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Abstract  

Problems of optimally locating facilities on networks fall within 

two main categories, namely minisum and minimax location problems. 

This thesis studies the p-median problem, an uncapacitated minisum 

location problem that consists of locating a given number of facilities 

(say 1) on a network, so that the sum of shortest distances from each 

of the nodes of the network to its nearest facility is minimized. 

Two formulations of a linear programming (LP) relaxation of the 

problem are examined. A general formulation produces very large linear 

programmes, and is therefore unsuitable for use in large-scale networks. 

A decomposition formulation produces smaller LP's but often does not 

converge. The importance of this LP relaxation lies in the fact that 

it often produces integer solutions that are optimal solutions to the 

p-median problem itself. 

Two lower bounds are then developed: a graph-theoretical bound, 

based on shortest spanning trees and arborescences, and a dual bound, 

based on the dual of the LP relaxation of the problem. The latter 

proved to be a very good bound, and is used in the branch7and7bound 

algorithm developed in Chapter 5. 

The algorithm of Chapter 5 is a direct tree search algorithm. 

It cascades through two lower bounds in a way designed to save 

computing time, and uses an upper bound to further reduce the size of 

the search. The computational results obtained through this algorithm 

represent a substantial advancement over existing exact solution 

procedures for the problem. It produces optimal solutions for networks 

of up to 30 vertices in less than 2 minutes in a CDC 7600 computer, 

for every possible value of P. 

Finally, heuristic methods are investigated and tested in a 

number of problems. Heuristics based on A-optimal substitution methods 

are described, and computational results are given for the particular 

cases of A = 1 and A = 2. 
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CHAPTER ONE  

INTRODUCTION  

1.1 Network Location Problems  

The problem of optimally locating facilities on a network falls 

within two main categories, namely minisum and minimax location 

problems. In minisum location problems the objective is to determine 

the location of a given number of facilities (say p), so that the sum 

of shortest distances from each of the network demand centres* to its 

nearest facility is minimized. The objective in minimax problems is 

to locate the 2 facilities so that the largest travel distance (or time) 

from any network demand centre to its nearest facility is minimized. 

A related problem can be defined in the minimax category. It 

consists of finding the minimum number p of facilities (and their 

location), so that all demand centres in the network are within a 

critical distance 8 from at least one of the facilities. Minimax 

problems appear in practice in the location of emergency facilities 

such as hospitals and fire stations. 

This thesis studies a particular case of the uncapacitated mini-

sum network location problem, often referred to as the p-median problem. 

The p-median problem consists of locating 2 facilities on a network, 

so that the sum of shortest distances from each of the nodes of the 

network to its nearest facility is minimized. There are no restrictions 

on the capacities of the facilities, and fixed costs are assumed not to 

vary with the location of the facility, thus not appearing in the 

problem's objective function. 

Two theorems by Hakimi [48, 49] restrict the search of the optimal 

A network demand centre is defined here as being a site located 
either on the arcs or nodes of the network, from which demand for 
goods or services is generated. 
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p-median to the nodes of the network, i.e. it can be shown that the 

search for the optimal 2 points need not consider points on links 

other than the two ends. If n is the number of nodes in the network, 

the p-median problem has a total of [J feasible solutions, and solution 
P 

by complete enumeration is not feasible even for problems of moderate 

size. The problem of finding the optimal p-median of a network can 

be made slightly more general by associating with each node xi  a 

weight vi, in which case the objective function to be minimized becomes 

the sum of weighted distances. 

The p-median problem appears, in practice in a variety of forms: 

the location of switching centres in telephone networks, substations 

in electric power networks, supply depots in a road network, schools 

in a rural area. Assume, for example, that the population distribution 

of a given rural area is known. It is required that 2 primary schools 

be built in the area, so as to minimize the total distance travelled 

by the school children. 

The school location problem can be represented by a network of n 

nodes, each node corresponding to one region in the area. Node weights 

can .be used to represent the relative sizes of the school-age population 

of each of the regions. Existing roads between regions should link 

the corresponding nodes of the network. Given the length of each of 

the connecting roads, the problem is actually a p-median problem. 

1.2 The p-median problem as a special case of facility location problems  

The facility location problem consists of determining the site of 

one or more facilities (supply depots, schools, hospitals, etc.) to 

serve customers in a given geographical area. The selection of sites 

should be made in such a way that a well defined objective function is 

optimized, subject to constraints relevant to the problem. 
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Facility location problems have been classified in different 

ways by different authors. In an excellent review paper, Revelle et al. 

[89] attach great importance to the ownership of the facilities (private 

or public) and suggest different objective functions for the two cases. 

Eilon, Watson-Gandy and Christofides um have chosen to tie their 
classification to the approach used to solve the problem (Infinite 

Set Approach or Feasible Set Approach). They also enumerate some 

advantages and disadvantages of each of the two approaches. 

In a comment on the paper by Revelle et al., Robers [91] proposes 

the following three-way classification: 

A. Location in a Plane with Infinite Solution Space, 

B. Location in a Plane with. Finite Solution Space, 

C. Location on a network..  

Problems in category A are characterized by (1) an infinite 

solution space (facilities may be located anywhere in the plane), and 

(2) distance measurement according to a particular metric. The second 

type of problem is characterized by restricting the location of the 

facilities to a number of predetermined sites. Finally, location on 

a network is characterized by (1) a solution space consisting of points 

on the network, and (2) distance measurement along the network. 

The p-median problem is now shown to be a special case of the 

uncapacitated facility location problem. The latter is a B problem 

in the classification given above. There are no restrictions on the 

permissible capacities of the facilities, and the objective function 

includes both fixed and variable costs. 

The uncapacitated facility location problem can be formulated 

as a mixed-integer programming problem: 

Minimize = E 	F. y. ie, E 	E 	c.. 
jEJ 1J 1J  
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Subject to 
E 	i.. = 1, jEJ 	 (1.2) 

iEI 

1 < 	Ey.1 < p 
iEI 

(1.3) 

Eij < y., iEI, jEJ 
	

6..10 

y. E {0,1 	E I 	(1.5) 

•• > 0'  iEI, jEJ, =  (1.6) 

where: 

I 	= (1,2,...,n) - set of feasible location sites for the facilities; 

J = (1,2,...,m) — set of user (customer) locations; 

F.1  - Fixed cost associated with opening a facility at location i; 

cij  - Cost of supplying customer j_ from facility 1; 

(ii) 

.. 	- lj 

p 	- 

Yi 	= 

If 	(i) 

d. 	= c. 

Fraction of the demand of customer ji supplied from facility i; 

Maximum number of facilities that can be built; 

{ 1 if a facility is located at site i 

0 otherwise 

I EJ = (1,2,...,n) coincide with the nodes of a network, 

1j correspond to distances measured along the arcs of the 

network, (iii) it is decided that exactly facilities must be built, 

and (iv) all fixed costs Fi  are equal, Equations (1.1) to (1.6) become: 

Minimize 2, = 	E 	E d.. 
iEI jEJ 13 13  

(1.7) 

Subject to 
E g„ = 1, ie.]. 	(1.8) 

1E1 ld  

E 
iEI 

= p (1.9) 
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13 < = 11 
	iEI, jEJ 
	(1.10) 

1 if customer j_ is allocated 
to facility i 

C.. = 

0 otherwise 

Equations (1.7) to (1.11) correspond to the integer programming 

formulation of the p-median problem (see chapter 3). In this formu-

lation gii  = 1 implies that a facility is located at site i and gii  = 0 

otherwise. Since it is not possible to have a fractional facility 

located at a site, Cii  E (0,11, iEI. Furthermore, since there are 

no capacity restrictions and no economies of scale, no one destination 

will be supplied by more than one facility in the optimal solution. 

Hence, C.. E f0,11, iEI, jEJ. 
ij 

The p-median problem is therefore a special case of the uncapaci-

tated facility location problem. Note that since the number of 

facilities has been fixed a priori at exactly EL, and all fixed costs 

F.areequal,theF.need not be included in the formulation of the 

p-median problem. 

1.3 Basic graph theory definitions  

The basic graph theory concepts defined in the present section 

are the ones used throughout this thesis. The definitions given 

generally correspond to those of [12]. 

A graph (or network) G is a collection of vertices or nodes  

xl, x2, 	, xn  (denoted by the set X), and a collection of lines 

al, a2, 	, am  (denoted by the set A) joining all or some of the 

vertices. The graph G is then fully described and denoted by the 

doublet (X,A). 

If the lines in A have a direction they are called arcs and the 

resulting graph is called a directed graph. If the lines have no 
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orientation they are called links and the graph is nondirected. In 

cases where G = (X,A) is a directed graph but it is desirable that 

the direction of the arcs in A be disregarded, the nondirected counter-

part of G will be written as d = (X,74). 

A path in a directed graph is any sequence of arcs where the 

final vertex of one arc is the initial vertex of the next arc. A 

simple path is a path which does not use the same arc more than once. 

An elementary path is a path which does not use the same vertex more 

than once. An elementary path is also simple, but the reverse is not 

necessarily true. 

A graph is said to be arc-weighted if a cost (length,weight) c. 1j 

is associated with every arc (x.,x.) of the graph. If a weight vi  is 

associatedwitheveryvertexx.of a graph the resulting graph is then 

called vertex-weighted. A nonweighted graph is defined in this thesis 

as an arc-weighted graph whose vertices have all unit-weights, i.e. an 

arc-weighted graph for which vi  = 1 V i. 

Thenumberofarcswhichhaveavertexx.as their initial vertex 1 

is called the outdegree of vertex xi  (call this outdegree do(xi)), 

Similarly, the number of arcs which. have xi  as their final vertex is 

called the indegree of vertex x.I  (dt  Cx./). For a nondirected graph. 

the degree of a vertex xi  is equal to the number of links connected 

to xi. When no confusion can arise it will be denoted simply by 
1  d.. 

A graph G = (X,A) is said to be complete if, for every pair of 

vertices.x.andx.in X, there exists a link Cx.;xj) in G = 

i.e. there must be at least one arc joining every pair of vertices. 

The complete nondirected graph of n vertices is denoted by K
-h 

A graph G = (X,A) is said to be symmetrical if, whenever an arc 

(x.,xj) is one of the arcs in the set A, the opposite arc (x.,x.1
) is 
 

also in A. 
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Matrices of a Graph  

A convenient way of representing a graph G = (X,A) algebraically 

is through its adjacency matrix. The adjacency matrix of G is denoted 

by A = [aij] and is given by 

au  = 1 if arc (x.,x.) exists in G 

aij 	

1 j 

= 0 if arc (x.,x.) does not exist in G. 1 j 

If a cost cij is associated with every arc (x.,x.) of the graph, 

it is possible to calculate the shortest path between all pairs of 

vertices of the graph [34, 83]. A matrix can then be formed with the 

corresponding shortest distances d(x.,x.). The matrix D(G) = [d(x.,x
j)]  

is called the distance matrix of the graph. 

Whenaweightv.isassociatedwitheveryvertex.x.of a graph, • 

this graph must be transformed into a complete graph before a corres-

ponding p-median problem can be solved. Any graph can be transformed 

into a complete graph through the computation of its distance matrix. 

In the case of vertex-weighted graphs, the computation of the distance 

matrix must be followed by the multiplication of each element of every 

row or column by the appropriate vertex weight*. The resulting weighted 

matrix can be then represented by a complete symmetrical graph. The 

arcs of this graph represent the weighted lengths of the corresponding 

shortest paths. 

1.4 Outline of the thesis  

This thesis is concerned with the p-median problem. The emphasis 

is on exact solution methods for the problem, although some heuristic 

In a network location problem for which the flow is directed into  
the facilities - as, for example, when the facilities are schools 
to which children must travel - the rows of the distance matrix 
must be weighted. If the reverse is true and the flow is from the 
facilities, the columns of the distance matrix must be weighted. 
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procedures are also investigated. 

Chapter 2 is a literature survey. The survey covers the broader 

field of facility location problems, but its main part is dedicated 

to the p-median problem and related minisum and minimax network loca-

tion problems. 

In Chapter 3 two different formulations of the LP relaxation of 

the p-median problem are investigated. The general LP formulation 

produces very large linear programmes. This disadvantage is overcome 

by a recent LP decomposition formulation. The very degenerate nature 

of the decomposition formulation and the ensuing convergence problems 

are analysed and tested. 

Chapter 4 is dedicated to lower bounds. Two new- lower bounds 

are developed for the problem, namely the "graph-theoretical bound" 

and the "dual bound". Unlike other existing bounds, the graph-

theoretical bound makes use of the graph-theoretical properties of the 

problem. The dual bound is based on the dual of the LP relaxation of 

the problem. The latter is a very good bound, a fact of decisive 

importance in branch-and-bound algorithms. 

'A direct tree search algorithm is the object of Chapter 5. The 

principles on which this algorithm is based are discussed, and the 

embedding of the bounds of Chapter 4 into the search is explained. 

Computational results for networks ranging from 10 to 30 vertices, 

and for a wide range of values of E are then given. 

Heuristics are investigated in Chapter 6. The existing vertex 

substitution method of Teitz and Bart [98] is extended into a family 

of heuristics, the A-optimal substitution heuristic methods. The 

particular cases of A = 1 and A = 2 are studied in detail. A simple 

vertex addition heuristic is introduced, and its use as a 'pre-processor' 

for the A-optimal substitution methods is described. Computational 

results are given for the resulting heuristics. 
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The main contributions of this thesis to the field of optimal 

location of facilities on a network are: 

(i) The development of new and "tight" lower bounds for the 

p-median problem; 

(ii) their use in a direct tree search algorithm that represents 

a substantial advancement in the area of exact solution methods for 

the problem; and 

(iii) the detailed investigation of the LP decomposition formu-

lation of Garfinkel et al. [41], and in particular the problems arising 

from the large-scale degeneracy of this formulation. 

The branch-and-bound algorithm produces optimal solutions for 

30-vertex networks in less than 2 minutes in a CDC 7600 computer, for 

every possible value of 2. It is both faster (in terms of time) and 

much more efficient (in terms of number of nodes) than other branch-

and-bound algorithms available in the literature [30, 55]. While other 

exact solution methods [41, 78] may on occasion solve the problem for 

n = 30, these other methods cannot guarantee an optimal solution for 

every possible value of P, and may in fact fail on much smaller net-

works. 

As for the LP decomposition of Garfinkel et al., the extensive 

testing of their algorithm carried out in this thesis has uncovered 

serious convergence problems, and shown that this lack of convergence 

is due to the very degenerate nature of the LP decomposition master 

problem. The hope that the embedding of this formulation into the 

branch-and-bound algorithm of Chapter 5 would overcome the convergence 

problems did not materialize, in spite of the large perturbations 

caused by the branching. 
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CHAPTER TWO  

LITERATURE SURVEY 

2.1 Introduction  

Historically, contemporary location analysis started with Alfred 

Weber [101], who examined the location of a plant with the objective 

of minimizing transportation costs in relation to three points (two 

sources of raw materials and a single market). In one form or another, 

this is a very old problem in pure mathematics. It was considered as 

early as 1647 by Cavalieri. Fagnano, Tedenat, Heinen and Steiner 

made important contributions to its solution from the middle of the 

18th to the middle of the 19th century [.us]. 

It is not the objective of this survey to make a very detailed 

review of the literature on facility location. Detailed surveys are 

available elsewhere, such as those by Eilon et al. [27, Chapter 2], 

Revelle et al. 09] and Domschke [23]. The vastness of published 

work on location analysis is atested by the 226 papers listed by 

Francis and Goldstein [35]  in their selective bibliography. Elshafei 

[28] gives a total of 82 references in a recent survey of facility 

location studies. 

After a brief review of the general area of location analysis, 

the present survey concentrates on the p-median and related minisum 

network location problems. 

2.2 Location with infinite solution space  

The facility location problem with a minisum objective and in-

finite solution space is examined in depth in chapters 3 to 6 of [21. 

Numeric-analytic heuristic methods can handle non-linear cost functions, 

provided that the cost functions are monotonic and continuous. 	In a 

more recent paper, Watson-Gandy and Eilon [100] investigate dis- 
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continuous delivery costs. 

Multifacility location problems with infinite solution space are 

also called multisource Weber problems. They are divided into 

Euclidean and rectilinear distance problems, depending on the metric 

according to which distances are measured. 	In Euclidean distance 

problems distances are measured according to 

dlj  = (x. - x.)2  + (Y 	Y)2 , 	(2.1) - 	j 

where 

(13.
.j - distance between points i and 

and 
th 

(xi' y.) - coordinates of the . 
	

point in a rectangular 

system. 

Rectilinear distance problems have their distances measured by 

d.. 
1J 

= lx. 1  - x. 	1 	J 
1 + I y. - Y-1 . J  

(2.2) 

The multisource Weber problem has been investigated by Cooper 

[16, 17, 18] , Kuenne  and Soland [66, 67] and Morris [82] among 

others. A related problem, that of locating new facilities in 

relation to existing ones has been the object of several papers, by 

Cabot, Francis and Stlry [11] , Rao [88] and Juel  and Love [56]. 

In its simplest form, the Weber problem involves m customers with 

known location on a plane, the location of customer being determined 

by a pair 
(xj'j  

y ) of cartesian coordinates. The problem is to 

determine the coordinates (xi,y1) of each of a given number P  of 

facilities to serve the m customers, so as to minimize the following 

cost function: 

p m 
C = E 	Ev. d. 

ij 	lj ' j=1 i=1 =1 
(2.3) 

where 
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v. 	- weighting factor related to customer ,j,,. 

d.. 
1j 
 - distance between facility i and customer ,j., given by: 

Equation (2.1) [Euclidean metric] , or 

Equation (2.2) [Rectilinear metric]. 

dij
=  

{

1 if customer _i_ is served from facility i 

0 otherwise 

 

If there are no capacity or other constraints, the solution to 

the above *problem can be found through partial differentials with 

respect to xi and yi: 

ax. 	j = E [E..vj  (x.1
-x.) di 	

= 0, i = 1,...,p 
ij   j=1 

3C 11  - Ej 	j 	
ij = 0, i = 1,...,p 

3C 

If equations (2.1 ) and (2.5) are solved for xi  and yi  it follows 

that 

x. = E (..v.x./d..) / E 	i = 1,...,p 
1 	lj 	10 	. 	lj 	10 

j=1 	j=1 
(2.6) 

y. = E (..v.y./d. ) / E (..v./d..), i = 1,...,p 	(2.7) 
1 ._ ij 	ij 

J-1 	j=1 lj j lj 

These equations can be solved iteratively, as shown by Eilon et al. 

	

[27] and Cooper [16]. 	Let the superscript k indicate the iteration 

parameter.Theiterationequationsforx.1  and y.1  are simply [16]: 

m 	m 
k+1 	k . / 	k . 
x. 	.=. E (..v.x./d..) / 	E (..v./d..), 	i = 1,...,p 	(2.8) 
1 	. 	ij j j lj 	j=1 13 	13  j=1 

Yi 
k+1 	k / / = 	j 10 E ( 2 .v.y/d..) 	E 	

13 	
i = 	...,p 	(2.9) 

j=1 	j 	j=1  lj j  

After each iteration the customers are reallocated to the relocated 
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facilities,andthe. li sare modified prior to the next iteration. E 

It has been shown by Palermo [85] , Kuhn and Kuenne [70] and 

Haley [51], that Equation (2.3) is convergent in the case of a single 

facility (p=1): the cost function being convex, it has a single 

unique optimal solution. 	In the general case (p > 1) Equation'(2.3) 

has multiple local minima and the iterative scheme of Equations (2.8) 

and (2.9) only converges to a local minimum. 

2.3 Location with finite solution space  

A simplified definition of the facility location problem with 

finite solution space is as follows. 	Given a number of demand points 

for a certain product, each with a demand Dj, 	 - a number of alternative 

sites where facilities may be built to satisfy these demands, determine 

where the facilities should be placed, and which demand points are to 

be served by each of the facilities [87, 89]. There may or may not 

be restrictions on the size (capacity) of the facilities. The 

objective is to minimize the sum of the fixed costs of the facilities 

plus the variable transportation costs. 

When there are restrictions on the size of the facilities the 

problem is usually called the capacitated facilities location problem. 

If these restrictions do not exist, the problem is known as the un-

capacitated (or the simple) facility location problem [61, 971. A 

general formulation for the uncapacitated facility location problem was 

given in Section 1.2. The general case in which there are restrictions 

on the size of the facilities can be formulated as [62]; 

Minimize 

Z = E F. y. + E 	E c. X. 1 	1j 1j iEI 	 ieI jEJ 

Subject to 

(2.10) 
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E X.. > D., j e J 
iEI 1J  - J  

E X
i 
 < S.y., i E I 

jEJ j = 1 1 

y. E {0,1}, i E I 

X. > 0, i E I, j E J 
ij - 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

where 

X.. Amount supplied to customer i from facility i; 

D
j 
 - Demand at area .i; 

Si  - Capacity of facility i. 

The cost functions included in the objective function can be made 

more general than the one shown in Equation (2.10). Instead of the 

fixed costs associated with opening and operating a facility, and linear 

transportation costs, it may be necessary, in the case where the 

facility is a warehouse, to consider variable warehousing and delivery 

costs which are nonlinear [4, 5, 25, 31, 33, 65]. 

Perhaps the first algorithm to guarantee an optimal solution for the 

uncapacitated case was the one by Efroymson and Ray [25]. They assume 

thatthefixedcostF.is a single fixed charge. Their method can be 

also extended to include the case in which F. is concave and consists 

of several linear segments. 

Efroymson and Ray utilize a tree search algorithm.* They use 

a linear programming formulation that can be solved by inspectibn to 

resolve the subproblems at the nodes of the tree. 

Tree search or branch-and-bound algorithms are examined in more 
detail in Chapter Five. A good survey on branch-and-bound methods 
is provided by Lawler and Wood [71]. 
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Spielberg [94, 95] has considered essentially the same problem, 

but his algorithms contain added features that speed up computation 

and can accommodate some side conditions. Khumawala [60] reports 

good computational results for this class of problem. 

Algorithms for the capacitated case have been proposed by. Davis 

and Ray [201 , Gray [46], Marks [77] , Sat:'  [92] and Akinc and Khumawala 

M. Marks' model is more general in that he considers the facilities 

to be intermediate points between sources of productand the customers 

to whom these products are to be sent. 	In all algorithms of the 

above mentioned references for the capacitated case, transportation 

costs are assumed to be linear, and a fixed cost Fi  is associated 

with facility i. More general cost functions are considered by 

Soland [93] in a recent paper. 	All exact procedures mentioned above 

are branch-and-bound methods. 

2.4 Location on networks  

It was mentioned in Section 1.2 that location on networks is a 

special case of location in a plane with finite solution space. 	In 

network location problems the solution space is restricted to the 

arcs and vertices of the network, and distances must be measured along 

the arcs of the network. 

Network location problems are characterized by the nature of the 

objective function to be optimized. 	In problems involving the 

location of emergency facilities, such as hospitals and fire stations, 

the objective is to locate a given number of facilities so that the 

largest travel distance (or time) from any network demand centre to its 

nearest facility is minimized. These are the minimax network location 

problems. 	In other cases, such as in the location of depots in a 

distribution network, a more appropriate objective is to minimize the 

total distance travelled. The latter are the minisum location problems, 
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of which the p-median problem is a special case. 

Minimax network location problems are briefly reviewed in 

Section 2.4.1. 	This is followed by a much more detailed review 

of minisum problems, with special emphasis given to the p-median 

problem. 

2.4.1 Minimax location on networks  

There are a large variety of minimax network location problems. 

In a thorough and comprehensive study of the subject, Handler [52] 

identified ten different models for such problems. In order to 

facilitate the identification of the several models, Handler proposed 

the following notation: 

Facility Location Demand Location No. of Centres/ Network Type 
Set 	Set 	Max. Distance  

{} 	 {N} 	 P 6-1' 

where N,P denote the node and point sets,*, T, G denote tree and cyclic 

graphs, and p,s5 refer to the number of facilities and to the critical  

distance respectively. The critical distance is the maximal allowed 

distance between a demand centre and its nearest facility. The 

symbol "(3 	is used for inverse problems. 	In inverse problems what 

is sought is the determiniation of the minimal number of facilities (and 

their location), so that all demand centres are within a critical 

distance S from at least one of the facilities (see Section 1.1). 

The best known minimax network location problem is P/N/p/G. 

Demand centres are restricted to the vertices of the network, but 

facilities may be located either on vertices or on arcs connecting 

the vertices. This problem is known as the multi-centre problem or the 

The node set includes all vertices of the network.. The point set 
comprises all points of the network, either vertices or points on 
arcs connecting the vertices. 
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absolute p-centre problem. 	In its formulation the number p.  of 

centres is fixed, and what is required is their location so that 

the maximal distance between any vertex of the network and its 

nearest facility is minimized. 

The inverse of the absolute p-centre problem, denoted by 

P/N/6
-1

/G, can be stated as follows: 	For a given critical distance 6, 

find the smallest number (and location) of facilities, so that all 

vertices of the network lie within this critical distance from at 

least one of the facilities. This problem is closely related to the 

absolute p-centre problem, and usually the same method can be used to 

solve both problems. 

The State of the Art  

The vertex centre (N/N/l/G) and the absolute centre (P/N/l/G) 

problems were introduced and solved by Hakimi [48]. 	Goldman [44] also 

presented an algorithm for P/N/l/G, but the algorithm does not guarantee 

an optimal solution. As a special case of his algorithm, Goldman 

derived an efficient algorithm for P/N/1/T. 

• The absolute p-centre problem (P/N/p/G) was also proposed by 

Hakimi [49]. 	Subsequently, solution algorithms for this problem were 

produced by Minieka [80] and Christofides and Viola [15]. An 

algorithm for N/N/p/G was given by Toregas, Swain, Revelle and Bergman 

[sm. All algorithms mentioned above involve repeated solutions of 

generalized set covering problems. 

The work of Handler [52] represents a substantial advancement in 

the field of minimax network location problems. He developed better 

algorithms and studied problems that had previously received very 

little attention, such as P/P/p/G and N/P/p/G. 

Minimax problems can be also defined for the more general case of 

location in a plane, with distances measured according to either the 

Euclidean or the rectilinear metric systems. These formulations have 
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the characteristics of the models discussed in 2.2 and 2.3. 

They were the object of papers by Dearing and Francis [21], Elzinga, 

Hearn and Randolph [32] and Wesolowsky [103] , among others. 

2.4.2 p-Medians and absolute p-medians  

Minisum network location problems can take several forms, depending 

on the costs included in the objective function and the form of the 

constraints. In these problems the optimal locations of the 

facilities are called the medians of the network. The difficulty in 

solving such problems is not due to variations in the objective function 

or to additional constraints, but is inherent in the pure median problem 

itself. This thesis is concerned with the pure p-median problem. 

The generalized p-median problem, however, is briefly discussed at the 

end of this section. 

The Median and Multiple Medians  

For a given network N = (X,A) it is possible to define two trans- 

missimariumbersforeveryvertexx.
1 
 E X. 	Let 

and 

a (x.) = 	v. d(x.,x.) , 
x.EX 0 1 	j 	j 

J 

(2.15) 

where 

at  (x.) = 
	E 	v. d(x.,x.) , 

1 	J J 1  x.EX 
(2.16) 

d(x.,x.) - shortest distance from vertex x.1  to vertex x.;  

v. 	- weight of vertex x.. 

The numbers a01  (x.) and at(xi) (x.) are called respectively the outtransmission 

and the intransmission of vertex x.. 	The number a0  (x.) is the sum of 

theentriesofrowx.1  of a matrix obtained by multiplying every column 

of the distance matrix D(N) = [d (xi,xj)] by vj; at(xi) is the sum 

oftheentriesofcolumnx.of a matrix obtained by multiplying every 

row j  of the distance matrix D(N) by vj. 
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A vertex x
0 
 for which 

a0( 0) = Min [50(xi)] 
x.EX 
1 

(2.17) 

is called the outmedian of the network N, and a vertex
t for which 

at(;t)  = Nin [nt(xi)]  x.EX 
1 

(2.18) 

is called the inmedian of N. 

The single median can be readily generalized to the p-median. 

Let Xp  be a subset of the set X of the vertices of the network 

N(X, A), and let X contain 2 vertices. 	Define: 

 

d(X
PJ j 
, x.) = Min [d(x., x.)] , 

x.EX 
(2.19) 

and p 

 

d(x., X ) = Min [d(x., x.)] . 
J P 

 
x.EX 

j 
1 p 

(2.20) 

If x!
1  is the vertex of X which produces the minimum in equations 

(2.19) or (2.20), it can be said that vertex x. is allocated to x!
1. 

The transmission members for the set X of vertices are then defined 
p 

in ways analogous to those for a single vertex, i.e. 

and 

a (X ) = E 	v. d(X , x.) , 
x 0  P 

 
x.EX J P J j  

(2.21) 

a (X ) = E 	v. d(x., X ) , 
t x.EX J J P 

(2.22) 

where a0( p)and at(Xp) are the outtransmission and the intransmission 

of the set X of vertices. 
p 

A set 5C
P0 for which 

a0 (TpU  ) = Min [.T10(Xp
)] 

X CX 
P- 

(2 .23) 

is called the p-outmedian of.the network N, and similarly for the 
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p-inmedian. 

It is not computationally practical to use Equations (2.19) 

through (2.23) directly to find p-medians of networks of even 

moderate size. Hence the need to develop more practical methods 

for the computation of p-medians. 

Absolute p-Medians  

In order to simplify the discussion consider a nondirected 

network N, drop the suffices 0 and t and take the case of the 1-median 

first. 	The question arises as to whether there exists a point on 

some link (not necessarily a vertex) of N so that the transmission 

a(y) = 	E v. d(y, x.) 
	

(2.24) 
x:EX 

is less than that of the median of N. The point y with the minimum 

c(y) would then be called the absolute median of N. 

Goldstein [45] proved that an absolute median of a tree is always 

at a vertex of the tree. Hakimi [48] generalized Goldstein's result 

and proved that there is no point y with a(y) < a(x), i.e. 

Theorem 2.1 - There exists at least one vertex x of N'= (X, A) for which 

a(x) < a(y) for any arbitrary point y.  on N. 

In a later paper, Hakimi [49] generalized Theorem 2.1 to the case 

of absolute p-Mdians: 

Theorem 2.2 - There exists at least one subset X C X containing 2.  
P 

vertices, such that c(X
P
) < a(Y 

P 
 ) for any arbitrary set Y

P 
 of p points 

=  

on the links or vertices of the network N = (X, A). 

The proofs of Theorems 2.1 and 2.2 are given in [48] and [49] 

respectively. 

In view of Theorems 2.1 and 2.2 the search for optimal solutions 

to the p-mcdian problem can be limited to the vertices of the network. 

As a consequence, in the p-median problem the location of both demand 
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centres and facilities is restricted to the vertices of the network. 

The Generalized p-Median  

In the pure p-median problem the only costs to be minimized are 

variable costs associated with distances between vertices. 	The p- 

median problem can be made more general if fixed costs F. are 

associated with the vertices of the network, in the same way fixed 

costs are associated with potential facility location sites in the 

models of Section 2.3. The generalized p-median problem can be then 

defined as follows [12]. 

Given a network N = (X, A), with distance matrix D(N) = [d(xi, xj)], 

vertexweightsv.and vertex fixed costs F., the problem is to find a 

subset 3E containing 11 vertices so that 

Z = 	E 1 
 +. a(X ) 

x.EX p 

(2.25) 

is minimized. 

Thus the objective is to minimize not just the transmission a(X ) 

of )C but the total function Z which includes a fixed cost F. for every 

vertex x. in X . The p-median problem then corresponds to the case in 

which all F. are equal (say F) so that the first term of Equation (2.25) 

becomes a constant (equal to pF), and does not influence the search for 

the optimal set I . 

A version of the p-median problem that is often encountered in 

practice is one in which Xp  is not required to contain exactly E.  vertices, 

but any numbpr less than or equal to p. The problem becomes then to 

minimize Equation (2.25) subject to IX
P 
 I < p. 

Finally, the capacitated p-median problem can be also defined. A 

restriction on the maximum value that the number 

E 	vj  
x. allocated to x. 

(2.26) 
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cantakefor'dxi 
 EXpl can be added to the formulation of the p-

median problem. Equation (2.26) is a measure of the throughput 

transmitted from x., and is therefore also a measure of the physical 

size of a facility located at vertex xi. 

As already pointed out, the main difficulty in solving minisum 

network location problems rests with the pure p-median problem. 

Until this problem is satisfactorily resolved, there is little point 

in attempting to solve generalized p-median problems. 

2.4.3 Generalization of Hakimi's fundamental theorems  

Since Hakimi first proved Theorems 2.1 and 2.2 his results have 

been generalized by several authors. 

Transmission functions v()( ) defined as the sum of arbitrary concave 

functions of weighted distances are studied by Levy [73] , Goldman N1 

and Hakimi and Maheshwary M. Levy [73] proves that Theorems 2.1 and 

2.2 are valid for transmissions that are concave with respect to 

distance. 	In a later paper, Hakimi and Maheshwari [50] show that, 

under fairly general assumptions, one could, without loss of optimality, 

restrict the location of facilities to the vertices of the network in 

a wide range of minisum network location problems. Conclusions drawn 

by Hakimi and Maheshwari are: 

1. Theorems 2.1 and 2.2 hold when capacity constraints are placed 

on the arcs of the networks; 

2. The theorems will generally not hold for the capacitated case, 

unless the location of more than one facility at a single vertex 

is allowed. 

Wendell and Hurter [102] establish some necessary and sufficient 

conditions for optimal solutions to minisum network location problems 

to occur at the vertices of the network. They show that for problems 

in which: 
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1. There exist constraints on arc capacities, and 

2. Transportation costs are nondecreasing concave (this has been 

generalized to include cases in which these costs differ from 

arc to arc), 

Theorems 2.1 and 2.2 remain valid. 	These sufficiency conditions 

are very similar to some of the results obtained by Hakimi and 

Maheshwari [50]. 

Whereas some theoretical advances have been made in minisum 

network location problems, computational difficulties abound even for 

the pure p-median problem. A survey of solution methods available 

in the literature for the p-median problem is provided in the next 

section. 

2.4.4 Methods for the p-median problem 

Several algorithms, both exact and heuristic solution methods, 

have been proposed for the solution of the p-median problem. The 

exact solution methods are: 

1. Branch-and-bound algorithms [30, 55] ; 

2. Two different formulations of the linear programming (LP) relaxation 

of the integer programming (IP) formulation of the problem [41, 90]; 

3. An alternative approach via linear programming [78], based on 

Lagrange multipliers and parametric linear programming. 

Heuristic methods are reviewed in greater detail in Chapter Six. 

