to the l's in

H. Thus multiplications and divisions are not needed until the

Pivot step.

Initial basic feasible solution

Because of the simple structure of the constraint matrix, initial

basic feasible solutions are readily obtained without a 'Phase I'

procedure. 	Two such possibilities are as follows.

Initial Solution A

Since d. > 0 for all i and j, it is clear that (3.2) can be
=

replaced by

n
E E. > 	,

i=1 1° -
j = 1,...,n 	 (3.2a)

without loss of any optimal solution. It would also be desirable to

replace (3.3) by

n
E . > p.

i=1 1i
(3.3a)

However, since dii = 0 for all i, this would result in a median being

located at every vertex. In order to avoid this, it is necessary to

alter the distance (cost) structure so that

50

where W is an arbitrarily large positive constant. 	This has the

effect of forcing equality in (3.3a), while adding the constant 2L4

to the objective function.

Now let X
P1
' = {x!I iii = 1) be any feasible solution to the p-

median problem. 	Generating X' is a simple matter. One can easily

choose E vertices to be medians, and then assign nonmedian vertex x.

to median x1.1 if dl*j = Min d!., xi a median, where ties may be broken

arbitrarily. Without loss of generality, assume El
11 =
	= E' = 1.

This can always be achieved by renumbering the vertices.

Now, in order to construct an initial basic feasible solution to

the master problem, note that X' generates solutions to each of the

2 subproblems defined from (3.21) to (3.23). 	These solutions are

y-vectors of the form

PP

ei

Yi = 1

where e. is the ith

component is one if

otherwise. Thus 2

where the 1 is from

with (n-p) surplus

Thus

(3.29)

. unit p-vector, and qi
	

his an (n-p)-vector whose jt

vertex
xP-1-i

 isallocatedtomedianx.,and zero

[I 	

1

vectors of the form Yi can be placed in the basis, 1

constraint (3.3a). 	The basis is then filled out

variables from (3.2a) and one from (3.3a).

e1 I --- 	ep I 	--- I 	
(3.30) B0 =

ql 	--- 	ql° I -e1 	--- 	-
e
n-p+1

or

51

Ip
	 I 	

B0 Q I -In-p+1

p
(3.31)

where P is the sum p-vector (1,...,1). 	The basis B0 has the

desirable property of being involutory (B
0 = B01), so that the dual

variables are readily computed as

a= DB BO
1 = DBB 0 ' (3.32)

i
and the initial LP solution is B0

1 b0 	
P
P'
 0]

T
 . Note that none of

the last n-p+1 variables in B0 will be in the optimal LP basis at a

positive level.

Initial Solution B

Another easily invertable basis that has the advantage over B0

of containing only one surplus variable is

Ip I 0 I

B1 = Q 	I n-p 	
0

	

Pp I P
n-p 	

-1
	

(3.33)

where Q is defined in (3.31). 	The matrix In-p corresponds to allocating

vertices p+1 through n to themselves. The inverse of B
1 is

Ip 	1 0 	12:-

-Q 	I In-p I 0

(-p
n-p

 Q)+P
p P n-p I -1

B
-1

= 1

(3.31L)

and the initial LP solution is Bl-b0 = [P 0] .
p

If B
1 is used (and assuming n-p>2) it is possible to remove, on the

first pivot, the last column corresponding to the surplus variable.

ThisisdonebyintroducingintoBl acolumnILcorresponding to vertex

n (or (n-1)) being a median, with vertex (n-1) (or n) allocated to it.

52

Column H.
1 contains a 1 in the last three rows and zeros elsewhere.

Thus,

B-1 H. = H. 1 	1 	1 ' (3.35)

and H.
1 can be introduced into B1 and the last column dropped. .

Basis B
1 was the one actually used when the LP decomposition

algorithm was coded, and for which computational results are given

in a later section of this chapter.

3.4 The Decomposition Formulation Studied in Detail

The mathematical derivation of the decomposition formulation was

given in Section 3.3. 	This formulation is now studied in detail.

The decomposition formulation is initially illustrated by means of a

small example solved by hand. Then computational results are given

in 3.4.2. Finally degeneracy and the problems with convergence are

diScussed in Section 3.4.3.

3.4.1 A small example solved by hand

It was thought that the best way to illustrate the decomposition

formulation would be to solve a small example by hand.

The initial basic feasible solution used for this purpose was

Initial Solution A, despite the fact that Initial Solution B was

used when the algorithm was programmed for the computer. Initial

Solution A was chosen for the illustration because this was considered

the best way to give a 'physical' interpretation to this formulation of

the problem.

Consider the complete directed 4-vertex network whose distance

matrix is given in Figure 3.3, and for which the optimal 2-median must

be found. If the structure of the distance matrix is altered as per

Equation (3.28), the matrix of Figure 3.4 is obtained.

53

X1

TO

x4 X2 	X3

0 1 2 3

0 x2 3 0 1 2

x3 4 3 0 1

X14 3 2 2 0

FIGURE 3.3

Distance Matrix of Illustrative Example

TO

X
2

X
3

X
4

Xi

X
2

X
3

x4

FIGURE 3.4

Modified Distance Matrix

5)4

The data for the LP decomposition formulation of Equations (3.8)

to. (3.11) are then

D
1 = (W, 1, 2, 	3) X1 = (C11' C12' C13' 1)4)T

D
2
= (3, W, 1, 2) X2 = (C21' C22' C23')T

D
3
= (4, 3, W,-1) 3 = (C31' E32' 33' 34)11

D4 = (3, 2, 2, W) = (C41' q42')43')+14)T

0 0

0 0 	0 1 0

Al = 0 1 	0 ; A
2
= 0 0 1 0

0 	0 0 	1 0 0 0 1

0 	0 1 0 0

1 6- 0 0 0—

0 o o 1 0 0

0 1 	0 ; o 0 1 0 A
3

0 	0 0 0 0 1

0 	0 1 	0 0 0 o

b
0 = [1, 1, 1, 1, 2[

T

-1 	1 o 6- a -1

B1 -1 	0 1 	0 B2 = o -1 1 0

-1 	0 0 o -1 0

0 -1 	6- o o

B
3

o 1 -1 	0 ; B)4 = 0 1 0 -1

0 	0 -1 o 0 1 -1

Then, if Equations (3.8) to (3.11) are written in full, the following

is obtained:

55

1. Equation (3.8)

Minimize

4
Z = E D.X. = Cff,1,2 	E ,E 1 1 	' 	11' 12' 1 	14

1=1

+ . (3,2,2,W) (-E41,-E42,-E43,-E 44

= w E
11

1)(
12

+ .. 	2xC43 	W E44 '
Subject to

2. Equation (3.9)

4
E

1=1

o

o

o

1

o

1

o

o

o

A.X. 	=

o 6-

o o

1 	o

o 1

o o

b
0
	
,

E11

E12

E13

E14

or

+ • • • +

0

0

0

0

o

1

0

0

0

o

0

1

0

0

6-

0

0

1

1

E41

E42

E44

1

1

1

1

2

or, finally,

E11 E21 31 4. 41 = 1

E12 E22 4- 32 + E42 = 1

13 E23 E33 E43 = 1

1/4. 214 E -34 E44 = 1

E11 22 E33 E44 = 2

Equations (3.8) and (3.9) correspond to the master problem.

Turning now to the subproblems, given by Equations (3.10) and (3.11):

3. 	Subproblem 1 (1=1)

B1 X1 < 0 = 	' X
1
 > 0

+

T

or

56

or, finally,

-1 	1

-1 	0

-1 	0

- 11

-C11

- .11

0

1

0

+ C 	< 12 =

+ E13 < =

111

0

0

0

0

'

11
CI2

13
E114

0

0

0

and

g1j =' > 0 	j = 1,...,4, •

and similarly for the other three subproblems.

It is now possible to understand more easily the meaning of the

vectors Y.,k = 	1 described in Section 3.3 as the extreme

rays of Si. They are vectors for which either

A. y
ij
.. = C.. = 0 	for all j , 1J

or

B. yii = Eii = 1 and yij = gij = 0 or 1 for all j&i

The value of yii in the above is yii = 1 if vertex xi is assigned as a

median,and. Yli =0 otherwise. When a vertex x. is assigned as a

median,.=1 indicates that vertex x. is allocated to median x. Ylj 	 1

and yij = 0 otherwise.

Any of the subproblems can generate 2n-1 vectors that satisfy

Equations (3.10) and (3.11) for a specific i. 	Not all these vectors,

however, can be considered as candidates to enter the basis of the

master problem, since at every iteration the number of medians must

be equal to E in order that feasibility is maintained in the master

problem. The problem then is, all subproblems considered, to enter

the basis of the master problem as few vectors as possible before the

optimal solution to the LP is obtained. This explains the procedure

i=2 V2

S3
S14

S
5

57

developed to choose the vector to enter the basis of the master

problem at every iteration of the algorithm.

In the following the decomposition formulation is applied to

find the optimal 2-median of the network whose distance matrix is

shown in Figure 3.3.

Initial basic feasible solution

In order that an initial basic feasible solution is generated

for the problem, let xl and x2 be assigned as medians, i.e. let

X2 = {xl, x2}. If x3 and x4 are then allocated to the two medians

above in the best possible way, the following is obtained:

g11 =

E22 = E23 = E24 = 1 ,

and

cf(X) = 3

The next step is to generate B0, given by (3.31):

1 0 0 0 0

0 1 0 0 0

B0 = B
-1
0 	= 0 1 -1 0 0

0 1 0 -1 0

1 1 0 0 -1

The initial LP solution is
- • ^
1=1 Vi

= [P 0] T

1

1

0

0

58

where V
i=k

me
a
ns the 2.th vector to enter the basis, with i = k

implying that vertex xk is the assigned median in this vector.

S
3'4

and S
5 are the vectors corresponding to the surplus

variables. The initial ordered list of basic variables is then

1=1 	=2
V1 , V2

i
 , S3, S4 and S5.

The vector DB corresponding to the initial basis is

D
B = (W, W+3, 0, 0, 0). Now a can be readily calculated from

Equation (3.32):

a = DBBO-1 = DBBO = (a1
 ,a
2
,a
3'

 a, ,a
5
) = (W, W+3, 0, 0, 0)

It should be noted that the components of vector DB are the cost of

the allocations of vertices to medians implied by the corresponding

column vectors in the basis.

Solving the problem

The 2-median problem is solved in the following. An optimal

solution was obtained after six iterations. The interpretation of

this optimal solution is given after the completion of the algorithm.

Because of the nature of the decomposition formulation, the inverse

matrix method, in the product form, was used to solve the master

problem. For details concerning this method see Beale [6, Chapter 7].

First iteration

The first step is to solve each of the four subproblems, so that

0 and the vector to enter the basis can be determined:

a
1

= (a
1
+a
5'
a
2
,a
3
,a) 	(w, W+3,0,0)

a2 = (al'a2"5'a3'cY4) = (W, W+3'0'0)

a
3
= (a

1
,a
2'
a
3+a5'a) = (W, W+3,0,0)

= (al“Y2'a3'crit+c75) = (W' W+3,0,0)

59

Subproblem 1

Fl = al

Subproblem 2

- D
1

= (0, W+2, -2,

0* = 	
1
= W+2 (>0)

1

y* = (1, 1, 0, 0)T 1

-3)

F2 = 2 - D2 = (W-3, 3, -1, -2)

0*2 = t2 = W (>0)

y*2 = (1, 1, 0, 0)T

Subproblem 3

F
3
= a3 - D3 = (w-4, w, -w, -1)

e*
3

t
3 	

w-4 (>o)

y*3 = (1, 	1, 1, 0)
T 	•

Subproblem 4

F4 = (34 - D4 = (W-3, W+1, -2, -W)

=t4 = W-2 (>0)

y = (1, 1, 0, 1)T

O= Max 1 = 0*

The vector to enter the basis is y*
1. The corresponding column to

be introduced into the basis is given by Equation (3.27):

H! =
0

6o

The vector to leave the basis must now be determined.

a = B0' Hl 01 H* 1

Now, calculate

Min Bi/ai, ai > 0 = Min (1/1, 1/1, 0/1, 0/1, 0/1) = 0

Any of three vectors - S3, S or S
5
- can be chosen to leave the basis.

If S
3 is chosen, the new ordered list of basic variables is then:

i=1 i=2 1=1 V1 , V2 . , V3 , S4 and S5.

1 The inverse of the new basis,B0 , must be now calculated.

Elementary matrices [6] are used for this purpose.*

1 	—1

—1

1

—1 	1

—1 	1

B- 0 T1 B-10 	=

1

0

0

0

1

-1

0

1

0

0

1

1

-1

1

1

0

0

0

-1

0

0

0

0

0

-1

The new a vector is then

1-

1

= T1 = 0

0

0_

Throughout this example, blank entries in the elementary matrices
correspond to zeros.

•

1
1
1
1
1

T1 =

61

and, finally,

A
D
B
= 	W+3, W+1, 0, 0)

a = DB B0 = (W, 1, W+2, 0, 0)

The next four iterations proceed in a similar fashion. At

the end of the fifth iteration the situation is the following:

i=3 Ordered list of basic variables : V . 6 , i=1 	i=1 v7 	, V3 i=1 	i=1 v4 	, v5

T5

1

1/2

1/2 1

-1/2 1

-1/2 1

-1 0 0 0 1

1/2 1/2 1/2 1/2 -1

"-1 	-1 Bo 	= T5B0 .= -1/2 1/2 -1/2 -1/2 1

1/2 -1/2 1/2 -1/2 0

1/2 -1/2 -1/2 1/2

1

0
A
e = T

5
= 1

0
0

D
B = (W+1, w+6, w+i, W+2, W+3)

A A

a = DB BO = (4, 1, 2, 3, W-4)

62

Sixth iteration

a1 = 1, 2, 3)

a
2
 = (4,

a3 = (4,

= 	(4,

W-3, 2, 3) "
1, W-2, 3)

1, 2, W-1)

Subproblem 1

F1 = a - D 	= 	o, 0, 0,

• 0*1 =

y*1 =

t
1
(0,

= 0

0, 0, T 0

Subproblem 2

F2 = a2 - D2 = (1, -3, 1, 1)

= 2 = -3 + 1 + 1 + 1 = 0

y*2 = (0, 0, 0, 0)
T

Subproblem 3

F
3
= a

3
- D3 = (, -2, -2, 2)

03= t3 - -2 + 0 + 0 + = 0

yl = (0, 0, 0, 0)T

Subproblem 4

F4 = a - D4 = (1, -1, 0, -1)

et=t4= -1 + + 0 + 0 = 0

= (0, 0, 0, 0)T

0)

Then: 	0 = Max Ot = 0.
i 	1

63

The optimal solution has been found. The value of this

solution is

a=

V63 v6

1=1
V7

1=1
v
3

v

i=1
5

1

0

1

0

The interpretation of this solution is a fairly simple matter. As

V6-3 i=1
	 i=3

v6 = v3
= 1, the yl vectors generated in the fourth (V6) and 1

first (V3 1) iterations respectively provide the solution to the

problem. Therefore,

0
31

E32 0
i v
6
=3

and

1

1=1 	El
V
3

1

0

E11 = El2 = 1

33 = E34
= 1 .

The solution' to the LP is integer and therefore also a solution

or

1

0

E
33

E34

1

to the 2-median problem. The optimal 2-median is then X
2 = fx x3},

with vertex x2 allocated to median x1 and vertex x4 allocated to

64

median x3.
	

The cost of this optimal solution is a(X2) = 2, as it

can be easily verified from the distance matrix of Figure 3.3.

It is important to note that this matrix is not symmetrical and

that the solution given above is optimal only for the direction

i(r ow) 4-j(column). 	That is, this is an optimal solution only if

customers are served from facilities, as in the case of depots

supplying customers in a distribution network. The optimal solution

for the di-rection 	- if, for example, the facilities are schools to

which students must travel - is entirely different from the one above

and can be obtained from the transpose of the matrix of Figure 3.3.

3.1.2 Computational results

Some computational experience with the decomposition algorithm

is reported in [1a]. 	The algorithm is also independently assessed

in the present section of this thesis. 	The examples used for this

purpose are mainly from networks whose data were randomly generated,

with unit weights given to all vertices. A description of how the

data were generated, and the actual data corresponding to each of the

randomly generated networks used to test the algorithm are given in

the appendix. Where examples taken from other sources were used, their

origin is clearly indicated in the appropriate table.

The computational results of this section are shown in Tables

3.1 to 3.3. The decomposition algorithm was tested in a CDC 6400

computer, and initially single and double precision versions of the code

were used. 	In addition, the effect of using a random initial basic

feasible solution was compared with the possibility of using the Teitz

and Bart heuristic method [98] for obtaining the initial basic solution

for the algorithm.

It was initially thought that the lack of convergence of the

decomposition algorithm might be overcome through greater accuracy in

the computations. 	Double precision and reinvertion techniques (see

65

Orchard-Hays [84]) are possible ways to obtain greater accuracy for

this particular algorithm. Unfortunately the results produced when

double precision was used were very discouraging. Consequently,

attempts to solve the algorithm's convergence problems through greater

accuracy were subsequently dropped. The results shown in Tables•3.1

to 3.3 correspond to the single precision version of the code.

In Table 3.1, results are shown for networks ranging from 5 to

33 vertices, and for a wide range of values of E. Some of the problems

were also tested with the initial basic solution obtained from the

Teitz and.Bart heuristic method, and the corresponding results are

shown in Table 3.2. Finally, in Table 3.3 the no heuristics option is

compared to the heuristics one.

The examination of Tables 3.1 to 3.3 clearly shows that as the size

of the network increases (and more often for the smaller values of p)

the algorithm fails to converge after the maximum allowed 1000 iterations.

It can be also observed from these tables that when the algorithm

converges to an optimal solution, this solution is integer in the vast

majority of the cases. This is in line with the fact that the LP

relaxation of the p-median problem usually produces all-integer solutions.

The lack of convergence is the only drawback of the decomposition

formulation, but it is unfortunately a very serious one. This is not

made very clear in kJ. The results shown in this section, however,

indicate that the lack of convergence prevents the algorithm from being

used as a standard technique to solve the p-median problem.

When the algorithm converges the method is very fast and requires

less computer core when compared, for example, with the general LP

formulation. Whereas it took 70.69 CDC 6400 seconds to find the

fractional LP solution (for p = 3) of the network of Figure 3.1 through

the general formulation, the same example was solved in only 0.38

seconds when the decomposition formulation was used.

66

The lack of convergence of this formulation is due to its very

degenerate nature. This is discussed in Section 3.4.3. It is

interesting to note that sometimes the optimal solution is reached

but not "recognized" as such by the algorithm. Refer for example to

the p = 1 and p = 4 test cases of the 30-vertex network of Table 3.1.

In both cases the solution obtained at some iteration before the

1000th was optimal, but the algorithm failed to recognize the

optimality of these solutions.

The use of a heuristic initial basic feasible solution

In Table 3.3 the performance of the algorithm is compared for

two different initial basic feasible solutions. It is perhaps

surprising that convergence was obtained more consistently when a

random (and usually worse) initial solution was used. This was the

case for p = 2 and p = 3 in the 15-vertex network, p = 2, p = 8 and

p = 9 in the 20-vertex network and p = 1 in the 25-vertex network.

The reverse never occurred.

From the data of Table 3.3 it looks as though the closer the

initial solution is to the optimal, the less likely is the algorithm

to converge. On the other hand, when convergence occurs in both cases,

the number of iterations it takes to reach the optimal solution does

not follow a discernible trend. Sometimes convergence is quicker

when the heuristic initial solution is used, sometimes the opposite

is true. The use of a random initial solution appears, therefore, to

be the best option concerning the choice of an initial basic feasible

solution for the algorithm.

Computing times

Computing 	times increase with n, but for a given value of

n the number of seconds per iteration remains Practically unchanged

as 2. increases, decreasing only slightly as k approaches n for the

Table 3.1 - Random Initial Solution

i'roblem
	Convergence

	
Nature of 	Objective

Size
	 Solution 	Function

	

Yes or No. of 	[Integer (I)' or 	Time in
n 	No Iterations 	Fractional (F)] 	Value Optimal? Seconds

++
2 Yes 2 I 3.0 Yes 0.03

6++ 2 Yes 10 F 14.0 Yes 0.07
++
9

3 Yes 26 I 6.0 Yes 0.23

10* 1 Yes 31 I 31146.0 Yes 0.35
10 2 Yes 42 I 2049.0 Yes 0.47
10 3 Yes 32 I 1524.0 Yes 0.33
10 4 Yes 26 I 1187.0 Yes 0.29
10 5 Yes 23 I 882.0 Yes 0.25
10 6 Yes 24 I 579.0 Yes 0.26
10 7 Yes 11 I 294.0 Yes 0.12
10 8 Yes 7 I 163.0 Yes 0.09
10 9 Yes 2 I 75.0 Yes 0.06
10 10 Yes 2 I 0.0 Yes 0.06

10** 1 Yes 17 I 79.0 Yes 0.20
10 2 Yes 28 I 47.0 Yes 0.32
10 3 Yes 36 F 35.5 Yes 0.38
10 4 Yes 9 I 26.0 Yes 0.10
10 5 Yes 11 I 18.0 Yes 0.12
10 6 Yes 9 I 12.0 Yes 0.11
10 7 Yes 6 I 8.0 Yes 0.09
10 8 Yes 6 I 5.0 Yes 0.09
10 9 Yes 5 I 2.0 Yes 0.08
10 10 Yes 4 I 0.0 Yes 0.08

CPU Time, in CDC 6400 seconds 	* Example from Revelle and Swain [90, p. 38]
++ Test caseprovided by A.W. Neebe (see Appendix) ** Example from Garfinkel et al. [41, p. 231].

Table 3.1 (cont'ed) - Random Initial Solution

Problem
Size

Convergence Nature of
Solution

Objective
Function

Time in
Seconds

Yes or
No

No 	of
Iterations n p

[Integer (I.) or
Fractional (1)] Value Optimal?

15 1 Yes 34 I 809.0 Yes 0.69
15 2 Yes 222 I 412.0 Yes 4.75
15 3 Yes 171 I 294.0 Yes 3.82
15 4 Yes 172 I 215.0 Yes 3.65
15 5 Yes 160 I 150.0 Yes 3.31
15 6 Yes 483 I 113.0 Yes 10.10
15 7 Yes 63 I 93.0 Yes 1.23
15 8 Yes 36 I 74.0 Yes 0.65
15 9 Yes 26 I 57.0 Yes 0.50
15 10 Yes 18 I 41.0 Yes 0.39

20 1 Yes 41 I 1159.0 Yes 1.31
20 2 Yes 387 I 724.0 Yes 13.86
20 3 No 1000 - 523.0 No 34.69
20 4 No 1000 - 511.0 No 34.75
20 5 No 1000 - 476.0 No 34.92
20 6 No 1000 - 392.0 No 35.72
20 7 No 1000 - 356.0 No 34.96
20 8 Yes 465 I 199.0 Yes 15.79
20 9 Yes 132 I 175.0 Yes 4.03
20 10 Yes 129 I 151.0 Yes 4.20

CPU Time, in CDC 6400 seconds

Table 3.1 (cont'ed) - Random Initial Solution

Problem
Size

Convergence Nature of
Solution

Objective
Function

Time in
Seconds

Yes or
No

No. of
Iterations n p

[Integer (I) or
Fractional (F)] Value Optimal?

25 1 Yes 77 I 1352.0 Yes 3.41
25 2 No 1000 F 980.50 No 53.02
25 3 No 1000 - 732.0 No 52.16
25 4 No 1000 - 790.0 No 52.68
25 5 No 1000 - 763.0 No 52.59
25 6 No 1000 F 411.33 No 52.07
25 7 No 1000 533.0 No 52.32
25 8 No 1000 - 415.0 No 52.23
25 9 No 1000 - 393.0 No 52.17
25 10 No 1000 - 354.0 No 51.72
25 15 No 1000 - 184.0 - 50.84
25 20 Yes 32 I 51.0 Yes 1.35

30 1 No 1000 - 1432.0 Yes 74.67
30 2 No 1000 - 987.0 No 73.95
30 3 No 1000 F 767.0 72.43
30 4 No 1000 - 610.0 Yes 72.62 ON

kID

30 5 Yes 692 I 516.0 Yes 49.52
30 6 Yes 403 I 438.0 Yes 27.75
30 7 No 1000 - 663.0 No 72.79
30 8 No 1000 - 641.0 No 72.76
30 9 No 1000 - 455.0 No 66.45
30 10 Yes 196 I 265.0 Yes 12.49
30 15 No 1000 - 286.0 No 67.74
30 20 Yes 520 I 93.0 Yes 32.15
30 25 Yes 16 I 41.0 Yes 0.81

+ CPU Time, in CDC 6400 seconds

Table 3.1 (cont'ed) - Random Initial Solution

Problem
Size

Convergence Nature of
Solution

Objective
Function

Seconds
Yes or
No

No. of
Iterations n p

[Integer (I) or
Fractional (F)] Value

Time in
Optimal?

+
33

+
 1 No 1000 - 37993.0 No 88.56

33 2 No 1000 - 17592.0 No 88.67
33 3 No 1000 - 14627.0 Yes 85.15
33 4 Yes 830 I 12363.0 Yes 70.19
33 5 Yes 699 I 10398.0 Yes 58.58
33 6 No 1000 - 8862.0 No 83.17
33 7 Yes 423 I 8119.0 Yes 35.12
33 8 Yes 408 F 7460.0 Yes 33.39
33 9 Yes 354 F 6846.0 Yes 26.78
33 10 Yes 454 I 6267.0 Yes 36.14
33 15 Yes 121 I 4314.0 Yes 8.28
33 20 Yes 45 I 2786.0 Yes 2.49
33 25 Yes 23 I 1564.0 Yes 1.27

+ CPU Time, in CDC 6400 seconds

++ Karg and Thompson 33 City Data [57, p. 2443

Table 3.2 - Initial Eolution from Heuristics

Problem
Size

Convergence Nature of
Solution

Objective
Function

Time in
Seconds

Yes or
No

No. of
Iterations n [Integer (I) or

Fractional (F)] Value Optimal?

5
++ 2 Yes 1 I 3.0 Yes 0.04
6++ 2 Yes 5 I 14.0 Yes 0.06
9++ 3 Yes 14 I 6.0 Yes 0.26

10* 1 Yes 41 I 3446.0 Yes 0.49
10 2 Yes 26 I 2049.0 Yes 0.35
10 3 Yes 10 1 1524.0 Yes 0.21
10 4 Yes 11 i 1187.0 Yes 0.21
10 5 Yes 13 I 882.0 Yes 0.22
10 6 Yes 27 I 579.0 Yes 0.32
10 7 Yes 14 I 294.0 Yes 0.21
10 8 Yes 6 I 163.0 Yes 0.10
10 9 Yes 4 I 75.0 Yes 0.09
10 10 Yes 4 I 0.0 Yes 0.11

10**
10

1
2

Yes
Yes

34
23

I
I

79.0
47.0

Yes
Yes

0.42
0.31

H

10 3 Yes 28 F 35.5 Yes 0.38
10 4 Yes 6 I 26.0 Yes 0.20
10 5 Yes 7 I 18.0 Yes 0.17
10 6 Yes 12 I 12.0 Yes 0.25
10 7 Yes 8 I 8.0 Yes 0.15
10 8 Yes 5 I 5.0 Yes 0.11
10 9 Yes 1 I 2.0 Yes 0.07
10 10 Yes 1 I 0.0 Yes 0.07

+ CPU Time, in CDC 6400 seconds (inclusive of time to perform heuristics) 	* Example from Revelle and Swain [90,p.381
++ Test case provided by A.W. Neebe (see Appendix) 	 ** Example from Garfinkel et al. [41,p.231]

Table 3.2 (contted) - Initial Solution from Heuristics

n

Problem
Size

Convergence Nature of
Solution

Objective
Function

Time i
Seconds

Yes or
No

No. of
Iterations p

[Integer (I) or
Fractional (F)]

Value Optimal?

