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Abstract

Problems of optimally locating facilities on networks fall within
two main categories, namely minisum and minimax location problems.

This thesis studies the p-median problem, an uncapacibated minisum
location problem that consists of locating a given number of facilities
(say E) cn a network, so that the sum of shortest dictances from each
of the nodes of the network to its nearest facility is minimized.

Two formulations of a linear programming (LP) relaxatién of the
problem are examingd. A general formulation produces very large linear
programmes, and.ls therefore unsuitable for use in large-scale networks.
A decomposition formulation produces smaller IP's but often does not
converge. The importance of this LP relaxation lies in the fact that
it often produces intege; solutions that are optimal solutions to the
p—ﬁedian problem itself.

Two lower bounds are then develbped: a graph—theoretical bound,
based on shortest spanning trees and arborescences, and a dual bound,
based on the dual of the IP relaxation of the problem. The latter
proved to be a very good bound, and 1s psed in the branchrandfbouﬁd
algorithm developed in Chapter 5.

The algorithm of Chapter 5 is a direct tree search algorithm.

It cascades through two lower bounds in a way designed to save
computing time, and uses an upper bound to further reduce the size of
the search. The computational results obtained through this algorithm
represent a substantial advancement over existing exact solution
procedures for the prbblem. It produces optimal solutions for netﬁorks
of up to 30 vertices in less than 2 minutes in a CDC 7600 computer,

for every possible value of p.

Finally, heuristic methoas are investigated and tested in a
number of problems. Heuristies bascd on A-optimal substitution methods
are described, and computational results are given for the particular

cases of A = 1 and A = 2.
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CHAPTER ONE

INTRODUCTION

1.1 Network Location Problems

The problem of optimally locating facilities on a network falls
within two main categories, namely minisum and minimax location
préblems. In minisum location problems the objéctiﬁe is to determine
the location of a given number of facilities (say p), sé thaﬁ the sum
of shortest distances from each‘of-the network demand centres¥* to its
nearest fécility ié minimized. The objective in minimax problems is
to locate the p facilities so that the largest travel distance (or time)
Trom any network demand centre té its nearest facility is minimized.

A ‘related problem can be defined in the minimax category. It
consists of finding the minimum number p of facilities {and their
location), so that all demand centres in the network are within a
crifical distance § from ét least one of the facilitlies. Minimax
problems appear in practice in the location of emergency facilities
such as hospitals and fire stations.

This fhesis studies a particular case of the uncapacitated mini-

sum network location problem, often referred to as the p-median problem.

The p-median problem consists of locating p facilities on a network,

so that the sum of shortest distances from each of the nodes of the
network to its nearest facility is minimized. Theére are no restrictions
on the capacities.of the facilities, and fixed costs are assumed not to
vary with the location of the facility, thus not appearing in the
probleﬁ's objective function.

Two theorems by Hakimi [48, 49] restrict the search of the optimal

- A network demand centre is defined here as heing a site located
either on the arcs or nodes of the network, from which demand for
goods Or services is generated.
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p-median to the nodes of the nétwork, i.e. it can be shown that the
search for the optimal p points need not consider .points on'links
.other than the two ends. If‘g.is the number of nodes in the network,
the p-median problem has a total of-[g} feasible solutions, and éolution
by completé_enumeration is not feasibleveven for problems of moderate
size. The probleﬁ of findihg.the optimal p-median of a network can

be made slightly more general by associating with each node X &

weight Vi in which case the oﬁjective function to bé minimized becomes
the sum of weighted distances.

| The p-median problem appears. in practiﬁe in a variety of forms:
the location of switching centres in telephone networks, substations

in electric pover networks, supply depots in a road network, schools
'in a rural area. Assume, for example, thatlthe population distribution
of a given rural area is known. It is required that E_primary.schbols
be built in the area, so as to minimize the total distance travelled
by the school chiléren.

The school location problem can be represented byva network of n
nodes, each node corresponding to one region in the area. Node Weights
can be used to represent the rélativé sizes of the school-age porulation
of éach of the regions. Existing roads between regions should link .
the corresponding nodes cf the network. Given the lengfhvof eachAof

the connecting roads, the problem igs actually a p-median problem.

1.2 The p—median;proﬁlem as a special case of facility locatioh prdblems
The facility location problem consists of determining the site of |

one or more facilities (supply depots, schools, hospitals, etc.)-to

serve customers in a‘given geographical area. The selection of sites

should be made in such a way that a well defined objective function is

optimized, subject to constraints relevant to the problem.
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Facilityblocation problems have been classified in different
ways 5y different authors. In én excellent review paper, Revelle et al.
[89] attach great importance to the ownership of the facilities (private
or public) and sﬁggest different objective functions for the two cases.
Eilon, Watson-Gandy and Christofides [27] have chosen to tie their
classification to the approach used to solve the problem (Infinife
Set Approach or Feasible Set Approach). They also enumerate some
advantages and disadvantagés of each of the two approachesf‘_

In a comment on the'paper bbeevelle et al., Robers [91] proposes
the following three-way classification: |

A. Locatibn in a Plane with Infinite Solution Space,

B. Location in a Plane with Finite Solution Spacé,

‘C, Location on a network..

Problems in catégory A are characterized by (1) an infinite
solution épacé (facilities may be located anywhere in the plane), and
(2) distance neasurement according to a particular,métric. The second
‘ fype of probleﬁ is characterized by restricting the location of the
facilities to a number of predetermined sites. Finally, location on
a network is characterized by (1) a solution space consisting of points
on the network, and (2) distance measurement along the network.

The p-median problem is now shown to be a special case of the -
uncapacitated facility location problem. The latter is a B problem
in the classificafion given above. There are no réstrictions on the
permissible capacities of the facilities, and the objective function
includes both fixed and variable costs.

The uncépacitated facility location problem can be formulated
as a mixed-integer programming problem:

Minimize 2= % F.y. + £ L cC..E.. (1.1)
ier ** jer ey W W
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Subject to

I E.s=1, JET (r.2)
jer Y
1<z Y i (1.3)
: i€1
P . , .
giJ=yl’ 1€I, JEJ (1.h4)
y; € {0,1}, i€x ’ (1.5)
520, i€I, j€J, | (1.6)
where:
I - =(1,2,...,n) - set of feasible location sites for the facilities;
J =(1,2,...,m) — set of user (customer) locations;
Fi - Fixed cost associated with opening a facility at location i;
55~ Cost of supplying customer j from facility i
Eij — Fraction of the demand of customer j supplied from facility ij;
P - Maximum number of facilities that can be-builtg
1 if a facility is located at site i
y: = '
i

0 otherwise

If (i) I=J = (1,2,...,n) coincide with the nodes of a network,

(i1) dij = o5 correspond to distances measured along the arcs of the

network, (iii) it is decided that exactly p facilities must be built,

and (iv) all fixed costs F. are equal, Equations (1.1) to (1.6) become:

Minimize 7= 3 =z a, . & (1.7
‘ iel jeJ J "id
Subject to. .
: gy =1, JeEJ (1.8)
ier *J
I E.. =D (1.9)

ieT
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P
A

i3 Esio IEI,JEJI Ly (1.10)

1if customer j is allocated

to facility i (l 11)

vy
i

ij -
0 othervwise
Equations (1.7) to (1.11) correspond to the integer programming
formulation of the p-median problem (see chapter 3). In this formu—
latioﬁ 511 = 1 implies that a facility is located at site i and gs3 = 0
otherwise. Since it is not possible to havé a fractional facility
located at a site, Eii € {0,1}, ieI. AFurthermore, since there are
no ca?acit& restrictions and no economies of scale, no one déstination

will be supplied by more than one facility in the optimal solution.

Hence, Eij e {O,l}, iEI: jEJ'

The p;median problem is therefore a special case of the uncapaci-
tated facility location problem. TNote that since the number of
facilities has been fixed a priori at exactly p, and all fixed costs.
Fi are equal, the Fi need not be included in the formulation of the

p-median problem.

1.3 Basic graph theory definitions

The basic. graph theory concepts defined in the present section
are the ones used throughout this thesis. The definitions given

generally correspond to those of [12].

A graph v(or network) G is a collection of vertices or nodes
Xys Xps vee s X (denoted bty the set X), and a collection of lines
815 Bps een s am‘(denoted by the set A) joining all or some of the
vertices. The graph G is then fully described and denoted by the
doublet (X,A).

If the lines in A have a direction they are called arcs and the

'resulting graph is called a directed graph. If the lines have no
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orientation they are called links and the gfaph is nondirected. In
cases where G = (X,A) is a directed graph but it is desirable that
the direction of the arcs in A be disregarded, the nondifected counter—
part of G will be written as G = (X,A).

A path in a directed_graph is any sequence of arcs where th¢
final vertex of one arc is the initial vertex of the next arc. A
simple path is a path which does not use the same‘arc more than once.
An elementaﬁz path is a path which does not use the same vertéx moré
than once. An elementary path‘is also simple, butvthe reverse is not

 necessarily true.

A graph is said to be arc-weighted if a cost (Length,weight) c;3
is associated with every arc (xi,xj) of the graph. If a weight Vs is
assoclated with every vertex X, of a graph the resulting graph is then

called'vertex—weighﬁed. A nonveighted graph is defined in this thesis

as an arc—weighted graph whose vertices have all unit-weights, i.é.'an
arc—weighted graph for which vi =1V 1i.

The number of arcs which have a vertéx x; as their initial vértex
is called the outdegree of vertex x; (call this outdegrée'QOCXi)l.
Similarly, the number of arcs which.have.xi as théi? final vértéx'is4
‘called the indegree of vertex x; (4, (x;]). For a nondiréctéd'gfaph.
the degree of a vertex X is equal to the number of links connectea
to % Wheh no confusion can arisé it wili bé denotéd simply by‘di.

A graph G = (X,A) is said to Be‘cbmgiete if, for evéry pair of
vertices x; and x5 in X, there exists a link.Cxi,xj) in G = (X,A),
i.e. thére musf be at léast Qné arc joining every pair of veftices.
The compléte nondiréctéd graph of érvértices is denoted by Kh.

A graph G = (X,A) is said to be'szﬁgééfieél‘if, whenévér'an are
(xi,xj) is one of the arcs in the set A, the opposité arc (xj,xi) is

also in A.



Matrices of a Graph

A convenient way of represehting a graph G = (X,A) algebraically

is through its adjacency matrix. The adjacency matrix of G is denoted

by A = [aij] and is given by

]
1]

1 if arc (Xi’xj) exists in G

o
n

0 if arc'(xi,xj) does not exist in G.

If a cost'cij is associated with every arc (xi,xj).of the graph,
it is possible to calculate the shortest path between all pairs of
vertices of the graph [ 34, 83]. A matrix can then be formed with the

corresponding shortest distances d(xi,xj). The matrix D(G) = [d(xi,xj)]
. B .

is called the distance matrix of the graph.

When a weight Vs is associated with every vertex xs of a graph,
this graph must be transformed into a compléte graph before a corres—
ponding p—médian problem can be solved. Any graph can be transformed
into a coﬁplete graph through the coﬁputation of its distance matrix.

In the case of vertex—-weighted graphs, the computation of the distance
matrix must be followed by the multiplication of éach elément of every
row or column by the appropriate vertex weight®*. The resulting weightéd
matrix can be then represented by a complete symmetrical graph. The
arcs of this graph represent the weighted lengths of the corresponding

shortest paths.

1.4 Outline of the thesis
This thesis is concerned with the p-median problem. The emphasis

is on exact solution methods for the problem, although some heuristic

¥ In a network location problem for which the flow is directed into
the facilities - as, for example, when the facilities are schools
~to which children mus* travel — the rows of the distance matrix
must be weighted. TIf the reverse is true and the flow is from the
facilities, the columns of the distance matrix must be weighted.
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procedures are also investigated.

Chapter 2 is a literature survey. The survey;covers the broader
field of facility location problem§, but its mein part is dedicated
tb the p-median problem and related . minisum and minimax network loca~
tion problems.

In Chapter 3 two different formulatipns of the LP relaxation of
the p—median problem are investigated. The general LP formulatiﬁn
produces very large linear programmes. This disadvantagé is ovércome
by a feceﬁt LP decomposition formulation. The very degénératé nature
of thé decomposition formulation and thé ensuing convérgéncé probléms
are analyséd and testéd. | |

Chapter L is dédicatéd'to iower bounds. Two neW‘lowér bounds
are devélopéd for the problem, namely the "graph-theoretical bound™ |
and thé "dual bound". Unlike other existing bounds, thé graph-
théoretical bound makes usé of the graph—theoretical propérties‘of the
problem. Thé dual 5ound is baséd on the dual of thé Lp rélaxation of
the problem. The latter is a véry good bound, a fact of décisivé '
importance'in branch—-and-bound algorithms.

"A direct tree searchalgorithm is thé object of Chapter 5. The
principles on wﬁich this algoritlm is based aré discussed; and thé:
embedding of the bounds of Chapter 4 into the search is explained.
Computatiqnal results for networks ranging from 10 to 30 vertices,
and for a wide range of values of p are then givén.

Heuristics are investigated in Chapter 6. The existing vertex
substitution method of Teité and Bart [98] is extended into a.family
of heuristies, the A-optimal substitution heuristic methods. The
particular casés of A =1 and X = 2 are studied in detail. A simple
vertex addition heuristic is introduced, and its use as a 'pre—processor'
for the A-cptimal éﬁbstitution methods is described. Computational

-results are given for the resulting heuristics.
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The main contributions of this thesis to the field of optimal
location of facilities on a network are:
(i) The development of new and "tight" lower bounds for the
p-median problem;
(ii) their use in a direct tree search algorithm that represents
a substantial advancement.ih the area of exact solution methods for
the problem; and
(iii) the detailed investigation of the LP decomposition formu-
lation of Garfinkel et al. [41], and in particular the problems arising

from the large-scale degeneracy of this formulation.

The branch-and-bound algorithm produces optimal solutions for
30—vertek networks in less than 2 minutes in a CDC 7600 computer, for
every possible value of p. It is both faster (in terms of time) and
much more efficient (in terms of number of nodes) than other branch-
and-bound algorithms available in the literaturé [30, 55] .- While other
exact solution methods [41, 78] may on occasicn solve the problem for
n = 30, these other methods cannot guarantee an optimal solution for
every possible value of p, and may in fact fail on much smaller net-
works. |

As for the LP decomposition of Gerfinkel et al., the extensive
testing of their algorithm carried out in this thesis has uncovered
sérious con&ergence problems, and shown that this lack of convergence
is due to thé very degenérate nature of the LP decomposition master
problem. The hope that the embedding of this formulation into the
branch-and-bound algorithm of Chapter 5 would ovércome the convergence
problems did not materialize, in spite of the large perturbations

caused by the branching.
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CHAPTER TWO

LITERATURE SURVEY

2.1 Introduction

Historically, contempofary-iocation analysis started with Alfred
Weber [101], who examined the location of a plant with the objective
of minimizing transportation costs in relation to three points (two
sources of raw materials énd a single market). In one form or another,
this is a very old problem in pure mathematics. It was considered as
early as'l6h7 by Cavalieri. Fagnano, Tedenat, Heinen and Steiner
made important‘contributions to its solution from the middle of the
18th to the middle of the 19th century [16] .

It is ﬁot the objective of this survey to make a very detailed
review of the literature on facility location. Detailed surveys are
available elsewhere, such as those by Eilon et al. [27, Chapter 2],
Revelle et al. [89] aﬁd Domschke [23]. The vastness of published
work on location analysis is atested by the 226 papers listed by
Francis and Goldstein [ 35] in their selective bibliography. Elshafei
[ 28] gives a total of 82 references in a recent survey of facility
location studies.

After a brief review of the general area of location analysis,
thé present survey concentrates on the p—median and related minisum

network location problems.

2.2 Location with infinite solution space

The facility location problem with a minisum objective and in-
finite solution space is examined in depth in chapters 3 to 6 of [27].
Numeric—analytic heuristic methods can handle non-linear cost functions,
provided that tﬁe cost functions are monotonic and continuous. In a

more recent paper, Watson-Gandy and Eilon [100] investigate dis-
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continuou; delivery costs.

| Multifa;ility location probleﬁs with infinite solution‘spacé are
also called multisourcevweber problems. They are‘diVided into
Euclidean and rectilinear distance problems, depending on the metric
accbrding to which distances are measured. In Euclidean distance

problems distances are measured according to

2 _ _ 2 . _ 2 , o
dij (Xi XJ) (yl yj) s (2-1)
where
_dij — distance between points i and j,
and (xi,yi) - coordinates of the ith point in a rectangular
system.

Rectilinear distance problems have their distances measured by

= lx_

AR AR AR | (2.2)

%5 ;

The mﬁltisource Weber problem has been investigated by Cooper
[16, 17, 18] , Kuenne and Soland [66, 67] and Morris [82] , among
others. A related problem, that of locating new facilities in
relation to existing ones has been the object of several papers, by
Cabot, Francis and Stary [11] , Rao [88] and Juel and Love [56].