The more fundamental heuristics proposed for the problem, however, are 

briefly described in this section. 

Branch-and-bound Methods  

Jarvinen, Rajala and Sinervo [55] appear to have been the first to 

solve the p-median problem through branch-and-bound. Their algorithm 
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starts with all facilities "open".* A lower bound defined by the 

authors is then used to successively"close" facilities until exactly 

E.  facilities are left "open". 	The iterative process continues until 

all feasible solutions have been implicitly evaluated. 

A different branch-and-bound procedure was developed by El-Shaieb 

[30]. 	In his algorithm the tree branches represent assignments of 

sources (facilities) and destinations. 	Locations are added one at a 

time to either the source or the destination set to form the next 

branches. 	From each node of the tree there are two branches. One 

of the branches corresponds to adding a location to the source set, 

while the other branch corresponds to adding the same location to the 

destination set. At the end of each branch there is a node that 

contains the corresponding source and destination sets. 

Two lower bounds were developed by El-Shaieb for his algorithm. 

One of the bounds is reported to be efficient for small values of 2, 

whereas the other is shown to perform better for the larger values of 

The algorithm was tested for the 10, 20 and 30 major metropolitan 

centres in the United States, with p=2, 4 and 6. 

It is very difficult to compare the efficiency of El-Shaieb's 

algorithm to that of Jarvinen et al. Not only the test problems of 

the two papers are different, but also the computers and even the 

level of the programming languages used by the respective authors differ 

substantially. 

Khumawala, NEebe and Dannenbring [63] attempt to compare El-

Shaieb's algorithm with other exact and heuristic procedures for the 

p-median problem. In this attempt El-Shaieb's results are tabulated 

alongside results obtained through the following methods: 

An "open" facility is defined here as a vertex of the network 
temporarily assigned to be one of the medians. A "closed" 
facility is a vertex of the network temporarily assigned to the 
nonmedian set. 



34 

1. The Teitz and Bart heuristic method D8]; 

2. An algorithm originally designed for minimax network 

location problems; 

3. The Linear Programming/Group Theoretic algorithm of Garfinkel, 

Neebe and Rao [41]. This algorithm is reviewed below in some detail. 

Khumawala et al. conclude that a comparative evaluation is very 

difficult, and content themselves with making a few comments on each 

of the methods considered by them. 

A Linear Programming Relaxation of the Integer Programming Formulation 

of the Problem  • 

The integer programming formulation of the p-median problem has 

already been given in Section 1.2 [Equations (1.7) to (1.11)1. 	For 

the sake of convenience this formulation is repeated below: 

Minimize 

= E 	E d.. F.. iEI jEJ 13 13  

Subject to 

E E.. = 1, j e J 
iEI 13  

E g.. p 
iEI 11 

(2.27) 

(2.28) 

(2.29) 

13 .. 	E. 1.1,  =  
iEI,  j EJ C  ;4_ t 	(2.30) 

{

1 if customer i is allocated to facility i 

0 otherwise 

If the {0,1} constraints represented by Equation (2.31) are relaxed 

to 

ij > 0, 	i E I, j E J 	 (2.32) 
= 

glj.. = (2.31) 
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the resulting problem is a linear programming problem. Note that 

in the LP relaxation an upper bound of value 1 on'.. is not necessary, ij 

since ij 
 < 1 is implied by Equation (2.28). 
= 

Revelle and Swain [Mused the IBM Mathematical Programming 

System (MPS) package to solve the general LP formulation given by 

Equations (2.27) to (2.30) and (2.32). 	They report that a 30-vertex, 

6-median problem required 173 MPS iterations and 1.51 minutes of 

computer time to converge to an optimal integer solution on an IBM 

360/65. 

The solution to the LP is not necessarily all-integer and 

fractionalvaluesof. lj 
 can and do occur. Revelle and Swain report, 

E  

however,thatfractionalvaluesof.occur, 	rarely. In the unlikely 

event of a non-integer solution, they recommend a branch-and-bound 

scheme to resolve the problem with integers. Unfortunately, very 

little computational experience is reported with respect to the 

branch-and-bound scheme. 

The main problem with the general LP formulation above is that it 

produces very large linear programmes. For a network of n vertices, 

the number of variables n2  and the number of constraints n2  + 1. Revelle 

and Swain suggest cutting down the number of constraints by adding the 

assignment constraints given by Equation (2.30) only as needed. 	In a 

generalization of the LP relaxation to a class of location-allocatiOn 

problems, Morris [81] experimented with this technique. 	He concludes 

that even when this procedure is used, the use of LP for large scale 

problems is precluded. 

Garfinkel, Neebe and Rao [11:0 solve the LP relaxation by decomposition, 

thus considerably reducing the size of the problem. 	In their decomposition 

formulation the LP basis of the master problem contains only n + 2 rows, 

and each of the n subproblems can be solved by inspection. Due to the 

very degenerate nature of the LP basis of the master problem, however, 
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in many cases the algorithm fails to converge. This lack of 

convergence is a very serious problem, and prevents the decomposition 

formulation from effectively solving the problem. 

Difficulties with convergence are practically not mentioned by 

the authors of [41]. An extensive study of this phenomenon is made 

in Chapter Three of this thesis. The general LP formulation of Revelle 

and Swain is also discussed in the same chapter. 

In the Garfinkel et al. paper, the LP decomposition formulation 

represents only part of the work. In cases of non-integer termination 

of the LP, the integer formulation of the problem is attacked through 

group theoretic techniques and a dynamic programming recursion. 

Garfinkel et al. report some computational experience with their 

proposed procedures. 

Finally, an alternative approach via linear programming is given,  

by Marsten rm. He shows that the solution corresponding to the 

optimal p-median of a network [as described in Equations (2.27) to 

(2.31)] , is an extreme point of a certain polyhedron H, and that 

all other p-medians for 1 < p < n are also extreme points of H. Using 

Lagrange multipliers and parametric linear programming, Marsten gives a 

method of traversing a path among a few of the extreme points of H. 

This path successively generates the p-medians of the network N in 

descending order of p, although for some values of pt  the solution may 

be missed and never generated, or, conversely, extreme points of H may 

be generated which do not correspond to p-medians of N, i.e. contain 

fractional values of E... 
1] 

Thus, although Marsten's method is both theoretically and 

computationally attractive, it may fail to produce the p-median of a 

network for the specific value of 1L that may be required. 	In [78] 

Marsten reports the case of a complete 33-vertex network, all of whose 

optimal p-medians were successfully generated for p = 33,32,...,10, 
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but whose optimal 9-median and 8-median could not be obtained by 

his method. 

Heuristic Methods  

Heuristic methods for the p-median problem first appeared in 

papers by Maranzana [76] and Teitz and Bart [98]. 	The method put 

forward by Maranzana parallels in several respects one of the heuristics 

devised by Cooper in [17] for the continuous case. 	This method is 

referred to as the partition method, and in essence is approaches the 

p-median by finding successive single vertex medians of p subsets of 

destination vertices, each associated with one source, and then adjusting 

the subsets before repeating the process. A similar approach was later 

studied by Surkis [96].- 

Teitz and Bart [98] describe a heuristic method based on vertex 

substitution. The method proceeds by choosing any p vertices at random 

to form an initial set S, which is assumed to be an approximation to the 

optimalp-mediansetX
P
.Themethodthentestsifanyvertexx.E(X-S) 

can replace a vertex x. E S and so produce a new set S' = S U {x.} - ix.} 

yielding a better solution to the problem than the solution implied by 

the set S. 	If so, vertex xi  is replaced by vertex xi  and a new set S' 

is obtained which is a better approximation to R.  . The same tests are 

now performed on the new set S', and the procedure is repeated until a 

set S is finally obtained for which no replacement of any vertex in S 

by a vertex in (X - §) produces a set whose implied solution is better 

than the solution produced by S. This final set S is then taken to be the 

required approximation to 3c . 

Contrary to what was initially conjectured by Revelle et al. msq, 

the vertex substitution method does not produce an optimal solution in 

all cases. 	Counter examples to this conjecture can be found in [12] and 

[551 
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Due to the importance of the methods of Maranzana [76] and 

Teitz and Bart [0], they will be described in greater detail in 

Chapter Six. 

2.5 Conclusions  

Thep-median and related network location problems have been 

surveyed in the present chapter. In addition, network location 

models haVe been related to more general models in location analysis, 

of which they are a special case. The survey was not only concerned 

with models and methods of solution, but also with definitions, 

theorems and cost functions of interest for the problems covered in 

the survey. 

The fundamental theorems for the p-median problem are those of 

Hakimi [48, 1i9] , and their extensions by Goldman [42] , Levy [73] , 

Hakimi and Maheshwari[50] and Wendell and Hurter taxxl. These results 

were reviewed, and this was followedbya survey of exact and heuristic 

solution methods currently available to solve the p-median problem. 

Although remarkable theoretical progress has been made in relation 

to the p-median and other minisum network location problems, much remains 

to be done in the computational side. This is particularly true for the 

pure p-median problem. 

For this problem, branch-and-bound algorithms were developed, but 

the lack of efficient lower bounds only allow them to solve the problem 

for medium-size networks. There are yet unsolved problems in both 

formulations of the LP relaxation of the p-median problem. Existing 

heuristic procedures can be further extended. 

The following chapters attempt to overcome these difficulties. 

New ideas and solution procedures are developed, and they represent 

a contribution towards solving the computational difficulties of the 

p-median problem. 
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CHAPTER THREE  

LINEAR PROGRAMMING FORMULATIONS OF 

THE RELAXED p-MEDIAN PROBLEM 

3.1 Introduction  

The integer programming formulation of the p-median problem - 

and its corresponding LP relaxation - have been introduced in 

Chapter 2. 	Garfinkel et al. [L1] solved the LP relaxation by 

decomposition, thus considerably reducing the size of the linear 

programme. Due to the very degenerate nature of the master 

problem, however, serious difficulties with convergence prevent 

the relaxed p-median problem from being solved by decomposition 

in many cases. 

The importance of the linear programming formulations stems 

from the fact that in the majority of the cases the solution to the 

linear programme is all-integer, thus also being a solution to the 

p-median problem. 	It is true that fractional LP solutions do occur, 

but these occurrences are rare. Fractional solutions generally 

occur for highly contrived cost matrices, difficult to represent in 

terms of an actual network. The data in these contrived matrices 

follow the pattern of the cost counter-cycles mentioned by Revelle 

and Swain [90]. 

In the present chapter both the general formulation of Revelle 

and Swain and the decomposition formulation of Garfinkel et al. are 

studied in detail. Some computational experience is reported for the 

general formulation. An example of a contrived cost matrix is also 

presented. 

The decomposition formulation is studied in far greater detail. 

In order to illustrate the method, a small example is solved by hand. 

Then computational results show the extent of the difficulties with 
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convergence. Finally comments of a general nature are made in 

relation to the convergence of the algorithm. 

The importance of eventually overcoming the convergence 

problems of the decomposition formulation explains why the main 

part of this chapter has been dedicated to this method. If the 

difficulties arising from the lack of convergence of the algorithm 

can be solved, then the decomposition formulation, in conjunction 

with its embedding into branch-and-bound algorithms, can be used 

to solve the p-median problem for large-scale networks. 

3.2 The General Linear Programming Formulation  

The integer programming formulation of the p-median problem has 

already been given in the first two chapters of this thesis. A 

formal statement of this formulation [12, Chapter 6] is now given 

in the following. 

Let[Ei j] 	if 

vertexx.isallocatedtovertexx.,.=0 otherwise. gli 

Further, let gii = 1 imply that vertex xi  is a median vertex 

and let E..11 = 0 otherwise. The p-median problem can be then 

stated as follows: 

Minimize 
n n 

= E 	E d.. g. 
j.1 13 13  

Subject to 

(3.1) 



and 

C.. = 0 or 1, ij 

la 

(3.5) 

where [d..13] is the weighted distance matrix of the network, i.e. the 

distance matrix of the network with every column sl  multiplied by a 

weight v.. 

It is worthwhile to discuss the meaning of the constraints of 

this integer programme. • Equation (3.2) ensures that any vertex x. 

is allocated to one and only one median vertex x.. 	Equation (3.3) 

guarantees that there are exactly E medians, and Equation (3.4) makes 

sure that C.. = 1 only if C..11 = 1, i.e. non-median vertices are only 
ij  

allocated to vertices that are in the median set. 	If [C..] is the 
ij 

allocation matrix corresponding to the optimal solution, the optimal 

p-median is given by 

p 
= {x. I 

11 = 1}. 	 (3.6) 

As already noted, if Equation (3.5) is replaced by 

ij 
> 0, 	i,j = 1,...,n , 	 (3.7) 

the resulting problem is the linear programming relaxation of the p-

median problem. It has also been already pointed out that in the LP 

ij

relaxation an upper bound of value 1 on ij  is not necessary, since 

< 1, i,j = 1,...,n, is implied by Equation (3.2). 
= 

Solving the linear programme  

Revelle and Swain [90] used a standard IBM mathematical programming 

package (MPS) to solve the formulation given by Equations (3.1) to (3.4) 

and (3.7). 	Their experience with this formulation was reported in 

Chapter 2. The main interest of this research in the general formulation 

is not in the formulation per se, but in the possibility of embedding it 
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into the branch-and-bound algorithm of Chapter 5. It was decided 

therefore that a simple computer code should be used to solve the 

LP, i.e. a code that could be easily adapted to be activated at 

every node generated by the branch-and-bound algorithm. 

The code chosen for this purpose was a Nottingham Algorithms 

Group (NAG) subroutine. 	This subroutine is not especially 

efficient, as it stores all the data for the LP in the central 

processing unit of the computer. 	Consequently, due to the size of 

the linear programmes generated by the general formulation, it was 

not possible to go beyond a 10-vertex network when using the NAG 

subroutine to test this formulation of the LP. 

The experience with the embedding of the general formulation 

into the branch-and-bound algorithm of Chapter 5 is described in 

that chapter. In the present chapter only some computational 

results of general interest to this approach are given. 

Computational experience  

It was not easy to find a small network for which the LP relaxation 

of the p-median problem would yield a fractional solution for a given 

1 <p < n. 	Confirming the experience of B.velle and Swain [90], non-  

integer solutions were only obtained for highly contrived matrices 

with cost counter-cycles. Garfinkel et al., however, do provide in 

their paper [41, p. 231] a 10-vertex network for which the LP relaxation 

yields a fractional solution for p = 3. This network is shown in 

Figure 3.1. 

In Figure 3.1, the numbers alongside the arcs are distances 

between vertices. All vertices have unit weights. The LP relaxation 

of the problem was solved and the following solution was obtained for 

P = 3: 



Figure 3.1 

10-vertex network of Garfinkel et al. [41, p.231] 
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E11 = E12 = E1,10 = 0.5 

E21 = 22 = C23  = 0.5 

E53 = E

• 

54 = E

• 

55 = E56 = E

• 

57 = 0• .5  

.714 = E

• 

75 = E

• 

76 = E77 ='E

• 

78 = 0• .5  

E99 
= 0.5 

E10,8 = E10,9 = E10,10 . 0.5  

The value of the objective function for the solution  above is 

35.5. The solution to the optimal 3-median of the network of Figure 

3.1 consists in fact of six different 3-vertex sets, all with an 

objectiv'e function equal to 36. 	It is interesting to note that for 

this network, for all other possible values of 2 the solution to the 

LP is all-integer, and therefore also a solution to the corresponding 

p-median problem. 

It took 153 iterations of the simplex method and 70.69 CDC 6400 

seconds for the LP to converge to the fractional solution shown above. 

Thus, the solution to the general LP formulation is not particularly 

fast. 

It has been pointed out that non-integer solutions to the LP 

relaxation of the p-median problem are often obtained for highly 

contrived matrices with cost counter-cycles. An example of this 

type of matrix is given in Figure 3.2. 

3.3 The Decomposition Formulation f41]  

Consider the LP relaxation of the IP formulation of the p-

median problem (Equations (3.1) to (3.4) and (3.7) of Section 3.2). 

It is possible to decompose the LP on the index i. The linking 

constraints will be (3.2) and (3.3), which together with the 

objective function will constitute the master problem, the basis of 

which contains only n+2 rows. Rewriting the LP in a form suitable 

for decomposition, the following results: 
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FIGURE 3.2  

Contrived Cost Matrix 

N = Large Number  
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Minimize 
n 

Z = E D. X. 1 1 i=1 

Subject to 
n 
E A. X. =b0  1 	0 i=1 

B. X. < 0 , 	i = 1,...,n 1 1 = 

X. > 0, 	i = 1,...,n 1 = 

where* 

D. . = Cd. 
,—i  

,d ) 
11n 

T 
1 	in 

I 
Ai  = [-41-1 

e. 1 

b0  = 
	,...,1, p] T 

(3.8) 

• (3.9) 

(3.10) 

(3.11) 

B. = [e ,e ei,...,en_11 1 	1 2"'"ei-1, Pn-1' 

0 = 10,...,01T  . 

	

identity matrix, In isthenth  1dentitymatrix,e.is the 	unit column vector of • 1 

appropriate dimension, pk  is a row vector containing k l's, and T 

denotes transpose. 

Note that the constraint set 

S. = X. 	B. X. < 0, X. > 0} 	(3.12) 1 	1 1= 	1= 

has one extreme point for each subproblem defined by (3.10) and (3.11), 

namely Xi  = 0. Then, if the null vector is considered to be a 

degenerate extreme ray, at any iteration one of the extreme rays of Si  

will be found. Thus the usual convexity constraints can be omitted 

from the master problem. 

( ) denotes a row vector, and [ ] a column vector. 
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Now let y1, k = 1,...,T, be the extreme rays of S
i. 	Then, 

using the notation of Hadley [47], the modified master problem is 

Minimize T. 
n 

= E ED. 
1 1 1 i=1 k=1 

Subject to 

T. n 
E 	E p. A. y. = b 

1 	0 i=1 k=1 1  

p. > 0 for all i,k 1 = 

(3.13) 

(3.14) 

(3.15) 

Given a feasible basis B to the master problem above, n subproblems of 

the form 

Maximize 

0.
1 
 = F. 

1 (3.16) 

Subject to 

B.
1 
 y.

1 
 < 0 
	

(3.17) 

y. > 0 
	

(3.18) 

must be solved. An optimal solution to the subproblem above will be 

anextremerayofSi,andF.=crA.-D. is the row vector of dual slack 1 	1 	1 

variables associated with the basis B. Because of the simple structure 

of A-
1, given a it is trivial to calculate F.1 

 without matrix multiplication, 

since 

F.=a. - D. , 
1 	1 	1 (3.19) 

where 
a. = 	, a. + 1 	1-1 	an+1, ai+1,—"an)  

If yt is an optimal solution to subproblem i with value 0t for a 1 	 — 	1 

given a.
1, then 

0 = Max 	01 
1<i<n 1 (3.20) 



48 

If 0 = 0, an optimal solution to the LP has been found. 	If 0 > 0, 

that vector y1 which yields 0 is brought into the basis. 1 

The subproblems can be solved by inspection. Letting 

(f in ) and y.1 	1 = (y.1'in )' the subproblems are of Fi 	il' 

the form 

Maximize 
n 

0. 	= 	E 	f. 
• 1 	ij 	ij j=1  

Subject to 

y..
ij - y1

.. 	< 0, 	j 	= 1,...,n 1  1 

y..ij 	> 0, 
	j 	= 1,...,n 

In order to solve the subproblems above, calculate 

t. 	= f.. 	+ 	E 	Max (0, f..) i 	11  iAj 	10 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

If t.
1 
 < 0, then y1 
= 

for all iAj 

Y
* 	_

- 

i j 

1 

0 

= 	j = 

if. f. 	> 

if f. 	< 
ij = 

1,...,n. 

0 

0 

If t;  > 0, then yli  = 1 and, 

(3.25) 

It should be noted here that 0. will also be maximized if, for 
1 

1 
t.1  > 0, y1. = 1, and, for all i0j 1 

1 if fij  ? 0 
Y* - - - ij 

0 if f. 	0 ij (3.26) 

This second possibility is not mentioned in [41], and although apparently 

not very significant, it has proved to be of some importance, especially 

when the convergence of the algorithm is studied. This point will be 

brought to attention again in Section 3.4.3. 

Thus if t. > 0, y1 is a binary n-vector with a one in the 1 Ah 1 	1 



	

{

d!. = d.. 	w 
11 	11 

0 
d!.10 = d1

.. for i0j , 	 (3.28) 

149 

position. The column introduced into the basis is easily seen to 

be 

1-14fr = A. y = 
1 1 1 

yi (3.27) 
1 

 

Since Ht is a binary vector, premultiplication by B 1  involves nothing 

more than addition of the columns of B 1  corresponding to the l's in 

H. Thus multiplications and divisions are not needed until the 

Pivot step. 

Initial basic feasible solution  

Because of the simple structure of the constraint matrix, initial 

basic feasible solutions are readily obtained without a 'Phase I' 

procedure. 	Two such possibilities are as follows. 

Initial Solution A 

Since d. > 0 for all i and j, it is clear that (3.2) can be 
= 

replaced by 

n 
E E. > 	, 

i=1 1°  - 
j = 1,...,n 	 (3.2a) 

without loss of any optimal solution. It would also be desirable to 

replace (3.3) by 

n 
E . > p. 

i=1 1i  
(3.3a) 

However, since dii  = 0 for all i, this would result in a median being 

located at every vertex. In order to avoid this, it is necessary to 

alter the distance (cost) structure so that 
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where W is an arbitrarily large positive constant. 	This has the 

effect of forcing equality in (3.3a), while adding the constant 2L4 

to the objective function. 

Now let X
P1 
' = {x!I iii = 1) be any feasible solution to the p- 

median problem. 	Generating X' is a simple matter. One can easily 

choose E vertices to be medians, and then assign nonmedian vertex x. 

to median x1.1 if dl*j  = Min d!., xi  a median, where ties may be broken 

arbitrarily. Without loss of generality, assume El
11  = 
	= E' = 1. 

This can always be achieved by renumbering the vertices. 

Now, in order to construct an initial basic feasible solution to 

the master problem, note that X' generates solutions to each of the 

2 subproblems defined from (3.21) to (3.23). 	These solutions are 

y-vectors of the form 

PP 

ei  

Yi  = 1 

where e. is the ith  

component is one if 

otherwise. Thus 2 

where the 1 is from 

with (n-p) surplus 

Thus  

(3.29) 

. unit p-vector, and qi 
	

his an (n-p)-vector whose jt  

vertex 
xP-1-i 

 isallocatedtomedianx.,and zero 

[I 	

1 

vectors of the form Yi  can be placed in the basis, 1 

constraint (3.3a). 	The basis is then filled out 

variables from (3.2a) and one from (3.3a). 

 

e1 I   --- 	ep  I 	---  I 	 
(3.30) B0  = 

ql 	--- 	ql°  I -e1 	--- 	- 
e
n-p+1 

  

or 
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Ip 
	 I 	 

B0  Q I -In-p+1 

p 
(3.31) 

where P is the sum p-vector (1,...,1). 	The basis B0  has the 

desirable property of being involutory (B
0  = B01), so that the dual 

variables are readily computed as 

a= DB BO
1  = DBB 0 ' ( 3.32) 

i 
and the initial LP solution is B0

1  b0 	
P
P' 
 0]

T 
 . Note that none of 

the last n-p+1 variables in B0  will be in the optimal LP basis at a 

positive level. 

Initial Solution B  

Another easily invertable basis that has the advantage over B0  

of containing only one surplus variable is 

Ip  I 0 I 

B1 = Q  	I n-p 	
0 

	

Pp  I P
n-p 	

-1 
	

(3.33) 

where Q is defined in (3.31). 	The matrix In-p corresponds to allocating 

vertices p+1 through n to themselves. The inverse of B
1 is 

 

Ip 	1 0 	12:-  

-Q 	I In-p  I 0 

(-p 
n-p 

 Q)+P 
p  P  n-p I -1 

 

B
-1 

= 1 

(3.31L) 

  

and the initial LP solution is Bl-b0  = [P 0] . 
p 

If B
1 is used (and assuming n-p>2) it is possible to remove, on the 

first pivot, the last column corresponding to the surplus variable. 

ThisisdonebyintroducingintoBl acolumnILcorresponding to vertex 

n (or (n-1)) being a median, with vertex (n-1) (or n) allocated to it. 
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Column H.
1  contains a 1 in the last three rows and zeros elsewhere. 

Thus, 

B-1 H. = H. 1 	1 	1 ' (3.35 ) 

and H.
1  can be introduced into B1 and the last column dropped. . 

Basis B
1 was the one actually used when the LP decomposition 

algorithm was coded, and for which computational results are given 

in a later section of this chapter. 

3.4 The Decomposition Formulation Studied in Detail  

The mathematical derivation of the decomposition formulation was 

given in Section 3.3. 	This formulation is now studied in detail. 

The decomposition formulation is initially illustrated by means of a 

small example solved by hand. Then computational results are given 

in 3.4.2. Finally degeneracy and the problems with convergence are 

diScussed in Section 3.4.3. 

3.4.1 A small example solved by hand  

It was thought that the best way to illustrate the decomposition 

formulation would be to solve a small example by hand. 

The initial basic feasible solution used for this purpose was 

Initial Solution A, despite the fact that Initial Solution B was 

used when the algorithm was programmed for the computer. Initial 

Solution A was chosen for the illustration because this was considered 

the best way to give a 'physical' interpretation to this formulation of 

the problem. 

Consider the complete directed 4-vertex network whose distance 

matrix is given in Figure 3.3, and for which the optimal 2-median must 

be found. If the structure of the distance matrix is altered as per 

Equation (3.28), the matrix of Figure 3.4 is obtained. 
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X1 

TO 

x4 X2 	X3 

0 1 2 3 

0 x2 3 0 1 2 

x3 4 3 0 1 

X14  3 2 2 0 

FIGURE 3.3 

Distance Matrix of Illustrative Example  

TO 

X
2 

X
3 

X
4 

Xi 

X
2 

X
3 

x4 

FIGURE 3.4  

Modified Distance Matrix 
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The data for the LP decomposition formulation of Equations (3.8) 

to. (3.11) are then 

D
1  = (W, 1, 2, 	3) X1 = (C11' C12' C13'  1)4)T 

D
2 
= (3, W, 1, 2) X2 = (C21' C22' C23' )T 

D
3 
= (4, 3, W,-1) 3 = (C31' E32' 33' 34)11  

D4 = (3, 2, 2, W) = (C41' q42' )43' )+14)T  

0 0 

0 0 	0 1 0 

Al  = 0 1 	0 ; A
2 
= 0 0 1 0 

0 	0 0 	1 0 0 0 1 

0 	0 1 0 0 

1 6-  0 0 0—  

0 o o 1 0 0 

0 1 	0 ; o 0 1 0 A
3 

0 	0 0 0 0 1 

0 	0 1 	0 0 0 o 

b
0  = [1, 1, 1, 1, 2[

T 

-1 	1 o 6-  a -1 

B1  -1 	0 1 	0 B2 = o -1 1 0 

-1 	0 0 o -1 0 

0 -1 	6-  o o 

B
3  

o 1 -1 	0 ; B)4  = 0 1 0 -1 

0 	0 -1 o 0 1 -1 

Then, if Equations (3.8) to (3.11) are written in full, the following 

is obtained: 
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1. Equation (3.8) 

Minimize 

4 
Z = E D.X. = Cff,1,2 	E ,E 1 1 	' 	11' 12' 1 	14 

1=1 

+ . (3,2,2,W) (-E41,-E42,-E43,-E  44 

= w E
11 

1)(
12 

+ .. 	2xC43 	W E44 ' 
Subject to 

2. Equation (3.9) 

  

   

4 
E 

1=1 

o 

o 

o 

1 

o 

1 

o 

o 

o 

A.X. 	= 

o 6-  

o o 

1 	o 

o 1 

o o 

b 
0 
	
, 

E11 

E12 

E13 

E14 

or 

+ • • • + 

0 

0 

0 

0 

o 

1 

0 

0 

0 

o 

0 

1 

0 

0 

6-  

0 

0 

1 

1 

E41 

E42 

E44  

1 

1 

1 

1 

2 

or, finally, 

E11 E21 31 4. 41 = 1 

E12 E22 4- 32 + E42 = 1 

13 E23 E33 E43 = 1  

1/4. 214 E -34 E44 = 1  

E11 22 E33 E44 = 2  

Equations (3.8) and (3.9) correspond to the master problem. 

Turning now to the subproblems, given by Equations (3.10) and (3.11): 

3. 	Subproblem 1 (1=1)  

B1  X1  < 0 = 	' X
1 
 > 0 

+ 

T 

or 
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or, finally, 

-1 	1 

-1 	0 

-1 	0 

- 11 

-C11 

- .11 

0 

1 

0 

+ C 	< 12 = 

+ E13  < = 

111 

0 

0 

0 

0 

' 

11 
CI2 

13 
E114 

0 

0 

0 

and 

g1j =' > 0 	j = 1,...,4, •  

and similarly for the other three subproblems. 

It is now possible to understand more easily the meaning of the 

vectors Y.,k = 	1 described in Section 3.3 as the extreme 

rays of Si. They are vectors for which either 

A. y
ij  
.. = C.. = 0 	for all j , 1J 

or 

B. yii  = Eii  = 1 and yij  = gij = 0 or 1 for all j&i 

The value of yii  in the above is yii  = 1 if vertex xi  is assigned as a 

median,and. Yli =0 otherwise. When a vertex x. is assigned as a 

median,.=1 indicates that vertex x. is allocated to median x. Ylj 	 1 

and yij = 0 otherwise. 

Any of the subproblems can generate 2n-1 vectors that satisfy 

Equations (3.10) and (3.11) for a specific i. 	Not all these vectors, 

however, can be considered as candidates to enter the basis of the 

master problem, since at every iteration the number of medians must 

be equal to E  in order that feasibility is maintained in the master 

problem. The problem then is, all subproblems considered, to enter 

the basis of the master problem as few vectors as possible before the 

optimal solution to the LP is obtained. This explains the procedure 



i=2 V2 

S3 
S14 

S
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developed to choose the vector to enter the basis of the master 

problem at every iteration of the algorithm. 

In the following the decomposition formulation is applied to 

find the optimal 2-median of the network whose distance matrix is 

shown in Figure 3.3. 

Initial basic feasible solution  

In order that an initial basic feasible solution is generated 

for the problem, let xl  and x2  be assigned as medians, i.e. let 

X2 = {xl, x2}. If x3  and x4  are then allocated to the two medians 

above in the best possible way, the following is obtained: 

g11 = 

E22 = E23 =  E24 = 1 , 

and 

cf(X) = 3 

The next step is to generate B0, given by (3.31): 

1 0 0 0 0 

0 1 0 0 0 

B0  = B
-1
0 	= 0 1 -1 0 0 

0 1 0 -1 0 

1 1 0 0 -1 

The initial LP solution is 
- • ^ 
1=1 Vi  

= [P 0] T 

1 

1 

0 

0 
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where V
i=k 

me
a
ns the 2.th vector to enter the basis, with i = k 

implying that vertex xk  is the assigned median in this vector. 

S
3'4 

and S
5 are the vectors corresponding to the surplus 

variables. The initial ordered list of basic variables is then 

1=1 	=2 
V1  , V2

i 
 , S3, S4  and S5. 

The vector DB corresponding to the initial basis is 

D
B = (W, W+3, 0, 0, 0). Now a can be readily calculated from 

Equation (3.32): 

a = DBBO-1  = DBBO = (a1 
 ,a
2 
,a
3' 

 a, ,a
5 
 ) = (W, W+3, 0, 0, 0) 

It should be noted that the components of vector DB  are the cost of 

the allocations of vertices to medians implied by the corresponding 

column vectors in the basis. 

Solving the problem  

The 2-median problem is solved in the following. An optimal 

solution was obtained after six iterations. The interpretation of 

this optimal solution is given after the completion of the algorithm. 

Because of the nature of the decomposition formulation, the inverse 

matrix method, in the product form, was used to solve the master 

problem. For details concerning this method see Beale [6, Chapter 7]. 

First iteration  

The first step is to solve each of the four subproblems, so that 

0 and the vector to enter the basis can be determined: 

a
1 

= (a
1
+a
5'
a
2
,a
3
,a ) 	(w, W+3,0,0) 

a2 = (al'a2"5'a3'cY4)  = (W, W+3'0'0) 

a
3 
= (a

1
,a
2'
a
3+a5'a ) = (W, W+3,0,0) 

= (al“Y2'a3'crit+c75)  = (W' W+3,0,0) 
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Subproblem 1 

Fl = al 

Subproblem 2 

- D
1 

= (0, W+2, -2, 

0* = 	
1
= W+2 (>0) 

1  

y* = (1, 1, 0, 0)T 1 

-3) 

F2 = 2 - D2 = (W-3, 3, -1, -2) 

0*2  = t2  = W (>0) 

y*2  = (1, 1, 0, 0)T  

Subproblem 3 

F
3 
= a3 - D3 = (w-4, w, -w, -1) 

e*
3  

t
3 	

w-4 (>o) 

y*3  = (1, 	1, 1, 0)
T 	• 

Subproblem 4 

F4  = (34  - D4  = (W-3, W+1, -2, -W) 

=t4  = W-2 (>0) 

y = (1, 1, 0, 1)T  

O= Max 1 = 0* 

The vector to enter the basis is y*
1. The corresponding column to 

be introduced into the basis is given by Equation (3.27): 

H! = 
0 
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The vector to leave the basis must now be determined. 

a = B0' Hl 01 H* 1 

Now, calculate 

Min Bi/ai, ai  > 0 = Min (1/1, 1/1, 0/1, 0/1, 0/1) = 0 

Any of three vectors - S3, S or S
5 
- can be chosen to leave the basis. 

If S
3 is chosen, the new ordered list of basic variables is then: 

i=1 i=2 1=1 V1  , V2  . , V3  , S4  and S5. 

1 The inverse of the new basis,B0  , must be now calculated. 

Elementary matrices [6] are used for this purpose.* 

1 	—1 

—1 

1 

—1 	1 

—1 	1 

B-  0 T1  B-10 	= 

1 

0 

0 

0 

1 

-1 

0 

1 

0 

0 

1 

1 

-1 

1 

1 

0 

0 

0 

-1 

0 

0 

0 

0 

0 

-1 

The new a vector is then 

1-

1 

= T1 = 0 

0 

0_ 

Throughout this example, blank entries in the elementary matrices 
correspond to zeros. 

