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Abstract

The purpose of this thesis is twofold. The first and major part is devoted to
sensitivity analysis of various discrete optimization problems while the second
part addresses methods applied for calculating measures of solution stability
and solving multicriteria discrete optimization problems.

Despite numerous approaches to stability analysis of discrete optimization
problems two major directions can be single out: quantitative and qualitative.
Qualitative sensitivity analysis is conducted for multicriteria discrete optimiza-
tion problems with minisum, minimax and minimin partial criteria. The main
results obtained here are necessary and sufficient conditions for different stabil-
ity types of optimal solutions (or a set of optimal solutions) of the considered
problems.

Within the framework of quantitative direction various measures of solution
stability are investigated. A formula for a quantitative characteristic called
stability radius is obtained for the generalized equilibrium situation invariant
to changes of game parameters in the case of the Hölder metric. Quality of the
problem solution can also be described in terms of robustness analysis. In this
work the concepts of accuracy and robustness tolerances are presented for a
strategic game with a finite number of players where initial coefficients (costs)
of linear payoff functions are subject to perturbations.

Investigation of stability radius also aims to devise methods for its calcu-
lation. A new metaheuristic approach is derived for calculation of stability
radius of an optimal solution to the shortest path problem. The main ad-
vantage of the developed method is that it can be potentially applicable for
calculating stability radii of NP-hard problems.

The last chapter of the thesis focuses on deriving innovative methods based
on interactive optimization approach for solving multicriteria combinatorial
optimization problems. The key idea of the proposed approach is to utilize
a parameterized achievement scalarizing function for solution calculation and
to direct interactive procedure by changing weighting coefficients of this func-
tion. In order to illustrate the introduced ideas a decision making process is
simulated for three objective median location problem.

The concepts, models, and ideas collected and analyzed in this thesis create
a good and relevant grounds for developing more complicated and integrated
models of postoptimal analysis and solving the most computationally challeng-
ing problems related to it.
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Applications, 19 (3), pp. 229 – 236.

II. Emelichev V., Karelkina O. and Girlich E. (2009) Postoptimal analysis
of multicriteria combinatorial center location problem. Buletinul Academiei
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Chapter 1. Introduction

Optimization is a scientific discipline dealing with the detection of optimal
solutions for a problem, among multiple (finite or infinite number of) alter-
natives. The optimality of solutions is based on one or several criteria being
usually problem- and user-dependent. Optimization involves the study of op-
timality criteria for problems, the determination of algorithmic methods of
solution, the study of the structure of such methods, the computer experimen-
tation with methods both under trial conditions and on real life problems, the
sensitivity and/or postoptimal analysis. There is an extremely diverse range
of practical applications. Yet the subject can be studied as a branch of applied
and pure mathematics.

Mathematical model of an optimization problem can be defined in sev-
eral ways, depending on the underlying application. In general, any function,
f : X → Y , defined over a domain, X, also called the search space, and with
range, Y , can be subjected to optimization given a total ordering relation
over Y . The most common optimization problems consist of the minimization
(maximization) of functions whose domain is a subset of the n-dimensional
Euclidean space, X ⊂ Rn, and their range is a subset of the real numbers,
Y ⊂ R. Moreover, the problem may have constraints in the form of equality
and inequality relations, defining solution feasibility. Thus, the optimization
problem can be formally described as:

min
x∈S

(max)f(x),

where f is a general real or vector valued objective function of the decision
parameter x ∈ X and S ⊂ X is a feasible set, that is, the set of all possible
solutions, in the decision space.

1.1. General classification of optimization problems

Major optimization subfields can be distinguished based on properties of
the objective function, its domain, as well as the form of the constraints.
Some of the most interesting and significant subfields, with respect to the
form of the objective function, are:

1. Linear optimization (or linear programming) studies cases where
the objective function and constraints are linear.

11



2. Nonlinear optimization (or nonlinear programming) deals with
cases where at least one nonlinear function is involved in the optimization
problem.

3. Convex optimization studies problems with convex objective functions
and convex feasible sets.

4. Quadratic optimization (or quadratic programming) involves
the minimization of quadratic objective functions and linear constraints.

A categorization of optimization problems with respect to the nature of
the search space can be divided into three categories:

1. Discrete (or combinatorial) optimization, X ⊂ Zn. In such prob-
lems we are generally looking for an object from a finite, or possibly countably
infinite, set – typically an integer, set, permutation, or graph. The special
cases of integer and binary variables are referred to as integer programming
and 0-1 integer programming correspondingly.

2. Continuous optimization, X ⊂ Rn. In such problems we are looking
for a set of real numbers or even a function.

3. Mixed integer optimization, X ⊂ Zn × Rn. Both integer and real
variables appear in the objective function and problem constraints.

The main target of single objective optimization is to find the best solution,
which corresponds to the minimum (maximum) value of a single objective
function that aggregate all different goals into one. This type of optimization
is useful as a tool which should provide decision makers (a person or a group
of persons who is supposed to express preference relations between different
solutions and responsible for the final solution) with insights into the nature
of the problem, but usually cannot provide a set of alternative solutions that
trade different objectives against each other.

Numerous problems arising in engineering, design, planning and manage-
ment inevitably involves decision making, choices and searching for compro-
mises. Decisions, no matter if made by a group or an individual, usually involve
several conflicting objectives. The observation that real-life problems have to
be solved optimally in situations in which several objectives must be satisfied
has led to the development of multiobjective optimization. From its first roots,
which where laid by French-Italian polymathematician, economist and sociol-
ogist Pareto [86] at the end of the 19th century the discipline has prospered
and grown, especially during the last three decades. Today, many decision
support systems incorporate methods to deal with conflicting objectives. The
foundation for such systems is a mathematical theory of optimization under
multiple objectives. Recent interest of mathematicians in multicriteria discrete
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optimization problems keeps very high, as confirmed by the intensive publish-
ing activity (see, e.g. bibliography [14], which contains 234 references, and
monograph [100]).

These observations lead to the following important optimization subfields:

1. Single objective optimization, Y ⊂ R, deals with models that include
a single objective function.

2. Multiobjective (multicriteria, vector) optimization, Y ⊂ Rm,
m ≥ 2, refers to problems where two or more objective functions need to be
optimized concurrently.

One thing worth mentioning is that there is no rigid difference in definitions
of multiobjective, multicriteria and vector optimizations. However they can be
distinguished depending on aims of investigation. In particular, multiobjec-
tive optimization considers both objective and decision spaces. Multicriteria
optimization concentrated basically on studying objective functions treating
the objectives as decision making criteria and corresponding objective values
as vectors in a criterion space. Finally vector optimization concerns pure the-
oretical questions in various fields of optimization with vector valued functions
and sometimes deals with infinitely many objectives. In some literature [76]
another classification based on the set of feasible solutions can be found. In
multicriteria optimization, the set of feasible solutions is discrete, predeter-
mined and finite. In multiobjective optimization, the feasible alternatives are
not explicitly known in advance. An infinite number of them exists and they
are represented by decision variables restricted by constrain functions. These
problems can be called continuous. In this thesis, all these notions are re-
ferred as the same concept of finding solutions to optimization problems with
multiple objectives.

In single objective optimization problems, the main focus is on the deci-
sion variable space. In multiobjective optimization, solutions are compared by
establishing some preference relations in objective space.

Without loss of generality multiobjective optimization problem can be for-
mulated as follows:

f(x) = (f1(x), f2(x), . . . , fm(x))→ min
x∈S

,

where we have m (≥ 2) objective functions (conflicting partial criteria)
fi : S → R, S is a set of feasible solutions, which is a subset of decision
space X ⊂ Rn, and y = f(x) ∈ Y ⊂ Rm is a vector-function.

Because of the contradiction and possible incommensurability of the ob-
jective functions, it is not possible to find a single solution being optimal for
all the objectives simultaneously. Multiobjective optimization problems are in
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a sense ill-posed by Hadamard (see definition of problem’s well-poseness by
Hadamard in the next section). Anyway, some of the objective vectors can
be extracted for examination. Such vectors are those where none of the com-
ponents can be improved without deterioration to at least one of the other
components. The definition is usually called Pareto optimality. A more formal
definition of this concept is the following:

Definition 1.1. A decision vector x∗ ∈ X is Pareto optimal (efficient)
if there exists no x ∈ X with fi(x) ≤ fi(x

∗) for all i = 1, . . . ,m and
fj(x) < fj(x

∗) for at least one index j.
This definition introduces a componentwise order [87] on the set of feasible

solutions X:
x ≻

P
x̂ ⇔ f(x) ≥ f(x̂) ∧ f(x) ̸= f(x̂).

If x ≻
P
x̂ we say that x̂ dominates x and f(x̂) dominates f(x). The set of

all Pareto optimal solutions x∗ is denoted by Pm(X). Then the set of all
nondominated points y∗ = f(x∗) ∈ Y , where x∗ ∈ Pm(X) is denoted by Pm(Y )
and called nondominated set or Pareto front. Different shapes of Pareto front
are illustrated graphically in the diagrams in Figure 1.

There are usually a lot (infinite or exponential number with respect to a size
of the problem) of Pareto optimal solutions. Therefore, the problem of finding
all Pareto optimal solutions is quite complicated and intractable already for
bi-criteria case (even if original single objective problems are simple, that is,
polynomially solvable). Roughly speaking, intractability means that there is
an algorithm that produces a solution to the problem but the algorithm does
not produce results in a reasonable amount of time. The question, whether a
polynomial time algorithm for multicriteria linear programming (e.g. a gener-
alization of Karmarkars interior point algorithm [50]) is possible depends on
the number of efficient extreme points. Unfortunately, it is easy to construct
examples with exponentially many. For the discrete case, in terms of algorith-
mic complexity this problem is NP-complete [51], that is, it is in the set of
NP problems so that any given solution (produced by some oracle machine)
to the decision problem can be verified in polynomial time, and also in the set
of NP-hard problems so that any NP problem can be converted into it by a
transformation of the inputs in polynomial time.

As an example we consider multiobjective discrete optimization problem
with linear objectives:

min
n∑

i=1

cki xi k = 1, . . . ,m, ck ∈ Zn, (1.1)

s.t.
xi ∈ {0, 1} i = 1, . . . , n.
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Figure 1: Different shapes of Pareto front in biobjective case

Proposition 1.1 [13] The multiobjective combinatorial optimization prob-
lem (1.1) is NP-complete even for m = 2.

This fact can be proven by reducing biobjective combinatorial optimization
problem to NP-complete 0− 1 knapsack problem [85] in polynomial time and
vice verse.

In addition to Pareto optimality, other related concepts are widely used.
These are weakly and strictly efficient solutions (optimal by Slater [93] and
Smale [94] correspondingly).

Definition 1.2. A feasible solution x∗ ∈ X is called weakly Pareto op-
timal (weakly efficient) if there exists no x ∈ X with fi(x) < fi(x

∗) for all
i = 1, . . . ,m.

In other words a solution is weakly optimal if there exists no solution for
which all components of the vector objective function are better.

Definition 1.3. A feasible solution x∗ ∈ X is called strictly Pareto optimal
(strictly efficient) if there exists no x ∈ X, x ̸= x∗, such that fi(x) ≤ fi(x

∗)
for all i = 1, . . . ,m.
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Analogously to Pareto optimality case the sets of weakly and strictly non-
dominated points and solutions are defined by weak and strict componentwise
order over domain X. The weakly and strictly efficient solutions are denoted
by Slm(X) and Smm(X) respectively. Correspondent weakly and strictly effi-
cient sets are denoted by Slm(Y ) and Smm(Y ). From definitions it is obvious
that

Smm(X) ⊂ Pm(X) ⊂ Slm(X).

The concept of efficiency and its variants are the most important defini-
tions of optimality in multicriteria optimization. Other choices of orders and
model maps give rise to different classes of multicriteria optimization prob-
lems. Specifically if all partial criteria are ordered by importance in such a
manner that each of them is more important than all the subsequent, then the
principle of lexicographic optimality can be used. Lexicographic optimization
problems arise naturally when conflicting objectives exist in a decision problem
but for reasons outside the control of the decision maker the objectives have
to be considered in a hierarchical manner.

Definition 1.4. A feasible solution x∗ ∈ X is called lexicographically opti-
mal if for any x ∈ X we have f(x∗) = f(x) or there exists index l = {1, . . . ,m}
such that fl(x) > fl(x

∗) and l = min{i ∈ {1, . . . ,m} : fi(x) ̸= fi(x
∗)}.

It is known (see, e.g. [13]) that the set of lexicographically optimal solutions
Lm(X) can be specified as a result of solving the sequence ofm scalar problems

Lm
i (X) = Argmin{fi(x) : x ∈ Lm

i−1(X)}, i ∈ {1, . . . ,m},

where Lm
0 (X) = X, Argmin{·} is the set of all optimal solutions of a corre-

sponding minimization problem. Hence the following inclusions

X ⊃ Lm
1 (X) ⊃ Lm

2 (X) ⊃ . . . ⊃ Lm
m(X) = Lm(X)

are valid.
From the above definitions it is also evident that:

Lm(X) ⊂ Pm(X),

Smm(X) ̸⊂ Lm(X),

Smm(X) ̸⊃ Lm(X).

Uncertainty and inexactness of data and outcomes pervade many aspects of
most optimization problems. However, optimization models mentioned above
do not take into account this factor. As it turns out, when the uncertainty in
the problem is of a particular (and fairly general) form, it is relatively easy to
incorporate the uncertainty into the optimization model.

Recently, interest in multicriteria decision making under uncertainty and
risk with applications in, among others, game theory, mathematical economics,

16



optimal control, investment analysis, banking and insurance business has in-
creased drastically. Under these conditions when solving optimization prob-
lems in practise one should take into account various factors of uncertainty
and randomnicity such as inaccuracy of initial data, non-fit of mathematical
models to real processes, rounding off, calculation errors and need of deriving
algorithms for solving ”close” problems etc.

Thus, the following two subfields of optimization can be single out
1. Deterministic optimization problems are formulated with known

parameters.
2. Optimization under uncertainty. In this case problem parameters

are known only within certain bounds.
A simple categorization of optimization problems is presented and summa-

rized in the following table.
Table 1.1. Types of optimization problems

Classification criterion Type of optimization problem
Form of the objective function Linear
and/or constraints Quadratic

Convex
Nonlinear

Nature of the search space Continuous
Discrete
Mixed integer

Number of objectives Single objective
Multiobjective

Nature of the problem initial data Deterministic
Under uncertainty

1.2. Sensitivity analysis of discrete optimization problems

The terms ”sensitivity”, ”stability” or ”postoptimal analysis” are generally
used for the phase of an algorithm at which a solution (or solutions) of the
problem has been already found, and additional calculations are performed in
order to investigate how this solution depends on changes in the problem data.

Recognition of the stability problem as one of the central in mathematical
research goes back to Hadamard [46]. In 1923, he postulated that in order to
be well-posed a problem should have three properties

• existence of a solution;
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• uniqueness of the solution;

• continuous dependence of the solution on the data.

Correspondingly, ill-posed multicriteria discrete optimization problem refers
to this situation that it may have multiple solutions or the feasible solution
set and/or criteria functions depend on uncertain parameters.

Widespread use of discrete optimization models in the last decades stim-
ulated many experts to investigate different aspects of stability of scalar and
vector problems of discrete optimization. As a consequence, in the context of
the operation research and mathematical optimization, the most closely related
lines of research have been initiated:

• Postoptimal and parametric analysis of optimization problems reveals re-
lation between behavior of found solutions and changes in initial data of
a problem. Initial data is usually parameters which define an objective
function [91,92,103] and/or a set of feasible solutions [5]. As a rule tech-
niques and methods of this analysis are based on algorithms for solving
a given optimization problem or on using properties of point-to-set map-
pings which associate each point of the initial data set of a problem with a
certain set of optimal solutions. The notion of problem stability is usually
connected with Hausdorff semi-continuity or continuity of the mappings
mentioned above [92, 103]. Without going into details we note just some
publications on this subject [4, 36,103].

• Robust optimization is another traditional body of knowledge dealing
with data uncertainty in optimization. The robust optimization method-
ology, in its simplest version, proposes to associate with an uncertain
problem its robust counterpart and to use, as ”real life” decisions, the
associated robust optimal solutions. It aims to find a feasible/optimal so-
lution that remains feasible/optimal under worst case realization of uncer-
tainty in input parameters of the problem. Worst-case-oriented optimiza-
tion is also known as robust optimization, and feasible/optimal solutions
of worst case optimization are often referred to as robust feasible/optimal
solutions (see e.g. [52,55]).

As it was mentioned above the theoretical stability research relies on the
properties of continuity of multivalued (point-to-set) mappings [58]. A solution
of any optimization problem involves finding a mapping w = Γ(u) which asso-
ciates a solution w to the input data u (for instance, u = (A, b, c) ∈ Rm×n+m+n

for the linear programming problem), where u and w may be reviewed as el-
ements of normed spaces. Let two normed spaces U and V be given. The
mapping Γ that associates to each point of the set U some subset of the set V
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is called a multivalued (point-to-set or set-valued) mapping of U to V and is
denoted Γ : U → 2V .