In its simplest form, the Weber problem involves m customers with
known location on a plane, the location of customer j_béing determined
hy a pgir (xj, yi) of cartésian coordinates. The prbblem_is to
determine the coordinates (xi, yi) of each of a giveq number p of
facilities to serve the Q;customérs, so as to minimize ﬁhe following
cost function:

P m

C= I L g
i=l j=1

ij va dij s (2.3)

where
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v'j - weighting factor related to customer j.
dij - distaﬁce between facility i and customer j, given by:
Equation (2.1) {[Euclidean metric], or
Equation (2.2) {Rectilinear metric].
1 if customer j is served from facility i
Eij = |

0 otherwise
If there are no capacity or other constraints, the solution to
the above problem can be found through partial differentials with

respect to X and ¥t

m
BC_ (v _ ’ = =
% = L [gijv (x, xj)/dij] 0, i=1,...,p (2.4)
1 J=1
3¢ n
§§T = 1 [E. JvJ (yi_yj)/dij] =0, 1=1,...,p (2'5)

1 J=1

If equations (2.4) and (2.5) are solved for x; and y; it follows

" that
m -
x, = j:l(glJvﬁxJ/d )/ Jfl(g Vs /d ) i= l?...,p (2.6)
m m
yv. = % (E..v.y./d..) / Z (E v /d ) i=1,...,p (2.7)

1755 T3S

These equations can be solved iteratively, as shown by Eilon et al.
[27]1 and Cooper [16]. Let the superscript k indicate the iteration

parameter. The iteration equations for X, and y; are simply {16] :

k4l O ™ Ky .o
Xi = ljil(glav']x']/dl ) / jil(gljv'j/di'])’ 1= 1,...,P (2-8)
K+l _ &
y; = I (g ,vsy. /d 3) / E (E55v; /d 30> 1= 1,000 (2.9)
J=1 J=1

After each iteration the customers are reallocated to the relocated
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facilities, and the‘Eij's are modified prior to the next iteration.
It haé been shown by Palermo [85], Kuhn and Kuenne [70] and
Haley_[Sl], that Equation (2.3) is convérgent in the case of a single
facility (p=1): the cost function being convex, it has a single
unique optimal solution. In the general case (p > 1) Equation’ (2.3)
has multiple lbcal minima and the iterative scheme of Equations (2.8)

and .(2.9) only converges to a local minimum.

2.3 Location with finite solution space

A Simplifieaidefinitioh of the facility location problem with
finite solution-space is as follows.' Given a number of demand points
for a certain product, each Witﬁ a demand Dj’ and g number of alternative-
sifes where facilities ﬁay be built to satisfythese demands, determine
where the facilities should be placed, and which demand points are to
be served by each of the facilities [B87, 89].  There may or may not
be festrictions on the size (capacity) of the.facilities. The
objéctive is to minimize the sum of the fixed costs of the facilities
plus the variable transportation costs.

then there are restrictions on the size of the facilities the
problem is‘usually called the capacitated facilities location problem.

- If these restrictions do not exist, the problem is known as the un-
capacitated (or the simple) facility location problem [61, 971. A
general formulation for.the uncapacitated facility location problem was
given in'Section.l.2T The general case in wﬁich there are restrictions

on the size of the facilities can be formulated as [62]:
Minimize
Z= % F. %+ I I c..X. ' (2.10)
i€T der jeg Y »

Subject to
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I X..>D., JEJ (2.11)
€T iJ = 3

I X,.<8.,y., 1€1I (2.12)
P RS = Pi¥3o ; :

v; € {0,1}, i€1 (2.13)
X:j >0, i€I,j€J (2.1k4)

where

Xij - Amount supplied to customer j from facility 1i;
'Dj - Demand at area Jj;

Si - Capacity of facility i.

The cost funections included in the objective function can be made
more general than the one shown in Equation (2.10). Insfead of the
fixed costs associated with opening and 6perating a facility, and linear
transportation coéts, it may be necessary, in the case where the
facility is a warehouse, to consider variable warehousing and delivery
costs which are nonlinear [4, 5, 25, 31, 33, 65].

Perhaps the first algorithm tovguaréntee an optimal solution for the
uncapacitated case was the one by Efroymson and Ray [25] . They assume
that the fixed cost F. is a single fixed charge. Their method can be
also extended to include the case in which F. is concave and coﬁsists
of several linear ségments.

Efroymson and Ray utilize a tree search algorithm.¥ They use
& linear programming formulation that can be solved by inspection to

resolve the subproblems at the nodes of the tree.

* Tree search or branch-and-bound algorithms are examined in more
detail in Chapter Five. A good survey on branch—and-bound methods
is provided by Lawler and Wood [T1].
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Spielberg [94, 95] has considered essentially the same problem,
but his algofithms contain added features that speed up computation
and can accommodate some side conditions. Khumawala [60] reports
good computational results for this class of pfoblem.

| Algorithms for the capacitated case have been proposed by Davis
and Ray [20], Gray [46], Marks [7T7], 85'[92] and Akinc and Khumawala
[1].  Marks' model is more general in that he considers the facilities
to be intermediate poihts between sourcéscﬁ‘productand the customers
to whom theserproducts are to be sent. In all algorithms of the
above mentioned references for the capacitated case, transportation
costs are assumed fo be linear, and a fixed cost Fi is dssociated
with faéility i. More general cost functions are considered by
Soland [93] in a recent paper. All exact procedures mentioned above

are branch—and—-bound methods.

2.4 TLocation on networks

It was mentioned in Section 1.2 that location on networks is a
special case of location in a plane with finite solution space. In
network location problems the solution space is reétricted to the
arcs and verticés of the network, and distances must be measured along
the arcs of the network.

Netwdrk 1ocation'problems are characterized by the nature of the
objective function to be optimized. . In.problems involving the
location of emergency facilities, such as hospitals and fire stations,
the objective is to locate a given number of facilities so that the
largest travel distance (or time) from any network demand centre to its
nearest facility is minimized. These are the minimax network location
problems. In other cases, such‘as in‘the location of depots in a
distribution network, a more appropriate objective is to minimize the

total distance travelled. The latter are the minisum location problems,



oflwhich the p-median problem is a special case.

| .Minimax network location pfoblems are briefly reviewed in
Section 2.4.1." This is followed by a much more detailed review
of minisum problems, with special emphasls‘given to the p-median

problem.

2.4.1 Minimax location on networks

There are a large variety of minimax network location problems.
In a thorough and comprehensive study of the subject, Handler [52]
identified ten different models for such problems. In order to
facilitate the identification of the several modelé, Hendler proposed

the following notation:

Facility Location Demand Location No. of Centres] Network Type

Set Set Max. Distance
N N P - T
) A - 2 R A 4 :

where N,P denote the node and point sets,*. T, G denote tree and cyclic
graphs, and p,§ refer to the number of facilities and to the eritical
distance respectively. The critical distance is the maximal allowed
distance between a demand_centre and its nearest facility. The

1y . ' .
" is used for inverse problems. In inverse problems what

symbol "§
is sought is the determiniation of the minimal number of facilities (and
their location), so that ail démand centrés are within a eritical
distance 8 from at least one of the facilities (see Section 1.1).

The best knowﬁ minimax network location problem is P/N/p/G.

Demand centres are restricted to the vertices of the netwofk, but

facilities may be located either on vertices or on arcs connecting

the vertices. This problem is known as the multi-centre problem or the

* The node set includes all vertices of the network.. The point seb
comprises all points of the network, either vertices or points on
arcs connecting the vertices.
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absolute p-centre problem. In its formulation the number p of
centres is fixed, and what is required is their location so that
the maximal distapce between any vertex of the-netwofk and its
_hearest facility is minimized.

The inverse of the a@bsolute p—centre'problem, denoted by
P/N/S_l/G, can be stated as follows: For a given critical distance §,
find the smallest number (anAd location) of facilities, so that all
vertices of the network lie witﬁin this critical distance from at
least one of the fdeilities. This pfoblem is closely related to the
absolute p-centre problem, and usually the same method can be ﬁsed to

solve both problems.

The State of the Art

The vertex centre (N/N/1/G) and the absolute centre (P/N/1/G)
proﬁlems.were introduced and solved by Hakimi [48]. Goldman [44] also
presented an algofithm for P/N/1/G, but the algorithm does not guarantee
an optimal solution. As a sﬁecial case of his algorithm, Goldman
derived an efficient algorithm for P/N/1/T.

The absolute p-centre problem (P/N/p/G) wés also proposed by
Hakimi [49] . | Subsequently, solution algorithms for this problem were
produced by Mini€ka [80] and Christofides and Viola [15]. An
algorithm for N/N/p/G was given by Toregas, Swain, Revelle and Bergman
[99] . A1l algorithms méntioned above involve repeated solutions of
generalized Set covefing problems.

. The work of Handler [52] represents a substantial advancement in
the field of minimax network location problems. He developed better
algorithms and studied problems that had previously received very
little attention, such as P/P/p/G and ﬁ/P/p/G.

Minimax probléms can be also defined for the more general case of
location in a pléne, with distances measured according to either the

Euclidean or the rectilinear metric systems. These formulations have
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the characteristics of the models discussed in 2.2 and 2.3.
They were the object of papers by Dearing and Francis [21], Elzinga,

Hearn and Randolph [32] and Wesolowsky [103], among others.

2.4.2 p-Medians and absolute p-medians

Minisum nétwork location problems can take several forms, depeﬁding
on the costs included in the objective function and the form of the
constraints. In thesé problems the optimal locations of the
facilities aré called the medians of the network. The difficulty in
solving such problems is not due to variations iIn the objective function
or to additional constraints, but is inherent in the pure median problem
itself. This thesis is concerned with the pure p-median problem.
The generalized p-median problem, however, is briefly discussed at the

end of this section.

The Median and Multiple Medians

For a given network N = (X,A) it is possible to define two trans-

mission numbers for every vertex Xy € X. Let
o(x.) = T wv. dlx.,x.) , (2.15)
0'" x.€x 9 1°77g
and J
o,(x.) = © wv. d(x.,x:) , (2.16)
t' x.€x 9 J’ 1
where J

d(xi,xj) — shortest distance from vertex xi to vertex x.;

Vs ' - weight of vertex Xj'

The numbers oo(xi) and ot(xi) are called respectively the outtransmission

and the intransmission of vertex Xs The number co(xi) is the sum of

the entries of row x; of a matrix obtained by multiplying every column
] of the distance matrix D(N) = [4 (xi,xj)] by Vi3 og(xi) is the sum
of the entries of column X5 of a matrix obtained by multiplying every

row j of the distance matrix D(N) by Vs
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A vertex Eb for which

o (x

o(%g) =Min [oy(x,)] - | (2.17)

x.EX
1

is called the outmedian of the network N, and a vertex E; for which

ot(xt = Min [ot(xi)] : o (2.18)
x.EX
i
is called the inmedian of N.
The single median can be readily generalized to the p-median.

Let Xp bé»a_subsét of the set X of the vertices of the network

N(X, A), and let Xp contain p vertices. Define:

d—(Xps Xj) = l;f-gx [d(xi’ Xj)] s ) . (2-19)
and ’ 1P
alx., X.) = Min [a(x;, x;)1 . (2.20)

J p x.€X
.1 P

It xi is the vertex of X@ which produces the minimum in equations
(2.19) or (2.20), it can be said that vertex X3 is allocated to x!.
The transmission members for the set Xp of vertices are then defined

in ways analogous to those for a single vertex, i.e.

~
1}

T v, alx, x.) 2.21

and

Q
~
~—
]

T v, dlx., X)), - (2.22)
tp xex 49

where GO(X?) and ot(Xp) are the outtransmission and the intransmission
of the set Xp of vertices.

A set X . for which
p0

(X)) = Min [o_(X ' . 2.23
0 Zp0 Xagx % p)] ( )
o

is called the p-outmedian of the network N, and similarly for the
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p-inmedian.

It is not computationally practical to use Equations (2.19)
through (2.23) directly to find p-medians of networks of even
moderate size. Hence the need to'develop more practical methods

for the computation-of p-medians.

Absolute p-Medians

In order to simplify the discussion consider a nondirected
network N, drop the suffices O and t and take the case of the l-median
first. The question arises as to whether there exists a point y on

some 1link (not necessarily a vertex) of N so that the transmission

oly) = = v, aly, xj) - (2.24)
. x:EX J
5
is less than that of the median 6f N. ~ The point v with the minimum

o(y) would then be called the absolute median of N.

Goldstein [45] proved that an absolute median of a tree is always
at a vertex of the tree. Hakimi [48] generalized Goldstein's result
and proved that there is no point y with o(y) < o(X), i.e.

Theorem 2.1 — There exists at least one vertex x of N = (X, A) for which
a(x) 2 oy) for any arbitrary point y on N.

In a later paper, Hakimi_[hQ] generalized Theorem 2.1 to the case
of absolute p—mediaﬁs:

Theorem 2.2 ~ There exists at least one su_bset'Xp cX containipg.E
vertices, such that G(Xf) < G(Yp) for any arbitrary set Yp of p points
on the links or vertices of the network N = (X, A).

The proofs of Theorems 2.1 and 2.2 are‘given in [48] and [49]
respéctivel&.

"In view of Theorems 2.1 and 2.2 the search for optimal solutions
to the p-median problem can be limited to the vertices of the network.

As a consequence, in the p-median problem the location of both demand
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centres and facilities is restricted to the vertices of the network.

The Generalized p-Median

In the pure p-median problem the only costs to be minimized are
variable costs associated with distances between vertices. The p—
median problem can be made more general if fixed costs Fi are
associated with the vertices of the network, in the same way fixed
costs are associatedbwith potential facility locétion sites in the

models of Section 2.3. The generalized p—-median problem can be then

defined as follows [12].
Given a network N = (X, A), with distance matrix D(N) = [d(xi, xj)] .
vertex weights v and vertex fixed costs Fi’ the problem is to find a

subset ig containing p vertices so that

7 = I Fi+o(Xp) - (2.255

is minimized.

Thﬁs the objective is to minimize not Jjust the transmission O(Xp)
of Xplbut~the total function 2 whieh includes a fixed cost Fi for every
vertex Xy in Xp. The p-median problem theﬁ corresponds to the case in
which all Fi are equal (say F) so that the first term of Equation (2.25)
becomes a constant (equal to pF), and does not influence the search for
the optimal set iﬁ. |

A version of the p-median problem that is often encountered in
practice is one in which ig is not required to contain exactly R_verticgs,
but any number less than or equal to p. The problem becomes then to
minimize Equation (2.25) subject to |Xp| < p.

Finally, the capacitated p-median problem can be also defined. A
restriction on the maximum value that the number

z 'V'j ' (2.26)
xj allocated to Xi
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can take for ¥ X € i;, can be gdded to the formulation of the p-
median problem. Equation (2.26) is a measure of the throughput
transmitted from X: and is therefore also a meaéure of the physical
size of a facility loéated at vertex x;. |
As already pointed out,Athe main difficulty in solving minisum
network location problems rests with the pure p-median problém.

Until this problem is satisfactorily resolved, there is little point

in attempting to solve generalized p-median problems.

2.h.3 Generalization of Hakimi's fundamental theorems

Since Hakimi first proved Theofems 2.1 and 2.2 his results have
been generalized by several authors.

Transmission functions G(XP) defined as thé sum of»arbitfary concave
functions of weighted distances are studied by Levy [73], Goldman [L42]
and Hakimi and Maheshwéry [50] . Levy [73] proves that Theorems 2.1 and
2.2 are valid for traﬁsmissions that are concave with respect to
distance. In a laﬁer paper,shﬂakimi and.Maheshwari[SO] show that,
under fairly general assumptions, one could, without loss of optimality,
restrict the 1oéation of facilities to the vertices of the network in
a wide range of mini sum network 10catioﬁ problems. Conclusions drawn
by Hakimi and Maheshwariare:

1. Theorems 2.1 and 2.2 hold when capacity constraints are placed

on the arcs of the networks;

2. Tﬁe theorems will generally not hold for the capacitated case,
unless the location of more than one facility at a single vertex

is allowed. |

Wendell and Hurter [102] establish some necessary and sufficient
conditions for optimal solutions to miniSum network location problemé
to oécur at the vertices of‘the retwork. They show that for problems

in which:
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1. There exist constraints én arc capacities, and

2. Transportation costs are nondecreasing éonca%e (this has been
generalized to include cases in which these costs differ from
arc to arc),

Theorems 2.1 and 2.2 remain valid. These sufficiency conditions

are very similar to scne ofvthe results obtained by Hakimi and

Maheshwari [50] .