• 

1 
1 
1 
1 
1 

T1  = 
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and, finally, 

A 
D
B 
= 	W+3, W+1, 0, 0) 

a = DB  B0  = (W, 1, W+2, 0, 0) 

The next four iterations proceed in a similar fashion. At 

the end of the fifth iteration the situation is the following: 

i=3 Ordered list of basic variables : V . 6  , i=1 	i=1 v7 	, V3  i=1 	i=1 v4 	, v5  

T5   
 

1 

1/2 

1/2 1 

-1/2 1 

-1/2 1 

-1 0 0 0 1 

1/2 1/2 1/2 1/2 -1 

"-1 	-1 Bo 	= T5B0 .= -1/2 1/2 -1/2 -1/2 1 

1/2 -1/2 1/2 -1/2 0 

1/2 -1/2 -1/2 1/2 

1 

0 
A 
e = T

5 
= 1 

0 
0 

D
B = (W+1, w+6, w+i, W+2, W+3) 

A A 

a = DB BO = (4, 1, 2, 3, W-4) 
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Sixth iteration  

a1 = 1, 2, 3) 

a
2 
 = (4, 

a3  = (4, 

= 	(4, 

W-3, 2, 3) " 
1, W-2, 3) 

1, 2, W-1) 

Subproblem 1 

F1  = a - D 	= 	o, 0, 0, 

• 0*1 = 

y*1  = 

t 
1  
(0, 

= 0 

0, 0, T 0 

Subproblem 2  

F2 = a2 - D2 = (1, -3, 1, 1) 

= 2 = -3 + 1 + 1 + 1 = 0 

y*2  = (0, 0, 0, 0)
T 

Subproblem 3 

F
3 
= a

3 
- D3 = ( , -2, -2, 2) 

03= t3  - -2 + 0 + 0 + = 0 

yl = (0, 0, 0, 0)T 

Subproblem 4  

F4  = a - D4  = (1, -1, 0, -1) 

et=t4= -1 + + 0 + 0 = 0 

= (0, 0, 0, 0)T  

0) 

Then: 	0 = Max Ot = 0. 
i 	1  
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The optimal solution has been found. The value of this 

solution is 

a= 

V63  v6   

1=1 
V7  

1=1 
v
3 

v 

i=1 
5 

1 

0 

1 

0 

The interpretation of this solution is a fairly simple matter. As 

V6-3 i=1 
	 i=3 

v6  = v3 
= 1, the yl vectors generated in the fourth (V6  ) and 1 

first (V3 1) iterations respectively provide the solution to the 

problem. Therefore, 

0 
31 

E32 0 
i v
6
=3 
 

and 

1 

1=1 	El 
V
3 

1 

0 

E11 = El2 = 1 

33 = E34 
= 1 . 

The solution' to the LP is integer and therefore also a solution 

or 

1 

0 

E
33 

E34 
 

1 

to the 2-median problem. The optimal 2-median is then X
2 = fx x3}, 

with vertex x2 allocated to median x1 and vertex x4 allocated to 
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median x3. 
	

The cost of this optimal solution is a(X2) = 2, as it 

can be easily verified from the distance matrix of Figure 3.3. 

It is important to note that this matrix is not symmetrical and 

that the solution given above is optimal only for the direction 

i(r ow) 4-j(column). 	That is, this is an optimal solution only if 

customers are served from facilities, as in the case of depots 

supplying customers in a distribution network. The optimal solution 

for the di-rection 	- if, for example, the facilities are schools to 

which students must travel - is entirely different from the one above 

and can be obtained from the transpose of the matrix of Figure 3.3. 

3.1.2 Computational results  

Some computational experience with the decomposition algorithm 

is reported in [ 1a]. 	The algorithm is also independently assessed 

in the present section of this thesis. 	The examples used for this 

purpose are mainly from networks whose data were randomly generated, 

with unit weights given to all vertices. A description of how the 

data were generated, and the actual data corresponding to each of the 

randomly generated networks used to test the algorithm are given in 

the appendix. Where examples taken from other sources were used, their 

origin is clearly indicated in the appropriate table. 

The computational results of this section are shown in Tables 

3.1 to 3.3. The decomposition algorithm was tested in a CDC 6400 

computer, and initially single and double precision versions of the code 

were used. 	In addition, the effect of using a random initial basic 

feasible solution was compared with the possibility of using the Teitz 

and Bart heuristic method [98] for obtaining the initial basic solution 

for the algorithm. 

It was initially thought that the lack of convergence of the 

decomposition algorithm might be overcome through greater accuracy in 

the computations. 	Double precision and reinvertion techniques (see 
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Orchard-Hays [84]) are possible ways to obtain greater accuracy for 

this particular algorithm. Unfortunately the results produced when 

double precision was used were very discouraging. Consequently, 

attempts to solve the algorithm's convergence problems through greater 

accuracy were subsequently dropped. The results shown in Tables•3.1 

to 3.3 correspond to the single precision version of the code. 

In Table 3.1, results are shown for networks ranging from 5 to 

33 vertices, and for a wide range of values of E. Some of the problems 

were also tested with the initial basic solution obtained from the 

Teitz and.Bart heuristic method, and the corresponding results are 

shown in Table 3.2. Finally, in Table 3.3 the no heuristics option is 

compared to the heuristics one. 

The examination of Tables 3.1 to 3.3 clearly shows that as the size 

of the network increases (and more often for the smaller values of p) 

the algorithm fails to converge after the maximum allowed 1000 iterations. 

It can be also observed from these tables that when the algorithm 

converges to an optimal solution, this solution is integer in the vast 

majority of the cases. This is in line with the fact that the LP 

relaxation of the p-median problem usually produces all-integer solutions. 

The lack of convergence is the only drawback of the decomposition 

formulation, but it is unfortunately a very serious one. This is not 

made very clear in kJ. The results shown in this section, however, 

indicate that the lack of convergence prevents the algorithm from being 

used as a standard technique to solve the p-median problem. 

When the algorithm converges the method is very fast and requires 

less computer core  when compared, for example, with the general LP 

formulation. Whereas it took 70.69 CDC 6400 seconds to find the 

fractional LP solution (for p = 3) of the network of Figure 3.1 through 

the general formulation, the same example was solved in only 0.38 

seconds when the decomposition formulation was used. 
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The lack of convergence of this formulation is due to its very 

degenerate nature. This is discussed in Section 3.4.3. It is 

interesting to note that sometimes the optimal solution is reached 

but not "recognized" as such by the algorithm. Refer for example to 

the p = 1 and p = 4 test cases of the 30-vertex network of Table 3.1. 

In both cases the solution obtained at some iteration before the 

1000th was optimal, but the algorithm failed to recognize the 

optimality of these solutions. 

The use of a heuristic initial basic feasible solution  

In Table 3.3 the performance of the algorithm is compared for 

two different initial basic feasible solutions. It is perhaps 

surprising that convergence was obtained more consistently when a 

random (and usually worse) initial solution was used. This was the 

case for p = 2 and p = 3 in the 15-vertex network, p = 2, p = 8 and 

p = 9 in the 20-vertex network and p = 1 in the 25-vertex network. 

The reverse never occurred. 

From the data of Table 3.3 it looks as though the closer the 

initial solution is to the optimal, the less likely is the algorithm 

to converge. On the other hand, when convergence occurs in both cases, 

the number of iterations it takes to reach the optimal solution does 

not follow a discernible trend. Sometimes convergence is quicker 

when the heuristic initial solution is used, sometimes the opposite 

is true. The use of a random initial solution appears, therefore, to 

be the best option concerning the choice of an initial basic feasible 

solution for the algorithm. 

Computing times  

Computing 	times increase with n, but for a given value of 

n the number of seconds per iteration remains Practically unchanged 

as 2.  increases, decreasing only slightly as k approaches n for the 



Table 3.1 - Random Initial Solution  

i'roblem 
	Convergence 

	
Nature of 	Objective 

Size 
	 Solution 	Function 

	

Yes or No. of 	[Integer (I)' or 	Time in 
n 	No Iterations 	Fractional (F)] 	Value Optimal? Seconds 

++ 
2 Yes 2 I 3.0 Yes 0.03 

6++ 2 Yes 10 F 14.0 Yes 0.07 
++ 
9 

 
3 Yes 26 I 6.0 Yes 0.23 

10* 1 Yes 31 I 31146.0 Yes 0.35 
10 2 Yes 42 I 2049.0 Yes 0.47 
10 3 Yes 32 I 1524.0 Yes 0.33 
10 4 Yes 26 I 1187.0 Yes 0.29 
10 5 Yes 23 I 882.0 Yes 0.25 
10 6 Yes 24 I 579.0 Yes 0.26 
10 7 Yes 11 I 294.0 Yes 0.12 
10 8 Yes 7 I 163.0 Yes 0.09 
10 9 Yes 2 I 75.0 Yes 0.06 
10 10 Yes 2 I 0.0 Yes 0.06 

10** 1 Yes 17 I 79.0 Yes 0.20 
10 2 Yes 28 I 47.0 Yes 0.32 
10 3 Yes 36 F 35.5 Yes 0.38 
10 4 Yes 9 I 26.0 Yes 0.10 
10 5 Yes 11 I 18.0 Yes 0.12 
10 6 Yes 9 I 12.0 Yes 0.11 
10 7 Yes 6 I 8.0 Yes 0.09 
10 8 Yes 6 I 5.0 Yes 0.09 
10 9 Yes 5 I 2.0 Yes 0.08 
10 10 Yes 4 I 0.0 Yes 0.08 

CPU Time, in CDC 6400 seconds 	* Example from Revelle and Swain [90, p. 38] 
++ Test caseprovided by A.W. Neebe (see Appendix) ** Example from Garfinkel et al. [41, p. 231]. 



Table 3.1 (cont'ed) - Random Initial Solution 

Problem 
Size 

Convergence Nature of 
Solution 

Objective 
Function 

Time in 
Seconds 

Yes or 
No 

No 	of 
Iterations n p 

[Integer (I.) or 
Fractional (1)] Value Optimal? 

15 1 Yes 34 I 809.0 Yes 0.69 
15 2 Yes 222 I 412.0 Yes 4.75 
15 3 Yes 171 I 294.0 Yes 3.82 
15 4 Yes 172 I 215.0 Yes 3.65 
15 5 Yes 160 I 150.0 Yes 3.31 
15 6 Yes 483 I 113.0 Yes 10.10 
15 7 Yes 63 I 93.0 Yes 1.23 
15 8 Yes 36 I 74.0 Yes 0.65 
15 9 Yes 26 I 57.0 Yes 0.50 
15 10 Yes 18 I 41.0 Yes 0.39 

20 1 Yes 41 I 1159.0 Yes 1.31 
20 2 Yes 387 I 724.0 Yes 13.86 
20 3 No 1000 - 523.0 No 34.69 
20 4 No 1000 - 511.0 No 34.75 
20 5 No 1000 - 476.0 No 34.92 
20 6 No 1000 - 392.0 No 35.72 
20 7 No 1000 - 356.0 No 34.96 
20 8 Yes 465 I 199.0 Yes 15.79 
20 9 Yes 132 I 175.0 Yes 4.03 
20 10 Yes 129 I 151.0 Yes 4.20 

CPU Time, in CDC 6400 seconds 



Table 3.1 (cont'ed) - Random Initial Solution 

Problem 
Size 

Convergence Nature of 
Solution 

Objective 
Function 

Time in 
Seconds 

Yes or 
No 

No. of 
Iterations n p 

[Integer (I) or 
Fractional (F)] Value Optimal? 

25 1 Yes 77 I 1352.0 Yes 3.41 
25 2 No 1000 F 980.50 No 53.02 
25 3 No 1000 - 732.0 No 52.16 
25 4 No 1000 - 790.0 No 52.68 
25 5 No 1000 - 763.0 No 52.59 
25 6 No 1000 F 411.33 No 52.07 
25 7 No 1000 533.0 No 52.32 
25 8 No 1000 - 415.0 No 52.23 
25 9 No 1000 - 393.0 No 52.17 
25 10 No 1000 - 354.0 No 51.72 
25 15 No 1000 - 184.0 - 50.84 
25 20 Yes 32 I 51.0 Yes 1.35 

30 1 No 1000 - 1432.0 Yes 74.67 
30 2 No 1000 - 987.0 No 73.95 
30 3 No 1000 F 767.0 72.43 
30 4 No 1000 - 610.0 Yes 72.62 ON 

kID 

30 5 Yes 692 I 516.0 Yes 49.52 
30 6 Yes 403 I 438.0 Yes 27.75 
30 7 No 1000 - 663.0 No 72.79 
30 8 No 1000 - 641.0 No 72.76 
30 9 No 1000 - 455.0 No 66.45 
30 10 Yes 196 I 265.0 Yes 12.49 
30 15 No 1000 - 286.0 No 67.74 
30 20 Yes 520 I 93.0 Yes 32.15 
30 25 Yes 16 I 41.0 Yes 0.81 

+ CPU Time, in CDC 6400 seconds 



Table 3.1 (cont'ed) - Random Initial Solution 

Problem 
Size 

Convergence Nature of 
Solution 

Objective 
Function 

Seconds 
Yes or 
No 

No. of 
Iterations n p 

[Integer (I) or 
Fractional (F)] Value 

Time in  
Optimal? 

+ 
33

+ 
 1 No 1000 - 37993.0 No 88.56 

33 2 No 1000 - 17592.0 No 88.67 
33 3 No 1000 - 14627.0 Yes 85.15 
33 4 Yes 830 I 12363.0 Yes 70.19 
33 5 Yes 699 I 10398.0 Yes 58.58 
33 6 No 1000  - 8862.0 No 83.17 
33 7 Yes 423 I 8119.0 Yes 35.12 
33 8 Yes 408 F 7460.0 Yes 33.39 
33 9 Yes 354 F 6846.0 Yes 26.78 
33 10 Yes 454 I 6267.0 Yes 36.14 
33 15 Yes 121 I 4314.0 Yes 8.28 
33 20 Yes 45 I 2786.0 Yes 2.49 
33 25 Yes 23 I 1564.0 Yes 1.27 

+ CPU Time, in CDC 6400 seconds 

++ Karg and Thompson 33 City Data [57, p. 2443 



Table 3.2 - Initial Eolution from Heuristics  

Problem 
Size 

Convergence Nature of 
Solution 

Objective 
Function 

Time in 
Seconds 

Yes or 
No 

No. of 
Iterations n [Integer (I) or 

Fractional (F)] Value Optimal? 

5
++ 2 Yes 1 I 3.0 Yes 0.04 
6++  2 Yes 5 I 14.0 Yes 0.06 
9++ 3 Yes 14 I 6.0 Yes 0.26 

10* 1 Yes 41 I 3446.0 Yes 0.49 
10 2 Yes 26 I 2049.0 Yes 0.35 
10 3 Yes 10 1 1524.0 Yes 0.21 
10 4 Yes 11 i 1187.0 Yes 0.21 
10 5 Yes 13 I 882.0 Yes 0.22 
10 6 Yes 27 I 579.0 Yes 0.32 
10 7 Yes 14 I 294.0 Yes 0.21 
10 8 Yes 6 I 163.0 Yes 0.10 
10 9 Yes 4 I 75.0 Yes 0.09 
10 10 Yes 4 I 0.0 Yes 0.11 

10** 
10 

1 
2 

Yes 
Yes 

34 
23 

I 
I 

79.0 
47.0 

Yes 
Yes 

0.42 
0.31 

H 

10 3 Yes 28 F 35.5 Yes 0.38 
10 4 Yes 6 I 26.0 Yes 0.20 
10 5 Yes 7 I 18.0 Yes 0.17 
10 6 Yes 12 I 12.0 Yes 0.25 
10 7 Yes 8 I 8.0 Yes 0.15 
10 8 Yes 5 I 5.0 Yes 0.11 
10 9 Yes 1 I 2.0 Yes 0.07 
10 10 Yes 1 I 0.0 Yes 0.07 

+ CPU Time, in CDC 6400 seconds (inclusive of time to perform heuristics) 	* Example from Revelle and Swain [90,p.381 
++ Test case provided by A.W. Neebe (see Appendix) 	 ** Example from Garfinkel et al. [41,p.231] 



Table 3.2 (contted) - Initial Solution from Heuristics  

n 

Problem 
Size 

Convergence Nature of 
Solution 

Objective 
Function 

Time i 
Seconds 

Yes or 
No 

No. of 
Iterations p 

[Integer (I) or 
Fractional (F)] 

Value Optimal? 

15 1 Yes 201 I 809.0 Yes 4.25 
15 2 No 1000 - 412.0 Yes 21.21 
15 3 No 1000 - 294.0 Yes 22.00 
15 4 Yes 293 I 215.0 Yes 6.66 
15 5 Yes 704 I 150.0 Yes 15.92 
15 6 Yes 256 I 113.0 Yes 5.97 
15 7 Yes 148 I 93.0 Yes 3.47 
15 8 Yes 60 I 74.0 Yes 1.52 
15 9 Yes 24 I 57.0 Yes 0.77 
15 10 Yes 31 I 41.0 Yes 0.79 

20 1 Yes 620 I 1159.0 Yes 23.03 
20 2 No 1000 724.0 Yes 37.68 
20 3 No 1000 518.0 Yes 37.51 
20 )4 No 1000 414.0 Yes 36.98 
20 5 No 1000 353.0 No 37.32 
20 6 No 1000 259.0 Yes 36.58 
20 7 No 1000 230.0 No 37.42 
20 8 No 1000 202.0 No 37.98 
20 9 No 1000 175.0 Yes 35.5o 
20 10 Yes 275 I 151.0 Yes 10.31 

+ CPU time, in CDC 6400 seconds (inclusive of time to perform heuristics) 

+ 
in 



Table 3.2 (cont'ed) - Initial Solution from Heuristics  

n 

Problem 
Size 

Convergence Nature of 
Solution 

Objective 
 Function 

Time in 
seconds 

Yes or 
No 

No. of 
Iterations 

[Integer (I) or 
Fractional (F)] 

Value Optimal? 

25 1 No 1000 1352.0 Yes 54.60 
25 2 No 1000 1027.0 No 56.59 
25 3 No 1000 777.0 No 59.17 	. 
25 4 No 1000 556.0 Yes 56.41 
25 5 No 1000 468.0 Yes 55.93 
25 6 No 1000 387.0 Yes 50.79 
25 7 No 1000 341.0 Yes 51.47 
25 8 No 1000 303.0 No 51.88 
25 9 No 1000 266.0 Yes 54.13 
25 10 No 1000 237.0 No 53.76.  
25 15 No 1000 128.0 - 51.82 
25 20 Yes 5 I 51.0 Yes 1.27 

CPU time, in CDC 6400 seconds (inclusive of time to perform heuristics) 



Table 3.3 - Comparison of random vs. heuristic initial solution  

Problem Size Convergence Objective Function • Time in Seconds
+ 

n p 

No Heuristics Heuristics No Heuristics 

or F 

Heuristics No Heuristics Heuristics
++  

Yes or 
No 

No. of 
Iterations 

Yes or 
No 

No. of 
Iterations or F Value Optimal? Value Optimal? 

+++ 
5 2 Yes 2 Yes 1 I 3.0 Yes I 3.0 Yes 0.03 0.04 
644+  +++ 

2 Yes 10 Yes 5 F 14.0 Yes 	- I 14.0 Yes 0.07 0.06 
9 

 
3 Yes 26 Yes 14 I 6.0 Yes I 6.0 Yes 0.23 0.26 

10* 1 Yes 31 Yes 41 I 3446.0 Yes I 3446.0 Yes 0.35 0.49 
10 2 Yes 42 Yes 26 I 2049.0 Yes I 2049.0 Yes 0.47 0.35 
10 3 Yes 32 Yes 10 I 1524.0 Yes I 1524.0 Yes 0.33 0.21 
10 4 Yes 26 Yes 11 I 1187.0 Yes I 1187.0 Yes 0.29 0.21 
10 5 Yes 23 Yes 13 I 882.0 Yes I 882.0 Yes 0.25 0.22 
10 6 Yes 24 Yes 27 I 579.0 Yes I 579.0 Yes 0.26 0.32 
10 7 Yes 11 Yes 14 I 294.0 Yes I 294.0 Yes 0.12 G.21 
10 8 Yes 7 Yes 6 I 163.0 Yes I 163.0 Yes 0.09 0.10 
10 9 Yes 2 Yes 4 I 75.0 Yes I 75.0 Yes 0.06 0.09 
10 10 Yes 2 Yes 4 I 0.0 Yes I 0.0 Yes 0.06 0.11 

10** 1 Yes 17 Yes 34 I 79.0 Yes I 79.0 Yes 0.20 0.42 
10 2 Yes 28 Yes 23 I 47.0 Yes I 47.0 Yes 0.32 0.31 ---1 

4.- 
10 3 Yes 36 Yes 28 F 35.5 Yes F 35.5 Yes 0.38 0.38 
10 4 Yes 9 Yes 6 I 26.0 Yes I 26.0 Yes 0.10 0.20 
10 5 Yes 11 Yes 7 I 18.0 Yes I 18.0 Yes 0.12 0.17 
10 6 Yes 9 Yes 12 I 12.0 Yes I 12.0 Yes 0.11 0.25 
10 7 Yes 6 Yes 8 I 8.0 Yes I 8.0 Yes 0,09 0.15 
10 8 Yes 6 Yes 5 I 5.0 Yes I 5.0 Yes 0.09 0.11 
10 9 Yes 5 Yes 1 I 2.0 Yes I 2.0 Yes 0.08 0.07 
10 10 Yes it Yes 1 I 0.0 Yes I 0.0 Yes 0.08 0.07 

+ CPU time, in CDC 6400 seconds 	++ Inclusive of time to perform heuristics 	++4. Test case provided by A.W. Neebe (see 
* Example from Revelle and Swain [90, p.38] 	** Example from Garfinkel et al. [41, p.231] 	Appendix) 



Table 3.3 (cont'ed) - Comparison of random vs. heuristic initial solution  

Problem Size Convergence Objective Function • Time in Seconds 

n 

No heuristics Heuristics No Heuristics 

or F 

Heuristics No Heuristics Heuristics ++ 

Yes or 
No 

No. of 
Iterations 

Yes or 
No 

No. of 
Iterations or F Value Optimal? Value Optimal? 

15 1 Yes 34 Yes 201 I 809.0 Yes I 809.0 Yes 0.69 4.25 
15 2 Yes 222 No 1000 I 412.0 Yes - 412.0 Yes 4.75 21.21 
15 3 Yes 171 No 1000 I 294.0 Yes - 294.0 Yes 3.82 22.00 
15 14 Yes 172 Yes 293 I 215.0 Yes I 215.0 Yes 3.65 6.66 
15 5 Yes 16o Yes 704 I 150.0 Yes I 150.0 Yes 3.31 15.92 
15 6 Yes 483 Yes 256 I 113.0 Yes I 113.0 Yes 10.10 5.97 
15 7 Yes 63 Yes 148 I 93.0 Yes I 93.0 Yes 1.23 3.47 
15 8 Yes 36 Yes 60 I 74.0 Yes I 74.0 Yes 0.65 1.52 
15 9 Yes 26 Yes 24 I 57.0 Yes I 57.0 Yes 0.50 0.77 
15 10 Yes 18 Yes 31 I 41.0 Yes I 41.0 Yes 0.39 0.79 

20 Yes 41 Yes 620 I 1159.0 Yes I 1159.0 Yes 1.31 23.03 
20 2 Yes 387 No 1000 I 724.0 Yes - 724.0 Yes 13.86 37.68 
20 3 No 1000 No 1000 - 523.0 No - 518.0 Yes 34.69 37.51 
20 14 No 1000 No 1000 - 511.0 No - 414.0 Yes 34.75 36.98 
20 5 No 1000 No 1000 - 476.0 No - 353.0 No 34.92 37.32 
20 6 No 1000 No 1000 - 392.0 No - 259.0 Yes 35.72 36.58 -4 ..11 
20 7 No 1000 No 1000 - 356.0 No - 230.0 No 34.96 37.42 
20 8 Yes 465 No 1000 I 199.0 Yes - 202.0 No 15.79 37.98 
20 9 Yes 132 No 1000 I 175.0 Yes - 175.0 Yes 4.03 35.50 
20 10 Yes 129 Yes 275 I 151.0 Yes I 151.0 Yes 4.20 10.31 

+ CPU time, in CDC 6400 seconds 

++ Inclusive of time to perform heuristics 



Table 3.3 (cont'ed) - Comparison of random vs. heuristic initial solution  

Problem Size Convergence 

or F 

Objective Function Time in Seconds+  

n p 

No heuristics Heuristics No Heuristics Heuristics No Heuristics Heuristics 

Yes or 
No 

No. of 
Iterations 

Yes or 
No 

No. of 
Iterations Value Optimal? or F 	Value Optimal? 

25 1 Yes 77 No 1000 I 1352.0 Yes - 	1352.0 Yes 3.41 54.60 
25 2 No 1000 No 1000 F 980.50 No - 	1027.0 No 53.02 56.59 
25 3 No 1000 No 1000 - 732.0 No - 	777.0 No 52.16 59.17 
25 4 No 1000 No 1000 - 790.0 No - 	556.0 Yes 52.68 56.41 
25 5 No 1000 No 1000 - 763.0 No - 	468.0 Yes 52.59 55.93 
25 6 No 1000 No 1000 F 411.33 No - 	387.0 Yes 52.07 50.79 
25 7 No 1000 No 1000 - 533.0 No - 	341.0 Yes 52.32 51.47 
25 8 No 1000 No 1000 - 415.0 No - 	303.0 No 52.23 51.88 
25 9 No 1000 No 1000 - 393.0 No - 	266.0 Yes 52.17 54.13 
25 10 No 1000 No 1000 - 354.0 No - 	237.0 No 51.72 53.76 
25 15 No 1000 No 1000 - 184.0 - - 	128.0 - 50.84 51.82 
25 20 Yes 32 Yes 5 I 51.0 Yes I 	51.0 Yes 1.35 1.27 

+ CPU time, in CDC 6400 seconds 

++ Inclusive of time to perform heuristics 
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larger values of n. Table 3.4 below shows the number of CDC 64o0 

seconds per iteration for several values of n. The data of Table 3.4 

were obtained from Table 3.1. 

Table 3.4 - CDC 6400 Seconds per iteration 

Number of 
Vertices (n) 

CDC 6400 Seconds 
per iteration 

10 0.011 

15 0.021 

20 0.035 

25 0.052 

30 0.070 

33 0.080 

The obvious conclusion to be drawn from the table above is that 

if the convergence problems of the algorithm are solved, the 

decomposition formulation can be used to solve the LP relaxation of 

the p-median problem for practically any size of network, within a 

reasonable amount of computer time. 

3.4.3 Degeneracy and the problems with convergence  

The serious convergence problems experienced in the previous section 

are due to the very degenerate nature of the decompositon formulation. 

This is more intensely felt for p small in relation to n and n large, 

although the convergence of the algorithm is data dependent to some 

extent. This data dependency can be best observed in the 33-vertex 

network of Karg and Thompson [57], the computational results of which 

are shown in Table 3.1. For this particular network convergence 

occurred much more frequently than for the 20, 25 and 30-vertex net-

works shown in the same table. 
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The degenerate nature of the decomposition formulation can be 

readily understood from the nature of the initial LP solution, defined 

by the vector 00 below. 00 is given by 

0 = B lb0 = P' 
0] T , 	 (3.36) 

where B is the initial basis of the master problem - either B
0 

Equation (3.31) or B1 of Equation (3.33). 

In the vector 00 above p. of its components are equal to one, and 

(n-p) are equal to zero. Exactly (n-p) basic variables are therefore 

equal to zero at the first iteration of the algorithm. This initial 

degeneracy is in fact maintained throughout the solution procedure, 

as shown in the next few paragraphs. It is degeneracy on such large 

scale that is responsible for the lack of convergence reported in 

3.4.2. 

In order to show how the algorithm progressses from an initial 

basic feasible solution to optimality, successive values of the 0 

solution vector are shown in the following for a particular application 

of the algorithm. This application was to find the optimal 3-median 

of the network of Figure 3.1, after the variables Ell and gl2 had 

been fixed to one. All other variables in the problem were free to 

assume any value between zero and one. 
X11 = g12 = 1 is in fact part 

of one of the six optimal solutions to the 3-median problem of 

Figure 3.1. 

Recall that the LP solution of the original problem was 

fractional for p = 3. After making 	 the initial 
g gll = g12 = 1, 

basic feasible solution for this problem was X3 = {xl, x3, x4}, 

with a(x3) = 55. It took then 15 iterations for the LP to converge 

to an all-integer solution with a(;) = 36. 

Successive 0! vectors, j = 1, ..., 15, are given below. It 

should be noted that vector B! differs from vector !. in that its 
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top entry corresponds to the value of the objective function at the 

end of the iteration. This value is omitted in vector 0.. 

The initial 	 0 0! (0') corresponds to the initial basic feasible 
j   

solution. It is given by 

' = 0 

55 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

  

Except for the iteration in which the surplus variable was driven 

out of the initial basis B1, 
the successive 0! vectors were: 

ai=a2=a3=a =a5=a6=a7=a8= 

39 

1 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 
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= 9 

38.00 
0.29 

0.29 

0.14 

0 

0.14 

0.14 

0.29 

0.29 

0.71 

0.71 

37.56 

0.22 

0.44 

0.11 

0 

0.11 

0.11 

0.22 

0.22 

0.56 

0.78 

0.22 

 

 

0 

 

   

36 

0 

1 

0 

0 

8' 
11 = 8' 12 = =515 = 15 

0 

0 

0 

0 

1 

0 

1 

Regarding the 	vectors shown above, a few points are worth 

mentioning: 

1. Except for 5 and Oio, the solution vectors remain very 

degenerate throughout the solution prodedure; 

2. Notice the very "stationary" nature of the algorithm, 

i.e. it usually takes a very large number of iterations 

for the solution vector to change; 

3. Although the optimal solution was attained at the end of 

iteration 11, optimality was only "recognized" by the 

algorithm at the end of iteration 15. 
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Some comments regarding the convergence of the algorithm  

It has already been said that the convergence problems experienced 

by the decomposition formulation are due to its very degenerate nature, 

and that the use of greater accuracy in the computations does not 

improve the algorithm's convergence. 

An approach suggested by Beale* consists in calculating the 

vector of dual variables using the following expression: 

o= (1 - a)c(1)  + aaN 
	

(3.37) 

where a
N 
is given by Equation (3.32) (aN = DBB-1), c(1)  is the vector 

of dual variables computed in the previous iteration of the algorithm, 

and a is a smoothing constant (0 < a < 1). 

It is now worthwhile to take up a point made in Section 3.3, 

whenthemaximizationoftheobjectivefunctione.of subproblem i 

was being discussed. At that opportunity it was mentioned that, 

for t. > 0
'  A. is maximized if yl. = 1, and, for all i 0 j, if either 

y. = 
13 

or if 

y
13
0.. =  

1 	if f.. >0 
13 

0 	if 	f.. < 0 
13 - 

1 	if 	f.. > 0 13 = 

0 	if 	f.. <0 
1J 

(3.25) 

(3.26 ) 

(3.21) 

In other words, when fl.= 0 the expression 
j 

n 
G.1  = E f..y..  . 	13 13 3=1 

is maximized for any corresponding value of yij. The setting of yij 

to zero or one is therefore entirely arbitrary when f.. = 0. The • 

question that arises then is whether this property can be used to improve 

Private Communication 
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the convergence of the algorithm. 

. Refer back to the example solved by hand in 3.4.1 and suppose 

that at some stage 

Max 1<. 	e. 	61 1 ' 

and that12 = f  13 = f  14 = 0. The vector yl to enter the basis can 

then be any of eight possibilities, in each of which the top entry 

is equal -Co one. The three remaining entries can be any of the 2 3  

possible combinations of zeros and ones. It is possible to represent 

this vector yio by 

1 

with the 	Vs 	to be replaced by one of the possible eight 

combinations mentioned above. 

It is important to emphasize that the use of a particular vector 

can improve the convergence of the algorithm if a situation similar 

to the one described above develops at a given stage of the solution 

procedure. The practical difficulty, however, is how to use 

opportunities of multiple choice in a consistent way so as to improve 

the convergence of the algorithm. 

It should be finally said that, when the algorithm converges, 

the choice of one particular vector may have an influence on the 

number of iterations it takes for the LP to converge. Furthermore, 

if the problem has more than one optimal solution, the optimal solution 

actually obtained may be affected by the choice of the vector. 

The facts described above were confirmed in practice when 

Equations (3.25) and (3.26) were used independently in separate runs 

of the decomposition formulation. It was then observed that convergence 
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was obtained in different number of iterations when (3.26) was used 

instead of (3.25). Furthermore, for problems with multiple optimal 

solutions, the solutions produced when (3.26) was used were generally 

different from the solutions obtained through the use of (3.25). 

3.5 Conclusions  

In the vast majority of cases the linear programming relaxation 

produces integer solutions that are optimal solutions to the p-median 

problem itself. 

Two formulations of the linear programming relaxation were 

studied in the present chapter, and both were found to have their 

limitations. The general formulation produces very large linear 

programmes and is therefore unsuitable for use in large-scale networks. 

The decomposition formulation often does not converge because of its 

very degenerate nature. The problems with convergence become 

particularly serious as the size of the network increases, and for 

values of E small in relation to n. 

Regarding the difficulties mentioned above it is felt that, while 

not much can be done in relation to the general formulation, there 

is room for improvement in the decomposition formulation. If the 

difficulties arising from the lack of convergence can be tackled, then 

this formulation, together with its embedding into branch-and-bound 

algorithms, can be used to solve the p-median problem for large-scale 

networks. 
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CHAPTER FOUR  

BOUNDS FOR THE p-MEDIAN PROBLEM 

4.1 Introduction  

It is well known that the quality of the bounds used in tree 

search methods is a factor of vital importance in the efficiency of 

the method. Branch-and-bound algorithms so far developed for the 

p-median problem suffer from a lack of strong lower bounds, and for 

this reason they are not very efficient. On the other hand, although 

both formulations of the LP relaxation discussed in Chapter 3 can be 

embedded into branch-and-bound algorithms and used as bounds for the 

problem, their limitations prevent them from being effectively used in 

this context. 

After a brief review of earlier work on bounds for the p-median 

problem, two new lower bounds are developed in the present chapter. 

One of the bounds is a graph-theoretical bound, based on shortest 

spanning trees and arborescences and other graphical properties of 

the p-median problem. The other bound is based on the dual of the 

LP relaxation of the problem, and a heuristic procedure has been 

developed to compute an exact bound. 

Both the graph-theoretical and the dual bound perform substantially 

better 	than a third bound developed in [l2](call this bound 

the shortest distance bound). It is in fact shown in a later section 

that the graph-theoretical bound dominates the shortest distance 

bound. As for the dual bound, it outperforms the graph-theoretical 

bound very consistently, especially for values of E small in relation 

to n. 

