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Abstract: This paper presents a brief description of some existing models of facility location problems
(FLPs) in solid waste management. The study provides salient information on commonly used
distance functions in location models along with their corresponding mathematical formulation. Some
of the optimization techniques that have been applied to location problems are also presented along
with an appropriate pseudocode algorithm for their implementation. Concerning the models and
solution techniques, the survey concludes by summarizing some recent studies on the applications
of FLPs to waste collection and disposal. It is expected that this paper will contribute in no small
measure to an integrated solid waste management system with specific emphasis on issues associated
with waste collection, thereby boosting the drive for effective and efficient waste collection systems.
The content will also provide early career researchers with some necessary starting information
required to formulate and solve problems relating to FLP.

Keywords: municipal solid waste; facility location problems; environmental pollution; waste
management; optimization techniques; approximating/heuristic algorithms

1. Introduction

One of the critical issues that borders on solid waste management in developing countries is
centered on the collection of waste. For an effective integrated solid waste management (ISWM)
system, locating the collection points is very crucial. Governments and other stakeholders have made
several investments but with limited results in combating the challenges associated with effective waste
collection. Although much of the generated and stored waste find their way to the designated collection
points, due to the lack of effective collection systems, these wastes constitute public challenges thereby
creating unsanitary issues and consequently adding to environmental pollution [1–4]. Thus, this
review study focuses on the well-researched facility location problem (FLP) regarding locating waste
collection facilities such as recycling centers, waste-to-energy facilities, or containers/bins within a
waste collection network.

Several studies have considered methods for addressing the problem of facility selection through
the use of mathematical analyses and computer simulations. For instance, in a similar fashion to
FLP, one study [5] reported an approach for selecting construction materials in an engineering design
project. An extensive range of models exists in the literature for describing practical problems of
optimization involving service point locations in waste management, and some of these mathematical
formulations are discussed in this study (see [6–18] for examples). The differences and similarities in
these models are discussed more succinctly under the application section as many of them find direct
applications in solid waste management where municipal authorities are often confronted with the
enormous challenge of locating waste collection facilities as well as landfills within their municipalities
because of limited financial resources.
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FLP deal with the question of how to select from a given set of potential locations, a cost-effective
subset of sites to place new facilities or retain existing ones. A facility could represent any service
facility such as an electric power plant, hospital, food production plant, a warehouse (depot), petrol
station, government office, etc. FLPs are an essential class of problems in logistic management. Facility
location and the assignment of entities to such facilities usually determine the distribution pattern
and the associated characteristics (e.g., time, cost, and efficiency) of the facility. The placement of
one or more facilities and the assignment of customers in an optimal version not only improve the
flow of materials and services offered by the facilities to customers but also utilize the facilities in an
optimum manner, thus preventing the use of duplicated or redundant facilities [19]. Technological
advancement has made it somewhat easier to design cost-efficient facility locations for municipal
solid waste collection especially for large areas. In this sense, the Web-Geographical Information
System (Web-GIS) oriented technologies are noteworthy, and their applications have been reported
elsewhere [20–22].

The most common approach for formulating FLP models in the literature is through the use
of integer programming (IP). IP is a form of linear programming in which some or all the decision
variables are restricted to be non-negative integer values. When all the variables take on integer
values, then it is called a pure integer programming problem. On the other hand, the mixed-integer
programming (MIP) model is a variation where some variables are real, and some are integers, or at
least one variable is an integer. It may have a binary variable, which can be used to identify if any
entity is active or not by being assigned 1 or 0, respectively [23].

Optimization algorithms for solving FLP models can be grouped under two categories of exact
and approximation algorithms. Exact algorithms guarantee optimal solutions to the problems being
addressed. However, a significant disadvantage of exact methods is that, as the size of the problem
increases, the time required to arrive at the optimal solution usually becomes huge. This drawback
led to the construction of approximation algorithms, which generally start with a single solution or a
predetermined set of solutions while trying to identify a near-optimal solution for the optimization
problem. In contrast to the exact techniques, approximate or heuristic algorithms use some specific
rules-of-thumb to guide the algorithm towards the problem’s feasible region. These rules often provide
some modifications to the incumbent solution as well as procedures for the further exploration of the
solution space of the problem. The identification and specification of these sets of rules and connecting
them appropriately within the framework of the algorithm are crucial for successful implementation of
approximate algorithms.

The remaining part of this paper is structured as follows: Section 2 describes the methodology
adopted for the conducted survey, while Section 3 discusses the notion of distance function. In
contrast, Section 4 describes a few significant variants of FLP and their corresponding mathematical
models. Some optimization algorithms for solving FLP models are discussed in Section 5, while some
applications of FLP in waste management are highlighted in Section 6. The concluding remarks are
given in Section 7.