Whereas gome ﬁheoretical advances have been made in minisum
network location problems, computational difficulties abound even for
 the pure p-median problem. A survey of solution methods available
in the literature for the p-median problem is provided in the next

section.

2.4.4 Methods for the p-median problem

‘Several algorithms, both exact and heuristic solution methods,

have been proposed for the solution of the p-median problem. The

exact solution methods are:

1. Branch—énd—bound algorithms [30, 59];

2. Two different formulations of the linear programming (LP) relaxation
of the integer programming (IP) formulation of the problem [41, 90] ;

3. An alternative approach via linear programming [78], based on
Lagrange multipliers and paramétric linear programming.
Heuristic méthods are reviewéd in greatér detail in Chapter Six.

The more fundamental heuristics proposed for the problem, however, are

briefly described in this section.

Branch—and-bound Methods

J4rvinen, Rajala and Sinervo [55] appear to have been the first to

solve the p—median problem through branch—-and-bound. Their algorithm
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starts with all facilities "open".* A lower bound defined by the
authors is then used to successively "close" facilities until exactly

p facilities are left "

open". The iterative process continues until
all feasible solutions have been implicitly evaiuated.

A different branch—apd—bound procedure was developed by El-Shaieb
[30] . In his algorithm the tree branches represent_assignmenﬁs of
sources (facilities) and destinations. Locations are added one at a
time to eiéher the soufce or the destination set to form the next
branches. From each node of the tree there are two branches. One
of the brgnches corresponds to adding a location to the source set,
while the other branch corresponds to adding the same location to the
destination set. At the end of each_braﬁch there is a node that
contains the corresponding source and destination sets.

Two lower bounds were developed by El-Shaieb for his algorithm.
One of the bounds is reported to be efficient for small values of p,
whereas the other is shown to perform better for the larger values of
P The algorithm was tested'for the 10, 20 and 30 major metrobolitan
centres in the United States, with p=2, 4 and 6.

It is very difficult to compare the efficiency of El-Shaieb's
| algorithm to that of J8rvinen et al. Not only the test problems of
the two papers are different, but also the computers and even the
level of tﬁe programming languages used by the respective authors differ
substantially.

Khumawala, Neebe'and Dannenbring [63 attempt to compare El-
Shaieb's algorithm with other exact and heuristic procedures for the
p-median probBlem. In this attempt El-Shaieb's results are tabulated

alongside results obtained through the following methods:

¥ An "open" facility is defined here as a vertex of the network
temporarily assigned to be one of the medians. A "closed"
facility is a vertex of the network temporarily assigned to the
nonmedian set. '
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l.‘ The Teitz and Bart heuristic method (98];
2. An algorithm originally deéignéd for minimax network
location probiems;
3. The Linear Programming/Group Theoretic algorithm of Garfinkel,
Neebe and Rao [41]. This aigorithm is reviewed below in some detail.
.Khumawala et al. conclude that a comparative evaluation is very
difficult, and content themselves with making a few comments on each

of the methods considered by them.

A Linear Programming Relaxation of the Integer Programming Formulation

of the Problem

The integer programming formulation of the p-median problem has
already been given in Section 1.2 [Equations (1.7) to (1.11)]. For

the sake of convenience this formulation is repeated below:

Minimize

7 = I I od.. k.. (2.27)

Subject to

P E..=1, JEJ (2.28)
ijer *J

I E..=p . : (2.29)
jer **

EjS8 1€I,j€7 . +Y ' (2.30)

1 if customer J is allocated to facility i

Eij = (2.31)

10 otherwise

If the {0,1} constraints represented by Equation (2.31) are relaxed

to

nv

0, 1€1I, jJEJIT » (2.32)
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the resulting problem is a linear programming problem. - Note that
in fhe LP relaxation an upper bound of value 1 on‘&ij ;s not necessary,
since gij < 1 is implied by Equation (2.28). |

Revelle and Swain [90] used the IBM Mathematical P rogramming
System (MPS) package to solve the general LP formulation given by
Equations (2.27) to (2.30) and (2.32). .They report that a 30-vertex,
6-median problem required 173 MPS iterétions and 1.51 minutes of
computer time to converge tp an optiﬁal integer solution on an IBM
360/65. |

The solution to the LP is not necessarily all-integer and
fractional values of gij can and do occur. Revelle and Swain .report,
howevér, that fractional values of gij occur rarely. In the unlikely
event of a nbn—integer solution, they recommend a branch—and-bound
scheme to resolve the problem with integers. Unfortunately, very
little computational experience is feported with respect to the
branch—and-bound scheme.

The main problem with the general LP formulation above is that it
produces very lafge linear programmes. . For a networkvof n vertices,
thé number of variables n? and the number of constraints n% + 1. Revelle
and Swain suggest cutting down the number of constraints by adding the
assignment constraints given by Equation (2.30) only as needed. In a
generaliiation of the LP relaxation to a class of location—allocétibn
problems, Morris [81] ekperimented with this technique. He concludes
that even when this procedure is used, the use of LP for large scale
problems is precluded.

Garfinkel, Neebe and Rao [41] solve the IP relaxation by dgcqmposition,
thus considerably reducing the size-of the problem. In their decomposition
formulation the LP basis of the master problem contains only n + 2 rows,
and each of the n subproblems can bé solved by inspection. Due to the

very degenerate nature of the LP basis of the master problem, however,
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in many cases the algorithm fails to converge. This lack pf
convergence is a very serious problem, and prevents the decomposition
formulation from effectively solving the problem.

Difficulties with convergence are practically not mentioned by
the authors of [41]. An extensive study of this phenomenon is made
in Chapter Three of this thesis. The general LP formulation of Revelle
and Swain is aiéo discussed in the same chapter.

Tn the Garfinkel ét al. paper, the LP decomposition formulation
represents only part of the work. In cases of non-integer termlnation
of the LP, the integer formulation of the problem is attacked through
group theoretic techniques and a dynamic programming recursion.
Garfinkél et al. report some computational experience with their
proposed procedures.

Finally, an alternative approach via linear programming 1s gilven
by Marsten [78] . ~He shows that the solution corresponding to the
optimal p-median of a network [as described in Equations (2.27) to
(2.31)] , is an extreme point of a certain polyhedron H, and that
all other p-medians for 1 S p £ nare also extreme points of H,  Using
Lagrange multipliers and parametric linear programming, Marsten gives a
méthod of traversing a péth among a few of the extreme points of H.
This path successively generates the p-medians of the network N in
descending‘order of p, although for some values of p the soclution may
" be missed and never generated, or, conversely, extreme ﬁoints of 0 may
be generated which do not correspond to p-medians of N, i.e. contain
fractional values of Ei"

Thus, although Marsten's method is both theoretically and
computationally attragtive, it may fail to produce the p-median of a
network for thé specific value of p that may be required. In [78]
Marsten reports the case of a complete 33—veftex netwdrk, all of whose

optimal p-medisns were successfully generated for p = 33,32,...,10,
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but whose optimal 9-median and 8-median could not be obtained by

his method.

Heuristic Methods

Heuristic methods for the,p—median problem first appeared in
papers by Maranzana [76] and Teitz and Bart [98]. The method éut
forwérd by Maranzana ﬁafallels in several respects one of the heuristics
devised by Cooper in [17] for the continuous case. This method is

referred to as the partition method, and in essence is approaches the

.p-median by finding successive single vertex medians of p_subsets of
destination feftices, each associated with one source, and'then.adjusting
the subsets before repeatingbthé process. A similar approach was later
studied by Surkis [96] .-

Teitz and Bart [98] describe a heuristic method based on vertex

substitution. The method proceeds by choosing any p vertices at random
to form an initial seﬁ S, which is assumed to be an approximation to the
optimal p-median set i?. The method then tests if any vertex x; € (X-S)
can replgce a vertex x; € S and so produce a new set S' = § U {Xj} — {xi}
yielding a better solution to the problem than the solution implied by
the set S. Ifkso, vertex X is replaced by vertex Xj and a new set S
is obtained which is a better approximation to_i'. The same tests are
now performed on the new set S', and the procedure is repeated until a
set S is finally obtained for which no replacement of any vertex in§
by a vertex in (X - S) produces a set whose implied solution is better
than the solution produced by'g; This final set S is then taken to be the
required approximation to iﬁ. |

Contrary to what was initially conjectured by Revelle et al. [89],
‘the vertex substitution method does not produce an optimal solution in

all cases. Counter examples to this conjecture can be found in [12] and

[55}



38

Due to the importance of the methods of Maranzana [76] and
Teitz and Bart [98] , they will be described in greater detail in

' Chapter Six.

2.5 Conclusions

The p—median and related network location problems have been
éurveyed in the present chapter. In addition, network location
models have been related to more general models in location analysis,
of which they‘are a speclal caseé. The survey was not only concerned
with models and methods of solutibn; but also with definitions,
theofems and cost functions of interest for the problems covered in
the sur&ey.

The fundamental theorems for the p-median problem are those of
Hekimi [48, 49], and their extensions by Gvoldman [k2], Levy [73],
Hakimi and Maheshwari [50] and-Wendell and Hurter [102]. Thesé results
were reviewed, and this was followed by a survey of exact and heuristic
solution methods currently available to solve the p-median probiem.

Although remarkable theoretical progress has been mede in relation
to the p-median and other minisum network location ﬁroblems; much remains
to be done in the computational side. This is particularly true for the
pure p-median problem.

For tﬁis problem, branch-and-bound algorithms were developed, but
the lack of efficient lower bounds only allow them to solve the problem
for medium-size networks. Theré are yet unsolved problems in both
formulations of the LP relaxation of the p-median problem. Existing
heuristic procedures can be  further extended. )

The following chapters attempt to overcome these difficulties.

New ideas and solution procedureé are developed, aﬁd they represent
a contribution towards solving the computational difficulties of the

p-median prcblen.
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CHAPTER THREE

LINEAR PROGRAMMING FORMULATIONS OF

THE RELAXED p-MEDIAN PROBLEM

3.1 Introduction

The.integer programming formulation of the p-median problem -
and its corresponding LP relaxation - have been introduced in
Chapter 2. Garfinkel et al. [ k1] solved the LP relaxation by
decompositién, thus considerably reducing the size of the linear
programme. Due to the very degenerate nature of the master
problem, however, serious difficul%ies with convergence prevent
the relaxed p—median problem from being solved by decomposition
in many cases.

The impoftance of the linear programming formulations stems
from the fact thaf in the majority of the cases the solution to the
linear programme is all-integer, thus also being a solution to the
p-median problem. | It is true that fractional LP solutions do occur,
but these occurrences are rare. Fractional solutions generally
occur for highly contrived cost matrices, difficult to represent in
terms of an actual network. The data in these contrived matrices
follow the patfern of the cost counter-cycles mentioned by Revelle
and Swain [90] .

In the present chapter both the geﬁeral formulation of Revelle '
and Swain and the decomposition formulation of Garfinkel et al. are
studied in detail. Some computational experience is reported for the
general form;lation. An example of a contrived cost matrix is also
presented.

TheAdecomposition formulation is studied in far greater detail.
In order to illustrate the method, a small example is solved by hand.

- Then computational results show the extent of the difficulties with



Lo |
cénvérgence. Finally comments of a geﬁer&l nature are made in
relétion to the convergence of the algorithm,

The importance of eventually overcoming the convergence
problems o‘f the decomposition fqmulation explains why the main
part of thié chapter has been dedicated to this method. If the
difficulties arising from the lack of coﬁvergence of the algérithm
pan‘be solved, then the decomposition formulation, in conjuncfion
with its enmbedding into bfanch—andrbound.algorithms, can be used

to solve the p-median problem for large-scale networks.

3.2 The General Linear Programming Formulation

vThe integer programming formulation of the p-median problem has
already been given 1in the first two chapters of_this thesis. A
formal statement of this formulation ilz, Chapter 6] is now given
in the following. |

Let [Eij] ve a (nxn) allocation matrix so that gij.= 1if

vertex Xj is allocated to vertex x gij = 0 otherwise.

i’
Further, let Eii = 1 imply that vertex X, is a median vertex
and let Eii = 0 otherwise. The p—-median problem can be then

stated as follows:

Minimize .
Z n n . .
= £ I 4..¢&,. _ ‘ - (3.1)
i=1 j=1 9 Y |
Subject to
0 _
T Ei.=1, J=1,...,n (3.2)
i=1p '
n .
I E.=p (3.3)
1=1
E.. < E.., 1, =1,.v.5n, i#j | ' (3.4)
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and

E;. =0 orl, (3.5)‘

1J

where‘[dij] is the weighted distance matrix of the network, i.e. the
distance matrix of the network with every column j;multiplied by a
welght vs.

It is worthwhile to discuss the meaning of the constraints of
this integer programme. Equation (3.2) ensures that any vertex x;
is allocated to one and only one median vertex . . Equation (3.3)
guarantees that there are exactly p medians, and Equation (3.4) makes
sure that Eij = 1 only if Eii =1, i.e. non-median vertices are only
allocated to vertices that are in the median set. If [E;j]'is-the
allocation matrix‘corresponding to the optimal solution, the optimal

p-median is given by -

X, = Ixg | g, =1} : (3.6)

As already noted, if Equation (3.5) is replaced by

aij >0, i,j=1,...,n, (3.7)

the resulting problem is the linear programming relaxation of the p-
median problem. It has also been already pointed out that in the LP

relaxation an upper bound of value 1 on Eij is not necessary, since

gij $1,1i,j =1,...,n, is implied by Equation (3.2}.

Solving the linear programme

Revelle and Swain [ 90] used a standard IBM mathematical programming
package (MPS) to solve the formulation given by Equations (3.1) to (3.4)
and (3.7). Their experience with this formulation was reported in
Chapter 2. The main interest of this reséarch in the general formulation

is not in the formulation per se, but in the possibility of embedding it
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iﬁtovthe branch~and-bound algorithm of Chapter 5. It was decided
therefore that a simple c0mputér code should be used to soive the
IP, i.e. a code that could be easily adapted to be activated at
every node generated by the branch-and-bound algorithm.

The code chosen for this'purpose was a Nottingham Algorithms
Group (NAG) subroutine. This subroutine is not especially |
efficient, as it stores all the data for the LP inAthe central
processing unit of the coﬁputer. Consequently; due to the size of
the linear programmes generated by the general.formulation, it was
not possible to go beyond a lO—verteX network when using the NAG
subroutine to test this formulatioﬁ of the LP.

The experience with the embedding of the general formulation
into(the branch-andrbound algoritﬁm of Chapter 5 is described in
that chapter. In the present chapter only some §Omputational

results of general interest to this approach are given.

Computational experience

It was not easy to find a small network for which the LP relaxation
of the p-median problem would yield a fractional solution for a given

1

A

P $n. Confirming the experience of Rewvelle and Swain‘[90], non-
integer solutions were only obtained for highly contrived matricesv
with cost c0unter—cyclés. Garfinkel et al., however, do_provide in
their paper [41, p. 231] a 1l0-vertex network for which the LP relaxation
yields a fractional solution for p = 3. This network is shown in
Figure 3.1.

In Figure 3.1, the numbers alongside the arcs are distances
between vertices.  All vertices have unit weights. The LP relaxation
of the problém was solved and the following solution was obtained for

p= 3:



Figure 3.1

10-vertex network of Garfinkel et al., [L41, p.231]

€
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11 7 %12 T 81,207 95

21 7 fop T Bp3 7 000

*53 7 b5y 7 B55 T Bog = by = 05
S = Sr5 = E1 = S77 = Eyg = 05
Egg = 0.5

; 0.5 .

10,8 = 510,90 510,10 T

The value of the objective function for the solution above is
35.5. The solution to the optimal 3-median of the netwvork of Figure
3.1 consists in fact of six different 3-vertex Seté, all with an
objective function equal to 36. Itbis interesting to note that for
this netwak, for ali other possible values of p the solution to fhe
LP is all-integer, and therefore also a solution to the corresponding
p-median problem.

It took 153 iterationsof the simplex method and 70.69 CDC 6400
seconds for the LP to converge to the fractional solution shown above.
Thus, the solution to the general LP formulation is not particularly
fast.

It has been pointed out that non-integer solutions to the LP
relaxation of thevp—median problem are often obtained for highly
contrived matrices with cost counter-cycles. An example of this

type of matrix is given in Figure 3.2.