Computational results that allow a comparison of the three bounds 

mentioned above are presented at the end of the chapter. 
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4.2 Earlier work on bounds for the p-median problem  

The first lower bounds developed for the p-median problem appeared 

in papers by Jgrvinen, Rajala and Sinervo [55] and El-Shaieb [30]. 

Christofides [12] developed the shortest distance bound, for a direct 

tree search algorithm he designed for the problem. 

The bounds described in [12], [30] and [55] can be considered 

to belong to the same family of bounds. They use the same basic 

principles, but differ in details that take advantage of the type of 

search for which they were designed. A few words are said below on 

each of these bounds. 

The branch-and-bound algorithm of Jarvinen et al. is a "drop" 

algorithm. It starts with all facilities "open", and facilities are 

successively "closed" until exactly 2 facilities are left "open". The 

iterative process continues until all feasible solutions have been 

implicitly enumerated. 

For the computation of the lower bound; assume that at a given 

stage r facilities, corresponding to vertices xkl, xk2, 	xkr, 

have been "closed" (1 < r < n-p). There are then (n-r) vertices left, 

from which 2.  vertices must be chosen. It is possible to define two sets 

of vertices: 

V
r = 

kl' xk2' 	Vn
-r 
 = {x 	x2,2' ..., xtn-r}  = 

= V - Vr, 

where V is the set of all vertices of the network. The corresponding 

sets of indices are 

K = Ikl, k2, 	kr} and L = "" %-r/* 

Now let v. be the weight of vertex x., and define D.. = v.d. 
J 	 J 	0 lj 

to be the weighted shortest distance between vertices 	 o  xi  and x .. 

For every column k E K of matrix D = [Dii] it is possible to compute 
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sk 
 = Min Dik e 

• 
. 
leL 

On the other hand, for every column t e L of D, 

s = Min D.. 
ieL 13  
10,5 

can be calculated. The lower bound is then given by 

(4.1) 

(4.2) 

LB(K) = SK 	SL  , 	 (4.3) 

where S
K 
= E s

k' and SL  is the sum of the (n-r-
p) smallest s 

kEK 
t E L. 

The branch-and-bound algorithm developed by El-Shaieb uses a 

different concept. In his algorithm the tree branches represent 

assignments of sources (facilities) and destinations. Locations 

are added one at a time to either the source or the destination set 

to form the next branches. Each set of branches consists of two 

branches. One of the branches corresponds to adding a location to the 

source set, while the other branch corresponds to adding the same 

location to the destination set. At the end of each branch there is 

a node that contains the corresponding source and destination sets. 

El-Shaieb developed two different lower bounds for his algorithm. 

If the first bound is used an optimal solution is produced after a 

larger number of iterations than if the second bound is used. The 

first bound, however, needs a small amount of computation per 

iteration and is reported to be more efficient for small values of p. 

' The second bound is more efficient for the larger values of p. 

The bounds proposed by El-Shaieb and Christofides can only be 

properly understood after a detailed description of the corresponding 

branch-and-bound algorithms. The algorithm of E1-Shaieb will not be 

described here. The algorithm developed by Christofides is given in 

Chapter 5; a detailed description of the corresponding bound is therefore 
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left for that chapter. However, as in a later section this bound is 

compared with the two bounds developed in the present chapter, its 

computation before the beginning of the tree search is described below. 

Let d = [d..] be the distance matrix of a n-vertex network whose ij 

vertices xj  have weights equal to vj. Now set up a matrix M = [mkj], 

th the j column of which contains all the vertices of the network 

arranged in ascending order of their shortest distance from vertex x.. 

Thefirstentryofcolumnicorrespondstovertexx.itself. Call 

m0. , the second entry of column 	A lower bound for the p -median 
Jj  

problem.is the sum of the (n-p) smallest products: 

d(x., m
s 
.j) 
J 

' 	-J 
(4.4) 

over all vertices x. of the network. In the product above d(x.5  m .) 
' 0.J 

is the shortest distance between vertices x. and m . 
J 

ms. 
 
j. 

 
Finally, a word should be said about the LP relaxation of 

Chapter 3. In addition to providing an optimal solution to the p-median 

problem when the procedure converges and the solution is all-integer, 

non-integer solutions to the LP can obviously be used as lower bounds 

for the p-median problem. The use of the two formulations of Chapter 3 

as bounds in branch-and-bound algorithms is discussed in Chapter 5. 

4.3 A Graph-Theoretical Bound  

A graph-theoretical lower bound for the p-median problem is now 

developed. Shortest spanning trees and arborescences form the basis 

for the computation of this bound. For nonweighted networks further 

graph-theoretical properties are used to strengthen the bound. 

The graph-theoretical bound has been developed for both nondirected . 

and complete symmetrical (directed) networks. In most applications of 

the p-median problem, nondirected networks are sufficient to adequately 

represent the problem. The association of weights with the vertices 
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of a nondirected network, however, is equivalent to transforming 

this network into a complete symmetrical one. As this thesis addresses 

itselftp.themoregeneralcaseinwhichaweightv.is associated 

with every vertex x. of the network, complete symmetrical networks have 

been - considered in the development of the graph-theoretical bound. 

Trees, arborescences,shortest spanning trees and shortest spanning 

arborescencesare defined in the next section. This is followed by 

the development of the graph-theoretical bound for nondirected, 

nonweighted networks. The bound is then generalized for weighted 

networks. Finally, the graph-theoretical bound is shown to dominate 

the shortest distance bound. 

4.3.1 Trees, Arborescences,Shortest Spanning Trees and Shortest  

Spanning Arborescences  

One of the most important Concepts of graph theory is that of a 

tree. A tree can be either nondirected or directed, depending on the 

nature of the underlying graph. A nondirected tree is defined as 

follows [12]. 

Definition: A nondirected tree is a connected graph of n vertices 

and (n-1) links. 

A directed tree is called an arborescence. It can be defined as 

follows [12 ]: 

Definition: A directed tree is a directed graph without a circuit, 

for which the indegree of every vertex is equal to unity, except for 

one vertex (called the root of the tree), for which the indegree is 

zero. 

If G = (X,A) is a nondirected graph of n vertices, then a spanning 
"„ 4,11• 

tree of G is defined as a partial graph of G which forms a tree A 
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spanning arborescence rooted at r of a directed graph G' = (X',A') is 

a spanning tree of the underlying nondirected graph G' = 

having the following properties [38]: 

(i) Each vertex of G' other than r has just one arc of the 

arborescence directed toward it; and 

(ii) No arc of the arborescence is directed towards r. 

The shortest spanning tree of a graph is defined for a non-

directedgraphGwhencostscu are associated with its links. It 

has obvious applications in cases where roads (gas pipelines, electric 

power lines, etc.) are to be used to connect n points in such a way 

as to minimize the total length of the road that has to be constructed. 

Several algorithms [64, 86] have been designed to construct the 

shortest spanning tree of a graph (network); the length of the shortest 

spanning tree is independent of the vertex at which its construction 

starts. 

The corresponding concept for directed networks is called the 

shortest spanning arborescence. Unlike shortest spanning trees, 

shortest spanning arborescences depend on the root under consideration. 

In [10], [24] and [104] general algorithms for the construction 

of the minimum shortest spanning arborescence of a network are given. 

Besides producing the minimum shortest arborescence, these algorithms 

may also be used to produce shortest spanning arborescences for any 

specified root. The method used in [10] is similar in several respects to 

the Hungarian method for the classical assignment problem [68, 69]. 

4.3.2 Shortest spanning trees as lower bounds for the p-median problem 

It is now shown that, for nondirected, nonweighted networks, 

shortest spanning trees can be used to compute a lower bound for the 

p-median problem. This is done by stating a lemma and demonstrating 

a theorem, although the final result could have been derived from 
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Kruskal's algorithm to construct shortest spanning trees. The lemma 

and the theorem have been used because they lend themselves to an 

easier generalization of the results to weighted networks. 

The lemma is very general, belng valid for both nondirected and 

directed networks, and even when the costs associated with the arcs 

of the network do not conform to the triangularity condition of 

metric space. The theorem only applies to nondirected, nonweighted 

networks, but is later extended to weighted networks. 

Before the theorem is proved, it is necessary to derive a 

relationship that arises when a network is divided into a number of 

subnetworks. This relationship is of fundamental importance for the 

demonstration of the theorem. For the sake of clarity it will be 

derived within the context of the p-median problem. 

Suppose that the optimal p-median of a network has been found. 

Theoriginalnetworkcanbethendividedintop_subnetworksN.=(X.,A.). 
J J 

X. is the set of vertices of subnetwork 	
jth 

and comprises the 	assigned 

median and the nonmedian vertices allocated to it. A. is the corresponding 

set of arcs, comprising all arcs of the original network interconnecting 

the vertices in X.. The only arcs of the original network not present 

in any of the sets A. are the arcs of the original network that inter-

connect the newly formed subnetworks. 

If the lengths of: 

(i) The shortest spanning tree of the original network (call 

this length SSTQN), and of 

(ii) The shortest spanning trees of each of the 2 subnetworks 

N. (call these lengths SST0j, j = 	p) are computed, the following 

relationship holds: 

p-1 
SSTON < E SST . + E SL

j 
 , 

j 
	j OJ 
=1 	=1 

p-1 
where E SL. is the sum of the (p-1) smallest arcs of the original 

j=1 
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p 
network not in U A. that will transform the 2 newly formed 

J=1  
subnetworks into a connected network. 

Now let G' = (X',A') be a graph (directed or not), every vertex of 

which is defined to be either a source or a sink. Allocate each sink 

vertex x E X' to a unique source vertex y(x) E X'. Form partialVgraphs 

T' of G' by adding every arc on the shortest path from x to y(x), for all 

sink vertices x. If more than one shortest path from a given sink x to 

the corresponding source y(x) exists, choose only one such path. Then 

Lemma - There is always a choice of a shortest path for each sink vertex 

x E X' for whicla trle [12]. 

It is important to note that the lemma is valid for both directed 

and nondirected graphs. Furthermore, as no relationship related to 

metric spaces is assumed, the lemma is valid even for graphs whose 

arcs do not conform to the triangularity condition of metric space. 

Corollary - Let SSToj  be the length of the shortest spanning tree of 

one of the 2 subnetworks into which a nondirected, nonweighted network 

N = (X,A) can be divided once the optimal p-median is known. Then 

SST
Oj is a lower bound on the sum of shortest distances from the median 

xoj  of N. to the vertices allocated to it. 

This follows immediately from the lemma above. The lemma 

guarantees that the subnetwork, formed when nonmedian vertices of N. 

are connected to the median xOj through the corresponding shortest 

paths, can be constructed so that a tree is formed. .Call the length of 

thistreeST..The shortest spanning tree of N. has a length that 

is, by definition, shorter than or equal to the length of any other 

spanningtreeofN_Therefore 

STS  > SSToj  . 	 (4.6) 

On the other hand, the sum of the shortest distances from xoj  to 

the vertices allocated to it is greater than or equal to STS  (some arcs. 

can be counted twice or more when the sum of shortest distances is 

computed). It follows then that 
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E d(xi, x0.) > ST. , (4.7) 

where the x.'s are the nonmedian vertices of N,. If (4.6) and (4.7) 

are combined, it is possible to write 

E d(xi, x0 j)SSToi  > 0 (4.8) 

The theorem can now be proved. 

Theorem - Let N = (X,A) be a nondirected, nonweighted network for 

which the optimal p-median must be found. A lower bound on the value 

of the objective function of the problem is the length of the shortest 

spanning tree of the network, minus the shortest spanning tree's 

(p-1) longest links. 

Proof - Suppose the optimal p-median was found and that the original 

networkwasdividedintotheEsubnetworksN.=(X.,A.) defined above. 
J J 

Equation (4.8) can be applied to each of the P  subnetworks: 

E 	d(x1.1' x  -0_1  ) - SST01 > 0 ile 
Subnetwork (1) 

E 
i2E 
Subnetwork (2) 

d(xi2' x02)  - SST02  > 0 

(4.9) 

- SST > 0 
i pE 	

d( xip' x0p)  Op 

Subnetwork (p) 

Adding the 2.  inequalities above it follows that 

p 	 p 
E 	E d(x.., x .) - E SST . > 0 

j=1 ijE 
ij 	0,3 	j=1 	OJ = 

subnetwork (j) 

(4.10) 

Now refer back to Equation (4.5). It can be re-arranged as 

P • 	P-1  
E SST > SST - E SL. 

Oj = 	ON j=1 	j=1 
(4.11) 
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Substituting (4.11) into (4.10) it follows that 

p 	 p-1 
E 	E 	d(xi 	x ) > SSTON - E SL. . 	(4.12) j' Oj - 

j=1 	 ijE 	 j=1 
Subnetwork (j) 

Before the optimal p-median is found, however, it is not known 

which are the (p-l) SL.'s that satisfy equations (4.11) and (4.12). 

For the computation of the lower bound, the worst possible case is 

that these (p-1) SL.'s are the (p-1) longest arcs of the shortest 

spanning tree of the original network. Let LL. be the arcs of this 

shortest spanning tree, ranked in order of decreasing arc length. 
P-1 	p-1 

Since E LL. > E SL., it is finally possible to write 
j=1 	j=1 

p-1 
E 	E 	d(xij, x0.) > SSTON  - E 	LLi  . 	(4.13) 

j=1 ijE 
subnetwork (j) 

The left-hand side of Equation (4.13) is the value of the objective 

function of the p-median problem. The theorem is thus proved. 

Since shortest spanning trees are only defined for nondirected 

networks, the theorem is only valid for nondirected, nonweighted 

networks. Its extension to weighted networks, through the use of 

shortest spanning arborescences, is given in 4.3.4. 

4.3.3 Further graph-theoretical properties and a stronger lower bound  

In the previous section it was shown that shortest spanning trees 

can provide a lower bound for the p-median problem. This bound can be 

improved, as shown in the remainder of this section. 

ConsideragaintheRsubnetwork.sN.defined in the previous section. 

For each of the subnetworks construct the spanning tree defined in the 

lemma of that section. If (S, is the degree of median xOj of spanning 

tree ST., it is easy to see that 

E d. < n - p 
	 (4.14) 

j=1 
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p 
In general it can be said that, when E 6. < n - p, the lengths of 

j=1 
a. number of arcs (say 0) are counted at least twice when the value of 

the objective function of the p -median problem is computed. The value 

of S is given by 

p 

0 = (n-p) - t 6. 	 ( 4.15 ) 
j=1 

Refer, for example, to Figure 4.1 	in which the optimal 

3-median of a 10-vertex network is shown through the spanning trees 

defined in the lemma of Section 4.3.2. 

The 3 medians are vertices x1, xio  and x5. In Figure 4.1c vertex 

x6  is two arcs away from xq, the median vertex to which it has been 

allocated. Consequently, the length of the arc x
7
x
5 is counted twice 

when the value of the objective function of the problem is computed. 
3 

For the example of Figure 4.1 (n-p) = 7, and E S. = 1 + 2 3 = 
j=1 	 

6 < 7. Then . $ = 7 - 6 = 1, and the length of one arc (x7x5  in this 

particular case) is counted twice when the value of the objective 

function of the problem is computed. 

It is possible to use the properties described above to strengthen 

thebounddevelopedin4.3.2.IfR.is the sum of the lengths of the 

arcsofST.(subnetwork.11.)that must be added to the spanning tree's 

length in order to obtain the sum of shortest distances between source 

and sinks in N., it follows that 

E d(xi, x0j) = STi 	Rj . 
	 (4.16) 

Suppose now that it is possible to know that there are at least 

(3.arcswhoselengthLis counted twice or more in the computation of 

the sum of shortest distances. Then 

R. > E L. 	, 	 (4.17) 
- 1=1 1  

and consequently, 



	

(4.1a) 
	

(4.1b) 
	

(4.1c) 

	

= 1 	 62 = 2 
	

6
3 

= 3 

Figure 4.1 

Optimal 3-median of a 10-vertex network (Garfinkel et al. (41, p.231]) 
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ai  

E d(x. x ) > ST. + E
1 
 2. . 

O 	1 j - j = 

Finally, as SSTOj . < ST., = j 
R. 
. J 

E d(x., x ) > SSTO j
+ E t. . 

I Oj -  

(4.18) 

(4.19 ) 

If Equation (4.19) is now applied to each of the p.  subnetworks 

N., and the .p.  resulting inequalities are added together, the following 

is obtained: 

a. 

	

P 	J 
OF(p) = E 	E d(x..

' 
 x .) > E SST 	+ E 	E 

j=1 ijE 	13 	0J 	j=1 	j=1 i.=1 13  
subnetwork (j) 

where OF(p) is the value of the optimal solution of the p-median problem. 

Now, by replacing E SST 0. in Equation (4.20) by its value in Equation 
j=1 00 

(4.5), it follows that 

. p-1 	P 
0F(5 	

a
J 

) > (SST 	- E LL.) + E 	E 	k.. • 
j=1 	j=1 i.=1 13  

(4.21) 

Before the optimal p-median is known, however, it is not possible 

to know exactly how many arcs of the network, if any, are going to be 

counted more than once when the value of OF(p) is computed. From 

an examination of the degrees of the vertices of the original network 

it is possible to know, however, the minimum number of arcs that 

are going to be counted at least twice, and the corresponding minimum 

total length. The following procedure is thus suggested: 

Step 1. Calculate the degree S. of each of the vertices of the 
- 	J 

network for which the optimal p-median is being sought. 

Step 2. Rank these degrees in descending order, and call the 

ranked degrees 611j. 

Step 3.  Compute 

p 
a = E 6/1. . 

j=1 
(4.22) 
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Step 4.  (a) If n - p < a, no improvement can be added to the 

bound of section 4.3.2; 

(b) If n - p > a, compute 

0 = (n-p) 	a . 	 (4.23) 

Then add to the lower bound of section 4.3.2 the sum of the lengths of 

the S shortest arcs in the network. In the worst possible case at 

least the length of these arcs will be counted twice in the computation 

of the value of OF(p). 

4.3.4 Generalization for weighted networks  

The extension of the lower bound derived in 4.3.2 and 4.3.3 to 

weighted networks is straightforward. Recall that in Chapter 1 it 

was shown that weighted networks must be transformed into complete 

(directed) symmetrical networks before they can be handled. In this 

section it will be always assumed that such transformation has taken 

place. 

The theorem of Section 4.3.2 can be readily extended to weighted 

networks. The theorem for weighted networks is: 

Theorem - Let N' = (X',A') be a complete symmetrical network for which 

the optimal p-median must be found. A lower bound on the value of the 

objective function of the problem is the length of the minimum  

shortest spanning arborescence of the network, minus the (p-1) longest 

arcs in this arborescence. 

The proof is analogous to that of the theorem of Section 4.3.2, and 

for this reason will not be given here. 

Note that graph-theoretical properties of the type discussed in.  

4.3.3 cannot be used to improve the bound of weighted networks. Since 

the indegree of every vertex of a complete symmetrical network of n 

vertices is equal to (n-1), it follows that S < 0 V p (0 is defined in 

the previous section). The bound provided by shortest spanning 
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arborescences cannot therefore be improved in the case of weighted 

networks. 

4.3.5 Dominance over the shortest distance bound  

It is not difficult to prove that the graph-theoretical bound 

dominates the shortest distance bound. The proof will be limited to 

nondirected, nonweighted networks. The extension to weighted networks 

is straightforward and will not be given here. 

Recall that the shortest distance bound is equal to the sum of 

the (n-p) smallest products 

v. x 	 , d(xj  m 	) 	 (4.24) 
J J 	• 

overallverticesx.
J 
 of the network. As only nonweighted networks 

willbeconsidered,v.
J 
 =1 V j in the present discussion. On the 

otherhand,d(x.
J' 
 m 

13.j J  
)isthedistancebetweenvertexx.and the 

J 
vertex closest to it in the distance matrix of the network. It is 

obviousthatmhastobedireetlycennectelatex.through one of 
03  

the links of the network. 

It is interesting to note that the bound provided by shortest 

spanning trees is also the sum of (n-p) lengths of links between vertices 

of the network: The shortest spanning tree of a network has (n-1) 

links, and if (p-1) links are subtracted from it exactly (n-p) links 

are left. What remains to be proved is that each link used in the 

construction of the graph-theoretical bound is at least as long as the 

corresponding link used in the construction of the shortest distance bound. 

In Kruskal's algorithm [64] for the shortest spanning tree, the 

links of the network must be ordered in ascending order of cost. Then, 

starting from the top of the list, links must be added to the initially 

disconnected set of vertices, provided that no circuit is formed when 

a new link is added to the existing set of links. A bound is obtained 
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for the p-median problem after (n-p) links are selected in this way 

and their corresponding costs added to form the bound. 

Now refer back to the shortest distance bound for nonweighted 

networks. This bound is also obtained by adding the costs of the 

(n-p) shortest links of the network. For this bound, however, there 

are no restrictions on the formation of circuits, and therefore every 

link used in the computation of the graph-theoretical bound is at 

least as long as the corresponding link used in the computation of 

the shortest distance bound. The graph-theoretical bound thus dominates 

the shortest distance bound. 

4.4 A bound based on the dual of the linear programming relaxation  

of the problem  

The dual of the linear programming relaxation of the p-median 

problem provides a very good lower bound for the problem. The 

difficulty in obtaining this bound is that, similarly to the primal, 

the dual is a very large linear programme. Any attempt to obtain 

the bound by actually solving the dual would lead to difficulties 

similar to those experienced when the primal was studied in Chapter 3 

(see Section 4.4.1). 

A heuristic procedure has been developed to generate approximate 

solutions to the dual LP. This procedure, which produces a 	 

bound to the p-median problem, is a two-phase method. It takes 

advantage of the simple form of the dual objective function and of 

the special nature of its variables. 

Very good bounds were obtained for the problem through this dual 

procedure. Computational results given in Section 4.5 compare the dual 

bound with both the shortest distance bound and the graph-theoretical 

bound. 
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The dual formulation is derived in the next section. Then a 

heuristic procedure to generate approximate solutions to the dual is 

discussed, and a detailed step-by-step description of the algorithm 

is given. Finally, computational results that allow the dual bound 

to be evaluated are given for a wide range of values of n and E. 

4.4.1 The Dual Linear Programme  

Recall the linear programming relaxation of the p-median problem. 

For the sake of convenience this formulation is repeated below. The 

symbols selected for the dual variables are indicated in brackets, 

alongside the corresponding primal constraints. 	The LP relaxation is 

n 	n 

Minimize Z = 	E 	E 	d.;  g.4 	 (4.25) 

i=1 j=1 	ld 

Subject to 

n 

E 	E. 	= 1 	, 	j 	= 1, 	. 	., n 	[a.] 	(4.26) 
1=1 	 J 	

1 

n 

E 	i_i = 
p 	 i n+1i 	(4.27) 

1=1 

gij  - gii .., 0 , i, 	j 	= 1, 	..., n, 	i 0 j' 	
[1r1] 
	(4.28) 

g 	> 0 , i, 	j = 1, 	.., n 	 (4.29) 
ij = 

The dual of this linear programme is 

(4.30) Maximize Z' = 	E 	ai  + pan+, 

1=1 

Subject to 

b. 	+
n+1  - 

	E 	7.. < 0 V i 	 (4.31) 
= 

jOi 

aj + ffij  < dij  V i, 	j, j 	i 	 (4.32) 

nu  < 0 V i, j, j 0 i 	 (4.33) 

a. 	< = > 0 , i = 1, 	n + 1 	(4.34) 
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As indicated by Equation (4.34), the ai's are unconstrained 

variables. This is so because they correspond to equality constraints 

in the primal LP. A closer examination of the problem,however, makes 

it possible to determine the true nature of these variables. 

Refer to the primal problem. Since d.. > 0 V i, j, it is clear 10 = 

that Equation (4.26) can be replaced by 

n 
E 	ij > 1 , j = 1, 	n 

= i=1 

without loss of any optimal solution. It then follows that 

a > 0 , i = 1, 	n . .  
= 

(4.26a) 

(4.34a) 

On the other hand, if Equation (4.31) is re-arranged, the follzgwing 

is obtained: 

n 
a 	< - a. + E 71..

10  n+1 	1  
j=1 0=1 
jai 

(4.31a) 

In view of Equations 4.33) and (4.34a) it follows immediately that 

a  .n+1 < = 

The dual LP 

DLP 

0  

can be now re-written as 

n 
Maximize Z' = 	E 	a. + pania  

	

1=1 	1  

Subject to 
n 

a1. 	+a 	-Eff1.0  . n+1 	. 
0=1 

a 	+ 	< 	a.. it j 	ij = 	10 

ff
i 	

< 0$ i, 	j, 	j j 

ai  > 0, i = 1, 

an+1 	0 

<OVi = 

j, 	j 

i 

n 

i 

(4.34b) 

(4.30 

(4.31) 

(4.32) 

(4.33) 

(4.34a) 

(4.34b) 
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It is easy to see that the optimal value of Z' (and therefore any 

value below it) is a lower bound for the p-median problem. Since the 

primal LP is a relaxation of the problem, if X is the value of the 

optimal solution of the p-median problem it follows that 

> Min Z • ' 	 (4.35) 
P = 

On the other hand, Min Z = Max Z' (Theorem of Duality [54]), and 

X > Max Z' . p = 
(4.36) 

Consequently, if the dual LP sis solved, the optimal value of its 

objective function (or any value below the optimal) is a lower bound 

for the p-median problem (call this bound the dual bound). 

The only difficulty in computing the dual bound is that, similarly 

to the primal, the dual is a very large linear programme, with (n2+1) 

variables and n2  constraints. 

However, as the interest in the dual is limited to obtaining 

a bound for the p-median problem, if a heuristic procedure for 

solving the dual can be shown to yield solutions close to the 

optimal in an efficient way, this procedure can be used to compute 

lower bounds for the problem. 

Fortunately, the simple form of the dual objective function 

(Equation 4.30), plus the special nature of its variables, readily 

suggest such a procedure. The procedure has proved to be computationally 

efficient, and can therefore be embedded into branch-and-bound 

algorithms designed to solve the problem. 

4.4.2 A heuristic method to solve the DLP  

In the dual linear programme given by equations (4.30) through 

(4.34b), since of  > 0, i = 1, 	n, and an+1 	
0, Z' can be = 

maximized if the positive ai's are chosen as large as possible, 
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while the absolute value of an+1 is kept as small as possible, 

provided that equations (4.31), (4.32) and (4.33) are always 

satisfied, i.e. that the dual remains feasible throughout the 

procedure. 

Now recall Equation (4.31a) given by 

n 
a
n+1 

- a.
1 
 + E 	V 
 . 

j=1 

jOi 

(4.31a) 

For the dual to remain feasible throughout the procedure, given 

asetofvaluesforthea.
1
's and Tr..'s' an+1 must take a value that 13  

satisfies the n constraints of (4.31a). That is 

n 
a 	< Min (- a. 	E u- ) 
n+1 = 	1 	ij ' 

1 	j=1 

jOi 

(4.37) 

On the other hand, if the objective is to maximize Z', for a given 

	

set of a.'s the absolute values of the 	must be the smallest 
1 	 13 

possible values that will satisfy equations (4. 32) and (4.33). 

This can be achieved by making 

{

wii = 0 if aj  ..<, ...j. 

ff. 	
J 

= - (a -d.) if a. > cl- lj 	1J 	j 	lj 

Or, combining the two conditions above into one equation 

n
i 
 . = - Max (0, aj-dij) V i., j, j 	i . 	(4.38) 

From the above it can be seen that, given the distance matrix 

[d..ij] of the network, and a set of values for the positive ails, 

boththelr
ij

's and a
n+1 

 can be determined in an optimal way with 

respect to maximizing Z'. The problem that remains is how to determine 

the initial a.'s and, subsequently, how to modify these values in a 
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stepwise fashion, so as to increase 	to a value as close to the 

optimal solution of the dual as possible. An algorithm that performs 

these tasks is given below. 

The detailed steps of the algorithm 

The heuristic procedure given below is a two-phase method. 

The first phase is iterative, whereas the second phase is a one-pass 

algorithm. 

The first phase of the procedure starts from a given set of 

a.'s
'  and attempts to decrease the absolute value of an+1 by 

suitably decreasing some of the 6.'s. This is done in such a way 

that an increase is obtained in the value of Z' from one iteration 

of this phase to the following iteration. When such increase is 

no longer possible, the second phase of the algorithm is activated. 

The second phase of the method is a one-pass algorithm, in 

which an attempt is made to increase each of the positive a.'s 

individually, but without altering as a consequence the value of 

an+1 obtained at the end of phase 1. This second phase starts from 

thevaluesofthe. al's at the end of phase 1, and terminates after 

all n a.'s have been tentatively increased. 

The detailed steps of the algorithm are now given. 

Phase 1  

Step 1. Choose initial values for each of the n positive ails (the 

choice of these initial values is discussed in 4.4.3). Then make 

k = 1 and go to Step 2 below. 

Step 2. For each i, i = 1, 	 n, compute 

n 

	

T. = G. 	
i 

- E u. 2 	 (4.39) 
1 	1 

j=1  

j#± 
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withtheffu ls computed as per Equation (4.38). Then compute the 

initial value of the bound (zl) and go to Step 3 below. 

Step 3. Find the largest and next-to-largest values of Ti. Call 

these values T and TNmx  respectively. Set 
MX 

a
n+1 

= - T,
X 
 • 

A 
• 

Step 4.  Attempt to increase a
nia 

from - T to TNmx by suitably 
MX 

decreasing the necessary ai ls.*  Start by computing, for the i 

correspondingtoT..=Tmx  (ties broken arbitrarily), the set J 

defined by 

J =
j  

aj.1( j .-d
1
..) 	(T 	 T

M 
 )1 

MX NX 
(4.4o) 

Step 5.  If J = 0 go to Phase 2 of the algorithm, as Zl cannot be 

increased any further in Phase 1. Otherwise compute 

n 
S
Max 

= MAX 	E Max(0, a.
j
-d..). 	 (4.41) 

a.Ej i=1 
J 

step6. Decreasethea.correspondingto SMAX by (T
Mx 

 - Tilmx). Then 

recalculate the Ti's of Equation (4.39), given the decrease in a. 

defined in the present step. 

Ste107-AfterrecalculatingtheT-1's check if, for any i, T. = T 
-- 1 MX 

(This is only possible if a tie occurred in the computation of T 
MX 

in Step 3). If so, repeat Steps 4 through to 7 in an attempt to 

change this Ti  to TNmx. Otherwise go to Step 8 below. 

Step 8.  Compute Gk, the gain of iteration k: 

0 	
a.
DT\
) 	(4.42) G

k 
= p(Tmc 	

J 
(a. - 

a.'s decreased 
J 
in Step 6 

* 	Note that the above defined increase in 
an.4-1 

is only worthwhile if 

the sum of the necessary decreases in the oi ls is offset by a 

corresponding increase in the value of the product p(Tmx  - 	). 
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0  where a. is the value of G. before the start of iteration k and 
J 	 J 	 — 

0, its value at the end of the iteration. Then go to Step 9 below. 

Step 9.  (a) If Gk  > 0 increase Z' by Gk, make k = k + 1 and go to 

Step 3 for a new iteration of Phase 1 of the algorithm; 

(b) If Gk  < 0, go to Phase 2 of the algorithm. 

Phase 2  

Step 10. Compute the difference (TA - Ti ), where TL and /mx  

are the values of TNX 
 and TNla  at the end of Phase 1. Then make 

j = 1 and go to Step 11 below. 

Step 11. Make 

0 	1 G N  . = G. + (TNS  - Tl ) . 
J 	x NMX ( 4.43) 

Then compute  Ti  V i (Equation 4.39) 	even  the  change in Gj  defined 

in the present step. 

Step 12. (a) If, for any i, Ti  TAx, make 0.°J  the permanent value 

of a.. Then make j = j + 1 and go to Step 13; 

.COIf"."ir i,makecll!thepermsnerrtvalue 0fa-Emd = MX 

increase the value of Z' by (TL - Tilimx). Then make j = j + 1 and 

go to Step 13 below. 

Step 13. If j < n go to Step 11. Otherwise, terminate the algorithm. 

The final value of Z' is a lower bound for the p-median problem. 

4.4.3 The initialization of the heuristic procedure  

The final value of the dual bound depends to some extent on the 

initialvaluesofthepositivea.ls. While there is great freedom 

of choice for these initial values when the bound is computed for 

the overall optimal solution to the problem, the choice is very 

restricted when some of the variables of the corresponding primal 

problem have known values. This is of special relevance when the 
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bound is embedded into branch-and-bound algorithms, but a detailed 

discussion of the subject is left for the next chapter. The initialization 

discussed in the present section is therefore important only if 

interest is centred in obtaining a lower bound on the overall optimal 

solution of the p-median problem. 

Three different starting rules are discussed below. Computational 

experience shows that while unreasonable starting values for the 

positive (l.'s may lead to useless bounds, none of the investigated 

starting rules always yield the best value for the bound. The 

corresponding results are summarized at the end of this section. 

The procedure described in 4.4.2 is one in which the initial 

values of the positive ai's are decreased throughout the iterative 

phase of the algorithm. The algorithm must therefore start from 

values of a. expected to be larger than their respective values at 

the termination of the procedure. 

An alternative procedure would be to start from small values 

forthea.'s and build the bound by increasing these values in a 

stepwise fashion. This alternative procedure has not been investigated 

experimentally, given the satisfactory results obtained with the 

procedure described in 4.4.2, and its better suitability for embedding 

the bound into branch-and-bound algorithms. 

Starting Rules 1 and 2  

These two starting rules take advantage of a relationship 

developed by Diehr [22], which gives an approximate value for the 

summation of the positive aits: 

E a. = x' + pCi' - 	X'] 	, 
i=1 p p-1 p 

(4.44) 

where TO and X'p-1  are approximate solutions to the 2 and (p-1)-median 
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problems respectively. Equation (4.44) is an approximation biased 

towards giving a value above the exact value of the summation, 

satisfying therefore the condition of providing initial values for 

the a.'s above their expected final values. 

The only difference between starting rules 1 and 2 is the 

way by which the individual ai's are obtained from the summation 

given by Equation (4.44). In starting Rule 1 the individual ai's 

are weighted according to the sum of distances in the corresponding 

column of the distance matrix of the network. In starting Rule 2 

all 	are equal to the result of the division of the 

summation of Equation (4.44) by the number of vertices of the network. 

Starting Rule 3  

Starting Rule 3 assumes that the final values of the csi's used 

to calculate the bound for the (p-1)-median problem are available 

prior to starting the procedure to find the dual bound for the 

p-median problem. The initial values of the a.'s for calculating 

the dual p-median bound are then made equal to the final values of 

the a.'s used to calculate the bound for the (p-1)-median problem. 

For p = 1 each initial ai  is made equal to the average of the 

distances in the corresponding column of the distance matrix of the 

network. 