Definition 1.5. The multivalued mapping Γ at the point u0 ∈ U is called
Hausdorff upper semicontinuous if for every ε > 0 there is δ > 0 such that
Γ(u) ⊃ Oε(Γ(u

0)) for every u ∈ Oδ(u
0), where

Oε(Γ(u
0)) = {v ∈ V | inf{∥v − y∥ < ε | y ∈ Γ(u0)}}

and Oδ(u
0) = {u ∈ U | ∥u− u0∥ < δ}.

Definition 1.6. The multivalued mapping Γ at the point u0 ∈ U is called
Hausdorff lower semicontinuous if for every ε > 0 there is δ > 0 such that

Γ(u0) ⊃ Oε(Γ(u)) for every u ∈ Oδ(u
0).

Definition 1.7. The multivalued mapping Γ at the point u0 ∈ U is called
Hausdorff continuous if this mapping is upper semicontinuous and lower semi-
continuous at this point.

The increased interest in stability analysis and parametric and postopti-
mality analysis of optimization problems is motivated by the fact that the
input data, as a link between the real world and the model, are far from being
unambiguously defined. Solutions to optimization problems (including dis-
crete optimization) can exhibit remarkable sensitivity to perturbations in the
parameters of the problem, thus often a computed solution is highly infeasi-
ble, suboptimal, or both (in short, potentially worthless). It is evident that
an arbitrary applied problem cannot be correctly specified and solved with-
out using the results of stability theory and related issues of parametric and
postoptimality analysis at least implicitly.

Sensitivity analysis is important for several reasons:

• Stability (robustness) of the optimum solution under changes of parame-
ters may be highly desirable. For example, using the old optimum solu-
tion point; a slight variation of a parameter in one direction may result
in a large unfavorable difference in the objective function relative to the
new minimum, while a large variation in the parameter in another di-
rection may result in only a small difference. In an industrial situation
where there are certain inherent variabilities in processes and materials
not taken into account in the model, it may be desirable to move away
from the optimum solution in order to achieve a solution less sensitive to
such changes in the input parameters.

• Values of the input-output coefficients, objective function coefficients,
and/or constraint constants may be to some extent controllable at some
cost; in this case we want to know the effects that would result from
changing these values and what the cost would be to make these changes.
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• Even if the input-output and objective function coefficients and constraint
constants are not controllable, their values may be only approximate; thus
it is still important to know for what ranges of their values the solution is
still optimal. If it turns out that the optimal solution is extremely sensitive
to their values, it may become necessary to seek better estimates.

It is quite reasonable to start discussion of sensitivity analysis of combi-
natorial optimization problems at its boundary with continuous optimization.
Linear programming plays a unique role in optimization theory; it is in one
sense a continuous optimization problem, but it can also be considered com-
binatorial in nature and in fact is fundamental to the study of many strictly
combinatorial problems.

Consider the linear programming problem in the standard form:

min z = cTx (1.2)

s.t. Ax ≥ b (1.3)

x ≥ 0, (1.4)

where c is an n-vector, A is an m× n matrix and b is an m-vector. Then the
following variations in the problem can be considered:

• change in the cost vector c

• change in the right-hand side vector b

• change in the constraints matrix A

• addition and/or deletion of a new variable

• addition and/or deletion of a new constraint

Stability of the linear programming problem has been studied in [2,36]. The
definitions of stability of the linear programming problem given in [2] can be
restated in the following way in terms of multivalued mappings [58].

Definition 1.8. The problem (1.2)–(1.4) is stable with input data
u0 = (A0, b0, c0) ∈ Rm×n+m+n if there exists δ0 > 0 such that ∀ δ < δ0:
Oδ(u

0) ⊂ U = ∅.
Definition 1.9. The problem (1.2)–(1.4) is called functional-stable with

input data u0 if it is stable in the sense of Definition 1.8 and the function
ϕ(u) = min{cTx | Ax ≤ b, x ≥ 0} is continuous at the point u0.

Definition 1.10. The problem (1.2)–(1.4) is called solution-
stable if it is stable in the sense of Definition 1.8 and the mapping
ψ(u) = {x′ | cTx′ = min{cTx′|Ax′ ≥ b, x′ ≥ 0}} is Hausdorff upper semi-
continuous at the point u0.
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Functional-stability implies that sufficiently small perturbations in the ini-
tial data lead to sufficiently small changes in the functional value.

Solution-stability implies that, with small perturbations in the input data,
for every optimal solution of the perturbed problem there exists a sufficiently
close optimal solution of the original problem.

Necessary and sufficient conditions for various versions of the linear pro-
gramming problem have been studied in [2]. In particular, the standard prob-
lem (1.2)-(1.4) is stable if and only if

∃ x0 ∈ Rn, p0 ∈ Rm : x0 > 0, p0 > 0, Ax0 > b,ATp0 < c.

Moreover, if the problem is stable, then the sets of optimal solutions of the
primal and dual problem are bounded.

It is well known that a major part of discrete optimization problems can be
formulated as a partial case of integer linear programming problems, which in
turn belong to the wide class of mathematical programming problems. Stabil-
ity analysis in mathematical programming in general attempts to determine
whether ”small” changes in problem parameters produce a ”small” changes in
results.

The main difficulty while studying stability of discrete optimization prob-
lems is discrete models complexity, because even small changes of initial data
make a model behave in an unpredictable manner. There is a lot of papers
(see, e.g., [9, 45, 47, 56, 68, 71, 73, 97, 99]) devoted to the analysis of scalar and
vector (multicriteria) discrete optimization problems sensitivity to parameters
perturbations. This thesis continues investigations of different stability types
of discrete optimization problems with various partial criteria and optimality
principles (see, e.g., [16, 18,23,25–30,34]).

Despite numerous approaches to stability analysis of discrete optimiza-
tion problems (annotated bibliography [45] gives quite complete representation
about various publications about stability issues) two major directions can be
single out: quantitative and qualitative.

• The quantitative direction aims to derive quantitative bounds for feasible
initial data changes preserving some preassigned properties of optimal
solutions and create algorithms for the bounds calculation (see, e.g., [9,
16, 23, 25, 34, 47, 56, 68, 71, 73, 97, 98]). The frequently used quantitative
tool of the stability theory and post-optimal analysis is so-called stability
radius of some given optimal solution. In single objective optimization,
it gives an upper bound on subset of problem parameters for which this
solution remains optimal [45]. There are already similar investigations
in multiobjective case, where the stability radius defines extreme level
of problem parameters perturbations preserving efficiency of the given
solution. For example, in [16] one can find a large survey on sensitivity
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analysis of vector unconstrained integer linear programming, where the
stability radius is a key object under investigation.

• The qualitative direction aims to obtain conditions under which the set
of optimal solutions of the problem possesses a certain preassigned prop-
erty of invariance to external influence on initial data of the problem.
A number of results in this direction is connected with deriving neces-
sary and sufficient conditions for various stability types of multicriteria
integer linear and quadratic programming problems, which consist in find-
ing of Pareto optimal, Slater optimal and Smale optimal solutions (see,
e.g., [59, 60, 92]), as well as boolean and integer problems of sequential
minimization of linear functions modules (see, e.g., [18,19]), multicriteria
combinatorial bottleneck problems (see, [29]) and with other nonlinear
criteria (see, publications II and III).

In the stability framework, we can apply the notion of continuity to dis-
crete optimization problems because a nontrivial, nondiscrete topology can be
defined on the set 2R

n
(the set of all subsets of the set Rn), whose elements

include both the feasible region and the set of optimal solutions [58]. This
situation can be explained as follows: when analyzing the stability of any op-
timization problem, including discrete optimization problem, we can uniquely
associate to the given problem a vector of input data u as an element of some
space U in which a nontrivial nondiscrete topology can be defined.

In the current work, five stability types (see, e.g., [16, 19]) of multicriteria
discrete optimization problems are considered. Suppose the initial m-criteria
optimization problem with parameters defined by matrix A ∈ Rm×n and the set
of feasible solutions S is solved. Let Xm(A) (can be Pm(A), Lm(A), Smm(A),
Slm(A) or some other set of efficient solutions) be the set of optimal solutions.
Perturbations of the problem are modeled by adding matrix A to matrices of
the set

Ω(ε) = {A′ ∈ Rm×n : ∥A′∥ < ε},
where ε > 0, ∥A′∥ = max {∥A′i∥ : i ∈ Nm} = max {|a′ij| : (i, j) ∈ Nm ×Nn},
A′ = (a′ij), Nm = {1, 2, . . . ,m} and Nn = {1, 2, . . . , n}. The set Ω(ε) is called
the set of perturbing matrices.

A multicirteria discrete optimization problem is called stable if

∃ ε > 0 ∀A′ ∈ Ω(ε) (Xm(A+ A′) ⊂ Xm(A)).

In other words the problem is stable when small changes of initial problem
data do not lead to appearance of new optimal solutions. Therefore stability
can be interpreted as discrete analogue of the Hausdorff upper semicontinuity
of the set-valued mapping

X : Rm×n → 2R
n

(1.5)
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at a point A [92, 103]. This mapping associates to each matrix A ∈ Rm×n the
set of optimal solutions Xm(A).

Relaxing the requirement of non-appearance of new optimal solutions we
come to the concept of strong stability. The problem is strongly stable if

∃ ε > 0 ∀A′ ∈ Ω(ε) (Xm(A) ∩Xm(A+ A′) ̸= ∅).

Thereby this type of stability describes situation when the intersection of the
set of optimal solutions to the initial problem and analogous set of any per-
turbed problem is nonempty. It is easy to see that the problem is strongly
stable if it is stable. The problem is called quasistable if

∃ ε > 0 ∀A′ ∈ Ω(ε) (Xm(A) ⊂ Xm(A+ A′)).

Quasistability characterizes the case when all optimal solutions remain opti-
mal under small perturbations of initial data of the problem. Thereby it is
a discrete analogue of the Hausdorff lower semicontinuity of the set-valued
mapping (1.5) at a point A.

Relaxing the requirement of the whole set of optimal solutions to remain
optimal we come to the concept of strong quasistability. The problem is called
strongly quasistable if

∃ ε > 0 ∃x0 ∈ Xm(A) ∀A′ ∈ Ω(ε) (x0 ∈ Xm(A+ A′)).

This stability type is connected with existence of at least one solution that
belongs to the set of optimal solutions to all perturbed problems under small
perturbations of initial data. It is evident that any quasistable problem is
strongly quasistable. Finally, the problem is superstable when the set of opti-
mal solutions to the initial problem coincides with the set of optimal solutions
to all perturbed problems, that is,

∃ ε > 0 ∀A′ ∈ Ω(ε) (Xm(A) = Xm(A+ A′)).

This property of the problem is discrete analogue of the Hausdorff continuity
of the set-valued mapping (1.5) at a point A that puts into correspondence
any matrix A with the set of optimal solutions. It is evident that the problem
is superstable if it is stable and quasistable simultaneously.

In Firgure 2, in diagrams illustrating strong stability and strong quasista-
bility matrices A′, A′′ belong to the set Ω(ε). One should emphasize that, in
general, for the former stability type the sets of optimal solutions correspond-
ing to different perturbing matrices have different intersections with the initial
set of optimal solutions while for the latter stability type there exists at least
one common solution for the initial set of optimal solutions and the sets of
optimal solutions generated by any perturbing matrix.
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Figure 2: Venn diagrams of stability types

This thesis is motivated by enormous variety of real-life problems that are
multicriteria in nature, have combinatorial structure and depend on uncertain
parameters. The current work is devoted to investigation of the recent innova-
tive approaches to multicriteria discrete optimization problems and postopti-
mal analysis. The major part of the thesis, which is covered in Chapters 2 and
3, focuses on stability analysis of vector discrete optimization problems with
various partial criteria. It is assumed that the set of optimal solutions (or a
single solution) to the problem is already known and the aim is to investigate
behavioristic and invariant properties of this set (or solution). Nonetheless in
order to provide complete effective tools for determining reliable solutions it is
important to explore techniques for solving initial problems. Therefore, Chap-
ter 4 of the thesis addresses the questions of interactive optimization methods
that can be applied to multicriteria combinatorial optimization problems.
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Chapter 2. Qualitative approach to stability analysis of vector
discrete optimization problems with nonlinear partial criteria

In the works of qualitative direction authors concentrate their attention
on revealing conditions for various stability types of a problem, on determin-
ing interrelations between different stability types as well as on finding and
description of stability region of the problem. The group of Ukrainian mathe-
maticians under the guidance of academic Sergienko, who introduced this ap-
proach, have studied questions of stability and parametric analysis of integer
and mixed integer programming in various formulations, including solution-
stability, functional-stability, constraint stability and vector-criterion stabil-
ity [58].

A fairly comprehensive survey of some typical results and approaches to
stability and postoptimal analysis of scalar integer programming problems is
provided in [57]. Stability analysis of optimization problems with pure integer
or mixed integer variables based on the theory of multivalued mappings is
given in [4].

Sensitivity analysis of an integer linear programming problem is generally
conducted on the basis of specific method used to solve the given problem.
Postoptimal analysis of a 0-1 programming problem with changes in the ob-
jective function, in the vector of the right-hand side, and the constraint matrix,
which utilizes branch and bound method is carried out in [88]. The author has
demonstrated how tests performed during solution phase become a useful basis
for ranging analysis on selected parameters and contribute to experimentation
with a variety of parameters changes, without the necessity of resolving the
entire problem for each one. The obtained results were extended on the mixed
integer case in [89].

Paper [37] is devoted to modification of branch and bound method to solve
a family of related integer linear programming problems, that is, the set of
problems that have the same structure but differ as to the values of one or more
coefficients. The approach to postoptimal analysis of integer and mixed integer
programming problems with Gomory cutting-plane algorithm is presented in
[54]. Utilizing this algorithm authors formulated various sufficient or necessary
conditions for verifying the optimality of a solution under coefficient changes
in the right hand side and the objective function, as well as conditions for
introduction of a new variable.

One of the earliest papers on the stability region, that is, the set of all
problem instances for which a given solution is optimal, is [65]. Article [73]
explores the possibility of using information about the k-best solutions to the
traveling salesperson problem for determining stability region of an optimal
solution.
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The concepts of the continuity of a point-to-set map from the parameter
space into the solution or objective space are developed and used in [102,103] to
describe the stability of the solution set of multiobjective optimization problem
in the case when the solution set is continuous, i.e. X ⊂ Rn. In these papers
a parameterized vector optimization problem with two different parameters is
considered. The first one is concerned with the stability of the solution set,
where the set of feasible solutions changes. The second point of view is con-
cerned with the stability of the solution sets in the case where the domination
structure, the positive cone in a partially ordered space representing the prefer-
ence attitude, changes. Criteria for continuity, upper and lower semicontinuity
of the above mentioned point-to-set map were derived.

Stability investigation in multicriteria discrete optimization has emerged
not long ago. First results in this direction were obtained by Emelichev and
his students (see, e.g. [15, 21]). A number of papers was devoted to stability
analysis of Pareto, Slater and Smale optimal solutions under perturbations of
problem parameters for different partial criteria types [16, 23–25,34].

2.1. Multicriteria center and median location problems

Problems of finding the ”best” location of facilities in networks or graphs,
abound in practical situations. In particular, if a graph represents a road
network with its vertices representing communities, one may have the prob-
lem of locating optimally a hospital, police station, fire station, or any other
”emergency” service facility. In such cases, the criterion of optimality may jus-
tifiably be taken to be the minimization of the distance (or travel time) from
the facility to the most remote vertex of the graph, that is, the optimization
of the ”worst-case”. In a more general problem, a large number (and not just
one) of such facilities may be required to be located. In this case the furthest
vertex of the graph must be reachable from at least one of the facilities within
a minimum distance. Such problems, involving the location of emergency fa-
cilities and whose objective is to minimize the largest travel distance to any
vertex from its nearest facility, are, for obvious reasons, called minimax loca-
tion problems [10]. The resulting facility locations are then called the centers
of a graph.

In certain problems associated with the location of facilities on a graph,
what is required is to locate a facility in such a way that the sum of all shortest
distances from the facility to the vertices of the graph is minimized. The
optimum location of the facility is then called the median of the graph, and
because of the nature of the objective function this class of problems is referred
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to as the minisum location problem [10]. The problem appears often in practice
in a variety of forms: the location of switching centers in telephone networks,
substations in electric power networks, supply depots in a road distribution
network (where the vertices represent customers), and the location of sorting
offices for letter post are some of the areas where minisum location problems
occur.