3.3 The Decomposition Formulation [ 41]

Consider the LP relaxation of thé IP formulation of the p-~
median problem (Equations (3.1) to (3.4) and (3.7) of Section 3.2).
It is possible to decompose the LP on the index i. The linking
constraints will be (3.2) and (3.3), which together with the
objective function Will constitute the master problem, the basis of
which contains only n+2 rovs. Rewriting ‘the LP in a form sultable

for decomposition, the following results:
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Io
X X, x3 X), x5 Xg XT X8 x9 XlO
0 0.5 N N 6.0 X N N N N
7.0 0 1.5 XN N N N N N N
N 12.0 0O 2.5 N N N N N N
N N 10.0 O 2.0 X N N N N
1.0 N N 8.0 o0 N N N N N
N N N N N 0O 1.5 N N 6.0
N N N N N 7.0 O 2.5 N N
N N N N N N 8.0 o0 3.0 XN
N N N N N N N 9.0 0 3.5
N N N N N 4.0 N N 10.0 O
FIGURE 3.2

Contrived Cost Matrix

N = Large Number
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Minimize
. | n .
7= 1% ». x. (3.8)
i.:l 1 1 ‘
Subject to
n o . :
I Ay X; =Dy - (3.9)
i=1 . ' ‘
B, X, 0, i=1,...,n (3.10)
Xi ;0, 1=l’ooo’n ’ (3'11)
where¥*
D, = (dil,...,din)
_ T
X, = (.g.l,...,gin)
In
Ay = |l
e,
i
T
bO =[1,...,1, pl
=7 ’ - T
Bi = [el,eg,...,ei_l, Po_1» ei""’en—l]

0=1[0,...,01F .

In is the nth identity matrix, e: is +the ith unit column vector of
appropriate dimension, Py is a row vector containing k 1's, and T
denotes transpose.

Note that the constraint set

s; = {X, | B. x.

3 ;% 20, X, 2 0} _ (3.12)

has one extreme point for each subproblem defined by (3.10) and (3.11),
ﬁamely Xi = 0. Then, if the null véctor is considered to be a
degenerate extreme Tray, at any iteration one of the extreme rays of Si
will be found.' Thus the usual convexity constraints can be omitted

from the master problem.

* ( ) denotes a row vector, and [ ] a column vector.
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Now let y?, k = l""’Ti be the extreme rays of Si' Then,

using the notation of Hadley [L47], the modified master problem is

Minimize m
n i
7= % I p}; D, yl:; (3.13)
i=1 k=1
Subject to
n Ti
N > p? A, y? = b0 ‘ (3.14)
i=1 k=1 *
k i .
p; 2 0 for all i,k | . (3.15)

Given a feasible basis B to the master problem above, n subproblems of

the form
Maximlze
6. = F, v; (3.16)
Subject to
B, ¥; £ 0 (3.17)
y; 20 (3.18)

muét be solved. An optimal solution to the subproblem above will be

an extreme ray of Si’ and Fi = oAi - Di is the row vector of dual slack
variables associated with the basis B. Because of the simple structure
of Ai’ given 0 it is trivial to calculate Fi without matrix.multiplication,

since

F. =0, - D, , - (3.19)

where

.

: (ol,...,c. g, + 0

i-1> 91 * Onae1s Ogapoeceefy)

If yi is an optimél solution to subproblem i with value 6? for a

given 5}, then

6 = Max, . . 6% - (3.20)
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If 06 = 0, an optimal solution to the LP has been found. If6 >0,
that vector y? which yields 6 is brought into the basis.
The subproblems can be solved by inspection.. Letting

Fi = (fil""’fin) and y; = (yil,...,yin), the subproblems are of

the form
Maximize
n . .

6. = I f.. V.. (3.21)
. l, 5=1 1) YiJ - .

Subject to
Yi5 = Y51 S0, J=1.em ) kg } (3.22)
Yi: 2 0, i=1,.ue5n (3.23)

1J

In order to solve the subproblems above, calculate

‘4., =f,, + & Max (O, £, ) . (3.24)
1 11
i#]

If ti < 0, then y?j =0, J= l,...?n. If ti > 0, then yii = 1 and,

for all i#j

1 iff..>0

v¥E. = *d
ij .
0 if £,,20 (3.25)

It should be noted here that ei will also be maximized if, for

ti >0, yii =1, and, for all i#j

1 iff.,>0
Cy%®,. = 1 = :
1d 0 if £,5<0 ' (3.26)

: Thié second possibility is not mentloned in [ 41), and although apparently
not very olgnlflcant, it has proved to be of some importance, especially
when the convergence of the algorithm is studied. This point will be
brought to attention agaln in Section 3.h.3.

Thus if ti > 0, y? is a binary n-vector with a one in the ith
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position, The column introduced into the basis is easily seen to
be
*
i

H% = A, y¥ = o o (3.27)
1 1 1 l

Since Hi is a binary vector, premultiplication by B—l involves nothing
more than addition of the columns of B—l corresponding to the l's in
Hi. Thus multiplications and divisions are not needed until the

pivot step.

Initial basic feasible solution
Because of the simple structure of the constraint matrix, initial
basic feasible solutions are readily obtained without a 'Phase I'

procedure. Two such possibilities are as follows.

Tnitial Solution A

Since 4.

15 2 0 for all i and j, it is clear that (3.2) can be

replaced by

™~
oY
v
)
-

j=1,...5n (3.2a)

without loss of any optimal solution. It would also be desirable to

replace (3.3) by
L E. >Dp. » (3.3a)
However, since dii = 0 for all i, this would result in a median being

located at every vertex. In order to avoid this, it is necessary to

alter the distance (cost) structure so that

d!., = a.. + W

11 ii

t - 1 3 .

dij dij for i#j , (3.28)
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where W is an arbitrarily large positive constant. This has the
effect of fbrcing equality in (3.3a), while adding the constant pﬂ.
to the objective function.

Now let Xé = {xi |‘Eii = 1} be any feasiﬁle solution to the p~
médian problem. Gener?ting Xé is a simple mgtter. One can easily

choose p vertices to be medians, and then assign nonmedian vertex xj

to median x? if a!

ey = Min dij’ X; a median, where ties may be broken

arbitrarily. Without loss of generality, assume Eil = ,,, = Eép

This can alﬁays be achieved by renumbering the vertices.
Now, in order to construct an initial basic feasible solution to

the master problem, note that Xﬁ generates solutions to each of the

p subproblems defined from (3.21) to (3.23). These solutions are

y=-vectors of the form

vy, = |=—==| , - (3.29)
where e, is the.ith unit p-vector, and a; is an (n=-p)=-vector whose jth
component is one if vertex x iy is allocated to median Zss and zero
otherwise. Thus p vectors of the form [?f] can'be plaéed in the basiss
where the 1 is from constraint (3.3a). The basis is then filled out

with (n-p) surplus variables from (3.2a) and one from (3.3a).

Thus
ey - l ep I 0 I - l 0
- - P i (2.30)
By = |y ENES - |
N

or
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T 0 T
D
By = Q T nep+lf 2
P (3.31)
b 'J .

where Pp is the sum p-vector (1,...,1). The basis B, has the

desirable property of béing involutory (BO = Bal), so that the dual

variables are readily computed as

(3.32)

. 1

o ‘o
will be in the optimal LP basis at a

and the initisl LP solution is Bt b, =1 Pp, 01T,  Note that none of
the last ﬁ—p+l variables in BO

positive level.

Initial Solution B

Another easily invertable basis that has the advantage over B

0
of éontaining only one surplus variable is
'Ep 0 of
B, = |Q T o »
LS R -1 - (3.33)

where Q is defined in (3.31). The matrix In—p corresponds to allocating

vertices p+l through n to themselves. The inverse of B, is

1
T 0 0
X P
Bl = —Q .. In__p 0 ’ '
(= +P P -1 (3.34
_ﬁ pn_pQ) p| Frp | (3.3 ).

and the initial LP solution is_B;lbo = [Pp, ol”,

If B, is used (and assuming n-p>2) it is possible to remove, on the
first pivot, the last column corresponding to the surplus variable.

This is done by introducing into B, a column Hi corresponding to vertex

1

n (or (n-1)) being a median, with vertex (n-1) {or n) allocated to it.
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Column Hi contains a 1 in the last three rows and zeros elsewhere,

Thus,

R - (3.35)

and the last column dropped.

and Hi can be 1ntroduced into Bl

Basis Bl was the one aétually used when the ILP ‘decomposition
algorithm was coded, and for which computational results are given

in a later section of this chapter.

3.4  The Decomposition Formulation Studied in Detail

The mathematical derivation of the decomposition formulation was
given‘in Section 3.3. This formulation is now studied in detail.
The decomposition formulation is initially illustrated by means of a
small example solved by hand. Then computational results are given
in 3.4.2. Finally degeneracy and the problems with convergence are

discussed in Section 3.L.3.

3.4.1 A small example solved by hand

It was thought that the best way to illustrate the decomposition
formulation would be to solve a small example by hand.

The initial basic feasible solution used for this purpose was
Initial Solution A, déspite the fact that Initial Solution B was
used when the algorithm was programmed for the computer. Initial
Solution A was chosen for the illustration because this was considered
the best way to give a 'physical' interpretation to this formulation of
the problem.

Consider the complete directed Yb-vertex network whose distance
matrix is given in Figure 3.3, and for which the optimal 2-median must
be found. If the structure of the distance matrix is altered as per

Equation (3.28), the matrix of Figure‘B.h is obtained.
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TO
X, X, X3 X,

X, 3
gl %13 0o 1 2
g Xq Y 3 0 1
X[ 3 2 2 o

.FIGURE 3.3

Distance Matrix of Illustrative Example

0
XlXX3Xh

Xi W

gl x, 1 3 w12

I

&'Xh3Wl
3
Xh322W

FIGURE 3.k

Modified Distance Matrix
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The data for the LP decomposition formulation of Equations (3.8)

to.(3.11) are then

= . - ' T

= . - T
D2 - (33 W‘Q l’ 2) ] X2 - (521) 5223 523’ Eeh)

= . . - T

. _ . . _ T
Dh = (3, 2, 2, W) 5 Xll— = (Ehl’ ElI-Q’ €u3, Ehh)

R o o o] i o o 0
0 1 0 0 _ o 1 0 0
A = |0 0 1 ol ; A,=Jo o 1 0
0 0 0 1 0 0 0o 1
1 0o -0 0] k) 1 0 0]
1 0 0 o] 1 0 0 0
0 1 0O 0 0 1 0 0
Ay= |0 0 1 o] A, = lo o 1 0O
0 o 0 1 0 o0 o 1
o0 0 1 9 o o0 0 1]
T
by =101, 1,1, 1, 2]
R 0 0] 1 -1 0 0]
Bj= |-1 o© 1 ol ; B, =0 -1 i 0
-1 0 o 1] o -1 0 1
1 0 -1 o] 1 0 o -1
By= (0. 1 -1 o0 ; B, = |0 i 0 -1
o 0 -1 1] o O 1 -1

Then, if Equations (3.8) to (3.11) are written in full, the following

is obtained:
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1. Equation (3.8)

Minimize
4 T
‘" iil D;X; = (W,1,2,3)(E)1,8, 5,8, 558),)" + +
: T
+'_(392929W)(ghlsghgaghS,ghh) =
=W gll + lx€12 + ... F 2x€h3 + W ghh ’

Subject to

2, Equation (3.9)

L

‘Z AlXi = bo s OT

1=]1

1 0 o of [ ] 1 0 0 of [ ] 1]
& 3

o 1 0 o] | ** o1 0 of [ ™ 1
& : &

oo 10/ [ +...+ o o1 o™= .,

. £ £

o o o 1| |3 0o o o0 1f |1 1
3 ' &

10 o of [ o oo 1 ™ e

or, finally,

11 21 31

I
f13 7 Eo3 * B33 * B3 =1
By FEoy tEg ey =
£+ E

op T 833 By =2

Equations (3.8) and (3.9) correspond to the master problem.

Turning now to the subproblems, given by Equations (3.10) and (3.11):

3. Subproblem 1 (i=1)

B.X, 20, X, 20,

or
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=
gll
1 0 0 0
510
0 1 0 £ < o
13 ?
0 0 1 £ 0
2
or, finally, -
. <
gll + 512 <0
- <
811 ¥ 81320
“Ep v E 20
and
Eld 20, J=1,...5k,

and similarly for the other three subprovlems.
It is now possible to understand more easily the meaning of the
vectors y?, k = l,...,Ti, described in Section 3.3 as the extreme

rays of 5.. They are vectors for which either

A, yij = gij =0 for allj ,
or
B. Yi5 = gii = 1 and yij = gij =0 or 1l for all j#i .

The value of yii in the above is Vi3 T 1 if vertex X is assigned as a
median, and Vi; = O otherwise. When a vertex x5 is assigned as a
median, yij =1 indicatgs that vertex Xj is allocated to median %y

and yij = 0 otherwise.

Any of the subproblems can generate 2n—l vectors that satisfy
Equations (3.10) and (3.11) for a specific i. Not all these vectors,
héwever, can be considered as candidates to enter the basis of the
master problem, since at every iteration the number of medians must
be equal to p in order that feasibility is maintained in the master
problem. The problem then is, all subproblems considered, +to enter
the basis of the master problem as few vectors as possible before the

optimal solution to the IP is obtained. This explains the procedure
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developed to choose the vector to enter the basis of the master
problem at e?ery iteration of the algorithm.

In the following the decomposition formulation is applied to
find the optimal 2-median of the network whose distance matrix is

shown in Figufe 3.3.

Initial basic feasible solution

In order that an initial basic feasible solution is generated
for the problém, let x, and x, be assigned as medians, i.e. let
Xé =‘{x1, x2}. If X4 and x) are then allocated to the two medians
above in the best possible way, the following is obtained:
SE il
S0 T f3 Tty 7L,

and

1l
w

o(Xé)

The next step is to generate B given by (3.31):

O’

=
)
@)
@)
I
=

The initial LP solution is

- -

V1 1
' 1=2
V2 1
o - T _ -

B—-Bol‘bo (2. 0" = s, ol ,
Sh 0
S
s >
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where Vi=k means the Zth vector to enter the basis, with i = k

implying that vertex X, is the assigned median in this vector.

83, Sh and S. are the vectors corresponding to the surplus

5
- variables. The initial ordered list of basic variables is then
i=1 =0 ' '
V) s Vp s Sgs S end S,
The .vector D, corresponding to the initial basis is

B
DB = (W, W3, 0, 0, 0). Now o can be readily calculated from

Equation (3.32):

-1
o = DBy~ = DBy = (0),0,,04,0),05) = (W, W+3, 0, 0, 0)

It should be noted that the components of vector D, are the cost of

B
the allocations of vertices to medians implied by the corresponding

column vectors in the basis.

Solving the problem

The 2-median problem is solved in the following. An optimal
. solution was obtained after six iterations. The interpretation of
this optimal solution is given after the completion of the algorithm.
Because of the nature of the decomposition formulaﬁion, the inverse
matrix method, in the product form, was used to solve the master

problem. For details concerning this method see Beale [6, Chapter T].

First iteration

The first step is to solve each of the four subproblems, so thaﬁ

0 and the vector to enter the basis can be determined:

o) = (Ul+05,62,03,6h) = (W, W+3,0,0)

o, = (01’62+°5’°3’Gh) (W, W+3,0,0)

oy = (01,62,63+65,Gh) = (W, W+3,0,0)

o) = (01,62,63,0h+05) (W, W+3,0,0)



59

Subproblem 1

= o -
17970

(0, w+2, -2, -3)

= >
4 tl w+2 (>0)

D
®
1}

T
y-)](: = (1, 1, 0, O)
Subproblem 2
F, = 52 - D, = (W-3, 3, -1, -2)
6% = t, =W (>0)
vi= (1, 1, 0, 0)°
Subproblem 3
F, = 8'3 - Dy = (W=, W, -W, -1)
egs =t = W= (>0)
y§= (1, 1,1, 0)F
Subproblem k4
F), = _h = D), = (W-3, Wl, -2, W)

eﬁ =ty = W2 (>0)

vi = (1, 1,0, 1T

8 = Max 6% = 9
L4 1
i

*
1

The vector to enter the basis is yi. The corresponding column to

be introduced into the basis is given by Equation (3.27):

jas]
*®
I
I
H O O H H
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The vector to leave the basis must now be determined.

Q
I
&
e
k3
I
e

Now, calculate

Min si/ai, a. > 0 =Min (1/1, 1/1, 0/1, 0/1, 0/1) =0
1 . ‘

Any of three vectors - 83, Sh or 85 — can be chosen to leave the basis.

If S3 is -chosen, the new ordered list of basic variables is then:

i=1 _i=2 _i=1
Vi sV s V3 o, 8, and S

The inverse of the new basis,Bal, must be now calculated.

Elementary matrices [ 6] are used for this purpose.#

1 -1 i
1 -1
Tl = 1
-1 1
=1 1
1 -1 1 0 0 ]
0 0 1 0 0
h_l _ -1 _
By =T, By = |0 1 1 0 0
0 0 1 -1 0
1 0 1 0 -1
The new B vector is then
T
1
B = Tls = |0
0
0]
* Throughout this example, blank entries in the elementary matrices

correspond to zeros.
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and, finally,

D, = (W, W+3, W+1, 0, 0)
-1

= Dy By~ = (w, 1, w+2, 0, 0)

Q>

The next four iterations proceed in a similar fashion., At

the end of the fifth iteration the situation is the following:

Ordered list of basic variables : VE=3, V$=l, v§=l, Vi=l’ V;=1
1 1
1/2
T = /2 1
5 | /
-1/2 1
-1/2 - 1
-1 0 0 0 1
1/2 1/2 1/2 1/2 -1
By = T5BO = [-1/2 1/2 1/2 -1/2 1
/2 -1/2 1/2 -1/2 0
| 1/2 -1/2 -1/2 1/2 0]
—T
0
=T =1
B 58
0
_0._.