15 1 Yes 201 I 809.0 Yes 4.25
15 2 No 1000 - 412.0 Yes 21.21
15 3 No 1000 - 294.0 Yes 22.00
15 4 Yes 293 I 215.0 Yes 6.66
15 5 Yes 704 I 150.0 Yes 15.92
15 6 Yes 256 I 113.0 Yes 5.97
15 7 Yes 148 I 93.0 Yes 3.47
15 8 Yes 60 I 74.0 Yes 1.52
15 9 Yes 24 I 57.0 Yes 0.77
15 10 Yes 31 I 41.0 Yes 0.79

20 1 Yes 620 I 1159.0 Yes 23.03
20 2 No 1000 724.0 Yes 37.68
20 3 No 1000 518.0 Yes 37.51
20)4 No 1000 414.0 Yes 36.98
20 5 No 1000 353.0 No 37.32
20 6 No 1000 259.0 Yes 36.58
20 7 No 1000 230.0 No 37.42
20 8 No 1000 202.0 No 37.98
20 9 No 1000 175.0 Yes 35.5o
20 10 Yes 275 I 151.0 Yes 10.31

+ CPU time, in CDC 6400 seconds (inclusive of time to perform heuristics)

+
in

Table 3.2 (cont'ed) - Initial Solution from Heuristics

n

Problem
Size

Convergence Nature of
Solution

Objective
 Function

Time in
seconds

Yes or
No

No. of
Iterations

[Integer (I) or
Fractional (F)]

Value Optimal?

25 1 No 1000 1352.0 Yes 54.60
25 2 No 1000 1027.0 No 56.59
25 3 No 1000 777.0 No 59.17 	.
25 4 No 1000 556.0 Yes 56.41
25 5 No 1000 468.0 Yes 55.93
25 6 No 1000 387.0 Yes 50.79
25 7 No 1000 341.0 Yes 51.47
25 8 No 1000 303.0 No 51.88
25 9 No 1000 266.0 Yes 54.13
25 10 No 1000 237.0 No 53.76.
25 15 No 1000 128.0 - 51.82
25 20 Yes 5 I 51.0 Yes 1.27

CPU time, in CDC 6400 seconds (inclusive of time to perform heuristics)

Table 3.3 - Comparison of random vs. heuristic initial solution

Problem Size Convergence Objective Function • Time in Seconds
+

n p

No Heuristics Heuristics No Heuristics

or F

Heuristics No Heuristics Heuristics
++

Yes or
No

No. of
Iterations

Yes or
No

No. of
Iterations or F Value Optimal? Value Optimal?

+++
5 2 Yes 2 Yes 1 I 3.0 Yes I 3.0 Yes 0.03 0.04
644+ +++

2 Yes 10 Yes 5 F 14.0 Yes 	- I 14.0 Yes 0.07 0.06
9

3 Yes 26 Yes 14 I 6.0 Yes I 6.0 Yes 0.23 0.26

10* 1 Yes 31 Yes 41 I 3446.0 Yes I 3446.0 Yes 0.35 0.49
10 2 Yes 42 Yes 26 I 2049.0 Yes I 2049.0 Yes 0.47 0.35
10 3 Yes 32 Yes 10 I 1524.0 Yes I 1524.0 Yes 0.33 0.21
10 4 Yes 26 Yes 11 I 1187.0 Yes I 1187.0 Yes 0.29 0.21
10 5 Yes 23 Yes 13 I 882.0 Yes I 882.0 Yes 0.25 0.22
10 6 Yes 24 Yes 27 I 579.0 Yes I 579.0 Yes 0.26 0.32
10 7 Yes 11 Yes 14 I 294.0 Yes I 294.0 Yes 0.12 G.21
10 8 Yes 7 Yes 6 I 163.0 Yes I 163.0 Yes 0.09 0.10
10 9 Yes 2 Yes 4 I 75.0 Yes I 75.0 Yes 0.06 0.09
10 10 Yes 2 Yes 4 I 0.0 Yes I 0.0 Yes 0.06 0.11

10** 1 Yes 17 Yes 34 I 79.0 Yes I 79.0 Yes 0.20 0.42
10 2 Yes 28 Yes 23 I 47.0 Yes I 47.0 Yes 0.32 0.31 ---1

4.-
10 3 Yes 36 Yes 28 F 35.5 Yes F 35.5 Yes 0.38 0.38
10 4 Yes 9 Yes 6 I 26.0 Yes I 26.0 Yes 0.10 0.20
10 5 Yes 11 Yes 7 I 18.0 Yes I 18.0 Yes 0.12 0.17
10 6 Yes 9 Yes 12 I 12.0 Yes I 12.0 Yes 0.11 0.25
10 7 Yes 6 Yes 8 I 8.0 Yes I 8.0 Yes 0,09 0.15
10 8 Yes 6 Yes 5 I 5.0 Yes I 5.0 Yes 0.09 0.11
10 9 Yes 5 Yes 1 I 2.0 Yes I 2.0 Yes 0.08 0.07
10 10 Yes it Yes 1 I 0.0 Yes I 0.0 Yes 0.08 0.07

+ CPU time, in CDC 6400 seconds 	++ Inclusive of time to perform heuristics 	++4. Test case provided by A.W. Neebe (see
* Example from Revelle and Swain [90, p.38] 	** Example from Garfinkel et al. [41, p.231] 	Appendix)

Table 3.3 (cont'ed) - Comparison of random vs. heuristic initial solution

Problem Size Convergence Objective Function • Time in Seconds

n

No heuristics Heuristics No Heuristics

or F

Heuristics No Heuristics Heuristics ++

Yes or
No

No. of
Iterations

Yes or
No

No. of
Iterations or F Value Optimal? Value Optimal?

15 1 Yes 34 Yes 201 I 809.0 Yes I 809.0 Yes 0.69 4.25
15 2 Yes 222 No 1000 I 412.0 Yes - 412.0 Yes 4.75 21.21
15 3 Yes 171 No 1000 I 294.0 Yes - 294.0 Yes 3.82 22.00
15 14 Yes 172 Yes 293 I 215.0 Yes I 215.0 Yes 3.65 6.66
15 5 Yes 16o Yes 704 I 150.0 Yes I 150.0 Yes 3.31 15.92
15 6 Yes 483 Yes 256 I 113.0 Yes I 113.0 Yes 10.10 5.97
15 7 Yes 63 Yes 148 I 93.0 Yes I 93.0 Yes 1.23 3.47
15 8 Yes 36 Yes 60 I 74.0 Yes I 74.0 Yes 0.65 1.52
15 9 Yes 26 Yes 24 I 57.0 Yes I 57.0 Yes 0.50 0.77
15 10 Yes 18 Yes 31 I 41.0 Yes I 41.0 Yes 0.39 0.79

20 Yes 41 Yes 620 I 1159.0 Yes I 1159.0 Yes 1.31 23.03
20 2 Yes 387 No 1000 I 724.0 Yes - 724.0 Yes 13.86 37.68
20 3 No 1000 No 1000 - 523.0 No - 518.0 Yes 34.69 37.51
20 14 No 1000 No 1000 - 511.0 No - 414.0 Yes 34.75 36.98
20 5 No 1000 No 1000 - 476.0 No - 353.0 No 34.92 37.32
20 6 No 1000 No 1000 - 392.0 No - 259.0 Yes 35.72 36.58 -4 ..11
20 7 No 1000 No 1000 - 356.0 No - 230.0 No 34.96 37.42
20 8 Yes 465 No 1000 I 199.0 Yes - 202.0 No 15.79 37.98
20 9 Yes 132 No 1000 I 175.0 Yes - 175.0 Yes 4.03 35.50
20 10 Yes 129 Yes 275 I 151.0 Yes I 151.0 Yes 4.20 10.31

+ CPU time, in CDC 6400 seconds

++ Inclusive of time to perform heuristics

Table 3.3 (cont'ed) - Comparison of random vs. heuristic initial solution

Problem Size Convergence

or F

Objective Function Time in Seconds+

n p

No heuristics Heuristics No Heuristics Heuristics No Heuristics Heuristics

Yes or
No

No. of
Iterations

Yes or
No

No. of
Iterations Value Optimal? or F 	Value Optimal?

25 1 Yes 77 No 1000 I 1352.0 Yes - 	1352.0 Yes 3.41 54.60
25 2 No 1000 No 1000 F 980.50 No - 	1027.0 No 53.02 56.59
25 3 No 1000 No 1000 - 732.0 No - 	777.0 No 52.16 59.17
25 4 No 1000 No 1000 - 790.0 No - 	556.0 Yes 52.68 56.41
25 5 No 1000 No 1000 - 763.0 No - 	468.0 Yes 52.59 55.93
25 6 No 1000 No 1000 F 411.33 No - 	387.0 Yes 52.07 50.79
25 7 No 1000 No 1000 - 533.0 No - 	341.0 Yes 52.32 51.47
25 8 No 1000 No 1000 - 415.0 No - 	303.0 No 52.23 51.88
25 9 No 1000 No 1000 - 393.0 No - 	266.0 Yes 52.17 54.13
25 10 No 1000 No 1000 - 354.0 No - 	237.0 No 51.72 53.76
25 15 No 1000 No 1000 - 184.0 - - 	128.0 - 50.84 51.82
25 20 Yes 32 Yes 5 I 51.0 Yes I 	51.0 Yes 1.35 1.27

+ CPU time, in CDC 6400 seconds

++ Inclusive of time to perform heuristics

77

larger values of n. Table 3.4 below shows the number of CDC 64o0

seconds per iteration for several values of n. The data of Table 3.4

were obtained from Table 3.1.

Table 3.4 - CDC 6400 Seconds per iteration

Number of
Vertices (n)

CDC 6400 Seconds
per iteration

10 0.011

15 0.021

20 0.035

25 0.052

30 0.070

33 0.080

The obvious conclusion to be drawn from the table above is that

if the convergence problems of the algorithm are solved, the

decomposition formulation can be used to solve the LP relaxation of

the p-median problem for practically any size of network, within a

reasonable amount of computer time.

3.4.3 Degeneracy and the problems with convergence

The serious convergence problems experienced in the previous section

are due to the very degenerate nature of the decompositon formulation.

This is more intensely felt for p small in relation to n and n large,

although the convergence of the algorithm is data dependent to some

extent. This data dependency can be best observed in the 33-vertex

network of Karg and Thompson [57], the computational results of which

are shown in Table 3.1. For this particular network convergence

occurred much more frequently than for the 20, 25 and 30-vertex net-

works shown in the same table.

78

The degenerate nature of the decomposition formulation can be

readily understood from the nature of the initial LP solution, defined

by the vector 00 below. 00 is given by

0 = B lb0 = P'
0] T , 	 (3.36)

where B is the initial basis of the master problem - either B
0

Equation (3.31) or B1 of Equation (3.33).

In the vector 00 above p. of its components are equal to one, and

(n-p) are equal to zero. Exactly (n-p) basic variables are therefore

equal to zero at the first iteration of the algorithm. This initial

degeneracy is in fact maintained throughout the solution procedure,

as shown in the next few paragraphs. It is degeneracy on such large

scale that is responsible for the lack of convergence reported in

3.4.2.

In order to show how the algorithm progressses from an initial

basic feasible solution to optimality, successive values of the 0

solution vector are shown in the following for a particular application

of the algorithm. This application was to find the optimal 3-median

of the network of Figure 3.1, after the variables Ell and gl2 had

been fixed to one. All other variables in the problem were free to

assume any value between zero and one.
X11 = g12 = 1 is in fact part

of one of the six optimal solutions to the 3-median problem of

Figure 3.1.

Recall that the LP solution of the original problem was

fractional for p = 3. After making 	 the initial
g gll = g12 = 1,

basic feasible solution for this problem was X3 = {xl, x3, x4},

with a(x3) = 55. It took then 15 iterations for the LP to converge

to an all-integer solution with a(;) = 36.

Successive 0! vectors, j = 1, ..., 15, are given below. It

should be noted that vector B! differs from vector !. in that its

79

top entry corresponds to the value of the objective function at the

end of the iteration. This value is omitted in vector 0..

The initial 	 0 0! (0') corresponds to the initial basic feasible
j

solution. It is given by

' = 0

55

1

1

0

0

0

0

0

0

0

0

Except for the iteration in which the surplus variable was driven

out of the initial basis B1,
the successive 0! vectors were:

ai=a2=a3=a =a5=a6=a7=a8=

39

1

1

0

0

0

0

0

1

0

0

0

80

= 9

38.00
0.29

0.29

0.14

0

0.14

0.14

0.29

0.29

0.71

0.71

37.56

0.22

0.44

0.11

0

0.11

0.11

0.22

0.22

0.56

0.78

0.22

0

36

0

1

0

0

8'
11 = 8' 12 = =515 = 15

0

0

0

0

1

0

1

Regarding the 	vectors shown above, a few points are worth

mentioning:

1. Except for 5 and Oio, the solution vectors remain very

degenerate throughout the solution prodedure;

2. Notice the very "stationary" nature of the algorithm,

i.e. it usually takes a very large number of iterations

for the solution vector to change;

3. Although the optimal solution was attained at the end of

iteration 11, optimality was only "recognized" by the

algorithm at the end of iteration 15.

81

Some comments regarding the convergence of the algorithm

It has already been said that the convergence problems experienced

by the decomposition formulation are due to its very degenerate nature,

and that the use of greater accuracy in the computations does not

improve the algorithm's convergence.

An approach suggested by Beale* consists in calculating the

vector of dual variables using the following expression:

o= (1 - a)c(1) + aaN
	

(3.37)

where a
N
is given by Equation (3.32) (aN = DBB-1), c(1) is the vector

of dual variables computed in the previous iteration of the algorithm,

and a is a smoothing constant (0 < a < 1).

It is now worthwhile to take up a point made in Section 3.3,

whenthemaximizationoftheobjectivefunctione.of subproblem i

was being discussed. At that opportunity it was mentioned that,

for t. > 0
' A. is maximized if yl. = 1, and, for all i 0 j, if either

y. =
13

or if

y
13
0.. =

1 	if f.. >0
13

0 	if 	f.. < 0
13 -

1 	if 	f.. > 0 13 =

0 	if 	f.. <0
1J

(3.25)

(3.26)

(3.21)

In other words, when fl.= 0 the expression
j

n
G.1 = E f..y.. . 	13 13 3=1

is maximized for any corresponding value of yij. The setting of yij

to zero or one is therefore entirely arbitrary when f.. = 0. The •

question that arises then is whether this property can be used to improve

Private Communication

82

the convergence of the algorithm.

. Refer back to the example solved by hand in 3.4.1 and suppose

that at some stage

Max 1<. 	e. 	61 1 '

and that12 = f 13 = f 14 = 0. The vector yl to enter the basis can

then be any of eight possibilities, in each of which the top entry

is equal -Co one. The three remaining entries can be any of the 2 3

possible combinations of zeros and ones. It is possible to represent

this vector yio by

1

with the 	Vs 	to be replaced by one of the possible eight

combinations mentioned above.

It is important to emphasize that the use of a particular vector

can improve the convergence of the algorithm if a situation similar

to the one described above develops at a given stage of the solution

procedure. The practical difficulty, however, is how to use

opportunities of multiple choice in a consistent way so as to improve

the convergence of the algorithm.

It should be finally said that, when the algorithm converges,

the choice of one particular vector may have an influence on the

number of iterations it takes for the LP to converge. Furthermore,

if the problem has more than one optimal solution, the optimal solution

actually obtained may be affected by the choice of the vector.

The facts described above were confirmed in practice when

Equations (3.25) and (3.26) were used independently in separate runs

of the decomposition formulation. It was then observed that convergence

83

was obtained in different number of iterations when (3.26) was used

instead of (3.25). Furthermore, for problems with multiple optimal

solutions, the solutions produced when (3.26) was used were generally

different from the solutions obtained through the use of (3.25).

3.5 Conclusions

In the vast majority of cases the linear programming relaxation

produces integer solutions that are optimal solutions to the p-median

problem itself.

Two formulations of the linear programming relaxation were

studied in the present chapter, and both were found to have their

limitations. The general formulation produces very large linear

programmes and is therefore unsuitable for use in large-scale networks.

The decomposition formulation often does not converge because of its

very degenerate nature. The problems with convergence become

particularly serious as the size of the network increases, and for

values of E small in relation to n.

Regarding the difficulties mentioned above it is felt that, while

not much can be done in relation to the general formulation, there

is room for improvement in the decomposition formulation. If the

difficulties arising from the lack of convergence can be tackled, then

this formulation, together with its embedding into branch-and-bound

algorithms, can be used to solve the p-median problem for large-scale

networks.

84

CHAPTER FOUR

BOUNDS FOR THE p-MEDIAN PROBLEM

4.1 Introduction

It is well known that the quality of the bounds used in tree

search methods is a factor of vital importance in the efficiency of

the method. Branch-and-bound algorithms so far developed for the

p-median problem suffer from a lack of strong lower bounds, and for

this reason they are not very efficient. On the other hand, although

both formulations of the LP relaxation discussed in Chapter 3 can be

embedded into branch-and-bound algorithms and used as bounds for the

problem, their limitations prevent them from being effectively used in

this context.

After a brief review of earlier work on bounds for the p-median

problem, two new lower bounds are developed in the present chapter.

One of the bounds is a graph-theoretical bound, based on shortest

spanning trees and arborescences and other graphical properties of

the p-median problem. The other bound is based on the dual of the

LP relaxation of the problem, and a heuristic procedure has been

developed to compute an exact bound.

Both the graph-theoretical and the dual bound perform substantially

better 	than a third bound developed in [l2](call this bound

the shortest distance bound). It is in fact shown in a later section

that the graph-theoretical bound dominates the shortest distance

bound. As for the dual bound, it outperforms the graph-theoretical

bound very consistently, especially for values of E small in relation

to n.

Computational results that allow a comparison of the three bounds

mentioned above are presented at the end of the chapter.

85

4.2 Earlier work on bounds for the p-median problem

The first lower bounds developed for the p-median problem appeared

in papers by Jgrvinen, Rajala and Sinervo [55] and El-Shaieb [30].

Christofides [12] developed the shortest distance bound, for a direct

tree search algorithm he designed for the problem.

The bounds described in [12], [30] and [55] can be considered

to belong to the same family of bounds. They use the same basic

principles, but differ in details that take advantage of the type of

search for which they were designed. A few words are said below on

each of these bounds.

The branch-and-bound algorithm of Jarvinen et al. is a "drop"

algorithm. It starts with all facilities "open", and facilities are

successively "closed" until exactly 2 facilities are left "open". The

iterative process continues until all feasible solutions have been

implicitly enumerated.

For the computation of the lower bound; assume that at a given

stage r facilities, corresponding to vertices xkl, xk2, 	xkr,

have been "closed" (1 < r < n-p). There are then (n-r) vertices left,

from which 2. vertices must be chosen. It is possible to define two sets

of vertices:

V
r =

kl' xk2' 	Vn
-r
 = {x 	x2,2' ..., xtn-r} =

= V - Vr,

where V is the set of all vertices of the network. The corresponding

sets of indices are

K = Ikl, k2, 	kr} and L = "" %-r/*

Now let v. be the weight of vertex x., and define D.. = v.d.
J 	 J 	0 lj

to be the weighted shortest distance between vertices 	 o xi and x ..

For every column k E K of matrix D = [Dii] it is possible to compute

86

sk
 = Min Dik e

•
.
leL

On the other hand, for every column t e L of D,

s = Min D..
ieL 13
10,5

can be calculated. The lower bound is then given by

(4.1)

(4.2)

LB(K) = SK 	SL , 	 (4.3)

where S
K
= E s

k' and SL is the sum of the (n-r-
p) smallest s

kEK
t E L.

The branch-and-bound algorithm developed by El-Shaieb uses a

different concept. In his algorithm the tree branches represent

assignments of sources (facilities) and destinations. Locations

are added one at a time to either the source or the destination set

to form the next branches. Each set of branches consists of two

branches. One of the branches corresponds to adding a location to the

source set, while the other branch corresponds to adding the same

location to the destination set. At the end of each branch there is

a node that contains the corresponding source and destination sets.

El-Shaieb developed two different lower bounds for his algorithm.

If the first bound is used an optimal solution is produced after a

larger number of iterations than if the second bound is used. The

first bound, however, needs a small amount of computation per

iteration and is reported to be more efficient for small values of p.

' The second bound is more efficient for the larger values of p.

The bounds proposed by El-Shaieb and Christofides can only be

properly understood after a detailed description of the corresponding

branch-and-bound algorithms. The algorithm of E1-Shaieb will not be

described here. The algorithm developed by Christofides is given in

Chapter 5; a detailed description of the corresponding bound is therefore

87

left for that chapter. However, as in a later section this bound is

compared with the two bounds developed in the present chapter, its

computation before the beginning of the tree search is described below.

Let d = [d..] be the distance matrix of a n-vertex network whose ij

vertices xj have weights equal to vj. Now set up a matrix M = [mkj],

th the j column of which contains all the vertices of the network

arranged in ascending order of their shortest distance from vertex x..

Thefirstentryofcolumnicorrespondstovertexx.itself. Call

m0. , the second entry of column 	A lower bound for the p -median
Jj

problem.is the sum of the (n-p) smallest products:

d(x., m
s
.j)
J

' 	-J
(4.4)

over all vertices x. of the network. In the product above d(x.5 m .)
' 0.J

is the shortest distance between vertices x. and m .
J

ms.

j.

Finally, a word should be said about the LP relaxation of

Chapter 3. In addition to providing an optimal solution to the p-median

problem when the procedure converges and the solution is all-integer,

non-integer solutions to the LP can obviously be used as lower bounds

for the p-median problem. The use of the two formulations of Chapter 3

as bounds in branch-and-bound algorithms is discussed in Chapter 5.

4.3 A Graph-Theoretical Bound

A graph-theoretical lower bound for the p-median problem is now

developed. Shortest spanning trees and arborescences form the basis

for the computation of this bound. For nonweighted networks further

graph-theoretical properties are used to strengthen the bound.

The graph-theoretical bound has been developed for both nondirected .

and complete symmetrical (directed) networks. In most applications of

the p-median problem, nondirected networks are sufficient to adequately

represent the problem. The association of weights with the vertices

88

of a nondirected network, however, is equivalent to transforming

this network into a complete symmetrical one. As this thesis addresses

itselftp.themoregeneralcaseinwhichaweightv.is associated

with every vertex x. of the network, complete symmetrical networks have

been - considered in the development of the graph-theoretical bound.

Trees, arborescences,shortest spanning trees and shortest spanning

arborescencesare defined in the next section. This is followed by

the development of the graph-theoretical bound for nondirected,

nonweighted networks. The bound is then generalized for weighted

networks. Finally, the graph-theoretical bound is shown to dominate

the shortest distance bound.

4.3.1 Trees, Arborescences,Shortest Spanning Trees and Shortest

Spanning Arborescences

One of the most important Concepts of graph theory is that of a

tree. A tree can be either nondirected or directed, depending on the

nature of the underlying graph. A nondirected tree is defined as

follows [12].

Definition: A nondirected tree is a connected graph of n vertices

and (n-1) links.

A directed tree is called an arborescence. It can be defined as

follows [12]:

Definition: A directed tree is a directed graph without a circuit,

for which the indegree of every vertex is equal to unity, except for

one vertex (called the root of the tree), for which the indegree is

zero.

If G = (X,A) is a nondirected graph of n vertices, then a spanning
"„ 4,11•

tree of G is defined as a partial graph of G which forms a tree A

89

spanning arborescence rooted at r of a directed graph G' = (X',A') is

a spanning tree of the underlying nondirected graph G' =

having the following properties [38]:

(i) Each vertex of G' other than r has just one arc of the

arborescence directed toward it; and

(ii) No arc of the arborescence is directed towards r.

The shortest spanning tree of a graph is defined for a non-

directedgraphGwhencostscu are associated with its links. It

has obvious applications in cases where roads (gas pipelines, electric

power lines, etc.) are to be used to connect n points in such a way

as to minimize the total length of the road that has to be constructed.

Several algorithms [64, 86] have been designed to construct the

shortest spanning tree of a graph (network); the length of the shortest

spanning tree is independent of the vertex at which its construction

starts.

The corresponding concept for directed networks is called the

shortest spanning arborescence. Unlike shortest spanning trees,

shortest spanning arborescences depend on the root under consideration.

In [10], [24] and [104] general algorithms for the construction

of the minimum shortest spanning arborescence of a network are given.

Besides producing the minimum shortest arborescence, these algorithms

may also be used to produce shortest spanning arborescences for any

specified root. The method used in [10] is similar in several respects to

the Hungarian method for the classical assignment problem [68, 69].

4.3.2 Shortest spanning trees as lower bounds for the p-median problem

It is now shown that, for nondirected, nonweighted networks,

shortest spanning trees can be used to compute a lower bound for the

p-median problem. This is done by stating a lemma and demonstrating

a theorem, although the final result could have been derived from

90

Kruskal's algorithm to construct shortest spanning trees. The lemma

and the theorem have been used because they lend themselves to an

easier generalization of the results to weighted networks.

The lemma is very general, belng valid for both nondirected and

directed networks, and even when the costs associated with the arcs

of the network do not conform to the triangularity condition of

metric space. The theorem only applies to nondirected, nonweighted

networks, but is later extended to weighted networks.

Before the theorem is proved, it is necessary to derive a

relationship that arises when a network is divided into a number of

subnetworks. This relationship is of fundamental importance for the

demonstration of the theorem. For the sake of clarity it will be

derived within the context of the p-median problem.

Suppose that the optimal p-median of a network has been found.

Theoriginalnetworkcanbethendividedintop_subnetworksN.=(X.,A.).
J J

X. is the set of vertices of subnetwork 	
jth

and comprises the 	assigned

median and the nonmedian vertices allocated to it. A. is the corresponding

set of arcs, comprising all arcs of the original network interconnecting

the vertices in X.. The only arcs of the original network not present

in any of the sets A. are the arcs of the original network that inter-

connect the newly formed subnetworks.

If the lengths of:

(i) The shortest spanning tree of the original network (call

this length SSTQN), and of

(ii) The shortest spanning trees of each of the 2 subnetworks

N. (call these lengths SST0j, j = 	p) are computed, the following

relationship holds:

p-1
SSTON < E SST . + E SL

j
 ,

j
	j OJ
=1 	=1

p-1
where E SL. is the sum of the (p-1) smallest arcs of the original

j=1

91

p
network not in U A. that will transform the 2 newly formed

J=1
subnetworks into a connected network.

Now let G' = (X',A') be a graph (directed or not), every vertex of

which is defined to be either a source or a sink. Allocate each sink

vertex x E X' to a unique source vertex y(x) E X'. Form partialVgraphs

T' of G' by adding every arc on the shortest path from x to y(x), for all

sink vertices x. If more than one shortest path from a given sink x to

the corresponding source y(x) exists, choose only one such path. Then

Lemma - There is always a choice of a shortest path for each sink vertex

x E X' for whicla trle [12].

It is important to note that the lemma is valid for both directed

and nondirected graphs. Furthermore, as no relationship related to

metric spaces is assumed, the lemma is valid even for graphs whose

arcs do not conform to the triangularity condition of metric space.

Corollary - Let SSToj be the length of the shortest spanning tree of

one of the 2 subnetworks into which a nondirected, nonweighted network

N = (X,A) can be divided once the optimal p-median is known. Then

SST
Oj is a lower bound on the sum of shortest distances from the median

xoj of N. to the vertices allocated to it.

This follows immediately from the lemma above. The lemma

guarantees that the subnetwork, formed when nonmedian vertices of N.

are connected to the median xOj through the corresponding shortest

paths, can be constructed so that a tree is formed. .Call the length of

thistreeST..The shortest spanning tree of N. has a length that

is, by definition, shorter than or equal to the length of any other

spanningtreeofN_Therefore

STS > SSToj . 	 (4.6)

On the other hand, the sum of the shortest distances from xoj to

the vertices allocated to it is greater than or equal to STS (some arcs.

can be counted twice or more when the sum of shortest distances is

computed). It follows then that

92

E d(xi, x0.) > ST. , (4.7)

where the x.'s are the nonmedian vertices of N,. If (4.6) and (4.7)

are combined, it is possible to write

E d(xi, x0 j)SSToi > 0 (4.8)

The theorem can now be proved.

Theorem - Let N = (X,A) be a nondirected, nonweighted network for

which the optimal p-median must be found. A lower bound on the value

of the objective function of the problem is the length of the shortest

spanning tree of the network, minus the shortest spanning tree's

(p-1) longest links.