In practice the situation often arises where a single facility will not be able
to meet various requirements and what is then needed is to locate a number
of these facilities in the best possible way. For instance, we can consider the
following problem:

Find the smallest number and location of emergency centers so that no
community is further away than a prespecified distance from a center, and,
with that number of centers given, the distance of the furthest community
from an emergency center is a minimum.

This observation leads to the generalized concepts of a multi-center and a
multi-median of a graph. The situation can be formally modeled as follows.
Let Nn = {1, 2, . . . , n} be the set of possible points (centers, medians) of
suppliers location, the set Ns represents consumers and parameters of the
problem, that is, costs of consumer serving by each facility, are specified by
a cost matrix A ∈ Rn×s. Let T be a family of nonempty subsets of Nn,
i.e. T ⊆ 2Nn \ {∅}, |T | ≥ 2. Then the p-center location problem consists in
allocation of p, 1 ≤ p ≤ n − 1 facilities in Nn possible points on the graph
that minimizes the largest travel distance to any consumer from its nearest
facility:

max
j∈Ns

min
i∈t

aij → min

t ∈ T, |t| = p.

Analogously in the p-median location problem it is required to locate p facilities
in such a way so that the sum of the shortest distances (or transport costs) to
any consumer from its nearest facility to be minimized.∑

j∈Ns

min
i∈t

aij → min,

t ∈ T, |t| = p.

If the restriction that the points forming the p-center (p-median) must lie
at the vertices of a graph is lifted so that points lying on the arcs are also
admissible, then this more general set of p points is called the absolute p-center
(the absolute p-median).

It was proved in [48, 49] that general p-center and p-median problems are
NP-hard. Namely, there does not exist an O(f(n, p)) algorithm for finding a p-
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center (p-median) of a general network where f(n, p) is a polynomial function
in each of the variables n and p. In fact, a stronger results were formulated:

Theorem 2.1. The problems of finding a vertex p-center and an absolute
p-center are NP-hard even in the case when the network is vertex-unweighted
planar graph of maximum degree 3, all whose edges are of length 1.

Theorem 2.2. The problem of finding a p-median is NP-hard even in the
case when the network is a planar graph of maximum vertex degree 3 all whose
edges are of length 1 and all whose vertices have weight 1.

In most algorithms which have been proposed for the p-center problem, one
or more of three decision factors are being employed in the search for optimum.
These are

• the number of candidate points Tp = {i1, i2, . . . , ip}, p ∈ Nn, actually
used as facilities, p ≤ n,

• the maximum distance λ (predefined value) within which any given facility
is allowed to provide its service, and

• the coverage induced by the operating facilities Tp, defined as
Qλ(Tp) = {j ∈ Ns | aikj ≤ λ}, ik ∈ Tp, k = 1, . . . , p.

Among algorithms that fit the general framework described above we can
single out the earliest algorithm proposed by Minieka in [78], Kariv and Hakimi
enumerative approach [48], and Christofides [10] iterative algorithm whose
basic idea is to find the minimum dominating set of the graph. The differences
among the p-center algorithms appear to be in three aspects. First is the
choice of constraints to be imposed, namely, which among p, λ and Qλ are
restricting the search for a constrained cover. Second is the manner in which
the search for a constrained cover is conducted. Third aspect is the way in
which constraints are tightened or loosened.

The knowledge that the p-center problem is NP-complete suggests that if
major improvements in search procedures may be developed, they need to be
heuristics based on the many possible variations of the methods mentioned
above.

The p-median problem can be formulated as an integer boolean programme
[10]. Moreover the linear programming relaxation can be efficiently used to
obtain the p-median for most problems, and if fractional values of some vari-
ables occur, then a resolution of these cases can be obtained by a tree-search
procedure in which one branch fixes some fractional variable to 0 and another
the same variable fixes to 1. One can then proceed to resolve the linear pro-
gramming problems for each of the two resulting subproblems and so on until
all variables become either 0 or 1.
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Instead of an explicit formulation of the p-median problem as an integer
boolean programme one could use a direct tree search approach which is better
suited to exploiting the structure of the problem.

A heuristic method based on vertex substitution is described by Teitz and
Bart [104]. This algorithm is one of a family of algorithms based on local
optimization and on the idea of λ-optimality first introduced by Lin in [74] for
the traveling salesperson problem.

In the process of locating a new facility usually more than one decision
maker is involved. This is due to the fact that typically the cost connected
to the decision is relatively high. Of course, different persons may have dif-
ferent conflicting objectives. On other occasions, different scenarios must be
compared in order to be implemented, or simply uncertainty in the parameters
leads to consider different replications of the objective function. Thus a natural
extension of the single criterion deterministic model is to study the case when
several cost criteria (not only transportation costs) have to be minimized and
to investigate behavior of the objectives under changes of problem parameters.

Papers II and III focus on investigation of solution stability for multicri-
teria combinatorial minimax and minisum location problems with Pareto and
lexicographic optimality principles.

Let us consider these problems in the following formulations.
Let Nn be the set of possible points of facilities (suppliers) location, Ns be

consumers (clients) location, A = (aijk) ∈ Rn×s×m be the matrix of costs aijk.
The cost is connected with client j ∈ Ns serviced by facility i ∈ Nn and with
criterion k ∈ Nm.

Let f : T × Rn×s×m → Rm be a vector-valued function, where,
f(t, A) = (f1(t, A), f2(t, A), . . . , fm(t, A)) for any t ∈ T, A ∈ Rn×s×m and
partial criteria be defined as follows:

minimax fk(t, A) = max
j∈Ns

min
i∈t

aijk → min
t∈T

, k ∈ Nm

minisum fk(t, A) =
∑
j∈Ns

min
i∈t

aijk → min
t∈T

, k ∈ Nm

Thus, multicriteria center and median location problems consist in finding
corresponding Pareto (Pm(A)) and lexicographic (Lm(A)) sets. The purpose
of the research consists in finding conditions guaranteeing an optimal solution
to remain optimal under ”small” perturbations of vector criterion parameters.
As mentioned above such perturbations are modeled by adding matrix A to
matrices of the set

Ω(ε) = {A′ ∈ Rn×s×m : ||A′|| < ε}.

where ε > 0, ||A′|| = max{|a′ijk| : (i, j, k) ∈ Nn ×Ns ×Nm}, A′ = (a′ijk).
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Definition 2.1. A Pareto optimal solution t ∈ Pm(A) is called stable if

∃ ε > 0 ∀A′ ∈ Ω(ε) (t ∈ Pm(A+ A′)).

Definition 2.2. A lexicographically optimal solution t ∈ Lm(A) is called
stable if

∃ ε > 0 ∀A′ ∈ Ω(ε) (t ∈ Lm(A+ A′)).

Thus, the solution is stable if it remains optimal under any ”small” in-
dependent perturbations of the problem parameters, that is, the elements of
A.

In order to obtain necessary and sufficient conditions for an optimal solu-
tion stability it is important to determine elements of the matrix of problem
parameters affecting optimality of the solution. These elements in turn depend
on the nature of the partial criteria. In particular, in the case of multicriteria
minimax optimization problem for any indexes k ∈ Nm, j ∈ Ns and trajectory
t we introduce the following sets:

Njk(t, A) = {l ∈ t : fk(t, A) = gjk(t, A) = aljk},

Jk(t, A) = {j ∈ Ns : fk(t, A) = gjk(t, A)},
where

gjk(t, A) = min
i∈t

aijk.

Necessary and sufficient conditions for stability of Pareto and lexicographic
optimal solution to the multicriteria center location problem under initial data
perturbations are formulated in the following theorems.

Theorem 2.3. [II] A solution t0 ∈ Pm(A) is stable if and only if for any
equivalent solution t (f(t0, A) = f(t, A)), and for any criteria k ∈ Nm

Jk(t, A) ⊇ Jk(t
0, A) (2.1)

and
∀j ∈ Jk(t0, A) (Njk(t

0, A) ⊇ Njk(t, A)). (2.2)

Theorem 2.4. [II] A solution t0 ∈ Lm(A) is stable if and only if for any
criteria k ∈ Nm and for any solution t ∈ Lm

k (A)

Jk(t, A) ⊇ Jk(t
0, A) (2.3)

and
∀j ∈ Jk(t0, A) (Njk(t

0, A) ⊇ Njk(t, A)). (2.4)

The proof of necessity is based on the construction of perturbing matri-
ces whose elements are build using the sets Jk(t, A), Jk(t

0, A), Njk(t, A) and
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Njk(t
0, A). Sufficiency is proved by utilizing continuity of the function gjk(t, A)

in parameters space Rn.
Using the same techniques analogous results are formulated and proved for

the multicriteria combinatorial median location problem.
Let Njk(t, A) be the set of facilities from t which serve the client j with

minimum costs by criterion k

Njk(t, A) = Argmin{aijk : i ∈ t},

i.e.
Njk(t, A) = {l ∈ t : min

i∈t
aijk = aljk}.

Theorem 2.5. [III] A solution t0 ∈ Pm(A) is stable if and only if for
any equivalent solution t, for any k ∈ Nm and for any j ∈ Ns the following
inclusion

Njk(t
0, A) ⊇ Njk(t, A) (2.5)

holds.
It is easy to interpret the theorem for a scalar problem, that is, for m = 1.

Let the distance from every client j to every facility i be known. Then the
theorem states that for optimal solution t0 to be stable it is necessary and
sufficient that all optimal bindings (in the sense of a proximity by distance) of
clients to facilities t0 remain optimal bindings of all the clients to the facilities
of any equivalent solution t.

Theorem 2.6. [III] A solution t0 ∈ Lm(A) is stable if and only if for any
criteria k ∈ Nm and for any solution t ∈ Lm

k (A) the following inclusion

Njk(t
0, A) ⊇ Njk(t, A) (2.6)

holds.
One thing worth mentioning is that in the case of

m = 1 (A = (aik) ∈ Rn×m), the considered problem transforms into
the m-criteria combinatorial problem with partial minimin criteria. For any
k ∈ Nm, put

Nk(t, A) = Argmin{aik : i ∈ t}.
We assume fk(∅, Ak) = +∞.
Next two well known results follow from Theorems 2.3, 2.4, 2.5 and 2.6.
Corollary 2.1. [24] Let t0 ∈ Pm(A) be a Pareto optimal solution of

the vector problem with partial criteria minimin. The next statements are
equivalent:

(i) t0 ∈ Pm(A) is stable;
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(ii) ∀k ∈ Nm ∀t ∈ Qm(t0, A) (Nk(t
0, A) ⊇ Nk(t, A));

(iii) ∀k ∈ Nm ∀t ∈ Qm(t0, A) (fk(t\t0, A) > fk(t
0, A)).

Corollary 2.2. [20] Let t0 ∈ Lm(A) be a lexicographically optimal solution
of the vector problem with partial criteria minimin. The next statements are
equivalent:

(i) t0 ∈ Lm(A) is stable;

(ii) ∀k ∈ Nm ∀t ∈ Lm
k (t

0, A) (Nk(t
0, A) ⊇ Nk(t, A));

(iii) ∀k ∈ Nm ∀t ∈ Lm
k (t

0, A) (fk(t\t0, A) > fk(t
0, A)).

2.2. Vector combinatorial minimin problem

This section addresses a general theoretical approach to qualitative analysis
of multicriteria combinatorial minimin problems with Pareto and lexicographic
principles of optimality.

Let Ai be the i-th row of matrix A = [aij] ∈ Rm×n, m ≥ 1, n ≥ 2, T be a
family of nonempty subsets of Nn = {1, 2, . . . , n}, i.e. T ⊆ 2Nn \ {∅}, |T | ≥ 2.
Elements of the set T are called trajectories. Let f : T × Rm×n → Rm be
a vector-valued function, where, f(t, A) = (f1(t, A1), f2(t, A2), . . . , fm(t, Am))
for any t ∈ T, A ∈ Rm×n and fi(t, Ai) = min

j∈t
aij for i ∈ Nm. The minimin

problem can be written as follows:

min
t∈T

f(t, A).

Many extreme problems on graphs such as the traveling salesperson prob-
lem, the assignment problem, the shortest path problem etc. are included into
the similar scheme of scalar combinatorial problems. In addition the multi-
criteria minimin problem is a special case of multicriteria variant of the well
known median and center location problems. Specifically, suppose optimal lo-
cations of emergency centers (facilities) for the given communities have already
been found. We want to add one new community to the network. The problem
consists in finding among the existing facilities one that optimally serves the
new community (consumer).
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Put
Ni(t, Ai) = Argmin{aij : j ∈ t}, i ∈ Nm.

Let us introduce a notation for Cartesian product of sets Ni(t, Ai), i ∈ I ⊆ Nm:

N(t, A, I) = Ni1(t, Ai1)×Ni2(t, Ai2)× . . .×Nik(t, Aik),

where I = {i1, i2, . . . , ik} ⊆ Nm, i1 < i2 < . . . < ik.
For vector v = (v1, v2, . . . , vm) ∈ Rm and set I = {i1, i2, . . . , ik} ⊆ Nm,

i1 < i2 < . . . < ik, we introduce notation

vI = (vi1 , vi2 , . . . , vik).

Put
Pm(t, A) = {t′ ∈ Pm(A) : f(t, A) ≥ f(t′, A)},

I(t, t′) = {i ∈ Nm : fi(t, Ai) = fi(t
′, Ai)}.

In other words, set Pm(t, A) consists of Pareto optimal trajectories t′ which
dominate trajectory t and I(t, t′) denotes the set of criteria indexes such that
the values of corresponding partial criteria coincide for trajectories t and t′.

Necessary and sufficient conditions of the five stability types are formulated
for Pareto principle of optimality in the following theorems.

Theorem 2.7. [VI] The problem is stable if and only if for any solution
t ∈ Slm(A) the formula

∀v ∈ N(t, A,Nm) ∃t∗ ∈ Pm(t, A)
(
vI(t,t∗) ∈ N(t∗, A, I(t, t∗))

)
(2.7)

is valid.
Formula (2.7) indicates that for any weakly efficient trajectory t there exists

trajectory t∗ ∈ Pm(t, A) which is invariant to small perturbations of problem
parameters.

Theorem 2.8. [VI] The problem is strongly stable for any matrix
A ∈ Rm×n.

For solution t ∈ Pm(A) we introduce a set of equivalent solutions

Q(t, A) = {t′ ∈ T : f(t, A) = f(t′, A)}.

Theorem 2.9. [VI] The problem is quasistable if and only if

∀t ∈ P n(A) ∀t′ ∈ Q(t, A) ∀i ∈ Nm

(
Ni(t, Ai) ⊇ Ni(t

′, Ai)
)
. (2.8)

Condition (2.8) indicates that for any two equivalent solutions t and t′ the
equality N(t, A,Nm) = N(t′, A,Nm) must hold.

The next result follows from Theorems 2.7 and 2.9 by virtue of the stability
types definitions.
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Theorem 2.10. [VI] The problem is strongly quasistable if and only if both
statements hold:
(i) ∀t ∈ Slm(A) ∀v ∈ N(t, A,Nm) ∃t∗ ∈ Pm(t, A)(

vI(t,t∗) ∈ N(t∗, A, I(t, t∗))
)
, (2.9)

(ii) ∀t ∈ Pm(A) ∀t′ ∈ Q(t, A) ∀i ∈ Nm

(
Ni(t, Ai) ⊇ Ni(t

′, Ai)
)
.

Theorem 2.11. [VI] The problem is superstable if and only if

∃t0 ∈ Pm(A) ∀t ∈ Q(t0, A) ∀i ∈ Nm

(
Ni(t

0, Ai) ⊇ Ni(t, Ai)
)
. (2.10)

Condition (2.10) indicates the existence of efficient solution t0 such that for
all solutions t equivalent to it the inclusion N(t0, A,Nm) ⊇ N(t, A,Nm) holds.

Summarizing the results obtained in Theorems 2.7 – 2.11 relations between
different stability types of the problem with Pareto principle of optimality are
described by the following scheme:

Stability

Superstability
Strong stability

Quasistability Strong quasistability

(2.7)

(2.9)(2.8)

(2.10)

Now let us introduce stability criteria for the multicriteria combinatorial
minimin problem with lexicographic principle of optimality.

Put
M(t) = {i ∈ Nm : t ∈ Lm

i (Ai)}.
Theorem 2.12. [VI] For the problem the following statements are equiva-

lent:
(i) the problem is stable,
(ii) the problem is strongly stable,
(iii) for any solution t ∈ Lm

1 (A)

∀v ∈ N(t, A,M(t)) ∃t∗ ∈ Lm(A)
(
v ∈ N(t∗, A,M(t))

)
. (2.11)

Statement (iii) indicates that for any non lexicographic solution t ∈ Lm
1 (A)

there exists solution t∗ ∈ Lm(A) that will not allow solution t to become
lexicographically optimal under small perturbations.
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Theorem 2.13. [VI] For the problem the following statements are equiva-
lent:
(i) the problem is quasistable,
(ii) the problem is superstable,
(iii) the following formula holds

∀t ∈ Lm(A) ∀i ∈ Nn ∀t′ ∈ Lm
i (A)

(
Ni(t, Ai) ⊇ Ni(t

′, Ai)
)
. (2.12)

Formula (2.12) indicates that any solution t ∈ Lm(A) must not be dom-
inated by solutions Lm

i (A), i ∈ Nm, under small perturbations of problem
parameters.