D, = (W+l1, W6, W+l, W+2, W+3)

A A A_l
o =Dy By = (4, 1, 2, 3, W=h)



Sixth iteration

- Q Q
i L

Q
il

Q
=
I

Subproblem 1

Subproblem 2

Subproblem 3

Subproblem U

F), =0, = D) = (1, -1, 0, -1)
Of = ty=-1+1+0+0=0
T
Yﬁ = (O: 0, 0, O)
Then: 8 = Max 6% = 0,

(W, 1, 2, 3)

= (hs W—3: 23 3)

(4, 1, Ww-2, 3)

= (4, 1, 2, W-1)

Q
1

i
i

 (0, 0, 0, 0)

1 1

el S 0

£ = ( T
yl - Os Os Os O)“

o, - D, = (1, -3, 1, 1)

6; = 1& =-3+1+1+1=0
T
y§ = (0, 0, 0, 0)

0y Dy = (0, -2, -2, 2)

e*:t'3=—2+o+o+2=o

v = (0, 0, 0, 0)7

62
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The optimal solution has been found., The value of this

solution 1is

” 1
v%= 0
B = v§=l = |1
il
v§=; 0

The interpretation of this solution is a fairly simple matter. As
Vg=3 = V§=l = 1, the yﬁ vectors generated in the fourth (Vé=3) and

first (V;=l)‘ iterations respectively provide the solution to the

problem. Therefore,

531 0
el lo
T s
= s >
6 533 1
' £3M 1
and
Ei; EN|
EE I
3 g4 o
51y 0
or
813 S &= 1

The solution to the IP is integer and therefore also a solution

to the 2-median problem. The optimal 2-median is then ié =‘{xl, x3},

with vertex x? allocated to median xl and vertex xh allocated to
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median x3. The cost of this optimal solution is o(ié) =2, as it

can be easily verified from the disténce matrix of Figure 3.3.

‘It is important to note that this matrix is not symmetrical and

that the solution given sbove is optimal only fbr the direction
i(fow)-+j(column). That is, this is an optimal solution only if
customers are served from facilities, as in the case of depots
supplying customers in a distribution network. The optimal solution
for the direction. j+i - if, for example, the facilities are schools to
which studenté must travel - is entirely different from the one above

and can be obtained from the transpose of the matrix of Figure 3.3.

3.h.2 Computational results

Some computational experience with the decomposition algorithm
is reported in [ k1]. The algorithm is also independently assessed
in the present section of this thesis.” The examples used for this
- purpose are mainly from networks whose data were randomly generated,
with unit weights given to all vertices. A description of how the
data were generated, and the actual data corresponding to each of the
randomly generated nétworks used to test the algoriﬁhm»are given in
the appendix. Where examples taken from other sources were used, their
brigin is clearly indicated in the appropriate table.

The &omputational results of this section are shown in Tables
3.1 to 3.3. The decompésition algorithm was tested in a CDC 6L00
computer, and initially single and double precision versions of the dodé
were used. In éddition, the effect of usiné a random initial basic
feasible solution was compared with the possibility of using the Teitz
and Bart heuristic method [98] for obtaining the initial basic solution
for the algorithm,

It was initially thought that the lack of convergence of the
decomposition algorithm might be overcome through greater sccuracy in

the computations. Double precision and reinvertion techniques (see
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Oréhard—Hays [84]) are possible ways.to obtain greater accuracy for
this particular algorithm. Unfortunateiy the results produced when
double precision was used were very diécburaging. Consequently,
attempts to solve the algorithm's convergence problems through greater
accuracy were subsequently dfopped. The results shown in Tablest3.l
to 3.3 correspond to the single precision version of the code.

.In Table 3.1, results are shown for networks ranging from 5 to
33 vertices, and for a wide range of values of p. Some of the problems
were also tested with the initial basic solution obtained from the
- Teitz and Bart heuristic method, and the corresponding results are
shown in Table 3.2. Finally, in Table 3.3 the no heuristics option is
compared to the heuristics one.

The examination of Tables 3.1 to 3.3 clearly shows that as the size
of the network increases (and more often for the smaller values of p)
~the algorithm fails to converge after the maximum allowed 1000 iterations.
It can be also observed from these tables that when the algorithm
converges to an optimal soiution, this solution is integer in the vast
majority of the cases. This is in line with the fact that the LP
relaxation of the p-median problem usually produées all~integer solutions.

The lack of convergence i1s the only drawback of the decomposition
formulation, but it is unfortunately a very serious one. This is not
made very clear in (41] . The results shown in this section, however,
indicate that the lack of convergence prevents the algorithm from being
used as a standard techniQuevto solve the p-median problem.

When the algorithm converges the method is very fast and requires
-less computer core when compared, for example, with the general LP
formulation. Whereas it took 70.69 CDC 6400 seconds to find the -
fractional LP solution (for p = 3) of the network of Figure 3.1 through
the general formulation, the same example was solved in only 0.38

seconds when the decomposition formulation was used.
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The lack of convergencé'of this formulation is due- to its very
degeﬁerate nature. This is discussed in Section 3.4.3. It is
interesting to note that sometimes the optimal solution is reached

- but not "recognized" as such by the-algorithm. Refer for examplé to
the p = 1 and p = 4 test cases of the 30-vertex network of Table 3.1.
In both cases the solution obtained at some iteration before the |
lOOOth was optimal, but the algorithm failed to recognize the

optimality of these solutions.

The use of a heuristic initial basic feasible solution

>In Table 3.3 the performance of the algorithm is compared for
two different initial basic feasible solutions. It is perhaps
surprising that convergence was obtained more consistently When'a
random (and usuwally worse) initial solution was used. This was the
case for p = 2_and.p = 3 in the 15-vertex network, p = 2, p = 8 and
p = 9 in the 20-vertex network and p = 1 in the 25-vertex network.
The reverse never occurred.

From the data of Table 3.3 it looks as though thé closer the
inifial solution is to the optimal, the less likely is the algorithm
to converge.; On/the other hand, when convergence occurs in both cases,
the number of iterations i1t takes to reach the optimal solutionvdoes
vnotvfollow a discernible trend. Sometimes convergence 1s quicker
when the heuristic initial solution is used, sometimes the opposite
is true. The use of a random initial solution appears, therefore, to
be the best option concerning the choice of an initial basic feésible

solution for the algorithm.

Computing times

Computing times increase with n, but for a given value of
n the number of seconds per iteration remains Practically unchanged

as p increases, decreasing only slightly as p approaches n for the



Table 3.1 — Random Initial Solution

Problem - Convergence Nature of Objective
Size Solution Function
3 Yes or No. of [Integer (I) or Time in~
n P No Iterations Fractional (F)] Value Optimal?  Seconds
50 o Yes 2 I. 3.0 Yes 0.03
6++ 2 Yes 10 F 1.0 Yes 0.07
9 3 Yes 26 I 6.0 Yes - 0.23
10% 1 Yes 31 I 3k4k6.0  Yes 0.35
10 - 2 Yes Yo I 2049.0 Yes 0.47
10 3 Yes 32 I 152k,0 Yes 0.33
10 L Yes 26 I 1187.0 Yes 0.29
10 5 - Yes 23 I 882.0 Yes 0.25
10 6 Yes 2k I 579.0 Yes 0.26
10 7 Yes 11 I 294.0 Yes 0.12
10 8 Yes 7 I 163.0 Yes 0.09
10 9 Yes 2 I 75.0 Yes 0.06
10 10 Yes 2 I 0.0 Yes 0.06
10#% 1 Yes 17 I 79.0 Yes . 0.20
10 2 Yes 28 I 47.0 Yes 0.32
10 3 Yes 36 F 35.5 Yes 0.38
10 4 Yes 9 I 26.0 Yes 0.10
10 5 Yes 11 I 18.0 Yes 0.12
10 6 Yes 9 I 12.0 Yes 0.11
10 7 Yes 6 I 8.0 Yes 0.09
10 8 Yes 6 I 5.0 Yes 0.09
10 9 Yes 5 I 2.0 Yes 0.08
10 10 Yes . L I 0.0 Yes 0.08
+ CPU Time, in CDC 6L400 seconds % Example from Revelle and Swain [90, p. 38]

** Test case provided by A.W. Neebe (see Appendix) #¥¥% Examplé from Garfinkel et al. [41, p. 231]

L9



Table 3.1 (cont'ed) — Random Initial Solution

Problem Convergence Nature of Objective
Size Solution ' - Function
Yes or No, of [Integer (I) or - o Time in'
n D No Iterations Fractional (F)] Value Optimal? Seconds
15 1 Yes 34 I 809.0 Yes 0.69
15 2 Yes 222 I k12,0 - Yes 4,75
15 3 Yes 171 I 294, 0 Yes 3.82
15 L Yes 172 I 215.0 Yes 3.65
15 5 Yes 160 I 150.0 Yes 3.31
15 6 Yes 483 I 113.0 Yes "~ 10.10
15 T Yes 63 I 93.0 Yes 1.23
15 8 Yes 36 I Th,0 Yes 0.65
15 9 Yes 26 I 57.0 Yes 0,50
15 10 Yes 18 I 41.0 Yes 0.39
20 1 Yes b1 I 1159.0 Yes 1.31
20 2 Yes 387 I 724.0 Yes 13.86
20 3 No 1000 - 523.0 No 34,69
20 L o 1000 - 511.0 No 34,75
20 5 No 1000 - L76.0 No 34,92
20 6 No 1000 - 392.0 No 35.72
20 7 No 1000 - 356.0 No 34.96
20 8 Yes LE5 I 199.0 Yes 15.79
20 9 Yes 132 I 175.0 Yes k.03
20 10 Yes 129 I .151.0 Yes 4,20

89

+ . . ' ‘
CPU Time, in CDC 6400 seconds



Table 3.1 (cont'ed) — Random Initial Solution

" Problem Convergence Nature of Objective
Size Solution Function
Yes or No. of [Integer (I) or Time in”
n P No TIterations Fractional (F)] Value Optimal? Seconds
25 1 Yes 7 I 1352.0 Yes 3.1
25 2 No 1000 F 980.50 No 53.02
25 3 No 1000 - 732.0 No 52.16
25 N No 1000 - 790.0 No 52.68
25 5 o 1000 - 763.0 No 52.59
25 6 No 1000 F 411.33 No 52.07
25 7 No . 1000 - 533.0 No 52.32
25 8 No 1000 - 415.0 No 52.23
25 9 o 1000 - 393.0 No 52.17
25 10 No 1000 , - 354.0 No 51.72
25 15 No 1000 - 184.0 - 50.84
25 20 Yes 32 I 51.0 Yes 1.35
30 1 o 1000 - 1432.0 Yes Th.67
30 2 No 1000 - 987.0 No 73.95
30 3 No 1000 F 767.0 - 72,43
30 L - No 1000 - 610.0 Yes T2.62
30 5 Yes 692 I 516,0 Yes 49,52
30 6 Yes 403 I 428.0 Yes 27.75
30 T No 1000 - 663.0 No 72.79
30 8 No 1000 - 641.0 No 72.76
30 9 No 1000 - 455.0 No 66.45
30 10 Yes 196 I 265,0 Yes 12.49
30 15 No 1000 - 286.0 No 67.7h
30 20 Yes 520 I 93.0 Yes 32.15
30 25 Yes 16 I 41.0 Yes 0.81

+ CPU Time, in CDC 6400 seconds

69



Table 3.1 (cont'ed) - Random Initial Solution

Problem Convergence Nature of Objective

Size . Solution . Function +
Yes or No. of [Integer (I) or Time in
fn D No. Iterations Fractional (F)] Value Optimal? Seconds
337 1 1o 1000 - 37993.0 Mo 88.56
33 2 No 1000 - ' 17592.0 No - 88.67
33 3 No 1000 - 14627.0 Yes 85.15
33 Iy Yes 830 I 12363.0 Yes 70.19
33 5 Yes 699 I 103%8.0 Yes 58.58
33 6 No 1000 . - 8862.0 No 83.17
33 T Yes o3 I 8119.0 Yes 35.12
33 8 Yes 408 F Th60.0 Yes 33.39
33 9 Yes 354 F 6846.0 Yes 26.78
33 10 Yes sk I - 6267.0 Yes 36.1k
33 15 = Yes 121 I 431Lk.0 Yes 8.28
33 20 Yes hs T 2786.0 Yes 2.h9
33 25 . Yes 23 T 1564.0  Yes 1.27

+ CPU Time, in CDC 6L00 seconds
++ Karg and Thompson 33 City Data [57, D. 2h4]

oL



Table 3.2 - Initial Slution from Heuristics

Problem Nature of Objective

Sige Convergence Solution Function
' Yes or DNo. of [Integer (I) or o Time in®

n p No Iterations Fracfibnal (F)l Value Optimal? Seconds

5t+ 2 Yes 1 3.0 Yes 0.0L4

6+t 2 Yes 5 I 14.0.  Yes 0.06

ot 3 Yes 1k I 6.0 Yes . 0.26
10% 1 Yes L1 I 3446.0 Yes , 0.49
10 2 Yes 26 I - 20k9.0 Yes 0.35
10 3 Yes 10 I 1524.0 Yes 0.21
10 L Yes 11 i 1187.0 Yes 0.21
10 5 Yes 13 I 882.0 Yes 0.22
10 6 Yes 27 I 579.0 Yes . 0.32
10 7 Yes 14 I 294k.0 Yes - 0.21
10 8 Yes 6 I 163.0 Yes 0.10
10 9 Yes i I 75.0 Yes 0.09
10 10 Yes i I 0.0 Yes 0.11
10%% 1 Yes 2k I 79.0 Yes 0.h2 - =
10 2 Yes 23 T L7.0 Yes 0.31
10 3 Yes 28 F 35.5  Yes 0.38
10 L Yes 6 I 26.0 Yes 0.20
10 5 Yes 7 I 18.0 Yes 0.17
10 6 Yes 12 1 12.0 Yes _ 0.25
10 7 Yes 8 I 8.0 Yes 0.15 °
10 8 Yes 5 I 5.0 Yes 0.11
10 9 Yes 1 I . 2.0 Yes 0.07
10 10 Yes 1 I - 0.0 Yes 0.07

+ CPU Time, in CDC 6400 seconds (inclusive of time to perform heurlstlcs) _ % Example from Revelle and Swain [$0,p.38]

++ Test case provided by A.W. Neebe (see Appendix ) ¥% Eyample from Garfinkel et al. [41,p.231]



Table 3.2 {cont'ed) — Initial Solution from Heuristics

Problen Convergence Nature of Objective
Size Solution Tunction
Yes or No. of [Integer (I) or . Time in~
n P No Iterations Fractional (F)] Value Optimal? Seconds
15 1 Yes 201 T 809.0  Yes 4.25
15 2 No 1000 - 412.0 Yes 21.21
15 3 No 1000 - 294.0 Yes 22,00
15 h Yes 293 I 215.0 Yes 6.66
15 5 Yes 704 I 150.0 Yes 15.92
15 6 Yes 256 T 113.0 Yes 5.97
15 7 Yes 148 I 93.0 Yes 3.47
15 8 Yes 60 I 4.0 Yes 1.52
15 9 Yes 2 I 57.0 Yes 0.77
15 10 Yes 31 I 41.0 Yes 0.79
20 1 Yes . 620 T 1159.0 Yes 23,03
20 2 No 1000 ) - 724.0 Yes 37.68
20 3 No 1000 - . 518.0 Yes 37.51
20 Y No 1000 - 41k.o Yes 36.98
20 5 No 1000 - 353.0 No 37.32
20 6 No 1000 - 259.0 Yes 36.58
20 7 No 1000 . - 230.0 No 37.42
20 8 No 1000 - 202.0 No 37.98
20 9 No 1000 - 175.0 Yes 35.50
20 10 Yes 275 I 151.0 Yes 10.31

cl

+ CPU time, in CDC 6400 seconds (inclusive of time to perform heuristics)



Table 3.2 (cont'ed) - Initial Slution from Heuristics

Problem Converzence Nature of Objective
ize - Solution Funetion
Yes or No. of [Integer (I) or . ’ Time in®
n P No TIterations Fractional (F)] Value Optimal? seconds
25 1 No 1000 - 1352.0 Yes 54,60
25 2 No 1000 - 1027.0 No 56.59
25 3 No 1000 - T77.0 No 59.17 .
25 L No 1000 - 556.0 Yes 56.h1
25 5 No 1000 - , 468.0 Yes 55.93
25 6 No 1000 - 387.0 Yes 50.79
25 7 No 1000 - 3h1.0 Yes 5L.L47
25 8 No 1000 - 303.0 No 51.88
25 9 No 1000 - 266.0 Yes 54.13
25 10 No 1000 - 237.0 No 53.76
25 15 No 1000 - 128.0 - 51.82
20 Yes 5 0 Yes 1.27

25

I 51.