2. Methodology

This survey article follows a narrative approach describing important models in FLP that have
been adapted to problems relating to waste management, especially the collection stage of the system.
One of the objectives of the paper is to provide first-hand information on the existing models and
solution approaches to emerging research in related fields, thus the collection of materials was such
that original documents on model formulations and solution designs were given priority. All the
journal materials were obtained from Google Scholar database. The study considered only research
carried out between 2006 and 2020 in narrating the applications of FLP in waste management.
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3. Distance Function in Facility Location

In the process of finding optimal locations for a set of facilities, a remarkable phenomenon is the
pattern of travel distances among service customers. Customers always appreciate the placement of
facilities not being too far from a service point. Ogryczak [24] observed that most classical FLP focus
on the minimization of the mean distance or the maximum distance to the facilities. Usually, these
distances are measured over the set Zx with their values in Z; however, because Zn is not a vector
space, the notion of distances is often extended, and this gives rise to the general definition in Rx (the
real line). Thus, the distance functioned between points x and y denoted as d(x,y) satisfies the basic
properties of a metric distance.

For a more general notation, the distance function between the points x = (x1, x2, . . . , xx) and y =

(y1, y2, . . . , yx) is denoted by dk,p(x,y) and is called the Minkowski distance of order p and is defined as:

dk,p(x, y) =

 n∑
i=1

ki
∣∣∣xi − yi

∣∣∣p
1
p

(1)

When k1 = k2 = ··· = kx = kp, Equation (1) becomes

dk,p(x, y) = k

 n∑
i=1

∣∣∣xi − yi
∣∣∣p

1
p

(2)

where k is the weight of the distance function dk,p and Equation (2) is called the weighted dk,p − norm.
However, suppose k1 = k2 = ··· = kx = 1, then Equation (1) becomes

dk,p(x, y) =

 n∑
i=1

∣∣∣xi − yi
∣∣∣p

1
p

(3)

Equation (3) denotes the dk,p − norm. Uster and Love [25] showed that distances estimated based
on the dk,p − norm are more accurate than those in the weighted dk,p − norm. According to Equation (3),
some distances are defined in the following:

i. Rectilinear distance: This distance describes, for instance, the distance that a vehicle will cover
over a square block in a city layout where no one-way routes exist. It is given by

dk,1(x, y) =
n∑

i=1

∣∣∣xi − yi
∣∣∣ (4)

Since it is simple to analyze distance compared to some other forms of distance, it has become
popular among researchers [26].

ii. Euclidean distance: This is defined for p = 2 as follows:

dk,2(x, y) =

 n∑
i=1

∣∣∣xi − yi
∣∣∣2

1
2

(5)

Equation (5) is the meter rule distance because it gives exactly what would be obtained if the
distance between two points was measured with a ruler.

iii. The Chebyshev distance: This distance is defined for p =∞ as follows:

dk,∞(x, y) = lim
p→∞

 n∑
i=1

∣∣∣xi − yi
∣∣∣p

1
p

= max
(∣∣∣x1 − y1

∣∣∣, . . . , ∣∣∣xn − yn
∣∣∣) (6)
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By simple inspection, it is evident that dk,1 and dk,∞ assume discrete values. Thus, from a practical
viewpoint, the parameter dk,2 being continuous is widely used because of its rotation invariance [27].

For each category of FLP, there is a corresponding suitable distance function. For instance, in
the analytic models of FLP, the travel distances follow the rectilinear metric. In contrast, in network
problems consisting of nodes and arcs, distances are measured concerning the shortest path. The
discrete models can usually make use of all kinds of distance functions [28].

4. Classification of Facility Location Problems

FLPs are not uniquely classified in literature. Location problems may be divided into four
classes: analytic, network, continuous, and discrete models. The analytic models are based on simple
assumptions, such as the fixed costs of locating a facility. They are hardly used to express real-world
problems. The network models are frequently encountered in transportation planning and other
applications that allow tours on routes represented on a network. Mladenovi et al. [29] classified FLP
into continuous and discrete problems. In the continuous models, facilities to be located are placed
anywhere in the chosen plane and therefore computations are required to determine the best locations
with respect to the distances of the demand points (customers’ locations). Furthermore, in continuous
location models, customers are grouped (using appropriate techniques) and the centroid of each group
is determined. Each centroid then becomes the best location for each group (cluster). This approach of
locating facilities is very applicable in highly sensitive strategic planning.