Theorem 2.14. [VI] The problem is strongly quasistable if and only if

∃t0 ∈ Lm(A) ∀i ∈ Nm ∀t ∈ Lm
i (A)

(
Ni(t

0, Ai) ⊇ Ni(t, Ai)
)
. (2.13)

Formula (2.13) indicates the existence of lexicographically optimal solution
t0 which must not be dominated by solutions Lm

i (A), i ∈ Nm, under small
perturbations of problem parameters.

Summarizing the results obtained in Theorems 2.12, 2.13 and 2.14, tak-
ing into account definitions of the stability types, one may conclude that the
relations between different stability types of the multicriteria combinatorial
minimin problem with lexicographic principle of optimality are described by
the following scheme:

Stability

SuperstabilityStrong stability

Quasistability
Strong quasistability

(2.11)

(2.13)

(2.12)

One more issue which has to be emphasized is that practical verification
of conditions of Theorems 2.7 – 2.14 and their straightforward application for
general case can be as hard as to solve the problem itself. Nevertheless more
methodological results might be developed and implemented for special cases
of the multicriteria combinatorial minimin problem with restrictions of some
factors, such as structure of initial data, perturbations of particular problem
parameters etc. As possible continuation of the research within this topic, it
would be interesting to explore these classes of problems.
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Chapter 3. Quantitative approach to stability analysis of
discrete optimization problems

Within the framework of quantitative direction researchers aim to measure
quality and sensitivity of an optimal solution (or a feasible solution) under
possible realizations of problem parameters. Authors of most papers devoted
to stability analysis and robust optimization attempt to specify analytical ex-
pressions for quantitative characteristics such as the stability radius, relative
errors, accuracy functions and robust tolerances; derive algorithms for its cal-
culation and analyze complexity of these algorithms.

In the case of a single objective function, formulae of stability radius are
obtained for problems of 0–1 programming [64], problems on systems of subsets
and graphs [97], scheduling problems [99] and simple assembly line balancing
problem [96]. Let us discuss these results in more details.

First publications concerning quantitative direction are devoted to obtain-
ing formula for the stability radius of the set of all possible shortest tours for
the classical traveling salesperson problem (TSP) [61]. The maximum value
of the stability radius for the class of matrices whose elements do not exceed
in modulus some fixed number is calculated in [61]. Here a class of matrices
possessing a zero minimum stability radius is described and some estimates
of the stability radius are given. These estimates are easily calculated from
the distance matrix for the case when the elements of the distance matrix are
rational numbers. Finally some other possible methods of determining the do-
main of stability are discussed. Later in paper [62] the notions of strong and
weak stability types were introduced for a linear scalar combinatorial problem,
that is, the problem on a system of subsets of a finite set with linear partial
criteria (minisum type). Bounds and formulas for the stability radii for these
stability types were found.

Let us consider a mathematical formulation of a linear scalar combinatorial
minisum problem. Suppose E = {e1, e2, . . . , en} be a finite set of n elements
and T = {t1, t2, . . . , tm}, m ≥ 2, be a finite family of subsets of the initial set
E, T ⊂ 2E. A nonnegative weights w(e1) = a1, w(e2) = a2, . . . , w(en) = an
are assigned to each element of E. For any trajectory ti ∈ T, i = {1, . . . ,m},
we define function, the length of the trajectory, which is determined by the
formula:

f(ti, A) =
∑
ej∈ti

aj.

Thus, linear trajectory problem is specified by a triplet E, T, A and function
f(ti, A). Under an optimal solution to the problem we understand trajectories
which have the minimal length. LetXm(A) be the set of all optimal trajectories
of the problem and a norm is defined in space Rm. Then the problem is stable
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if there exists ε > 0 such that for any vector B ∈ Rm, ||B|| ≤ ε, the inclusion
Xm(B) ⊆ Xm(A) holds.

Definition 3.1. An open ball Oρ(A) ∈ Rm with radius ρ and matrix A
in the center is called stability ball of A if for any matrix B ∈ Oρ(A) the
inclusion Xm(B) ⊆ Xm(A) is valid.

Definition 3.2. Let M be the set of all possible real numbers ρ such that
Oρ(A) is stability ball of A. Number ρ(A) = sup{ρ : ρ ∈M} is called stability
radius of A ∈ Rm if M ̸= ∅ and ρ(A) = 0 otherwise.

In paper [62] author introduced the first analytical expression for the sta-
bility radius of the minisum problem:

ρ(A) = min
j ̸∈Xm(A)

max
i∈Xm(A)

f(ti, A)− f(tj, A)
|ti|+ |tj| − 2|ti ∩ tj|

.

Analogous quantitative characteristics are found for scalar combinatorial
”bottle-neck” (minimax) problem in [43]. All mentioned results are obtained
under assumption that Chebyshev metric is defined in the space of problem
parameters.

Note that quantitative characteristics of stability of discrete optimization
problems are determined by the following three factors:

• class of the considered optimization problem

• restriction on perturbations of some problem parameters

• types of norms defined in the spaces of problem parameters

Thus deriving formula for stability radius for each class of discrete optimiza-
tion problems in the case of arbitrary norm and under possible restrictions on
problem parameters would be the most general result. It is evident that this
problem statement is too extensive and therefore meaningful results can be
obtained only if above mentioned factors are fixed or restricted. It seems quite
interesting to investigate stability of a problem for different norm types be-
cause various types of normalization allows to take into account specificity of
problem parameters perturbations in different ways.

Bounds for stability radius of scalar ”bottle-neck” problem in the case of
arbitrary norm were detected in [63]. Furthermore, in [41] a formula of stability
radius was obtained for special classes of norms, in particular for monotonic
norms. A situation is worse for a scalar linear combinatorial problem. Despite
the fact that bounds for the stability radius were obtained for a wide class of
norms [62], a formula for the stability radius is detected only for Chebyshev
norm [61] and special problem types such as minimum spanning tree problem
in the case of linear norm [42].
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Stability analysis of an approximate solution to a scalar boolean linear pro-
gramming problem was conducted in [64] for the case when all parameters of
the optimization model are known approximately and the Chebyshev norm
is specified in the space of problem parameters. Finalizing description of the
results concerning quantitative bounds of radii for different stability types of
discrete scalar problems one should mention that a general approach to ob-
taining formula of the stability radius for scalar combinatorial problem was
suggested in [44]. It is based on reduction of the problem of finding stability
radius to the mathematical programming problem of special type. In par-
ticular, let us fix the vector of parameters A in trajectory minisum problem
described above and consider B ∈ Rm. For an arbitrary pair of trajectories ti
and tj, f(ti, A) < f(tj, A), define the following optimization problem:

||B|| → min, f(ti, A+B) ≥ f(tj, A+B), B ∈ Rm. (3.1)

Let Xij and X ′ij be the sets of optimal and feasible solutions to the prob-
lem (3.1). As a characteristic of this problem we introduce a parameter
rij(A). Suppose by definition rij(A) = 0 if Xij = ∅ and rij(A) = ||B|| if
||B|| ∈ Xij. Thus, rij(A) characterizes the distance from A to the set of
matrices Vij(A) = {C : C ∈ Rm, f(ti, C) ≥ f(tj, C)} in Rm.

Now we consider an arbitrary non optimal trajectory ts and define the set
Ws(A) = {i : f(ti, A) < f(ts, A)}. If the following set:

Xis ∩
{ ∩

j∈Ws(A)
rjs(A)≤ris(A)

X ′js
}

is non empty then for the stability radius of the problem the following relation
holds [44]:

ρ(A) = min
j ̸∈Xm(A)

max
i∈Xm(A)

rij(A).

This relation is valid for any continuous function f(ti, A) and continuous
norm defined in Rm.

Now we provide a brief survey of some typical quantitative results and
approaches to vector discrete optimization problems.

Stability of efficient solutions to a vector discrete optimization problem
on a system of nonempty subsets of a finite set is considered in [17]. This
paper addresses the vector criterion of the problem consisting of an arbitrary
combination of partial criteria of the kinds minisum (linear), minimax (bottle
neck) and minimin. As a result, lower bounds for stability radii of Pareto
and Slater optimal solutions as well as formula for stability radius of a Smale
optimal solution were obtained. Analogous bounds and formulas were derived
under condition that only some elements of the matrix of initial parameters are
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perturbed. Later in works devoted to quantitative direction of stability analysis
formulas for radii of stability, quasistability and strong quasistability were
indicated for a more general problem with criteria

∑
-minimax and

∑
-minimin

in the case of the Chebyshev norm [38]. Attainable bounds of stability and
quasistability radii for vector combinatorial problem with minimax modules
criteria, that is, a modified version of bottle-neck criteria, were presented in
[31], a formula for the stability radius were found a little bit later in [22].

Attainable bounds and formulas of radii were also obtained for various sta-
bility types of a vector integer linear programming problem [32,33]. All these
investigations are concerned the case when only parameters of the objective
functions undergo perturbations. The case when criteria and constraints pa-
rameters are under perturbations was investigated just for the boolean pro-
gramming problem. In particular, in [64] a formula for the stability radius was
derived for the scalar linear boolean problem with a single optimal solution.
Analogous investigations, based on the technique proposed in [64], were con-
ducted for vector boolean problems. In [34] authors presented an approach
to deriving formulae and estimations of stability radii for vector 0 – 1 pro-
gramming problems with linear, linear absolute value and quadratic objective
functions and linear constraints.

One thing worth mentioning is that all the problems listed above were
considered for the Pareto principle of optimality. However various quantita-
tive characteristics of stability were also detected for the vector integer linear
programming problem with lexicographic principle of optimality (see, for in-
stance, [16]).

In all the works described above the stability analysis is made in the space
of problems parameters with the Chebyshev norm. Papers [24, 25] present
results concerning quantitative stability analysis of the vector combinatorial
optimization problems of finding the Pareto set for the case when linear norm
is defined in the space of problem parameters. Here linear functions and the
positive cuts of linear functions to the non negative semi-axis are considered
as vector objectives.

Finally a new approach to the investigation of the stability of vector discrete
optimization problems with parameterized principle of optimality is suggested
in [35]. In partial cases, the parameterized principle of optimality coincides
with Pareto, Slater, lexicographic or majority principle of optimality. Intro-
duced methods allow to conduct stability analysis for problems of different
nature simultaneously.
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3.1. Measure of stability for finite cooperative games

The concept of stability, useful in the analysis of many kinds of optimiza-
tion problems, can also be applied to some problems in game theory. Histori-
cally game theory has a lot in common with multicriteria optimization. While
sensitivity analysis in vector optimization mainly concentrates on studying be-
havioristic and invariant properties of the Pareto set, in game theory the main
object to study is a set of so-called equilibrium situations. The most common
concept of equilibrium is the Nash equilibrium (named after John Nash, who
proposed it in [81,82]). It is a solution concept of a game involving two or more
players, in which no player has anything to gain by changing only his/her own
strategy unilaterally. If each player has chosen a strategy and no player can
benefit by changing his/her strategy while the other players keep theirs un-
changed, then the current set of strategy choices and the corresponding payoffs
constitute a Nash equilibrium.

In the current work we consider the key object of the game theory, a finite
normal-form game of m players [80], where each player i, i ∈ Nm, m ≥ 2,
chooses a corresponding strategy xi in the set of strategies. This set is denoted
by Xi, Xi ⊂ R, 2 ≤ |Xi| < ∞. A realization of the game and its outcome
is uniquely determined by the strategy choice by each of the participants.
On the set of all situations X =

∏
i∈Nm

Xi, let linear payoff functions of the
players fi(x) = Cix, i ∈ Nm, be given, where Ci is the ith row of the matrix
C = [cij] ∈ Rm×m, x = (x1, x2, . . . , xm)

T , xj ∈ Xj, j ∈ Nm. As the result of
the game, which is referred to as a game with matrix C each player i gets, as
the payoff, fi(x), which (s)he wants to maximize with the use if the preference
relations.

In paper I the parametric concept of equilibrium (the generalized principle
of optimality) of a finite game which induces a set of generalized equilibrium
states is introduced. The parameter of this concept is the method of partition-
ing of the players into coalitions.

Definition 3.3. For an m-person game, let Nm be the set of all play-
ers. Any nonempty subset of Nm (including Nm itself and all the one-element
subsets) is called a coalition.

We assume that the personal relations among the players inside a coali-
tion are based on the Pareto principle. The introduced principle of optimality
allows to connect two classical notions: the Pareto optimality and Nash equi-
librium. In the m-person case, there are many possible coalitions and it means
that, if a coalition is to form and remain for some time, the different mem-
bers of the coalition must reach some sort of equilibrium. In other words we
are interested in the total utility which can be attained by any one of these
coalitions.
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Paper I is focused on conducting quantitative sensitivity analysis of equilib-
rium situation invariant to changes of game parameters. The main result that
was obtained here is a formula for stability radius of this situation in the case
of the Hölder metric lp, 1 ≤ p ≤ ∞. Earlier in [8, 27] analogues results were
obtained for radii of other stability types of optimal situations under different
generalized equilibrium concepts of a finite game in the case of Chebyshev
metric l∞, defined in the space of game parameters.

In order to present a formula for stability radius let us introduce the fol-
lowing notations.

A nonempty subset I ⊆ Nm is referred to as a coalition of players. Let
XI =

∏
i∈I Xi. For a situation x0 = (x01, x

0
2, . . . , x

0
m)

T and a coalition I, we set
x0I = (x0i1 , x

0
i2
, . . . , x0is)

T , where I = {i1, i2, . . . , is} ⊆ Nm, i1 < i2 < · · · < is,
that is, x0I ∈ XI . For any coalition I ⊆ Nm on the set of situations X of the
game with matrix C we introduce a binary relation Ω(C, I) by the rule

x Ω(C, I) x′ ⇔

{
CIx ≺

P
CIx

′ ∧ xJ = x′J , if I ̸= Nm,

Cx ≺
P
Cx′, if I = Nm,

where CI is a |I| × n matrix consisting of the rows of the matrix C whose
indices belong to the coalition I, and J = Nm\I.

Let s ∈ Nm, Nm =
∪

r∈Ns
Ir be a partition of the set of players Nm into s

coalitions, that is, Ir ̸= ∅, r ∈ Ns; p ̸= q ⇒ Ip ∩ Iq = ∅. By analogy with [79],
we define the set of generalized equilibrium, or, in other words, (I1, I2, . . . , Is)-
efficient situations of the game with matrix C as follows:

Qm(C, I1, I2, . . . , Is) = {x ∈ X : ∀r ∈ Ns ∀x′ ∈ X (x Ω(C, Ir) x
′)}.

Here and henceforth, the line above a binary relation means the negation
of this relation. Thus, the relations between players inside each coalition are
constructed on the base of the Pareto maximum. Therefore, the set of all Nm-
efficient situations Qn(C,Nm) (s = 1, that is, all players from one coalition) is
the Pareto set (the set of efficient situations)

Pm(C) = {x ∈ X : ∀x′ ∈ X (Cx ≺
P
Cx′)}

of the vector problem of maximization of the payoff functions fi(x), i ∈ Nm, on
the set of situations X. The rationality of any cooperative-efficient situation
x ∈ Pm(C) consists of the fact that the increase of the payoff of any player
is possible only at the sacrifice of decrease of the payoff of at least one of the
other players. It is obvious that the another extreme case where the game is
non-cooperative (s = m) any situation x ∈ Qn(C, {1}, {2}, . . . , {m}) is a Nash
equilibrium [82], that is, there exist no r ∈ Nm and x′ ∈ X such that

Crx < Crx
′ ∧ xNm\{r} = x′Nm\{r}.
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Thus, the rationality of the equilibrium situation x (individually efficient sit-
uation) consists of that any deviations of a player from it (while the other
players stick to it) gives him no benefit.

In the framework of our study, by the parametrization of the concept of
equilibrium of a finite game with matrix C is meant the introduction of a
characteristic of the binary relation of preference which allows, with the use
of partitioning of players into coalitions, to link the classical concepts of opti-
mality in the sense of Pareto and the equilibrium in the sense of Nash.

For any positive integer k ≥ 2 in the real space Rk, we introduce the Hölder
metric lp, 1 ≤ p ≤ ∞, that is, the norm of y = (y1, y2, . . . , yk) ∈ Rk is defined
by the formulas

||y||p =

(∑
i∈Nk

|yj|p
) 1

p

for 1 ≤ p <∞,

||y||∞ = max{|yj| : j ∈ Nk}.
Observe that for p = 1 and p =∞ the Hölder metric coincides with the linear
and Chebyshev metrics respectively. By the norm of a matrix, as mentioned
above, is meant the norm of the vector composed of all matrix elements.