+ CPU time, in CDC 6400 seconds (inclusive

of time to perform heuristics)

€L



Table 3.3 - Compafison of random vs. heuristic initial solution

. . +
Time 1n Seconds

Problem Size Convergence Objective Function -
No Heuristics Heuristics No Heuristics Heuristics No Heuristics Heuristics++
Yes or No. of Yes or No. of I ) I

n P  No Iterations No Iterations or F Value Optimal? or F Value Optimal?

57T 5 Yes 2 Yes 1 I 3.0 Yes I 3.0  Yes .03 0.0k

61** 2 Yes 10  Yes 5 F 1L.0 Yes I ik.0 Yes 0.07 0.06

ottt 5 Yes 26 Yes 1k I 6.0  Yes I 6.0  Yes 0.23 0.26
10% - 1 Yes 31 Yes 41 I 3446.0 Yes I 34k46.0 Yes 0.35 0.49
10 2 Yes L2 Yes 26 I 2049.0 Yes I 2049.0 Yes 0.47 0.35
10 3 Yes 32 Yes 10 I 1524.0 Yes I 1524k.0 Yes 0.33 0.21
10 L Yes 26 Yes 11 I 1187.0 Yes - I 1187.0 Yes 0.29 0.21
10 5 Yes 23 Yes 13 I 882.0 Yes I 882.0 Yes 0.25 0.22
10 6 Yes 2L Yes 27 I 579.0 Yes I 579.0 Yes 0.26 0.32
10 T Yes 11 Yes 1h I 294.0 Yes I 264.0 Yes 0.12 ¢.21
10 8 Yes 7 Yes 6 I 163.0 Yes I 163.0 Yes 0.09 0.10 -
10 9 Yes 2 Yes L I 75.0 Yes I 75.0 Yes 0.06 0.09
10 10 Yes 2 Yes I I 0.0 Yes I 0.0 Yes 0.06 0.11
10%# 1 Yes 17 Yes 3L I 79.0 Yes I 79.0 Yes 0.20 C0.h2
10 2 Yes 28 Yes 23 I 47.0 Yes I L7.0 Yes 0.32 0.31
10 3 Yes 36 Yes 28 F 35.5 Yes F 35.5 Yes 0.38 0.38
10 L Yes 9 Yes 6 I  26.0 Yes I 26.0 Yes 0.10 0.20
10 5 Yes 11 Yes 7 I 18.0 Yes I 18.0 Yes 0.12 0.17
10 6 Yes 9 Yes 12 I 12.0 Yes I 12.0 Yes 0.11 0.25
10 7 Yes 6 Yes 8 I 8.0 Yes I 8.0 Yes 0,09 0.15
10 8 Yes- 6 Yes 5 I 5.0 Yes I 5.0 Yes 0.09 0.11
10 9 Yes 5 Yes 1 I 2.0 Yes I 2.0 Yes 0.08 0.07
10 10 Yes L 1 I 0.0 Yes I 0.0 Yes 0.08 0.07

Yes

+ CPU time, in CDC 6400 seconds
* Example from Revelle and Swain [90, p.38]

++ Inclusive of time to perform heuristics
#% Example from Garfinkel et al. [41, p.231]

1l

+++ Test case provided by A.W. Neebe (see

Appendix)



Table 3.3 (cont'ed) — Comparison of random vs. heuristic initial solution

Problem Size Convergence Objective Function - L Time in Seconds’
No heuristics Heuristics - No Heuristics Heuristics No Heuristies Heuristies
- Yes or No. of Yes or No. of I I

n p . No Iterations No Tterations or F Value .Optimal? or F Value Optimal?

15 1 Yes 3L Yes 201 I 809.0 Yes I 809.0 Yes 0.69 4.25
15 2 Yes 202 - No 1000 I k412.0 Yes - k2.0 Yes 4.5 21.21
15 3 Yes 171 No 1000 I 294.0 Yss -  294.0 Yes 3.82 22.00
15 L Yes 172 Yes 293 I 215.0 Yes I ©215.0 Yes 3.65 6.6
15 5 Yes 160 Yes Toh I 150.0 Yes I 150.0 Yes . 3.31 15.92
15 6 Yes 483 Yes 256 I 113.0 Yes I 113.0 Yes . . 10.10 5.97
15 T Yes 63 Yes 148 T 93.0  Yes T 93.0 Yes 1.23 3.47
15 8 Yes 36 Yes 60 I 4.0 Yes I 4.0 Yes 0.65 1.52
15 9 Yes 26 Yes 2h I 57.0 Yes T 5T7.0 Yes 0.50 0.77
15 10 Yes | 18 Yes 31 I 41.0 Yes I 41.0 Yes 0.39 0.79
20 L Yes - oha Yes 620 I 1159.0 Yes I 1159.0 Yes 1.31 23.03
20 2 Yes 387 No 1000 I T24.0 Yes -  T2h.0 Yes . 13.86 37.68
20 3 No 1000 No 1000 -  523.,0 No ' - 518.0 Yes 34.69 37.51
20 L No 1000 No 1000 - 511.0 No - lhik.o Yes 34,75 g 36.98
20 5 No 1000 No 1000 -  476.0 No - 353.0 No 34.92 37.32
20 6 No 1000 No 1000 - 392.0 No -  259.0 Yes 35.72 - 36.58
20 T No 1000 No 1000 - 356.0 No - 230.0 No - 34.96 37.h2
20 8 Yes 465 No 1000 I 199.0 Yes - 202.0 No 15.79 37.98
20 9 Yes 132 No 1000 I 175.0 Yes - 175.0 Yes 4.03 35.50
20 10 Yes 129 Yes 275 I 151.0 Yes . I 151.0 Yes 4,20 10.31

Sl

+ CPU time, in CDC 6400 seconds

++ Inclusive of time to perform heuristics



Table 3.3 (coﬁt‘ed) - Comparison of random vs. heuristic initial solution

: . +
Time 1n Seconds

Problem Size -Convergence Objective Function
No heuristics Heuristics No Heuristies Heuristics No Heuristics Heuristics
Yes or No. of Yes or No. of I I
n D No Iterations No Iterations or F Value Optimal? or F Value Optimal?
25 1 Yes T7 No 1000 I 1352.0 Yes - 1352.0 Yes . 3.h1 5L, 60
25 2 No 1000 No 1000 F 980.50 No - 1027.0 No 53.02 56.59
25 3 No 1000 No 1000 - T732.0 No - T77.0 No 52.16 59.17
25 L No 1000 No 1000 - 790.0 No -  556.0 Yes 52.68 56.41
25 5 No 1000 No 1000 - 763.0 No - h468.0 Yes 52.59 55.93
25 6 No 1000 No 1000 F 431.33 No - 387.0 Yes 52.07 50.79
25 T No 1000 No 1000 - 533.0 No - 3L41.0 Yes 52.32 51.47
25 8 No 1000 No 1000 - 415.0 - No - 303.0 No 52.23 51.88
25 9 No 1000 No 1000 - 393.0 No - 266.0 Yes 52.17 54.13
25 10 No 1000 " No 1000 - 354.0 No - 237.0 No 51.72 53.76
25 15 No 1000 No 1000 - 18Lk.0 - - 128.0 - 50.8k4 51..82
25 20 Yes 32 Yes 5 I 51.0 Yes I 51.0 Yes 1.35 1.27

+ CPU time, in CDC 6L0OO seconds

++ Inclusive of time to perform heuristics

9L
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larger values of n. Table 3.4 below shows the number of CDC 6400
seconds per iteration for several values of n. The data of Table 3.h

were obtalned from Table 3.1.

Table 3.4 — CDC 6400 Seconds per iteration

Number of CDC 6400 Seconds
Vertices (n) per iteration

10 . 0.011

15 ‘ 0.021

20 0.035

25 - . 0.052

30 _ 0.070

33 ’ 0.080

The obvious conclu;ion to be drawn from the table above is that
if the convergence problems of the algorithm are solved, the
decomposition formulation can be used to solve the IP relaxation of
the p-median problem for practically any size of network, within a

reasonable amount of computer time.

3.4.3 Degeneracy and the problems with convergence

The serious convergence problems experienced in the previous section
‘are due to the very degenerate nature of the decompositon formulation.
This is more intensely felt for p small in relation to n and n large,
although the convergence of the algorithm is data dependent to some
extent. This data dependency can be best observed in the 33-vertex
nétwork of Karg and Thompson [57], the computational resultslof which
are shown in Table 3.1. TFor this particular network convergence
occurred much more frequently than for the 20, 25 and 30-vertex net-

. works shown in the same table.
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The degenerate nature of the decomposition formulation can be
readily understood from the neture of the initial LP solution, defined

by the vector B, below. B, is given by

- T
80=Blb0=[P,0]

b R .(3.36)

where B is the initlal basis of the master problém - either B, of

0

Equation (3.31) or B, of Equation (3.33).

1

In the vector 60 above p of its components are equal to one, and
(n-p) are equal to zero. Exactly (n-p) basic variables are therefore
equal to zero at the first iteration of the algorithm. This initial
degeneracy is in fact maintained throughout the solution procedure,
as shown in the next few paragraphs. It is degeneraéy on such large
scale that is responsible for the lack of convergence reported in
3.4.2. |

In order to show how the algorithm progressses from an initial
basic feasible solution to optimality, successive values of the B
solution vector are shown in the following for a particular application
of the algorithm. This application was to find the optimal 3—median
of the network of Figure 3.1, after the variables Ell and 512 had
béen fixed to one. All cther variables in the problem were free to
assume any value between zero and one. 611 =.512 = 1 is in fact part
of one of the six optimal solutions to the 3-median problem of
.Figure 3.1.

Recall that the LP solution of the original problem was
fractional for p = 3. After making £y = 612 = 1, the initial
basic feasible solution for this problem was Xé = {xl, X35 xh},
with G(Xé) = 55. It took then 15 iterations for the LP to converge
to an all-integer solution with G(_é) = 36.

Successive 85 vectors, j =1, ..., 15, are given below. It

should be noted that vector 85 differs from vector Sj in that its
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. top entry corresponds to the value of the objective function at the
end of the iteration. This value is omitted in vector B..
The initial B"i (8(')) corresponds to the initial basic feasible

solution. It is given by

55

0

|0

Except for the iteration in which the surplus variable was driven

out of the initial basis Bl’ the successive Bj vectors were:

w‘
0|

LO.OOI—'OOOOOI—'I—'
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[38.00] 37 .56 ]
0.29 o 0.22
0.29| 0.4k
0.1k | 0.11
0 4 0
. 0.14 v = 0.11
89 0.1k 810 0.11
0.29 0.22
0.29 0.22
0.71 0.56
0.71 | o.78
K | 0.22
[36]
0
1
0
0
Bl =81 =Bl =8", =8 =[?°
11 12 13 1k 15 0
0
0
1
0
|1

Regarding the 83 vectors shown above, a few points are worth
mentioning:

1. Except for Bé and Bio, the solution vectors remsin very
degenerate throughout the solution prodedure;

2. Notice the very "stationary" nature of the algorithm,
i.e. it usually takes a very large number of iterations
for the‘solution'vector to chénge;

3. Although the optimal solution was attained at the end of
iteration 11, optimality was only "recognized" by the

algorithm at the end of iteration 15.
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Some comments regarding the convergence of the algorithm

It has already been said that the convergenge problems experienced
by the decomposition formulation are due to its very degenerate nature,
and that the use.of greater accuracy in the computations does not
improve the algorithm's convergence,

An approach suggested by Beale¥® consists in’calculating the

vector of dual variables using the following expression:

o= (1-a)o®+ad - (3.37)

where UN is given by Equation (3.32) (UN = DBB—l), o® is the vector
of dual variables computed in the previous iteration of the algorithm,
and g is a smoothing constant (0 < a < 1).

It is now worthwhile to take up a point made in Section 3.3,
when the maximization of the objective function ei of subproblem i
was béing discussed. At that opportunity it was mentioned that,

for ti > 0, 6. is maximized if yii =1, and, for all i # j, if either

1 if £,5 >0 .
yi. = . (3.25)
J 0 if f..<0
. L ij =
or if
1 if f£..20
vi, = A 1 (3.26)
1 .
J 0 if f.. <0 _
s 1J

In other words, when fij = Q the expression
n .
8. = & f..y.. (3.21)

is maximized for any corresponding value of yij' The setting of yij‘

to zero OY one is therefore entirely arbitrary when fij = 0. The

question that arises then is whether this property can be used to improve

* Private Communication
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the convergence of the algorithm.
Refer back to the example solved by haad in 3.L4.1 and suppose

that at some stage

1cigh % = %o

f. =f _=f_, = ' ]
and that 12 13 14 0. The wvector yf to enter the basis can
then be any of eight possibilities, in each of which the top entry
is equal to one. The three remaining entries can be any of the 23

possible combinations of zeros and ones. It is possible to represent

this vector yf by

e
M
[}

o o o H

with the S's " to be replaced by one of the possible eight
combinations>mentioned above. |

It is important to emphasize that the use of a particular véctor
can improve the convergence of the algorithﬁ if a situation similar
to the one described above develops at a given stage of the solution
procedure. The practicél.difficulty, however, is how to use
opportunities of multiple choice in a consistent way so as to improve
the convergence of the algorithm.

It should bg finally said that, when the algorithm converges,
the choice of one particular vector may have.an influence on the
number of iterations it takes for the LP to converge. Furthermore,
if the problem has more tﬁan one optimal solutibn, the optimal solution
actually obtained may be affected by the choice of the vector.

The facts described above were confirmed in practice when
Equations (3.25) and (3.26) were used independently in separate runs

of the decomposition formulation. It was then observed that convergence



83

was obtained in different number of iterations when (3.26) was used
instead of (3.25). Furthermore, for problems with multiple optimal
solutions, the solutions produced when (3.26) was used were generally

different from the solutions obtained through the use of (3.25).

3.5 Conclusions

‘In the vast majority of cases the linear programming relaxation
produces integer solutionsithat are optimal solutions to the p—median
prqblem itself.

Two‘formulaﬁions of the linear programming relaxation were‘
studied in the‘present chapter, and both were found to have their
limitations. The general formulation produces very large linear
programmes and is therefore unsuitable for use in large—scale netwérks.
The decomposition formulation often does not converge because of its
very degenerate nature. The problems with convergence becéme
particularly serious és the size of the network increases, and for
values of p small in relation to n.

Regarding the difficulties mentioned above it is felt that, while
not much can be done in relation to the general formulation, there
is room for improvement in the decomposition formulation. If the
difficulties arising from the lack of convergence can be tackled, then
this formulation, togefher with its embedding into branch-and-bound
algorithms, can be used to solve the p-median problem for large-scale

networks.
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CHAPTER FFOUR

BOUNDS FOR THE p—MEDIAN PROBLEM

4,1 Introduction

It is well known that the quality of the bounds used in tree
search methods is a factor of vital importance in the efficiency of
the method. Branch-and-bound algorithms.sokfar developed for the
p-median problem suffer from a lack of stronglower bounds, and for
this reason théy are not very efficient. On the other hand, although
both formulations of the LP'rélaxation discussed in Chapter 3 can be
embedded into branch-and-bound algorithms and used as bounds for the
problem, their limitations pfevent them from being effectively used in
this context.

After a brief review of earlier work on bounds for the p-median
problem, two new lower bounds are developed in the present chapter.
One of the bounds is a graph—theoretical bound, based on shortest
spanning trees and arborescences and other graphical properties of
the p-median problem. The other bound is based on the dual of the
IP relaxation of the problem, and a heuristic procedure'has been
developed to compute an-exact bound.

Both th¢ graph~theoretical and the dual bound perform substantially
better than a third bound developed in [12]{call this bound
the shortest distance bound). Tt is in fact shown in a later section
that the graph~theoretical bound dominates the shortest distance
bound. As for the dual bound, it outperforms the graph—theoretical
bound very consistently, especially for values of E_smalivin relation
to n.

Computational results that allow a comparison of the three bounds

mentioned above are presented at the end of the chapter.
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k.2 Earlier work on bounds for the p—median problem

The first lower bounds developed for the p-median problem appeared
in papers by Jirvinen, Rajala and Sinervo [55] and El-Shaieb [30].
Christofides [12] developed the shortest disténce bound, for a direct
tree search algorithm he designed for the problem.