In most practical real cases, estimates in continuous models make discrete models become
practicable. Discrete models handle the allocation of customers to a set of potential location points
(usually predetermined either from the results of the continuous model or random selection based on
past experiences). In other words, the objective in a discrete model is to select the required number of
locations for facilities from a set of known locations, and then allocate customers to receive service
from exactly one of these facilities at minimum cost [19].

Discrete models usually consist of three main components of facilities to be located, a set of
locations, and demand points. The facilities have certain features such as total number, type, and costs.
There are two cases identified for the number of facilities. The first is the single facility problem in
which only one new facility is to be opened. The more general case is the multi-facility problem where
more than one facility is established simultaneously. Facilities in location-allocation problems can also
come in different types such as situations where facilities are designed to provide only one or more
services. One other major consideration is the satisfaction of demands at these facilities. This in turn
gives rise to the variants of uncapacitated and capacitated FLP. Based on these features, a number of
discrete and continuous models have been proposed in the literature for several areas of application.
Some of these are described in the subsections. Afterward, some solution approaches to FLPs are
described with their possible algorithms.

4.1. Single Facility Location Problem (SFLP)

The SFLP belongs to the most straightforward class of location problems. Its involve the location
of a unique new facility in a plane intending to minimize the sum of distances (Euclidean or rectilinear)
between the proposed new facility and existing (planar) locations. A simple general formulation of the
problem is

Z1 = min

 f (x) : f (x) =
n∑

i=1

wid(x, pi)

 (7)

where x = (x, y) is the distance coordinate of the location of the new facility; d(xi,yi) is the distance
between the new facility and the planar locations; pi = (ui,vi) are the coordinates of the planar locations;
wi represents the weight of existing facilities; i and n are the index and number of existing facilities,
respectively.
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4.2. Multi-Facility Location Problem (MFLP)

In a MFLP, more than one new facility are to be optimally located, such that each newly located
facility is connected to at least one other new facility. A typical objective function is formulated as
follows. Let N be a set of the new facilities to be located so that |N| = n and Mi a set of the existing
facilities such that |M| = m. Define wji ≥ 0 as the weight between each j∈N and i∈M by a unit distance;
vjk ≥ 0 is the weight between each j,k∈N by unit distance; d(Xj, pi) is the distance between the location
of j∈N and i∈M d(Xj, Xk) is the distance between the location of j,k∈N; and pi = (ai, bi) is the location
coordinates of i∈M; The objective function is:

Z2 = min

 ∑
1≤ j<k≤n

v jkd
(
X j, Xk

)
+

n∑
j=1

m∑
i=1

w jid
(
X j, pi

) (8)

The model in Equation (8) is a minisum model that finds the locations of new facilities such that
the total cost function (sum of costs directly proportional to the distances between the new facilities,
and costs directly proportional to the distances between new and existing facilities [27]) is minimized.

4.3. Fixed Costs Capacitated Facility Location Problem (FC-CFLP)

In an FC-CFLP, the objective is to minimize the fixed costs associated with the potential facilities.
The FC-CFLP is a minisum problem because it seeks to minimize the sum of the cost of flow between
facilities and customers. The fixed cost is a one-time expenditure that varies from location to location,
which is expected to be recovered during the entire life of the facility. To formulate the problem as
a mathematical model, the following sets are defined: C is the set of all n customers indexed with
i; F is the set of all candidate facilities indexed with j. The fixed cost for opening facility j is cj. The
transportation cost from facility j to customer i is tij; aj is the capacity of facility j∈F and βi is the demand
of customer i∈C The decision variables are: xj = 1 if facility j is open, and 0 if otherwise; yij = 1 if a
customer i is assigned to facility j, and 0 if otherwise. The mixed integer programming model of the
problem is as follows:

Z3 = min

∑
i∈C

∑
j∈F

(
ti jyi j + c jx j

) ∈ (9)

such that∑
i∈C

yi j = 1, for all facility j (10)

∑
i∈C

βiyi j ≤ α jx j, for all facility j (11)

∑
i∈C

yi j ≥ x j, for all facility j (12)

x j, yi j ∈ {0, 1}, for all i, j (13)

The objective function in Equation (9) minimizes the total cost (transportation and fixed cost)
associated with an open facility. The constraint in Equation (10) ensures that each customer is allocated
to only one facility. Equation (11) defines capacity constraints, and it ensures that the total demand of
customer i assigned to facility j does not exceed the capacity of j. By constraints in Equation (12), a
number of open facilities must not exceed the total number of customers in the system. Equation (13)
is the integer constraint.