By analogy with [23, 26, 27], by the radius of stability of a situation
x ∈ Qn(C, I1, I2, . . . , Im) in the Hölder metric lp, 1 ≤ p ≤ ∞, is meant

ρnp (x,C, I1, I2, . . . , Is) =

{
supΘ, if Θ ̸= ∅,
0, if Θ = ∅,

where

Θ = {ε > 0 : ∀B ∈ Ψp(ε) (x ∈ Qm(C +B, I1, I2, . . . , Is))}.

We introduce the operator of projecting the vector a = (a1, a2, . . . , an) ∈ Rn

onto the nonnegative orthant a+ = [a]+ = (a+1 , a
+
2 , . . . , a

+
n ), where

a+i = [ai]
+ = max{0, ai}.

The main result is formulated in the following theorem.
Theorem 3.1. [I] For any partition (I1, I2, . . . , Is), s ∈ Nm, m ≥ 2, of the

set of players Nm into s coalitions, the radius of stability of an (I1, I2, . . . , Is)-
efficient situation x0 = (x01, x

0
2, . . . , x

0
m) ∈ Qn(C, I1, I2, . . . , Is), C ∈ Rm×m, in

the Hölder metric lp, 1 ≤ p ≤ ∞, obeys the formula

ρnp (x
0, C, I1, I2, . . . , Is) = min

r∈Ns

min
z∈XIr\{x0

Ir
}

||[Cr(x0Ir − z)]
+||p

||x0Ir − z||q
. (3.2)

For brevity, let ρ and φ denote the left-hand and the right-hand sides of
formula (3.2) respectively. First the inequality ρ ≥ φ is proved by the reducio-
ad-absurdum method. Then it is proved that ρ ≤ φ. In general proofs of both

43



inequalities are based on the definition of φ, the outer stability of the Pareto
set and the classical Hölder inequality.

The complete proof of the theorem can be found in publication I.

3.2. Stability radius and its calculation

Now let us consider questions concerning calculation of stability radii. Re-
sults of works [41, 43,63] give evidence that straightforward calculation of the
derived formulas for stability radii implies exhaustive search even in the scalar
case. Therefore, a question arises: what is a benefit of founding these radii?
The first principle answer to this question is following. In the case when sta-
bility radius equals zero it detects a solution not only to the initial problem
but for an infinite sequence of problems with parameters from some neighbor-
hood of the initial problem parameters. Sure the radius of this neighborhood
is equal to the stability radius. Obviously even if we have a very fast algorithm
for solving each of these problems, it is impossible to solve so many problems
in finite time.

The second answer to the question formulated above is that for a wide
class of problems it is possible to derive algorithms for calculation of stability
radii exploiting and continuing the same procedures which were proposed for
solving an initial problem [9]. Thereby we can improve search by considering
the part of solutions whose structure may be defined by problem conditions
instead of entire set of solutions. Based on this idea, some classes of scalar
combinatorial problems for which algorithm for stability radius calculation has
the same complexity as algorithm for solving the problem itself were revealed
in [63].

Papers [9,47] are devoted to investigation of interrelation between complex-
ity of solving combinatorial problems and complexity of calculation stability
radii. Particularly, classes of polynomially solvable problems for which there
exists efficient algorithm for stability radius calculation are revealed in these
works. Conditions under which stability radius of an approximate solution to
scalar Boolean problem can be obtained in polynomial time, are detected in
paper [95]. Nevertheless there exists a number of problems for which the cal-
culation of stability radius is significantly more complex than solving problem
itself. For instance, it was proved that the problem of stability radius calcula-
tion is NP-complete for the problem of determining the shortest path in digraph
without cycles of negative weight [40]. Paper [73] discusses a method for reduc-
ing computational complexity of founding stability radius bounds for solutions
to scalar combinatorial problems. This method is based on using information
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about k-best solutions. One should mention that algorithms for calculation of
stability radii are derived only for scalar problems. Now questions of obtaining
analogous algorithms for vector discrete optimization problems are still open.

Publication V addresses the issue of deriving algorithm for calculation of
stability radius of solution to the well known shortest path (SP) problem.

We can formulate SP as a linear programming problem by first defining
the cost vector C = (c1, c2, . . . , cn) ∈ Rn

+, ci > 0, n is the number of edges in
the considered graph G. Denote by X ⊆ 2E

n
, E = {0, 1}, the set of feasible

solutions, that is, the set of all valid directed paths P = (ei1 , ei2 , . . . , eik) from
source node s to sink node t. Then the decision variables specify all possible
paths in graph G:

xi =

{
1, if ei ∈ P,
0 otherwise.

(3.3)

Let us define by ei → j an edge for which vertex i is a tail and vertex j is a
head and by ei ← j an edge for which vertex j is a tail and vertex i is a head.
Then boolean linear programming formulation of SP is given as follows:∑

ei∈A

cixi → min, (3.4)

subject to ∑
ei:ei→j

xi −
∑

ei:ei←j

xi =

 1, if j = s,
−1, if j = t,
0 otherwise.

(3.5)

xi ∈ {0, 1}. (3.6)

Here (3.5) is classical network flow balance constraints and (3.6) is Boolear-
ity constraints which define the set of feasible solutions (paths).

The considered problem with positive costs can be easily solved by Dijkstra’s
algorithm [12], which processes nodes in nondecreasing order of their actual
distances from the source node. At the beginning all nodes are given an infinite
distance except the source which is given a distance 0. At each step we choose
the next unlabeled node which is nearest to the source and mark it, while
updating the optimal distance to all its neighbors. The optimal distance of a
neighbor is updated only if reaching it from the current labeling node gives
a total path length that is shorter then its current distance. Doing so the
algorithm constructs the so-called shortest path tree, which is a spanning tree
rooted at the source node s where the shortest paths to all other nodes are
determined. The shortest path to each node is then found by tracing the
predecessor iteratively back to the source.

The computational complexity of the problem of determining the stability
radius for a large class of 0 – 1 programming and combinatorial optimization
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problems (including the traveling salesperson problem (TSP)) was considered
in [47]. There it was shown that the stability radius calculation problem is
as hard as the optimization problem itself. Consequently, the stability radius
calculation problem for the TSP is NP-hard. Therefore, in general it is not
possible to obtain this measure without spending a lot of computation time.

The methods derived in [9] and [73] have some obvious drawbacks. The
exact method proposed in [9] to be efficient requires the initial problem to be
polynomially solvable while the technique introduced in [73] is probably not
the most effective way because it assumes that the k-best TSP has already
been solved. Therefore, it is quite reasonable to apply modern heuristics in
order to derive faster algorithms for the stability radius calculation.

Despite in many classical applications metaheuristic based approaches are
used to tackle challenging NP-hard problems, they can also be used to at-
tack polynomially solvable problems. One cannot hope that they outperform
sophisticated problem-specific algorithms for well-studied classes of polyno-
mially solvable combinatorial optimization problems, however the usage of
metaheuristic methods could be especially beneficial on large size instances.
Metaheuristic methods could also work well for the cases with higher degree of
the polynomial representing complexity of some known exact method (in our
case the method of [9] gives complexity O(m4) with respect to the number of
vertices in the considered graph).

The choice of the shortest path problem to test the main ideas is not occa-
sional. First of all, the shortest path problem is a well known combinatorial
optimization problem, and the problem of finding the stability radius for this
problem can be solved polynomially, that is, we could relatively easy get the
exact solution for small and moderate size instances, and compare it with the
solution obtained by our approach. Secondly, the topology of the shortest
path problem is close in some sense to the topology of the traveling salesman
problem, so some heuristic methods being tested and worked well for the first
problem have good chance to show similar performance for the other problem
and vice versa. Thus, in this work we are making a sort of pilot analysis of
effectiveness and correctness of the basic ideas with potential target to apply
the similar approach to more difficult optimization problems, for instance, the
traveling salesperson problem, for which there no polynomial algorithms of
finding the stability radius is known.

Evolutionary algorithms [11, 39, 108] are adaptive metaheuristic search al-
gorithms based on the evolutionary ideas of natural selection and genetics.
As such they represent an intelligent exploitation of a random search used to
solve optimization problems. Although randomized they utilize historical in-
formation to direct the search into the region of better performance within the
search space. At each generation, a new set of approximations is created by the
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process of selecting individuals according to their level of fitness in the prob-
lem domain and breeding them together using the evolution of populations of
individuals that are better suited to their environment than their ancestors,
just as in natural selection.

In paper V, non-dominated sorting genetic algorithm (NSGA-II) [11] based
approach is proposed for calculating stability radius of an optimal solution to
the single criterion shortest path problem. The key idea of our method is de-
fractionalization of the objective by means of transforming a nonlinear single
objective problem into biobjective problem with linear objectives. Such trans-
formation is performed locally (within the genetic population), that makes the
problem of finding the approximation of the Pareto frontier in biobjective case
realistic compare to the case if such linearization had been made globally, that
is, with respect to the original set of feasible solutions. This explains and mo-
tivates our approach compare to other possible methods such as for example
applying genetic algorithm directly to the single objective problem with non-
linear function, which will require some efficient nonlinear optimization tool
to deal with.

Thus, in order to apply a non-dominated sorting based multiobjective evolu-
tionary algorithm (or NSGA-II) proposed in [11] to calculation of the stability
radius we suggest to treat the minimization of fraction

ρ(x,C) = min
x′∈X\{x}

∑
i∈Nn

ci(x
′
i − xi)

∥x′ − x∥1
(3.7)

as the following biobjective discrete optimization problem:

f1 =
∑
i∈Nn

ci(x
′
i − xi)→ min

x′∈X\{x}

f2 = ∥x′ − x∥1 → max
x′∈X\{x}

The Pareto set of the problem is formally defined as follows:

P 2(C) = {x′ ∈ X | ̸ ∃x ∈ X
(
f1(x,C) ≤ f1(x

′, C) ∧

f2(x,C) ≥ f2(x
′, C)

)
∧
(
f1(x,C) ̸= f1(x

′, C)∨ f2(x,C) ̸= f2(x
′, C)

)
}. (3.8)

In other words, a feasible solution is Pareto efficient if there is no feasible
solution which strictly dominates by one of the objectives and not worse by
any other. Here the first objective function is numerator of fraction (3.7)
which should be minimized and the second objective function is denominator
of fraction (3.7) which should be maximized in order to obtain the minimum
value of fractional ratio (3.7). Thus it is evident that the value of stability
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radius corresponds to one of the points from Pareto frontier which delivers
minimum to the fraction.

The details of the coding representation of a solution and developed oper-
ators of NSGA-II adaptation for stability radius calculation are presented in
publication V. This work is the first attempt to derive an alternative heuristic
approach to the stability radius calculation. The shortest path problem was
chosen for testing based on the fact that the method proposed by Chakravarti
and Wagelmans [9] runs in polynomial time if the optimization problem itself
is polynomially solvable. Thus, we can estimate accuracy of results of our
approach by comparison with those of the exact method. As it was shown
above, theoretical time complexity of adapted NSGA-II is competitive with
complexity of the algorithm proposed by Chakravarti and Wagelmans. More-
over NSGA-II complexity can be reduced by decreasing the number of gener-
ations (K), however this could affect accuracy of solutions.

The apparent computational efficiency of the proposed algorithm is ex-
plained by the following two facts: at the beginning of the solution process,
breadth first search procedure provides diversity in the initial population and
chosen size of the population, which is equal to the number of nodes, is enough
to generate good solutions and, in addition, keeps memory and time; combin-
ing three different crossover operators lead to more exhaustive search allowing
to find solutions faster.

Preliminary comparisons showed that the convergence rate of the adapted
NSGA-II was good for almost all random scenarios of the shortest path problem
that were tested, though the number of tested instances could have been larger.
This study encourage us to believe that our approach has some real potential.
In addition, the exact algorithm is not polynomial for NP-hard problems,
while NSGA-II has still complexity of O(Km2) since it does not depend on
complexity of the original problem. Further, our emphasis is on applying
algorithm working on similar principles as adapted NSGA-II for calculating
stability radius for NP-hard combinatorial optimization problems, for instance,
TSP, and multi-criteria combinatorial optimization problems.

3.3. Accuracy and robustness analysis

Robust optimization is a specific and relatively novel methodology for han-
dling optimization problems with uncertain data. Since the early 1970s there
has been an increasing interest in the use of robust optimization models. By
itself, the robust optimization methodology can be applied to every generic op-
timization problem where one can separate numerical data (that can be partly
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uncertain and are only known to belong to a given uncertainty set) from prob-
lem’s structure (that is known in advance and is common for all instances of
the uncertain problem). Thus it appears to be important to identify classes of
models and their solutions which play against the worst-case (in some sense) re-
alization of input parameters. It is commonly accepted fact nowadays that any
optimization problem arising in practice can hardly be adequately formulated
and solved without the usage of results of the theory of robustness. Authors of
most papers devoted to robust optimization attempt to answer the following
closely related questions: How can one represent uncertainty? What is a ro-
bust solution? What could be a proper robustness measure? How to calculate
robust solutions? How to interpret worst case realization under uncertainty?
and many others. Different answers to these questions lead to different research
approaches and investigation directions (see, e.g. [3, 6, 7, 52, 53]).

The paradigm of robust optimization can be easily explained with linear
programming model (1.2) – (1.4) – the generic optimization problem that is
the most frequently used in applications and whose structure and data are
clear. In robust optimization, an uncertain linear programming problem is
defined as a collection

{min
x
{cx : Ax = b} : (c, A, b) ∈ U}

of LP programs of a common structure with the data (c, A, b) varying in a given
uncertainty set U. The latter summarizes all information on the ”true” data
that is available when solving the problem. Then the solution that remains
feasible for the constraints, whatever the realization of the data within U,
is called robust feasible. As applied to the objective, ”worst-case-oriented”
philosophy makes it natural to quantify the quality of a robust feasible solution
x by the guaranteed value of the original objective, that is, by its largest value
sup{cx : (c, A, b) ∈ U}. Thus, the best possible robust feasible solution is the
one that solves the optimization problem

min
x,t
{t : cx ≤ t, Ax = b ∀(c, A, b) ∈ U}. (3.9)

The latter problem is called the robust counterpart (RC) of the original un-
certain problem. The feasible/optimal solutions to the RC are called robust
feasible/robust optimal solutions to the uncertain problem. The robust opti-
mization methodology, in its simplest version, proposes to associate with an
uncertain problem its robust counterpart and to use, as ”real life” decisions,
the associated robust optimal solutions.

In decision making, different criteria can be used to select among robust
solutions (decisions). The one described above is called the minimax criterion.
It necessarily results in conservative decision, based on an anticipation that
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the worst might well happen. Another possible criterion is that of minimax
regret [53,55], with two variations depending on how ”regret” is defined. Here
the first step is to compute the ”regret” associated with any possible realiza-
tion of problem parameters. ”Regret” can be defined as the difference between
the resulting benefit (cost) to the DM and the benefit (cost) from the optimal
decision for an underlying model. Alternatively, ”regret” can be defined as
the ratio of the previously mentioned quantities, thus serving as a measure
of the percentage deviation of the robust solution (decision) from the optimal
solution for any given input data scenario. The minimax criterion is then ap-
plied to the regret values, so as to choose the decision with the least maximum
regret. The work of Kouvelis and Yu [55] summarizes the state-of-art in ro-
bust optimization up to 1997 and provides a comprehensive discussion of the
motivation for the minimax regret approach and various aspects of applying
it in practice.

Some attempts to study a quality of the problem robust solution are con-
nected with concepts of stability and accuracy functions, which were originally
proposed in [66,67] for scalar combinatorial optimization problems. Later, the
results were extended for the case of multicriteria combinatorial optimization
problems with Pareto and lexicographic optimality principles [72].

Paper IV continues investigations of different aspects of sensitivity analysis
for different types of discrete optimization problems with various partial crite-
ria and optimality principles [16,34,72,75]. Here we consider a strategic game
in normal form with m ≥ 2 players. We assume that |Xi| = 2 is a finite set of
(pure) strategies of the player i ∈ Nm = {1, 2, ...,m}. Thus, each player has a
choice of 2 antagonistic strategies to play. A vector of payoff functions (payoff
profile)

f(C, x) := (f1(C, x), ..., fm(C, x))
T

consists of individual payoff functions fi(C, x) for each player i ∈ Nm, which
are defined as linear functions on the set of solutions X:

fi(C, x) := Cix.

Here Ci is ith row of matrix C = [cij] ∈ Rm×m
+ , x := (x1, x2, ..., xm)

T , xi ∈ Xi,
i ∈ Nm.