Note that with starting Rule 3 the bound for the (p-1)-median 

problem must be available before the bound for the p-median problem 

can be calculated. It is therefore necessary to start by computing 

the bound from p = 1 if one wishes to use starting Rule 3 to compute 

lower bounds for successive values of 2., starting from p = pmin  and 

going up to p= P 	The computation of bounds for values of p max' 	 Pmin 

is a necessary "starting-up" procedure if Rule 3 is to be used. 
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Computational results  

The results obtained with the dual bound are given in Table 

4.1. Results for networks ranging from 10 to 50 vertices are shown 

in this table. As with the examples used to produce the computational 

results of Chapter 3, the data describing the randomly generated 

networks of Table 4.1 are given in the appendix of the thesis. Where 

examples taken from the literature were used their origin is explicitly 

indicated. 

In Table 4.1, for each of the starting rules the final value of 

the bound is given, together with the number of Phase 1 iterations 

and the total time taken to calculate the bound (CDC 7600 seconds). 

The bound corresponding to the best starting rule is indicated for 

each case, and its value compared with the best available solution 

for the problem. 

• The percentage deviations shown in Table 4.1 confirm that the 

dual bound is a very good lower bound for the p-median problem. For 

networks of up to 15 vertices the average percentage deviation from the 

best available solution was only 0.96%, whereas for networks ranging 

from 20 to 50 vertices the corresponding value was 3.53%. 

It should be clear from Table 4.1 that the results are 

inconclusive as to which is the best starting rule for the ai's -  

for the great majority of the cases the bounds produced by the three 

rules are not very different from each other. It is important to 

note, however, that Rule 2 prevailed in 40% of the cases, whereas 

the corresponding percentages for Rules 1 and 3 were 31% and 29% 

respectively. 

Starting Rule 3 appears to be the more unreliable of the three: 

for two of the networks of Table 4.1 (n = 10 and n = 25) this rule 

produced meaningless bounds for a number of values of g. 



Table 4.1 - The Dual Bound: Computational Results 

Problem 
Size Starting Rule 1 Starting Rule 2 Starting Rule 3 Best Bound 

Optimal 
Solution 

% Deviation from 
Optimal Solution 

n D Bound No. iter Time* Bound No. iter Time* Bound No. iter Time* Rule*** Value 

10** 1 79 1 0.01 79 1 0.01 74 1 0.01 2 79 79 0.00 
10 2 45 2 0.01 46 11 0.01 45 2 0.01 2 46 47 2.13 
10 3 34 3 0.01 31 8 0.01 33 9 0.01 1 34 36 5.56 
lo 4 24 2 0.01 25 12 0.01 22 3 0.01 2 25 26 3.85 
10 5 18 5 0.01 18 6 0.01 17 4 0.01 1 18 18 0.00 
10 6 12 4 0.01 12 6 0.01 12 3 0.01 3 12 12 0.00 
10 7 8 3 0.01 8 4 0.01 8 3 0.01 1 8 8 0.00 
10 8 5 2 0.01 5 2 0.01 5 2 0.01 2 5 5 0.00 
10 9 2 3 0.01 2 2 0.01 2 1 0.01 3 2 2 0.00 
20 10 0 2 0.01 0 1 0.01 -1 1 0.01 2 0 0 0.00 

10 1 400 1 0.01 400 1 0.01 395 1 0.01 1 400 400 0.00 
10 2 250 13 0.01 236 28 0.02 258 14 0.01 3 258 273 5.49 
10 3 195 24 0.02 192 20 0.02 185 24 0.02 1 195 195 0.00 
10 4 148 4 0.01 140 33 0.02 144 19 0.02 1 148 149 0.67 
10 5 105 6 0.01 107 8 0.01 107 6 0.01 3 107 107 0.00 
10 6 69 6 0.01 69 3 0.01 75 9 0.02 3 75 75 o.00 i.- 
10 7 42 6 0.01 42 3 0.01 43 1 0.01 3 43 43 0.00 H 

0 
10 8 15 5 0.01 15 1 0.01 15 5 0.01 2 15 15 0.00 
10 9 2 4 0.01 2 2 0.01 NI" - 2 2 2 0.00 
10 10 0 3 0.01 0 1 0.01 N - - 2 0 0 0.00 

N = Large Negative Bound 
CPU time, in CDC 7600 seconds 
Example from Garfinkel et al. [41, p.231] 
Where ties occurred in the value of the bound, no. of iterations and computing 
time, in this order, were used to determine the rule yielding the best bount 



Table 4.1 (cont'ed) - The Dual Bound: Computational Results  

Problem 
Size Starting Rule 1 Starting Rule 2 Starting Rule 3 Best Bound 

Optimal 
Solution 

% Deviation from 
fltimal Solution 

n P Bound No. iter Time* Bound No. iter Time* Bound No. iter Time* Rule** Value 

15 1 809 1 0.01 809 1 0.01 655 1 0.01 2 809 809 0.00 
15 2 371 11 0.02 383 15 0.03 411 2 0.02 3 411 412 0.24 
15 3 285 10 0.03 276 8 0.02 262 38 0.07 1 285 294 3.06 
15 4 206 12 0.03 207 10 0.03 206 15 0.04 2 207 215 3.72 
15 5 141 12 0.03 144 8 0.03 137 7 0.03 2 144 150 4.00 
15 6 113 22 0.06 113 12 0.04 112 15 0.05 2 113 113 0.00 
15 7 86 15 0.04 89 5 0.02 93 12 0.05 3 93 93 0.00 
15 8 69 8 0.03 71 5 0.02 74 3 0.02 3 74 74 0.00 
15 9 54 8 0.03 55 5 0.02 57 2 0.02 3 57 57 0.00 
15 10 41 7 0.03 41 5 0.02 41 2 0.02 3 41 41 0.00 

20 .1 1159 1 0.03 1159 1 0.03 1136 1 0.03 1 1159 1159 0.00 
20 2 711 4 0.04 704 16 0.05 720 3 0.03 3 720 724 0.56 
20 3 488 7 0.04 480 5 0.04 462 20 0.08 1 488 518 5.79 
20 4 382 21 0.09 383 10 0.05 406 28 0.11 3 406 414 1.93 
20 5 302 28 0.10 316 19 0.08 305 2 0.04 2 316 338 6.51 
20 6 255 32 0.14 258 27 0.11 203 1 0.03 2 258 259 0.39 
20 7 202 15 0.08 217 17 0.10 218 45 0.25 3 218 227 3.96  

20 8 185 17 0.09 191 13 0.08 177 1 0.04 2 191 199 4..02 
20 9 161 20 0.10 168 10 0.07 158 10 0.09 2 168 175 4.00 
20 10 142 20 0.10 148 10 0.07 150 12 0.12 3 150 151 0.66 

* CPU time, in CDC 7600 seconds 

** Where ties occurred in the value of the bound, no. of iterations 
and computing time, in this order, were used to determine the 
rule yielding the best bound 

H 



Problem 
Size Starting Rule 1 

Table 4.1 (contf  a) - The Dual Bound: Computational Results 

Optimal 
Solution 

% Deviation from 
Optimal Solution Starting Rule 2 Starting Rule 3 Best Bound 

n p Bound No. iter Time* Bound No. iter Time* Bound No. iter Time* Rule** Value 

25 1 1352 1 0.06 1352 1 0.06 1329 1 o.o6 1 1352 1352 0.00 
25 2 856 9 0.07 935 30 0.12 790 1 0.05 2 935 956 2.20 
25 3 708 7 0.07 700 10 0.08 251 1 0.05 1 708 722 1.94 
25 4 551 9 0.09 543 21 0.14 N+  - - 1 551 556.  0.90 
25 5 452 11 0.11 446 15 0.13 N - 1 452 468 3.42 
25 6 377 12 0.12 377 11 0.11 N - - 2 377 387 2.58 
25 7 309 8 0.09 317 12 0.12 N - - 2 317 341 7.04 
25 8 275 21 0.21 279 20 0.20 N - - 2 279 298 6.38 
25 9 244 19 0.20 248 26 0.22 N - - 2 248 266 6.77 
25 10 223 18 0.19 226 26 0.21 N - - 2 226 235 3.83 

30 1 1432 1 0.10 1432 1 0.09 1361 1 0.09 2 1432 1432 0.00 
30 2 924 8 0.12 909 13 0.12 926 8 0.12 3 926 936 1.07 
30 3 718 3 0.11 721 10 0.13 737 50 0.33 3 737 777 5.15 
30 4 610 26 0.25 578 14 0.16 566 9 0.15 1 610 610 0.00 
3o 5 500 14 0.18 496 16 0.18 486 33 0.35 1 500 516 3.10 
3o 6 424 20 0.24 409 19 0.20 408 21 0.28 1 424 438 3.20 
30 7 361 26 0.29 355 16 0.21 348 22 0.33 1 361 386 6.48 
30 8 320 27 0.33 313 18 0.28 320 28 0.44 1 320 337 5.04 
3o 9 281 17 0.27 278 24 0.36 280 4 0.15 1 281 294 4.42 
30 10 250 14 0.23 248 14 0.29 250 8 0.22 3 250 265 5.66 

+ N = large negative bound 

* CPU time, in CDC 7600 seconds 

** Where ties occurred in the value of the bound, no. of iterations and 
computing time, in this order, were used to determine the rule yielding 
the best bound 



Table 4.1 (cont'ed) - The Dual Bound: Computational Results  

Problem 
Size 	Starting Rule 1 Starting Rule 2 Starting Rule 3 Best Bound 

Best avail % Deviation from 
Solution 	Best Avail sol.  

n 2 Bound No. iter Time* Bound No. iter Time* Bound No. iter Time* Rule** Value 

4o 1 	80634 1 0.22 80634 1 0.21 74955 1 0.21 2. 80634 80634 0.00 
40 2 	43142 5 0.23 38874 12 0.26 43638 5 0.24 3 43638 45862 4.85 
4o 3 	34728 99 1.03 33281 21 0.34 33423 56 0.65 1 34728 35946 3.39 
4o 4 	26073 41 0.57 26374 32 0.47 23654 61 0.81 2 26374 26899 1.95 
40 5 	21443 4o 0.70 21457 51 0.60 21210 75 1.20 .2 21457 22396 4.19 
4o 6 	18128 26 0.55 18471 91 0.81 17257 17 0.45 2 18471 18775 1.62 
40 7 	15145 35 0.64 15321 228 3.24 16402 101 1.99 3 16402 17426 5.88 
4o 8 	14122 42 0.64 14349 75 1.23 14488 13 0.50 3 14488 16155 10.32  
40 9 	12897 190 3.99 13806 118 2.29 13212 47 1.29 2 13806 14539 5.04 
40 10 	12033 75 1.58 12371 74 1.44 12063 28 0.86 2 12371 13436 7.93 

50 1 128548 1 0.44 128548 1 0.42 126560 1 0.42 2 128548 128548 0.00 
50 2 	70685 25 0.62 72128 182 1.87 71153 15 0.53 2 72128 72168 '0.06 
50 3 	52615 108 1.71 50695 747 6.59 32931 569 8.38 1 52615 52708 0.18 
5o 4 	39629 55 1.18 40313 241 2.97 34931 266 4.50 2 40313 42228 4.53 
5o 5 	33335 104 2.03 32760 66 1.16 31325 489 10.47 1 33335 35677 6.56 
so 6 	2985o 51 1.38 28708 8o 1.68 29307 175 4.34 1 29850 31853 6.29 
50 
50 

7 	27240 
8 	24361 

58 
57 

1.57 
1.66 

26215 
23440 

93 
382 

2.21 
6.89 

25392 
20519 

6o 
5 

2.07 
0.59 

1 
1 

27240 
24361 

28300 
25624 

3.75 
4.93 H 

i.-1  
50 9 	21125 30 1.29 20344 37 1.13 23403 331 11.17 3 23403 24129 3.01 w 
5o 10 	19158 37 1.54 18895 76 2.29 21514 38 2.01 3 21514 22668 5.09 

+ Best of two available heuristic solutions 

* CPU time, in CDC 7600 seconds 

** Where ties occurred in the value of the bound, no. of iterations and 
computing time, in this order, were used to determine the rule yielding 
the best bound 
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4.5 Comparison of Bounds  

Three lower bounds for the p-median problem - the shortest 

distance bound, the graph-theoretical bound and the dual bound - 

are compared in Table 4.2. The examples for which these bounds 

are compared are the same as those used in Table 4.1. The bounds 

shown in Table 4.2 are lower bounds on the overall optimal solution 

to the corresponding p-median problem. The dual bound corresponds 

to the best starting rule of Table 4.1. 

Table 4.2 is self-explanatory. The value of each of the three 

bounds is shown in its initial columns, and the best of the three 

bounds is singled out for comparison with the best available solution 

to the problem. This solution is the optimal solution for networks 

of up to 30 vertices, but for the 40- and 50-vertex networks the best 

available solution is a heuristic solution. 

Under the 'Best Bound' heading, both the type of the best bound 

and its corresponding value are indicated. The dominance of the 

graph-theoretical bound over the shortest distance bound is confirmed 

by the numerical values shown in the table. On the other hand, 

there was not a single example for which the dual bound was dominated 

by the graph-theoretical bound. 

Due to the very nature of the graph-theoretical bound, its 

performance improves as the value of E increases. The results shown 

in Table 4.2 suggest that the graph-theoretical bound becomes 

competitive with the dual bound for values of pin > 0.4. As for 

the larger networks (n > 30) the values of the ratio for which results 

are shown do not exceed 0.3, it is not surprising that for the 

examples presented the dual bound was the dominant bound. 

The percentage deviation of the best bound from the best 

available solution is shown in the last column of the table. This 



Table 4.2 - Comparison of Bounds  

Problem 
Size 

Shortest Distance 
Bound 

Graph-theoretical 
Bound Dual Bound Best Bound 

.Optimal 
Solution 

% Deviation from 
Optimal Solution 

n ..... 2 212' Value 

10
+4- 
 1 34 56 79 D 79 79 0.00 

10 2 27 36 46 D 46 47 2.13 
10 3 21 29 34 D 34 36 5.56 
10 4 17 22 25 D 25 26 3.85 
10 5 13 16 18 D 18 18 0.00 
10 6 10 12 12 D,GT 12 12 0.00 
lo 7 7 8 8 D,GT 8 8 0.00 
10 8 4 5 5 D,GT 5 5 0.00 
10 9 2 2 2 D,GT,S 2 2 0.00 
10 10 0 0 0 D,GT,S 0 0 0.00 

10 1 201 318 400 D 400 400 0.00 
10 2 157 229 258 D 258 273 5.49 
10 3 122 185 195 D 195 195 0.00 
lo 4 90 142 148 D 148 149 0.67 
10 5 58 107 107 D,GT 107 107 0.00 
lo 6 30 75 75 D,GT 75 75 0.00 
10 7 17 43 43 D,GT 43 43 0.00 H 
lo 8 4 15 15 D,GT 15 15 o.00 1--= .n 
10 9 2 2 2 D,GT,S 2 2 0.00 
10 10 0 0 0 D,GT,S 0 0 0.00 

+ D= Dual bound 

GT = Graph-theoretical bound 

S = Shortest distance bound 

++ Example from Garfinkel et al. [41, p.231] 



Problem 
size 

Shortest Distance 
Bound 

Table 4.2 (con-tied) - Comparison of Bounds 

Bound 
Optimal 
Solution 

% Deviation from 
Optimal Solution 

Graph-Theoretical 
Bound Dual Bound Best 

n 2 Type Value 

15 1 153 341 809 D 809 809 0.00 
15 2.  134 237 411 D 411 412 0.24 
15 3 115 189 285 D 285 294 3.06 
15 4 98 163 207 D 207 215 3.72 
15 5 82 138 144 D 144 150 4.00 
15 6 70 113 113 D,GT 113 113 0.00 
15 7 58 93 93 D,GT 93 93 0.00 
15 8 48 74 74 D,GT 74 74 0.00 
15 9 38 57 57 D,GT 57 57 0.00.  
15 10 28 41 41 D,GT 41 41 0.00 

20 1 295 596 1159 D 1159 1159 0.00 
20 2 271 459 720 D 720 724 0.56 
20 3 250 349 488 D 488 518 5.79 
20 4 229 278 406 D 406 414 1.93 
20 5 208 250 316 D 316 338 6.51 
20 6 187 226 258 D 258 259 0.39 
20 7 167 205 218 D 218 227 3.96 
20 8 147 184 191 D 191 199 4.02 
20 9 129 163 168 D 168 175 4.00 
20 10 113 142 150 D 150 151 0.66 

+ D = Dual Bound 
GT = Graph-theoretical bound 



Problem 
size 

Shortest Distance 
Bound 

Table 4.2 (cont'ed) - Comparison of Bounds 

Bound 
Optimal 
Solution 

% Deviation from 
Optimal Solution 

Graph-Theoretical 
Bound Dual Bound Best 

n P. Type
+ 

Value 

25 1 349 717 1352 D 1352 1352 0.00 
25 2 325 577 935 D 935 956 2.20 
25 3 303 467 708 D 708 722 1.94 
25 4 282 378 551 D 551 556 0.90 
25 5 261 325 452 D 452 468 3.42 
25 6 241 301 377 D 377 387 2.58 
25 7 223 279 317 D 317 341 7.04 
25 8 206 257 279 D 279 298 6.38 
25 9 190 236 248 D 248 266 6.77 
25 10 174 215 226 D 226 235 3.83 

30 1 337 720 1432 D 1432 1432 0.00 
30 2 315 612 926 D 926 936 1.07 
30 3 298 518 737 D 737 777 5.15 
30 4 281 445 610 D 610 610 0.00 
3o 5 264 38o 500 D 500 516 3.10 
30 6 248 323 424 D 424 438 3.20 
30 7 234 282 361 D 361 386 6.48 
30 8 221 265 320 D 320 337 5.04 
3o 9 208 248 281 D 281 294 4.42 
30 10 195 231 250 D 250 265 5.66 

D = Dual bound 



Problem 
size 

Shortest Distance 
Bound 

Table 4.2 (cont'ed) - Comparison of Bounds 

Bound 

• + 
Best avail. 
Solution 

% Deviation from 
best avail. sol. 

Graph-Theoretical 
Bound Dual Bound Best 

n E 
++ 

Type 	Value 

40 1 14029 30094 80634 D 80634 80634 0.00 
40 2 13378 26636 43638 D 43638 45862 4.85 
40 3 12767 23951 34728 D 34728 35946 3.39 
4o It 12175 21450 26374 D 26374 26899 1.95 
40 5 11608 19059 21457 D 21457 22396 4.19 
4o 6 11056 16809 18471 D 18471 18775 1.62 
4o 7 10517 14872 16402 D 16402 17426 5.88 
4o 8 998o 13157 14488 D 14488 16155 10.32 
4o 9 9449 11599 13806 D 13806 14539 5.04 
4o 10 8965 10878 12371 D 12371 13436 7.93 

5o 1 17687 41104 128548 D 128548 128548 0.00 
50 2 16828 37393 72128 D 72128 72168 0.06 
5o 3 16028 33894 52615 D 52615 52708 0.18 
5o It 15228 30614 40313 D 40313 42228 4.53 
50 '5 14456 276b4 33335 D 33335 35677 6.56 
50 6 13754 24820 29850 D 29850 31853 6.29 
50 7 13060 22362 27240 D 27240 28300 3.75 
5o 8 12378 20059 24361 D 24361 25624 4.93 
50 9 11749 18066 23403 D 23403 24129 3.01 
50 10 11134 16406 21514 D 21514 22668 5.09 

+ Best of two available heuristic solutions 
D = Dual bound 



Frequency 

All points considered 
30 

No. of points = 80 
Mean = 2.57% 

St. Deviation * 2.59% 

25 

20 

Zero Deviation points excluded 

15 No. of points = 53 
Mean = 3.87% 

St. Deviation = 2.25% 

10 

% Deviation 

0 
	

0 	2.0 	4 0 	6.0 	8 0 	> 8.0 

Figure 4.2 

% Deviation of Best Bound from Best Available Solution 
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column confirms that the dual bound - the dominant bound for all 

examples in the table - is a very good lower bound for the p-median 

problem. Although the percentage deviation can only increase when 

the best available solution is of heuristic nature, the maximum 

observed deviation was 10.32%. 

A histogram of the percentage deviations defined above is 

shown in Figure 4.2. In this figure the mean and the standard 

deviation are shown: 

(i) For all points of Table 4.2; 

(ii) Only for the points corresponding to non-zero deviations, 

since the zero deviations mainly correspond to the smaller 

networks. 

4.6 Conclusions  

The quality of bounds used in tree search methods is a factor 

of vital importance in the efficiency of the method. Branch-and-bound 

algorithms so far developed for the p-median problem suffer from a 

lack of strong lower bounds, and for this reason are not very efficient. 

Two new lower bounds for the p-median problem were developed 

in the present chapter, namely the graph-theoretical bound and the 

dual bound. The graph-theoretical bound is based on shortest spanning 

trees and arborescences and other graphical properties of the problem. 

The dual bound is based on the dual of the linear programming 

relaxation of the p-median problem. A heuristic procedure was 

developed to compute an exact value for this bound. 

The graph-theoretical bound was shown to dominate the shortest 

distance bound, a bound developed in [12] to be used in a branch-and-

bound algorithm. The performance of the graph-theoretical bound is 

poor for small values of 2., but improves considerably as the value of 

2 increases. 
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The dual bound has proved to be a very good lower bound for 

the p-median problem. For 80 test problems its average deviation 

from the best available solution was only 2.57%. The dual bound 

can be easily embedded into branch-and-bound algorithms, as shown 

in the next chapter. 
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CHAPTER FIVE  

A BRANCH-AND-BOUND ALGORITHM 

5.1 Introduction  

Branch-and-bound algorithms, additive algorithms and direct search 

algorithms are some of the variations around the same basic idea, 

having common features which offer both advantages and disadvantages 

in relation to other solution procedures. 	On the positive side tree 

search methods are easy to understand and to program for the computer. 

They lack, however, mathematical structure, and the upper bound on the 

number of steps, needed to complete the algorithm is of the order of 

0(Km), where. K is a constant and m is a function of the problem 

variables. 

It is not felt that this thesis is the appropriate place to 

discuss in any depth the principles, types and properties of tree 

search methods. A very good introduction to the subject can be found 

in [40], and the subject is dealt with in great detail in the literature 

[2, 3, 7, 72, 75]. 	The basic principle upon which these methods are 

based is outlined in very short form in the next paragraph. 

The basic principle involved in tree  search methods is the 

partition of an initial problem P0  into a number of subproblems, 

Pl,P2,...,Pk, whose totality represent Po  and which are easier to solve.  

than P0. 	If however after the initial partition it is still impossible 

toresolve*asubproblemP.,this subproblem is further partitioned into 

yet smaller subproblems Pil,Pi2,...,Pik. 	This partitioning (also.  

To resolve a subproblem means: 

either (i) 	find an optimal solution, 
or 	(ii) show that the value of the optimal solution of the sub- 

problem is worse than the best solution obtained so far, 
or 	(iii) show that the subproblem is infeasible. 
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called branching) is repeated for every subproblem which cannot be 

resolved. 

A direct tree search algorithm for the p-median problem is 

described in the present chapter. 	This algorithm is a depth-first 

tree search approach to the problem, the basic principles of which 

are outlined in 	These basic principles had to undergo 

considerable development before they could be applied to solve the 

p-median problem for networks of meaningful size. In its final form 

the algorithm cascades through the shortest distance bound and the 

dual bound described in Chapter 4. 

The branch-and-bound algorithm is fully described in Section 5.2: 

its basic principles are outlined, the embedding of each cf the bounds 

is described in detail, and the detailed steps of the procedure are 

given. A small example is solved to illustrate the procedure and the 

importance of tight bounds in determining the efficiency of the 

algorithm. 

Computational results are then presented. The algorithm is 

shown to guarantee an optimal solution for 30-vertex networks in less 

than 2 minutes in a CDC 7600 computer, for any value of 2, 1 < p < n, 

where n is the number of vertices of the network. Except for small 

values of 2, computing 	times become prohibitive for n > 30. 

The computational experience reported above represents a sub-

stantial advancement in the field of exact solution procedures for the 

p-median problem. While other methods available in the literature may 

occasionally provide optimal solutions for problems in which n is 

larger than 30, no previously available method guarantees an optimal 

solution for any value of P  for networks with more than 20 vertices. 

The branch-and-bound algorithm described in the present chapter also 

proved to be computationally faster and more efficient than previous 

tree search approaches to solve the problem (30, 55] , especially for 

the larger networks (n > 20). 
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One of the methods that may on occasion provide an optimal 

solution for large networks is the decomposition formulation of 

Garfinkel et al. [41], discussed in Chapter 3. 	The results obtained 

when this formulation was embedded into the branch-and-bound 

algorithm are reported in Section 5.4. Unfortunately the embedding 

did not improve, the convergence of the decomposition formulation, and 

computing 	times become prohibitive even for 20-vertex networks. 

5.2 The Branch-and-bound algorithm  

A direct tree search algorithm for the p-median problem is now 

described. 	This algorithm is a depth-first tree search approach, 

in which each subproblem generated by the branching from a tree node 

is produced by setting - for a given vertex x 
J  
. - a variable . 

3.j  to 1 

for some vertex x.. The setting of 	= 1 implies that vertex x. 1 	ij 	 J 

is allocated to vertex xi, which, obviously, also implies that x.
1  is 

a median vertex. 

The vertices are randomly numbered from x1 to xn. The search 

proceeds by allocating sequentially - starting from x
1 

and finishing 

withxn -alltheverticesx.of the network. A vertex x. is initially 

allocated to itself (thuS becoming a median), then to its nearest, 

second nearest, third nearest vertices, and so on, until all 

possibilities are implicitly enumerated. 

Two lower bounds are used to limit the search. The first bound 

to be activated is the shortest distance bound, as this is the faster of 

the two bounds. If this bound fails to cause backtracting, the dual 

bound is then activated. The cascading through the two bounds 

combines the best feature of each of them - fastness in the case of 

the shortest distance bound and tightness in the case of the dual bound, 

and has proved to be efficient. Observations relevant to the type of 

search being carried out, and fully described in 5.2.1, limit the size 
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of the tree search further by reducing the number of alternative 

possibleallocationsofavertexx.at any one stage. 

In the introduction of this thesis it has been pointed out 

that the p-median problem is a combinatorial problem characterized 

by a large number of feasible solutions. 	It is therefore not . 

surprising that problems are often found for which multiple optimal 

solutions exist. The algorithm has been programmed so that multiple 

optimal solutions may be generated (if desired) for any given problem. 

The search for possible multiple optimal solutions is costly, however. 

The effect that seeking multiple optimal solutions has in the size of 

the search is reported in Section 5.3. 
Finally, it should be pointed out that the search can be considerably 

reduced if an upper bound on the value of the optimal solution is 

available prior to the start of the tree search. This upper bound 

can be calculated by a simple heuristic such as the 1-optimal substitution 

method of Teitz and Bart. The advantage that the availability of an 

upper bound has over starting from z* = co is also demonstrated in 5.3. 

5.2.1 Description of the algorithm  

An overview of the tree search algorithm is given in the present 

section. A more detailed description of the procedure is left for 

the remaining subsections of 5.2. 

The tree search can be carried out as follows: 	set up a matrix 

th 
M = m_ . , the j column of which contains all the vertices of the net-

work N arranged in ascending order of their shortest distance from 

• 

 

vertex xj. Matrix M can be set up only after the distance matrix of 

thegraph,D=[d..,has been calculated. Assume now that matrix M ij]  

is available. 	Then, if mkj  = x., vertex x. is the kth nearest vertex 

to x.. 	Obviously the nearest vertex to :c. is x. itself, i.e. m
lj = x.. 0 
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The search proceeds by allocating sequentially - starting 

fromxl andfinishingwithxn -alltheverticesx.of the graph. 

A vertex xj  is initially allocated to vertex raw  then m2j, m3j  

and so on, until all possibilities are implicitly enumerated. The 

following observations can now be made. 

1. Since in the optimal solution there are E median vertices, each 

allocation of a vertex in this solution must be the best of the 

possible allocations to the median vertices, i.e. there are at least 

(p-1) more costly ways of allocating any one vertex. The last (p-1) 

rows of matrix M can therefore be permanently removed without any 

possibility of the optimal solution to the p-median problem being 

affected. 

2. Suppose that vertex xphas been allocated to vertex mk,j, (= xi). 

For a vertex xj  not yet allocated, corresponding to column of matrix 

M (j'<j<n),letx.be the kth nearest vertex to x., i.e. let 

m,  . = x.. Kj 	1 	Then all entries, mkj of this column, k > k, can be neglected 

(marked), since the allocation of x.
JI1 	1 to x. implied that x. is a median 

vertex. Vertex x. can therefore be allocated at lower cost to x.
1  than J  

to any of the vertices mej, k > k. 	Clearly, if at some backtracking 

stepduringthesearchtheallocationofvertexx.,to x. is altered, 

then the entries mkj  have to be reconsidered (unmarked). 

3. Let vertex x.
J
,be.allocated to vertex 	

j 	Then all vertices 

m
lj

,
,m2j 	

..,m(k,_,)j, are not median vertices, for, if they were, x
j 

could have been allocated to any of them instead at a lower cost. 

These vertices can therefore be marked in all columns j > j'. 	Once 

more the marking of these vertices is temporary and must be removed 

whenever the allocation of x., to
K j 

 is changed. 

4. If the top t entries of a column of matrix M corresponding to 

anunallocatedvertexx.
J 
 are marked and the following entry - 	- 
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is a median vertex (i.e. if m(t+i)j  is a median vertex), then xj  

must be allocated to median 
m(t+i)j and no other alternative need 

be considered until some of the top t entries are unmarked. 	This 

is a direct consequence of observations 2 and 3 above. 

5. 	If at some stage a  of the tree search a total of .2.  median 

vertices are implied by the allocations already made, then the 

remaining unallocated vertices must be allocated to their nearest 

median vertex. This is obviously the optimal completion of the 

partial solution corresponding to the allocations up to that stage, 

and the next backtracking step must necessarily involve a change 

in the allocation at stage A.. 

Observations 1 to 5 above can be used to limit the size of the 

tree search by reducing the number of alternative possible allocations 

ofavertexx..at any one stage. 	They are not, however, the decisive. 

element in the tree search. Lower bounds on the overall optimal 

solution to the problem, calculated given the allocations already made 

at some stage 11, are of primary importance in determining the 

efficiency of the search and the size of problems it can solve. 

Details are given in the next two sections of the embedding into 

the branch-and-bound algorithm of two of the bounds described in 

Chapter 1 - the shortest distance bound and the dual bound. In its 

final form the algorithm cascades through these two bounds, and this 

has proved decisive in securing optimal solutions for networks of up 

to 30 vertices, in a reasonable amount of computing time and for every 

possible value of 1  (1 < p < n). 
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5.2.2 The embedding of the shortest distance bound  

The embedding of the shortest distance bound into the branch-

and-bound algorithm is now described. 

Using the notation of 5.2.1, suppose that the allocations of 

vertices made so far (up to and including the allocation of vertex 

x., )imply a total of p', p'<p, median vertices. 	The remaining 

allocations must then imply a total of a further (p-p') median 

vertices. Let J be the set of indices of the as yet unallocated 

vertices. 	In general J is the set of indices ,L, where j' < j < n, 

but excluding the indices of those vertices whose allocation might 

have already been forced by the allocation of the first 	vertices 

xi,x2,...,xj, - see Observation 4 of Section 5.2.1. 

	

Let ma. j and m 	
be the topmost and second topmost unmarked 

f3.j 

en triesincolumnl.Thebestpossibleallocationofvertexx.is 

then to vertex ma.j. 	
If the number of distinct vertices maj for 

j E J is h and h = p-p', then all these best possible allocations for 

the as yet unallocated vertices are feasible (i.e. they produce a 

total of 2 median vertices). These allocations then constitute the 

optimal completion of the partial solution implied by the current 

allocations of the vertices xl' x2'. ' x.'' 	In such event the result 

of the optimal completion should be noted and backtracking can take 

place from the current partial solution. 

If, however, h > (p-p'), then at least (h-p+p') of the best 

allocations must be changed to second best or worse in order to produce 

a 'total of 2 median vertices. Now let J' C J be the union of subsets 

' 
jt
1 
 U jt

2  U 
	U J'. 	Each of the subsets J'k  1 < k < r, comprise the  = = 

columns j E J of matrix M which have the same m
a (

= xk) vertex as 

their topmost unmarked entry. Thus, when there are columns j E J 

of M which have as their topmost unmarked entry the same vertex xk 
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for each such vertex xk  a subset Jk comprising the corresponding 

columns j E J is defined. 	For each subset Jitc  the sum 

= E 	[ d(x. m)- d(x. m
ct- 

 .)] 
J J ;EJ' J 

k 

(5.1) 

can be defined. 

The idea behind Equation (5.1) is that (i) when there is more than 

one column j e J which has the same vertex xk  as its topmost unmarked 

entry, and (ii) vertex xk  is not to be a median vertex in the completion 

of the partial solution for which 21 median vertices have already been 

defined, then, for all such columns, the allocation of the corresponding 

vertices x. will have to be made to the second topmost (or worse) un-

marked entry. 

Now, in the event that J' C J (i.e. if some columns j E J have as 

their topmost entry a vertex xt  that does not appear as the topmost- 

entry in any other column j E J), let J" = J-J'. 	For each column j E J" 

the sum S. of Equation (5.1) becomes 

S. = V. [d(x., 	.) - d(x., in 	.)] 
J 	. 	j 	a .3 

(5.2) 

Then, for allocations that must be changed to second best or worse, the 

minimum additional cost of allocation is the sum of the (h-pl-p')-smallest 

Sj, j e j 	j1 + j". 

A lower bound on the cost of the overall optimal solution, given 

the current partial solution, is the sum of the costs of the allocations 

already made, plus the sum 

E V. d(x., m .) 
jej 	J ajJ 

(5.3) 
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plus the sum of the (h-p+p') smallest S., the S. being given either 

by Equation (5.1) (for j E 1.1"), or by Equation (5.2) (for j E J"). 

It is also possible that h < (p-p'), in which case the best 

completion of the current partial solution leads to less than R.  

median vertices. However, since it is quite apparent that the 

transmissionc(T ) of the optimal p-median X monotonically decreases 

as E increases, it follows that when h < (p-p') the current partial 

solution is certainly not part of the optimal p-median solution and 

backtracking can then take place. 

5.2.3 The embedding of the dual bound 

When embedding the dual bound, it is important to determine what 

effect the setting of the g.. variables along the tree search has on 

the corresponding dual formulation of the relaxed problem. Two 

separate cases will be considered: the setting of variables that 

imply the assignment of a median vertex (the C.. variables), and the 

setting of variables that imply the allocation of vertices to medians 

(the E.. variables, i0j). 	Then these two cases will be combined, and ij 

the generalized procedure for the embedding of the dual bound described. 