4.4. Capacitated p-Median Facility Location Problem (CpMFLP)

This is a discrete problem where the list of potential depots is the same as the list of customers.
The selected depots are called the medians or concentrators. A p-median problem is defined as follows.
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Consider a connected graph consisting of customers with associated network distances from each
other, P new facilities are to be opened to satisfy the demands of these customers. A p-median problem
optimally locates the P facilities so that the sum of the weighted distances in the network between
the customers and their respective closest facility is the smallest [30]. p-Median problems are widely
studied because of their relevance to most real-life issues.

The CpMFLP is a variant of the capacitated FLP (CFLP) when fixed costs associated with potential
facilities are not considered. Using the approach of Lorena and Senne [31] with a little modification,
the problem is described with the following notations. N = {1,2,...,n} is the set of customers to be
allocated to potential medians; yij = 1 if the customer i is assigned to the median j, or 0, otherwise xj = 1
if the median j is selected, or 0, otherwise. Other parameters are: P is the number of facilities to be
opened; di is the demand of customer i; qj is the capacity of the facility j; and cij is the shipment cost
from facility j to the customer i. The integer programming formulation of the problem is Constraint
sets in Equation (15) impose that each customer must be allocated to only one median. Equation (16)
prevents the total number of opened facilities from exceeding the number of facilities required. Full
median capacity is ensured by constraint in Equation (17).

Z4 = min

∑
i∈N

∑
j∈N

ci jyi j

 (14)

such that∑
i∈N

yi j = 1, for all median j (15)

∑
i∈C

x j = P, for all median j (16)

∑
i∈N

diyi j ≤ q jx j, for all median j (17)

x j, yi j ∈ {0, 1}, for all i, j (18)

4.5. Covering Location Problems (SCLP)

In SCLP, customers are allowed to receive services from potential facilities depending on the
distances between the customers and the facilities. A customer’s demand/request can only be satisfied
at a facility provided the distance between the customer and the facility is equal or less than a predefined
value known as the threshold distance or coverage radius. There are two cases of SCLP depending
on the extent of coverage on the demands of customers. When all the demand points are covered,
the problem is called a total SCLP, and when only some locations are included, the problem is a
partial SCLP. In Figure 1 (left side), the demand points are represented on the customer nodes with
the corresponding distances between the distribution facility and the customers. Suppose we are
interested in covering only customers located within a maximum distance of 9 km of all the customers
represented in the plane (left side of Figure 1), Figure 1 (right side) shows that the distribution facility
can serve only three customers. The coverage radius in the above illustration was measured as a
distance; however, the value may be measured with other quantities like time and cost.
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Figure 1. Geometrical illustration of the set covering location problem.

The symmetric total covering problem (STCP) is a typical example of a total covering problem,
while the maximum covering location problem (MCLP) belongs to the family of partial covering
problems. These two variants are discussed as follows.

4.5.1. Symmetrical Total Covering Problem (STCP)

This problem was first formulated by Jans and Degraeve [32] for a lottery problem. Two variables
xj and yij are defined on a set S, the set of all demand points, as xj = 1 if the facility j∈S covers a point, 0,
otherwise, yij = 1 if the facility includes the customer j∈S and 0, otherwise. The integer programming
formulation is:

Z5 = min

∑
j∈S

c jx j

 (19)

such that∑
i∈S

yi jx j ≥ 1, for all facility j (20)

x j, yi j ∈ {0, 1}, for all i, j, (21)

where cj is the cost associated with a facility j. The objective function minimizes the total cost of
covering all the demand points. The constraint in Equation (20) ensures that each customer is covered
by at least one facility.

4.5.2. Maximum Covering Location Problem (MCLP)

The problem reported by Berman and colleagues [33] is a partial SCLP and has the objective of
maximizing the total satisfying demands in the network with a limited maximum number of facilities.
The integer programming model is:

Z6 = max

∑
i

σiai

 (22)

such that
ai ≤

∑
j yi jx j, for all i

(23)∑
j

x j ≤ p, (24)

ai, yi j, x j ∈ {0, 1}, for all i, j (25)
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σi is the request of customers i; the maximum number of the limited facility is p. The two decision
variables are: xj = 1 if a facility is located at j or 0, otherwise ai = 1 if the demand of the customer i is
not satisfied and 0, otherwise. yij is the same as in Section 4.5.1. Equation (23) means ai = 0 if

∑
j yi j = 0

and hence the need of the customer i is satisfied. If
∑

j yi j = 1, then, the converse holds. This equation
represents the capacity limitations. Equation (24) ensures that the number of activated facilities cannot
exceed the maximum number of available facilities.