Define x̄i = 1 if xi = 0, and x̄i = 0 otherwise. For any given solution
x∗ ∈ X, a set of solutions accessible by changing the strategy of player i only
is defined as:

Wi(x
∗) := Xi ×

∏
j∈Nm\{i}

x∗j = {(x∗1, x∗2, ..., x∗i , ..., x∗m), (x∗1, x∗2, ..., x̄∗i , ..., x∗m)}.

Thus, if (x∗1, x
∗
2, ..., x̄

∗
i , ..., x

∗
m) is feasible, then Wi(x

∗) ∩ X, the set of feasible
solutions accessible by changing the strategy of player i, contains two solutions,
otherwise a single solution (x∗1, x

∗
2, ..., x

∗
i , ..., x

∗
m) belongs to Wi(x

∗) ∩X only.
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To define uncertainty in the game theory model described above, we will
assume that the set of game solutions X is fixed but the original payoff matrix
C0 can change or it is given with errors. Let S(C0) be a set of all possible
realizations of the matrix C0, called the scenarios. Let us also assume that
C ∈ Rm×m

+ for any C ∈ S(C0), thus we guarantee that fi(C, x) > 0 for all
x ∈ X and i ∈ Nn. This is due to our assumption that at least one player
always chooses strategy 1 to play, so the game solution x = 0(m) := (0, 0, ..., 0)T

is not feasible. We follow the approach that define robustness measure as a
maximum relative error (worst-case relative regret) of the solution considered
over the set of all scenarios. Our aim is to construct a new objective that
incorporates possible worst realization of uncertain parameters. In [55] one
can find examples of different robustness measures and wide discussion on
related complexity issues. While dealing with the multiobjective case, the
definition of robustness measures must be adapted to reflect the specific of the
multiple objective optimality principle chosen.

For given x, x̃ ∈ X, fixed index (player) i ∈ Nm and arbitrary C ∈ Rm×m
+

denote the relative deviation

∆i(C, x̃, x) :=
fi(C, x̃)− fi(C, x)

fi(C, x)
. (3.10)

Definition 3.4. For any given solution x̃ ∈ X, the worst-case relative
regret (or robust deviation in other terminology) of this solution on the set
S(C0) is defined as follows:
in Pareto equilibrium case:

REGP (S(C
0), x̃) := max

C∈S(C0)
max
x∈X

min
i∈Nm

∆i(C, x̃, x); (3.11)

in Nash equilibrium case:

REGN(S(C
0), x̃) := max

C∈S(C0)
max
i∈Nm

max
x∈Wi(x̃)∩X

∆i(C, x̃, x). (3.12)

For the game with matrix C, we denote Pm(C) and Nm(C) the set of Pareto
and Nash equilibria, respectively.

The difference in REGN(S(C
0), x̃) and REGP (S(C

0), x̃) reflects the differ-
ence in Pareto and Nash equilibria principles. While in Pareto case, the given
solution x̃ must be compared with all other feasible solutions (including the
solution x̃ itself to guarantee that REGN(S(C

0), x̃) = 0 if x̃ ∈ Pm(C0)), in
the Nash case it is sufficient to compare it with solutions x ∈ Wi(x̃)∩X only.
Both REGN(S(C

0), x̃) and REGP (S(C
0), x̃) give quantitative expressions to

measure the relative distance how far the solution x̃ from optimality under the
worst case scenario, that is, the scenario which delivers maximum over the set
of all possible scenarios S(C0).
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In [67], [71] it was proposed to measure the quality of solutions by means
of the so-called accuracy function. In this paper we introduce similar function
by analogy with [83].

Definition 3.5. In case of Pareto equilibria for x∗ ∈ X and a given matrix
C ∈ Rm×m

+ , the relative error of this solution is defined as:

εP (C, x
∗) := max

x∈X
min
i∈Nm

∆i(C, x
∗, x). (3.13)

Similar in case of Nash equilibria for x∗ ∈ X and a given matrix C ∈ Rm×m
+ ,

the relative error of this solution is defined as:

εN(C, x
∗) := max

i∈Nm

max
x∈Wi(x∗)∩X

∆i(C, x
∗, x). (3.14)

The difference in definitions of εP,N(C, x
∗), reflects the difference in the

corresponding definitions of equilibria situations.
Observe that for an arbitrary C ∈ Rm×m

+ we have εP,N(C, x
∗) ≥ 0. If

εP (C, x
∗) > 0 (εN(C, x

∗) > 0), then x∗ ̸∈ Pm(C) (x∗ ̸∈ Nm(C)) and this
positive value of the relative error may be treated as a measure of inefficiency of
the strategy profile x∗ for the game with matrix C. The equality εN(C, x

∗) = 0
automatically implies that x∗ ∈ Nm(C). So, for the solution x∗ to belong to
Nm(C) it is necessary and sufficient to have εN(C, x

∗) = 0.
In the Pareto case the situation is a bit more complicated. The equality

εP (C, x
∗) = 0 formulates in general only necessary condition for x∗ to be

Pareto equilibrium in the game with matrix C, that is, εP (C, x
∗) = 0 does not

guarantee that x∗ ∈ Pm(C).
From now we assume that some originally specified matrix

C0 = {c0ij} ∈ Rm×m
+ defines the original problem data. In the following

we are interested in the maximum value of the errors εP (C, x
∗) and εN(C, x

∗)
when the matrix C belongs to some specified set, the so-called set of perturbed
matrices. We are interested in relative perturbations of the elements of C0,
and the quality of a given solution x∗ is described by the so-called accuracy
function. The value of the accuracy function for a given δ ∈ [0, 1) is equal
to the maximum relative error of the solution x∗ under the assumption that
the weights of the elements are perturbed by no more than δ · 100% of their
original values specified by matrix C0. Notice that if we compare two different
equilibria for the game with matrix C from the point of view of their accuracy
on data perturbation, then the smaller values of the accuracy function are
more preferable. Thus, accuracy function may be used to evaluate the quality
of the game solutions from the accuracy point of view.

For a given δ ∈ [0, 1), consider a set of perturbed matrices

Θδ(C
0) := {C ∈ Rn×n

+ : |cij − c0ij| ≤ δ · c0ij, i ∈ Nm, j ∈ Nm}. (3.15)
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Definition 3.6. For x∗ ∈ X and δ ∈ [0, 1), the value of the accuracy
function in Pareto case is defined as:

AP (C
0, x∗, δ) := max

C∈Θδ(C0)
εP (C, x

∗). (3.16)

For x∗ ∈ X and δ ∈ [0, 1), the value of the accuracy function in Nash case is
defined as:

AN(C
0, x∗, δ) := max

C∈Θδ(C0)
εN(C, x

∗). (3.17)

Notice that these definitions imply equivalence between accuracy functions
and corresponding robust deviations, respectively. However, recall, that the
robust deviation measures were used as a tool of constructing a new robust
optimization counterpart problem and to find a robust solution, whereas accu-
racy functions are used as a tool of postoptimal analysis to express numerically
the quality of the given solution under possible perturbations of initial data.
Thus, we get

AP,N(C
0, x∗, δ) = REGP,N(S(C

0), x∗),

if the set of scenarios S(C0) is defined as the set of perturbed matrices Θδ(C
0)

according to (3.15). This means that the properties of accuracy functions can
be used in the solution robustness analysis.

For given x, x∗ ∈ X, fixed index i ∈ Nn and C0 ∈ Rn×n
+ denote

Ξi(C
0, x∗, x, δ) :=

C0
i (x
∗ − x) + δ

∑
j∈Nm

c0ij|x∗j − xj|

(1− δ)C0
i x

. (3.18)

The following theorem gives a formulae for calculating value of the accuracy
function.

Theorem 3.2. [IV] The following statements are true.

(i) For x∗ ∈ X and δ ∈ [0, 1), the accuracy function can be expressed by the
formula:

AP (C
0, x∗, δ) = max

x∈X
min
i∈Nm

Ξi(C
0, x∗, x, δ). (3.19)

(ii) For x∗ ∈ X and δ ∈ [0, 1), the accuracy function can be expressed by
the formula:

AN(C
0, x∗, δ) = max

i∈Nm

max
x∈Wi(x∗)∩X

Ξi(C
0, x∗, x, δ). (3.20)

Notice that analytical formula (3.20) specified in Theorem 3.2 can be com-
puted relatively easy. At the same time analytical formula (3.19) specified in
Theorem 3.2 is based on enumerating all feasible solutions, so in general it is
hard to be computed. Therefore, we provide some attainable lower and upper
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bounds for the Pareto accuracy function which are computationally more at-
tractive. Next proposition gives an upper bound for the accuracy function of
x∗ ∈ X in the case of Pareto optimality principle.

Proposition 3.1. [IV] For x∗ ∈ X and δ ∈ [0, 1),

AP (C
0, x∗, δ) ≤ 2δ

1− δ
+

1 + δ

1− δ
· min
i∈Nm

Ai(C
0, x∗, 0). (3.21)

Now it becomes clear that calculating the upper bound specified by Propo-
sition 3.1 is as hard as calculating m times Ai(C

0, x∗, 0), whose calculating
turns into solving the original single objective problem.

Observe that similar upper bound were obtained in the case of single ob-
jective combinatorial optimization problem in [69].

The following corollary specifies the upper bound for the accuracy function
of the originally Pareto equilibrium x∗ ∈ Pm(C0).

Corollary 3.1. For x∗ ∈ Pm(C0) and δ ∈ [0, 1),

AP (C
0, x∗, δ) ≤ 2δ

1− δ
. (3.22)

Corollary 3.2. For x∗ ∈ Nm(C0) and δ ∈ [0, 1), the equality
AN(C

0, x∗, δ) = 0 holds.
Now consider the case when x∗ is an equilibrium in the original game with

matrix C0 implying AP,N(C
0, x∗, 0) = 0. It is of special interest to know

the extreme values of δ for which AP,N(C
0, x∗, δ) = 0, because these values

determine maximum norms of perturbations which preserve the property of
the given solution to be an equilibrium. These values are close analogues of
the so-called stability radius introduced earlier for single and multiple objective
combinatorial optimization problems (see, e.g., [16]). Formally, the accuracy
radii RP,N(C

0, x∗) are defined in the following way:

RP,N(C
0, x∗) = sup

{
δ ∈ [0, 1) : AP,N(C

0, x∗, δ) = 0
}
. (3.23)

If these radii are equal to zero, then this means that there exist arbitrary
small perturbations of the original game matrix C0 such that the initial equi-
librium x∗ loses its property of being equilibrium under very small pertur-
bations. Otherwise, the solution x∗ remains equilibrium for any game with
matrix C ∈ Θδ(C

0), δ < RP,N(C
0, x∗). The next theorem is a straightforward

consequence of Theorem 3.2
Theorem 3.3. [IV] The following statements are true.

(i) For x∗ ∈ Pm(C0), the Pareto accuracy radius can be expressed by the
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formula:

RP (C
0, x∗) = min

{
1, min

x∈X\{x∗}
max
i∈Nm

C0
i (x− x∗)∑

j∈Nm

c0ij|xj − x∗j |

}
. (3.24)

(ii) For x∗ ∈ Nm(C0), the Nash accuracy radius can be expressed by the
formula:

RN(C
0, x∗) = min

{
1, min

i∈Nm

min
x∈Wi(x∗)∩X\{x∗}

C0
i (x− x∗)∑

j∈Nm

c0ij|xj − x∗j |

}
= 1, (3.25)

i.e. x∗ ∈ Nm(C0) is accurate (i.e. RN(C
0, x∗) ≥ 0).

Now let us consider the case when only one column in matrix C0 is uncer-
tain, while all the other columns are kept unchanged. It corresponds to the
situation in the game, when all players are uncertain about their own costs
associated with the strategy choice of a given player. Assume j be the uncer-
tain column in the original matrix C0, so we denote the original matrix C0[j],
where notation [j] is used to indicate that column j is uncertain. Then for a
fixed δ ∈ [0, 1) we have

Θδ(C
0[j]) :=

{
C ∈ Rm×m

+ :(
|cij − c0ij| ≤ δ · c0ij, i ∈ Nm

)
&
(
cik = c0ik, k ∈ Nm\{j}, i ∈ Nm

)}
. (3.26)

For x∗ ∈ X and δ ∈ [0, 1), the definition of the accuracy function in this
case transforms into the following:

AP,N(C
0[j], x∗, δ) := max

C[j]∈Θδ(C0[j])
εP,N(C[j], x

∗), (3.27)

where εP,N(C[j], x
∗) are defined according to (3.13) and (3.14).

Moreover,

AP,N(C
0[j], x∗, δ) = REGP,N(Θδ(C

0[j]), x∗).

Now we are interested in the maximal level of perturbation not violating
robustness of a given optimal solution.

Definition 3.7. For a given x∗ ∈ Pm(C0) (x∗ ∈ Nm(C0)) the robustness
tolerances in Pareto and Nash cases are defined as follows:

trP,N(C
0[j], x∗) :=

sup
{
δ ∈ [0, 1) : AP,N(C

0[j], x∗, δ) ≤ AP,N(C
0[j], x, δ) ∀x ∈ X

}
.
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Notice that the same definition can be formulated in terms of relative regrets
as follows

trP,N(C
0[j], x∗) :=

sup
{
δ ∈ [0, 1) : REGP,N(Θδ(C

0[j]), x∗) ≤ REGP,N(Θδ(C
0[j]), x) ∀x ∈ X

}
.

The superscript r is used to emphasize that we are dealing with robustness
tolerances, which differ from usual tolerances.

Robustness tolerances were first mentioned in [70] for single objective lin-
ear generic combinatorial optimization problem. Our approach develops the
idea of [70] by extending it to the multiobjective case under game theoretic
formulation.

One of the main results obtained in IV is presented in the following theorem:
Theorem 3.4. [IV] Assume that Pm(C0) = {x∗}. Then the robustness

tolerance can be computed according to the following expressions:

if x∗j = 1, then

trP (C
0[j], x∗) = 1;

if x∗j = 0 then

trP (C
0[j], x∗) = min

1,

√
(C0

î
x̂)2 − (C0

î
x∗)2

c0
îj

 ,

where x̂ := arg max
x′∈X:x′

j=1
min
i∈Nm

C0
i x
′, î = arg min

i∈Nm

C0
i x̂.

Similar result can be obtained in the case of Nash optimality
Corollary 3.3. Assume that x∗ ∈ Nm(C0). Then

trN(C
0[j], x∗) = 1.

The results presented in this section suggest that even small changes or
inaccuracies in estimating payoff function coefficients may have significant in-
fluence on the set of Pareto equilibria. Moreover, some situations being initially
equilibria, cannot be considered ”robust”, because very small changes of data
destroy their properties of being equilibria.
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Chapter 4. Interactive optimization approach to multicriteria
discrete optimization problems

This Chapter discusses an interactive approach to solving multicriteria vari-
ant of a p-median location problem. In interactive methods, the decision maker
(DM) works together with an analyst of an interactive computer program. One
can say that the analyst tries to determine the preference structure of the de-
cision maker in an interactive way. A solution pattern is formed and repeated
several times. After every iteration, some information is given to the decision
maker and (s)he is asked to answer some questions or provide some other type
of information. The working order in these methods is: analyst, DM, analyst,
DM etc.

After a reasonable (finite) number of iterations every interactive method
should yield a solution that the decision maker can be satisfied with and/or
convinced that no considerably better solution exists. The basic steps in in-
teractive algorithms can be expressed as

• find an initial feasible solution,

• interact with the decision maker, and

• obtain a new solution (or a set of new solutions). If the new solution (or
one of them) or one of the previous solutions is acceptable to the decision
maker, stop. Otherwise, go to the previous step.

Interactive methods differ from each other by the form in which information
is given to the decision maker, by the form in which information is provided by
the decision maker, and how the problem is transformed into a single objective
optimization problem (see, e.g., [76, 77,101]).

The traditional approach to solving multicriteria optimization problems
with Pareto principle of optimality is by scalarization. It involves formulating
a single objective problem that is related to the multicriteria problem by means
of a real-valued scalarizing function typically being a function of the individ-
ualized or partial objective functions of the multicriteria problem, auxiliary
scalar or vector variables, and/or scalar or vector parameters. Sometimes the
feasible set of the multicriteria optimization problem is additionally restricted
by new constraint functions related to the objective functions of the multicri-
teria problem and/or the new variables introduced. Two major requirements
are set for a scalarizing function in order to provide method completeness [91]:

• every solution found by means of scalarization should be (weakly) Pareto
optimal, and

• it should be able to cover the entire set of Pareto optimal solutions.
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One of the widely spread approaches of dealing with multiple conflicting ob-
jectives involves constructing and optimizing a so-called achievement scalar-
izing function (ASF). This method was introduced in [105] and based on a
reference point of aspiration level. The ASF minimizes the distance from a
reference point, specified by DM, to the feasible region, if the reference point
is unattainable, or maximizes the distance otherwise. The distance is defined
by some appropriate metric introduced in the objective space. Sometimes
the DM may want more advanced scalarization mechanisms. In [84] a pa-
rameterized version of the ASF was proposed. Authors introduced an integer
parameter in order to control the degree of metric flexibility varying from L1

to L∞. It was proven that the parameterized ASF is able to detect any Pareto
optimal solutions. Moreover, conditions under which the Pareto optimality
of each solution produced by the parameterized ASF is guaranteed was also
obtained in [84].