Proof - Suppose the optimal p-median was found and that the original

networkwasdividedintotheEsubnetworksN.=(X.,A.) defined above.
J J

Equation (4.8) can be applied to each of the P subnetworks:

E 	d(x1.1' x -0_1) - SST01 > 0 ile
Subnetwork (1)

E
i2E
Subnetwork (2)

d(xi2' x02) - SST02 > 0

(4.9)

- SST > 0
i pE 	

d(xip' x0p) Op

Subnetwork (p)

Adding the 2. inequalities above it follows that

p 	 p
E 	E d(x.., x .) - E SST . > 0

j=1 ijE
ij 	0,3 	j=1 	OJ =

subnetwork (j)

(4.10)

Now refer back to Equation (4.5). It can be re-arranged as

P • 	P-1
E SST > SST - E SL.

Oj = 	ON j=1 	j=1
(4.11)

93

Substituting (4.11) into (4.10) it follows that

p 	 p-1
E 	E 	d(xi 	x) > SSTON - E SL. . 	(4.12) j' Oj -

j=1 	 ijE 	 j=1
Subnetwork (j)

Before the optimal p-median is found, however, it is not known

which are the (p-l) SL.'s that satisfy equations (4.11) and (4.12).

For the computation of the lower bound, the worst possible case is

that these (p-1) SL.'s are the (p-1) longest arcs of the shortest

spanning tree of the original network. Let LL. be the arcs of this

shortest spanning tree, ranked in order of decreasing arc length.
P-1 	p-1

Since E LL. > E SL., it is finally possible to write
j=1 	j=1

p-1
E 	E 	d(xij, x0.) > SSTON - E 	LLi . 	(4.13)

j=1 ijE
subnetwork (j)

The left-hand side of Equation (4.13) is the value of the objective

function of the p-median problem. The theorem is thus proved.

Since shortest spanning trees are only defined for nondirected

networks, the theorem is only valid for nondirected, nonweighted

networks. Its extension to weighted networks, through the use of

shortest spanning arborescences, is given in 4.3.4.

4.3.3 Further graph-theoretical properties and a stronger lower bound

In the previous section it was shown that shortest spanning trees

can provide a lower bound for the p-median problem. This bound can be

improved, as shown in the remainder of this section.

ConsideragaintheRsubnetwork.sN.defined in the previous section.

For each of the subnetworks construct the spanning tree defined in the

lemma of that section. If (S, is the degree of median xOj of spanning

tree ST., it is easy to see that

E d. < n - p
	 (4.14)

j=1

94

p
In general it can be said that, when E 6. < n - p, the lengths of

j=1
a. number of arcs (say 0) are counted at least twice when the value of

the objective function of the p -median problem is computed. The value

of S is given by

p

0 = (n-p) - t 6. 	 (4.15)
j=1

Refer, for example, to Figure 4.1 	in which the optimal

3-median of a 10-vertex network is shown through the spanning trees

defined in the lemma of Section 4.3.2.

The 3 medians are vertices x1, xio and x5. In Figure 4.1c vertex

x6 is two arcs away from xq, the median vertex to which it has been

allocated. Consequently, the length of the arc x
7
x
5 is counted twice

when the value of the objective function of the problem is computed.
3

For the example of Figure 4.1 (n-p) = 7, and E S. = 1 + 2 3 =
j=1 	

6 < 7. Then . $ = 7 - 6 = 1, and the length of one arc (x7x5 in this

particular case) is counted twice when the value of the objective

function of the problem is computed.

It is possible to use the properties described above to strengthen

thebounddevelopedin4.3.2.IfR.is the sum of the lengths of the

arcsofST.(subnetwork.11.)that must be added to the spanning tree's

length in order to obtain the sum of shortest distances between source

and sinks in N., it follows that

E d(xi, x0j) = STi 	Rj .
	 (4.16)

Suppose now that it is possible to know that there are at least

(3.arcswhoselengthLis counted twice or more in the computation of

the sum of shortest distances. Then

R. > E L. 	, 	 (4.17)
- 1=1 1

and consequently,

	

(4.1a)
	

(4.1b)
	

(4.1c)

	

= 1 	 62 = 2
	

6
3

= 3

Figure 4.1

Optimal 3-median of a 10-vertex network (Garfinkel et al. (41, p.231])

96
ai

E d(x. x) > ST. + E
1
 2. .

O 	1 j - j =

Finally, as SSTOj . < ST., = j
R.
. J

E d(x., x) > SSTO j
+ E t. .

I Oj -

(4.18)

(4.19)

If Equation (4.19) is now applied to each of the p. subnetworks

N., and the .p. resulting inequalities are added together, the following

is obtained:

a.

	

P 	J
OF(p) = E 	E d(x..

'
 x .) > E SST 	+ E 	E

j=1 ijE 	13 	0J 	j=1 	j=1 i.=1 13
subnetwork (j)

where OF(p) is the value of the optimal solution of the p-median problem.

Now, by replacing E SST 0. in Equation (4.20) by its value in Equation
j=1 00

(4.5), it follows that

. p-1 	P
0F(5 	

a
J

) > (SST 	- E LL.) + E 	E 	k.. •
j=1 	j=1 i.=1 13

(4.21)

Before the optimal p-median is known, however, it is not possible

to know exactly how many arcs of the network, if any, are going to be

counted more than once when the value of OF(p) is computed. From

an examination of the degrees of the vertices of the original network

it is possible to know, however, the minimum number of arcs that

are going to be counted at least twice, and the corresponding minimum

total length. The following procedure is thus suggested:

Step 1. Calculate the degree S. of each of the vertices of the
- 	J

network for which the optimal p-median is being sought.

Step 2. Rank these degrees in descending order, and call the

ranked degrees 611j.

Step 3. Compute

p
a = E 6/1. .

j=1
(4.22)

97

Step 4. (a) If n - p < a, no improvement can be added to the

bound of section 4.3.2;

(b) If n - p > a, compute

0 = (n-p) 	a . 	 (4.23)

Then add to the lower bound of section 4.3.2 the sum of the lengths of

the S shortest arcs in the network. In the worst possible case at

least the length of these arcs will be counted twice in the computation

of the value of OF(p).

4.3.4 Generalization for weighted networks

The extension of the lower bound derived in 4.3.2 and 4.3.3 to

weighted networks is straightforward. Recall that in Chapter 1 it

was shown that weighted networks must be transformed into complete

(directed) symmetrical networks before they can be handled. In this

section it will be always assumed that such transformation has taken

place.

The theorem of Section 4.3.2 can be readily extended to weighted

networks. The theorem for weighted networks is:

Theorem - Let N' = (X',A') be a complete symmetrical network for which

the optimal p-median must be found. A lower bound on the value of the

objective function of the problem is the length of the minimum

shortest spanning arborescence of the network, minus the (p-1) longest

arcs in this arborescence.

The proof is analogous to that of the theorem of Section 4.3.2, and

for this reason will not be given here.

Note that graph-theoretical properties of the type discussed in.

4.3.3 cannot be used to improve the bound of weighted networks. Since

the indegree of every vertex of a complete symmetrical network of n

vertices is equal to (n-1), it follows that S < 0 V p (0 is defined in

the previous section). The bound provided by shortest spanning

98

arborescences cannot therefore be improved in the case of weighted

networks.

4.3.5 Dominance over the shortest distance bound

It is not difficult to prove that the graph-theoretical bound

dominates the shortest distance bound. The proof will be limited to

nondirected, nonweighted networks. The extension to weighted networks

is straightforward and will not be given here.

Recall that the shortest distance bound is equal to the sum of

the (n-p) smallest products

v. x 	 , d(xj m) 	 (4.24)
J J 	•

overallverticesx.
J
 of the network. As only nonweighted networks

willbeconsidered,v.
J
 =1 V j in the present discussion. On the

otherhand,d(x.
J'
 m

13.j J
)isthedistancebetweenvertexx.and the

J
vertex closest to it in the distance matrix of the network. It is

obviousthatmhastobedireetlycennectelatex.through one of
03

the links of the network.

It is interesting to note that the bound provided by shortest

spanning trees is also the sum of (n-p) lengths of links between vertices

of the network: The shortest spanning tree of a network has (n-1)

links, and if (p-1) links are subtracted from it exactly (n-p) links

are left. What remains to be proved is that each link used in the

construction of the graph-theoretical bound is at least as long as the

corresponding link used in the construction of the shortest distance bound.

In Kruskal's algorithm [64] for the shortest spanning tree, the

links of the network must be ordered in ascending order of cost. Then,

starting from the top of the list, links must be added to the initially

disconnected set of vertices, provided that no circuit is formed when

a new link is added to the existing set of links. A bound is obtained

99

for the p-median problem after (n-p) links are selected in this way

and their corresponding costs added to form the bound.

Now refer back to the shortest distance bound for nonweighted

networks. This bound is also obtained by adding the costs of the

(n-p) shortest links of the network. For this bound, however, there

are no restrictions on the formation of circuits, and therefore every

link used in the computation of the graph-theoretical bound is at

least as long as the corresponding link used in the computation of

the shortest distance bound. The graph-theoretical bound thus dominates

the shortest distance bound.

4.4 A bound based on the dual of the linear programming relaxation

of the problem

The dual of the linear programming relaxation of the p-median

problem provides a very good lower bound for the problem. The

difficulty in obtaining this bound is that, similarly to the primal,

the dual is a very large linear programme. Any attempt to obtain

the bound by actually solving the dual would lead to difficulties

similar to those experienced when the primal was studied in Chapter 3

(see Section 4.4.1).

A heuristic procedure has been developed to generate approximate

solutions to the dual LP. This procedure, which produces a 	

bound to the p-median problem, is a two-phase method. It takes

advantage of the simple form of the dual objective function and of

the special nature of its variables.

Very good bounds were obtained for the problem through this dual

procedure. Computational results given in Section 4.5 compare the dual

bound with both the shortest distance bound and the graph-theoretical

bound.

100

The dual formulation is derived in the next section. Then a

heuristic procedure to generate approximate solutions to the dual is

discussed, and a detailed step-by-step description of the algorithm

is given. Finally, computational results that allow the dual bound

to be evaluated are given for a wide range of values of n and E.

4.4.1 The Dual Linear Programme

Recall the linear programming relaxation of the p-median problem.

For the sake of convenience this formulation is repeated below. The

symbols selected for the dual variables are indicated in brackets,

alongside the corresponding primal constraints. 	The LP relaxation is

n 	n

Minimize Z = 	E 	E 	d.; g.4 	 (4.25)

i=1 j=1 	ld

Subject to

n

E 	E. 	= 1 	, 	j 	= 1, 	. 	., n 	[a.] 	(4.26)
1=1 	 J 	

1

n

E 	i_i =
p 	 i n+1i 	(4.27)

1=1

gij - gii .., 0 , i, 	j 	= 1, 	..., n, 	i 0 j' 	
[1r1]
	(4.28)

g 	> 0 , i, 	j = 1, 	.., n 	 (4.29)
ij =

The dual of this linear programme is

(4.30) Maximize Z' = 	E 	ai + pan+,

1=1

Subject to

b. 	+
n+1 -

	E 	7.. < 0 V i 	 (4.31)
=

jOi

aj + ffij < dij V i, 	j, j 	i 	 (4.32)

nu < 0 V i, j, j 0 i 	 (4.33)

a. 	< = > 0 , i = 1, 	n + 1 	(4.34)

101

As indicated by Equation (4.34), the ai's are unconstrained

variables. This is so because they correspond to equality constraints

in the primal LP. A closer examination of the problem,however, makes

it possible to determine the true nature of these variables.

Refer to the primal problem. Since d.. > 0 V i, j, it is clear 10 =

that Equation (4.26) can be replaced by

n
E 	ij > 1 , j = 1, 	n

= i=1

without loss of any optimal solution. It then follows that

a > 0 , i = 1, 	n . .
=

(4.26a)

(4.34a)

On the other hand, if Equation (4.31) is re-arranged, the follzgwing

is obtained:

n
a 	< - a. + E 71..

10 n+1 	1
j=1 0=1
jai

(4.31a)

In view of Equations 4.33) and (4.34a) it follows immediately that

a .n+1 < =

The dual LP

DLP

0

can be now re-written as

n
Maximize Z' = 	E 	a. + pania

	

1=1 	1

Subject to
n

a1. 	+a 	-Eff1.0 . n+1 	.
0=1

a 	+ 	< 	a.. it j 	ij = 	10

ff
i 	

< 0$ i, 	j, 	j j

ai > 0, i = 1,

an+1 	0

<OVi =

j, 	j

i

n

i

(4.34b)

(4.30

(4.31)

(4.32)

(4.33)

(4.34a)

(4.34b)

102

It is easy to see that the optimal value of Z' (and therefore any

value below it) is a lower bound for the p-median problem. Since the

primal LP is a relaxation of the problem, if X is the value of the

optimal solution of the p-median problem it follows that

> Min Z • ' 	 (4.35)
P =

On the other hand, Min Z = Max Z' (Theorem of Duality [54]), and

X > Max Z' . p =
(4.36)

Consequently, if the dual LP sis solved, the optimal value of its

objective function (or any value below the optimal) is a lower bound

for the p-median problem (call this bound the dual bound).

The only difficulty in computing the dual bound is that, similarly

to the primal, the dual is a very large linear programme, with (n2+1)

variables and n2 constraints.

However, as the interest in the dual is limited to obtaining

a bound for the p-median problem, if a heuristic procedure for

solving the dual can be shown to yield solutions close to the

optimal in an efficient way, this procedure can be used to compute

lower bounds for the problem.

Fortunately, the simple form of the dual objective function

(Equation 4.30), plus the special nature of its variables, readily

suggest such a procedure. The procedure has proved to be computationally

efficient, and can therefore be embedded into branch-and-bound

algorithms designed to solve the problem.

4.4.2 A heuristic method to solve the DLP

In the dual linear programme given by equations (4.30) through

(4.34b), since of > 0, i = 1, 	n, and an+1 	
0, Z' can be =

maximized if the positive ai's are chosen as large as possible,

103

while the absolute value of an+1 is kept as small as possible,

provided that equations (4.31), (4.32) and (4.33) are always

satisfied, i.e. that the dual remains feasible throughout the

procedure.

Now recall Equation (4.31a) given by

n
a
n+1

- a.
1
 + E 	V
 .

j=1

jOi

(4.31a)

For the dual to remain feasible throughout the procedure, given

asetofvaluesforthea.
1
's and Tr..'s' an+1 must take a value that 13

satisfies the n constraints of (4.31a). That is

n
a 	< Min (- a. 	E u-)
n+1 = 	1 	ij '

1 	j=1

jOi

(4.37)

On the other hand, if the objective is to maximize Z', for a given

	

set of a.'s the absolute values of the 	must be the smallest
1 	 13

possible values that will satisfy equations (4. 32) and (4.33).

This can be achieved by making

{

wii = 0 if aj ..<, ...j.

ff. 	
J

= - (a -d.) if a. > cl- lj 	1J 	j 	lj

Or, combining the two conditions above into one equation

n
i
 . = - Max (0, aj-dij) V i., j, j 	i . 	(4.38)

From the above it can be seen that, given the distance matrix

[d..ij] of the network, and a set of values for the positive ails,

boththelr
ij

's and a
n+1

 can be determined in an optimal way with

respect to maximizing Z'. The problem that remains is how to determine

the initial a.'s and, subsequently, how to modify these values in a

1014

stepwise fashion, so as to increase 	to a value as close to the

optimal solution of the dual as possible. An algorithm that performs

these tasks is given below.

The detailed steps of the algorithm

The heuristic procedure given below is a two-phase method.

The first phase is iterative, whereas the second phase is a one-pass

algorithm.

The first phase of the procedure starts from a given set of

a.'s
' and attempts to decrease the absolute value of an+1 by

suitably decreasing some of the 6.'s. This is done in such a way

that an increase is obtained in the value of Z' from one iteration

of this phase to the following iteration. When such increase is

no longer possible, the second phase of the algorithm is activated.

The second phase of the method is a one-pass algorithm, in

which an attempt is made to increase each of the positive a.'s

individually, but without altering as a consequence the value of

an+1 obtained at the end of phase 1. This second phase starts from

thevaluesofthe. al's at the end of phase 1, and terminates after

all n a.'s have been tentatively increased.

The detailed steps of the algorithm are now given.

Phase 1

Step 1. Choose initial values for each of the n positive ails (the

choice of these initial values is discussed in 4.4.3). Then make

k = 1 and go to Step 2 below.

Step 2. For each i, i = 1, 	 n, compute

n

	

T. = G. 	
i

- E u. 2 	 (4.39)
1 	1

j=1

j#±

105

withtheffu ls computed as per Equation (4.38). Then compute the

initial value of the bound (zl) and go to Step 3 below.

Step 3. Find the largest and next-to-largest values of Ti. Call

these values T and TNmx respectively. Set
MX

a
n+1

= - T,
X
 •

A
•

Step 4. Attempt to increase a
nia

from - T to TNmx by suitably
MX

decreasing the necessary ai ls.* Start by computing, for the i

correspondingtoT..=Tmx (ties broken arbitrarily), the set J

defined by

J =
j

aj.1(j .-d
1
..) 	(T 	 T

M
)1

MX NX
(4.4o)

Step 5. If J = 0 go to Phase 2 of the algorithm, as Zl cannot be

increased any further in Phase 1. Otherwise compute

n
S
Max

= MAX 	E Max(0, a.
j
-d..). 	 (4.41)

a.Ej i=1
J

step6. Decreasethea.correspondingto SMAX by (T
Mx

 - Tilmx). Then

recalculate the Ti's of Equation (4.39), given the decrease in a.

defined in the present step.

Ste107-AfterrecalculatingtheT-1's check if, for any i, T. = T
-- 1 MX

(This is only possible if a tie occurred in the computation of T
MX

in Step 3). If so, repeat Steps 4 through to 7 in an attempt to

change this Ti to TNmx. Otherwise go to Step 8 below.

Step 8. Compute Gk, the gain of iteration k:

0 	
a.
DT\
) 	(4.42) G

k
= p(Tmc 	

J
(a. -

a.'s decreased
J
in Step 6

* 	Note that the above defined increase in
an.4-1

is only worthwhile if

the sum of the necessary decreases in the oi ls is offset by a

corresponding increase in the value of the product p(Tmx -).

io6

0 where a. is the value of G. before the start of iteration k and
J 	 J 	 —

0, its value at the end of the iteration. Then go to Step 9 below.

Step 9. (a) If Gk > 0 increase Z' by Gk, make k = k + 1 and go to

Step 3 for a new iteration of Phase 1 of the algorithm;

(b) If Gk < 0, go to Phase 2 of the algorithm.

Phase 2

Step 10. Compute the difference (TA - Ti), where TL and /mx

are the values of TNX
 and TNla at the end of Phase 1. Then make

j = 1 and go to Step 11 below.

Step 11. Make

0 	1 G N . = G. + (TNS - Tl) .
J 	x NMX (4.43)

Then compute Ti V i (Equation 4.39) 	even the change in Gj defined

in the present step.

Step 12. (a) If, for any i, Ti TAx, make 0.°J the permanent value

of a.. Then make j = j + 1 and go to Step 13;

.COIf"."ir i,makecll!thepermsnerrtvalue 0fa-Emd = MX

increase the value of Z' by (TL - Tilimx). Then make j = j + 1 and

go to Step 13 below.

Step 13. If j < n go to Step 11. Otherwise, terminate the algorithm.

The final value of Z' is a lower bound for the p-median problem.

4.4.3 The initialization of the heuristic procedure

The final value of the dual bound depends to some extent on the

initialvaluesofthepositivea.ls. While there is great freedom

of choice for these initial values when the bound is computed for

the overall optimal solution to the problem, the choice is very

restricted when some of the variables of the corresponding primal

problem have known values. This is of special relevance when the

107

bound is embedded into branch-and-bound algorithms, but a detailed

discussion of the subject is left for the next chapter. The initialization

discussed in the present section is therefore important only if

interest is centred in obtaining a lower bound on the overall optimal

solution of the p-median problem.

Three different starting rules are discussed below. Computational

experience shows that while unreasonable starting values for the

positive (l.'s may lead to useless bounds, none of the investigated

starting rules always yield the best value for the bound. The

corresponding results are summarized at the end of this section.

The procedure described in 4.4.2 is one in which the initial

values of the positive ai's are decreased throughout the iterative

phase of the algorithm. The algorithm must therefore start from

values of a. expected to be larger than their respective values at

the termination of the procedure.

An alternative procedure would be to start from small values

forthea.'s and build the bound by increasing these values in a

stepwise fashion. This alternative procedure has not been investigated

experimentally, given the satisfactory results obtained with the

procedure described in 4.4.2, and its better suitability for embedding

the bound into branch-and-bound algorithms.

Starting Rules 1 and 2

These two starting rules take advantage of a relationship

developed by Diehr [22], which gives an approximate value for the

summation of the positive aits:

E a. = x' + pCi' - 	X'] 	,
i=1 p p-1 p

(4.44)

where TO and X'p-1 are approximate solutions to the 2 and (p-1)-median

108

problems respectively. Equation (4.44) is an approximation biased

towards giving a value above the exact value of the summation,

satisfying therefore the condition of providing initial values for

the a.'s above their expected final values.

The only difference between starting rules 1 and 2 is the

way by which the individual ai's are obtained from the summation

given by Equation (4.44). In starting Rule 1 the individual ai's

are weighted according to the sum of distances in the corresponding

column of the distance matrix of the network. In starting Rule 2

all 	are equal to the result of the division of the

summation of Equation (4.44) by the number of vertices of the network.

Starting Rule 3

Starting Rule 3 assumes that the final values of the csi's used

to calculate the bound for the (p-1)-median problem are available

prior to starting the procedure to find the dual bound for the

p-median problem. The initial values of the a.'s for calculating

the dual p-median bound are then made equal to the final values of

the a.'s used to calculate the bound for the (p-1)-median problem.

For p = 1 each initial ai is made equal to the average of the

distances in the corresponding column of the distance matrix of the

network.

Note that with starting Rule 3 the bound for the (p-1)-median

problem must be available before the bound for the p-median problem

can be calculated. It is therefore necessary to start by computing

the bound from p = 1 if one wishes to use starting Rule 3 to compute

lower bounds for successive values of 2., starting from p = pmin and

going up to p= P 	The computation of bounds for values of p max' 	 Pmin

is a necessary "starting-up" procedure if Rule 3 is to be used.

109

Computational results

The results obtained with the dual bound are given in Table

4.1. Results for networks ranging from 10 to 50 vertices are shown

in this table. As with the examples used to produce the computational

results of Chapter 3, the data describing the randomly generated

networks of Table 4.1 are given in the appendix of the thesis. Where

examples taken from the literature were used their origin is explicitly

indicated.

In Table 4.1, for each of the starting rules the final value of

the bound is given, together with the number of Phase 1 iterations

and the total time taken to calculate the bound (CDC 7600 seconds).

The bound corresponding to the best starting rule is indicated for

each case, and its value compared with the best available solution

for the problem.

• The percentage deviations shown in Table 4.1 confirm that the

dual bound is a very good lower bound for the p-median problem. For

networks of up to 15 vertices the average percentage deviation from the

best available solution was only 0.96%, whereas for networks ranging

from 20 to 50 vertices the corresponding value was 3.53%.

It should be clear from Table 4.1 that the results are

inconclusive as to which is the best starting rule for the ai's -

for the great majority of the cases the bounds produced by the three

rules are not very different from each other. It is important to

note, however, that Rule 2 prevailed in 40% of the cases, whereas

the corresponding percentages for Rules 1 and 3 were 31% and 29%

respectively.

Starting Rule 3 appears to be the more unreliable of the three:

for two of the networks of Table 4.1 (n = 10 and n = 25) this rule

produced meaningless bounds for a number of values of g.

Table 4.1 - The Dual Bound: Computational Results

Problem
Size Starting Rule 1 Starting Rule 2 Starting Rule 3 Best Bound

Optimal
Solution

% Deviation from
Optimal Solution

n D Bound No. iter Time* Bound No. iter Time* Bound No. iter Time* Rule*** Value

10** 1 79 1 0.01 79 1 0.01 74 1 0.01 2 79 79 0.00
10 2 45 2 0.01 46 11 0.01 45 2 0.01 2 46 47 2.13
10 3 34 3 0.01 31 8 0.01 33 9 0.01 1 34 36 5.56
lo 4 24 2 0.01 25 12 0.01 22 3 0.01 2 25 26 3.85
10 5 18 5 0.01 18 6 0.01 17 4 0.01 1 18 18 0.00
10 6 12 4 0.01 12 6 0.01 12 3 0.01 3 12 12 0.00
10 7 8 3 0.01 8 4 0.01 8 3 0.01 1 8 8 0.00
10 8 5 2 0.01 5 2 0.01 5 2 0.01 2 5 5 0.00
10 9 2 3 0.01 2 2 0.01 2 1 0.01 3 2 2 0.00
20 10 0 2 0.01 0 1 0.01 -1 1 0.01 2 0 0 0.00

10 1 400 1 0.01 400 1 0.01 395 1 0.01 1 400 400 0.00
10 2 250 13 0.01 236 28 0.02 258 14 0.01 3 258 273 5.49
10 3 195 24 0.02 192 20 0.02 185 24 0.02 1 195 195 0.00
10 4 148 4 0.01 140 33 0.02 144 19 0.02 1 148 149 0.67
10 5 105 6 0.01 107 8 0.01 107 6 0.01 3 107 107 0.00
10 6 69 6 0.01 69 3 0.01 75 9 0.02 3 75 75 o.00 i.-
10 7 42 6 0.01 42 3 0.01 43 1 0.01 3 43 43 0.00 H

0
10 8 15 5 0.01 15 1 0.01 15 5 0.01 2 15 15 0.00
10 9 2 4 0.01 2 2 0.01 NI" - 2 2 2 0.00
10 10 0 3 0.01 0 1 0.01 N - - 2 0 0 0.00

N = Large Negative Bound
CPU time, in CDC 7600 seconds
Example from Garfinkel et al. [41, p.231]
Where ties occurred in the value of the bound, no. of iterations and computing
time, in this order, were used to determine the rule yielding the best bount

Table 4.1 (cont'ed) - The Dual Bound: Computational Results

Problem
Size Starting Rule 1 Starting Rule 2 Starting Rule 3 Best Bound

Optimal
Solution

% Deviation from
fltimal Solution

n P Bound No. iter Time* Bound No. iter Time* Bound No. iter Time* Rule** Value

15 1 809 1 0.01 809 1 0.01 655 1 0.01 2 809 809 0.00
15 2 371 11 0.02 383 15 0.03 411 2 0.02 3 411 412 0.24
15 3 285 10 0.03 276 8 0.02 262 38 0.07 1 285 294 3.06
15 4 206 12 0.03 207 10 0.03 206 15 0.04 2 207 215 3.72
15 5 141 12 0.03 144 8 0.03 137 7 0.03 2 144 150 4.00
15 6 113 22 0.06 113 12 0.04 112 15 0.05 2 113 113 0.00
15 7 86 15 0.04 89 5 0.02 93 12 0.05 3 93 93 0.00
15 8 69 8 0.03 71 5 0.02 74 3 0.02 3 74 74 0.00
15 9 54 8 0.03 55 5 0.02 57 2 0.02 3 57 57 0.00
15 10 41 7 0.03 41 5 0.02 41 2 0.02 3 41 41 0.00

20 .1 1159 1 0.03 1159 1 0.03 1136 1 0.03 1 1159 1159 0.00
20 2 711 4 0.04 704 16 0.05 720 3 0.03 3 720 724 0.56
20 3 488 7 0.04 480 5 0.04 462 20 0.08 1 488 518 5.79
20 4 382 21 0.09 383 10 0.05 406 28 0.11 3 406 414 1.93
20 5 302 28 0.10 316 19 0.08 305 2 0.04 2 316 338 6.51
20 6 255 32 0.14 258 27 0.11 203 1 0.03 2 258 259 0.39
20 7 202 15 0.08 217 17 0.10 218 45 0.25 3 218 227 3.96

20 8 185 17 0.09 191 13 0.08 177 1 0.04 2 191 199 4..02
20 9 161 20 0.10 168 10 0.07 158 10 0.09 2 168 175 4.00
20 10 142 20 0.10 148 10 0.07 150 12 0.12 3 150 151 0.66

* CPU time, in CDC 7600 seconds

** Where ties occurred in the value of the bound, no. of iterations
and computing time, in this order, were used to determine the
rule yielding the best bound