The bounds described in [12], [30] and [55] can be considered
to belong to the same family of bounds. They use the same basic
principles, but differ in details that take advantage of the type of
search for which they were designed. A few words are sald below on
each of these bounds. |

The branch-and-bound algorithm of J8rvinen et al. is a "drop"
algorithm. It starts with all facilities "open", and facilities are
successively "closed" until exactly p facilities are left "open". The
iterative process continues until all feasible solutions have been
implicitly enumerated.

For the computation of the lqwer bound; assume that at a given
stage r facilities, corresponding to vertices Xp1s ¥yoo ...,.xki,
have been "closed" (1 £ r < n-p). There are then (n~r) vertices left,
from which p vertices must be chosen. It is possible to define two sets

of vertices:

I
-
al

v o= {% 15 Xps ooy X} and VT

where V is the set of all vertices of the network. The corresponding

sets of indices are

'

K=1{k , k

15 Koy eees kr} and L = {21, Los eves & 1.

n-r
Now let v, be the weight of vertex x., and define D,. = v.d,.
| J j ij — T3l
to be the weighted shortest distance between vertices x; and Xs-

For every column k € K of matrix D = [Dij] it is possible to compute



86

k 1k

s, = Min D, . (4.1)
i€L, :

On the other hand, for every column % € L of D,

s, = Min D, ‘ (4.2)
L e lJv
i#]

can be calculated. The lower bound is then given by
IB(K) = S + 8 > . (4.3)

where SK = I Sy

and S. is the sum of the (n-r-p) smallest Sgs
XEK L »

% € L.

The braﬁch—and—bound algorithm developed by El-Shaieb uses a
different concept. In his algorithm the tree branches represent
assignments of sources (facilities) and destinations. Locations
are added one at & time to elther the source or the destination set
to form the next branches. Each set of branches consists of two
branches, One of the branches corresponds to adding a location to the
source set, while thé other branch corrgsponds to adding the same
location to the destination set. At the end of each branch there is
a node that contains the corresponding source and-dgstination sets.,

El-Shaieb developed tﬁo different lower bounds for his algorithm.
If the first bound is used an optimal solution is produced after a
larger number of iterations than if the second bound is used. The
first bound, however, needs a small amount of computation per
iteration and is reported to be more efficient for small values of P-
" The second bound is more efficient for the larger values of p.

The bounds proposed by El-Shaieb and Christofides can only be
properly understood after a detailed description of the corresponding
branch-and-bound algorithms. The algorithm of El-Shaieb will not be
described here. The algorithm déveloped by.Christofides is given.in

Chapter 5; a detailed description of the corresponding bound is therefore
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left for that chapter. However, as in a later section this bound is
compared with the two bounds developed in the present chapter, its
computation befoéé the beginning of the tree search is described below.
Let 4 = [dij] be the distance matrix of a n-vertex network whose
vertices Xy have weights equal to Vi Now set up a matrix M = [mkj]’
the jth column of which contains all the vertices of the network
grranged in ascending order of their shortest distance from vertex_xj.
The first entry of column j corresponds to vertex xj‘itself. Call
mB j the second entry of column j. A lower bound for the p-median

J
prqblem.is the sum of the (n-p) smallest products:

v. X d(x, . L. L
3 (XJ, mB_J) (h.h)
J
over all vertices xj,of the network. In the product above d(xj, mB j)
J

is the shortest distance between vertices Xj and mo 3
J

>Finally,‘a word should be said about the IP relaxation of
Chapter 3. In addition to providing an optimal solution to the p-median
problem when the procedure converges and the soluticn is all-integer,
non-integer solutions to the LP can obviously be used as lower bounds
for the p-median problem. The use of the two formulations of Chapter 3

as bounds in branch-and-bound algorithms is discussed in Chapter 5.

4.3 A Graph-Theoretical Bound

A graph-theoretical lower bound for the p-median problem is now
developed. Shortest spanning trees and arborescences form the basis
for the computation of this bound. For nonweighted networks further
graph-theoretical properties are used to strengthen the bound.

The graph—theoretical bound has been developed for both nondirected
and complete symmetrical (directed) networks. In most applications of
the p-median problem, nondirected networks are sufficient to adequately

represent the problem. The association of weights with the vertices



88

of a nondirected network, however, is equivalent to transforming

this network into a complete symmetrical one. As this thesis addresses

itself to the more general case in which a weight va is associated

with every vertgx x‘j of the network, complete symmet?ical networks have

been considered in the deyelopment of the graph-theoretical bound.
Trees, arborescences,shortest spanning trees and shortest spanning

arborescencesare defined in the next section. This is followed by

the deveiopment of the graph-theoretical bound for nondirected,

nonweighted networks. The bound is then generalized for weighted

networks. Finally, the graph-theoretical bound is sﬁown to dominate

the shortest distance bound.

4.3.1 Trees, Arborescences, Shortest Spvanning Trees and Shortest

Spanning Arborescences

One of the most important éoncepts of graph theory is that of a
tree. A tree can be either nondirected or directed, depending on the
nature of the underlying graph. A nondirected tree is defined as

follows [12].

Definition: A nondirected tree is a connected graph of n vertices

and (n-1) links.

A directed tree is called an arborescence. It can be defined as

follows [121]:

Definition: A directed tree is a directed graph without a circuit,
for which the indegree of every vertex is equal to unity, except for
one vertex (called the root of the tree), for which the indegree is

Zero.

If G = (X,A) is a nondirected graph of n vertices, then a spanning

Thal spaus 2tvary Vaalap o4 Tl /\ay"\~ )
tree of G is defined as a partial graph of G which fo;;E*E"E¥€g§/’ET"““‘
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spanning arborescence rooted at r of a directed graph G' (X',A') is

a spanning tree of the underlying nondirected graph G (X',A'),
having the fdllowing properties [38]:

(i) Fach vertex of G' other than ;_hasyjust one arc of the
arborescence directed towara ity and
(ii) No arc of ﬁhe arborescence is directed towards r.

The shortest spanning tree of a graph is defined for a non-
directed graph G when costs cij are assoclated with its links. It
has obvious applications in cases where roads (gas pipelines, electric
power lines, etc.) are to be used to connect n points in such a way
as to minimizé the total length of the road that has to be cénstructéd.
Several algorithms [64, 86] have been designed to construct the
shortest spanning tree of a graph (network); the length of the shortest
spanning tree 1is independent of the vertex at which its construction
starts.

The corresponding concept for directed networks is called the
shortest spanning arborescence. Unlike shortest spanning trees,
shortest spanning arborescences depend on the root under éonsideration.

In [10], [24] and [104] general algorithms for the construction
of the minimum shortest spanning arborescence of a network are given.
Besides producing the minimum shortest arborescence, these algorithms
may also be used to pfoduce shortest spanning arborescences for any

specified root. 'The method used in [10] is similar in several respects to

the Hungarian method for the classical assignment problem [68, 69].

4.3.2 Shortest spanning trees as lower bounds for the p-median problem

It is now shown that, for nondirected, nonweighted networks,
shortest spanning trees can be used to compute a lower bound for the
p-median problem. Thic is done by stating a lemma and demonstrating

a theorem, although the final result could have been derived from
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Kruskal's algorithm to construct shortest spanning trees. The lemma
and the thecrem have been used because they lend themselves to an
easier generalization of the results to weighted networks.

The lemma is very general, being valid for both nondirected and
directed networks, and even when the costs assqciated with thé arcs
of the network do not conform to the triangularity condition of
metric space. The theorem ohly applies to nondirected, nonweighted
networks, but is later extended to weighted networks.

Before the theorem is proved, it is necessary té derive a
relationship that arises when a network>is divided into a numﬁer of
subnetworks. This relationship is of fundamental importance for the
demonstration of the theorem. For thé sake of clarity it will be
derived within the context of the p-median problem.

Suppose that the optimal p-median of a network has been found.

The original network can be then divided into p subnetworks Nj = (Xj’Aj)'
Xj is the set of vertices of subnetwork j, and comprises the jth assigned
median and the nonmedian vertices allocated to it. Aj is the corresponding
set of arcs, comprising all arcs of the original nétwork interconnecting
the vertices in Xj' The only arcs of the original network not present

in any of the sets Aj are the arcs of the original network that inter—
connect the newly formed subnetworks.

If the lengths of:

(i) The shortest spanning tree of the original network (call
this length SSTON), and of

(ii) ‘The shortest spaﬁning‘trees of each of the p subnetworks
I\I'j (cﬁll these lengths SSTOj’ =1, ,..; p) are computed, the following
relationship holds:

. P -1
88Ty & I SST,; + I S8L; , : (4.5)

0j © 2y T

where Z SL'j is the sum of the (p-1) smallest arcs of the original
J:
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P
network not in U A. that will transform the p newly formed

spbnetworksintg=i connected network.

Now let G' = (X',A') be a graph (directed or not), évery vertex of
which is defined to be either a source or a sink. Allocate each sink
vertex x € X' to a unique source vertex y(x)-é X'. TForm partial?éiaphs
T' of Gf by adding ever& arc on the shortest path from x to y(x), for all
sink vertices x; If more than one shortest'path from a given sink x to
the corresponding source y(x) exists, choose only one sﬁch path., Then
Lemma —'Thefe ié alvays a choice of a shortest path for each sink vertex

TW« tonn< Spowmdina.
x € X' for whichVT' is a trée [12].

It is important to note that the lemma is valid for both directed
and nondirected graphs. Furthermore, as no relationship related to
metric spaces is assumed, the lemma is valid even for graphs whose
arcs do not conform to the trigngularity condition of metric space.
Corollary - Let SSTOj be the length of the shortest spanning tree of
one of the p subnetworks into which a nondirected, nonweighted network
N = (X,A) can be divided once the optimal p-median is known. Then
SSTOj is a lower bound on the sum of shortest distances from the median
X5 of-Nj to the vertices allocated to it.

This follows immediately from the lemma above. The lemms
guarantees that the subnetwork,vformed when nonmedian vertices of Nj
are connected to the median XOj through the corresponding shortest
paths, can be constructed so.that a tree is formed. .Call the length of
this tree STj. The shortest spanniné tree of Nj has a length that |

is, by definition, shorter than or equal to the length of any other

spanning tree of'Nj. Therefore
ST. > SSTh: h.6
J = "70J ' (b.6)

On the other hand, the sum of the shortest distances from ij to
the vertices allocated to it is greater than or equal to STj (some arcs.

can be counted twice or more when the sum of shortest distances is

computed). Tt follows then that
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? alx;, xps) 2 ST, g (4.7)

where the xi‘s are the nonﬁedian vertices of Nj' If (L4.6) and (L4.7)
are combined, it is possible to write

? a(xy, %o3) - SSTOJ >0 . ‘, (4.8)
‘The-theorem can now be proved.
Theorem - Let N = (X,A) be a nondirected, nonweighted network for
which the optimal p—median must be found. A lower bound on the value
of‘the quectivgnfunction of the problen is the length of the shortest
spanning tree. of the network, minus the shortest spanning tree's
(p—l)_longest links.
gzggi — Suppose the optimal p-median was found and that the original
netwdrk was divided igto the p subnetworks Nj = (Xj’Aj) defined above.

Equation (%.8) can be apﬁlied to each of the p subnetworks:

v
(@]
)

z a(x. ) - sst
i1e i1°> *o1 01 =

Subnetwork (1)

z A% ,, x.,) - SST__ >
ine 520 %o2 02 =

Subnetwork (2) [ (4.9)

v
(@]

ipE :
Subnetwork (p) )

Adding the p inequalities above it follows that

P , P .
r I da(x.., x..) - & SST..>0 (4.10)
j=1 ije 1] 0J - 0J =

J=1
subnetwork (Jj)

Now refer back to Equation (4.5). It can be re-arranged as

P p-1 _ )
T SST.. > 83T. - I SL. (412
321 0Jj ON 5=1 9
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Substituting (4.11) into (4.10) it follows that
z ( ) T s (1.12)
z z d(x.., x~:) 2 88T, = & 8L, , .12
Subnetwork (J)
Befofe the optimal p-median is found, however, it is not known
which are the (p-1) SLj's that satisfy equations (k.11) and (4.12).
For the compuﬁation of the lower bound, the worst possible case is
that these (p-1) SLj's are the (p-1) longest arcs of the shortest
spanning tree of the original network. Let LLj be the arcs of this
shortest spanning tree, ranked in order of decreasing arc length.
Pl p-1
Since I LL, > I 8L., it is finally possible to write
j=1 9 j=1 9
J J
P p-1

I Z a(x,., x,.) 28T, - = IL, . (4.13)
=1 ije 137 04 o 5= 3

subnetwork (J)
The left-hand side of Equation (4.13) is the value of the objective
function of the ﬁ-median problem. The theorem is thus proved.
Since shortest spanning trees are only defined for nondirected
networks, the theorem is only valid for nondirected, nonweighted
nétworks. Its extension to weighted networks, through the use of .

shortest spanning arborescences, is given in 4.3.L,

4.3.3 Further graph—theoretical properties and a stronger lower bound

In the previous section it was shown that shortest spanning trees
can provide a lower boﬁnd for the p—median problem. This bound can be
improved, as shoYP in the remainder of this section.

Consider again the p subnetworks Nj definéd in the previous section.
For each of the subnetworks construct the spanning treeée defined in the

lemma of that section. If Gj is the degree of median ij of spanning

tree STj, it is-easy tc see that

§.<n-7p (h.1k)



9L

D
In . general it can be said that, when I Sj < n - p, the lengths of
a number of arcs (say B) are counted at least twice when the value of

the objective function of the p-median problem is computed. The value

of B is given by

Y ' X
8= (n-p) - % &, . (4.15)

=1 9

Refer, for example, to Figure 4.1 , in which the optimal
3-median of a 10-vertex network is shown through the spanning trees
defined in the lemma of Section 4.3.2.

The 3 medians are vertices X Xio and Xs . In Figure h.lc vertex

X¢ is two arcs away from x-, the median vertex to which it has been

X
5
when the value of the objective function of the problem is computed.
' : _ 3
For the example of Figure 4.1 (n-p) =7, and & Sj =1 +2 + 3=
j=1 |
6 <T. Then g =T - 6 =1, and the length of one arc (XTXS in this

allocated. Consequently, the length of the arc is counted twice

partiéular case) is counted twice when the Valué of the objective
fﬁnction of the problem is computed.

It is possible to use the properties described above to strengthen
the bound developed in 4.3.2. If Rj is the sum of the lengths of the
arcs of STj ( subnetwork Nj) that must be added to the spanning tree's
length in order to obtain the sum of shortest distances between source
and sinks in Nj’ it follows that

§ a(x, x55) = ST, + Ry . . (L.16)

Suppose now that it is possible to know that there are atAleast

Bj arcs whose length L is counted twice or more in the computation of

the sum of shortest distances. Then
F | | (h.17)
I L., 17

=
v

and consequently,



Figure L.1 ' N

Optimal 3-median of a 1lO-vertex network (Carfinkel et al. [4l, p.231])
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3
§ d(xi, xoj) > ST, + -E % e (4.18)
1 1=1
) <t.
Finally, as SSTOj < STJ,
Bj .
N . -+"£-0 ' .
L a(xy, xg5) 2 88Ty * B &y (4.19)
1 1=1

If Bquation (4.19) is now applied to each of the p subnetworks
Nj’ and the p resulting inequalities are added together, the followiﬁg

is obtained:
B

(p) 3 ( ) T s Py (4.20)
oF(p) = ¥ I d(x.., x.,.)> I BSST . + I I .., (k.20
j=1 iy W O j=1 99 = ij=1 1

subnetwork (j)

where OF(E} is the value of the optimal solution of the p-median problem.

P
Now, by replacing I SSTOj in Equation (4.20) by its wvalue in Equation
J=1
(k.5), it follows that
_ o pl P Bj
OF(p) 2 (SSTON - % LL.) 4+ & L L., e , (k.21)

=1 9 j=1i=1 M
d

Before the optimal p-median is known, however, it is not possible
té‘know exactly how many arcs of the network, if any, are going to be
counted more than once when the value of OF(E} is_computed. From
an examination of the 3egrees of the vertices of the original network
it is possible tq know. however, the minimum number of arcs that
are going to be counted at least twice, and the corresponding ﬁinimum
total length. The following procedure is thus suggested:

Step 1. Calculate the degreg Gj of each of the vertices of the
network for which the optimal p-median is being sought.

Step 2. Rank these degrees in descending order, and call the
ranked degrees GRj’

Step 3. Compute

P
a = I 8,. « (h.22)
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Step hf (a) If n - p ¢ o, no improvement can be added to the
bound of section 4.3.2;
(b) Ifn - p > a, compute |
B=(n-p) ~a . (4.23)
Then add to the lower bound of section 4.3.2 the sum of the lengths of
the B shortest arcs in the network. In the worst possible case at
least the 1eng£h of these B arcs will be counted twice in the computation'

of the value of OF(p).