4.6. Undesirable Facility Location Problem (UFLP)

The UFLP belongs to a class of FLPs known as the maxisum models. Unlike the p-median
problems where the desirability of facilities allows for the minimization of the objective function
relating to distance or cost, in maxisum models, the concern is how to locate facilities far from the
intended users. For instance, because of the health and environmental implications, locating landfill
facilities close to waste collection points may be undesirable. Daskin [34] proposed an IP model for
the UFLP with the following parameters: P is the number of expected facilities to be opened; σi is
the demand of customer i; dij is the distance between customer i and facility j; xj is the same as in
Section 4.5.1; yij = 1 if the requirement of customer i is satisfied by facility j, and 0, if otherwise. The
mathematical representation is:

Z7 = min

∑
i

∑
j

σidi jyi j

 (26)

such that∑
j yi j = 1, for all i

(27)∑
j

x j = P (28)

yi j ≤ x j, for all i, j, (29)

x j, yi j ∈ {0, 1}, for all i, j (30)

The objective function in Equation (26) minimizes the weighted sum of demands and distances
with the limitations of Equations (27)–(30).

5. Solution Techniques for FLP

Every optimization algorithm aims to obtain the best available solution from the feasible solution
space, and several methods have been proposed and described in the literature for solving the FLP
optimally. Many of these methods generate inexact solutions as experiments have shown that the FLP
falls in the class of NP-hard combinatorial problems. That are problems for which there is no known
polynomial-time algorithm for their solution. Krarup and Pruzan [35] verified that the uncapacitated
plant location problem, a simple form of the FLP, is NP-hard.

For this reason, exact methods are usually sacrificed for inexact methods to arrive at near-optimal
solutions. Thus, there are two categories of techniques available for FLPs: precise and heuristics
(approximate) methods. In many cases, however, solutions that start with exact methods are usually
concluded with heuristic approaches to obtain desirable optimal solutions.

Heuristics can be viewed as methods of arriving at an approximate solution to a problem,
that is, guessing a solution to a problem which is considered good enough. Thus, making use
of heuristic methods in finding the resolution of a problem is to apply a rule of thumb, which is
generally under the control of the computer to explore available paths and reasonable guesses to
arrive at an optimal solution. It is a search mechanism that checks all possible alternatives to obtain
the best. Heuristics are problem-dependent. In other words, a heuristic is usually defined for the
particular problem it seeks to solve. Meta-heuristics, a form of heuristics, differ from basic heuristics
in that they are problem-independent techniques and can generally be adapted to different types of
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problems. In the literature, a number of these approximate methods have been proposed to provide
near-optimal solutions to the FLP. Below are some of the widely used techniques for solving facility
location-related problems.

5.1. Branch-and-Bound

The branch-and-bound (BB) is by far the most widely used exact method for solving large-scale
NP-hard optimization problems [36]. The BB algorithm searches the space of the feasible solution of
a given problem for the best solution. Since the number of possible solutions grows exponentially,
only an implicit search of the solution space is possible. At the start of the process, only one subset
of the solution space exists and is the complete solution space having an optimal solution set at 1.
Successively, a pool of unexplored subsets is generated and represented as nodes in a search tree. These
nodes are then processed by an iterative algorithm with the following components: node insertion,
estimation of bounds, and branching.

This method is popular with many authors and has been incorporated into some software
for suitable problem instances. In 2010, Kim and Kim [37] applied the technique to determine the
locations of long-term care facilities by using some dominance properties that identify partial solutions
dominated by other solutions and subsequently remove such dominated solutions from the solution
space. Beresnev [38] proposed a BB algorithm for finding an optimal non-cooperative solution to a
competitive FLP where competing parties open their facilities successively intending to capture a good
number of customers, thereby maximizing their profits.

To describe a simple algorithm for the BB technique, consider a simple optimization problem
ϕ(X,f ), where X is the search space and f :X→R is the cost function. A new sub-problem L ⊆ X(X ∈ L) is
selected at each iteration of the algorithm, where L is a list of unexplored subproblems. A pseudocode
for implementing the BB technique based on this information is given as follows:

The Pseudocode of Branch and Bound

1: input: L = {X}, initialized x (the current solution);
2: while L = φ do
3: select the subproblem l ∈ L to explore
4: if a solution x′ ∈

{
x ∈ l, f (x) < f (x)

}
can be found do

5: set x = x′;
6: end if
7: if l cannot be pruned do
8: partition l into l1, l2,..., lp;
9: insert l1, l2,..., lp into l
10: end if
11: remove l from L;
12: end
13: return x (the best solution found in the process).