It is worthwhile to recall both the primal and the dual formulations 

of the relaxed problem. The primal LP is 

n n 
Minimize 	Z = E 	E 	d.. C.. 1=1 j=1  

Subject to 

(5.4) 

n 
E C.. = 1 	V j 	 (5.5) i=1  

n 

E  gii p 
	 (5.6) 

g.. - g.. < 0 	±0i 	(5.7) = 
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E.. > 0 13 = (5.8) 

The dual of this linear programme has already been developed in 

Chapter 4. The DLP is 

n 
Maximize Z' = E a. 

i=1 1  
a
n+1 (5.9) 

Subject to 

n 
a. +a 	- E 	w.. <0 V 	i 	(5.10) 1 	n+1 ij = 

j=1 
jOi 

1,j, jOi 	 (5.11) 

(5.12) 

a. > 0, 	i.= 1,...,n 	 (5.13a) = 

an+1 < 0 	 (5.13b) = 

The setting of the E..  variables 11 

Thesettingofa.. Ell variable to 1 corresponds to assigning vertex 

X. to be a median vertex. 	Supposethatvertexx
i  is assigned as a 1 	
1 

median. 	It follows that E.. = 1, and this in turn implies the 1111  

following: 

(a) The primal constraint corresponding to j = it  in Equation (5.5) is 

n 
E E.. = 1 . i=1  111  

Since i  . = 1, it follows that Eii  = 0 V i0ii. 
1 

a. + u.. < d.. 	V 
13 = 13 

u. < 0 V 	i,j, jOi = 

(b) The number of medians yet to be assigned is reduced by 1 to (p-1): 

Equation (5.6) becomes 



n n 
Minimize Z = E 	E d.. 

1=1 j=1 13 13 

Subject to 

n 
E 	. = 1 

1=1 4  

(5.14) 

(5.15) 
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E Eii  = p-1 
1=1 

ioli 
( .1) The constraints corresponding to i = i1 

in Equation (5.7).  

become 

E. . - E. . < 0 	V 	j 	11 , 11j 	1111  

or, since 	. = 1, 
ili 

E. . < 1 
11  joii 

The above 'is already implied by Equation (5.5). 	These constraints 

can therefore be dropped from the primal LP. 

(c.2) The constraints corresponding to j = i1, i 	i1  in Equation 

(5.7) become 

Eli1 
. 

 = 
. 	E 	< 0 
	V 

Since El.=0ViOi1  (see (a) above), it follows that the above i
1 

 

reduces to 

> o V 
11 = 

which is already covered by Equation (5.8). 

The observations (a) to (c.2) above allow the reduced primal 

(after 	. has been set to 1) to be written as 
1
1
1
1 
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n 
E i

ii = p-1 
1=1 
i0i, 

E.. - E.. < o v 1J 	11 

(5.16) 

j 	il, i 	j 	(5.17) 

cij  > 0 V i, j 	it 	 (5.18) 

The dual corresponding to the above reduced primal is then 

MaximizeV=Ea.1  + (p-1) an+1 i=1 
i0ii  

Subject to 

a. +a
n+1 

— E ori 
j <OViOi1 j=1 

j°11 j01 

a. + ff.. < d.. V i 0 il,  j 0 il,  j 0 i = 

a. < d. .VjOi 
J = IIJ 	1 

a. >OVIO 11 

a 	< 0 n+1 = . 	. 
Ta• s 0 4 

formulation a. = 0 and  u.. = 0 V i.  '1 	111  

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23a) 

(5.23b) 

(S.A3c) 

The Setting ofthe l  .j  Variables (i 	j)  E 

The setting of a E.. variable to 1 (i 0 j), corresponds to i.j 

allocating a nonme di an vertex )c. to a median vertex x. Evidently 

can be set to 1 only if i
ii = 1, a condition expressed by Equation 

(5.7) of the primal LP. 

Suppose now that vertex x. has been allocated to median vertex 
1 

x. . The setting of E. . to 1 has very similar implications to the 11 	 11'11 
settingof.to 1, explained above in detail. The only differences 1111  

are that (i) the right-hand side of Equation (5.6) is not affected 
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this time (since no new median has been assigned by setting 	. to 

1), and (ii) no new upper bounds are imposed on the remaining positive 

dual variables (a consequence of the fact that no vertex can be 

allocated to a nonmedian vertex). 

When 	is set to 1 (following the setting of it j 1 
remaining dual LP is 

n 
Maximize 	Z'= E 	a;  + (p-1) cln+1 

1=1 	- 
i0i 	j 

l' 1 

Subject to 

a. +a 	-E 	Brij <OViOi
111 = 

j71 

a. + w. 	< d. 	V i 	i1,j1,  

a. 	< d. 	.VjOil,j1  = 

of  >OViOil,di  

na +1 = < 0 

, 	to 1), the 1111 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28a) 

(5.28b) 

;"4  	z k 	(s..agc,) 

The Embedding Generalized 

In the tree search described in the present chapter, at a given 

stage a  of the search several iiiand Eij  (i # j) variables will have 

been set to 1. The dual formulation is now given for the general 

case of the embedding. 

Suppose that at stage 2. of the tree search r variables iii, r < p, 

andsvariables.(i 	j), s < (n-p), have been set to 1. The dual 

formulation for this general case is a straightforward generalization 

of equations (5.24) to (5.28c) above. The only additional dual constraints 

stem from the fact that each variable iiiset  to 1 establishes new 



135 

upper bounds on the values of the remaining positive dual variables. 

Define the sets i = 	i2' ..., i
t}, and jq = {j1, j2' ..., js), 

where i is the set of indices of the g
ii variables set to 1 at stage 

a of the search, and ja is the set of indices of the gii (i # j) variables 

set to 1 at the same stage g of the tree search. The generalized 

embedded dual formulation (at stage 9, of the tree search) can be 

written as 

Maximize Z' = E a. + 
(p-r) an+l 

1=1 1 
(5.29) 

Subject to 

a. +a
n+1 	lj 

- Eff. < OVigi
q 
,j
q . 	= J=1 

j!iq,j
q 

a. + u 	< d.. Viqi ,j 	j 	,j 	j ij 	1,1 	q q' 	q q 

(5.30) 

(5.31) 

a. < Min d.. Vjqi ,j 	 (5.32) 
J = jEi 1J 	q q 

a. >0 39rigi 
1= 	q q 

(5.33a) 

an+1 < 0 	 (5.3310) = 

1-11-a o 	" Y 	1- 1- 	 (5.33G) 

Fortunately, a simple algorithm based on the procedure of 4.4.2 can 

find approximate solutions to this seemingly complicated formulation. 

The heuristic procedure described in Section 4.4.2 must be applied 

to a reduced distance matrix of the -network for which the p-median 

problem must be solved. This reduced distance matrix is always obtained 

from the original (nxn) distance matrix of the network, by crossing out 

the rows and columns corresponding to each vertex that has been either 

assigned as a median or allocated to an existing median when the embedded 

dual bound is activated. 
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The only variation in relation to the heuristic procedure of 

4.4:2 lies in the fact that the initial positive a's cannot be freely 

chosen as in Chapter 4. Each of the positive a's to be determined 

at stage 2.  of the tree search has an upper bound defined by Equation 

(5.32). The initial positive a's for the computation of the dual 

bound at stage 9. of the search can be chosen to be the upper bounds of 

Equation (5.32), in which case they are given by 

a = Min d.. iei  l j 	j 

q 
j,j q q (5.34) 

The heuristic procedure of Section 4.4.2 applies exactly as 

described there, after the distance matrix of the network is appropriately 

reduced to take into account the assignment of median vertices and 

the allocation of nonmedian vertices up to stage a of the tree search. 

The initial values of the positive a's are given by Equation (5.34). 

An illustrative example might help to clarify the general case of the 

embedding. Suppose that the optimal 3-median is being sought for a 5- 

vertexnetwork, and that at stage a  of the search vertices xl  and x3  have 

been assigned as medians, and nonmedian vertex x2  allocated to median x3. 

This 

	3' 

Thisimplies Ell 	33  = 1, and E32  1. 

The distance matrix D of this 5-vertex network is shown in 

Figure 5.1, together with the a vector of positive dual variables. 

The i and j sets are respectively i = {l, 3}, and j = {2}. 

If the rows and columns corresponding to i and j are crossed 

out, as indicated in Figure 5.1, it can be easily seen that the dual 

LP at this stage can be written as 

Maximize Z' = a + a5 + (3 -2)a6 

Subject to 

0
4 
 + a

6 
 - lt

45 
 < 

'5 	'6 - '54 •5. 0 



137 

2 13 3 
: 	
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21 22 23 ' °25 

31 '32 33 23 '35 

"4 
4 
 42 ")43 

d44 
d
45 

51 52 d 53  d54  d55  

4  
2 l' a4 

Figure 5.1 

D Matrix and Corresponding a Vector for a 

5-Vertex Network 

.D = 

ap  = 
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1.54 	d54 

a5 + 
	< 5 	45 = d45 

=> a1 	Min (d14, d34)  
a1!. = a 

a 

a5 a5  

a10 

< d15  15 
a35  

0
5 
 > 0 

> a5 < Min (d15, d35) 

< 0 , TT NS _̀ to I  1Ts  ,4  

which coincides with the general formulation given by Equations (5.29) 

through (5.33c). 

Note that in Figure 5.1 the d..ij elements crossed out by a vertical 

line, or by both a vertical and a horizontal line, do not appear in 

the formulation above. Cn the other hand, the d..
13 

elements crossed 

out only by horizontal lines corresponding to median vertices, provide 

upper bounds on the remaining ai  variables. Finally, the dij elements 

not crossed out appear in the constraints corresponding to Equations 

(5.30) and (5.31) 	[The right-hand side of Equation (5.30) is in 

reality di" always equal to zero in the p-median.probleml. 

5.2.4 The Detailed.Steps of the Algorithm  

The detailed steps of the branch-and-bound algorithm described 

in 5.2.1 are now given below. 

Step 1. Calculate D, the distance matrix of the network. Floyd's 

algorithm [34, 831 can be used to calculate D. 

th Step 2. Set up the matrix M = [mici], the j 	column of which contains 

all the vertices of the network arranged in ascending order of their 

shortest distance from vertex . xj. 

a4 <= d14 



139 

Step 3.  Cross out the last (p-1) rows of matrix M (see Observation 1 

of 5.2.1). 

Step 4.  Note the best available solution before the beginning of the 

tree search as Z* (such solution can be provided by a simple heuristic). 

If no solution is available make Z* = co. 

Step 5.  Make j' = 1. 

Step 6.  Allocate vertex xi, to the topmost unmarked entry - 

mak,., = x. - of column j2. ) becomes then a median vertex. 

Step 7.  For all columns j, j' < j < n, mark all unmarked entries which 

appear after xi  as MTli. 

Step8.Ifx.=x.
J' 
 go to Step 9. Otherwise assume there are (k'-1) 

verticesprecedingvertexx.in column j'. These vertices correspond 

to entries 'nip, m2p, .-.1 m(10-1)j, . For all columns 	j' < j < n, 

mark all unmarked entries corresponding to vertices mij„ m2i„ 

m(kl _i)j, as MT2p. 

Step 9.  For all columns 	j' < j s n, make, whenever the case, the 

forced allocations of nonmedian vertices to the medians assigned so 

far (see Observation 4 of 5.2.1). 

Step 10. Calculate the cost of the allocations made so far. Call 

this cost C. Then if Ca  > Z* go to Step 15 (backtrack). Otherwise  = 

(if Ca  < Z*) go to Step 11 below.* 

Step 11. Test whether ILL, the number of medians assigned so far, is 

equal to 2. If so, or if h = (p-p') [see Section 5.2.2], go to Step 

12 below. Otherwise go to Step 13. 

Zhu Cu5t 
The detailed steps given above areT3P<TE1 only one optimal 
solution is desired. If multiple optimal solutions are desired, 
then in Step 10, and in Steps 13 and 14, bactracking can take 
place only if Z* is strictly less than: (i) Ca  in Step 10, and 
(ii) LB and DB in Steps 13 and 14, respectively. 
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Step 12. Allocate each of the remaining non-allocated vertices to 

their closest median. These allocations then constitute the optimal 

completion of the partial solution implied by the current allocations 

of the vertices xi, x2, ..., x.1 . Calculate CT, the cost corresponding 

to the solution just completed. Then: 

(a) If CT  < Z* note the solution, make Z* = CT  and go to Step 15 

(backtrack); 

(b) If CT  Z*, go to Step 15 (simply backtrack). 

Step 13. Calculate the shortest distance bound, given the allocations 

made so far. Call this bound LB. Then: 

(a) If LB > Z*, or if h < (p-p') (see Section 5.2.2), go to 

Step 15 (backtrack); 

(b) Otherwise go to Step 14 below. 

Step 14. Calculate the dual bound, given the allocations made so 

far. Call this bound DB. Then: 

(a) If DB > Z*, go to Step 15 (backtrack); 

(b) Otherwise (DB < Z*) make j' = j' + 1 and return to Step 6. 

Step 15. Backtrack. Mark entry mk,j, (= xi, the latest median vertex 

to which xj, had been allocated before the backtracking step) as 

MT3. Then: 

(a) If the bactracking step is from within the first column of 

M and all entries are now marked in this column, stop. The 

tree search has been completed and the solution corresponding 

to the current value of Z* is the optimal solution 	of the 

p-median problem. 

(b) Otherwise: 

(i) Unmark, for all columns j, j' < j.< n,all entries marked 

eitherasW2.,or as MT3; 

(ii) Discard all previously forced allocations (see Observation 

4 of 5.2.1) for all columns j, j' < j s n; 
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(iii) Furthermore, if the current backtracking step un-assigns 

one median (i.e. if no other vertices x. corresponding to 

columns j < j' are allocated to vertex x. = 1 	E. j 

all columns 	j' < j < n, unmark all entries marked as 

MT1.. 
1 

After (i), (ii) and (iii) above go to Step 16 below. 

Step 16. If any entry in column j' remains unmarked return to Step 6. 

Otherwise make j' = j' - 1 and return to Step 15 (110.01track). 

5.2.5 The Algorithm Illustrated  

The branch-and-bound algorithm is now illustrated. The actual 

tree resulting from the application of the method to find the optimal 

2-median of a 10-vertex network is shown for 4 different cases. The 

purpose of this illustration is twofold: to give a pictorial view of 

the search, and to show how the efficiency of the method can be improved 

by (i) the use of strong  lower bounds, and (ii) the availability of an 

upper bound prior to the start of the search. 

The network used is the 10-vertex example of Garfinkel et al. 

[41, p.231]. This network has already been used for illustrative 

purposes in previous chapters of this thesis and elsewhere in the 

literature. For the sake of convenience it is repeated in Figure 5.2. 

The numbers on the links represent distance between vertices, and 

all vertices are equally weighted. 

The optimal 2-median of the network of Figure 5.2 is; = 

{X5'10}. This is shown in Figure 5.3, where the allocations of 

vertices to medians are clearly indicated. The cost of the optimal 

solution is 47. 

In order to emphasize the importance of strong bounds on the 

efficiency of the algorithm, the effect that each of the 3 bounds 



Figure 5.2 

10-vertex network of Garfinkel et al. [41, p.231] 



(5.3a) 

Allocations to Median X
10 

(5.3b) 

Allocations to Median X
5 

Figure 5.3 

Allocations of Vertices to Medians 



described in detail in Chapter 4 has on the size of the search is 

shown separately. In addition, the tree that results when an upper 

bound is used in conjunction with the tightest of the 3 bounds (the 

dual bound), is shown in a separate figure. 

The tree search resulting from the use of the shortest distance 

bound is shown in Figure 5.5. Figures 5.6 and 5.7 show the trees 

corresponding to the use of the graph-theoretical bound and the 

dual bound, respectively. In all these 3 cases it was assumed that no 

upper bound was available prior to the start of the search, and the 

variable Z*, denoting the best available solution at stage g of 

the tree search, was consequently set to infinity at the initial 

node I of each of the corresponding figures. Figure 5.8 corresponds 

to an upper bound being available at node I, and in this case Z* 

was initially set to 48, a value obtained through the vertex 

substitution heuristic method of Teitz and Bart [98]. 

Figures 5.5 to 5.8 speak for themselves, and the bounds performed 

in the way expected from the analysis presented in Chapter 4. The 

dual bound is by far the strongest- of the three, and the shortest 

distance bound the weakest. Although the embedding of the graph- 

theoretical bound was not coded, the tree resulting from its application 

to the network of Figure 5.2 is shown in Figure 5.6. 

The embedding of the graph-theoretical bound presents no special 

problems. It involves the transformation of the original network 

into smaller networks as the search develops from one level of the 

tree to the next and nonmedian vertices are allocated to assigned 

medians. Conversely, the network must be restored to itsshape at 

higher levels of the tree every time backtracking takes place. 

Each and every time the bound is calculated the procedure 

described in Section 4.3 must be applied to the complete network, 

described by its distance matrix at the appropriate level of the 



+ Ca is the cost of the allocation of nonmedian vertices of the partial solution 
at node 27 of Figure 5.6 

++ The meaning of SSTON  and LL1  are given in 4.3.2. 

The meaning of R is given in 4.3.3. 

+++ GTB means the value of the graph-theoretical bound 

+C
a 
 = d31 +d32 +d34% = 10+7+4 = 21 

++SST = 35 
ON 

++LL1  = 9 

++0 = 0 

+++GTB = Ca+SSTON-LL1 = 21+35-9 = 47 

Figure 5.4 

The graph-theoretical bound computed at 
node 27. of Figure 5.6 
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++FS = Feasible solution not better than Z* 

+++Z = Value of optimal solution op 
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The tree search: dual bound used 
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Figure 5.8.  

+DB = Dual bound 

++FS = Feasible solution not better than Z* 

+++Zop  = Value of optimal solution 

16 nodes 

The tree search: dual bound plus initial upper bound used 
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tree. The marked entries of matrix M (see Section 5.2.1) must be 

upedto.preverrtarcsbeingEoaowedbetween avertex x.and any 

vertex corresponding to a marked entry in column j_ of M. The 

detailed computation of the graph-theoretical bound at node 27 of 

the tree of Figure 5.6 is shown in Figure 5.4. 

Important parameters of the searches of Figures 5.5 to 5.8 are 

shown in Table 5.1 below. A substantial improvement in efficiency is 

noted when the searches of Figures 5.5 and 5.8 are compared. The 

number of nodes examined dropped from 36 to 16, due to a marked 

improvement in the performance of the respective bounds. 

Table 5.1 - The 4Searches Compared 

No. times 	No. complete 
Bound 	No. Nodes 	bound was 	solutions 
Used 	Examined 	computed 	evaluated  

1. Shortest 
Distance Bound 

2. Graph-Theoretical 
Bound 

3. Dual Bound 

36 	16 	20 

32 

23 

15 

12 

16 

10 

1. Dual Bound 
plus initial 	16 	11 
upper bound 

It is important to note that the dominance of the graph-theoretical 

bound over the shortest distance bound, proved in 4.3.5 for the initial 

node I of the tree, does not hold for its lower levels. This is 

caused by the fact that the marking of entries in matrix M strengthens 

the shortest distance bound more than it strengthens the graph-

theoretical bound, especially at the lower levels of the tree. 

Finally, as a matter of interest, it is worth mentioning that if 

complete enumeration were used to find the optimal 2-median of the 

network of Figure 5.2, a total of [1 = 45 feasible solutions would have 

had to be examined for this particular example. Quite clearly (and 
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in common with tree search methods used to solve other combinatorial 

problems), the relative differences in efficiency between algorithms 

that result from the use of different bounds increase with the size 

of the problem. 

5.3 Computational Results  

Computational results obtained for networks ranging from 10 to 

30 vertices, and for a wide range of values of 2, are shown in 

Tables 5.2 to 5.5. The networks to which these results correspond 

are the same used to produce the dual bound data of Table 11.1. 

Except for the 10-vertex network of Garfinkel et al. (see Figure 5.2), 

all other networks used to produce the results of Tables 5.2 to 5.5 

are described in the appendix. 

The results shown in Table 5.2 correspond to the algorithm 

described in Section 5.2.4. An upper bound on the overall optimal 

solution of the problem was always obtained prior to the start of 

the search, and cascading through the shortest distance and dual 

bounds was used in all cases. The upper bound was obtained through 

the vertex substitution method of Teitz and Bart. 

This combination of bounds has proved to be quite efficient for 

this particular algorithm. The advantage of using the two lower 

bounds is not a reduction in the number of nodes that needs to be 

examined before the completion of the algorithm. Although it has not 

been possible to prove dominance of the dual bound over the shortest 

distance bound, there are grounds to believe that in the vast 

majority of cases the number of nodes examined would be the same if 

the dual bound had been used on its own. 

The advantage of cascading through the two lower bounds is a 

substantial reduction in computing times, given that the shortest 

distance bound is much faster to compute than the dual bound. In 
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these circumstances, any backtracking caused by the shortest distance 

bound avoids a corresponding computation of the dual bound, saving 

computing time. This saving is substantial,especially for the larger 

values of n and R. This can be easily verified from the data shown 

in Table 5.2. 

In Table 5.2 data is provided on the main parameters of the 

tree search, with detailed information provided on each of the two 

lower bounds used. Most of the data provided are self-explanatory, 

but the number of nodes examined and the time spent on the dual 

bound need a closer examination. They are the two factors that 

determine the total computer time needed to find the optimal solution 

to any given problem, and as a consequence they ultimately limit 

the size of problems that can be solved through the present brandh-

and-bound algorithm. 

The p-median problem belongs to the NP class of combinatorial 

problems [58], and consequently the number of steps needed before 

completion of the present branch-and-bound algorithm is of the 

order of 0(Km), where K is a constant and m is a function of the 

number of vertices of the network (n) and of the number of medians 

being sought (p), 	m = f(n,p). Of the two n is the main 

determining factor. On the other hand, for any given n the number of 

nodes examined increases with 2 up to a certain point (= n/3 for 

the larger networks), and decreases thereafter down to 1 node when 

p = n. The relationship between number of nodes examined and p, 

however, does not always follow a very rigid pattern, a very good 

example of.which are the results obtained for the 30-vertex network 

of Table 5.2. 

Given the number of steps needed to obtain the optimal solution, 

the computer time spent on the dual bound is the main limiting factor 

in the branch-and-bound algorithm. For n > 15 the number of nodes 
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examined is only a very small fraction of the total enumeration for 

the problem, but the computer time spent on the dual bound represents 

a substantial percentage of the total time needed to complete the 

tree search. These are facts of special relevance for the large values 

of n and 2t, as demonstrated in Table 5.3. 

The data of Table 5.3 strongly substantiates the point that the 

time needed to compute the dual bound is the algorithm's bottleneck, 

preventing it from solving the p-median problem for networks with 

more than 30 vertices, except for small values of E. Any improvement 

in the Performance of the algorithm is therefore dependent on the 

ability to improve the computational performance of the dual bound. 

Two additional tables complete the set of computational results. 

In Table 5.4 the effect that the use of an initial upper bound has on 

the efficiency of the algorithm is clearly indicated. For many of 

the examples included in this table (and especially for the larger 

networks), a significant reduction both in number of nodes examined 

and in total computing time is shown when an upper bound is 

available at the initial node I of the tree. 

Finally, in Table 5.5 the cost of seeking possible multiple 

solutions for the p-median problem is shown for a number of examples. 

A significantly larger number of iterations may be required when 

possible multiple solutions are being investigated, especially 

for large values of n and P. Table 5.5 indicates that, contrary to 

other combinatorial problems, multiple optimal solutions are not 

'a rare occurrence in the p-median problem. 

In summary, the computational results of the present section 

support the claim made in Section 5.1, that the branch-and-bound 

algorithm developed in this thesis represents a substantial advancement 

in the field of exact solution procedures for the p-median problem. 

The algorithm guarantees an optimal solution for any value of .2. 



Table 5.2 - The Branch-and-bound algorithm: computational results* 

Problem 
size Value of 

optimal 
solution 

Number 
of nodes 
examined 

Shortest distance bound Dual Bound Time in Seconds 

No. of 
calls 

No. backtrack 
steps caused 

Computing time+  

spent on bound 
No. of 
calls 

No. backtrack 
steps caused 

Computing time 
spent on bound 

Upper 
bound 

Tree 
search 

Total 
time n 	p 

10++ 	1 79 10 0 0 0.00 0 0 0.00 0.01 0.06 0.07 
10 	2 17 16 11 6 0.01 5 3 0.03 0.01 0.05 0.06 
10 	3 36 25 19 4 0.01 15 10 0.06 0.01 0.09 0.10 
10 	4 26 33 26 7 0.01 19 10 0.08 0.02 0.11 0.13 
10 	5 18 29 21 9 0.01 12 4 0.06 0.02 0.09 0.11 
10 	6 12 25 19 9 0.01 10 3 0.07 0.02 0.10 0.12 
10 	7 8 23 20 10 0.01 10 3 0.08 0.01 0.10 0.11 
10 	8 5 15 13 7 0.01 6 1 0.05 0.01 0.07 0.08 
lo 	9 2 16 8 2 0.00 6 0 0.05 0.01 0.06 0.07 
10 	10 0 1 1 1 0.00 0 0 0.00 0.00 0.01 0.01 

10 	1 400 10 0 0 0.00 0 0 0.00 0.01 0.04 0.05 
10 	2 273 18 7 3 0.00 4 3 0.03 0.01 0.04 0.05 
10 	3 195 26 17 7 0.01 10 4 0.12 0.01 0.15 0.16 
10 	4 149 22 18 9 0.01 9 4 0.16 0.02 0.19 0.21 
10 	5 107 24 18 6 0.01 12 6 0.20 0.02 0.23 0.25 
10 	6 75 22 17 5 0.01 12 6 0.23 0.02 0.27 0.29 
10 	7 43 25 15 2 0.00 13 5 0.19 0.01 0.22 0.23 
10 	8 15 22 10 1 0.00 9 1 0.13 0.01 0.15 0.16 
10 	9 2 18 8 0 0.00 8 0 0.13 0.01 0.15 0.16 
lo 	10 0 1 1 1 o.00 0 0 o.00 0.00 0.01 0.01 

+ CPU time, in CDC 7600 seconds 
++ Garfinkel et al. example (see Figure 5.2) 
* Only one optimal solution sought 



Table 5.2 (contled) - The Branch-and-bound algorithm: computational results*  

Problem 
size Value of 

optimal 
solution 

Number 
of nodes 
examined 

Shortest distance bound Dual Bound • 
+ 

Time in Seconds 

No. of 
calls 

No. backtrack 
steps caused 

Computing time 
spent on bound 

No. of 
calls 

No. backtrack 
steps caused 

Computing time 
spent on bound 

Upper 
bound 

Tree 
search 

Total 
time n 2.  

15 1 809 15 0 0 0.00 0 0 0.00 0.02 0.10 0.12 

15 2 412 22 13 3 0.01 10 9 0.07 0.03 0.13 0.16 

15 3 294 36 28 9 0.02 19 16 0.16 0.05 0.28 0.33 

15 4 215 87 69 22 0.04 47 32 0.65 0.08 0.82 0.90 

15 5 150 41 31 14 0.02 17 10 o.4o 0.08 0.47 0.55 

15 6 113 41 28 10 0.01 18 10 0.54 0.09 0.64 0.73 

15 7 93 45 33 11 0.01 22 13 0.69 0.07 0.79 0.86 

15 8 74 82 57 23 0.02 34 13 0.97 0.03 1.09 1.12 

15 9 57 42 27 13 0.01 14 4 0.57 0.03 0.65 0.68 

15 lo 41 46 31 15 0.01 16 4 0.56 0.02 0.65 0.67 

20 1 1159 20 0 0 0.00 0 0 0.00 0.04 0.25 0.29 

20 2 724 33 17 7 0.02 10 8 0.10 0.10 0.33 0.43 

20 3 518 118 88 22 0.08 66 54 1.13 0.15 1.86 2.01 

20 4 414 188 150 59 0.14 91 75 2.13 0.13 3.33 3.46 

20 5 338 238 195 82 0.17 113 85 3.10 0.19 4.35 4.54 

20 6 259 167 116 62 0.10 54 34 2.63 0.25 3.43 3.68 H 
■.n 

20 7 227 137 92 37 0.07 55 3o 2.69 0.20 3.19 3.39 ■.n 

20 8 199 155 120 47 0.08 73 41 3.03 0.25 3.55 3.8o 

20 9 175 156 120 52 0.08 68 37 3.22 0.19 3.68 3.87 

20 10 151 191 156 66 0.09 90 44 3.87 0.13 4.32 4.45 

+ CPU time, in CDC 7600 seconds 
* Only one optimal solution sought 



Table 5.2 (cont'ed) - The Branch-and-bound algorithm: computational results* 

Problem 
size Value of 

optimal 
solution 

Number 
of nodes 
examined 

Shortest distance bound Dual bound Time in Seconds 

No. of 
calls 

No. backtrack 
steps caused 

Computing time
+ 

spent on bound 
No. of 
calls 

No. backtrack 
steps caused 

Computing time
+ 

spent on bound 
Upper 
bound 

Tree 
search 

Total 
time n p 

25 1 1352 25 0 0 0.00 0 0 0.00 0.08 0.53 0.61 
25 2 956 33 24 7 0.04 17 16 0.19 0.17 0.75 0.92 
25 3  722 139 112 19 0.16 93 ' 80 2.08 0.38 3.64 4.02 
25 4 556 23o 192 45 0.27 147 124 4.07 0.37 6.31 6.68 
25 . 	5 468 241 210 63 0.27 147 121 5.63 0.42 7.74 8.16 
25 6 387 381 292 118 0.35 174 133 7.6o 0.45 10.69 11.14 
25 7 341 731 627 242 0.63 385 288 13.90 0.59 .18.76 19.35 
25 8 298 922 837 294 0.92 543 399 25.46 0.84 31.32 32.16 
25 9 266 1012 904 323 0.95 581 416 31.33 0.72 37.04 37.76 
25 10 235 715 643 241 o.66 402 264 24.07 0.59 27.59 28.18 
25 11 210 613 533 236 0.53 297 178 21.45 0.98 24.23 25.21 
25 12 188 726 619 287 0.57 332 186 21.12 0.62 24.06 24.68 

30 1 1432 30 0 0 0.00 0 0 0.00 0.11 0.95 1.06 
30 2 936 46 28 8 0.07 20 19 0.27 0.30 1.32 1.62 
30 3 777 237 193 60 0.04 133 119 4.04 0.69 8.72 9.41 
3o 4 610 262 219 7o 0.05 149 131 6.95 1.01 11.90 12.91 
30 5 516 833 715 180 1.32 535 442 24.57 1.35 36.71. 38.06 
30 6 438 675 564 198 0.98 366 292 28.87 1.92 38.20 40.12 
30 7 386 1304 1131 448 1.68 683 512 47.94 1.59 62.73 64.32 
30 8 337 794 664 276 1.10 388 301 52.06 2.14 61.65 63.79 
30 9 294 388 322 144 0.57 178 133 37.89 1.91 42.64 44.55 
30 10 265 1028 922 444 1.44 478 323 71.35 1.67 81.20 82.87 

0N 

+ CPU time, in CDC 7600 seconds 
* Only one optimal solution sought 



Problem 
size 

Table 5.3 - No. of nodes examined and time spent on the dual bound* 

Total
+ 

Enumeration 
(No. of solutions) 

No. of 
Nodes 

Examined 

% of 
Total 

Enumeration n 1 

15 4 1,365 87 6.37 
15 5 3,003 41 1.37 
15 6 5,005 41 0.82 
15 7 6,435 45 0.70 
15 8 6,435 82 1.27 

20 4 4,845 188 3.88 
20 5 15,504 238 1.54 
20 6 38,76o 167 0.43 
20 7 77,52o 137 0.18 
20 8 125,970 155 0.12 

25 8 1,081,575 922 0.085 
25 9 2,042,975 1012 0.050 
25 10 3,268,760 715 0.022 
25 11 4,457,400 613 0.014 
25 12 5,200,300 726 0.014 

30 6 593,775 675 0.1100 
30 7 2,035,800 1304 0.0640 
30 8 5,852,925 794 0.0140 
30 9 14,307,150 388 0.0027 
30 10 30,045,015 1028 0.0034 

• 

% of total 
search time 
spent on the 
dual bound  

79 
85 
84 
87 
89 

64 
71 
77 
84 
85 

81 
85 
87 
89 
88 	1--,  ..n 

76 
76 
84 
89 
88 

* Only one optimal solutionsought, cascading and upper bound always used. 
! 

+ Total enumeration = 
n
j = 	

n
(n_p)!p!  solutions, each requiring p(n-p) comparisons and (n-p) additions ( P 

in order to be evaluated. 