H

Problem
Size Starting Rule 1

Table 4.1 (contf a) - The Dual Bound: Computational Results

Optimal
Solution

% Deviation from
Optimal Solution Starting Rule 2 Starting Rule 3 Best Bound

n p Bound No. iter Time* Bound No. iter Time* Bound No. iter Time* Rule** Value

25 1 1352 1 0.06 1352 1 0.06 1329 1 o.o6 1 1352 1352 0.00
25 2 856 9 0.07 935 30 0.12 790 1 0.05 2 935 956 2.20
25 3 708 7 0.07 700 10 0.08 251 1 0.05 1 708 722 1.94
25 4 551 9 0.09 543 21 0.14 N+ - - 1 551 556. 0.90
25 5 452 11 0.11 446 15 0.13 N - 1 452 468 3.42
25 6 377 12 0.12 377 11 0.11 N - - 2 377 387 2.58
25 7 309 8 0.09 317 12 0.12 N - - 2 317 341 7.04
25 8 275 21 0.21 279 20 0.20 N - - 2 279 298 6.38
25 9 244 19 0.20 248 26 0.22 N - - 2 248 266 6.77
25 10 223 18 0.19 226 26 0.21 N - - 2 226 235 3.83

30 1 1432 1 0.10 1432 1 0.09 1361 1 0.09 2 1432 1432 0.00
30 2 924 8 0.12 909 13 0.12 926 8 0.12 3 926 936 1.07
30 3 718 3 0.11 721 10 0.13 737 50 0.33 3 737 777 5.15
30 4 610 26 0.25 578 14 0.16 566 9 0.15 1 610 610 0.00
3o 5 500 14 0.18 496 16 0.18 486 33 0.35 1 500 516 3.10
3o 6 424 20 0.24 409 19 0.20 408 21 0.28 1 424 438 3.20
30 7 361 26 0.29 355 16 0.21 348 22 0.33 1 361 386 6.48
30 8 320 27 0.33 313 18 0.28 320 28 0.44 1 320 337 5.04
3o 9 281 17 0.27 278 24 0.36 280 4 0.15 1 281 294 4.42
30 10 250 14 0.23 248 14 0.29 250 8 0.22 3 250 265 5.66

+ N = large negative bound

* CPU time, in CDC 7600 seconds

** Where ties occurred in the value of the bound, no. of iterations and
computing time, in this order, were used to determine the rule yielding
the best bound

Table 4.1 (cont'ed) - The Dual Bound: Computational Results

Problem
Size 	Starting Rule 1 Starting Rule 2 Starting Rule 3 Best Bound

Best avail % Deviation from
Solution 	Best Avail sol.

n 2 Bound No. iter Time* Bound No. iter Time* Bound No. iter Time* Rule** Value

4o 1 	80634 1 0.22 80634 1 0.21 74955 1 0.21 2. 80634 80634 0.00
40 2 	43142 5 0.23 38874 12 0.26 43638 5 0.24 3 43638 45862 4.85
4o 3 	34728 99 1.03 33281 21 0.34 33423 56 0.65 1 34728 35946 3.39
4o 4 	26073 41 0.57 26374 32 0.47 23654 61 0.81 2 26374 26899 1.95
40 5 	21443 4o 0.70 21457 51 0.60 21210 75 1.20 .2 21457 22396 4.19
4o 6 	18128 26 0.55 18471 91 0.81 17257 17 0.45 2 18471 18775 1.62
40 7 	15145 35 0.64 15321 228 3.24 16402 101 1.99 3 16402 17426 5.88
4o 8 	14122 42 0.64 14349 75 1.23 14488 13 0.50 3 14488 16155 10.32
40 9 	12897 190 3.99 13806 118 2.29 13212 47 1.29 2 13806 14539 5.04
40 10 	12033 75 1.58 12371 74 1.44 12063 28 0.86 2 12371 13436 7.93

50 1 128548 1 0.44 128548 1 0.42 126560 1 0.42 2 128548 128548 0.00
50 2 	70685 25 0.62 72128 182 1.87 71153 15 0.53 2 72128 72168 '0.06
50 3 	52615 108 1.71 50695 747 6.59 32931 569 8.38 1 52615 52708 0.18
5o 4 	39629 55 1.18 40313 241 2.97 34931 266 4.50 2 40313 42228 4.53
5o 5 	33335 104 2.03 32760 66 1.16 31325 489 10.47 1 33335 35677 6.56
so 6 	2985o 51 1.38 28708 8o 1.68 29307 175 4.34 1 29850 31853 6.29
50
50

7 	27240
8 	24361

58
57

1.57
1.66

26215
23440

93
382

2.21
6.89

25392
20519

6o
5

2.07
0.59

1
1

27240
24361

28300
25624

3.75
4.93 H

i.-1
50 9 	21125 30 1.29 20344 37 1.13 23403 331 11.17 3 23403 24129 3.01 w
5o 10 	19158 37 1.54 18895 76 2.29 21514 38 2.01 3 21514 22668 5.09

+ Best of two available heuristic solutions

* CPU time, in CDC 7600 seconds

** Where ties occurred in the value of the bound, no. of iterations and
computing time, in this order, were used to determine the rule yielding
the best bound

114

4.5 Comparison of Bounds

Three lower bounds for the p-median problem - the shortest

distance bound, the graph-theoretical bound and the dual bound -

are compared in Table 4.2. The examples for which these bounds

are compared are the same as those used in Table 4.1. The bounds

shown in Table 4.2 are lower bounds on the overall optimal solution

to the corresponding p-median problem. The dual bound corresponds

to the best starting rule of Table 4.1.

Table 4.2 is self-explanatory. The value of each of the three

bounds is shown in its initial columns, and the best of the three

bounds is singled out for comparison with the best available solution

to the problem. This solution is the optimal solution for networks

of up to 30 vertices, but for the 40- and 50-vertex networks the best

available solution is a heuristic solution.

Under the 'Best Bound' heading, both the type of the best bound

and its corresponding value are indicated. The dominance of the

graph-theoretical bound over the shortest distance bound is confirmed

by the numerical values shown in the table. On the other hand,

there was not a single example for which the dual bound was dominated

by the graph-theoretical bound.

Due to the very nature of the graph-theoretical bound, its

performance improves as the value of E increases. The results shown

in Table 4.2 suggest that the graph-theoretical bound becomes

competitive with the dual bound for values of pin > 0.4. As for

the larger networks (n > 30) the values of the ratio for which results

are shown do not exceed 0.3, it is not surprising that for the

examples presented the dual bound was the dominant bound.

The percentage deviation of the best bound from the best

available solution is shown in the last column of the table. This

Table 4.2 - Comparison of Bounds

Problem
Size

Shortest Distance
Bound

Graph-theoretical
Bound Dual Bound Best Bound

.Optimal
Solution

% Deviation from
Optimal Solution

n 2 212' Value

10
+4-
 1 34 56 79 D 79 79 0.00

10 2 27 36 46 D 46 47 2.13
10 3 21 29 34 D 34 36 5.56
10 4 17 22 25 D 25 26 3.85
10 5 13 16 18 D 18 18 0.00
10 6 10 12 12 D,GT 12 12 0.00
lo 7 7 8 8 D,GT 8 8 0.00
10 8 4 5 5 D,GT 5 5 0.00
10 9 2 2 2 D,GT,S 2 2 0.00
10 10 0 0 0 D,GT,S 0 0 0.00

10 1 201 318 400 D 400 400 0.00
10 2 157 229 258 D 258 273 5.49
10 3 122 185 195 D 195 195 0.00
lo 4 90 142 148 D 148 149 0.67
10 5 58 107 107 D,GT 107 107 0.00
lo 6 30 75 75 D,GT 75 75 0.00
10 7 17 43 43 D,GT 43 43 0.00 H
lo 8 4 15 15 D,GT 15 15 o.00 1--= .n
10 9 2 2 2 D,GT,S 2 2 0.00
10 10 0 0 0 D,GT,S 0 0 0.00

+ D= Dual bound

GT = Graph-theoretical bound

S = Shortest distance bound

++ Example from Garfinkel et al. [41, p.231]

Problem
size

Shortest Distance
Bound

Table 4.2 (con-tied) - Comparison of Bounds

Bound
Optimal
Solution

% Deviation from
Optimal Solution

Graph-Theoretical
Bound Dual Bound Best

n 2 Type Value

15 1 153 341 809 D 809 809 0.00
15 2. 134 237 411 D 411 412 0.24
15 3 115 189 285 D 285 294 3.06
15 4 98 163 207 D 207 215 3.72
15 5 82 138 144 D 144 150 4.00
15 6 70 113 113 D,GT 113 113 0.00
15 7 58 93 93 D,GT 93 93 0.00
15 8 48 74 74 D,GT 74 74 0.00
15 9 38 57 57 D,GT 57 57 0.00.
15 10 28 41 41 D,GT 41 41 0.00

20 1 295 596 1159 D 1159 1159 0.00
20 2 271 459 720 D 720 724 0.56
20 3 250 349 488 D 488 518 5.79
20 4 229 278 406 D 406 414 1.93
20 5 208 250 316 D 316 338 6.51
20 6 187 226 258 D 258 259 0.39
20 7 167 205 218 D 218 227 3.96
20 8 147 184 191 D 191 199 4.02
20 9 129 163 168 D 168 175 4.00
20 10 113 142 150 D 150 151 0.66

+ D = Dual Bound
GT = Graph-theoretical bound

Problem
size

Shortest Distance
Bound

Table 4.2 (cont'ed) - Comparison of Bounds

Bound
Optimal
Solution

% Deviation from
Optimal Solution

Graph-Theoretical
Bound Dual Bound Best

n P. Type
+

Value

25 1 349 717 1352 D 1352 1352 0.00
25 2 325 577 935 D 935 956 2.20
25 3 303 467 708 D 708 722 1.94
25 4 282 378 551 D 551 556 0.90
25 5 261 325 452 D 452 468 3.42
25 6 241 301 377 D 377 387 2.58
25 7 223 279 317 D 317 341 7.04
25 8 206 257 279 D 279 298 6.38
25 9 190 236 248 D 248 266 6.77
25 10 174 215 226 D 226 235 3.83

30 1 337 720 1432 D 1432 1432 0.00
30 2 315 612 926 D 926 936 1.07
30 3 298 518 737 D 737 777 5.15
30 4 281 445 610 D 610 610 0.00
3o 5 264 38o 500 D 500 516 3.10
30 6 248 323 424 D 424 438 3.20
30 7 234 282 361 D 361 386 6.48
30 8 221 265 320 D 320 337 5.04
3o 9 208 248 281 D 281 294 4.42
30 10 195 231 250 D 250 265 5.66

D = Dual bound

Problem
size

Shortest Distance
Bound

Table 4.2 (cont'ed) - Comparison of Bounds

Bound

• +
Best avail.
Solution

% Deviation from
best avail. sol.

Graph-Theoretical
Bound Dual Bound Best

n E
++

Type 	Value

40 1 14029 30094 80634 D 80634 80634 0.00
40 2 13378 26636 43638 D 43638 45862 4.85
40 3 12767 23951 34728 D 34728 35946 3.39
4o It 12175 21450 26374 D 26374 26899 1.95
40 5 11608 19059 21457 D 21457 22396 4.19
4o 6 11056 16809 18471 D 18471 18775 1.62
4o 7 10517 14872 16402 D 16402 17426 5.88
4o 8 998o 13157 14488 D 14488 16155 10.32
4o 9 9449 11599 13806 D 13806 14539 5.04
4o 10 8965 10878 12371 D 12371 13436 7.93

5o 1 17687 41104 128548 D 128548 128548 0.00
50 2 16828 37393 72128 D 72128 72168 0.06
5o 3 16028 33894 52615 D 52615 52708 0.18
5o It 15228 30614 40313 D 40313 42228 4.53
50 '5 14456 276b4 33335 D 33335 35677 6.56
50 6 13754 24820 29850 D 29850 31853 6.29
50 7 13060 22362 27240 D 27240 28300 3.75
5o 8 12378 20059 24361 D 24361 25624 4.93
50 9 11749 18066 23403 D 23403 24129 3.01
50 10 11134 16406 21514 D 21514 22668 5.09

+ Best of two available heuristic solutions
D = Dual bound

Frequency

All points considered
30

No. of points = 80
Mean = 2.57%

St. Deviation * 2.59%

25

20

Zero Deviation points excluded

15 No. of points = 53
Mean = 3.87%

St. Deviation = 2.25%

10

% Deviation

0
	

0 	2.0 	4 0 	6.0 	8 0 	> 8.0

Figure 4.2

% Deviation of Best Bound from Best Available Solution

120

column confirms that the dual bound - the dominant bound for all

examples in the table - is a very good lower bound for the p-median

problem. Although the percentage deviation can only increase when

the best available solution is of heuristic nature, the maximum

observed deviation was 10.32%.

A histogram of the percentage deviations defined above is

shown in Figure 4.2. In this figure the mean and the standard

deviation are shown:

(i) For all points of Table 4.2;

(ii) Only for the points corresponding to non-zero deviations,

since the zero deviations mainly correspond to the smaller

networks.

4.6 Conclusions

The quality of bounds used in tree search methods is a factor

of vital importance in the efficiency of the method. Branch-and-bound

algorithms so far developed for the p-median problem suffer from a

lack of strong lower bounds, and for this reason are not very efficient.

Two new lower bounds for the p-median problem were developed

in the present chapter, namely the graph-theoretical bound and the

dual bound. The graph-theoretical bound is based on shortest spanning

trees and arborescences and other graphical properties of the problem.

The dual bound is based on the dual of the linear programming

relaxation of the p-median problem. A heuristic procedure was

developed to compute an exact value for this bound.

The graph-theoretical bound was shown to dominate the shortest

distance bound, a bound developed in [12] to be used in a branch-and-

bound algorithm. The performance of the graph-theoretical bound is

poor for small values of 2., but improves considerably as the value of

2 increases.

121

The dual bound has proved to be a very good lower bound for

the p-median problem. For 80 test problems its average deviation

from the best available solution was only 2.57%. The dual bound

can be easily embedded into branch-and-bound algorithms, as shown

in the next chapter.

122

CHAPTER FIVE

A BRANCH-AND-BOUND ALGORITHM

5.1 Introduction

Branch-and-bound algorithms, additive algorithms and direct search

algorithms are some of the variations around the same basic idea,

having common features which offer both advantages and disadvantages

in relation to other solution procedures. 	On the positive side tree

search methods are easy to understand and to program for the computer.

They lack, however, mathematical structure, and the upper bound on the

number of steps, needed to complete the algorithm is of the order of

0(Km), where. K is a constant and m is a function of the problem

variables.

It is not felt that this thesis is the appropriate place to

discuss in any depth the principles, types and properties of tree

search methods. A very good introduction to the subject can be found

in [40], and the subject is dealt with in great detail in the literature

[2, 3, 7, 72, 75]. 	The basic principle upon which these methods are

based is outlined in very short form in the next paragraph.

The basic principle involved in tree search methods is the

partition of an initial problem P0 into a number of subproblems,

Pl,P2,...,Pk, whose totality represent Po and which are easier to solve.

than P0. 	If however after the initial partition it is still impossible

toresolve*asubproblemP.,this subproblem is further partitioned into

yet smaller subproblems Pil,Pi2,...,Pik. 	This partitioning (also.

To resolve a subproblem means:

either (i) 	find an optimal solution,
or 	(ii) show that the value of the optimal solution of the sub-

problem is worse than the best solution obtained so far,
or 	(iii) show that the subproblem is infeasible.

123

called branching) is repeated for every subproblem which cannot be

resolved.

A direct tree search algorithm for the p-median problem is

described in the present chapter. 	This algorithm is a depth-first

tree search approach to the problem, the basic principles of which

are outlined in 	These basic principles had to undergo

considerable development before they could be applied to solve the

p-median problem for networks of meaningful size. In its final form

the algorithm cascades through the shortest distance bound and the

dual bound described in Chapter 4.

The branch-and-bound algorithm is fully described in Section 5.2:

its basic principles are outlined, the embedding of each cf the bounds

is described in detail, and the detailed steps of the procedure are

given. A small example is solved to illustrate the procedure and the

importance of tight bounds in determining the efficiency of the

algorithm.

Computational results are then presented. The algorithm is

shown to guarantee an optimal solution for 30-vertex networks in less

than 2 minutes in a CDC 7600 computer, for any value of 2, 1 < p < n,

where n is the number of vertices of the network. Except for small

values of 2, computing 	times become prohibitive for n > 30.

The computational experience reported above represents a sub-

stantial advancement in the field of exact solution procedures for the

p-median problem. While other methods available in the literature may

occasionally provide optimal solutions for problems in which n is

larger than 30, no previously available method guarantees an optimal

solution for any value of P for networks with more than 20 vertices.

The branch-and-bound algorithm described in the present chapter also

proved to be computationally faster and more efficient than previous

tree search approaches to solve the problem (30, 55] , especially for

the larger networks (n > 20).

124

One of the methods that may on occasion provide an optimal

solution for large networks is the decomposition formulation of

Garfinkel et al. [41], discussed in Chapter 3. 	The results obtained

when this formulation was embedded into the branch-and-bound

algorithm are reported in Section 5.4. Unfortunately the embedding

did not improve, the convergence of the decomposition formulation, and

computing 	times become prohibitive even for 20-vertex networks.

5.2 The Branch-and-bound algorithm

A direct tree search algorithm for the p-median problem is now

described. 	This algorithm is a depth-first tree search approach,

in which each subproblem generated by the branching from a tree node

is produced by setting - for a given vertex x
J
. - a variable .

3.j to 1

for some vertex x.. The setting of 	= 1 implies that vertex x. 1 	ij 	 J

is allocated to vertex xi, which, obviously, also implies that x.
1 is

a median vertex.

The vertices are randomly numbered from x1 to xn. The search

proceeds by allocating sequentially - starting from x
1

and finishing

withxn -alltheverticesx.of the network. A vertex x. is initially

allocated to itself (thuS becoming a median), then to its nearest,

second nearest, third nearest vertices, and so on, until all

possibilities are implicitly enumerated.

Two lower bounds are used to limit the search. The first bound

to be activated is the shortest distance bound, as this is the faster of

the two bounds. If this bound fails to cause backtracting, the dual

bound is then activated. The cascading through the two bounds

combines the best feature of each of them - fastness in the case of

the shortest distance bound and tightness in the case of the dual bound,

and has proved to be efficient. Observations relevant to the type of

search being carried out, and fully described in 5.2.1, limit the size

125

of the tree search further by reducing the number of alternative

possibleallocationsofavertexx.at any one stage.

In the introduction of this thesis it has been pointed out

that the p-median problem is a combinatorial problem characterized

by a large number of feasible solutions. 	It is therefore not .

surprising that problems are often found for which multiple optimal

solutions exist. The algorithm has been programmed so that multiple

optimal solutions may be generated (if desired) for any given problem.

The search for possible multiple optimal solutions is costly, however.

The effect that seeking multiple optimal solutions has in the size of

the search is reported in Section 5.3.
Finally, it should be pointed out that the search can be considerably

reduced if an upper bound on the value of the optimal solution is

available prior to the start of the tree search. This upper bound

can be calculated by a simple heuristic such as the 1-optimal substitution

method of Teitz and Bart. The advantage that the availability of an

upper bound has over starting from z* = co is also demonstrated in 5.3.

5.2.1 Description of the algorithm

An overview of the tree search algorithm is given in the present

section. A more detailed description of the procedure is left for

the remaining subsections of 5.2.

The tree search can be carried out as follows: 	set up a matrix

th
M = m_ . , the j column of which contains all the vertices of the net-

work N arranged in ascending order of their shortest distance from

•

vertex xj. Matrix M can be set up only after the distance matrix of

thegraph,D=[d..,has been calculated. Assume now that matrix M ij]

is available. 	Then, if mkj = x., vertex x. is the kth nearest vertex

to x.. 	Obviously the nearest vertex to :c. is x. itself, i.e. m
lj = x.. 0

126

The search proceeds by allocating sequentially - starting

fromxl andfinishingwithxn -alltheverticesx.of the graph.

A vertex xj is initially allocated to vertex raw then m2j, m3j

and so on, until all possibilities are implicitly enumerated. The

following observations can now be made.

1. Since in the optimal solution there are E median vertices, each

allocation of a vertex in this solution must be the best of the

possible allocations to the median vertices, i.e. there are at least

(p-1) more costly ways of allocating any one vertex. The last (p-1)

rows of matrix M can therefore be permanently removed without any

possibility of the optimal solution to the p-median problem being

affected.

2. Suppose that vertex xphas been allocated to vertex mk,j, (= xi).

For a vertex xj not yet allocated, corresponding to column of matrix

M (j'<j<n),letx.be the kth nearest vertex to x., i.e. let

m, . = x.. Kj 	1 	Then all entries, mkj of this column, k > k, can be neglected

(marked), since the allocation of x.
JI1 	1 to x. implied that x. is a median

vertex. Vertex x. can therefore be allocated at lower cost to x.
1 than J

to any of the vertices mej, k > k. 	Clearly, if at some backtracking

stepduringthesearchtheallocationofvertexx.,to x. is altered,

then the entries mkj have to be reconsidered (unmarked).

3. Let vertex x.
J
,be.allocated to vertex 	

j 	Then all vertices

m
lj

,
,m2j 	

..,m(k,_,)j, are not median vertices, for, if they were, x
j

could have been allocated to any of them instead at a lower cost.

These vertices can therefore be marked in all columns j > j'. 	Once

more the marking of these vertices is temporary and must be removed

whenever the allocation of x., to
K j

 is changed.

4. If the top t entries of a column of matrix M corresponding to

anunallocatedvertexx.
J
 are marked and the following entry - 	-

127

is a median vertex (i.e. if m(t+i)j is a median vertex), then xj

must be allocated to median
m(t+i)j and no other alternative need

be considered until some of the top t entries are unmarked. 	This

is a direct consequence of observations 2 and 3 above.

5. 	If at some stage a of the tree search a total of .2. median

vertices are implied by the allocations already made, then the

remaining unallocated vertices must be allocated to their nearest

median vertex. This is obviously the optimal completion of the

partial solution corresponding to the allocations up to that stage,

and the next backtracking step must necessarily involve a change

in the allocation at stage A..

Observations 1 to 5 above can be used to limit the size of the

tree search by reducing the number of alternative possible allocations

ofavertexx..at any one stage. 	They are not, however, the decisive.

element in the tree search. Lower bounds on the overall optimal

solution to the problem, calculated given the allocations already made

at some stage 11, are of primary importance in determining the

efficiency of the search and the size of problems it can solve.

Details are given in the next two sections of the embedding into

the branch-and-bound algorithm of two of the bounds described in

Chapter 1 - the shortest distance bound and the dual bound. In its

final form the algorithm cascades through these two bounds, and this

has proved decisive in securing optimal solutions for networks of up

to 30 vertices, in a reasonable amount of computing time and for every

possible value of 1 (1 < p < n).

128

5.2.2 The embedding of the shortest distance bound

The embedding of the shortest distance bound into the branch-

and-bound algorithm is now described.

Using the notation of 5.2.1, suppose that the allocations of

vertices made so far (up to and including the allocation of vertex

x.,)imply a total of p', p'<p, median vertices. 	The remaining

allocations must then imply a total of a further (p-p') median

vertices. Let J be the set of indices of the as yet unallocated

vertices. 	In general J is the set of indices ,L, where j' < j < n,

but excluding the indices of those vertices whose allocation might

have already been forced by the allocation of the first 	vertices

xi,x2,...,xj, - see Observation 4 of Section 5.2.1.

	

Let ma. j and m 	
be the topmost and second topmost unmarked

f3.j

en triesincolumnl.Thebestpossibleallocationofvertexx.is

then to vertex ma.j. 	
If the number of distinct vertices maj for

j E J is h and h = p-p', then all these best possible allocations for

the as yet unallocated vertices are feasible (i.e. they produce a

total of 2 median vertices). These allocations then constitute the

optimal completion of the partial solution implied by the current

allocations of the vertices xl' x2'. ' x.'' 	In such event the result

of the optimal completion should be noted and backtracking can take

place from the current partial solution.

If, however, h > (p-p'), then at least (h-p+p') of the best

allocations must be changed to second best or worse in order to produce

a 'total of 2 median vertices. Now let J' C J be the union of subsets

'
jt
1
 U jt

2 U
	U J'. 	Each of the subsets J'k 1 < k < r, comprise the = =

columns j E J of matrix M which have the same m
a (

= xk) vertex as

their topmost unmarked entry. Thus, when there are columns j E J

of M which have as their topmost unmarked entry the same vertex xk

129

for each such vertex xk a subset Jk comprising the corresponding

columns j E J is defined. 	For each subset Jitc the sum

= E 	[d(x. m)- d(x. m
ct-

 .)]
J J ;EJ' J

k

(5.1)

can be defined.

The idea behind Equation (5.1) is that (i) when there is more than

one column j e J which has the same vertex xk as its topmost unmarked

entry, and (ii) vertex xk is not to be a median vertex in the completion

of the partial solution for which 21 median vertices have already been

defined, then, for all such columns, the allocation of the corresponding

vertices x. will have to be made to the second topmost (or worse) un-

marked entry.

Now, in the event that J' C J (i.e. if some columns j E J have as

their topmost entry a vertex xt that does not appear as the topmost-

entry in any other column j E J), let J" = J-J'. 	For each column j E J"

the sum S. of Equation (5.1) becomes

S. = V. [d(x., 	.) - d(x., in 	.)]
J 	. 	j 	a .3

(5.2)

Then, for allocations that must be changed to second best or worse, the

minimum additional cost of allocation is the sum of the (h-pl-p')-smallest

Sj, j e j 	j1 + j".

A lower bound on the cost of the overall optimal solution, given

the current partial solution, is the sum of the costs of the allocations

already made, plus the sum

E V. d(x., m .)
jej 	J ajJ

(5.3)

130

plus the sum of the (h-p+p') smallest S., the S. being given either

by Equation (5.1) (for j E 1.1"), or by Equation (5.2) (for j E J").

It is also possible that h < (p-p'), in which case the best

completion of the current partial solution leads to less than R.

median vertices. However, since it is quite apparent that the

transmissionc(T) of the optimal p-median X monotonically decreases

as E increases, it follows that when h < (p-p') the current partial

solution is certainly not part of the optimal p-median solution and

backtracking can then take place.

5.2.3 The embedding of the dual bound

When embedding the dual bound, it is important to determine what

effect the setting of the g.. variables along the tree search has on

the corresponding dual formulation of the relaxed problem. Two

separate cases will be considered: the setting of variables that

imply the assignment of a median vertex (the C.. variables), and the

setting of variables that imply the allocation of vertices to medians

(the E.. variables, i0j). 	Then these two cases will be combined, and ij

the generalized procedure for the embedding of the dual bound described.

It is worthwhile to recall both the primal and the dual formulations

of the relaxed problem. The primal LP is

n n
Minimize 	Z = E 	E 	d.. C.. 1=1 j=1

Subject to

(5.4)

n
E C.. = 1 	V j 	 (5.5) i=1

n

E gii p
	 (5.6)

g.. - g.. < 0 	±0i 	(5.7) =

131

E.. > 0 13 = (5.8)

The dual of this linear programme has already been developed in

Chapter 4. The DLP is

n
Maximize Z' = E a.

i=1 1
a
n+1 (5.9)

Subject to

n
a. +a 	- E 	w.. <0 V 	i 	(5.10) 1 	n+1 ij =

j=1
jOi

1,j, jOi 	 (5.11)

(5.12)

a. > 0, 	i.= 1,...,n 	 (5.13a) =

an+1 < 0 	 (5.13b) =

The setting of the E.. variables 11

Thesettingofa.. Ell variable to 1 corresponds to assigning vertex

X. to be a median vertex. 	Supposethatvertexx
i is assigned as a 1 	
1

median. 	It follows that E.. = 1, and this in turn implies the 1111

following:

(a) The primal constraint corresponding to j = it in Equation (5.5) is

n
E E.. = 1 . i=1 111

Since i . = 1, it follows that Eii = 0 V i0ii.
1

a. + u.. < d.. 	V
13 = 13

u. < 0 V 	i,j, jOi =

(b) The number of medians yet to be assigned is reduced by 1 to (p-1):

Equation (5.6) becomes

n n
Minimize Z = E 	E d..