5.2. Lagrangian Relaxation Heuristic

Another method commonly used for solving FLP models is the Lagrangian relaxation (LR)
heuristic, which, according to many studies, is both powerful and rich in analysis for solving NP-hard
combinatorial optimization problems. The main idea behind the method is to identify one or more
“complicating” constraints (see [39]) and then attach a multiplier vector, also known as the penalty
cost to this set of constraints before adding it to the objective function [40]. The resulting problem is
called the Lagrangian problem, and the objective function is known as the Lagrangian dual function.
Maximizing the dual purpose gives the best lower bound value on the actual function of the original
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problem. Relaxing an integer programming problem in this sense generally produces an easy-to-solve
issue [41].

It is easy to infer from the preceding that there are two main concerns in the application of LR. The
first is the strategic choice of the set of constraints to relax. Often, this can be done by isolating one or
more exciting sub-problems and then relaxing the other restrictions as described above. Another way
is to dualize a set of linking constraints (that is, set of constraints where two constraints are represented)
into the objective function [42]. This latter approach is common when applying Lagrangian relaxation
to facility location problems [43]. The second concern involves the tactical process of finding and
updating numerical values of the Lagrangian multipliers. To achieve this, the subgradient optimization
method is a handy tool, which takes advantage of the problem structure and constructs a numerical
scheme similar to most gradient methods. Comparing different ways, Beasley [41] suggested that the
technique will nearly always outperform other applicable methods.

The use of LR and subgradient optimization methods are not new to problems formulated as
FLPs. In fact, due to the NP-hard nature of this class of problems, many heuristics proposed for finding
optimal solutions are usually based on initial solutions provided by solving the Lagrangian problem of
the original question. Some of the applications of the LR heuristics to FLP models may be found in
other studies [40,44,45]. The following pseudocode describes the LR process.

The Pseudocode of LR Heuristics

1: Identify the complicating constraint(s) or “easy” subproblem(s) of the primal problem;
2: Initialize all the parameters;
3: while stopping condition is unsatisfied do
4: Solve the subproblems to obtain the lower bound values for the decision variables;
5: Update the vector of Lagrangian multipliers using subgradient optimization method;
6: Construct primal problem solution;
7: end
8: return the best solution to the primal problem

5.3. Constructive and Local Search

Constructive search algorithms build an optimal solution to a problem from scratch by repeatedly
extending the current known solution until a complete solution is found. The method generally
improves solutions than random methods. It is often used to initialize many metaheuristic algorithms
for obtaining near-optimal solutions. The algorithm is usually thought of as being fast, as they are
often a single-pass approach [46]. Local search methods, on their part, consider the neighborhood
of the existing current solution for possible replacement. That is, a local search algorithm takes
a complete solution and tries to improve it through local moves within the neighborhood. Often,
constructive algorithms are used to initiate solutions that local search heuristics build on to provide
optimal solutions. Generally, a local search follows the hill-climbing search process until the best
solution is reached.

5.4. Tabu Search

The Tabu search (TS) is a meta-heuristic approach that allows a form of hill-climbing to overcome
the local search optimal [47]. The technique is based on the neighborhood, also known as the short
term memory of the search, in a way that prevents movement in cycles [48]. In this way, moves
in subsequent iterations that take the current solution to points in the feasible space, which have
previously been explored, are avoided. The search space and its neighborhood structure are two
fundamental elements of the TS algorithm. When different definitions of the search space for a given
problem are considered, the neighborhood structures inevitably change to a certain degree [49]. A
typical example is the capacitated FLP, where the search space may be defined with respect to the
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location variable. In this case, the neighborhood structure will usually involve moves that change the
status of one location and open facilities from one place to another.

The Pseudocode of Tabu Search

1: input: initial solution s ∈ S, best solution so far s′;
2: initialize: k = 0 (iteration counter), Tabu-Memory;
3: repeat
4: Generate Candidate Set V = N(s, k)(N(s, k) = N(s) − Tabu list);
5: find the best solution s ∈ V;
6: Update: s′ = s, Tabu-Memory
7: k = k + 1;
8: until the stop criterion is met
9: return xα.