L.3.4 Generalization for weighted networks

The extension of the lower bound derived in 4.3.2 and %.3.3 to
weighted nefworks'is straightforward. Recall that in Chapter 1 it
was shown that weighted networks must be transformed iﬁto complete
(directed) symmetrical networks before they can be handled. In this
section it will be always assumed.that such transformation has taken
place.

The theorem of Section 4.3.2 can be readily extended to weighted
networks. The theorem for weighted networks is:

Theorem ~ Let N' = (X',A') be a complete symmetrical network for which
“the optiﬁal p—median must be found. A lower bound on_the value of the
.objective function of the problem is the length of the minimum
shortest spanning arborescence of the network, minus the (p-1) 1ongesf
arcs in this arborescence.

The proof is analogous to that of the theorem of Section 4.3.2, and
for this reason will not be given here;

Note that graph-theoretical properties of the type discussed in.
4.3.3 cannot be used to improve the bound of weighted netwofks. Since
the indegree of every vertex of a complete symmetrical network of n
vertices is equal to (n-1), it follows that B < O ¥ p (B is defined in

the previous section). The bound'provided by shortest spanning
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arborescences cannot therefore be improved in the case of weighted

networks.

%4.3.5 Dominance over the shortest distance bound

It 1s not difficult to-prove tﬁat the graph—theoretical bound
dominates the shortest distance bound. The proof will be limiﬁed to
nondirected, nonweighted networks. The extension to weighted networks
is straightforward and Wiil not be given here,

Recall that the shortest distance bound is equal to the sum of

the (n-p) smallest products

) , (h.2h)

. dix., m, -
vy x dlxgs mg g
dJ .
over all vertices Xj of the network. As only nonweighted networks
will be considered, Vj =1 ¥ J in the present discussion. On the

other hahd, d(xj, .) is the distance between vertex xj and the

8.
vertex closest to it in the distance matrix of the network. It is
obvious that m 3 has to be directly qonnecﬁed to X3 through one of
the links of thi network.

It is interesting to note that the bound pfovided by shortest
spanning trees is also the sum of (n-p) iengths of links between vertices
of the network: The shortest spanning tree of a network has (n-1)
links, and if (p-1) links are subtracfed from it exactly (n-p) links
are left. What remains to be proved is that each link used in the
construction of the graph-theoretical bound ié at least as long as the
corresponding link used in the construction of the shortest distance bound.
| In Kruskal's algorithm [64] for the shortest spanning tree, the
links of the network must be ordered in ascending order of cost. Then,
starting from the top of the list, links must be added to the initﬁally

disconnected set of vertices, provided that no circuit is formed when

a new link is added to the existing set of links. A bound is obtained
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for the p-median problem after (n-p) links are selected in this way
and their correspénding costs added to form the bound.

Now refer back to the shortest distance bound for nonweighted
networks. This bound is also obtained by adding the costs of the
(n-p) shortest links of the network. For this bound, however, there
are no restrictions on the formation of circuits, and therefore every
link used in the computation of the graph-theoretical bound is at
least as long as the corresponding link used in the computation of
the shortest distance bound. The graph-theoretical bound thus dominates-

the shortest distance bound.

4.4 A bound based on the dual of the linear programming relaxation

~of the problem

The dual of the linear programming relaxation of the p-median
problem.provides-a very good 1oﬁer bound for the problem. The
difficulty in obtaining this bound is that, similarly to the primal,
the dual is a very large linear programme. Any attempt to obtain
the bound by actually sclving the dual would lead to difficulties
-similar to those experienced when the primal was studied in Chapter 3
(see Section k.h.1).

A heuristic procedure has been developed to generate approximate
solutions to the dual ILP. This procedure, which produces a Tnuxe
bound to the p—median problem, is a two-phase method.v It takes
advantage of the simple form of the dual objective function and of
the special nature of its variables.

Very good bounds were obtained for the problem through this dual
procedure. Computational results given in Section 4.5 compare the dual
bound with both the shortest distance bound and the graph-theoretical

bound.
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The dual formulation is derived in the next section. Then a
heuristic procedure to generate approximate solutions to the dual is
discussed, and a detéiled step-by-step description of the algorithm
is given. Finally, computational results thatvallow the dual bound

to be evaluated are given for a wide range of values of n and p.

4.4.1 The Dual Linear Programme

Recall the linear programming relaxation of the p—median'problem;
For the sake of convenience this formulation is repeated below. The
symbols selected for the dual variables are indicated in brackets,

alongside the corresponding primal constraints. The LP relaxation is

n n _
Minimize Z = .E _E d; 5 Eij (h.25)
1=l J=1
Subject to
n : .
z Eij =1, J=1, ...o,n [oi] (1}.26)
1=1
n
iE E.. =D o 4] (h.27)
ij - Eii :_ 0 ’ i, j = l, vy I, i # j ['"ij] ()4.28)
Eij __>= O 9 l’ j— l’ . F] n ()4'29)
The dual of this linear programme is
. n .
. . v ‘
Maximize Z' = _E g: + PU_Lq ' (4.30)
1=1 . . _
SubJect to
n
Up ¥ Opey T B Ty SOFE (4.31)
J=1
g ,
o5 * wij'é dij ¥i, js J#1 (4.32)
mg SO¥E, 3, 544 (1.33)
0. <=>0,i=1, ..., n+1 (h.3%)
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As indicated by Equation (4.34), the Ui's are unconstrained
variables. . This is so because they correspond to equality constraints
in the primal LP. A closer examination of the protlem, however, makes
it possible to determine the true nature of these variables. |

Refer‘to the primal problem. Since dij >0¥%1i, j, it is clear
that Equation (4.26) can be replaced by

T E..>1,3=1, ...y n | (4.26a)
i=1 M7 |

without loss of any optimal solution. It then follows that
U. ; O 3 i = l’ « 09 n ° (hUBha’)

On the other hand, if Equation (4.31) is re-arranged, the following

1s obtained:

n : .
Oy $-05+ I TS5 ¥1i., (4.31a)
. J=1 :
J#

In view of Equations (4.33) and (L4.34a) it follows immediately that

o o . ‘ (4.34p)

<
‘ntl =

The dual LP can be now re-written as

,

n
e oy o
Maximize Z iil Os * PO (4.30)
Subject to
n .
Oy ¥ O g T -E ij <O0O¥i (4.31)
J=l
J#L
DLP ] o +mys S A ¥, §, A (4.32)
T S0¥E, g, Jfd (4.33)
o; 2 0, i=1, ..., n (4.34a)
0 41 SO (4.3k4p)
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It is easy to see that the optimal value of Z' (and therefore any
value beloﬁ it) is a lower bound for the p-median problem. Since the
primal LP is a relaxation of the problem, if ié is the value of the
optimal solution of the p-median problem it follows that

if > Min Z .- (4.35)

On the other hand, Min Z = Max Z' (Theorem of Duality [S5k]), and

i% > Max Z' . ' | (§.36)

Consequently, if the dual LP:is solved, the ovtimal value of its
objective function (or any value below the optimal) is a lower bound
for the p—medién'problem (call this bound the dual bound). |

The only'difficulty in computing the dual bound is that, similarly
to the primal, the dual is a very large linear programme, with (nzfl)
variables and n? constraints.

However, as the interest in the dual is limited to obtaining
a bound for the p-median problem, if a heuristic procedure for
solving the dual can be shown to yield solutions close to the
optimal in an efficient way, this procedure can £e used to compute
lower bounds for the problem.

Fortunately, the simple form of the dual objective functiop
(Equatibn 4.30), plus the special nature of its variableé, readily
suggest such a procedure. The procedure has proved to be computationally
efficient, and can therefore be embedded into branch-and-bound
algorithms designed to solve the problem.

4. 4.2 A heuristic method to solve the DLP

In the dual linear programme given by equations (4.30) through

(k.34b), since 6, 20,i=1, ..., n, and o, £ 0, 2' can be

maximized if the positive oi's are chosen as large as possible,
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while the absolute value of LA is kept as small as possible,
provided that equations (4.31), (4.32) ard (4.33) are always
satisfied, i.e. that the dual remains feasible throughout the
procedure. |

Now recall Equatign (4.31a) given by

n

< -0, z . i,
i =7 % =1 i3 ¥ (k.31a)

J#L
For the dual to remain feasible throughout the procedure, given

a set of values for the Ui's and ﬂij's, g must take a value that

nt+l

satisfies the n constraints of (4.31a). That is

n
Min (- d. + T m..
i S B
J#i

g
n+l

). (Lh.37)"

A

On the other hand, if the objective is to maximize Z', for a given
set of ai's the absolute values of the ﬂij's must be the smallest
possible values that will satisfy equations (4. 32) and (L4.33).

This can be achieved by making

ﬂij 0 1if Uj < dij

- (g.-4.. 1if o. > 4. .
(05=d;5) if oy

T, .
1] 1J

Or, combining the two conditions above into one equation

iy =T Max (0, oj—dij) ¥i, j, 3 #1. (h.38}

From the above it can be seen that, given the distance matrix
[dij] of the network,‘and a set of values for the positive Ui's,
both the‘ﬂij's and o ., can be determined in an optimal way.with
respect to maximizing Z'. The problem that remains is how to determine

the initial oi's and, subsequently, how to modify these values in a
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_stepwiseAfashion, so as to increase Z' to a value as close to the
optimal solution of the dual as possible. An algorithm that performs

these tasks is given below.

The detailed steps of the algorithm

The heuristic procedure given belew is a two-phase method.

The first phase is iterative, whereas tﬁe second phase is a one-pass
algorithm.

The first.phase of the procedure starts from a given set of
Gi's, and attempts to decrease the absolute value of 0n+l by
suitgbly decreasing some of the Gi's. This is done in such a way
that an increase is obtained in the value of Z' from one iteration
of this phase to the following iteration. When such increase is
no loﬁgér possible, the second phase of the algorithm is activated.

The second phase of the method is a one-pass algorithm, in
which an attempt is made to increase each of the positive qi's
individually, but without altering as a consequence the value of
On+l obtained at the end of phase 1. This second phase starts frém'
the values of the oi's at the end of phase 1, and terminates after
all n 0.'s have been tentatively increased.

The detailed steps of the algorithm are now given. .

Phase 1
Step 1. Choose initial values for each of the n positive oi's (the

choice of these initial values is discussed in 4.4.3). Then make

k = 1 and go to Step 2 below.

Step 2. For each i, i =1, ..., n, compute
n
T. =0, -~ L TW.. » (4.39)
i i 5 1 _
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with the ﬂij's computed as per Equation (4.38). Then compute the
initial value of the bound (Z') and go to Step 3 below.
Step 3. Find the largest and next-to-largest values of Ti' Call

these values TMX and TNMX respectively. BSet

=~
On+1 MX °

Step 4. Attempt to increase 0,41 from = Ty to = Ty by suitably

+1
decreasing the necessary oi's.* Start by computing, for the i
corresponding to T Ty (ties broken arbitrarily), the set J

defined by

J = {Ujl(cj_di.) > (

5 2 TMX-TNMX)} . (L.%0)

Step 5. If J = ® go to Phase 2 of the algorithm, as Z'cannot be

increased any further in Phase 1. Otherwise compute

n ’ :
S, . =MAX I Max(0, 0.,-d..). (h.41)
Mex ' eg i=1 Jd 1
J
Step 6. Decrease the Uj corresponding to S, by (TMX - TNMX)' Then

recaglculate the Ti's of Equation (4.39), given the decrease in 05
defined in the present step.

Step 7. After recalculating the Ti's check if, for any i, To = Ty
(This is only possible if a tie occurred in the computation of T
in Step 3). If so, repeat Steps 4 through to 7 in an attempt to
change this T, bo Ty Otherwise go to Step 8 below.

Step 8. Compute G_, the gain of iteration k:

- - _ : O _ N
Gk = p('rMX TNMX) pX (o oj) , (4. 42)
. oj's decreased
in Step 6
# Note that the above defined increase in o .. is only worthwhile if

the sum of the necessary decreases in the g:'s is offset by a
corresponding increase in the value of the product p(TMX = Tx

).
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where Ug is the value of Uj before the start of iteration k and
0? its value at the end of the iteration. Then go to Step 9 below.
Step 9. (a) If G >0 increa;e 7' by G , makg k =k + 1 and go to
Step 3 for a new iteration of Phase 1 of the algorithm;

(v) If G, £ 0, go to Phase 2 of the algorifhm.
Phase 2 '
Step 10. Compute the difference (T&X - TéMX)’ where T&X and TﬁMX

are the &alues of T and T at the end of Phase 1. Then make

MX NMX
J =1 and go to Step 11 below.

Step 11. Make

= 1 _ .1 - '
Uj = Gj + (TMX TNMX) . (4.43)

Then compute T, ¥ i (Equation 4.39) , given the change in F defined
in the present step.
. . 0
Step 12. (a) If, for any i, T, ” T&X, make Uj the permanent value
of Uj. Then make j = j + 1 and go to Step 13;
(b) If t, < Tl ¥ i, make o) the permanent value of 0. and
1= M J J
. . 1 _ .1 s s
increase the value of Z' by (TMX TNMX)' Then gake j=J+1 and
go to Step 13 below.
Step 13. If j <n go to Step 11. Otherwise, terminate the algorithm.

The final value of Z' is a lower bound for the p-median problem.

4.4.3 The initialization of the heuristie procedure

The final value of the dual bound depends to some extent on the
initial values of the positive oi's. While there is great freedom
of choice for these initial values when the bound is computed for
the overall optimal solution to the problem, the choice is very
restricted when some of the variables of the corresponding primal

problem have known values. This is of special relevance wher the
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bound is embedded into branch-and-bound algorithms, but a detailed
discussion of the subject is left for the next chapter. The initializution
discussed in the present sgction is therefore important only-ifb

interest is centred in obtaining a lower bound on the overall optimal
solution of the p-median problem,

Three different starting rules are discussed below. Computational
experience shows that while unreasonable starting values for the
positive Ui's may lead to useless bounds, none of the investigated
starting rules aiways yield the best value for the bound. The
correspgnding results are summarized at the end of this section.

| The procedure described in L4.L4.2 is one in which the initial
values ofkthe positive ci's are decreased througﬁout the iterative
phase of the algorithm. The algorithm must therefore start from
values of o, expected to be larger than their respective values at
the termination of the procedure.

An alterﬁative precedure would be to start from small values
for the ci's and build the bound by increasing these values in a
stepwise fashion. This alternative procedure has not been investigated
e%perimentally, given the satisfactory resultsobtaihedwith the
procedure described in 4.4.2, and its better suitability for émbedding

the bound into branch—and-bound algorithms.

Starting Rules 1 and 2

These two starting rules take advantage of a relationship
developed by Diehr [22], which gives an approximate value for.the
summation of the positive ci's:

n

I 0. = X' + p[X'
g = % Rlip

-X'1, (4.hY)
i=1 1op

where i% and i%—l are approximate solutions to the p and (p-1)-median
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problems respectively. Equation (4.44) is an appfoximation biased
towards giving a value above the exact value of the summation,
satisfying therefore the condition of providing initial values for
the Gi's above their expected.fiﬁal values.

The only difference between starting rules 1 and 2 is the
way by which the individual Oi's are obtained from the summation
given by Equation (L4.44). In starting Rule 1 the individual o;'s
are weighted according to the sum of distances in the corresponding"
column of the distance matrix of the network. In starting Rule 2
a;l initial ci's are equal to the result of the division of the

surmation of Equetion (L.44) by the number of vertices of the network.

Starting Rule 3

Starting Rule 3 assumes that the final values of the o;'s used
to calculate the bound for the (p-1)-median problem are available
prior to starting the procedure to find the dual bound for the
p—median problem. The initial values of the Gi's for calculating
the dual p-median bound are then made equal to the final wvalues of
the o.'s used to calculate the bound for the (p—l)—ﬁedian problem.
For p = 1 each initial . is made equal to the average of the
distances in the corresponding column of the distance matrix of.the
network.

Note that with starting Rule 3 the bound for the (p—l)—ﬁedian
problem must be available before the bound for the p-median problem
can be calculated. It is therefore necessary to start by computing
the bound from p = 1 if one wishes to use starting Rule 3 to compute
lower bounds for successive values of p, starting from p = p_._ and

min

-going up to p = p

.. - < )
nax The computation of bounds for values of p Pmln

ie a necessary "starting-up" procedure if Rule 3 is to be used.
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Computational results

The results obtained with the dual bound are given in Table
4.1. Results for networks ranging from 10 to 50 vertices are shown
in this table. As with the examples used to ﬁroduce the computational
fesults of Chapter 3, the data describing the randomly generated
networks of Table 4.1 are given in the appendix of the thesis. Where
examples taken from the literature were used, their origin is explicitly
indicated.

In Tabie 4