This work investigates applicability of interactive optimization approach
based on the parameterized ASF to multicriteria p-median location problem.
We introduce a new way to manage an interactive process by changing weight-
ing coefficients of scalarizing functions. The decision making procedure is
simulated for three objective p-median location problem in order to illustrate
how synchronous usage [77] of scalarizing functions may be potentially advan-
tageous for interactive process.

4.1. Parameterized achievement scalarizing function

Let X be an arbitrary set of feasible solutions or a set of decision vectors.
Let a vector valued function f : X → Rm consisting ofm ≥ 2 partial objective
functions be defined on the set of feasible solutions:

f(x) = (f1(x), f2(x), . . . , fm(x)).

Without loss of generality we assume that every objective function is subject
to be minimized on the set of feasible solutions:

min
x∈X

fi(x), i ∈ Nm = {1, 2, . . . ,m}. (4.1)

We assume that

1. every objective function fi is a lower semicontinuous function;

2. X is a nonempty compact set.
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Let us denote by

M i(X) = argmin
x∈X

fi(x), i ∈ Nm

a set of minima of the ith objective function. Evidently, if

m∩
i=1

M i(X) ̸= ∅,

then there exists at least one solution which delivers a minimum for all ob-
jectives. Such a solution can be called an ideal solution. An optimization
problem which does not contain ideal solutions is called non-degenerate [84]
and objectives are at least partly conflicting. Simultaneous optimization of
several objectives for non-degenerate multiobjective optimization problems is
not a straightforward task, and we need to define optimality for such problems.
In what follows, we consider non-degenerate problems.

Here we use the traditional definitions of the Pareto and Slater principles
of optimality given in introduction section. Under the assumptions 1–2 men-
tioned earlier in the problem formulation, we know that the set of Pareto
optimal solution is non-empty, that is, there always exists at least one Pareto
optimal solution [91]. Obviously, the set of Pareto optimal solutions is a subset
of weakly Pareto optimal solutions.

Lower and upper bounds on objective values of all Pareto optimal so-
lutions are given by the ideal and nadir objective vectors f I and fN ,
respectively. The components fi of the ideal (nadir) objective vector
f I = (f I

1 , . . . , f
I
m)(f

N = (fN
1 , . . . , f

N
m )) are obtained by minimizing (maximiz-

ing) each of the objective functions individually subject to the set of Pareto
optimal solutions:

f I
i = min

x∈Pm(X)
fi(x), i ∈ Nm,

fN
i = max

x∈Pm(X)
fi(x), i ∈ Nm.

In reference point based methods (see, e.g., [105–107]), the DM specifies a
reference point fR consisting of desirable or reasonable aspiration levels fR

i for
each objective function fi, i ∈ Nm. The reference point only indicates what
kind of objective function values the DM prefers.

A certain class of real-valued functions sR : Rm → R, referred to as achieve-
ment scalarizing functions, can be used to scalarize a multiobjective opti-
mization problem. Achievement scalarizing functions have been introduced
by Wierzbicki in [105]. The scalarized problem is given by
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min
x∈X

sR(f(x)). (4.2)

Pareto optimal solutions can be characterized by achievement scalarizing
functions if the functions satisfy certain requirements.

Definition 4.1. [106] An ASF sR : Rm → R is said to be

1. Increasing, if for any y1, y2 ∈ Rm, y1i ≤ y2i for all i ∈ Nm, then
sR(y

1) ≤ sR(y
2).

2. Strictly increasing, if for any y1, y2 ∈ Rm, y1i < y2i for all i ∈ Nm, then
sR(y

1) < sR(y
2).

3. Strongly increasing, if for any y1, y2 ∈ Rm, y1i ≤ y2i for all i ∈ Nm and
y1 ̸= y2, then sR(y

1) < sR(y
2).

Obviously, any strongly increasing ASF is also strictly increasing, and any
strictly increasing ASF is also increasing. The following theorems define nec-
essary and sufficient conditions for an optimal solution of (4.2) to be (weakly)
Pareto optimal:

Theorem 4.1. [106]

1. Let sR be strongly (strictly) increasing. If x∗ ∈ X is an optimal solution
of problem (4.2), then x∗ is (weakly) Pareto optimal.

2. If sR is increasing and the solution of (4.2) x∗ ∈ X is unique, then x∗ is
Pareto optimal.

Theorem 4.2. [76] If sR is strictly increasing and x∗ ∈ X is weakly Pareto
optimal, then it is a solution of (4.2) with fR = f(x∗) and the optimal value
of sR is zero.

The advantage of ASFs is that any (weakly) Pareto optimal solution can
be obtained by moving the reference point only. It was shown in [106] that
the solution of an ASF depends Lipschitz continuously on the reference point.
In general, ASFs are conceptually very appealing to generate Pareto optimal
solutions, and they overcome most of the difficulties arising with other methods
[76] in the class of methods for generating Pareto optimal solutions.

In the grate majority of cases, the ASF is based on the Chebyshev distance
or L∞:

s∞R (f(x), λ) = max
i∈Nm

λi(fi(x)− fR
i ), (4.3)

where λ is a m-vector of non-negative coefficients.
An achievement scalarizing function based on the linear distance L1 is pro-

posed in [90]. Given problem (4.1), a reference vector fR ∈ Rm and a vector
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of strictly positive weights λ, the additive achievement scalarizing function is
defined as follows:

s1R(f(x), λ) =
∑
i∈Nm

λi|fi(x)− fR
i |. (4.4)

The following properties of s1R(f(x), λ) were proved in [90].
Theorem 4.3. [90] Given problem (4.2) with ASF defined by (4.4), let fR

be a reference point such that fR is not dominated by an objective vector of any
feasible solution of problem (4.2). Also assume λi > 0 for all i ∈ Nm. Then
any optimal solution of problem (4.2) is a weakly Pareto optimal solution.

Theorem 4.4. [90] Given problem (4.2) with ASF defined by (4.4) and any
reference point fR, assume λi > 0 for all i ∈ Nm. Then among the optimal
solutions of problem (4.2) there exists at least one Pareto optimal solution. If
the optimal solution of problem (4.2) is unique, then it is Pareto optimal.

In [84] authors extend ideas of [90] by introducing parameterization based
on the notion of embedded subsets. Here an integer parameter q ∈ Nm is used
in order to control the degree of metric flexibility varying from L1 to L∞.

Let Iq be a subset of Nm of cardinality q. A parameterized ASF is defined
as follows:

sqR(f(x), λ) = max
Iq⊆Nm:|Iq |=q

{∑
i∈Iq

max [λi(fi(x)− fR
i ), 0]

}
, (4.5)

where q ∈ Nm and λ = {λ1, . . . , λm}, λi > 0, i ∈ Nm. Notice that

• for q ∈ Nm : sqR(f(x), λ) ≥ 0;

• q = 1 : s1R(f(x), λ) = maxi∈Nm max[λi(fi(x)− fR
i ), 0]

∼= s∞R (f(x), λ);

• q = m : smR (f(x), λ) =
∑

i∈Nm
max[λi(fi(x)− fR

i ), 0] = s1R(f(x), λ).

Here, ”∼=” means equality in the case where there exist no feasible solutions
x ∈ X which strictly dominate the reference point, that is, fi(x) < fR

i for all
i ∈ Nm.

The problem to be solved is

min
x∈X

sqR(f(x), λ). (4.6)

It is obvious that using problem (4.6), every feasible solution of the multi-
objective problem (including Pareto optimal) is supported. Indeed, given any
x ∈ X, the reference point fR = f(x) and a vector of weighting coefficients
λ > 0, the optimal solution to problem (4.6) is x with the optimal value of
sqR(f(x), λ) equals zero. Thus, the first of the two requirements, mentioned in
the introduction to Chapter 4, holds.
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For any x ∈ X, denote Ix = {i ∈ Nm : fR
i ≤ fi(x)}. The following two

results analogous to Theorems 4.3 and 4.4 describe the conditions under which
the second of the two requirements mentioned in introduction the introduction
to Chapter 4 holds.

Theorem 4.5. [84] Given problem (4.6), let fR be a reference point such
that there exists no feasible solution whose image strictly dominates fR. Also
assume λi > 0 for all i ∈ Nm. Then any optimal solution of problem (4.6) is
a weakly Pareto optimal solution.

Theorem 4.6. [84] Given problem (4.6), let fR be a reference point. Also
assume λi > 0 for all i ∈ Nm. Then among the optimal solutions of problem
(4.6) there exists at least one Pareto optimal solution.

Theorem 4.6 implies that the uniqueness of the optimal solution guarantees
its Pareto optimality. Notice that the facts stated above about solutions of
parameterized ASFs also implicitly follow from the results of Theorem 4.1.
To show this, it is sufficient to prove that sqR(f(x), λ) is increasing. More-
over, parameterized ASF is strictly increasing if there are no feasible solutions
dominating fR.

4.2. Interactive compromise programming

Key parameters in the approach utilizing achievement scalarizing functions
are the reference point, which expresses desirable objective function values for
the DM, and weights. According to Theorems 4.5 and 4.6 one has to keep
always in mind that the reference point should not be strictly dominated by
some feasible point. However, in practice sometimes it is difficult to guarantee
that this condition holds. Alternatively, an ideal vector can serve as a reference
point and weighting coefficients may reflect the level of penalization for ”bad”
deviations which DM wants to introduce into the problem. Then the goal is
to find solutions as close as possible to the ideal point. This idea makes our
approach close in some sense to compromise programming [13].

The main scheme of interactive techniques based on scalarizing functions
is the following. Initially, an ideal vector is chosen as a reference point and
weighting coefficients are inverse to corresponding components of the ideal vec-
tor to provide objective normalization. At each iteration c, objective function
values calculated at the current Pareto optimal decision vector xc ∈ Pm(X) are
presented to the DM. (S)he can then express what kind of changes would be
desirable to her/him by classifying each of the objective functions into different
classes [77]. Here we consider two cases:

• fi values are desired to be improved (that is, decreased),
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• fi values may be impaired (that is, increased).

We propose a scheme to incorporate the decision maker’s preference infor-
mation to weighting coefficients in parameterized ASF. The most preferred
solution (MPS), which reflects genuine preferences of the DM (and whose ex-
act values the DM may even not be aware of), is supposed to be known and
used to determine the stopping criterion for the entire interactive procedure.
In other words, the MPS is used to simulate the behavior of the DM which has
to decide to stop the process if the current solution is close enough to her/his
aspiration levels with respect to a chosen distance measure.

In this paper we consider the case of three objectives, that is, m = 3. Then,
parameterized ASF (4.5) has the following form:

sqR(f(x), λ) = max
Iq⊆{1,2,3}:|Iq |=q

{∑
i∈Iq

max [λi(fi(x)− fR
i ), 0]

}
, (4.7)

where q = 1, 2, 3 and λ = (λ1, λ2, λ3), λi > 0, i ∈ N3.
In other words, taking into account that the ideal vector f I = (f I

1 , f
I
2 , f

I
3 )

is chosen as a reference point, we have:

for q = 1

s1R(f(x), λ) = max
{

max[λ1(f1(x)− fR
1 ), 0],max[λ2(f2(x)− fR

2 ), 0],

max[λ3(f3(x)− fR
3 ), 0]

}
= max

{
λ1(f1(x)− f I

1 ), λ2(f2(x)− f I
2 ), λ3(f3(x)− f I

3 )
}
;

for q = 2

s2R(f(x), λ) = max
{

max[λ1(f1(x)− fR
1 ), 0] + max[λ2(f2(x)− fR

2 ), 0],

max[λ1(f1(x)− fR
1 ), 0] + max[λ3(f3(x)− fR

3 ), 0],

max[λ2(f2(x)− fR
2 ), 0] + max[λ3(f3(x)− fR

3 ), 0]
}

= max
{

λ1(f1(x)− f I
1 ) + λ2(f2(x)− f I

2 ),

λ1(f1(x)− f I
1 ) + λ3(f3(x)− f I

3 ),

λ2(f2(x)− f I
2 ) + λ3(f3(x)− f I

3 )
}
;

for q = 3

s3R(f(x), λ) = max
{

max[λ1(f1(x)− fR
1 ), 0] + max[λ2(f2(x)− fR

2 ), 0]

+max[λ3(f3(x)− fR
3 ), 0]

}
= λ1(f1(x)− f I

1 ) + λ2(f2(x)− f I
2 ) + λ3(f3(x)− f I

3 )
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In order to illustrate how coefficients λi are used to direct interactive pro-
cedure we suppose that the problem (4.6) is solved for q = 1, q = 2 and q = 3.
Let us first consider the case q = 1:

max
{
λ1(f1(x)− f I

1 ), λ2(f2(x)− f I
2 ), λ3(f3(x)− f I

3 )
}
= α. (4.8)

In other words, the minimal distance from the ideal point to the Pareto
frontier in terms of the parameterized ASF with q = 1 is α. The graph of
function (4.8) looks similar to what we always have for the Chebyshev type
ASF, that is, of cubic shape. Now we determine the direction in which function
(4.8) intersects with Pareto frontier, that is, coordinates of the corner of the
cube.

Here, three cases are possible:
Case 1:

{f1(x) = α/λ1 + f I
1 , f2(x) ∈ [f I

2 , α/λ2 + f I
2 ], f3(x) ∈ [f I

3 , α/λ3 + f I
3 ]};

Case 2:

{f1(x) ∈ [f I
1 , α/λ1 + f I

1 ], f2(x) = α/λ2 + f I
2 , f3(x) ∈ [f I

3 , α/λ3 + f I
3 ]};

Case 3:

{f1(x) ∈ [f I
1 , α/λ1 + f I

1 ], f2(x) ∈ [f I
2 , α/λ2 + f I

2 ], f3(x) = α/λ3 + f I
3 }.

From here we obtain that corner coordinates are
(α/λ1 + f I

1 , α/λ2 + f I
2 , α/λ3 + f I

3 ). Thus, we can change coordinates of
the ideal point projection onto Pareto front by moving this corner.

Now let us consider corresponding functions for q = 2 and q = 3:

max
{
λ1(f1(x)− f I

1 ) + λ2(f2(x)− f I
2 ), λ1(f1(x)− f I

1 ) + λ3(f3(x)− f I
3 ),

λ2(f2(x)− f I
2 ) + λ3(f3(x)− f I

3 )
}
= α. (4.9)

λ1(f1(x)− f I
1 ) + λ2(f2(x)− f I

2 ) + λ3(f3(x)− f I
3 ) = α. (4.10)

Here, α is the minimal distance from the ideal point to the Pareto fron-
tier in terms of the parameterized ASF for q = 2 and q = 3 respectively.
Detailed graphical constructions of (4.9) and (4.10) are showed in [84]. For
controlling interactive process we are interested only in the case where all three
sums in (4.9) and sum in (4.10) are equal to α. For (4.10), this forms a flat
triangle face which is contained in a plane with normal vector (λ1, λ2, λ3).
For (4.9) a flat triangle transforms into a triangle pyramid with a top vertex
(α/2λ1+ f

I
1 , α/2λ2+ f

I
2 , α/2λ3+ f

I
3 ). From here it follows that we can control
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the place of potential contact of (4.9) and (4.10) with the image of the feasible
set by changing the normal vector or the top vertex.

Thus the weighting coefficients vector λ indicates the relative importance
of the deviations of the objectives values fi(x), i = 1, 2, 3, from the ideal vector
(f I

1 , f
I
2 , f

I
3 ) and can be used to reflect decision maker preferences. It follows

from the above discussion that for all values of parameter q by decreasing λi
we increase the value of fi(x) and by increasing λi we decrease the value of
fi(x).

In order to test the introduced ideas we conducted numerical experiments
for three objective median location problem. An important real life example
of this problem is evacuation planning. Emergency evacuation plans are de-
veloped to ensure the safest and most efficient evacuation time of all expected
residents of a structure, city, or region. Let us suppose that in a particular
hazard zone there are a set of sectors S, |S| = n, n ∈ N that should be evac-
uated. Each region i ∈ S, i = 1, . . . , n has ai habitants. Let E, |E| = l, l ∈ N
be the number of candidate shelters and p ≤ E is the number of shelters to be
located. Each route from a sector i to a shelter j we associate with path length
dij ∈ R, j = 1, . . . , l and risk rij, a real parameter from the real unit interval
(0, 1). A candidate shelter j is also associated with some risk rj ∈ (0, 1), ca-
pacity (number of individuals)Kj ∈ N allowed in the jth candidate shelter and
integer parameter kj which specifies minimum number of individuals required
for opening the jth shelter.