1=1 j=1 13 13

Subject to

n
E 	. = 1

1=1 4

(5.14)

(5.15)

132

E Eii = p-1
1=1

ioli
(.1) The constraints corresponding to i = i1

in Equation (5.7).

become

E. . - E. . < 0 	V 	j 	11 , 11j 	1111

or, since 	. = 1,
ili

E. . < 1
11 joii

The above 'is already implied by Equation (5.5). 	These constraints

can therefore be dropped from the primal LP.

(c.2) The constraints corresponding to j = i1, i 	i1 in Equation

(5.7) become

Eli1
.

 =
. 	E 	< 0
	V

Since El.=0ViOi1 (see (a) above), it follows that the above i
1

reduces to

> o V
11 =

which is already covered by Equation (5.8).

The observations (a) to (c.2) above allow the reduced primal

(after 	. has been set to 1) to be written as
1
1
1
1

133

n
E i

ii = p-1
1=1
i0i,

E.. - E.. < o v 1J 	11

(5.16)

j 	il, i 	j 	(5.17)

cij > 0 V i, j 	it 	 (5.18)

The dual corresponding to the above reduced primal is then

MaximizeV=Ea.1 + (p-1) an+1 i=1
i0ii

Subject to

a. +a
n+1

— E ori
j <OViOi1 j=1

j°11 j01

a. + ff.. < d.. V i 0 il, j 0 il, j 0 i =

a. < d. .VjOi
J = IIJ 	1

a. >OVIO 11

a 	< 0 n+1 = . 	.
Ta• s 0 4

formulation a. = 0 and u.. = 0 V i. '1 	111

(5.19)

(5.20)

(5.21)

(5.22)

(5.23a)

(5.23b)

(S.A3c)

The Setting ofthe l .j Variables (i 	j) E

The setting of a E.. variable to 1 (i 0 j), corresponds to i.j

allocating a nonme di an vertex)c. to a median vertex x. Evidently

can be set to 1 only if i
ii = 1, a condition expressed by Equation

(5.7) of the primal LP.

Suppose now that vertex x. has been allocated to median vertex
1

x. . The setting of E. . to 1 has very similar implications to the 11 	 11'11
settingof.to 1, explained above in detail. The only differences 1111

are that (i) the right-hand side of Equation (5.6) is not affected

134

this time (since no new median has been assigned by setting 	. to

1), and (ii) no new upper bounds are imposed on the remaining positive

dual variables (a consequence of the fact that no vertex can be

allocated to a nonmedian vertex).

When 	is set to 1 (following the setting of it j 1
remaining dual LP is

n
Maximize 	Z'= E 	a; + (p-1) cln+1

1=1 	-
i0i 	j

l' 1

Subject to

a. +a 	-E 	Brij <OViOi
111 =

j71

a. + w. 	< d. 	V i 	i1,j1,

a. 	< d. 	.VjOil,j1 =

of >OViOil,di

na +1 = < 0

, 	to 1), the 1111

(5.24)

(5.25)

(5.26)

(5.27)

(5.28a)

(5.28b)

;"4 	z k 	(s..agc,)

The Embedding Generalized

In the tree search described in the present chapter, at a given

stage a of the search several iiiand Eij (i # j) variables will have

been set to 1. The dual formulation is now given for the general

case of the embedding.

Suppose that at stage 2. of the tree search r variables iii, r < p,

andsvariables.(i 	j), s < (n-p), have been set to 1. The dual

formulation for this general case is a straightforward generalization

of equations (5.24) to (5.28c) above. The only additional dual constraints

stem from the fact that each variable iiiset to 1 establishes new

135

upper bounds on the values of the remaining positive dual variables.

Define the sets i = 	i2' ..., i
t}, and jq = {j1, j2' ..., js),

where i is the set of indices of the g
ii variables set to 1 at stage

a of the search, and ja is the set of indices of the gii (i # j) variables

set to 1 at the same stage g of the tree search. The generalized

embedded dual formulation (at stage 9, of the tree search) can be

written as

Maximize Z' = E a. +
(p-r) an+l

1=1 1
(5.29)

Subject to

a. +a
n+1 	lj

- Eff. < OVigi
q
,j
q . 	= J=1

j!iq,j
q

a. + u 	< d.. Viqi ,j 	j 	,j 	j ij 	1,1 	q q' 	q q

(5.30)

(5.31)

a. < Min d.. Vjqi ,j 	 (5.32)
J = jEi 1J 	q q

a. >0 39rigi
1= 	q q

(5.33a)

an+1 < 0 	 (5.3310) =

1-11-a o 	" Y 	1- 1- 	 (5.33G)

Fortunately, a simple algorithm based on the procedure of 4.4.2 can

find approximate solutions to this seemingly complicated formulation.

The heuristic procedure described in Section 4.4.2 must be applied

to a reduced distance matrix of the -network for which the p-median

problem must be solved. This reduced distance matrix is always obtained

from the original (nxn) distance matrix of the network, by crossing out

the rows and columns corresponding to each vertex that has been either

assigned as a median or allocated to an existing median when the embedded

dual bound is activated.

136

The only variation in relation to the heuristic procedure of

4.4:2 lies in the fact that the initial positive a's cannot be freely

chosen as in Chapter 4. Each of the positive a's to be determined

at stage 2. of the tree search has an upper bound defined by Equation

(5.32). The initial positive a's for the computation of the dual

bound at stage 9. of the search can be chosen to be the upper bounds of

Equation (5.32), in which case they are given by

a = Min d.. iei l j 	j

q
j,j q q (5.34)

The heuristic procedure of Section 4.4.2 applies exactly as

described there, after the distance matrix of the network is appropriately

reduced to take into account the assignment of median vertices and

the allocation of nonmedian vertices up to stage a of the tree search.

The initial values of the positive a's are given by Equation (5.34).

An illustrative example might help to clarify the general case of the

embedding. Suppose that the optimal 3-median is being sought for a 5-

vertexnetwork, and that at stage a of the search vertices xl and x3 have

been assigned as medians, and nonmedian vertex x2 allocated to median x3.

This

	3'

Thisimplies Ell 	33 = 1, and E32 1.

The distance matrix D of this 5-vertex network is shown in

Figure 5.1, together with the a vector of positive dual variables.

The i and j sets are respectively i = {l, 3}, and j = {2}.

If the rows and columns corresponding to i and j are crossed

out, as indicated in Figure 5.1, it can be easily seen that the dual

LP at this stage can be written as

Maximize Z' = a + a5 + (3 -2)a6

Subject to

0
4
 + a

6
 - lt

45
 <

'5 	'6 - '54 •5. 0

137

2 13 3
: 	

5

21 22 23 ' °25

31 '32 33 23 '35

"4
4
 42 ")43

d44
d
45

51 52 d 53 d54 d55

4
2 l' a4

Figure 5.1

D Matrix and Corresponding a Vector for a

5-Vertex Network

.D =

ap =

138

1.54 	d54

a5 +
	< 5 	45 = d45

=> a1 	Min (d14, d34)
a1!. = a

a

a5 a5

a10

< d15 15
a35

0
5
 > 0

> a5 < Min (d15, d35)

< 0 , TT NS _̀ to I 1Ts ,4

which coincides with the general formulation given by Equations (5.29)

through (5.33c).

Note that in Figure 5.1 the d..ij elements crossed out by a vertical

line, or by both a vertical and a horizontal line, do not appear in

the formulation above. Cn the other hand, the d..
13

elements crossed

out only by horizontal lines corresponding to median vertices, provide

upper bounds on the remaining ai variables. Finally, the dij elements

not crossed out appear in the constraints corresponding to Equations

(5.30) and (5.31) 	[The right-hand side of Equation (5.30) is in

reality di" always equal to zero in the p-median.probleml.

5.2.4 The Detailed.Steps of the Algorithm

The detailed steps of the branch-and-bound algorithm described

in 5.2.1 are now given below.

Step 1. Calculate D, the distance matrix of the network. Floyd's

algorithm [34, 831 can be used to calculate D.

th Step 2. Set up the matrix M = [mici], the j 	column of which contains

all the vertices of the network arranged in ascending order of their

shortest distance from vertex . xj.

a4 <= d14

139

Step 3. Cross out the last (p-1) rows of matrix M (see Observation 1

of 5.2.1).

Step 4. Note the best available solution before the beginning of the

tree search as Z* (such solution can be provided by a simple heuristic).

If no solution is available make Z* = co.

Step 5. Make j' = 1.

Step 6. Allocate vertex xi, to the topmost unmarked entry -

mak,., = x. - of column j2.) becomes then a median vertex.

Step 7. For all columns j, j' < j < n, mark all unmarked entries which

appear after xi as MTli.

Step8.Ifx.=x.
J'
 go to Step 9. Otherwise assume there are (k'-1)

verticesprecedingvertexx.in column j'. These vertices correspond

to entries 'nip, m2p, .-.1 m(10-1)j, . For all columns 	j' < j < n,

mark all unmarked entries corresponding to vertices mij„ m2i„

m(kl _i)j, as MT2p.

Step 9. For all columns 	j' < j s n, make, whenever the case, the

forced allocations of nonmedian vertices to the medians assigned so

far (see Observation 4 of 5.2.1).

Step 10. Calculate the cost of the allocations made so far. Call

this cost C. Then if Ca > Z* go to Step 15 (backtrack). Otherwise =

(if Ca < Z*) go to Step 11 below.*

Step 11. Test whether ILL, the number of medians assigned so far, is

equal to 2. If so, or if h = (p-p') [see Section 5.2.2], go to Step

12 below. Otherwise go to Step 13.

Zhu Cu5t
The detailed steps given above areT3P<TE1 only one optimal
solution is desired. If multiple optimal solutions are desired,
then in Step 10, and in Steps 13 and 14, bactracking can take
place only if Z* is strictly less than: (i) Ca in Step 10, and
(ii) LB and DB in Steps 13 and 14, respectively.

140

Step 12. Allocate each of the remaining non-allocated vertices to

their closest median. These allocations then constitute the optimal

completion of the partial solution implied by the current allocations

of the vertices xi, x2, ..., x.1 . Calculate CT, the cost corresponding

to the solution just completed. Then:

(a) If CT < Z* note the solution, make Z* = CT and go to Step 15

(backtrack);

(b) If CT Z*, go to Step 15 (simply backtrack).

Step 13. Calculate the shortest distance bound, given the allocations

made so far. Call this bound LB. Then:

(a) If LB > Z*, or if h < (p-p') (see Section 5.2.2), go to

Step 15 (backtrack);

(b) Otherwise go to Step 14 below.

Step 14. Calculate the dual bound, given the allocations made so

far. Call this bound DB. Then:

(a) If DB > Z*, go to Step 15 (backtrack);

(b) Otherwise (DB < Z*) make j' = j' + 1 and return to Step 6.

Step 15. Backtrack. Mark entry mk,j, (= xi, the latest median vertex

to which xj, had been allocated before the backtracking step) as

MT3. Then:

(a) If the bactracking step is from within the first column of

M and all entries are now marked in this column, stop. The

tree search has been completed and the solution corresponding

to the current value of Z* is the optimal solution 	of the

p-median problem.

(b) Otherwise:

(i) Unmark, for all columns j, j' < j.< n,all entries marked

eitherasW2.,or as MT3;

(ii) Discard all previously forced allocations (see Observation

4 of 5.2.1) for all columns j, j' < j s n;

141

(iii) Furthermore, if the current backtracking step un-assigns

one median (i.e. if no other vertices x. corresponding to

columns j < j' are allocated to vertex x. = 1 	E. j

all columns 	j' < j < n, unmark all entries marked as

MT1..
1

After (i), (ii) and (iii) above go to Step 16 below.

Step 16. If any entry in column j' remains unmarked return to Step 6.

Otherwise make j' = j' - 1 and return to Step 15 (110.01track).

5.2.5 The Algorithm Illustrated

The branch-and-bound algorithm is now illustrated. The actual

tree resulting from the application of the method to find the optimal

2-median of a 10-vertex network is shown for 4 different cases. The

purpose of this illustration is twofold: to give a pictorial view of

the search, and to show how the efficiency of the method can be improved

by (i) the use of strong lower bounds, and (ii) the availability of an

upper bound prior to the start of the search.

The network used is the 10-vertex example of Garfinkel et al.

[41, p.231]. This network has already been used for illustrative

purposes in previous chapters of this thesis and elsewhere in the

literature. For the sake of convenience it is repeated in Figure 5.2.

The numbers on the links represent distance between vertices, and

all vertices are equally weighted.

The optimal 2-median of the network of Figure 5.2 is; =

{X5'10}. This is shown in Figure 5.3, where the allocations of

vertices to medians are clearly indicated. The cost of the optimal

solution is 47.

In order to emphasize the importance of strong bounds on the

efficiency of the algorithm, the effect that each of the 3 bounds

Figure 5.2

10-vertex network of Garfinkel et al. [41, p.231]

(5.3a)

Allocations to Median X
10

(5.3b)

Allocations to Median X
5

Figure 5.3

Allocations of Vertices to Medians

described in detail in Chapter 4 has on the size of the search is

shown separately. In addition, the tree that results when an upper

bound is used in conjunction with the tightest of the 3 bounds (the

dual bound), is shown in a separate figure.

The tree search resulting from the use of the shortest distance

bound is shown in Figure 5.5. Figures 5.6 and 5.7 show the trees

corresponding to the use of the graph-theoretical bound and the

dual bound, respectively. In all these 3 cases it was assumed that no

upper bound was available prior to the start of the search, and the

variable Z*, denoting the best available solution at stage g of

the tree search, was consequently set to infinity at the initial

node I of each of the corresponding figures. Figure 5.8 corresponds

to an upper bound being available at node I, and in this case Z*

was initially set to 48, a value obtained through the vertex

substitution heuristic method of Teitz and Bart [98].

Figures 5.5 to 5.8 speak for themselves, and the bounds performed

in the way expected from the analysis presented in Chapter 4. The

dual bound is by far the strongest- of the three, and the shortest

distance bound the weakest. Although the embedding of the graph-

theoretical bound was not coded, the tree resulting from its application

to the network of Figure 5.2 is shown in Figure 5.6.

The embedding of the graph-theoretical bound presents no special

problems. It involves the transformation of the original network

into smaller networks as the search develops from one level of the

tree to the next and nonmedian vertices are allocated to assigned

medians. Conversely, the network must be restored to itsshape at

higher levels of the tree every time backtracking takes place.

Each and every time the bound is calculated the procedure

described in Section 4.3 must be applied to the complete network,

described by its distance matrix at the appropriate level of the

+ Ca is the cost of the allocation of nonmedian vertices of the partial solution
at node 27 of Figure 5.6

++ The meaning of SSTON and LL1 are given in 4.3.2.

The meaning of R is given in 4.3.3.

+++ GTB means the value of the graph-theoretical bound

+C
a
 = d31 +d32 +d34% = 10+7+4 = 21

++SST = 35
ON

++LL1 = 9

++0 = 0

+++GTB = Ca+SSTON-LL1 = 21+35-9 = 47

Figure 5.4

The graph-theoretical bound computed at
node 27. of Figure 5.6

+LB = Shortest distance bound

++FS = Feasible solution not better than Z*

+++Z = Value of optimal solution op

:.1.

"1 = J. '0/'

r :.1.
3~

lS" P$

Figure 5.5.

The tree search: shortest distance bound used

36 nodes
total

I--'
~
0'\

+GTB = Graph-theoretical bound

++FS = Feasible solution not better than Z*

+++Z = Value of optimal solution
op :c*=oO

7 -.L
1'0 ,

I

1 -.L
{3.1. .

1<6" F' oS

Figure 5.6

-- ----- -

The tree search: graph-theoretical bound used

, 32 nodes
total

J-I
~
-..J

total

os-Aae, DEIr-CIED D8.-C40 Dar.S3. 	DB=CC 	Da-z42

+DB = Dual bound
-1-+FS = Feasible solution not better than Z*

+++Zop = Value of optimal solation

23 nodes

Figure 5.7

The tree search: dual bound used
CJ

total

= 49
•■■■•••••■•

Figure 5.8.

+DB = Dual bound

++FS = Feasible solution not better than Z*

+++Zop = Value of optimal solution

16 nodes

The tree search: dual bound plus initial upper bound used

150

tree. The marked entries of matrix M (see Section 5.2.1) must be

upedto.preverrtarcsbeingEoaowedbetween avertex x.and any

vertex corresponding to a marked entry in column j_ of M. The

detailed computation of the graph-theoretical bound at node 27 of

the tree of Figure 5.6 is shown in Figure 5.4.

Important parameters of the searches of Figures 5.5 to 5.8 are

shown in Table 5.1 below. A substantial improvement in efficiency is

noted when the searches of Figures 5.5 and 5.8 are compared. The

number of nodes examined dropped from 36 to 16, due to a marked

improvement in the performance of the respective bounds.

Table 5.1 - The 4Searches Compared

No. times 	No. complete
Bound 	No. Nodes 	bound was 	solutions
Used 	Examined 	computed 	evaluated

1. Shortest
Distance Bound

2. Graph-Theoretical
Bound

3. Dual Bound

36 	16 	20

32

23

15

12

16

10

1. Dual Bound
plus initial 	16 	11
upper bound

It is important to note that the dominance of the graph-theoretical

bound over the shortest distance bound, proved in 4.3.5 for the initial

node I of the tree, does not hold for its lower levels. This is

caused by the fact that the marking of entries in matrix M strengthens

the shortest distance bound more than it strengthens the graph-

theoretical bound, especially at the lower levels of the tree.

Finally, as a matter of interest, it is worth mentioning that if

complete enumeration were used to find the optimal 2-median of the

network of Figure 5.2, a total of [1 = 45 feasible solutions would have

had to be examined for this particular example. Quite clearly (and

151

in common with tree search methods used to solve other combinatorial

problems), the relative differences in efficiency between algorithms

that result from the use of different bounds increase with the size

of the problem.

5.3 Computational Results

Computational results obtained for networks ranging from 10 to

30 vertices, and for a wide range of values of 2, are shown in

Tables 5.2 to 5.5. The networks to which these results correspond

are the same used to produce the dual bound data of Table 11.1.

Except for the 10-vertex network of Garfinkel et al. (see Figure 5.2),

all other networks used to produce the results of Tables 5.2 to 5.5

are described in the appendix.

The results shown in Table 5.2 correspond to the algorithm

described in Section 5.2.4. An upper bound on the overall optimal

solution of the problem was always obtained prior to the start of

the search, and cascading through the shortest distance and dual

bounds was used in all cases. The upper bound was obtained through

the vertex substitution method of Teitz and Bart.

This combination of bounds has proved to be quite efficient for

this particular algorithm. The advantage of using the two lower

bounds is not a reduction in the number of nodes that needs to be

examined before the completion of the algorithm. Although it has not

been possible to prove dominance of the dual bound over the shortest

distance bound, there are grounds to believe that in the vast

majority of cases the number of nodes examined would be the same if

the dual bound had been used on its own.

The advantage of cascading through the two lower bounds is a

substantial reduction in computing times, given that the shortest

distance bound is much faster to compute than the dual bound. In

152

these circumstances, any backtracking caused by the shortest distance

bound avoids a corresponding computation of the dual bound, saving

computing time. This saving is substantial,especially for the larger

values of n and R. This can be easily verified from the data shown

in Table 5.2.

In Table 5.2 data is provided on the main parameters of the

tree search, with detailed information provided on each of the two

lower bounds used. Most of the data provided are self-explanatory,

but the number of nodes examined and the time spent on the dual

bound need a closer examination. They are the two factors that

determine the total computer time needed to find the optimal solution

to any given problem, and as a consequence they ultimately limit

the size of problems that can be solved through the present brandh-

and-bound algorithm.

The p-median problem belongs to the NP class of combinatorial

problems [58], and consequently the number of steps needed before

completion of the present branch-and-bound algorithm is of the

order of 0(Km), where K is a constant and m is a function of the

number of vertices of the network (n) and of the number of medians

being sought (p), 	m = f(n,p). Of the two n is the main

determining factor. On the other hand, for any given n the number of

nodes examined increases with 2 up to a certain point (= n/3 for

the larger networks), and decreases thereafter down to 1 node when

p = n. The relationship between number of nodes examined and p,

however, does not always follow a very rigid pattern, a very good

example of.which are the results obtained for the 30-vertex network

of Table 5.2.

Given the number of steps needed to obtain the optimal solution,

the computer time spent on the dual bound is the main limiting factor

in the branch-and-bound algorithm. For n > 15 the number of nodes

153

examined is only a very small fraction of the total enumeration for

the problem, but the computer time spent on the dual bound represents

a substantial percentage of the total time needed to complete the

tree search. These are facts of special relevance for the large values

of n and 2t, as demonstrated in Table 5.3.

The data of Table 5.3 strongly substantiates the point that the

time needed to compute the dual bound is the algorithm's bottleneck,

preventing it from solving the p-median problem for networks with

more than 30 vertices, except for small values of E. Any improvement

in the Performance of the algorithm is therefore dependent on the

ability to improve the computational performance of the dual bound.

Two additional tables complete the set of computational results.

In Table 5.4 the effect that the use of an initial upper bound has on

the efficiency of the algorithm is clearly indicated. For many of

the examples included in this table (and especially for the larger

networks), a significant reduction both in number of nodes examined

and in total computing time is shown when an upper bound is

available at the initial node I of the tree.

Finally, in Table 5.5 the cost of seeking possible multiple

solutions for the p-median problem is shown for a number of examples.

A significantly larger number of iterations may be required when

possible multiple solutions are being investigated, especially

for large values of n and P. Table 5.5 indicates that, contrary to

other combinatorial problems, multiple optimal solutions are not

'a rare occurrence in the p-median problem.

In summary, the computational results of the present section

support the claim made in Section 5.1, that the branch-and-bound

algorithm developed in this thesis represents a substantial advancement

in the field of exact solution procedures for the p-median problem.

The algorithm guarantees an optimal solution for any value of .2.

Table 5.2 - The Branch-and-bound algorithm: computational results*

Problem
size Value of

optimal
solution

Number
of nodes
examined

Shortest distance bound Dual Bound Time in Seconds

No. of
calls

No. backtrack
steps caused

Computing time+

spent on bound
No. of
calls

No. backtrack
steps caused

Computing time
spent on bound

Upper
bound

Tree
search

Total
time n 	p

10++ 	1 79 10 0 0 0.00 0 0 0.00 0.01 0.06 0.07
10 	2 17 16 11 6 0.01 5 3 0.03 0.01 0.05 0.06
10 	3 36 25 19 4 0.01 15 10 0.06 0.01 0.09 0.10
10 	4 26 33 26 7 0.01 19 10 0.08 0.02 0.11 0.13
10 	5 18 29 21 9 0.01 12 4 0.06 0.02 0.09 0.11
10 	6 12 25 19 9 0.01 10 3 0.07 0.02 0.10 0.12
10 	7 8 23 20 10 0.01 10 3 0.08 0.01 0.10 0.11
10 	8 5 15 13 7 0.01 6 1 0.05 0.01 0.07 0.08
lo 	9 2 16 8 2 0.00 6 0 0.05 0.01 0.06 0.07
10 	10 0 1 1 1 0.00 0 0 0.00 0.00 0.01 0.01

10 	1 400 10 0 0 0.00 0 0 0.00 0.01 0.04 0.05
10 	2 273 18 7 3 0.00 4 3 0.03 0.01 0.04 0.05
10 	3 195 26 17 7 0.01 10 4 0.12 0.01 0.15 0.16
10 	4 149 22 18 9 0.01 9 4 0.16 0.02 0.19 0.21
10 	5 107 24 18 6 0.01 12 6 0.20 0.02 0.23 0.25
10 	6 75 22 17 5 0.01 12 6 0.23 0.02 0.27 0.29
10 	7 43 25 15 2 0.00 13 5 0.19 0.01 0.22 0.23
10 	8 15 22 10 1 0.00 9 1 0.13 0.01 0.15 0.16
10 	9 2 18 8 0 0.00 8 0 0.13 0.01 0.15 0.16
lo 	10 0 1 1 1 o.00 0 0 o.00 0.00 0.01 0.01

+ CPU time, in CDC 7600 seconds
++ Garfinkel et al. example (see Figure 5.2)
* Only one optimal solution sought

Table 5.2 (contled) - The Branch-and-bound algorithm: computational results*

Problem
size Value of

optimal
solution

Number
of nodes
examined

Shortest distance bound Dual Bound •
+

Time in Seconds

No. of
calls

No. backtrack
steps caused

Computing time
spent on bound

No. of
calls

No. backtrack
steps caused

Computing time
spent on bound

Upper
bound

Tree
search

Total
time n 2.

15 1 809 15 0 0 0.00 0 0 0.00 0.02 0.10 0.12

15 2 412 22 13 3 0.01 10 9 0.07 0.03 0.13 0.16

15 3 294 36 28 9 0.02 19 16 0.16 0.05 0.28 0.33

15 4 215 87 69 22 0.04 47 32 0.65 0.08 0.82 0.90

15 5 150 41 31 14 0.02 17 10 o.4o 0.08 0.47 0.55

15 6 113 41 28 10 0.01 18 10 0.54 0.09 0.64 0.73

15 7 93 45 33 11 0.01 22 13 0.69 0.07 0.79 0.86

15 8 74 82 57 23 0.02 34 13 0.97 0.03 1.09 1.12

15 9 57 42 27 13 0.01 14 4 0.57 0.03 0.65 0.68

15 lo 41 46 31 15 0.01 16 4 0.56 0.02 0.65 0.67

20 1 1159 20 0 0 0.00 0 0 0.00 0.04 0.25 0.29

20 2 724 33 17 7 0.02 10 8 0.10 0.10 0.33 0.43

20 3 518 118 88 22 0.08 66 54 1.13 0.15 1.86 2.01

20 4 414 188 150 59 0.14 91 75 2.13 0.13 3.33 3.46

20 5 338 238 195 82 0.17 113 85 3.10 0.19 4.35 4.54

20 6 259 167 116 62 0.10 54 34 2.63 0.25 3.43 3.68 H
■.n

20 7 227 137 92 37 0.07 55 3o 2.69 0.20 3.19 3.39 ■.n

20 8 199 155 120 47 0.08 73 41 3.03 0.25 3.55 3.8o

20 9 175 156 120 52 0.08 68 37 3.22 0.19 3.68 3.87

20 10 151 191 156 66 0.09 90 44 3.87 0.13 4.32 4.45

+ CPU time, in CDC 7600 seconds
* Only one optimal solution sought

Table 5.2 (cont'ed) - The Branch-and-bound algorithm: computational results*

Problem
size Value of

optimal
solution

Number
of nodes
examined

Shortest distance bound Dual bound Time in Seconds

No. of
calls

No. backtrack
steps caused

Computing time
+

spent on bound
No. of
calls

No. backtrack
steps caused

Computing time
+

spent on bound
Upper
bound

Tree
search

Total
time n p

25 1 1352 25 0 0 0.00 0 0 0.00 0.08 0.53 0.61
25 2 956 33 24 7 0.04 17 16 0.19 0.17 0.75 0.92
25 3 722 139 112 19 0.16 93 ' 80 2.08 0.38 3.64 4.02
25 4 556 23o 192 45 0.27 147 124 4.07 0.37 6.31 6.68
25 . 	5 468 241 210 63 0.27 147 121 5.63 0.42 7.74 8.16
25 6 387 381 292 118 0.35 174 133 7.6o 0.45 10.69 11.14
25 7 341 731 627 242 0.63 385 288 13.90 0.59 .18.76 19.35
25 8 298 922 837 294 0.92 543 399 25.46 0.84 31.32 32.16
25 9 266 1012 904 323 0.95 581 416 31.33 0.72 37.04 37.76
25 10 235 715 643 241 o.66 402 264 24.07 0.59 27.59 28.18
25 11 210 613 533 236 0.53 297 178 21.45 0.98 24.23 25.21
25 12 188 726 619 287 0.57 332 186 21.12 0.62 24.06 24.68

30 1 1432 30 0 0 0.00 0 0 0.00 0.11 0.95 1.06
30 2 936 46 28 8 0.07 20 19 0.27 0.30 1.32 1.62
30 3 777 237 193 60 0.04 133 119 4.04 0.69 8.72 9.41
3o 4 610 262 219 7o 0.05 149 131 6.95 1.01 11.90 12.91
30 5 516 833 715 180 1.32 535 442 24.57 1.35 36.71. 38.06
30 6 438 675 564 198 0.98 366 292 28.87 1.92 38.20 40.12
30 7 386 1304 1131 448 1.68 683 512 47.94 1.59 62.73 64.32
30 8 337 794 664 276 1.10 388 301 52.06 2.14 61.65 63.79
30 9 294 388 322 144 0.57 178 133 37.89 1.91 42.64 44.55
30 10 265 1028 922 444 1.44 478 323 71.35 1.67 81.20 82.87

0N

+ CPU time, in CDC 7600 seconds
* Only one optimal solution sought

Problem
size

Table 5.3 - No. of nodes examined and time spent on the dual bound*

Total
+

Enumeration
(No. of solutions)

No. of
Nodes

Examined

% of
Total

Enumeration n 1

15 4 1,365 87 6.37
15 5 3,003 41 1.37
15 6 5,005 41 0.82
15 7 6,435 45 0.70
15 8 6,435 82 1.27

20 4 4,845 188 3.88
20 5 15,504 238 1.54
20 6 38,76o 167 0.43
20 7 77,52o 137 0.18
20 8 125,970 155 0.12

25 8 1,081,575 922 0.085
25 9 2,042,975 1012 0.050
25 10 3,268,760 715 0.022
25 11 4,457,400 613 0.014
25 12 5,200,300 726 0.014

30 6 593,775 675 0.1100
30 7 2,035,800 1304 0.0640
30 8 5,852,925 794 0.0140
30 9 14,307,150 388 0.0027
30 10 30,045,015 1028 0.0034

•

% of total
search time
spent on the
dual bound

79
85
84
87
89

64
71
77
84
85

81
85
87
89
88 	1--, ..n

76
76
84
89
88

* Only one optimal solutionsought, cascading and upper bound always used.
!