Problem 
size Value of 

Optimal 
solution 

Table 5.4 - No upper bound vs. initial upper bound* 

seconds+  
** 

Number of nodes examined Total.time in 

- 	No upper 
bound used 

Upper 
bound used 

No upper 
bound used 

Upper 
bound used n p 

10
+I- 

1 79 lo 10 0.03 0.07 
10 2 47 23 16 0.06 0.06 
10 3 36 38 25 0.10 0.10 
10 4 26 65 33 0.13 0.13 
10 5 18 74 29 0.11 0.11 
10 6 12 77 25 0.12 0.12 
10 7 8 59 23 0.10 0.11 
lo 8 5 3o 15 0.04 0.08 
10 9 2 20 16 0.04 0.07 
10 10 0 1 1 0.01 0.01 

10 1 400 10 10 o. o6 0.05 
10 2 273 18 18 0.07 0.05 
10 3 195 41 26 0.14 0.16 
10 4 149 43 22 0.21 0.21 
10 5 107 48 24 0.22 0.25 
10 6 75 45 22 0.25 0.29  
10 7 43 50 25 0.20 0.23 

\ n 
co 

10 8 15 39 22 0.12 0.16 
10 9 2 18 18 0.12 0.16 
10 10 0 1 1 0.01 0.01 

* Only one optimal solution sought, cascading always used 
+ CPU time, in CDC 7600 seconds 
++ Garfinkel et al. example (see Figure 5.2) 
** Includes time spent on the computation of the upper bound 



Table 5.4 (cont'ed) - No upper bound vs. initial upper bound* 

Problem 
size Value of 

Optimal 
solution 

Number of nodes examined • Total time in seconds
+ 

No upper 
bound used 

Upper 
bound used 

No upper 
bound used 

Upper** 
bound used n IL 

15 1 809 15 15 0.11 0.12 
15 2 412 55 22 0.29 0.16 
15 3 294 47 36 	. 0.33 0.33 
15 4 215 129 87 0.88 0.90 
15 5 15o 150 41 0.87 0.55 
15 6 113 128 41 0.99 0.73 
15 7 93 134 45 1.14 0.86 
15 8 74 96 82 0.86 1.12 
15 9 57 6o 42 0.39 o.68 
15 10 41 52 46 0.28 0.67 

20 1 1159 20 20 0.26 0.29 
20 2 724 108 33 0.92 0.43 
20 3 518 183 118 2.36 2.01 
20 4 414 211 188 3.34 3.46 
20 5 338 323 238 4.68 4.54 
20 6 259 376 167 4..17 3.68 
20 7 227 278 137 3.13 3.39 
20 8 199 295 155 3.16 3.8o 
20 9 175 277 156 3.3o 3.87 
20 10 151 290 191 3.68 4.45 

* Only one optimal solution sought, cascading always used 
+ CPU time, in CDC 7600 seconds 

** Includes time spent on the computation of the upper bound 



Table 5.4 (cont'ed) - No upper bound vs. initial upper bound* 

Problem 
size Value of 

Optimal 
solution 

Number of nodes examined Total time in seconds
+ 

No upper 
bound used 

Upper 
bound used 

No upper 
bound used 

Upper** 
bound used n p 

25 1 1352 25 25 0.54 0.61 
25 2 ,.. 956 51 33 1.33 0.92 
25 3 722 195 139 5.36 4.02 
25 1 4 556  386 230 10.96 6.68 
25 5 468 506 241 15.61 8.16 
25 6 387 716 381 20.53 11.14 
25 7 341 1161 731 30.75 19.35 
25 8 298 1638 922 44.60 32.16 

30 1 1432 30 30 1.00 1.06 
30 2 936 160 46 4.59 1.62 
30 3 777 337 237 13.86 9.41 
30 4 610 545 262 23.75 12.91 
30 5 516 1524 833 62.25 38.06 

Only one optimal solution sought, Cascading always used 
CPU time, in CDC 7600 seconds 

** Includes time spent on the computation of the upper bound 



Table 5.5 - Single vs. multiple optimal solutions}  

Problem 
_ 	size Value of 

optimal 
solution 

Number of nodes examined 
Number of 
multiple 
solutions 

One 
solution 

Multiple 
solutions n 2 

10 2 273 18 18 1 
10 3 195 41 41 1 
10 4 149 43 53 1 
10 5 107 48 62 1 
10 6 75 45 81 3 
lo 7 43 5o 69 2 
10 8 15 39 84 4 

10 9 2 18 25 2 
10 10 0 1 10 1 

15 2 412 55 55 1 
15 3 294 47 55 2 
15 4 215 129 148 2 
15 5 150 150 169 1 
15 6 113 128 202 8 
15 7 93 134 311 16 

No upper bound used 



Table 5.5 (cont'ed) - Single vs. multiple optimal solutions+  

Problem 
size Value of 

Optimal 
solution 

Number of nodes examined 
Number of 
multiple 
solutions 

One 
solution 

Multiple 
solutions n p 

20 2 724 108 108 1 
20 3 518 183 ' 200 1 
20 It 414 211 211 1 
20 5 338 323 366 1 
20 6 259 376 388 1 
20 7 227 278 331 2 
20 8 199 295 51t5 it 
20 9 175 277 713 10.  
20 10 151 290 • 563 it 

25 2 956 51 51 1  
25 3 722 195 205 2 
25 It 556 386 434 2 
25 5 468 506 653 8 
25 6 387 716 1118 16 

30 2 936 160 160 1 1- 
30 3 777 337 365 1 

C \ 
N 

30 4 610 545 607 1 

+ No upper bound used 
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for networks with up to 30 vertices, within a reasonable amount of 

computer time. This is not matched by any other exact procedure 

available in the literature [30, 41, 55, 78]. 

5.4 The LP relaxation and the Branch-and-bound algorithm 

The possibility of using the LP relaxation of the p-median 

problem to provide bounds for branch-and-bound algorithms has already 

been mentioned in Section 1 .2. When the LP relaxation was 

investigated, both the general and the decomposition formulations 

of this relaxation were embedded into the branch-and-bound 

algorithm of the present chapter. The experience with these 

embeddings is now reported. 

The LP relaxation must be used to solve the complete problem 

before the branch-and-bound algorithm is activated. Very often 

the solution produced for the relaxed problem is all-integer, 

being therefore the optimal solution for the p-median problem. 

Only if the LP relaxation produces a fractional solution at this 

initial stage of the procedure, should the tree search be activated. 

When the branch-and-bound algorithm is activated, the sub-

problems, generated by the setting of some of the 
1J  variables 

to zero or 1, can be solved by either of the formulations of the 

relaxed problem. At a given stage a of the search backtracking 

occurs if: 

either (i) The solution to the LP relaxation of the subproblem is 

all-integer. In such cases this solution is obviously the optimal 

completion of the partial solution corresponding to the allocations 

made up to stage g of the tree search; 

or 	(ii) The solution is fractional, but the value of its 

objective function, plus the cost of the allocations made up to 

stage a of the search, provide a lower bound that is greater than 

or equal to the best available solution at stage a  (z*). 
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Due to the very large linear programmes produced by the 

general formulation, it soon became evident that the embedding 

of this formulation could not produce results of any significance. 

Besides the fact that very large LP's are already produced for 

20-vertex networks, the approach proved not to be practical even 

for a 10-vertex network. 

In this respect, the search for the optimal 3-median of the 

network of Figure 5.2 provided the following results:* Although 

the number of nodes examined was reduced from 25 (see Table 5.2) 

to only 8 when this embedding was used, the total computing time 

'increased from 0.10 to 8.32 CDC 7600 seconds. This was due to 

the long time taken to solve the 5 LP's that were needed to 

terminate the search. 

The embedding of the decomposition formulation, however, 

provided better grounds for hope. This is a fast algorithm, 

requiring in addition little computer core. There was also hope 

that some of the convergence problems reported in Chapter 3 could 

be solved after some of the E..'s had been fixed along the tree ij 

search. The experience with the embedding of this formulation 

is reported in the next two sections. 

5.4.1 The Embedding of the LP Decomposition Formulation  

The embedding of the LP decomposition formulation involves 

solvingthelinearprogrammefortheE.variables not yet fixed ij 

to either zero or 1 when the LP is activated. For this formulation, 

the setting of variables is taken care of in each of the n sub-

problems of Section 3.3. It influences therefore the vector to 

enter the basis at each iteration of the LP. 

As already pointed out in Chapter 3, for all values of p 0 3 
the LP solution was all-integer for this particular example. 



165 

The procedure is better explained by means of an example. 

Refer back to Figure 5.2, and assume the method is being used to 

determine the optimal 3-median of the corresponding network. 

Assume further that the LP must be solved at the node of the tree 

corresponding to vertices x1 
and x2 having been assigned as medians, 

with vertex x3 allocated to median x2* Vertices x4  to x10  are 

not as yet allocated to any median vertex.* 

The first point that must be made is that vertex x3  cannot 

be assigned as a median in any branch emanating from the node 

described above. Vertex x3' therefore, should never be brought 

into the basis of the corresponding master problem. To make sure 

this will not happen, the vector corresponding to subproblem 3 must 

be a zero vector, i.e, y*3  = (0, ..., 0)
T in every iteration of the 

algorithm. 

Secondly, in all other possible candidate vectors y to enter 

the basis, i 0 3, the top 3 entries are already determined by 

the allocations of vertices x1,  2 	3' 
x and x 	These allocations imply: 

(i) Yll = Y22 = 313 = 	, 	(ii) 3ri2 = 311 = 313 = °' 

and 	(iii) yll  = 1i2 = y13  = 0, i = 4,5,...,10 . 

In summary, at this particular stage of the tree search the candidate 

vectors to enter the basis of the master problem are given by 

1 01 
0 1 
0 1 

6 

Y*  1 Y 	= 2 
6 
6 
6 
6 

a 
a Ls 

* The situation described above never happened for this particular 
example, and the development that follows is only for illustrative 
purposes. The actual tree search for this example is shown in 
Figure 5.9. 
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0 

y1 = YS =  g = YI = Yg = Y; = YtO 

0 
0 

a 
6 

a 

where the Vs are to be replaced by either zero or 1, in the way 

described in Section 3.3 [see equations (3.25) and (3.26)] . The 

decomposition formulation can then procede as described in Chapter 

Three. 

5.4.2 Computational Experience with the Embedding  

Computational results corresponding to the embedding of the 

decomposition formulation are shown in Table 5.6. In this table 

these results are also compared with data taken from Table 5.2. In 

addition, the tree search corresponding to the 10-vertex network 

appearing in this table is illustrated in Figure 5.9. 

Except for the search shown in Figure 5.9, the smallest network 

fcir which it was possible to test the embedding of the decomposition 

formulation was the 20-vertex network of Table 5.2. For smaller 

networks all-integer solutions were obtained for the complete 

problem, and no tree search was needed. For the 20-vertex and larger 

networks of Table 5.2, however, the decomposition formulation failed 

to converge after 1,000 iterations for several values of 2 (see Table 

3.1), thus enabling the embedding of this LP formulation to be 

tested. 

Four different examples are shown in Table 5.6. For 3 of 

them it was possible to complete the search within 150 seconds of 

computer time in the CDC 7600, but for the n = 25, p = 4 example 

this was not possible. 



Convergence of the LP  Problem   Avg. time 	++ 
size 	Value of 	No. of 	No. of 	No. of 	No. of 	Max. No.* 	to solve 	Total 

Sol.-i-  optimal 	nodes 	LP 	calls that 	calls not 	iter./ 	
Search-1--1-+ 
	LP given 	time in 

n p Method solution examined calls converged converging 	call 	completed? convergence seconds  

Table 5.6 - The embedding of the LP decomposition  

10 3 1 36 25 0.10 
10 3 2 36 8 5 5 0 40 Yes 0.07 0.25 

20 6 1 259 167 3.68 
20 6 2 259 72 23 15 8 700 Yes 2.04 65.56 

20 7 1 227 137 - - - - - - 3.39 
20 7 2 227 128 51 34 17 700 Yes 1.33 137.32 

25 4 1 556 230 - - - - - - 6.68 
25 4 2 25 7 18 650 No 3.65 >150.00 

* Solution method 1: same as in Table 5.2 
Solution method 2: tree search with LP decomposition embedded 

++ CPU time, in CDC 7600 seconds 

"No" means search not completed within 150 CDC 7600 oeconds 

* Input value. Further branching takes place if a subproblem does not converge within this number of iterations. 



1.8 =55 	 Le, 45 	 LP= 41 	LP 51 	Lior: ' =3C. 
J.+ 

L p 	34 

+LP = Value of the objective function of the linear programme 

++Z = Value of optimal solution op 
*LB = Shortest distance bound 

**Ca = Cost of allocations at this node 

Figure 5.9 

The tree search with the LP decomposition embedded(optimal 
3-median of the 10-vertex network of Figure 5.2) 
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The results presented in Table 5.6 not only show that the 

embedding of the decomposition formulation is by no means competitive 

with the algorithm described in 5.2.4, but also that this LP form-

ulation fails to provide a valid alternative for solving the p-median 

problem. 

Lack of convergence continues to be a major stumbling block in 

the decomposition formulation, even after some of the E..
ij's have 

been fixed. The percentage of subproblems that do not converge 

when the LP is activated increases with the value of n, and this 

prevented the search for the n = 25, p = 4 test case from being 

completed within the time limit of 150 seconds. 

It can be safely concluded that, if the basic problems of the 

decomposition formulation cannot be solved, this will remain a 

method that may solve the p-median problem only on occasion. The 

embedding of this formulation into a branch-and-bound algorithm 

did little to improve its potentiality, and it is felt that little 

can be done until the basic problem of convergence, caused by 

large-scale degeneracy, is solved. 

5.5 Conclusions  

A direct tree search algorithm for the p-median problem was 

developed in the present chapter. Two lower bounds were embedded 

into the search, and cascading through them proved very efficient. 

The shortest distance bound is weak but fast to compute. It saves 

computing time when it forces backtracking, as it then avoids a 

corresponding computation of the dual bound. The latter is a very 

strong bound, but relatively slow to compute. An initial upper 

bound obtained through heuristics helped to reduce the search further. 

The computational experience reported in the present chapter 

represents a substantial improvement over existing exact solution 
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procedures for the p-median problem. 	It produces optimal solutions 

for 30-vertex networks in less than 2 minutes of computer time in 

the CDC 7600, for any possible value of E (1 < p < n). The algorithm 

is both faster and more efficient (in terms of the number of nodes 

generated) than other branch-and-bound procedures available in the 

literature [30, 55]. 

Additional exact solution methods for the p-median problem, such 

as the LP decomposition of Garfinkel et al. [x+11, or the Lagrange 

multiplier approach of Marsten [781, may on occasion solve problems of 

similar size. Both methods, however, cannot guarantee an optimal 

solution for every possible value of 2., and may fail on much smaller 

problems. 

The relatively long computing times required for the calculation 

of the dual bound is the bottleneck of the present algorithm. Any 

improvement obtained in the computational efficiency of this bound 

should increase the size of problems for which an optimal solution can 

be found. 
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CHAPTER SIX  

HEURISTIC METHODS  

6.1 Introduction  

Maranzana [76] and Teitz and Bart [98] pioneered in proposing 

heuristic methods for the p-median problem. Except for the work of 

Surkis [96] and Diehr [22], which are limited extensionsof the methods 

of Maranzana and Teitz and Bart, respectively, not ranch has been done 

in this area. 

The heuristic methods of Maranzana and Teitz and Bart have 

already been briefly described in Chapter 2. They are discussed in 

greater detail later in this chapter. 

The vertex substitution method of Teitz and Bart is in fact 

only one of a family of algorithms based on local optimization and 

the idea of A-optimality. The idea of A-optimality was first introduced 

by Lin [74] for the travelling salesman problem, and subsequently 

extended by others [13,14,59] for a variety of combinatorial problems. 

After a brief review of the earlier work mentioned above, the 

important theoretical contribution of Cornuejols, Fisher and 

Nemhauser [19] to the study of heuristics and relaxations for the 

uncapacitated location problem is discussed in terms cf its applica-

tion to the p-median problem. Then the vertex substitution method 

of Teitz and Bart is extended, and A-optimal substitution methods for 

the p-median problem are introduced. 

It will be shown later in the chapter that the number of itera-

tions needed to ensure A-optimality for the p-median problem increases 

very rapidly with A. Hence practical algorithms cannot use values 

of A much above 2 or 3. The computational experience reported in this 

thesis is therefore limited to the special cases of A = 1 (the Teitz 

and Bart algorithm) and A = 2. 
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A simple vertex addition ("greedy") heuristic, and its use as 

a 'pre-processor' to A-optimal substitution algorithms, complete the 

work on heuristics in this thesis. Computational experience with 

what is described as 'the combined approach'is reported for A = 1 

and A = 2, and these results are compared with the ones corresponding 

to the "pure" A = 1 and A = 2 optimal substitution methods. 

6.2 A review of earlier work on heuristics for the p-median  

and related problems  

In studying certain classes of location-allocation problems 

Cooper [17] pointed out a fortunate property of many of these problems: 

the lack of a sharp optimum, i.e. the existence of many alternative 

optimal or near-optimal solutions. This property is fortunate in 

that, for these problems, a well constructed heuristic has a reasonably 

high probability of finding one of these optimal or near-optimal 

solutions. 

The p-median problem belongs to the set of problems having the 

above property, and heuristic methods designed for this problem take 

full advantage of this fact. 

6.2.1 The partition method of Maranzana [76]  

Maranzana's partition method is in some respects a discrete 

version of the alternate location and allocation algorithm devised 

by Cooper [17] for the continuous case. Let d(x.,x.
j) be the length 

oftheshortestpathbetweenverticesx.
1  and x. of a network 

N = (X,A). A formal statement of Maranzana's algorithm is as 

follows. 

Step 1. Arbitrarily select E distinct points from the set X 

of all vertices of N to form the set X13. 
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Step 2. Associated with the set X of 2 points (p , 	, 
x p  x2  

2 
p. ), determine a corresponding partition of X, Px 	Px , by 
p 	 1 	p x 

putting 

P = {p d( 	.< d(xk,xj) for all j 	xi,xj  E Xp, xk  Xpl . 
xi 	xk  

Step 3. Determine a "centre" c 	for each P . x. 	x.' 1 

Step 1.  If cx  = p x.  for all i, computation is stopped and the  1 	1 
current values of px.  and Px.  constitute the desired solution. Other- 

1 	1 
wise set p

x 
 = c x.  for all i and return to Step 2.  
2. 	1 

In Step 2, if a point .is equidistant from more than one source, 

this point may be arbitrarily placed in the set associated with the 

source px  having the smallest i. If the "centre" is non-unique in 

Step 3, a likewise arbitrary decision can be made, and the point with 

the smallest subscript selected for "centre". 

Maranzana proves that his algorithm is monotonic, i.e. that the 

total weighted distance value cannot increase from one iteration of the 

algorithm to the next. He also identifies certain conditions under 

which the algorithm will'fail to converge to an optimal solution, but 

claims that with several initial choices of the 2 distinct points a 

solution close to the optimum is likely. 

6.2.2 The vertex substitution method of Teitz and Bart [12,98]  

A general description of the vertex substitution method has 

already been given in Chapter 2. A formal statement of the method 

is now given. 

Let a(S) be the transmission number* for a subset S of the set X'  

* For the definition of the transmission number a(S) of a subset S of 
vertices of a network, refer to equations (2.19) to (2.22) of 
Chapter 2. 
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of all vertices of a network N = (X,A).. The algorithm is then [12]: 

Step 1. Select a set S of E vertices to form the initial approxi-

mation to the optimal p-median  set  X. Call all vertices x.S 

"untried". 

Step 2. Select some "untried" vertex x
J  
. El S, and for each vertex 

• • 	- 

x.1  EScomputethe"reduction"A.lj  in the
- set transmission if x. is .  

substituted for x., i.e. compute 

• A..13 = a(S) - a(Su 	
.1 - {x.

1
}) 	. 

Step3.FindAij =Max [A..] . Then: 
o x.ES lj 

1 

(i)IfA.1 	
<0callx."tried" and go to Step 2. 

0  = 

(ii)IfAi 	>OsetS -4- Su{x.} - {x.} ,callx."tried" and 
o
j 

go to Step 2. 

Step 4.  Repeat steps 2 and 3 until all vertices in (X-S) have 

been tried. This is referred to as a cydle. If during the last cycle 

no vertex substitution at all has been made at Step 3, go to Step 5. 

If some vertex substitution has been made, call all the vertices 

x. 	S "untried" and return to Step 2. 

Step 5. Stop. The current set S is the estimated p-median set 

p 

Teitz and Bart tested their algorithm against the partition method 

of Maranzana. They say that the performance of the partition method 

may be quite erratic, and claim that their method is a preferable 

heuristic because it exhibits considerably less variation in performance. 

Teitz and Bart conclude by saying that if the partition method is 

used, the high variance of its error suggests that great caution in 

the selection of the initial locations is necessary. This apparent 
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difficulty may be overcome by performing the computations for 

several inir.ial choices of the distinct 2.  points, as suggested by 

Maranzana. 

6.2.3 The work of Cornuejols, Fisher and Nemhauser [19]_ 

In a recent paper, Cornuejols et al, [19] make an analysis of 

heuristics and relaxations for the uncapacitated location problem. 

The main interest for this thesis lies on the analysis of heuristics 

and relaxations for the p-median problem, easily obtainable from the 

more general results presented in [19], 

Let Z be the optimal value of the objective function of the 

uncapacitated location problem, Z and Z upper and lower bounds for 

the problem, and 22  a suitably chosen reference value such that 

Z 	Z > Z 	 (6.1) 

Cornuejols et al. define 

G = (Z = Z) / (Zn 	Z) 	 (6.2) 

for measuring the quality of heuristics (upper bounds for minimization 

problems), and 

H= (Z - Z.) / (Zn 	 ( 6 .3 ) 

for measuring the quality of lower bounds Z4 

Ideally, the reference ZR  should be equal to the maximum objective 

function value of the uncapacitated location problem P being studied, 

but, in any event, ZR  should be an upper bound on this maximum value 

that is sensitive to significant data changes such as the addition 

of a constant to every element of a row of the cost of matrix of 

problem PA 
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Consider, for example, a network N = (X,A) of n vertices, with 

a .weightv.associatedwitheveryvertexx.EX. Let D. = v. d. 
J 	 j . 	lj 	j 1j 

and define the matrix D = [D..3..j]. 
 Then, for the p-median problem, 

ZR is defined as the sum of the (n-p) largest values 

MaxD
3.j
..] , 	 (6.4) 

over all rows i of D. 

Given the above definition of ZR, (Z
R 
- Z) and (Z

R 
 - Z) may be 
 — 

thought of as the worst possible deviations that could be achieved 

by a given heuristic OR lower bound,. respectively. Then G measures 

the deviation for a particular heuristic relative to the worst 

possible deviation, and H the deviation for a particular lower bound 

relative to the worst possible deviation. 

According to Cornuejols et al., a heuristic is "good" if 

Lim 	G < 1 (6.5) 
All Problems P 

and "not good" if 

Lim 	G = 1 (6.6) 
All Problems P 

Similarly, a relaxation is "good' 

Lim 	H < 1 (6.7) 
All Problems P 

and "not good" if 

Lim 	H = 1 	. (6.8) 
All Problems P 

Cornuejols et al. specifically study heuristics for the 

uncapacitated location problem that correspond to: 

(i) The vertex substitution heuristic described in 6.2.2; 
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(ii) The vertex addition ("greedy") heuristic, described in Section 

6.4 for the p-median problem, and 

(iii) The combination of the two above methods, also described 

in 6.4. 

For the "greedy" heuristic they prove that 

Gg  = (Z -Z)/(ZR-Z) r<=  [(p-1)/p]P  < l/e 
	(6.9) 

where Z is the "greedy" heuristic solution and 2 the maximum allowed 

number of open facilities in the final solution. They also prove that, 

if Z
D 

is the optimum value of the strong linear programming relaxation 

of the uncapacitated location problem*, 

H
D 
= (Z-ZD  )/(ZR  -ZD  ) < [(p-1)/p]P  < 	. 	(6.10) 

Finally, they show that the bounds of equations (6.9) and (6.10) are 

the best possible bounds, that is 

Lim 	G = 	Lim 	HD  = 	. 
All Problems P 	g  All Problems P 

The analysis applied to the p-median problem 

The above analysis, as well as the ones that follow for the two 

other heuristics, obviously apply to the p-median problem, in which 

exactly 2 facilities must be open in the final solution. 

Consider now the integer programming (IP) formulation of the 

p-median problem, and its corresponding linear programming (LP) 

relaxation, given in Chapter 3. This LP relaxation corresponds to 

the strong LP relaxation of the uncapacitated location problem. If in 

Equation (6.10) HD is replaced by HLP, ZD by ZLP and Z by ZIP 
it 

follows that 

* For a definition of the strong and weal linear programming relaxa-
tions of the uncapacitated location problem, refer to [19], pp.1-4. 
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H
LP 

= (ZIP 
 - Z

LP 
 ) / (Z

R 
 - Z

LP 
 ) < 1/e. 	(6.11) 

From equations (6.9) to (6.11) it is possible to conclude that 

the "greedy" heuristic is a "good" heuristic for the p-median problem, 

and that the LP relaxation of the IP formulation of the problem 

constitutes a "good" lower bound, in the sense defined by Cornuejols 

et al. 

A worst case analysis is also carried out in [191 for both 

(i) the vertex substitution heuristic, and (ii) its combination with 

the "greedy" heuristic. Let Z1  be the solution to the vertex substi-

tution heuristic and let 

G
I 

= (Z
I 
- Z)/(Z

R 
- Z) 
	 (6.12) 

Cornuejols et al. prove that for all uncapacitated location problems 

G
I 
 < (p-1)/(2p-1) , 
= 

and that there exist problems P for which 

G
I 

= (p-1)/(2p-1) - 

( 6.13) 

(6.14) 

The p-median problem is among the problems P for which the equality 

may hold. 

Now compare equations (6.13) and (6.14) with equation (6.9). 

It is possible to conclude that, in terms of worst case analysis, 

for every possible value of 2 for which the "greedy" heuristic 

can be used (p > 1), the vertex substitution heuristic does not 

perform as well as the "greedy" heuristic. This is a surprising 

result of some significance, especially because the "greedy" heuris-

tic is by far the fastest to compute of the two. 
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The "greedy" and the vertex substitution heuristics combined  

The idea of combining these two heuristic methods stems from the 

fact that, since the starting set of E locations for the vertex substi- 

tution heuristic is arbitrary, it might be advantageous to obtain 

this set of cardinality Eby applying the "greedy" heuristic. 

LetZgI be the value of the solution produced by the combina- 

tion of the two heuristics, and let 

gI 	Z) / (ZR 	 (6.15) 

Cornuejols et al. prove that, for a well defined family of problems, 

the combination of the two heuristics fails to improve the solution 

obtained by the "greedy" heuristic. That is, 

	

Gg1 = Gg = [ (p -1)/e 
	

(6.16) 

for a well defined family of =capacitated location problems, in WhiCh 

case no interchange yields an improvement over the "greedy" heuristic. 

6.3 A-optimal substitution methods for the p-median problem 

It has already been pointed out that the vertex substitution 

method is only one of a family of algorithms based.on local optimiza-

tion and the idea of A-optimality. In the p-median problem a get S 

of 2 vertices is called A-optimal (A < p) if the replacement of any 

A vertices in S by any other A vertices of the set X of all vertices .  

of the network N = (X,A) cannot produce a new set with transmission 

less than e(S). The replacement set of A vertices chosen from X must 

obviously satisfy the condition that at least one of its elements 

belongs to the set (X-S). Within this context the answer produced 

by the vertex substitution algorithm of Teitz and Bart may be called 

1-optimal. 
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From the definition of X-optimality given above it is not 

difficult to see that in order to ensure that a given set is A-

optimal a total TA  of 

T
x 
= 	E (P  ) [11-11 

X'.I X' XI 
(6.17) 

potential substitutions (and hence calculations of transmissions a) 

must be performed in each cycle of the algorithm. This number Tx  

increases rapidly with A, and hence practical algorithms cannot use 

values of A much above 2 or 3. 

Note that if S is the optimal p-median set R of a network, 

then S is p-optimal. It should also be pointed out that a A-optimal 

substitution algorithm 'cannot be used when p < X. A 2-optimal 

algorithm, for example, can only be used for p > 2. 

A formal statement of X-optima: substitution methods for the 

p-median problem is now given. This is a straightforward extension 

of the algorithm described in 6.2.2, and the same notation is used 

here. The algorithm is: 

Step 1. Given a network N = (X,A), select a set S of p.  vertices 

to form the initial approximation to the optimal p-median set R . Call 

all sets of A vertices {x.
j1 	x.A  }, in which at least one element " j 

belongs to (X-S), "untried". 

Step 2. Select some "untried" set of A vertices {x
j. ... x. } 1JX 

defined in Step 1, and for each of the ( sets of A vertices X 

{x1.1
..
'x.}EScmputethe"reduction"A.j  in the set transmission 'X 	 1 

if {xj1,...,xjx} is substituted for {x. ,xix}, i.e. compute 11' 

A. = a(S) - cs(SU{x
j.1j  ... x.X'1  - 

{x.1''''' 
 x. }) ij 	 1 	1X 

Step 3. Find A. • = 	Max 	[A..]. 	Then: 1 oj 	{x. 	xD. }eS1J 
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(1) If A. 	< 0 call the set {xJ.lJ  ,...,x.X  } "tried" and go 1oj  

to Step 2. 

(ii) If A
1j 

 > 0 set S 	{xjl' • 'xjX} 	
call 

o 
 

fx.J1'J x.A 
 I "tried" and go to Step 2. 

Step 4.  Repeat steps 2 and 3 until all sets of X vertices 

{xj1,...,xj.)} defined in Step 1 have been tried. This is a cycle 

of the algorithm. If during the last cycle no substitution of sets of A 

vertices has been made in Step 3, go to Step 5. If some substitution 

has been made, call all sets of A vertices {xJ.lJ  ,...,x.X  } in which 

at least one element of the set belongs to (X-S) "untried" and return 

to Step 2. 

. 
p 

The algorithm described above has been coded and tested for 

A = 2. Computational results are given in Table 6.1, where these 

results are also compared with corresponding results obtained through 

the 1-optimal substitution method first introduced by Teitz and Bart. 

Step 5. Stop. The current set S is the estimated p-median set 

Computational Results  

Computational results for the A = 1 and A = 2 optimal substitution 

methods are shown in Table 6.1 for networks ranging from 10 to 30 

vertices. Results for the 1-optimal method are then shown in Table 

6.2 for the 33-city example of Karg and Thompson [57], and in 

Table 6.3 for 40 and 50 - vertex networks. For each of the networks 

the values shown in these tables range from p = 1 to p = 10. 

The networks used to produce the results of Tables 6.1 to 6.3 

are the same as those used in the previous three chapters. The data 

for the randomly generated networks used in these tables are given 

in the appendix. 
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In Table 6.1 the heuristic solution obtained by each of the 

two methods is shown, together with the number of cycles needed to 

reach the local optimum in each case. In addition, the random 

solution corresponding to the initial set S of p.  vertices is given 

in a separate column. For both methods this solution corresponds 

to using the first p.  vertices of each network to form the initial 

set S, with the vertices ranked by vertex index. 

The optimal solution obtained by branch-and-bound is also shown 

in Table 6.1, so that the quality of the solutions produced by each 

of the two methods can be evaluated. Finally computing times 

are given in the last two columns of the table. 

The 1-optimal substitution method has proved to be a satisfactory 

heuristic, and the corresponding percentage deviations from the optimal 

solution are summarized in Figure 6.1. In this figure the high 

frequency of 1-optimal solutions coinciding with the global optimum 

can be easily observed, and the average percentage error for heuris- 

tic solutions that are not optimal is shown to be low. In fact non- 

zero deviations from the optimal occurred more often for the larger 

networks (n > 20), although the maximum deviation (9.3%) occurred 

for the randomly generated 10-vertex network of Table 6.1 (for p = 7). 

This maximum deviation is well below the worst-case analysis result 

of Cornuejols et al. [See Equation (6.13)]. 

For the 2-optimal method, only in one case (n = 25, p = 9) the 

2-optimal solution did not coincide with the global optimum (see 

Table 6.1). 

6.4 The vertex addition heuristic and its use as a 'pre-processor'  

for X-optimal substitution algorithms  

The vertex addition heuristic described in the present section 

was initially developed as a procedure to provide upper bounds for 



Table 6.1 - Computational Results for the X=1 and X=2 Optimal Substitution Methods  

Problem Size 	1-Optimal Substitution 	2-Optimal Substitution 	Time in Seconds* 

Random 
Initial 	Value of 	No. of 	Value of 	No. of 	Optimal 	1-Optimal 	2-Optimal 

n 	P Solution Solution Cycles 	Solution Cycles 	Solution Substitution Substitution  

10** 1 107 79 2 - - 79 0.01 - 
10 2 89 47 3 47 2 47 0.01 0.02 

10 3 63 36 3 36 2 36 0.01 0.04 

10 14 52 26 3 26 2 26 0.02 0.04 
10 5 36 19 4 18 3 18 0.02 0.06 
10 6 31 12 5 12 3 12 0.02 0.04 
10 7 27 8 4 8 3 8 0.01 0.03 
lo 8 19 5 3 5 2 5 0.01 0.01 
10 9 6 2 2 2 2 2 0.01 0.01 
10 10 0 0 1 0 1 0 0.00 0.01 

10 1 556 400 2 - - 400 0.01 - 
10 2 361 273 2 273 2 273 0.01 0.02 
10 3 327 195 3 195 2 195 0.01 0.04 
10 4 314 149 4 149 3 149 0.02 0.06 
10 5 187 107 4 107 3 107 0.02 0.05 
10 6 131 75 5 75 3 75 0.02 0.04 
10 7 92 47 4 43 2 43 0.01 0.02 
10 8 46 15 2 15 2 15 0.01 0.01 
10 9 2 2 1 2 1 2 0.01 0.01 
10 10 0 0 1 0 1 0 0.00 0.01 

* CPU time, in CDC 7600 seconds 
** Garfinkel et al. example [41, p.231] 



Table 6.1 (con-b id.) - Computational Results for the X=1 and X=2 Optimal Substitution Methods 

Problem Size 
Random 
Initial 
Solution 

1-Optimal Substitution 2-Optimal Substitution 

Optimal 
Solution 

Time in Seconds* 

n 2 

Value of 
Solution 

No. of 
Cycles 

Value of 
Solution 

No. of 
Cycles 

1-Optimal 
Substitution 

2-Optimal 
Substitution 

15 1 846 809 2 - 809 0.02 - 
15 2 573 412 2 412 2 412 0.03 0.09 
15 3 533 294 . 	3 294 2 294 0.05 0.18 

15 4 310 215 4 215 3 215 0.08 0.39 

15 5 265 150 14 150 3 150 0.08 0.48 

15 6 208 113 5 113 3 113 0.09 0.52 

15 7 148 93 4 93 3 93 0.07 0.50 

15 8 87 77 2 74 3 74 0.03 0.44 

15 9 67 58 2 57 3 57 0.03 0.36 

15 10 50 41 2 41 2 41 0.02 0.17 

20 1 1694 1159 2 - - 1159 0.04 - 

20 2 1227 724 3 724 2 724 0.10 0.29 
20 3 732 523 4 5i8 2 518 0.15 0.66 

20 4 511 414 3 414 2 4114 0.13 1.04 
20 5 476 338 4 338 2 338 0.19 1.38 
20 6 392 259 5 259 3 259 0.25 2.55 1-.. 

co 
20 7 356 241 4 227 5 227 0.20 4.62 -- 
20 8 332 209 5 199 4 199 0.25 3.82 
20 9 275 181 4 175 3 175 0.19 2.90 

20 10 239 157 3 151 4 151 0.13 3.60 

* CPU time, in CDC 7600 seconds 



Table 6.1 (cont'd.) - Computational Results for the X=1 and X=2 Optimal Substitution Methods  

Problem Size 
Random 
Initial 
Solution 

1-Optimal Substitution 2-Optimal Substitution 

Optimal 
Solution 

Time in Seconds* 

Value of 
Solution 

No. of 
Cycles 

Value of 
Solution 

No. of 
Cycles 

1-Optimal 
Substitution 

2-Optimal 
Substitution 

25 1 1747 1352 2 1352 0.08 
25 2 1551 956 3 956 2 956 0.17 0.73 
25 3 1161 722 5 722 3 722 0.38 2.58 
25 4 790 556 556 3 556 0.37 4.37 
25 5 763 468 468 3 468 0.42 6.11 
25 6 706 387 387 3 387 0.45 7.77 
25 7 533 341 5 341 3 341 0.59 9.22 
25 8 415 305 7 298 298 0.84 13.72 
25 9 393 278 6 267 5 266 0.72 17.92 
25 10 354 253 5 235 6 235 0.59 21.92 

30 1 2400 1432 2 1432 0.11 
30 2 1610 936 3 936 2 936 0.30 1.54 
30 3 1168 796 5 777 3 777 0.69 5.75 
30 4 1040 610 6 610 610 1.01 13.06 
30 5 883 530 7 516 4 516 1.35 19.16 
30 6 688 438 9 438 5 438 1.92 31.63 
30 7 663 386 7 386 386 1.59 30.94 
30 8 641 337 9 337 2.14 
30 9 455 294 8 294 1.91 
30 10 438 265 7 265 1.67 

* CPU time, in CDC 7600 seconds. 