5.5. Large Neighborhood Search

The broad large neighborhood search (LNS) is a meta-heuristic and was first proposed by
Shaw [50]. A comprehensive description of the algorithm was provided by Pisinger and Ropke [51].
Unlike most neighborhood search methods where the neighborhood containing the solution is usually
explicitly defined, the LNS makes use of a destroy-repair approach to define an implicit region of the
solution. The destroy technique removes part of a current solution while the repair method re-inserts
the eliminated candidate solution(s), thus rebuilding the solution structure. In the LNS, a solution
neighborhood J(x) is defined as a solution. This neighborhood can then be explored by the destroy
method, followed by the repair method. The algorithm is designed in such a way that it prevents a
search of the entire neighborhood. Instead, only a random sample of it is explored at a time. The prefix
“large” is appended to the LNS heuristic because, at the destruct phase, a large portion of the solution
can be removed.

In describing the LNS algorithm, three essential variables are usually considered: xα is the
best-observed solution during the search, x is the current solution, and xp is a solution under probation
of destructor repair, and two functions d(·) and r(·) correspond to the destruct and improve method,
respectively. It is essential to consider carefully the degree of freedom allowed at the destruct phase of
the algorithm. The removal of a very small or substantial part of the solution may result in a poor
solution. Hence, a mild degree is usually desirable. The methods of solution removal and re-insertion
are best applied to problems that can be decomposed to the main and sub-problems. At the destruction
phase, an infeasible solution is produced and then converted to a feasible solution by the repair method.
Thus, it is right to say an LNS alternates between infeasible and viable solutions.

The adaptive broad neighborhood search (ALNS) is an extension of the LNS heuristic. The first
proposition of this extension was reported by Ropke and Pisinger [52]. This method allows multiple
applications of the destroy-repair method within the same search. A weight value that controls the
frequency of attempt by each way is assigned. This assignment, however, undergoes dynamical
re-adjustment as the search progresses to allow problem adaptation. The use of multiple destroy-repair
methods indicates that the ALNS enables the creation of various neighborhoods. The following is a
pseudocode that represents the descriptions above. Note that c(·) is used to evaluate the objective
function, and the accept function of Line 5 can be implemented as suitable to the user as long as the
current solution is improved.
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The Pseudocode of LNS

1: input: a feasible solution x;
2: xα = x;
3: repeat
4: xp = r(d(x) ;
5: if accept(xp,x) then
6: x = xp;
7: end if
8: if c(xp) < c(xα) then
9: xα = xp;
10: end if
11: until the stop criterion is met
12: return xα.

5.6. Particle Swarm Optimization

PSO is a swarm intelligence-based metaheuristic inspired by the schooling and flocking patterns
of birds and fishes [53]. The first work on PSO was published by Eberhart and Kennedy [54]. Particle
swarm optimization (PSO), as a form of stochastic optimization, does not require an operator to extract
a new set of a candidate solution. This is sharply in contrast to most evolutionary search (ES) methods.
It is, however, similar to ES heuristics in that it also searches the population of the potential solution.

Furthermore, unlike the mutation stage of the ES, the PSO relies on information exchange between
particles in the population. One can, therefore, say a PSO utilizes a set of agents, called particles, to
search a solution space for the optimum value of a given problem. These particles move at a trajectory
determined by a rule that merges the current velocity of a particle, its exploration histories, and
neighbors [55]. Parsopoulos and Vrahatic [56] described PSO in the following way: Assume n is the
dimensional search space and Xi = {xi1,xi2,...,xin} is the vector space of the ith particle; f is the index of
the lowest function valued particle (i.e., the best particle of the swarm); bi = {bi1,bi2,...,bin} is the best
previous position of ith the particle; Vi = {vi1,vi2,...,vin} is the velocity of the ith particle.

The updating rule of particles moving through the search space is given by the following equations
representing their velocities and position coordinates, respectively:

V j+1
i = β

(
wV j

i + k1τ
j
i1

(
b j

i −X j
i

)
+ k2τ

j
i2

(
b j

f −X j
i

))
(31)

and
X j+1

i = X j
i + V j+1

i (32)

for i = 1,2,...,S, where S is the size of the population; β is the control parameter for the swarm velocity;
w is the inertial weight; k1 and k2 are the cognitive and social parameters, respectively; τi1, τi2∈[0,1]
are uniformly distributed random numbers. The convergence behavior of PSO is well determined
by an appropriate choice of w. To facilitate a search of new solution space, experimental results have
indicated that this can be done by initializing w in no small value. In contrast, for fine-tuning results, a
low w can be used. Hence, a gradual reduction of the weight value can generate a good result. The
pseudocode for implementing PSO is given as follows.
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The Pseudocode of PSO

1: input: randomly initialized position and velocity of particles, Xi and Vi;
2: initialize: k = 0 (iteration counter);
3: repeat
4: for i = 1 to S do
5: evaluate the fitness function (the cost function to be minimized);
6: update: bi and bj;