+ Total enumeration =
n
j = 	

n
(n_p)!p! solutions, each requiring p(n-p) comparisons and (n-p) additions (P

in order to be evaluated.

Problem
size Value of

Optimal
solution

Table 5.4 - No upper bound vs. initial upper bound*

seconds+
**

Number of nodes examined Total.time in

- 	No upper
bound used

Upper
bound used

No upper
bound used

Upper
bound used n p

10
+I-

1 79 lo 10 0.03 0.07
10 2 47 23 16 0.06 0.06
10 3 36 38 25 0.10 0.10
10 4 26 65 33 0.13 0.13
10 5 18 74 29 0.11 0.11
10 6 12 77 25 0.12 0.12
10 7 8 59 23 0.10 0.11
lo 8 5 3o 15 0.04 0.08
10 9 2 20 16 0.04 0.07
10 10 0 1 1 0.01 0.01

10 1 400 10 10 o. o6 0.05
10 2 273 18 18 0.07 0.05
10 3 195 41 26 0.14 0.16
10 4 149 43 22 0.21 0.21
10 5 107 48 24 0.22 0.25
10 6 75 45 22 0.25 0.29
10 7 43 50 25 0.20 0.23

\ n
co

10 8 15 39 22 0.12 0.16
10 9 2 18 18 0.12 0.16
10 10 0 1 1 0.01 0.01

* Only one optimal solution sought, cascading always used
+ CPU time, in CDC 7600 seconds
++ Garfinkel et al. example (see Figure 5.2)
** Includes time spent on the computation of the upper bound

Table 5.4 (cont'ed) - No upper bound vs. initial upper bound*

Problem
size Value of

Optimal
solution

Number of nodes examined • Total time in seconds
+

No upper
bound used

Upper
bound used

No upper
bound used

Upper**
bound used n IL

15 1 809 15 15 0.11 0.12
15 2 412 55 22 0.29 0.16
15 3 294 47 36 	. 0.33 0.33
15 4 215 129 87 0.88 0.90
15 5 15o 150 41 0.87 0.55
15 6 113 128 41 0.99 0.73
15 7 93 134 45 1.14 0.86
15 8 74 96 82 0.86 1.12
15 9 57 6o 42 0.39 o.68
15 10 41 52 46 0.28 0.67

20 1 1159 20 20 0.26 0.29
20 2 724 108 33 0.92 0.43
20 3 518 183 118 2.36 2.01
20 4 414 211 188 3.34 3.46
20 5 338 323 238 4.68 4.54
20 6 259 376 167 4..17 3.68
20 7 227 278 137 3.13 3.39
20 8 199 295 155 3.16 3.8o
20 9 175 277 156 3.3o 3.87
20 10 151 290 191 3.68 4.45

* Only one optimal solution sought, cascading always used
+ CPU time, in CDC 7600 seconds

** Includes time spent on the computation of the upper bound

Table 5.4 (cont'ed) - No upper bound vs. initial upper bound*

Problem
size Value of

Optimal
solution

Number of nodes examined Total time in seconds
+

No upper
bound used

Upper
bound used

No upper
bound used

Upper**
bound used n p

25 1 1352 25 25 0.54 0.61
25 2 ,.. 956 51 33 1.33 0.92
25 3 722 195 139 5.36 4.02
25 1 4 556 386 230 10.96 6.68
25 5 468 506 241 15.61 8.16
25 6 387 716 381 20.53 11.14
25 7 341 1161 731 30.75 19.35
25 8 298 1638 922 44.60 32.16

30 1 1432 30 30 1.00 1.06
30 2 936 160 46 4.59 1.62
30 3 777 337 237 13.86 9.41
30 4 610 545 262 23.75 12.91
30 5 516 1524 833 62.25 38.06

Only one optimal solution sought, Cascading always used
CPU time, in CDC 7600 seconds

** Includes time spent on the computation of the upper bound

Table 5.5 - Single vs. multiple optimal solutions}

Problem
_ 	size Value of

optimal
solution

Number of nodes examined
Number of
multiple
solutions

One
solution

Multiple
solutions n 2

10 2 273 18 18 1
10 3 195 41 41 1
10 4 149 43 53 1
10 5 107 48 62 1
10 6 75 45 81 3
lo 7 43 5o 69 2
10 8 15 39 84 4

10 9 2 18 25 2
10 10 0 1 10 1

15 2 412 55 55 1
15 3 294 47 55 2
15 4 215 129 148 2
15 5 150 150 169 1
15 6 113 128 202 8
15 7 93 134 311 16

No upper bound used

Table 5.5 (cont'ed) - Single vs. multiple optimal solutions+

Problem
size Value of

Optimal
solution

Number of nodes examined
Number of
multiple
solutions

One
solution

Multiple
solutions n p

20 2 724 108 108 1
20 3 518 183 ' 200 1
20 It 414 211 211 1
20 5 338 323 366 1
20 6 259 376 388 1
20 7 227 278 331 2
20 8 199 295 51t5 it
20 9 175 277 713 10.
20 10 151 290 • 563 it

25 2 956 51 51 1
25 3 722 195 205 2
25 It 556 386 434 2
25 5 468 506 653 8
25 6 387 716 1118 16

30 2 936 160 160 1 1-
30 3 777 337 365 1

C \
N

30 4 610 545 607 1

+ No upper bound used

163

for networks with up to 30 vertices, within a reasonable amount of

computer time. This is not matched by any other exact procedure

available in the literature [30, 41, 55, 78].

5.4 The LP relaxation and the Branch-and-bound algorithm

The possibility of using the LP relaxation of the p-median

problem to provide bounds for branch-and-bound algorithms has already

been mentioned in Section 1 .2. When the LP relaxation was

investigated, both the general and the decomposition formulations

of this relaxation were embedded into the branch-and-bound

algorithm of the present chapter. The experience with these

embeddings is now reported.

The LP relaxation must be used to solve the complete problem

before the branch-and-bound algorithm is activated. Very often

the solution produced for the relaxed problem is all-integer,

being therefore the optimal solution for the p-median problem.

Only if the LP relaxation produces a fractional solution at this

initial stage of the procedure, should the tree search be activated.

When the branch-and-bound algorithm is activated, the sub-

problems, generated by the setting of some of the
1J variables

to zero or 1, can be solved by either of the formulations of the

relaxed problem. At a given stage a of the search backtracking

occurs if:

either (i) The solution to the LP relaxation of the subproblem is

all-integer. In such cases this solution is obviously the optimal

completion of the partial solution corresponding to the allocations

made up to stage g of the tree search;

or 	(ii) The solution is fractional, but the value of its

objective function, plus the cost of the allocations made up to

stage a of the search, provide a lower bound that is greater than

or equal to the best available solution at stage a (z*).

164

Due to the very large linear programmes produced by the

general formulation, it soon became evident that the embedding

of this formulation could not produce results of any significance.

Besides the fact that very large LP's are already produced for

20-vertex networks, the approach proved not to be practical even

for a 10-vertex network.

In this respect, the search for the optimal 3-median of the

network of Figure 5.2 provided the following results:* Although

the number of nodes examined was reduced from 25 (see Table 5.2)

to only 8 when this embedding was used, the total computing time

'increased from 0.10 to 8.32 CDC 7600 seconds. This was due to

the long time taken to solve the 5 LP's that were needed to

terminate the search.

The embedding of the decomposition formulation, however,

provided better grounds for hope. This is a fast algorithm,

requiring in addition little computer core. There was also hope

that some of the convergence problems reported in Chapter 3 could

be solved after some of the E..'s had been fixed along the tree ij

search. The experience with the embedding of this formulation

is reported in the next two sections.

5.4.1 The Embedding of the LP Decomposition Formulation

The embedding of the LP decomposition formulation involves

solvingthelinearprogrammefortheE.variables not yet fixed ij

to either zero or 1 when the LP is activated. For this formulation,

the setting of variables is taken care of in each of the n sub-

problems of Section 3.3. It influences therefore the vector to

enter the basis at each iteration of the LP.

As already pointed out in Chapter 3, for all values of p 0 3
the LP solution was all-integer for this particular example.

165

The procedure is better explained by means of an example.

Refer back to Figure 5.2, and assume the method is being used to

determine the optimal 3-median of the corresponding network.

Assume further that the LP must be solved at the node of the tree

corresponding to vertices x1
and x2 having been assigned as medians,

with vertex x3 allocated to median x2* Vertices x4 to x10 are

not as yet allocated to any median vertex.*

The first point that must be made is that vertex x3 cannot

be assigned as a median in any branch emanating from the node

described above. Vertex x3' therefore, should never be brought

into the basis of the corresponding master problem. To make sure

this will not happen, the vector corresponding to subproblem 3 must

be a zero vector, i.e, y*3 = (0, ..., 0)
T in every iteration of the

algorithm.

Secondly, in all other possible candidate vectors y to enter

the basis, i 0 3, the top 3 entries are already determined by

the allocations of vertices x1, 2 	3'
x and x 	These allocations imply:

(i) Yll = Y22 = 313 = 	, 	(ii) 3ri2 = 311 = 313 = °'

and 	(iii) yll = 1i2 = y13 = 0, i = 4,5,...,10 .

In summary, at this particular stage of the tree search the candidate

vectors to enter the basis of the master problem are given by

1 01
0 1
0 1

6

Y* 1 Y 	= 2
6
6
6
6

a
a Ls

* The situation described above never happened for this particular
example, and the development that follows is only for illustrative
purposes. The actual tree search for this example is shown in
Figure 5.9.

166

0

y1 = YS = g = YI = Yg = Y; = YtO

0
0

a
6

a

where the Vs are to be replaced by either zero or 1, in the way

described in Section 3.3 [see equations (3.25) and (3.26)] . The

decomposition formulation can then procede as described in Chapter

Three.

5.4.2 Computational Experience with the Embedding

Computational results corresponding to the embedding of the

decomposition formulation are shown in Table 5.6. In this table

these results are also compared with data taken from Table 5.2. In

addition, the tree search corresponding to the 10-vertex network

appearing in this table is illustrated in Figure 5.9.

Except for the search shown in Figure 5.9, the smallest network

fcir which it was possible to test the embedding of the decomposition

formulation was the 20-vertex network of Table 5.2. For smaller

networks all-integer solutions were obtained for the complete

problem, and no tree search was needed. For the 20-vertex and larger

networks of Table 5.2, however, the decomposition formulation failed

to converge after 1,000 iterations for several values of 2 (see Table

3.1), thus enabling the embedding of this LP formulation to be

tested.

Four different examples are shown in Table 5.6. For 3 of

them it was possible to complete the search within 150 seconds of

computer time in the CDC 7600, but for the n = 25, p = 4 example

this was not possible.

Convergence of the LP Problem Avg. time 	++
size 	Value of 	No. of 	No. of 	No. of 	No. of 	Max. No.* 	to solve 	Total

Sol.-i- optimal 	nodes 	LP 	calls that 	calls not 	iter./ 	
Search-1--1-+
	LP given 	time in

n p Method solution examined calls converged converging 	call 	completed? convergence seconds

Table 5.6 - The embedding of the LP decomposition

10 3 1 36 25 0.10
10 3 2 36 8 5 5 0 40 Yes 0.07 0.25

20 6 1 259 167 3.68
20 6 2 259 72 23 15 8 700 Yes 2.04 65.56

20 7 1 227 137 - - - - - - 3.39
20 7 2 227 128 51 34 17 700 Yes 1.33 137.32

25 4 1 556 230 - - - - - - 6.68
25 4 2 25 7 18 650 No 3.65 >150.00

* Solution method 1: same as in Table 5.2
Solution method 2: tree search with LP decomposition embedded

++ CPU time, in CDC 7600 seconds

"No" means search not completed within 150 CDC 7600 oeconds

* Input value. Further branching takes place if a subproblem does not converge within this number of iterations.

1.8 =55 	 Le, 45 	 LP= 41 	LP 51 	Lior: ' =3C.
J.+

L p 	34

+LP = Value of the objective function of the linear programme

++Z = Value of optimal solution op
*LB = Shortest distance bound

**Ca = Cost of allocations at this node

Figure 5.9

The tree search with the LP decomposition embedded(optimal
3-median of the 10-vertex network of Figure 5.2)

169

The results presented in Table 5.6 not only show that the

embedding of the decomposition formulation is by no means competitive

with the algorithm described in 5.2.4, but also that this LP form-

ulation fails to provide a valid alternative for solving the p-median

problem.

Lack of convergence continues to be a major stumbling block in

the decomposition formulation, even after some of the E..
ij's have

been fixed. The percentage of subproblems that do not converge

when the LP is activated increases with the value of n, and this

prevented the search for the n = 25, p = 4 test case from being

completed within the time limit of 150 seconds.

It can be safely concluded that, if the basic problems of the

decomposition formulation cannot be solved, this will remain a

method that may solve the p-median problem only on occasion. The

embedding of this formulation into a branch-and-bound algorithm

did little to improve its potentiality, and it is felt that little

can be done until the basic problem of convergence, caused by

large-scale degeneracy, is solved.

5.5 Conclusions

A direct tree search algorithm for the p-median problem was

developed in the present chapter. Two lower bounds were embedded

into the search, and cascading through them proved very efficient.

The shortest distance bound is weak but fast to compute. It saves

computing time when it forces backtracking, as it then avoids a

corresponding computation of the dual bound. The latter is a very

strong bound, but relatively slow to compute. An initial upper

bound obtained through heuristics helped to reduce the search further.

The computational experience reported in the present chapter

represents a substantial improvement over existing exact solution

170

procedures for the p-median problem. 	It produces optimal solutions

for 30-vertex networks in less than 2 minutes of computer time in

the CDC 7600, for any possible value of E (1 < p < n). The algorithm

is both faster and more efficient (in terms of the number of nodes

generated) than other branch-and-bound procedures available in the

literature [30, 55].

Additional exact solution methods for the p-median problem, such

as the LP decomposition of Garfinkel et al. [x+11, or the Lagrange

multiplier approach of Marsten [781, may on occasion solve problems of

similar size. Both methods, however, cannot guarantee an optimal

solution for every possible value of 2., and may fail on much smaller

problems.

The relatively long computing times required for the calculation

of the dual bound is the bottleneck of the present algorithm. Any

improvement obtained in the computational efficiency of this bound

should increase the size of problems for which an optimal solution can

be found.

171

CHAPTER SIX

HEURISTIC METHODS

6.1 Introduction

Maranzana [76] and Teitz and Bart [98] pioneered in proposing

heuristic methods for the p-median problem. Except for the work of

Surkis [96] and Diehr [22], which are limited extensionsof the methods

of Maranzana and Teitz and Bart, respectively, not ranch has been done

in this area.

The heuristic methods of Maranzana and Teitz and Bart have

already been briefly described in Chapter 2. They are discussed in

greater detail later in this chapter.

The vertex substitution method of Teitz and Bart is in fact

only one of a family of algorithms based on local optimization and

the idea of A-optimality. The idea of A-optimality was first introduced

by Lin [74] for the travelling salesman problem, and subsequently

extended by others [13,14,59] for a variety of combinatorial problems.

After a brief review of the earlier work mentioned above, the

important theoretical contribution of Cornuejols, Fisher and

Nemhauser [19] to the study of heuristics and relaxations for the

uncapacitated location problem is discussed in terms cf its applica-

tion to the p-median problem. Then the vertex substitution method

of Teitz and Bart is extended, and A-optimal substitution methods for

the p-median problem are introduced.

It will be shown later in the chapter that the number of itera-

tions needed to ensure A-optimality for the p-median problem increases

very rapidly with A. Hence practical algorithms cannot use values

of A much above 2 or 3. The computational experience reported in this

thesis is therefore limited to the special cases of A = 1 (the Teitz

and Bart algorithm) and A = 2.

172

A simple vertex addition ("greedy") heuristic, and its use as

a 'pre-processor' to A-optimal substitution algorithms, complete the

work on heuristics in this thesis. Computational experience with

what is described as 'the combined approach'is reported for A = 1

and A = 2, and these results are compared with the ones corresponding

to the "pure" A = 1 and A = 2 optimal substitution methods.

6.2 A review of earlier work on heuristics for the p-median

and related problems

In studying certain classes of location-allocation problems

Cooper [17] pointed out a fortunate property of many of these problems:

the lack of a sharp optimum, i.e. the existence of many alternative

optimal or near-optimal solutions. This property is fortunate in

that, for these problems, a well constructed heuristic has a reasonably

high probability of finding one of these optimal or near-optimal

solutions.

The p-median problem belongs to the set of problems having the

above property, and heuristic methods designed for this problem take

full advantage of this fact.

6.2.1 The partition method of Maranzana [76]

Maranzana's partition method is in some respects a discrete

version of the alternate location and allocation algorithm devised

by Cooper [17] for the continuous case. Let d(x.,x.
j) be the length

oftheshortestpathbetweenverticesx.
1 and x. of a network

N = (X,A). A formal statement of Maranzana's algorithm is as

follows.

Step 1. Arbitrarily select E distinct points from the set X

of all vertices of N to form the set X13.

173

Step 2. Associated with the set X of 2 points (p , 	,
x p x2

2
p.), determine a corresponding partition of X, Px 	Px , by
p 	 1 	p x

putting

P = {p d(.< d(xk,xj) for all j 	xi,xj E Xp, xk Xpl .
xi 	xk

Step 3. Determine a "centre" c 	for each P . x. 	x.' 1

Step 1. If cx = p x. for all i, computation is stopped and the 1 	1
current values of px. and Px. constitute the desired solution. Other-

1 	1
wise set p

x
 = c x. for all i and return to Step 2.
2. 	1

In Step 2, if a point .is equidistant from more than one source,

this point may be arbitrarily placed in the set associated with the

source px having the smallest i. If the "centre" is non-unique in

Step 3, a likewise arbitrary decision can be made, and the point with

the smallest subscript selected for "centre".

Maranzana proves that his algorithm is monotonic, i.e. that the

total weighted distance value cannot increase from one iteration of the

algorithm to the next. He also identifies certain conditions under

which the algorithm will'fail to converge to an optimal solution, but

claims that with several initial choices of the 2 distinct points a

solution close to the optimum is likely.

6.2.2 The vertex substitution method of Teitz and Bart [12,98]

A general description of the vertex substitution method has

already been given in Chapter 2. A formal statement of the method

is now given.

Let a(S) be the transmission number* for a subset S of the set X'

* For the definition of the transmission number a(S) of a subset S of
vertices of a network, refer to equations (2.19) to (2.22) of
Chapter 2.

174

of all vertices of a network N = (X,A).. The algorithm is then [12]:

Step 1. Select a set S of E vertices to form the initial approxi-

mation to the optimal p-median set X. Call all vertices x.S

"untried".

Step 2. Select some "untried" vertex x
J
. El S, and for each vertex

• • 	-

x.1 EScomputethe"reduction"A.lj in the
- set transmission if x. is .

substituted for x., i.e. compute

• A..13 = a(S) - a(Su 	
.1 - {x.

1
}) 	.

Step3.FindAij =Max [A..] . Then:
o x.ES lj

1

(i)IfA.1 	
<0callx."tried" and go to Step 2.

0 =

(ii)IfAi 	>OsetS -4- Su{x.} - {x.} ,callx."tried" and
o
j

go to Step 2.

Step 4. Repeat steps 2 and 3 until all vertices in (X-S) have

been tried. This is referred to as a cydle. If during the last cycle

no vertex substitution at all has been made at Step 3, go to Step 5.

If some vertex substitution has been made, call all the vertices

x. 	S "untried" and return to Step 2.

Step 5. Stop. The current set S is the estimated p-median set

p

Teitz and Bart tested their algorithm against the partition method

of Maranzana. They say that the performance of the partition method

may be quite erratic, and claim that their method is a preferable

heuristic because it exhibits considerably less variation in performance.

Teitz and Bart conclude by saying that if the partition method is

used, the high variance of its error suggests that great caution in

the selection of the initial locations is necessary. This apparent

175

difficulty may be overcome by performing the computations for

several inir.ial choices of the distinct 2. points, as suggested by

Maranzana.

6.2.3 The work of Cornuejols, Fisher and Nemhauser [19]_

In a recent paper, Cornuejols et al, [19] make an analysis of

heuristics and relaxations for the uncapacitated location problem.

The main interest for this thesis lies on the analysis of heuristics

and relaxations for the p-median problem, easily obtainable from the

more general results presented in [19],

Let Z be the optimal value of the objective function of the

uncapacitated location problem, Z and Z upper and lower bounds for

the problem, and 22 a suitably chosen reference value such that

Z 	Z > Z 	 (6.1)

Cornuejols et al. define

G = (Z = Z) / (Zn 	Z) 	 (6.2)

for measuring the quality of heuristics (upper bounds for minimization

problems), and

H= (Z - Z.) / (Zn 	 (6 .3)

for measuring the quality of lower bounds Z4

Ideally, the reference ZR should be equal to the maximum objective

function value of the uncapacitated location problem P being studied,

but, in any event, ZR should be an upper bound on this maximum value

that is sensitive to significant data changes such as the addition

of a constant to every element of a row of the cost of matrix of

problem PA

176

Consider, for example, a network N = (X,A) of n vertices, with

a .weightv.associatedwitheveryvertexx.EX. Let D. = v. d.
J 	 j . 	lj 	j 1j

and define the matrix D = [D..3..j].
 Then, for the p-median problem,

ZR is defined as the sum of the (n-p) largest values

MaxD
3.j
..] , 	 (6.4)

over all rows i of D.

Given the above definition of ZR, (Z
R
- Z) and (Z

R
 - Z) may be
 —

thought of as the worst possible deviations that could be achieved

by a given heuristic OR lower bound,. respectively. Then G measures

the deviation for a particular heuristic relative to the worst

possible deviation, and H the deviation for a particular lower bound

relative to the worst possible deviation.

According to Cornuejols et al., a heuristic is "good" if

Lim 	G < 1 (6.5)
All Problems P

and "not good" if

Lim 	G = 1 (6.6)
All Problems P

Similarly, a relaxation is "good'

Lim 	H < 1 (6.7)
All Problems P

and "not good" if

Lim 	H = 1 	. (6.8)
All Problems P

Cornuejols et al. specifically study heuristics for the

uncapacitated location problem that correspond to:

(i) The vertex substitution heuristic described in 6.2.2;

177

(ii) The vertex addition ("greedy") heuristic, described in Section

6.4 for the p-median problem, and

(iii) The combination of the two above methods, also described

in 6.4.

For the "greedy" heuristic they prove that

Gg = (Z -Z)/(ZR-Z) r<= [(p-1)/p]P < l/e
	(6.9)

where Z is the "greedy" heuristic solution and 2 the maximum allowed

number of open facilities in the final solution. They also prove that,

if Z
D

is the optimum value of the strong linear programming relaxation

of the uncapacitated location problem*,

H
D
= (Z-ZD)/(ZR -ZD) < [(p-1)/p]P < 	. 	(6.10)

Finally, they show that the bounds of equations (6.9) and (6.10) are

the best possible bounds, that is

Lim 	G = 	Lim 	HD = 	.
All Problems P 	g All Problems P

The analysis applied to the p-median problem

The above analysis, as well as the ones that follow for the two

other heuristics, obviously apply to the p-median problem, in which

exactly 2 facilities must be open in the final solution.

Consider now the integer programming (IP) formulation of the

p-median problem, and its corresponding linear programming (LP)

relaxation, given in Chapter 3. This LP relaxation corresponds to

the strong LP relaxation of the uncapacitated location problem. If in

Equation (6.10) HD is replaced by HLP, ZD by ZLP and Z by ZIP
it

follows that

* For a definition of the strong and weal linear programming relaxa-
tions of the uncapacitated location problem, refer to [19], pp.1-4.

178

H
LP

= (ZIP
 - Z

LP
) / (Z

R
 - Z

LP
) < 1/e. 	(6.11)

From equations (6.9) to (6.11) it is possible to conclude that

the "greedy" heuristic is a "good" heuristic for the p-median problem,

and that the LP relaxation of the IP formulation of the problem

constitutes a "good" lower bound, in the sense defined by Cornuejols

et al.

A worst case analysis is also carried out in [191 for both

(i) the vertex substitution heuristic, and (ii) its combination with

the "greedy" heuristic. Let Z1 be the solution to the vertex substi-

tution heuristic and let

G
I

= (Z
I
- Z)/(Z

R
- Z)
	 (6.12)

Cornuejols et al. prove that for all uncapacitated location problems

G
I
 < (p-1)/(2p-1) ,
=

and that there exist problems P for which

G
I

= (p-1)/(2p-1) -

(6.13)

(6.14)

The p-median problem is among the problems P for which the equality

may hold.

Now compare equations (6.13) and (6.14) with equation (6.9).

It is possible to conclude that, in terms of worst case analysis,

for every possible value of 2 for which the "greedy" heuristic

can be used (p > 1), the vertex substitution heuristic does not

perform as well as the "greedy" heuristic. This is a surprising

result of some significance, especially because the "greedy" heuris-

tic is by far the fastest to compute of the two.

179

The "greedy" and the vertex substitution heuristics combined

The idea of combining these two heuristic methods stems from the

fact that, since the starting set of E locations for the vertex substi-

tution heuristic is arbitrary, it might be advantageous to obtain

this set of cardinality Eby applying the "greedy" heuristic.

LetZgI be the value of the solution produced by the combina-

tion of the two heuristics, and let

gI 	Z) / (ZR 	 (6.15)

Cornuejols et al. prove that, for a well defined family of problems,

the combination of the two heuristics fails to improve the solution

obtained by the "greedy" heuristic. That is,

	

Gg1 = Gg = [(p -1)/e
	

(6.16)

for a well defined family of =capacitated location problems, in WhiCh

case no interchange yields an improvement over the "greedy" heuristic.

6.3 A-optimal substitution methods for the p-median problem

It has already been pointed out that the vertex substitution

method is only one of a family of algorithms based.on local optimiza-

tion and the idea of A-optimality. In the p-median problem a get S

of 2 vertices is called A-optimal (A < p) if the replacement of any

A vertices in S by any other A vertices of the set X of all vertices .

of the network N = (X,A) cannot produce a new set with transmission

less than e(S). The replacement set of A vertices chosen from X must

obviously satisfy the condition that at least one of its elements

belongs to the set (X-S). Within this context the answer produced

by the vertex substitution algorithm of Teitz and Bart may be called

1-optimal.

180

From the definition of X-optimality given above it is not

difficult to see that in order to ensure that a given set is A-

optimal a total TA of

T
x
= 	E (P) [11-11

X'.I X' XI
(6.17)

potential substitutions (and hence calculations of transmissions a)

must be performed in each cycle of the algorithm. This number Tx

increases rapidly with A, and hence practical algorithms cannot use

values of A much above 2 or 3.