Table 6.2 - Computational Results for the 1-Optimal Substitution Method 

Problem Size 

n p 

Random 
Initial 
Solution 

Value of 
Heuristic 
Solution 

No. of 
Cycles 

Optimal 
Solution 

Time in* 
Seconds 

33**  1 37993 32072 2 32072 0.14 
33 2 35800 17474 2 17474 0.26 
33 3 35145 14627 4 14627 0.70 
33 4 34806 12625 5 12363 1.09 
33 5 34453 10727 6 10398 1.52 
33 6 34200 8832 11 8832 3.10 
33 7 32855 8261 8 8119 2.42 
33 8 31898 7561 8 7472 2.56 	• 
33 9 31651 6848 9 6848 2.98 
33 10 31236 6295 9 6267 3.05 

CPU time, in CDC 7600 seconds 

** Karg and Thompson 33 City Example [57, p.244] 



Table 6.3 - Computational Results for the 1-Optimal Substitution Method  

Problem Size 

n ..._ p 

Random 
Initial 
Solution 

Value of 
Heuristic 
Solution 

No. of 
Cycles 

Time in 
Seconds 

4o 1 84954 80634 2 0.27 
4o 2 81794 45862 3 0.74 

4o 3 76951 35946 4 1.35 

4o 4 74632 26899 6 2.49 

4o 5 73828 22396 6 2.94 

4o 6 71504 18775 7 3.87 

40 7 68954 17426 9 5.49 

4o 8 68525 16251 10 6.55 
4o 9 67709 14980 10 6.99 

4o 10 62957 13443 10 7.26 

50 1 292916 128548 2 0.51 
50 2 273599 72168 4 1.90 

50 3 231943 52708 • 6 4.03 

5o 4 205945 42228 4 3.42 
50 5 179107 35677 7 7.13 

50 6 1516go 31853 6.  7.11 

5o 7 141360 28300 5 6.47 

5o 8 122640 25624 9 12.73 

5o 9 100287 24580 8 12.14 
50 10 86463 22796 10 16.27 

* CPU time, in CDC 7600 seconds 
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the branch-and-bound algorithm of Chapter 5. A generalization of 

the method for uncapacitated location problems is described in [19 ] 

where it is referred to as the "greedy" heuristic. Variations of this 

heuristic also appear elsewhere in the literature [55,92] . 

Even though the vertex addition heuristic does not perform badly 

on its own, especially for the largervalues of p, the main interest 

in the present section is in its use as a 'pre-processor' to 

A-optimal substitution methods. The idea behind the 'combined approach', 

described and tested in the remaining of this section, is that since 

A-optimal, substitution algorithms must start from a set S of p_ vertices, 

some advantage might be gained by starting from a "good" set of 2.  

vertices. 

The main advantage gained from the combined approach was a substan- 

tial reduction in computing times. Although it could be claimed 

from the available data that for A = 1 some precision was gained 

when the vertex addition heuristic was used as a 'pre-processor', 

the justification for using the combined approach lies in the substan- 

tial drop observed in the number of tyles needed to find the local 

optimum in A-optimal substitution  algorithms. The corresponding drop 

in computing times is especially remarkable for the larger networks 

(n > 20), as shown in Tables 6.4 to 6.6. 

Used on its own the vertex addition heuristic starts from an 

available solution to the (p-1)-median problem and adds to this 

solution the vertex that produces the maximum possible decrease in 

the objective function as the number of medians is increased from 

(p-1) to E. The surprisingly good results obtained through this 

simple procedure appear to derive from the relative 'stability' of 

the solutions* of the problem as E is increased, and from the already 

* It has been observed that in the majority of cases most of the 
vertices present in the optimal (p-1)-median set are also present 
in the optimal p-median set. 
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mentioned existence of many optimal or near-optimal solutions to the 

p-median problem. 

The combined approach is initialized with the 1-median solution. 

' It then proceeds in a stepwise fashion, with the appropriate A-optimal 

substitution method being applied to the set of cardinality 2.  generated 

by the vertex addition heuristic. The procedure terminates after 

solutions are produced for the desired range of values of .a. The 

stepwise nature of the combined approach explains why, for any given 

problem, the initial solutions provided by the vertex addition heuristic 

do not necessarily coincide for different values of X (see Table 6.4). 

Computational experience  

The computational experience with the combined approach is shown 

in Table 6.4 for A = 1 and A = 2, and in Tables 6.5 and 6.6 for 

X = I only. 

In Table 6.4 the initial solution provided by the vertex addition 

heuristic, together with the final heuristic solution and the number 

of cycles needed to reach the local optimum are shown for both A = 1 

and A = 2. The optimal solution obtained bybranch-and-bound is given 

in a separate column, and finally computing times for each of the 

four different heuristic methods analysed in the present chapter are 

shown in the last columns of the table. 

The computing times corresponding to the "pure" A-optimal substi-

tution methods are repeated in Table 6.4 in order to facilitate the 

comparison of the four methods. The sums of computing times for the 

several values of 2 within each network and heuristic method of 

Tables 6.4 to 6.6 are also provided. 

The combined approach has proved to be a good heuristic for X = 1, 

and the corresponding percentage deviations from the optimal solution 

are shown in Figure 6.2. If the results shown in this figure are 



Table 6.4 - Computational Results for the Combined Approach (X=1 and X=2)  

Problem Size Combined Approach, X=1 Combined Approach, A=2 

Optimal 	1-Opt, 
Solution 	Random 

Time in Seconds* 

2-Opt, 
V. Add. 

Vertex Add. 

	

Initial 	Heuristic 	No. of 

	

Solution 	Solution 	Cycles 

Vertex Add. 
Initial 	Heuristic 	No. of 
Solution 	Solution 	Cycles 

1-Opt, 
V. Add. 

2-Opt, 
Random 

1O** 1.  - 79 2 - - - 79 	0.01 0.01 - - 
10 2 47 47 1 47 47 1 47 	0.01 0.01 0.02 0.02 
10 3 36 36 1 36 36 1 36 	0.01 0.01 0.04 0.02 
10 27 26 2 27 26 2 26 	0.02 0.01 0.04 o.o4 
10 5 20 18 2 20 18 2 18 	0.02 0.01 0.06 0.04 
10 6 12 12 1 12 12 1 12 	0.02 0.01 0.04 0.02 
lo 7 8 8 1 8 8 1 8 	0.01 0.01 0.03 0.01 
lo 8 5 5 1 5 5 1 5 	0.01 0.01 0.01 0.01 
10 9 2 2 1 2 2 1 2 	0.01 0.01 0.01 0.01 
10 10 o 0 1 0 0 1 0 	0.00 0.01 0.01 0.01 

t ETime = 0.12 0.10 0.26 0.18 

10 1 - 400 2 - - - 400 	0.01 0.01 - - 
10 2 276 273 2 276 273 2 273 	0.01 0.01 0.02 0.03 
10 3 195 195 1 195 195 1 195 	0.01 0.01 0.04 0.02 
10 4 149 149 1 149 149 1 149 	0.02 0.01 0.06 0.03 
10 5 107 107 1 107 107 1 107 	0.02 0.01 0.05 0.02 	H 
lo 6 75 75 1 75 75 1 75 	0.02 0.01 0.04 0.02 	I-,  
10 7 43 43 1 43 43 1 43 	0.01 0.01 0.02 0.01 
10 8 15 15 1 15 15 1 15 	0.01 0.01 0.01 0.01 
10 9 2 2 1 2 2 1 2 	0.01 0.01 0.01 0.01 
10 10 0 0 1 0 0 1 0 	0.00 0.01 0.01 0.01 

- 	t Name = 0.12 0.10 0.26 0.16 

CPU time, in CDC 7600 seconds 
Garfinkel et al. Example [41, p.231] 
Z Time is the sum of computing times for the several values of E for which a solution is available. 



Table 6.4 (cont'd.) - Computational Results for the Combined Approach (X=1 and X=2) 

Problem Size Combined Approach, X=1 Combined Approach, X=2 

Optimal 	1-Opt, 
Solution 	Random 

Time in Seconds* 

2-Opt, 
V.Add. n. 2 

Vertex Add. 
Initial 	Heuristic 	No. of 
Solution 	Solution 	Cycles 

Vertex Add. 
Initial 	Heuristic 	No. of 
Solution 	Solution 	Cycles 

1-Opt, 	2-Opt, 
V. Add. Random 

15 • 1 - 809 2 - - - 809 	0.02 0.02 - - 
15 2 484 412 3 484 412 2 412 	0.03 0.05 0.09 0.10 
15 3 294 294 1 294 294 1 294 	0.05 0.03 0.18 0.10 
15 4 215 215 1 215 215 1 215 	0.08 0.03 0.39 0.14 
15 5 170 150 2 170 150 2 150 	0.08 0.05 0.48 0.33 
15 6 113 113 1 113 113 1 113 	0.09 0.03 0.52 0.18 
15 7 93 93 1 93 93 1 93 	0.07 0.03 0.50 0.17 
15 8 74 74 1 74 74 1 74 	0.03 0.03 0.44 0.15 
15 9 57 57 1 57 57 1 57 	0.03 0.02 0.36 0.13 
15 10 41 41 1 41 41 1 41 	0.02 0.02 0.17 0.09 

t ETine = 0.50 0.31 3.13 1.39 

20 1 - 1159 2 - - - 1159 	0.04 0.04 - - 
20 2 847 724 2 847 724 2 724 	0.10 0.09 0.29 0.31 
20 3 552 523 3 552 518 3 518 	0.15 0.13 0.66 1.00 
20 4 438 431 3 433 414 2 414 	0.13 0.15 1.04 1.04 
20 5 340 340 1 353 338 2 338 	0.19 0.07 1.38 1.36 
20 6 281 259 3 277 259 2 259 	0.25 0.17 2.55 1.65 
20 7 230 230 1 230 227 2 227 	0.20 0.08 4.62 1.83 
20 8 202 202 1 199 199 1 199 	0.25 0.07 3.82 0.99 
20 9 175 175 1 175 175 1 175 	0.19 0.07 2.90 0.98 
20 10 151 151 1 154 151 2 151 	0.13 0.07 3.60 1.81 

ETimet= 1.63 0.94 20.86 10.97 

* CPU time, in CDC 7600 seconds 

t E Time is the sum of computing times for the several values of 2.  for which a solution is available. 



Table 6.4 (cont'd.) - Computational Results for the Combined Approach (X=1 and A=2)  

Problem Size 
	Combined Approach, X=1 

	
Combined Approach, X=2 	Time in Seconds* 

Vertex Add. 	Vertex Add. 
Initial 
Solution 

Heuristic 
Solution 

No. of 
Cycles 

Initial 
Solution 

Heuristic 
Solution 

No.of 
Cycles 

Optimal 	1-Opt, 
Solution 	Random 

1-Opt, 	2-Opt, 
V. Add. Random 

2-Opt, 
V.Add. 

25 -) 1 1352 2 1352 	0.08 0.08 
25 2 1027 1027 1 1027 956 2 956 	0.17 0.10 0.73 0.75 
25 3 807 722 4 722 722 1 722 	0.38 0.33 2.58 0.90 
25 4 556 556 1 556 556 1 556 	0.37 0.12 4.37 1.49 
25 5 468 468 1 468 468 1 468 	0.42 0.13 6.11 2.10 
25 6 387 387 1 387 387 1 387 	0.45 0.14 7.77 2.65 
25 7 341 341 1 341 341 1 341 	0.59 0.14 9.22 3.12 
25 8 298 298 1 298 298 1 298 	0.84 0.14 13.72 3.48 
25 9 269 269 1 269 267 2 266 	0.72 0.15 17.92 7.37 
25 10 244 244 1 242 242 1 235 	0.59 0.15 21.92 3.79 

ETimet= 4.61 1.48 84.34 25.65 

30 1 1432 2 11132 	0.11 0.11 
30 2 1029 936 2 1029 936 2 936 	0.30 0.26 1.54 1.58 
30 3 796 796 1 796 777 2 777 	0.69 0.19 5.75 3.85 
30 676 610 3 660 610 3 610 	1.01 0.57 13.06 9.84 
30 5 533 533 1 533 516 3 516 	1.35 0.25 19.16 14.34 
30 6 467 438 4 443 438 2 438 	1.92 0.95 31.63 12.68 
30 7 389 389 1 389 386 2 386 	1.59 0.28 30.94 15.3i 
30 8 341 341 1 337 337 1 337 	2.14 0.28 - 8.86 
30 9 294 294 1 307 294 3 294 	1.91 0.29 29.36 
30 10 266 266 1 266 265 2 265 	1.67 0.29 - 21.17 

* CPU time, in CDC 7600 seconds. 

t 7: Time is the sum of computing times for the several values of p for which a solution is available. 



Problem Size 

Table 6.5 - Computational Results for the Combined Approach (x=1) 

in Seconds* 
Vertex Addition 
Initial Solution 

Heuristic 
Solution 

No. of 
Cycles 

Optimal 
Solution 

Time 

n _... P 
1-Optimal 
Random 

1-Optimal 
Vertex Add. 

33** 1 - 32072 2 32072 0.14 0.14 
33 2 19196 17474 2 17474 0.26 0.31 
33 3 14962 14627 3 14627 0.70 0.57 
33 it 12509 12363 3 12363 1.09 0.70 
33 5 10797 10797 1 10398 1.52 0.31 
33 6 9287 8832 3 8832 3.10 0.89 
33 7 8213 8119 2 8119 2.42 0.65 
33 8 7538 7538 1 7472 2.56 0.37 
33 9 7055 7055 1 6848 2.98 0.38 
33 lo 6592 6408 2 6267 3.05 0.72 

 = E Timet  17.82 5.04 

CPU time, in CDC 7600 seconds 

Karg and Thompson 33 City Example [57, p.244] 

E Time is the sum of computing times for the several values of 2 
for which a solution is available 



Table 6.6 - Computational Results for the Combined Approach (X=1)  

Problem Size 1-Optimal Substitution Combined Approach, X = 1 

.Best Avail. 
- 	Solution 

Time in Seconds* 

n p 
Heuristic 
Solution 

No. of 
Cycles 

Vertex Add. 
Initial 

Solution 
Heuristic 
Solution 

No. of 
Cycles 

1-Optimal 
Random 

1-Optimal 
Vertex Add. 

4o 1 80634 2 - 80634 2 80634 0.27 0.27 
40 2 45862 3 45862 45862 ' 1 45862 0.74 0.35 
40 3 35946 4 35946 35946 1 35946. 1.35 0.43 
40 4 26899 6 28897 26899 3 26899 2.49 1.34 
40 5 22396 6 23278 23278 1 22396 2.94 0.58 
4o 6 18775 7 20594 18775 4 18775 3.87 2.31 
40 7 	' 17426 9 17426 17426 1 17426 5.49 0.69 
40 • 8 16251 10 16155 16155 1 16155 6.55 0.74 
40 9 14980 10 15095 14539 2 14539 6.99 1.47 
40 10 13443 10 13484 13436 2 13436 7.26 ' 	1.52 

t ETime = 37.95 9.7o 

50 1 128548 2 - 128548 2 128548 0.51 0.51 
50 2 72168 4 83910  72168 4 72168 1.90 2.07 
50 
50 

3 
4 

52708 
42228 

6 
4 

54959 
411274 

52708 
42228 

3 
3 

52708 4,03 
3.42 

2.17 
2.69 

50 5 35677 7 36710 35677 3 35677 7.13 3.17 
50 6 31853 6 32406 31853 2 31853 7.11 2.46 
5o 7 28300 5 29177 29177 1 28300 6.47 1.43 
5o 8 25624 9 26569 25624 4 25624 12.73 5.79 
50 9 24580 8 24129 24129 1 24129 .12.14 1.65 
5o lo 22796 10 22668 22668 1 22668 16.27 1.74 

ETime-1-  = 71.71 23.68 

* CPU time, in CDC 7600 seconds 

t ETime is the sum of computing times for the several values of 
for which a solution is available. 
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I

Frequency 

' 6o 

Figure 6.2 

Combined approach (X=1): 
% deviations from Optimal Solution 

55 

50 

All points considered 

of points = 70 
Mean = 0.56% 

Deviation = 1.32% 

No. 

St. 

45 

4o 

35 

Zero deviation points excluded 

No. of points = 17 
Mean = 2.29% 

St. Deviation = 1.82% 

30 

25 

— 20 

- 15 

—10 

5 

% deviation from 
optimal solution 

2.0 	4.o 	> 4.0 
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compared with those of Figure 6.1, it is possible to say that for 

A = 1 the combined approach is a better heuristic than the "pure" 

1-optimal substitution method. Similarly to Figure 6.1, in 

Figure 6.2 the non-zero deviations from the optimal occurred exclusively 

for the larger netw=ks (n > 20). The maximum deviation from the 

optimal was 7.43% (for n = 25, p = 2), again well below the maximum 

possible deviation of l/e derived by Cornuejols et al. [See Equations 

(6.9) and (6.16)). 

The combined approach for A = 2 can be said to be as precise as 

its "pure" 2-optimal counterpart: of all points shown in Table 6.4 

on only two occasions (for n = 25, p = 9 and p = 10) did the heuris-

tic solution fail to coincide with the corresponding global optimum. 

Finally, computing times were related to both n and p.  for the 

A-optimal substitution methods described in the present chapter. 

When these times were plotted against n and 2, it became evident 

that the equation describing the total time needed to reach a local 

optimum in these algorithms is of the form 

k
1 

k
2 CT

A 
= K n p 	, (6.18) 

where CTA is the total computing time, and K, k1 
and k2 are constants. 

In the above formula n is of more importance than E in determining 

the final value of CTA. 

The data of Table 6.4 -were used to find the values of K, k1  and 

k2 for A = 1 and A = 2. The resulting equations are 

CT
A 
= 1.87 x 10-6 n3.33 p0.25 
	

(6.19) 

for A = 1, and 

CTA  = 5.56 x 10-9 
n5.56 p1.13 	

(6.20) 

for A = 2. 



    

Figure 6.3 
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Figure 6.4 
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CDC 7600 seconds vs. n for A=2 
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4-tar*,  

CT
A 
is plotted again;731ViTiFfilares 6.3 and 6.4 for A = 1 and 

A = 2 respeci:ively. The correlation coefficients obtained when a 

least squares line was fitted through the points in each of these 

figures were 0.92 for A = 1 and 0.95 for A = 2. 

6.5 Conclusions  

Four interrelated heuristic methods for the p-median problem 

were studied in the present chapter. The vertex substitution method 

of Teitz and Bart was extended, and A-optimal substitution methods, 

based on local optimization and the idea of A-optimality, were 

described. Computational experience was reported for the particular 

cases of X = 1 and X = 2. 

A simple vertex addition heuristic was introduced, and used 

as a 'pre-processor' to A-optimal substitution algorithms. 

Computational results were again reported for A = 1 and A = 2. 

The four resulting heuristics were then evaluated on the basis of 

the quality of the solutions produced and the computing times required 

to reach these solutions. 

The precision of the heuristic solutions naturally increases 

with A. This increased precision, however, is obtained at substantially 

higher computing costs. From the data available for A = 2 it can be 

safely concluded that it is not practical to use A-optimal substitution 

methods for A > 2. 

The introduction of the vertex addition heuristic as a 'pre-processor' 

to A-optimal substitution algorithms substantially reduced computing 

times. This is so because the number of iterations required to reach 

the local optimum is sharply reduced when the combined approach is used, 

especially for A = 1. This is accomplished without loss of quality in the 
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solutions produced by the combined approach. 

From a cost-effectiveness point of view, the combination of the 

vertex addition heuristic with the 1-optimal substitution method 

appears to be the best of the four methods studied. It produces 

solutions that are on average of better quality than the solutions 

produced by its "pure" 1-optimal substitution counterpart, and not 

much worse than the solutions produced by the 2-optimal methods. 

The corresponding computing times are the lowest of the four 

methods studied. 
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CHAPTER SEVEN 

CONCLUSIONS  

7.1 General Summary 

This thesis studied the p-median problem, concentrating on exact 

solution procedures for the problem. New methods of solution were 

developed in the course of the work. These include the development 

of two lower bounds, and the use of one of them in a direct tree 

search algorithm especially designed for the problem. The resulting 

procedure represents a substantial advancement in the area of exact 

solution methods for the p-median problem. 

Due to the fact that in the vast majority of cases the LP 

relaxation of the integer programming formulation of the problem 

produces integer solutions that are optimal solutions to the p-median 

problem itself, two formulations of this relaxation were initially 

studied. The general formulation produces very large linear programmes, 

and is therefore unsuitable for use in large-scale networks. The 

decomposition formulation often does not converge because of its very 

degenerate nature. The problems with convergence become particularly 

serious as the size of the network increases, and for values of P. 

small in relation to n. 

Branch-and-bound algorithms available in the literature suffer 

from a lack of strong lower bounds and for this reason are not very 

efficient in solving the p-median problem. In this thesis two new 

lower bounds were developed, namely the graph-theoretical bound and 

the dual bound. The graph-theoretical bound is not very good for 

small values'of .2», but improves considerably as the value of 2 increases. 

The dual bound has proved to be a very good lower bound. When tested 

in 80 different problems, its average deviation from the best 

available solution was only 2.57% 	(541. ri.orftc 

The dual bound was embedded into a direct tree search algorithm 
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especially designed for the p-median problem. This algorithm also 

used a weaker bound and cascaded through both bounds in order to 

reduce computing times. An upper bound obtained from heuristics 

contributed to further reduce the'size of the tree search. The use 

of LP decomposition to solve the subproblems was also investigated. 

The branch-and-bound algorithm produces optimal solutions for 

networks of up to 30 vertices in less than 2 minutes of computer time 

in a CDC 7600 computer, for every possible value of E (1 < p < n). 

Besides guaranteeing optimal solutions for larger problems than any 

other existing exact procedure, the algorithm is both faster (in 

terms of time) and more efficient (in terms of number of nodes) 

than other branch-and-bound algorithms available in the literature for 

the p-median problem. 

Finally, heuristic methods were investigated and tested in a 

number of problems. The vertex substitution method of Teitz and Bart 

was extended into a family of heuristics, the A-optimal substitution 

heuristic methods. Then a simple vertex addition heuristic was 

introduced, and used as a 'pre-processor' to A-optimal substitution 

methods, thus considerably reducing computing times. The particular 

cases of A = 1 and A = 2 were coded, and computational experience 

reported on the resulting heuristic methods. 

From the data available on heuristic methodS it is safe to 

conclude that 2-optimal substitution methods are too expensive for 

networks with more than 20 vertices, and that, from a cost-effectiveness 

point of view, the combination of the vertex addition heuristic with the 

1-optimal substitution method is the best of the four methods studied. 

It produces solutions that are on average of better quality than 

the solutions produced by its "pure" 1-optimal countel.part, and not 

much worse than the solutions produced by 2-optimal methods. The 

corresponding computing times are the lowest of the four methods studied. 
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7.2 Possible areas for further research  

One main area for further research on the p-median problem 

arises naturally from the work done in this thesis, and is related to 

solving the convergence problems of the LP decomposition algorithm. 

Progress in this area would allow guaranteed optimal solutions to be 

found for large-scale networks within a reasonable amount of computer 

time. 

Regarding the convergence problems of the LP decomposition 

algorithm, it is worth noting the approach suggested by Beale, and 

reported in Section 3.4.3. If the difficulties arising from the lack 

of convergence of this algorithm can be solved, then LP decomposition, 

and its use to solve subproblems in branch-and-bound algorithms, can 

be used to provide optimal solutions to the p-median problem for 

large-scale networks. 

Beyond the pure p-median problem, there remain the several 

variations of the generalized p-median problem mentioned in 2.4.2. 

It was then stated that the main difficulty in solving minisum net-

work location problems rests with the pure p-median problem studied 

in this thesis. Any progress in solving the pure p-median problem 

necessarily means, therefore, progress in solving generalized p-median 

problems. 
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APPENDIX 

DATA FOR THE TEST PROBLEMS USED IN THE THESIS  

Except for 

(i) The test cases provided by A.W. Neebe (see Tables 3.1 

to 3.3), 

(ii) the 10-vertex networks of Garfinkel et al. [41, p.231] and 

Revelle and Swain [90, p.38], and 

(iii) the 33 city example of Karg and Thompson [57, p.244], 

all other networks used as test problems in Chapters 3 to 6 of this 

thesis were randomly generated. 

The data for the randomly generated networks were obtained as 

follows. The Cartesian coordinates of the vertices were generated 

randomly from a discrete uniform distribution over two different 

intervals: (0,100) for networks of up to 30 vertices, and (0,1000) 

for the 40 and 50-vertex networks. The vertices thus generated were 

connected by choosing links at random until a tree was formed. 

Finally additional links were added to this basic connected network. 

The number of additional links used in each network, and the pair of 

vertices each of these links were to connect, were also randomly 

generated. 

The length of the links in each of the randomly generated networks 

was calculated using the Euclidean distance formula. All randomly 

generated networks are nondirected, nonweighted graphs. 

The data for the test cases provided by A.W. Neebe are given in 

matrix format. This is followed by the data describing the randomly 

generated networks. In the latter set of data each pair of vertices 

connected by a link is listed alongside the corresponding link length. 

This is the format of the input data for all computer programmes listed 
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in [39] . For each randomly generated network the average vertex 

degree 
n 

= ( E di ) /n 
1=1 

is also given. 
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1. NEEBE'S TEST PROBLEMS  

(A) 5-Vertex Network 

TO 

xl 	x2 
	x3 	x4 

	x5  

0 	1 	1 	2 

0 	1 	1 

1 	1 	0 	2 

Xb 	2 	1 	2 	0 

x5 	2 	2 	1 	1 

(B) 6-Vertex Network 

TO 

x1 	x2 
	x3 	x4 

	x5 	x6 

X 

0 5 4 8 7 12 

5 0 3 3 6 7 

14 3 0 6 3 8 

6 0 3 4 

7 3 3 0 5 

12 7 4 5 0 
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(C) 9-Vertex Network 

TO 

x3 	 x6 

8 

0 14 2 2 3 14 13 1 

14 0 14 14 11 2 1 2 13 

2 14 0 2 3 14 13 14 

2 14 2 0 3 14 13 14 1 

3 11 3 3 0 11 10 11 

14 2 14 14 11 0 1 2 13 

13 1 13 13 10 1 0 12 

14 2 14 14 11 2 1 13 

1 13 1 1 2 13 12 13 

x3  

x)4  

x5  

x6 
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2. RANDOMLY GENERATED NETWORKS  

(A) 10-Vertex Network  (d = 3.4) 

LINK SOURCE(xi) 

1 1 
2 1 
3 1 
4 2 
5 2 
6 2 
7 3 
8 3 
9 4 
lo 5 
11 5 
12 5 
13 5 
14 6 
15 7 
16 7 
17 7 

SINK(x.) DISTANCE 

3 32 
4 13 
6 28 
3 81 
7 35 
10 42 
5 43 
10 44 
5 43 
6 54 
7 34 
9 44 
10 2 
8 51 
8 46 
9 55 
10 32 
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(B) 15-Vertex Network  (a = 3.2) 

LINK SOURCE(xi) 

1 1 
2 1 
3 2 
4 2 
5 2 
6 2 
7 3 
8 4 
9 4 
lo 4 
11 5 
12 
13 ?,- 6 
14 6 
15 6 
16 7 
17 7 
18 8 
19 8 
20 8 
21 9 
22 9 
23 9 
24 11 

SINK(x.) DISTANCE 

3 25 
9 10 
3 20 
5 25 
7 30 
15 32 
13 4 
6 19 
10 29 
11 16 
7 30 
15 12 
9 58 
11 5 
14 32 
9 67 
12 19 
11 34 
12 26 
14 10 
10 17 
12 76 
13 36 
14 32 
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(C) 20-Vertex Network  (a . 2.9) 

LINK SOURCE(xi) 

1 1 
2 1 
3 2 
li. 2 

5 2 
6 3 
7 3 
8 3 
9 3 

10 4 
11 4 
12 5 
13 5 
14 6 
15 6 
16 6 
17 6 
18 7 
19 9 
20 10 
21 10 
22 10 
23 11 
24 11 
25 13 
26 13 
27 14 
28 15 
29 17 

SINK(x.) DISTANCE 

5 16 
12 11 

7 33 
9 21 
11 52 
8 38 
10 29 
18 18 
19 30 
8 24 

17 13 
6 45 

15 35 
7 36 
14 38 
16 51 
19 28 
18 11 
16 8 
17 30 
19 21 
20 45 
12 18 
15 15 
14 21 
20 20 
19 64 
16 12 
20 21 
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(D) 25-Vertex Network (d = 2.8) 

LINK SOURCE(xi) SINK(x.) DISTANCE 

1 1 9 39 
2 1 10 42 
3 1 19 20 
4 1 23 41 
5 2 5 18 
6 2 15 37 
7 3 .15 9 
8 3 17 26 
9 3 24 18 
lo 4 6 26 
11 L. 9 22 
12 4 21 15 
13 5 15 44 
14 5 19 11 
15 6 9 38 
16 6 25 11 
17 7 14 22 
18 7 22 21 
19 8 9 36 
20 8 10 23 
21 8 11 25 
22 8 14 34 
23 8 17 21 
24 8 21 45 
25 10 20 13 
26 11 16 24 
27 12 13 19 
28 12 18 17 
29 1.3 18 25 
30 13 24 16 
31 14 21 14 
32 16 22 14 
33 17 18 12 
34 17 20 8 
35 23 25 25 
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(E) 30-Vertex Network  (a = 2.7) 

LINK SOURCE(xi) SINK(x.) DISTANCE 

1 1 10 24 
2 1 23 40 
3 1 25 22 
it 2 17 8 
5 2 20 58 
6 3 5 22 
7 3 8 17 
8 it 7 13 
9 4 14 17 
lo 5 lo 17 
11 5 21 21 
12 5 26 16 
13 6 11 13 
14 6 14 36 
15 6 22 20 
16 7 8 11 
17 8 15 9 
18 9 13 25 
19 9 24 16 
20 9 29 7 
21 11 14 40 
22 11 18 11 
23 12 16 22 
24 12 18 10 
25 13 20 28 
26 13 23 13 
27 13 27 34 
28 15 26 18 
29 16 17 13 
30 16 19 20 
31 19 20 23 
32 19 29 11 
33 21 25 8 
34 21 28 9 
35 22 24 14 
36 22 30 13 
37 23 28 15 
38 24 30 14 
39 26 27 12 
4o 26 28 21 
41 27 30 9 
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10-Vertex Network 	(d = 3.0) 

SINK(x.) DISTANCE LINK SOURCE(xi) 

395 1 1 2 
2 1 10 216 
3 1 4o 552 
4 2 3 799 
5 2 39 458 
6 3 4 395 
7 3 38 493 
8 4 5 402 
9 4 37- 136 
lo 5 6 98o 
11 5 36 956 
12 6 7 651 
13 6 35 956 
14 7 8 289 
15 7 34 445 
16 8 9 ho8 
17 8 33 742 
18 9 10 262 
19 9 32 226 
20 10 437 
21 10 31 441 
22 11 12 667 
23 11 3o go8 
24 12 13 549 
25 12 29 531 
26 13 14 262 
27 13 28 266 
28 14 15 271 
29 14 27 330 
30 15 16 72o 
31 15 26 849 
32 16 17 391 
33 16 25 402 
34 17 18 439 
35 11 24 718 
36 18 19 537 
37 18 23 611 
38 19 20 705 
39 19 22 741 
40 20 21 307 
41 20 22 500 
42 21 22 319 
43 22 23 758 
44 23 24 647 
45 24 25 567 
46 25 26 719 
47 26 27 484 
48 27 28 330 
49 28 29 278 
50 29 30 592 

(F) 
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(F) 40-Vertex Network (cont'ed.)  

LINK SOURCE(xi) 

51 3o 
52 31 
53 32 
54 33 
55 34 
56 35 
57 36 

. 58 37 
59 38 
6o 39 

SINK(x.) DISTANCE 

31 839 
32 503 
33 489 
34 18 
35 715 
36 907 
37 539 
38 442 
39 936 
4o 641 
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(G) 50-Vertex Network  (a = 2.3) 

LINK SOURCE(xi) 

1 1 
2 1 
3 2 
4 2 
5 3 
6 3 
7 4 
8 4 
9 5 
10 5 
11 6 
12 6 
13 7 
14 7 
15 8 
16 8 
17 9 
18 9 
19 10 
20 10 
21 11 
22 11 
23 12 
24 12 
25 13 
26 13 
27 14 
28 14.  
29 15 
30 15 
31 16 
32 16 
33 17 
34 17 
35 18 
36 18 
37 19 
38 19 
39 20 
4o 20 
41 21 
42 21 
43 22 
44 22 
45 23 
46 23 
47 24 
48 24 
49 25 
5o 28 

SINK(x.) DISTANCE 

2 411 
5o 531 
3 935 
49 865 
4 596 
48 697 
5 639 
47 68o 
6 703 
46 335 
7 276 
45 209 
8 520 
44 76o 
9 667 
43 826 
10 432 
42 629 
11 63 
41 852 
12 426 
40 654 
13 430 
39 433 
14 335 
38 216 
15 46o 
37 518 
16 349 
36 614 
17 110 
35 1091 
18 277 
34 66 
19 112 
33 615 
20 184 
32 772 
21 556 
31 206 
22 485 
30 694 
23 149 
29 529 
24 402 
28 702 
25 936 
26 no 
27 859 
3o 866 
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(G) 50-Vertex Network (cont'ed.)  

LINK SOURCE(xi) SINK(x.) DISTANCE, 

51 29 31 540 
52 34 36 265 
53 35 37 164 
54 38 40 362 
55 41 43 800 
56 44 46 543 
57 47 49 143 
58 48 5o 682 
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