Then by analogy with [1] underlying multiobjective p-median problem can
be formulated as follows:

min
n∑

i=1

l∑
j=1

aidijxij (4.11)

min
n∑

i=1

l∑
j=1

airijxij (4.12)

min
n∑

i=1

l∑
j=1

airjxij (4.13)

subject to

l∑
j=1

xij = 1, i = 1, . . . , n (4.14)

(ensures one evacuation path is chosen for each sector, with n the number of
sectors; n constraints)
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n∑
i=1

aixij ≤ Kjyj, j = 1, . . . , l (4.15)

(ensures the maximum capacity for shelter j is not exceeded, with l the total
number of candidate shelters; l constraints)

n∑
i=1

aixij ≥ kjyj, j = 1, . . . , l (4.16)

(ensures the minimum number of individuals required to open shelter j before
it is opened, with E the total number of candidate shelters; l constraints)

l∑
j=1

yj = p (4.17)

(ensures p of the l candidate shelters are opened)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , l (4.18)

yj ∈ {0, 1}, j = 1, . . . , l. (4.19)

Objective (4.11) minimizes the total distance required for all of the popu-
lation to reach its primary evacuation shelter. Objective (4.12) minimizes the
risk faced by the total population as it travels to its primary shelter. Objective
(4.13) minimizes total risks associated with staying in the shelter.

Let us consider a simulation of a decision making process for solving three
objective p-median location problem described above.

Example 4.1. Suppose we want to evacuate individuals from 5 sectors to
4 of 5 available shelters, that is, n = 5, l = 5 and p = 4.

Given the following randomly generated data set:

• Distance matrix

(dij) =


18 29 0 21 27
17 21 14 21 30
24 26 27 30 19
22 27 18 16 17
13 13 26 15 7

 ,

here length dij = 0 means that there is no path from sector i to shelter j;

• Number of individuals in each sector

a = (5, 18, 21, 19, 29);
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• Risk associated with a path from sector i to shelter j

(rij) =


0.7000 0.01190 0.9975 0.7582 0.9022
0.7745 0.2775 0.4996 0.3107 0.3198
0.6965 0.4296 0.4775 0.06067 0.6897
0.7466 0.4359 0.2137 0.1030 0.3448
0.6685 0.09851 0.8209 0.6778 0.01904

 ;

• Risk associated with shelter j

r = (0.2936, 0.1979, 0.07867, 0.9210, 0.5971);

• Capacity of a shelter j

K = (26, 25, 65, 40, 47);

• Minimum number of individuals required for opening shelter j

k = (9, 8, 6, 9, 9).

We can formulate the three objective 4-median location problem:
min f1(x) =

min{90x1,1 + 145x1,2 + 105x1,4 + 135x1,5+

306x2,1 + 378x2,2 + 252x2,3 + 378x2,4 + 540x2,5+

504x3,1 + 546x3,2 + 567x3,3 + 630x3,4 + 399x3,5+

418x4,1 + 513x4,2 + 342x4,3 + 304x4,4 + 323x4,5+

377x5,1 + 377x5,2 + 754x5,3 + 435x5,4 + 203x5,5}
min f2(x) =

min{3.500x1,1 + 0.05951x1,2 + 3.791x1,4 + 4.511x1,5+

13.94x2,1 + 4.994x2,2 + 8.992x2,3 + 5.592x2,4 + 5.756x2,5+

14.63x3,1 + 9.022x3,2 + 10.03x3,3 + 1.274x3,4 + 14.48x3,5+

14.19x4,1 + 8.281x4,2 + 4.060x4,3 + 1.956x4,4 + 6.551x4,5+

19.39x5,1 + 2.857x5,2 + 23.80x5,3 + 19.66x5,4 + 0.5522x5,5}
min f3(x) =

min{1.468x1,1 + 0.9894x1,2 + 4.605x1,4 + 2.986x1,5+

5.284x2,1 + 3.562x2,2 + 1.416x2,3 + 16.58x2,4 + 10.75x2,5+
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6.165x3,1 + 4.155x3,2 + 1.652x3,3 + 19.34x3,4 + 12.54x3,5+

5.578x4,1 + 3.760x4,2 + 1.495x4,3 + 17.50x4,4 + 11.35x4,5+

8.514x5,1 + 5.738x5,2 + 2.282x5,3 + 26.71x5,4 + 17.32x5,5}
subject to

5∑
j=1

xij = 1, i = 1, . . . , 5,

5x1,1 + 18x2,1 + 21x3,1 + 19x4,1 + 29x5,1 ≤ 26y1,

5x1,2 + 18x2,2 + 21x3,2 + 19x4,2 + 29x5,2 ≤ 25y2,

18x2,3 + 21x3,3 + 19x4,3 + 29x5,3 ≤ 65y3

5x1,4 + 18x2,4 + 21x3,4 + 19x4,4 + 29x5,4 ≤ 40y4,

5x1,5 + 18x2,5 + 21x3,5 + 19x4,5 + 29x5,5 ≤ 47y5,

5x1,1 + 18x2,1 + 21x3,1 + 19x4,1 + 29x5,1 ≥ 9y1,

5x1,2 + 18x2,2 + 21x3,2 + 19x4,2 + 29x5,2 ≥ 8y2,

18x2,3 + 21x3,3 + 19x4,3 + 29x5,3 ≥ 6y3,

5x1,4 + 18x2,4 + 21x3,4 + 19x4,4 + 29x5,4 ≥ 9y4,

5x1,5 + 18x2,5 + 21x3,5 + 19x4,5 + 29x5,5 ≥ 9y5,

y1 + y2 + y3 + y4 + y5 = 4,

xij ∈ {0, 1}, i = 1, . . . , 5, j = 1, . . . , 5,

yj ∈ {0, 1}, j = 1, . . . , 5.

The ideal objective vector is f I = (1353, 10.9402, 23.9437),
which is also assumed to be selected as a reference point. We de-
fine the initial aggregation weights in order to have objective func-
tions normalized: λ1 = 1/f I

1 , λ2 = 1/f I
2 , λ3 = 1/f I

3 , that is,
λ = (0.000739098, 0.0914061, 0.0417647). We also set a step of interactive
process which depends on the iteration number c:

λci =

{
λc−1i + 0.5λc−1i /c if fi is desired to be decreased
λc−1i − 0.5λc−1i /c if fi is desired to be increased
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i = 1, 2, 3, c ∈ N.

Observe that the step decreases gradually with an iteration number. This
somehow inline with the idea that from step to step a gap between found
solution and the most preferred solution becomes smaller and big changes in λ
values could affect objective values significantly. Thus, smooth changes of the
weighting coefficients will lead to faster convergence of the interactive process.
At every iteration of the interactive procedure the DM is allowed to increase or
decrease ith component of the objective function. Then according to the rules
defined above interactive process simulation is directed by changing weighting
coefficients.

The most preferred solution is supposed to be given to reflect the DM’s
preferences. In our example the MPS (which is Pareto optimal) is calculated
by using scalarizing function with Euclidean metric for λ = (0.01, 0.0001, 20)
and it is equal to (1487, 31.0761, 29.7186). We simulate the interactive process
for each value of q separately. At each iteration solutions (objective vectors)
obtained by different ASFs are compared to the MPS. If the distance from
a solution to the MPS by means of the Euclidean metric is less or equal to
ε = 0.001 than we stop interactive process.

Decision process simulation results are presented in the following tables.

iteration lambda mean value test

1 80.000739098, 0.0914061, 0.0417647< 81597., 17.5895, 41.0176< 111.398
2 80.00110865, 0.0457031, 0.0626471< 81572., 24.2921, 29.5272< 85.2705
3 80.00138581, 0.0342773, 0.0469853< 81487., 31.0761, 29.7186< 0.

Table 3: Parameterized ASF for q = 1

iteration lambda mean value test

1 80.000739098, 0.0914061, 0.0417647< 81698., 10.9402, 42.7022< 212.356
2 80.00110865, 0.0457031, 0.0626471< 81487., 31.0761, 29.7186< 0.

Table 4: Parameterized ASF for q = 2

The column mean value contains values of objective functions at Pareto
points found by the corresponding parameterized ASF and the column test
shows the distance from an objective function to the MPS by means of the
Euclidean metric.

In this section we have proposed to apply the interactive approach based
on the parameterized ASFs for solving multicriteria combinatorial p-median
location problem. We have also introduced a new way of directing interactive
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iteration lambda mean value test

1 80.000739098, 0.0914061, 0.0417647< 81698., 10.9402, 42.7022< 212.356
2 80.00110865, 0.0457031, 0.0626471< 81572., 24.2921, 29.5272< 85.2705
3 80.00138581, 0.0342773, 0.0469853< 81572., 24.2921, 29.5272< 85.2705
4 80.00161678, 0.0285644, 0.0391544< 81572., 24.2921, 29.5272< 85.2705
5 80.00181887, 0.0249939, 0.0342601< 81572., 24.2921, 29.5272< 85.2705
6 80.00200076, 0.0224945, 0.0308341< 81517., 27.7326, 30.0057< 30.1871
7 80.00216749, 0.0206199, 0.0334036< 81487., 31.0761, 29.7186< 0.

Table 5: Parameterized ASF for q = 3

process by changing weighting coefficients depending on the metric used in
ASF.

The numerical experiment illustrates that synchronous use of different ASFs
allows to detect more desirable Pareto optimal points and as a result may
reduce the number of iterations needed for interactive procedure to converge.
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Chapter 5. Conclusion

Presence of different conflicting goals and uncertainty are basic structural
features of the technological and business environment. Due to these facts,
building a suitable mathematical or computational model (that is, the formu-
lation of the optimization problem with specifying decision variables, objec-
tives, constraints, and variable bounds) is an important and critical task in
optimization. Moreover, compared to single objective optimization problems,
in multiobjective optimization, there is no single optimal solution, but a set
of alternatives with different trade-offs. In practice, usually only one of these
solutions is to be chosen. Thus, there are at least two equally important tasks:
an optimization task for finding optimal solutions (involving a computer-based
procedure) and a decision-making task for choosing a single most preferred so-
lution. Therefore, optimal solution found by an optimization algorithm to
be reliable must always be analyzed through a postoptimal analysis for their
”appropriateness” in the context of the problem.

This thesis is divided into two parts. In the first part, composed of Chapters
2 and 3, a postoptimal analysis for several classes of multicriteria discrete
optimization problems is conducted.

In Chapter 2 we proposed a general theoretical approach to qualitative sta-
bility analysis of the multicriteria combinatorial minimax, minisum and min-
imin problems with Pareto and lexicographic principles of optimality. Neces-
sary and sufficient conditions are formulated and proved for stability of Pareto
and lexicographic optimal solutions to the multicriteria center (minimax) and
median (minisum) location problems. Stability criteria and relations between
five stability types (stability, strong stability, quasistability, strong quasista-
bility and superstability) are revealed for the Pareto set and lexicographic set
of multicriteria combinatorial minimin problems. The proved theorems allow
to analyze and predict the behavior of an optimal solution (or a set of optimal
solutions) under different types of uncertainty without solving the perturbed
variant of the considered problem.

One more issue which has to be emphasized is that practical verification of
conditions of the proved theorems and their straightforward application for a
general case can be as hard as to solve the problem itself. Nevertheless more
methodological results might be developed and implemented for special cases
of the multicriteria combinatorial minimax, minisum and minimin problems
with restrictions of some factors, such as structure of initial data, perturbations
of particular problem parameters etc. As possible continuation of the research
within this topic, it would be interesting to explore these classes of problems.

Chapter 3 discusses various quantitative approaches to sensitivity analysis
of combinatorial optimization problems.
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Quantitative characteristic called stability radius is used to determine the
limit level of perturbations of problem parameters which preserve a given prop-
erty of a solution. Investigations of stability radius usually aim to derive its
formulae and devise methods for its calculation or estimation.

The formula of stability radius for an optimal solution is directly connected
with a given optimality principle. A common optimality principles may not
fully cover all of the decision maker preferences. Sometimes, introducing a
parameterized version of optimality principles may reflect the desirable pref-
erence specific much better. In publication I we consider a finite cooperative
game of several players with parametric principle of optimality such that the
relations between players in a coalition are based on the Pareto maximum.
The introduction of this principle allows us to find a link between such clas-
sical concepts as the Pareto optimality and Nash equilibrium. In publication
I, stability radius is obtained for the game situation which is optimal for the
given partition method (generalized equilibrium situation) under perturbations
of problem parameters in the case of the Hölder metric.

The formula of stability radius obtained in publication I implies complete
enumeration of sets Ns (number of coalitions of players) and XIr (the set of
all situations of coalition Ir) whose cardinality may grow exponentially with s.
So far, no polynomial algorithms of calculating or estimating stability radii for
multiple objective problems have been constructed. The question of whether
such algorithms exist for any class of multiple objective problems of discrete
optimization is still open.

Work V is the first attempt to derive an alternative heuristic approach to the
stability radius calculation. Non-dominated sorting genetic algorithm based
approach is proposed for calculating stability radius of an optimal solution to
the single criterion shortest path problem. The shortest path problem was
chosen for testing due to the fact that the method proposed by Chakravarti
and Wagelmans runs in polynomial time if the original optimization problem
is polynomially solvable. Thus we were able to estimate accuracy of results of
our approach by comparison with those of the exact method. Despite the fact
that theoretical complexity of the adapted NSGA-II is competitive with com-
plexity of the exact method preliminary comparisons showed that NSGA-II
can not outperform the last one for small and middle size problems. Neverthe-
less numerical experiments illustrate that the convergence rate of the adapted
NSGA-II was good for almost all random instances of the shortest path prob-
lem. This study encourages us to believe that similar ideas could be efficiently
applied for calculating stability radius of traveling salesperson problem, that
is NP-hard problem.

Stability radius is an efficient measure of the solution reliability. But fre-
quently, this measure is not sufficient to make a conclusion about solution
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stability, among multiple optimal solutions. Therefore, it is necessary to calcu-
late some complementary measures reflecting more information about solution
behavior under uncertainty.

The accuracy function and robustness tolerances can be potentially used
as an efficient tool for ranking multiple optimal solutions. A strategic game
with a finite number of players where initial coefficients (costs) of linear payoff
functions are subject to perturbations is considered in IV. For two different
equilibria principles considered, Pareto and Nash equilibria, appropriate defi-
nitions of the worst-case relative regret are specified. Here we use the concept
of robustness for dealing with uncertainty. Robust solution is defined as a
feasible solution which for a given set of realizations of uncertain parameters
guarantees the minimum value of the worst-case relative regret among all fea-
sible solutions. Here we present a formula for calculating value of the accuracy
function. Since this formula in general is hard to be computed, we provide some
attainable lower and upper bounds for the Pareto accuracy function which are
computationally more attractive. We also presented the concept of robustness
tolerance of a single cost vector associated with a strategy choice of a player.
In the thesis, formulae which allows calculating the robustness tolerances with
respect to an equilibrium (in Pareto or Nash senses) is presented for some
initial costs. The other big challenge in robust and sensitivity analysis is to
construct efficient algorithms to calculate analytical expressions.

The second part of the thesis covered by Chapter 4 addresses an interac-
tive multicriteria optimization method. The key feature of this approach is
that the DM is involved into the solution process and directs this procedure
by specifying preference information. As a result only such Pareto optimal
solutions are generated that are interesting to the DM. Furthermore, the DM
can specify and correct her/his preferences and selections during the solution
procedure. The final goal of this process is to find a single most preferred
solution.

Interactive methods differ from each other by the form in which information
is given to the DM, the form and type of preference information the DM
specifies and by the methods used for calculating an optimal solution. We
proposed to utilize the parameterized achievement scalaryzing function in the
interactive procedure for finding Pareto optimal solutions of multicriteria p-
median location problem. Here an integer parameter q is used to control the
degree of metric flexibility varying from L1 to L∞. This parameter can also
generate different scalaryzing functions for different values if q. Numerical
experiments showed that various ASFs allow to detect more desirable Pareto
optimal points. This means several scalarizing functions potentially can be
utilized in a synchronous way [77], that is, the results of different scalarizing
functions are calculated simultaneously and presented to the DM who makes
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final decision.
As mentioned above, one more issue that has to be specified is how to

interact with the DM. In our approach the DM’s preferences are expressed
in classification of the objective functions and incorporated into weighting
coefficients of the scalaryzing function. In classification, the DM directs the
interactive solution process in the set of Pareto optimal solutions and expresses
what kind of changes would be desirable to her/him by classifying each of the
objective functions into different classes. Here we use only two classes in order
to simulate decision making process. However in order to reflect the DM’s
preferences better it worth considering more different classes.

As prospective research it would be interesting to investigate applicability
of the parameterized ASFs in synchronous way and to consider different clas-
sifications of the objective functions which can provide the DM with a better
view of the potential compromises and give more flexible tools to detect Pareto
optimal solutions.
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