Note that if S is the optimal p-median set R of a network,

then S is p-optimal. It should also be pointed out that a A-optimal

substitution algorithm 'cannot be used when p < X. A 2-optimal

algorithm, for example, can only be used for p > 2.

A formal statement of X-optima: substitution methods for the

p-median problem is now given. This is a straightforward extension

of the algorithm described in 6.2.2, and the same notation is used

here. The algorithm is:

Step 1. Given a network N = (X,A), select a set S of p. vertices

to form the initial approximation to the optimal p-median set R . Call

all sets of A vertices {x.
j1 	x.A }, in which at least one element " j

belongs to (X-S), "untried".

Step 2. Select some "untried" set of A vertices {x
j. ... x. } 1JX

defined in Step 1, and for each of the (sets of A vertices X

{x1.1
..
'x.}EScmputethe"reduction"A.j in the set transmission 'X 	 1

if {xj1,...,xjx} is substituted for {x. ,xix}, i.e. compute 11'

A. = a(S) - cs(SU{x
j.1j ... x.X'1 -

{x.1'''''
 x. }) ij 	 1 	1X

Step 3. Find A. • = 	Max 	[A..]. 	Then: 1 oj 	{x. 	xD. }eS1J

181

(1) If A. 	< 0 call the set {xJ.lJ ,...,x.X } "tried" and go 1oj

to Step 2.

(ii) If A
1j

 > 0 set S 	{xjl' • 'xjX} 	
call

o

fx.J1'J x.A
 I "tried" and go to Step 2.

Step 4. Repeat steps 2 and 3 until all sets of X vertices

{xj1,...,xj.)} defined in Step 1 have been tried. This is a cycle

of the algorithm. If during the last cycle no substitution of sets of A

vertices has been made in Step 3, go to Step 5. If some substitution

has been made, call all sets of A vertices {xJ.lJ ,...,x.X } in which

at least one element of the set belongs to (X-S) "untried" and return

to Step 2.

.
p

The algorithm described above has been coded and tested for

A = 2. Computational results are given in Table 6.1, where these

results are also compared with corresponding results obtained through

the 1-optimal substitution method first introduced by Teitz and Bart.

Step 5. Stop. The current set S is the estimated p-median set

Computational Results

Computational results for the A = 1 and A = 2 optimal substitution

methods are shown in Table 6.1 for networks ranging from 10 to 30

vertices. Results for the 1-optimal method are then shown in Table

6.2 for the 33-city example of Karg and Thompson [57], and in

Table 6.3 for 40 and 50 - vertex networks. For each of the networks

the values shown in these tables range from p = 1 to p = 10.

The networks used to produce the results of Tables 6.1 to 6.3

are the same as those used in the previous three chapters. The data

for the randomly generated networks used in these tables are given

in the appendix.

182

In Table 6.1 the heuristic solution obtained by each of the

two methods is shown, together with the number of cycles needed to

reach the local optimum in each case. In addition, the random

solution corresponding to the initial set S of p. vertices is given

in a separate column. For both methods this solution corresponds

to using the first p. vertices of each network to form the initial

set S, with the vertices ranked by vertex index.

The optimal solution obtained by branch-and-bound is also shown

in Table 6.1, so that the quality of the solutions produced by each

of the two methods can be evaluated. Finally computing times

are given in the last two columns of the table.

The 1-optimal substitution method has proved to be a satisfactory

heuristic, and the corresponding percentage deviations from the optimal

solution are summarized in Figure 6.1. In this figure the high

frequency of 1-optimal solutions coinciding with the global optimum

can be easily observed, and the average percentage error for heuris-

tic solutions that are not optimal is shown to be low. In fact non-

zero deviations from the optimal occurred more often for the larger

networks (n > 20), although the maximum deviation (9.3%) occurred

for the randomly generated 10-vertex network of Table 6.1 (for p = 7).

This maximum deviation is well below the worst-case analysis result

of Cornuejols et al. [See Equation (6.13)].

For the 2-optimal method, only in one case (n = 25, p = 9) the

2-optimal solution did not coincide with the global optimum (see

Table 6.1).

6.4 The vertex addition heuristic and its use as a 'pre-processor'

for X-optimal substitution algorithms

The vertex addition heuristic described in the present section

was initially developed as a procedure to provide upper bounds for

Table 6.1 - Computational Results for the X=1 and X=2 Optimal Substitution Methods

Problem Size 	1-Optimal Substitution 	2-Optimal Substitution 	Time in Seconds*

Random
Initial 	Value of 	No. of 	Value of 	No. of 	Optimal 	1-Optimal 	2-Optimal

n 	P Solution Solution Cycles 	Solution Cycles 	Solution Substitution Substitution

10** 1 107 79 2 - - 79 0.01 -
10 2 89 47 3 47 2 47 0.01 0.02

10 3 63 36 3 36 2 36 0.01 0.04

10 14 52 26 3 26 2 26 0.02 0.04
10 5 36 19 4 18 3 18 0.02 0.06
10 6 31 12 5 12 3 12 0.02 0.04
10 7 27 8 4 8 3 8 0.01 0.03
lo 8 19 5 3 5 2 5 0.01 0.01
10 9 6 2 2 2 2 2 0.01 0.01
10 10 0 0 1 0 1 0 0.00 0.01

10 1 556 400 2 - - 400 0.01 -
10 2 361 273 2 273 2 273 0.01 0.02
10 3 327 195 3 195 2 195 0.01 0.04
10 4 314 149 4 149 3 149 0.02 0.06
10 5 187 107 4 107 3 107 0.02 0.05
10 6 131 75 5 75 3 75 0.02 0.04
10 7 92 47 4 43 2 43 0.01 0.02
10 8 46 15 2 15 2 15 0.01 0.01
10 9 2 2 1 2 1 2 0.01 0.01
10 10 0 0 1 0 1 0 0.00 0.01

* CPU time, in CDC 7600 seconds
** Garfinkel et al. example [41, p.231]

Table 6.1 (con-b id.) - Computational Results for the X=1 and X=2 Optimal Substitution Methods

Problem Size
Random
Initial
Solution

1-Optimal Substitution 2-Optimal Substitution

Optimal
Solution

Time in Seconds*

n 2

Value of
Solution

No. of
Cycles

Value of
Solution

No. of
Cycles

1-Optimal
Substitution

2-Optimal
Substitution

15 1 846 809 2 - 809 0.02 -
15 2 573 412 2 412 2 412 0.03 0.09
15 3 533 294 . 	3 294 2 294 0.05 0.18

15 4 310 215 4 215 3 215 0.08 0.39

15 5 265 150 14 150 3 150 0.08 0.48

15 6 208 113 5 113 3 113 0.09 0.52

15 7 148 93 4 93 3 93 0.07 0.50

15 8 87 77 2 74 3 74 0.03 0.44

15 9 67 58 2 57 3 57 0.03 0.36

15 10 50 41 2 41 2 41 0.02 0.17

20 1 1694 1159 2 - - 1159 0.04 -

20 2 1227 724 3 724 2 724 0.10 0.29
20 3 732 523 4 5i8 2 518 0.15 0.66

20 4 511 414 3 414 2 4114 0.13 1.04
20 5 476 338 4 338 2 338 0.19 1.38
20 6 392 259 5 259 3 259 0.25 2.55 1-..

co
20 7 356 241 4 227 5 227 0.20 4.62 --
20 8 332 209 5 199 4 199 0.25 3.82
20 9 275 181 4 175 3 175 0.19 2.90

20 10 239 157 3 151 4 151 0.13 3.60

* CPU time, in CDC 7600 seconds

Table 6.1 (cont'd.) - Computational Results for the X=1 and X=2 Optimal Substitution Methods

Problem Size
Random
Initial
Solution

1-Optimal Substitution 2-Optimal Substitution

Optimal
Solution

Time in Seconds*

Value of
Solution

No. of
Cycles

Value of
Solution

No. of
Cycles

1-Optimal
Substitution

2-Optimal
Substitution

25 1 1747 1352 2 1352 0.08
25 2 1551 956 3 956 2 956 0.17 0.73
25 3 1161 722 5 722 3 722 0.38 2.58
25 4 790 556 556 3 556 0.37 4.37
25 5 763 468 468 3 468 0.42 6.11
25 6 706 387 387 3 387 0.45 7.77
25 7 533 341 5 341 3 341 0.59 9.22
25 8 415 305 7 298 298 0.84 13.72
25 9 393 278 6 267 5 266 0.72 17.92
25 10 354 253 5 235 6 235 0.59 21.92

30 1 2400 1432 2 1432 0.11
30 2 1610 936 3 936 2 936 0.30 1.54
30 3 1168 796 5 777 3 777 0.69 5.75
30 4 1040 610 6 610 610 1.01 13.06
30 5 883 530 7 516 4 516 1.35 19.16
30 6 688 438 9 438 5 438 1.92 31.63
30 7 663 386 7 386 386 1.59 30.94
30 8 641 337 9 337 2.14
30 9 455 294 8 294 1.91
30 10 438 265 7 265 1.67

* CPU time, in CDC 7600 seconds.

Table 6.2 - Computational Results for the 1-Optimal Substitution Method

Problem Size

n p

Random
Initial
Solution

Value of
Heuristic
Solution

No. of
Cycles

Optimal
Solution

Time in*
Seconds

33** 1 37993 32072 2 32072 0.14
33 2 35800 17474 2 17474 0.26
33 3 35145 14627 4 14627 0.70
33 4 34806 12625 5 12363 1.09
33 5 34453 10727 6 10398 1.52
33 6 34200 8832 11 8832 3.10
33 7 32855 8261 8 8119 2.42
33 8 31898 7561 8 7472 2.56 	•
33 9 31651 6848 9 6848 2.98
33 10 31236 6295 9 6267 3.05

CPU time, in CDC 7600 seconds

** Karg and Thompson 33 City Example [57, p.244]

Table 6.3 - Computational Results for the 1-Optimal Substitution Method

Problem Size

n ..._ p

Random
Initial
Solution

Value of
Heuristic
Solution

No. of
Cycles

Time in
Seconds

4o 1 84954 80634 2 0.27
4o 2 81794 45862 3 0.74

4o 3 76951 35946 4 1.35

4o 4 74632 26899 6 2.49

4o 5 73828 22396 6 2.94

4o 6 71504 18775 7 3.87

40 7 68954 17426 9 5.49

4o 8 68525 16251 10 6.55
4o 9 67709 14980 10 6.99

4o 10 62957 13443 10 7.26

50 1 292916 128548 2 0.51
50 2 273599 72168 4 1.90

50 3 231943 52708 • 6 4.03

5o 4 205945 42228 4 3.42
50 5 179107 35677 7 7.13

50 6 1516go 31853 6. 7.11

5o 7 141360 28300 5 6.47

5o 8 122640 25624 9 12.73

5o 9 100287 24580 8 12.14
50 10 86463 22796 10 16.27

* CPU time, in CDC 7600 seconds

Frequency I
Figure 6.1

1-optimal substitution method:
% deviations from optimal solution •

188

—55

All points considered

of points = 70
Mean = 0.98%

Deviation = 2.01%

—145

Zero deviation points excluded

No. of points = 19
Mean = 3.61%

St. Deviation = 2.34%

—35

—30

—25

20

—15

—10

% Deviation
from Optimal
Solution

0 	0 	2.0 	4.0 	6.o 	8.0 	> 3.0

— 50
No.

St.

189

the branch-and-bound algorithm of Chapter 5. A generalization of

the method for uncapacitated location problems is described in [19]

where it is referred to as the "greedy" heuristic. Variations of this

heuristic also appear elsewhere in the literature [55,92] .

Even though the vertex addition heuristic does not perform badly

on its own, especially for the largervalues of p, the main interest

in the present section is in its use as a 'pre-processor' to

A-optimal substitution methods. The idea behind the 'combined approach',

described and tested in the remaining of this section, is that since

A-optimal, substitution algorithms must start from a set S of p_ vertices,

some advantage might be gained by starting from a "good" set of 2.

vertices.

The main advantage gained from the combined approach was a substan-

tial reduction in computing times. Although it could be claimed

from the available data that for A = 1 some precision was gained

when the vertex addition heuristic was used as a 'pre-processor',

the justification for using the combined approach lies in the substan-

tial drop observed in the number of tyles needed to find the local

optimum in A-optimal substitution algorithms. The corresponding drop

in computing times is especially remarkable for the larger networks

(n > 20), as shown in Tables 6.4 to 6.6.

Used on its own the vertex addition heuristic starts from an

available solution to the (p-1)-median problem and adds to this

solution the vertex that produces the maximum possible decrease in

the objective function as the number of medians is increased from

(p-1) to E. The surprisingly good results obtained through this

simple procedure appear to derive from the relative 'stability' of

the solutions* of the problem as E is increased, and from the already

* It has been observed that in the majority of cases most of the
vertices present in the optimal (p-1)-median set are also present
in the optimal p-median set.

190

mentioned existence of many optimal or near-optimal solutions to the

p-median problem.

The combined approach is initialized with the 1-median solution.

' It then proceeds in a stepwise fashion, with the appropriate A-optimal

substitution method being applied to the set of cardinality 2. generated

by the vertex addition heuristic. The procedure terminates after

solutions are produced for the desired range of values of .a. The

stepwise nature of the combined approach explains why, for any given

problem, the initial solutions provided by the vertex addition heuristic

do not necessarily coincide for different values of X (see Table 6.4).

Computational experience

The computational experience with the combined approach is shown

in Table 6.4 for A = 1 and A = 2, and in Tables 6.5 and 6.6 for

X = I only.

In Table 6.4 the initial solution provided by the vertex addition

heuristic, together with the final heuristic solution and the number

of cycles needed to reach the local optimum are shown for both A = 1

and A = 2. The optimal solution obtained bybranch-and-bound is given

in a separate column, and finally computing times for each of the

four different heuristic methods analysed in the present chapter are

shown in the last columns of the table.

The computing times corresponding to the "pure" A-optimal substi-

tution methods are repeated in Table 6.4 in order to facilitate the

comparison of the four methods. The sums of computing times for the

several values of 2 within each network and heuristic method of

Tables 6.4 to 6.6 are also provided.

The combined approach has proved to be a good heuristic for X = 1,

and the corresponding percentage deviations from the optimal solution

are shown in Figure 6.2. If the results shown in this figure are

Table 6.4 - Computational Results for the Combined Approach (X=1 and X=2)

Problem Size Combined Approach, X=1 Combined Approach, A=2

Optimal 	1-Opt,
Solution 	Random

Time in Seconds*

2-Opt,
V. Add.

Vertex Add.

	

Initial 	Heuristic 	No. of

	

Solution 	Solution 	Cycles

Vertex Add.
Initial 	Heuristic 	No. of
Solution 	Solution 	Cycles

1-Opt,
V. Add.

2-Opt,
Random

1O** 1. - 79 2 - - - 79 	0.01 0.01 - -
10 2 47 47 1 47 47 1 47 	0.01 0.01 0.02 0.02
10 3 36 36 1 36 36 1 36 	0.01 0.01 0.04 0.02
10 27 26 2 27 26 2 26 	0.02 0.01 0.04 o.o4
10 5 20 18 2 20 18 2 18 	0.02 0.01 0.06 0.04
10 6 12 12 1 12 12 1 12 	0.02 0.01 0.04 0.02
lo 7 8 8 1 8 8 1 8 	0.01 0.01 0.03 0.01
lo 8 5 5 1 5 5 1 5 	0.01 0.01 0.01 0.01
10 9 2 2 1 2 2 1 2 	0.01 0.01 0.01 0.01
10 10 o 0 1 0 0 1 0 	0.00 0.01 0.01 0.01

t ETime = 0.12 0.10 0.26 0.18

10 1 - 400 2 - - - 400 	0.01 0.01 - -
10 2 276 273 2 276 273 2 273 	0.01 0.01 0.02 0.03
10 3 195 195 1 195 195 1 195 	0.01 0.01 0.04 0.02
10 4 149 149 1 149 149 1 149 	0.02 0.01 0.06 0.03
10 5 107 107 1 107 107 1 107 	0.02 0.01 0.05 0.02 	H
lo 6 75 75 1 75 75 1 75 	0.02 0.01 0.04 0.02 	I-,
10 7 43 43 1 43 43 1 43 	0.01 0.01 0.02 0.01
10 8 15 15 1 15 15 1 15 	0.01 0.01 0.01 0.01
10 9 2 2 1 2 2 1 2 	0.01 0.01 0.01 0.01
10 10 0 0 1 0 0 1 0 	0.00 0.01 0.01 0.01

- 	t Name = 0.12 0.10 0.26 0.16

CPU time, in CDC 7600 seconds
Garfinkel et al. Example [41, p.231]
Z Time is the sum of computing times for the several values of E for which a solution is available.

Table 6.4 (cont'd.) - Computational Results for the Combined Approach (X=1 and X=2)

Problem Size Combined Approach, X=1 Combined Approach, X=2

Optimal 	1-Opt,
Solution 	Random

Time in Seconds*

2-Opt,
V.Add. n. 2

Vertex Add.
Initial 	Heuristic 	No. of
Solution 	Solution 	Cycles

Vertex Add.
Initial 	Heuristic 	No. of
Solution 	Solution 	Cycles

1-Opt, 	2-Opt,
V. Add. Random

15 • 1 - 809 2 - - - 809 	0.02 0.02 - -
15 2 484 412 3 484 412 2 412 	0.03 0.05 0.09 0.10
15 3 294 294 1 294 294 1 294 	0.05 0.03 0.18 0.10
15 4 215 215 1 215 215 1 215 	0.08 0.03 0.39 0.14
15 5 170 150 2 170 150 2 150 	0.08 0.05 0.48 0.33
15 6 113 113 1 113 113 1 113 	0.09 0.03 0.52 0.18
15 7 93 93 1 93 93 1 93 	0.07 0.03 0.50 0.17
15 8 74 74 1 74 74 1 74 	0.03 0.03 0.44 0.15
15 9 57 57 1 57 57 1 57 	0.03 0.02 0.36 0.13
15 10 41 41 1 41 41 1 41 	0.02 0.02 0.17 0.09

t ETine = 0.50 0.31 3.13 1.39

20 1 - 1159 2 - - - 1159 	0.04 0.04 - -
20 2 847 724 2 847 724 2 724 	0.10 0.09 0.29 0.31
20 3 552 523 3 552 518 3 518 	0.15 0.13 0.66 1.00
20 4 438 431 3 433 414 2 414 	0.13 0.15 1.04 1.04
20 5 340 340 1 353 338 2 338 	0.19 0.07 1.38 1.36
20 6 281 259 3 277 259 2 259 	0.25 0.17 2.55 1.65
20 7 230 230 1 230 227 2 227 	0.20 0.08 4.62 1.83
20 8 202 202 1 199 199 1 199 	0.25 0.07 3.82 0.99
20 9 175 175 1 175 175 1 175 	0.19 0.07 2.90 0.98
20 10 151 151 1 154 151 2 151 	0.13 0.07 3.60 1.81

ETimet= 1.63 0.94 20.86 10.97

* CPU time, in CDC 7600 seconds

t E Time is the sum of computing times for the several values of 2. for which a solution is available.

Table 6.4 (cont'd.) - Computational Results for the Combined Approach (X=1 and A=2)

Problem Size
	Combined Approach, X=1

	
Combined Approach, X=2 	Time in Seconds*

Vertex Add. 	Vertex Add.
Initial
Solution

Heuristic
Solution

No. of
Cycles

Initial
Solution

Heuristic
Solution

No.of
Cycles

Optimal 	1-Opt,
Solution 	Random

1-Opt, 	2-Opt,
V. Add. Random

2-Opt,
V.Add.

25 -) 1 1352 2 1352 	0.08 0.08
25 2 1027 1027 1 1027 956 2 956 	0.17 0.10 0.73 0.75
25 3 807 722 4 722 722 1 722 	0.38 0.33 2.58 0.90
25 4 556 556 1 556 556 1 556 	0.37 0.12 4.37 1.49
25 5 468 468 1 468 468 1 468 	0.42 0.13 6.11 2.10
25 6 387 387 1 387 387 1 387 	0.45 0.14 7.77 2.65
25 7 341 341 1 341 341 1 341 	0.59 0.14 9.22 3.12
25 8 298 298 1 298 298 1 298 	0.84 0.14 13.72 3.48
25 9 269 269 1 269 267 2 266 	0.72 0.15 17.92 7.37
25 10 244 244 1 242 242 1 235 	0.59 0.15 21.92 3.79

ETimet= 4.61 1.48 84.34 25.65

30 1 1432 2 11132 	0.11 0.11
30 2 1029 936 2 1029 936 2 936 	0.30 0.26 1.54 1.58
30 3 796 796 1 796 777 2 777 	0.69 0.19 5.75 3.85
30 676 610 3 660 610 3 610 	1.01 0.57 13.06 9.84
30 5 533 533 1 533 516 3 516 	1.35 0.25 19.16 14.34
30 6 467 438 4 443 438 2 438 	1.92 0.95 31.63 12.68
30 7 389 389 1 389 386 2 386 	1.59 0.28 30.94 15.3i
30 8 341 341 1 337 337 1 337 	2.14 0.28 - 8.86
30 9 294 294 1 307 294 3 294 	1.91 0.29 29.36
30 10 266 266 1 266 265 2 265 	1.67 0.29 - 21.17

* CPU time, in CDC 7600 seconds.

t 7: Time is the sum of computing times for the several values of p for which a solution is available.

Problem Size

Table 6.5 - Computational Results for the Combined Approach (x=1)

in Seconds*
Vertex Addition
Initial Solution

Heuristic
Solution

No. of
Cycles

Optimal
Solution

Time

n _... P
1-Optimal
Random

1-Optimal
Vertex Add.

33** 1 - 32072 2 32072 0.14 0.14
33 2 19196 17474 2 17474 0.26 0.31
33 3 14962 14627 3 14627 0.70 0.57
33 it 12509 12363 3 12363 1.09 0.70
33 5 10797 10797 1 10398 1.52 0.31
33 6 9287 8832 3 8832 3.10 0.89
33 7 8213 8119 2 8119 2.42 0.65
33 8 7538 7538 1 7472 2.56 0.37
33 9 7055 7055 1 6848 2.98 0.38
33 lo 6592 6408 2 6267 3.05 0.72

 = E Timet 17.82 5.04

CPU time, in CDC 7600 seconds

Karg and Thompson 33 City Example [57, p.244]

E Time is the sum of computing times for the several values of 2
for which a solution is available

Table 6.6 - Computational Results for the Combined Approach (X=1)

Problem Size 1-Optimal Substitution Combined Approach, X = 1

.Best Avail.
- 	Solution

Time in Seconds*

n p
Heuristic
Solution

No. of
Cycles

Vertex Add.
Initial

Solution
Heuristic
Solution

No. of
Cycles

1-Optimal
Random

1-Optimal
Vertex Add.

4o 1 80634 2 - 80634 2 80634 0.27 0.27
40 2 45862 3 45862 45862 ' 1 45862 0.74 0.35
40 3 35946 4 35946 35946 1 35946. 1.35 0.43
40 4 26899 6 28897 26899 3 26899 2.49 1.34
40 5 22396 6 23278 23278 1 22396 2.94 0.58
4o 6 18775 7 20594 18775 4 18775 3.87 2.31
40 7 	' 17426 9 17426 17426 1 17426 5.49 0.69
40 • 8 16251 10 16155 16155 1 16155 6.55 0.74
40 9 14980 10 15095 14539 2 14539 6.99 1.47
40 10 13443 10 13484 13436 2 13436 7.26 ' 	1.52

t ETime = 37.95 9.7o

50 1 128548 2 - 128548 2 128548 0.51 0.51
50 2 72168 4 83910 72168 4 72168 1.90 2.07
50
50

3
4

52708
42228

6
4

54959
411274

52708
42228

3
3

52708 4,03
3.42

2.17
2.69

50 5 35677 7 36710 35677 3 35677 7.13 3.17
50 6 31853 6 32406 31853 2 31853 7.11 2.46
5o 7 28300 5 29177 29177 1 28300 6.47 1.43
5o 8 25624 9 26569 25624 4 25624 12.73 5.79
50 9 24580 8 24129 24129 1 24129 .12.14 1.65
5o lo 22796 10 22668 22668 1 22668 16.27 1.74

ETime-1- = 71.71 23.68

* CPU time, in CDC 7600 seconds

t ETime is the sum of computing times for the several values of
for which a solution is available.

196

I

Frequency

' 6o

Figure 6.2

Combined approach (X=1):
% deviations from Optimal Solution

55

50

All points considered

of points = 70
Mean = 0.56%

Deviation = 1.32%

No.

St.

45

4o

35

Zero deviation points excluded

No. of points = 17
Mean = 2.29%

St. Deviation = 1.82%

30

25

— 20

- 15

—10

5

% deviation from
optimal solution

2.0 	4.o 	> 4.0

197

compared with those of Figure 6.1, it is possible to say that for

A = 1 the combined approach is a better heuristic than the "pure"

1-optimal substitution method. Similarly to Figure 6.1, in

Figure 6.2 the non-zero deviations from the optimal occurred exclusively

for the larger netw=ks (n > 20). The maximum deviation from the

optimal was 7.43% (for n = 25, p = 2), again well below the maximum

possible deviation of l/e derived by Cornuejols et al. [See Equations

(6.9) and (6.16)).

The combined approach for A = 2 can be said to be as precise as

its "pure" 2-optimal counterpart: of all points shown in Table 6.4

on only two occasions (for n = 25, p = 9 and p = 10) did the heuris-

tic solution fail to coincide with the corresponding global optimum.

Finally, computing times were related to both n and p. for the

A-optimal substitution methods described in the present chapter.

When these times were plotted against n and 2, it became evident

that the equation describing the total time needed to reach a local

optimum in these algorithms is of the form

k
1

k
2 CT

A
= K n p 	, (6.18)

where CTA is the total computing time, and K, k1
and k2 are constants.

In the above formula n is of more importance than E in determining

the final value of CTA.

The data of Table 6.4 -were used to find the values of K, k1 and

k2 for A = 1 and A = 2. The resulting equations are

CT
A
= 1.87 x 10-6 n3.33 p0.25
	

(6.19)

for A = 1, and

CTA = 5.56 x 10-9
n5.56 p1.13 	

(6.20)

for A = 2.

Figure 6.3
	198

CDC 7600 seconds vs. n for A=1

1 	1 	I 	I 	1 	1 	1

10

CTA

1

0.1

0.01

-f

10 	20 	30 140 50

	

Figure 6.4
	199

CDC 7600 seconds vs. n for A=2

	

I 	I 	I

10

CTX

1

0.1

0.01

10 	20 	30 40 50

200

4-tar*,

CT
A
is plotted again;731ViTiFfilares 6.3 and 6.4 for A = 1 and

A = 2 respeci:ively. The correlation coefficients obtained when a

least squares line was fitted through the points in each of these

figures were 0.92 for A = 1 and 0.95 for A = 2.

6.5 Conclusions

Four interrelated heuristic methods for the p-median problem

were studied in the present chapter. The vertex substitution method

of Teitz and Bart was extended, and A-optimal substitution methods,

based on local optimization and the idea of A-optimality, were

described. Computational experience was reported for the particular

cases of X = 1 and X = 2.

A simple vertex addition heuristic was introduced, and used

as a 'pre-processor' to A-optimal substitution algorithms.

Computational results were again reported for A = 1 and A = 2.

The four resulting heuristics were then evaluated on the basis of

the quality of the solutions produced and the computing times required

to reach these solutions.

The precision of the heuristic solutions naturally increases

with A. This increased precision, however, is obtained at substantially

higher computing costs. From the data available for A = 2 it can be

safely concluded that it is not practical to use A-optimal substitution

methods for A > 2.

The introduction of the vertex addition heuristic as a 'pre-processor'

to A-optimal substitution algorithms substantially reduced computing

times. This is so because the number of iterations required to reach

the local optimum is sharply reduced when the combined approach is used,

especially for A = 1. This is accomplished without loss of quality in the

201

solutions produced by the combined approach.

From a cost-effectiveness point of view, the combination of the

vertex addition heuristic with the 1-optimal substitution method

appears to be the best of the four methods studied. It produces

solutions that are on average of better quality than the solutions

produced by its "pure" 1-optimal substitution counterpart, and not

much worse than the solutions produced by the 2-optimal methods.

The corresponding computing times are the lowest of the four

methods studied.

202

CHAPTER SEVEN

CONCLUSIONS

7.1 General Summary

This thesis studied the p-median problem, concentrating on exact

solution procedures for the problem. New methods of solution were

developed in the course of the work. These include the development

of two lower bounds, and the use of one of them in a direct tree

search algorithm especially designed for the problem. The resulting

procedure represents a substantial advancement in the area of exact

solution methods for the p-median problem.

Due to the fact that in the vast majority of cases the LP

relaxation of the integer programming formulation of the problem

produces integer solutions that are optimal solutions to the p-median

problem itself, two formulations of this relaxation were initially

studied. The general formulation produces very large linear programmes,

and is therefore unsuitable for use in large-scale networks. The

decomposition formulation often does not converge because of its very

degenerate nature. The problems with convergence become particularly

serious as the size of the network increases, and for values of P.

small in relation to n.

Branch-and-bound algorithms available in the literature suffer

from a lack of strong lower bounds and for this reason are not very

efficient in solving the p-median problem. In this thesis two new

lower bounds were developed, namely the graph-theoretical bound and

the dual bound. The graph-theoretical bound is not very good for

small values'of .2», but improves considerably as the value of 2 increases.

The dual bound has proved to be a very good lower bound. When tested

in 80 different problems, its average deviation from the best

available solution was only 2.57% 	(541. ri.orftc

The dual bound was embedded into a direct tree search algorithm

203

especially designed for the p-median problem. This algorithm also

used a weaker bound and cascaded through both bounds in order to

reduce computing times. An upper bound obtained from heuristics

contributed to further reduce the'size of the tree search. The use

of LP decomposition to solve the subproblems was also investigated.

The branch-and-bound algorithm produces optimal solutions for

networks of up to 30 vertices in less than 2 minutes of computer time

in a CDC 7600 computer, for every possible value of E (1 < p < n).

Besides guaranteeing optimal solutions for larger problems than any

other existing exact procedure, the algorithm is both faster (in

terms of time) and more efficient (in terms of number of nodes)

than other branch-and-bound algorithms available in the literature for

the p-median problem.

Finally, heuristic methods were investigated and tested in a

number of problems. The vertex substitution method of Teitz and Bart

was extended into a family of heuristics, the A-optimal substitution

heuristic methods. Then a simple vertex addition heuristic was

introduced, and used as a 'pre-processor' to A-optimal substitution

methods, thus considerably reducing computing times. The particular

cases of A = 1 and A = 2 were coded, and computational experience

reported on the resulting heuristic methods.

From the data available on heuristic methodS it is safe to

conclude that 2-optimal substitution methods are too expensive for

networks with more than 20 vertices, and that, from a cost-effectiveness

point of view, the combination of the vertex addition heuristic with the

1-optimal substitution method is the best of the four methods studied.

It produces solutions that are on average of better quality than

the solutions produced by its "pure" 1-optimal countel.part, and not

much worse than the solutions produced by 2-optimal methods. The

corresponding computing times are the lowest of the four methods studied.

204

7.2 Possible areas for further research

One main area for further research on the p-median problem

arises naturally from the work done in this thesis, and is related to

solving the convergence problems of the LP decomposition algorithm.

Progress in this area would allow guaranteed optimal solutions to be

found for large-scale networks within a reasonable amount of computer

time.

Regarding the convergence problems of the LP decomposition

algorithm, it is worth noting the approach suggested by Beale, and

reported in Section 3.4.3. If the difficulties arising from the lack

of convergence of this algorithm can be solved, then LP decomposition,

and its use to solve subproblems in branch-and-bound algorithms, can

be used to provide optimal solutions to the p-median problem for

large-scale networks.

Beyond the pure p-median problem, there remain the several

variations of the generalized p-median problem mentioned in 2.4.2.

It was then stated that the main difficulty in solving minisum net-

work location problems rests with the pure p-median problem studied

in this thesis. Any progress in solving the pure p-median problem

necessarily means, therefore, progress in solving generalized p-median

problems.

205 •

APPENDIX

DATA FOR THE TEST PROBLEMS USED IN THE THESIS

Except for

(i) The test cases provided by A.W. Neebe (see Tables 3.1

to 3.3),

(ii) the 10-vertex networks of Garfinkel et al. [41, p.231] and

Revelle and Swain [90, p.38], and

(iii) the 33 city example of Karg and Thompson [57, p.244],

all other networks used as test problems in Chapters 3 to 6 of this

thesis were randomly generated.

The data for the randomly generated networks were obtained as

follows. The Cartesian coordinates of the vertices were generated

randomly from a discrete uniform distribution over two different

intervals: (0,100) for networks of up to 30 vertices, and (0,1000)

for the 40 and 50-vertex networks. The vertices thus generated were

connected by choosing links at random until a tree was formed.

Finally additional links were added to this basic connected network.

The number of additional links used in each network, and the pair of

vertices each of these links were to connect, were also randomly

generated.

The length of the links in each of the randomly generated networks

was calculated using the Euclidean distance formula. All randomly

generated networks are nondirected, nonweighted graphs.

The data for the test cases provided by A.W. Neebe are given in

matrix format. This is followed by the data describing the randomly

generated networks. In the latter set of data each pair of vertices

connected by a link is listed alongside the corresponding link length.

This is the format of the input data for all computer programmes listed

206

in [39] . For each randomly generated network the average vertex

degree
n

= (E di) /n
1=1

is also given.

207

1. NEEBE'S TEST PROBLEMS

(A) 5-Vertex Network

TO

xl 	x2
	x3 	x4

	x5

0 	1 	1 	2

0 	1 	1

1 	1 	0 	2

Xb 	2 	1 	2 	0

x5 	2 	2 	1 	1

(B) 6-Vertex Network

TO

x1 	x2
	x3 	x4

	x5 	x6

X

0 5 4 8 7 12

5 0 3 3 6 7

14 3 0 6 3 8

6 0 3 4

7 3 3 0 5

12 7 4 5 0

208

(C) 9-Vertex Network

TO

x3 	 x6

8

0 14 2 2 3 14 13 1

14 0 14 14 11 2 1 2 13

2 14 0 2 3 14 13 14

2 14 2 0 3 14 13 14 1

3 11 3 3 0 11 10 11

14 2 14 14 11 0 1 2 13

13 1 13 13 10 1 0 12

14 2 14 14 11 2 1 13

1 13 1 1 2 13 12 13

x3

x)4

x5

x6

209

2. RANDOMLY GENERATED NETWORKS

(A) 10-Vertex Network (d = 3.4)

LINK SOURCE(xi)

1 1
2 1
3 1
4 2
5 2
6 2
7 3
8 3
9 4
lo 5
11 5
12 5
13 5
14 6
15 7
16 7
17 7

SINK(x.) DISTANCE

3 32
4 13
6 28
3 81
7 35
10 42
5 43
10 44
5 43
6 54
7 34
9 44
10 2
8 51
8 46
9 55
10 32

210

(B) 15-Vertex Network (a = 3.2)

LINK SOURCE(xi)

1 1
2 1
3 2
4 2
5 2
6 2
7 3
8 4
9 4
lo 4
11 5
12
13 ?,- 6
14 6
15 6
16 7
17 7
18 8
19 8
20 8
21 9
22 9
23 9
24 11

SINK(x.) DISTANCE

3 25
9 10
3 20
5 25
7 30
15 32
13 4
6 19
10 29
11 16
7 30
15 12
9 58
11 5
14 32
9 67
12 19
11 34
12 26
14 10
10 17
12 76
13 36
14 32

211

(C) 20-Vertex Network (a . 2.9)

LINK SOURCE(xi)

1 1
2 1
3 2
li. 2

5 2
6 3
7 3
8 3
9 3

10 4
11 4
12 5
13 5
14 6
15 6
16 6
17 6
18 7
19 9
20 10
21 10
22 10
23 11
24 11
25 13
26 13
27 14
28 15
29 17

SINK(x.) DISTANCE

5 16
12 11

7 33
9 21
11 52
8 38
10 29
18 18
19 30
8 24

17 13
6 45

15 35
7 36
14 38
16 51
19 28
18 11
16 8
17 30
19 21
20 45
12 18
15 15
14 21
20 20
19 64
16 12
20 21

212

(D) 25-Vertex Network (d = 2.8)

LINK SOURCE(xi) SINK(x.) DISTANCE

1 1 9 39
2 1 10 42
3 1 19 20
4 1 23 41
5 2 5 18
6 2 15 37
7 3 .15 9
8 3 17 26
9 3 24 18
lo 4 6 26
11 L. 9 22
12 4 21 15
13 5 15 44
14 5 19 11
15 6 9 38
16 6 25 11
17 7 14 22
18 7 22 21
19 8 9 36
20 8 10 23
21 8 11 25
22 8 14 34
23 8 17 21
24 8 21 45
25 10 20 13
26 11 16 24
27 12 13 19
28 12 18 17
29 1.3 18 25
30 13 24 16
31 14 21 14
32 16 22 14
33 17 18 12
34 17 20 8
35 23 25 25

213

(E) 30-Vertex Network (a = 2.7)

LINK SOURCE(xi) SINK(x.) DISTANCE

1 1 10 24
2 1 23 40
3 1 25 22
it 2 17 8
5 2 20 58
6 3 5 22
7 3 8 17
8 it 7 13
9 4 14 17
lo 5 lo 17
11 5 21 21
12 5 26 16
13 6 11 13
14 6 14 36
15 6 22 20
16 7 8 11
17 8 15 9
18 9 13 25
19 9 24 16
20 9 29 7
21 11 14 40
22 11 18 11
23 12 16 22
24 12 18 10
25 13 20 28
26 13 23 13
27 13 27 34
28 15 26 18
29 16 17 13
30 16 19 20
31 19 20 23
32 19 29 11
33 21 25 8
34 21 28 9
35 22 24 14
36 22 30 13
37 23 28 15
38 24 30 14
39 26 27 12
4o 26 28 21
41 27 30 9

214

10-Vertex Network 	(d = 3.0)

SINK(x.) DISTANCE LINK SOURCE(xi)

395 1 1 2
2 1 10 216
3 1 4o 552
4 2 3 799
5 2 39 458
6 3 4 395
7 3 38 493
8 4 5 402
9 4 37- 136
lo 5 6 98o
11 5 36 956
12 6 7 651
13 6 35 956
14 7 8 289
15 7 34 445
16 8 9 ho8
17 8 33 742
18 9 10 262
19 9 32 226
20 10 437
21 10 31 441
22 11 12 667
23 11 3o go8
24 12 13 549
25 12 29 531
26 13 14 262
27 13 28 266
28 14 15 271
29 14 27 330
30 15 16 72o
31 15 26 849
32 16 17 391
33 16 25 402
34 17 18 439
35 11 24 718
36 18 19 537
37 18 23 611
38 19 20 705
39 19 22 741
40 20 21 307
41 20 22 500
42 21 22 319
43 22 23 758
44 23 24 647
45 24 25 567
46 25 26 719
47 26 27 484
48 27 28 330
49 28 29 278
50 29 30 592

(F)

215

(F) 40-Vertex Network (cont'ed.)

LINK SOURCE(xi)

51 3o
52 31
53 32
54 33
55 34
56 35
57 36

. 58 37
59 38
6o 39

SINK(x.) DISTANCE

31 839
32 503
33 489
34 18
35 715
36 907
37 539
38 442
39 936
4o 641

216

(G) 50-Vertex Network (a = 2.3)

LINK SOURCE(xi)

1 1
2 1
3 2
4 2
5 3
6 3
7 4
8 4
9 5
10 5
11 6
12 6
13 7
14 7
15 8
16 8
17 9
18 9
19 10
20 10
21 11
22 11
23 12
24 12
25 13
26 13
27 14
28 14.
29 15
30 15
31 16
32 16
33 17
34 17
35 18
36 18
37 19
38 19
39 20
4o 20
41 21
42 21
43 22
44 22
45 23
46 23
47 24
48 24
49 25
5o 28

SINK(x.) DISTANCE

2 411
5o 531
3 935
49 865
4 596
48 697
5 639
47 68o
6 703
46 335
7 276
45 209
8 520
44 76o
9 667
43 826
10 432
42 629
11 63
41 852
12 426
40 654
13 430
39 433
14 335
38 216
15 46o
37 518
16 349
36 614
17 110
35 1091
18 277
34 66
19 112
33 615
20 184
32 772
21 556
31 206
22 485
30 694
23 149
29 529
24 402
28 702
25 936
26 no
27 859
3o 866

217

(G) 50-Vertex Network (cont'ed.)

LINK SOURCE(xi) SINK(x.) DISTANCE,

51 29 31 540
52 34 36 265
53 35 37 164
54 38 40 362
55 41 43 800
56 44 46 543
57 47 49 143
58 48 5o 682

218

REFERENCES*

1. Akinc, U. and Khumawala, B.M. (1977) "An efficient branch and

bound algorithm for the capacitated warehouse location problem",

Man. Sci., Vol.23, 1)1).585-594.

2. Balas, E. (1965) "An additive algorithm for solving linear programs

with zero-one variables", Opns. Res., Vol.13, pp.517-546.

3. Balinski, M.L. (1965) "Integer programming: methods, uses,

computation", Man. Sci., Vol.12, pp.253-313.

4. Balinski, M.L. and Mills, H. (1960) "A warehouse problem",

Mathematica, Princeton, New Jersey.

5. Baumol, W.J. and Wolfe, P. (1958) "A warehouse location problem",

Opns. Res., Vol.6, pp.252-263.

6. Beale, E.M.L. (1968) Mathematical Programming in Practice,

Sir Isaac Pitman & Sons, London.

7. Beale, E.M.L. and Small, R.E. (1965) "Mixed integer programming

by a branch and bound technique", Proc. IFIP Congress, New York.

8. Benders J.F. (1962) "Partitioning procedures for solving mixed-

variables programming problems", Numerische Mathematik,

pp.238-252.

9. Berge, C. (1973) Graphs and Hypergraphs (Translated by Edward.

Minieka), North-Holland Publishing Co., Amsterdam and London.

10. Bock, F. (1971) "An algorithm to construct a minimum directed

spanning tree in a directed network", Developments in Operations

Research (Edited by B. Avi-Itzhak), Gordon and Breach, pp.29-44.

11. Cabot, A.V., Francis, R.L. and ataxy, M.A. (1970) "A network flow

solution to a rectilinear distance facility location problem",

AIIE Transactions, Vol.2, pp.132-141.

The journal name abbreviations used in this list of references are
identical to those used in the International Abstracts in Operations
Research.

219 •

12. Christofides, N. (1975) Graph Theory: An Algorithmic Approach,

Academic Press, London, New York and San Francisco.

13. Christofides, N. and Eilon, S. (1969) "An algorithm for the

vehicle dispatching problem", Operat. Res. Quart., Vol.20,

P13 .309-318.

14. Christofides, N. and Eilon, S. (1972)"Algorithms for large scale

travelling salesman problems", Operat. Res. Quart., Vol.23,

pp.511:-518.

15. Christofides, N. and Viola, P. (1971) "The optimum location of

multi-centres on a graph", Operat. Res. Quart., Vol.22, pp.145-154.

16. Cooper, L. (1963) "Location-Allocation problems", Opns. Res.,

Vol.11, pp.331-343.

17. Cooper, L. (1964) "Heuristic methods for location-allocation

problems", SIAM Review, Vol.6, pp.37-53.

18. Cooper, L. (1967) "Solutions of generalized locational equili-

brium models", J. Reg. Sci., Vol.7, pp.1-18.

19. Cornuejols, G., Fisher, M.L. and Nemhauser,G.L. (1976) "An analysis

of heuristics and relaxations for the uncapacitated location

problem", Core Discussion Papers 7602, Center for Operations

Research and Econometrics, Universite Catholique de Louvain,

Belgium.

20. Davis, P.S. and Ray, T.L. (1969) "A branch-and-bound algorithm for

the capacitated facilities location problem", NRLQ, Vol.16, pp.331-344.

21. Dearing, P.M. and Francis, R.L. (1974) "A network flow solution

to a multifacility minimax location problem involving rectilinear

distances", Trans. Sci., Vol.8, pp.126-141.

22. Diehr, G. (1972) "An algorithm for the p-median problem", W.P. No.191,

Western Management Science Institute, UCLA.

220

23. Domschke, W. (1975) "Modelle und verfahren zur bestimmung

betrieblicher und innerbetrieblicher standorte - Ein uberblick"

["Models and methods for determination of plant location and

plant layout - A survey"], Zeitschrift fur Operations Research,

Vol.19, pp.B13-B41.

24. Edmonds, J. (1967) "Optimum branchings", Bureau of Standards J.

of Res., Vol.71B, pp.233-240.

25. Efroymson, E. and Ray, T.L. (1966) "A branch-and-bound algorithm

for plant location", Opns. Res., Vol.14, pp.361-368.

26. Eilon, S. (1972) "Goals and constraints in decision making",

Operat. Res. Quart., Vol.23, pp.3-15.

27. Eilon, S., Watson-Gandy, C.D.T. and Christofides, N. (1971)

Distribution Management: Mathematical Modelling & Practical

Analysis, Griffin, London.

28. Elshafei, A.N. (1974) "Studies in facility location: survey of

some methodologies and case studies in Great Britain", Memo 404,

The Institute of National Planning, Cairo.

29. Elshafei, A.N. (1975) "An approach to locational analysis",

Operat. Res. Quart., Vol.26, pp.167-181.

30. El-Shaieb, A.M. (1973) "A new algorithm for locating sources

among destinations", Man. Sci., Vol.20, pp.221-231.

31. Elson, D.G. (1972) "Site location via mixed-integer programming",

Operat. Res. Quart., Vol.23, pp.31-43.

32. Elzinga, J., Hearn, D. and Randolph, W.D. (1976) "Minimax

multifacility location with Euclidean distances", Trans. Sci.,

Vol.10, pp.321-336.

33. Feldman, E.,Lehrer, F.A. and Ray, T.L. (1966) "Warehouse location

under continuous economies of scale", Man. Sci., Vol.12, pp .670-684.

221

34. Floyd, R.W. (1962) "Algorithm 97-shortest path", Comm. of ACM,

Vol.5, p.345.

35. Francis, R.L. and Goldstein, J.M. (1974) "Location theory: A

selective bibliography", Opns. Res., Vol.22, pp.400-410.

36. Frank, H. (1966) "Optimum locations on a graph with probabilistic

demands", Opns. Res., Vol.14, pp.409-421.

37. Frank, H. (1967) "Optimum locations on graphs with correlated

normal demands", Opns. Res., Vo1.15, pp.552-557.

38. Fulkerson, D.R. (1974) "Packing rooted directed cuts in a weighted

directed graph", Math. Prog., Vol.6, pp.1-13.

39. Galva:6, R.D. (1977) "Fortran codes for the p-median problem",

Internal Report, Dept. of Management Science, Imperial College

of Science and Technology, London.

40. Garfinkel, R.S. and Nemhauser, G.L. (1972) Integer Programminq,

John Wiley and Sons.

41. Garfinkel, R.S., Neebe, A.W. and Rao, M.R. (1974). "An algorithm

for the m-median plant location problem", Trans. Sci., Vol.8,

pp.217-236.

42. Goldman, A.J. (1969) "Optimal locations for centers in a network",

Trans. Sci., Vol.3, pp.352-360.

43. Goldman, A.J. (1971) "Optimal center location in simple networks",

Trans. Sci., Vol.5, pp.212-221.

44 Goldman, A.J. (1972) "Minimax location of a facility in a network",

Trans. Sci., Vol.6, pp.407-418.

Goldstein, A.J. (1962) Private Communication, Bell Telephone

Laboratories, Murray Hill, N.J.

46. Gray, P. (1970) "Exact solutions of the site selection problem by

mixed integer programming", Applications of Mathematical Programming

Techniques (Edited by E.M.L. Beale), American Elsevier Publishing

Co., New York.

222

47. Hadley, G. (1962) Linear Programming, Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, Palo Alto and London.

48. Hakimi, S.L. (1964) "Optimum location of switching centers and

the absolute centers and medians of a graph", Opns. Res., Vol.12,

pp.450-459.

49. Hakimi, S.L. (1965) "Optimum distribution of switching centers

in a communication network and some related graph theoretic

problems", Opns. Res., Vol.13, pp.462-475.

50. Hakimi, S.L. and Maheshwari, S.N. (1972) "Optimum location of

centers in networks", Opns. Res., Vol.20, pp.967-973.

51. Haley, K.B. (1963) "Siting of depots", IJPR, Vol.2, pp.41-45.

52. Handler, G.Y. (1974) "Minimax network location - theory and

algorithms", Report P1L-R74-4, Flight Transportation Laboratory,

Massachusetts Institute of Technology.

53. Hansen, P. (1976) "The simple plant location problem", OMEGA,

Vol.4, pp.347-349.

54. Hu, T.C. (1969) Integer Programming and Network Flows, Addison-

Wesley Publishing Co., Reading, Massachusetts.

55. Jgrvinen, P., Rajala, J. and Sinervo, H. (1972) "A branch-and-

bound algorithm for seeking the p-median", Opns. Res., Vol.20,

PP-173-178.

56. Juel, H. and Love, R.F. (1976) "An efficient computational

procedure for solving the multifacility rectilinear facilities

location problem", Operat. Res. Quart., Vol.27, pp.697-703.

57. Karg, R.L. and Thompson, G.L. (1964) "A heuristic approach to

solving travelling salesman problems", Man. Sci., Vol.10, pp.225-248.

58. Karp, R.M. (1975) "On the computational complexity of combinatorial

problems", Networks, Vol.5, pp-45-68.

59. Kerningan, B.W. and Lin, S. (1970) "An efficient heuristic proce-

dure for partitioning graphs", Bell System Tech. J., Vol.49,

pp.291-307.

223

60. Khumawala, B.M. (1972) "An efficient branch-and-bound algorithm

for the warehouse location problem", Man. Sci., Vol.18, pp.B718-B731.

61. Khumawala, B.M. (1973) "An efficient heuristic procedure for the

uncapacitated warehouse location problem", NRLQ, Vol.20, pp.109-121.

62. Khumawala, B.M. (1974) "An efficient heuristic procedure for the

capacitated warehouse location problem", NRLQ, Vol.21, pp.609-623.

63. Khumawala, B.M., Neebe, A.W. and Dannenbring, D.G. (1974) "A note

on El-Shaieb's new algorithm for locating sources among destina-

tions", Man. Sci., Vol.21, pp.230-233.

64. Kruskal, J.B. Jr. (1956) "On the shortest spanning subtree of a

graph and the travelling salesman problem", Proc. American Math.

Soc., Vol.7, pp.48-50.

65. Kuehn, A.A. and Hamburger, M. (1963) "A heuristic program for

locating warehouses", Man. Sci., Vol.9, pp.643-666.

66. Kuenne, R.E. and Soland, R.M. (1971) "The multisource Weber

problem", IDA Economic Papers.

67. Kuenne, R.E. and Soland, R.M. (1972) "Exact and approximate

solutions to the multisource Weber problem", Math. Prog., Vol.3,

pp.193-209.

68. Kuhn, H.W. (1955) "The hungarian method for the assignment problem",

NRLQ, Vol.2, pp.83-97.

69. Kuhn, H.W. (1956) "Variants of the hungarian method for assignment

problems", NRLQ, Vol.3, pp.253-258.

70. Kuhn, H.W. and Kuenne, R.E. (1962) "An efficient algorithm for the

numerical solution of the generalized Weber problem in spatial

economics", J. Reg. Sci., Vol.4, pp.21-33.

71. Lawler, E.L. and Wood, D.E. (1966) "Branch-and-bound methods: a

survey", Opns. Res., Vol.14, pp.699-719.

22)4

72. Lemke, C.E. and Spielberg, K. (1967) "Direct search algorithms

for zero-one and mixed-integer programming", Opns. Res., Vol.15,

pp.892-914.

73. Levy, J. (1967) "An extended theorem for location on a network",

Operat. Res. Quert., Ve1.18, pp.433-442.

74. Lin, S. (1965) "Computer solutions of the travelling salesman

problem", Bell System Tech. J., Vol.44, pp.2245-2269.

75. Little, J.D.C., Murty, K.G., Sweeney, D.W. and Karel, C. (1963)

"An algorithm for the travelling salesman problem", Opns. Res.,

pp.972-989.

76. Maranzana, F.E. (1964) "On the location of supply points to

minimize transport costs", Operat. Res. Quart., Vol.15, pp.261-270.

77. Marks, D.H. (1969) "Facility location and routing models in solid

waste collection systems", Ph.D. Thesis, The John Hopkins University.

78. Marsten, R.E.,(1972) "An algorithm for finding almost all of the

medians of a network", Discussion Paper No.23, Northwestern University.

79. Miehle, W. (1958) "Link-length minimization in networks", Opns. Res.,

Vol.6, pp.232-243.

80. Minieka, E. (1970) "The m-center problem", SIAM Review, Vol.12,

pp.138-139.

81. Morris, J.G. (1974) "On linear programming solutions to a class of

location-allocation problems", Kent State University, Kent, Ohio.

82. Morris, J.G. (1975) "A linear programming solution to the generalized

rectangular distance Weber problem", NRLQ, Vol.22, pp.155-164.

33. Murchland, J.D. (1965) "A new method for finding all elementary

paths in a complete directed graph", Report LSE-TNT-22, London

School of Economics.

84. Orchard-Hays, W. (1968) Advanced Linear Programming Techniques,

McGraw-Hill Book Company.

225

85. Palermo;, F.P. (1961) "A network minimization problem", IBM Journal

of Research and Development, Vol.5, pp.335-337.

86. Prim, R.C. (1957) "Shortest connection networks and some

generalizations", Bell System Tech. J., Vol.36, pp.1389-1401.

87. Rand, G.K. (1976) "Methodological choices in depot location studies",

Operat. Res. Quart., Vol.27, pp.241-249.

88. Rao, M.R. (1972) "The rectilinear facilities location problem",

Working Paper no. F7215, The Graduate School of Management,

University of Rochester, Rochester, New York.

89. Revelle, C.,Marks, D. and Liebman, J.C. (1970) "An analysis of

private and public sector location models", Man. Sci., Vol.16,

pp.692-707.

90. Revelle, C.S. and Swain, R.W. (1970) "Central facilities location",

Geogr. Anal., Vol.2, pp.30-42.

91. Robers, P.D. (1971) "Some comments concerning Revelle, Marks and

Liebman's article on facility location", Man. Sci., Vol.18,

pp.109-111.

92. Se, G. (1969) "Branch-and-bound and approximate solutions to the

capacitated plant location problem", Opns. Res., Vol.17, pp.1005-1016.

93. Soland, R.M. (1974) "Optimal facility location with concave costs",

Opns. Res., Vol.22, pp.373-382.

94. Spielberg, K. (1969) "Algorithms for the simple plant location

problem with some side conditions", Opns. Res., Vol.17, pp.85-111.

95. Spielberg„ K. (1969) "Plant location with generalized search

origin", Man. Sci., Vol.16, pp.165-178.

96. Surkis, J. (1967) "Optimal warehouse location", XIV International

TIMS Conference, Mexico City.

97. Swain, R.W. (1974) "A parametric decomposition approach for the

solution of uncapacitated location problems", Man. Sci., Vol.21,

pp.189-198.

226

98. Teitz, M.B. and Bart, P. (1968) "Heuristic methods for estimating

the generalized vertex median of a weighted graph", Opns. Res.,

Vol.16, pp.955-961.

99. Toregas, C., Swain, R., Revelle, C. and Bergman, L. (1971) "The

location of emergency service facilities", Opns. Res., Vol.19,

pp.1363-1373.

100. Watsou-Gandy, C.D.T. and Eilon, S. (1972) "The depot siting

problem with discontinuous delivery cost", Operat. Res. Quart.,

Vol.23, pp.277-287.

101. Weber, A. (1909) Uber den Standort der Industrien, Tubingen.

Translated as Alfred Weber's Theory of the Location of Industries,

by Friedrich, C.J. (1929), University of Chicago Press.

102. Wendell, R.E. and Hurter, A.P. 01973) "Optimal locations on a

network", Trans. Sci., Vol.7, pp.18-33.

103. Wesolowsky, G.O. (1972) "Rectangular distance location under the

minimax optimality criterion", Trans. Sci., Vol.6, pp.103-113.

104. Yoeng-Jin, C. and Tseng-Hong, L. (1965) "On the shortest arborescence

of a directed graph", Scientia Sinica, Vol. XIV, pp.1396-1400.