7: update: Vi and Xi;
8: end for
8: k = k + 1;
9: until the stopping criterion is met
10: return X* (the global minimum)

5.7. Ant Colony Optimization and Variants

Ant colony optimization (ACO) and its variants are metaheuristic methods inspired by the way
real ants find the shortest paths from their nest to food sources. The ants communicate through the
release of a chemical substance known as pheromones. This substance influences the behavioral
pattern of other ants in the same environment. ACO makes use of a constructive algorithm to create a
solution by a sequence of probabilistic decisions where every move extends an incomplete solution by
adding a new solution component until a complete solution is obtained. The series of steps can be
viewed as a path through a corresponding decision graph [57].

The implementation of an ACO starts by initializing the values of the pheromones by which a
solution is constructed through a transition rule. Once a solution is obtained, the set of local pheromones
is updated immediately. Local search is then employed to search for an improved resolution and based
on the best global solution obtained at different iterations, the comprehensive pheromone information
is updated accordingly.

The Pseudocode of ACO and Variants

1: input: randomly initialized pheromone values;
2: initialize: k = 0 (iteration counter);
3: repeat
4: for i = 1 to n (the number of ants) do
5: construct a solution;
6: update local pheromone values;
7: end for
8: k = k + 1;
9: until the stopping criterion is met
10: return pheromone values for the best solution.

5.8. Simulated Annealing

Simulated annealing (SA) is a technique adapted from the metal annealing process [58]. It is a
probability-based method for finding the global minimum of a cost function that possesses more than
one local minimum [59]. The SA algorithm comprises a non-homogeneous discrete-time Markov chain
at a current state x(t) such that if x(t) = i, a neighborhood j(i) is chosen at random. Given a finite set S,
the probability that any j∈S(i) is selected is qij. Once such j is selected, the next state x(t + 1) is computed
as follows: if J(j) ≤ J(i), then x(t + 1) = j. However, if J(j) > J(i), then x(t + 1) = I with the possibility

P[x(t + 1)] = exp
[
−J( j)−J(i)

T(t)

]
, otherwise, P[x(t + 1)] = i.
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In essence,

P
[
x(t + 1) = j

∣∣∣x(t) = i
]
= qi j · exp

[
−1

T(t)
max

{
0, J( j) − J(i)

}]
,∀ j , i, j ∈ S(i) (33)

and
P
[
x(t + 1) = j

∣∣∣x(t) = i
]
= 0 if j , i, j < S(i) (34)

where J is a real-valued cost function defined on S; set S(i) ⊂ S− {i} for each i∈S is the neighborhood
of i; T is a non-increasing function such that T:Z+

→(0,∞) called the cooling schedule; and T(t) is the
temperature at time t. Other assumptions of the technique are: x(0)∈ and j∈S(i) if and only if i∈S(j).

5.9. Genetic Algorithm

The genetic search (GA) algorithm mimics the natural evolution process [60]. The algorithm
makes use of significant properties of the evolutionary system such as the population of chromosomes,
selection of chromosomes according to fitness, production of new offspring through crossover, and the
random mutation of the new family [61]. The GA algorithm searches through a space of chromosomes,
which often take the form of a bit string with two possible values of 0 and 1 called the alleles by
changing from one population to another. In the search process, a fitness score is assigned to each
chromosome in the current population. The rating assigned is dependent on the solvability index of
the chromosomes to the particular problem under study.

Generally, the GA works with three major operators. The selection operator chooses chromosomes
for reproduction according to their fitness scores. In short, the selection operator preserves the best
current solution while keeping the size of the population constant. It does this by eliminating from
the population the wrong answers and reproducing copies of the good ones simultaneously. The
crossover operator mimics the natural recombination process between organisms by exchanging two
chromosomes to reproduce two new offspring. The mutation operator maintains the diversity from
one generation of the chromosome population to another by the introduction of new features into the
solution pool. More comprehensive details on this technique and some of those discussed above can
be found in [62].

The Pseudocode of GA

1: input: Itmax (maximum iteration), n (population size);
2: initialize: current set of the solution: pool, k = 0;
3: repeat
4: for i = 1 to n do
5: select the solutions randomly a,b;
6: crossover(a,b) and generate the new solution: newsol;
7: mutation(newsol);
8: update pool by adding newsol;
9: end for
10: selection(pool);
11: k = k + 1;
12: until the stopping criterion is met
13: return best solution found in the process.

6. Application of Facility Location Problems in Waste Management

Waste management comprises six stages, namely: generation, collection, transport, sorting
processing, and disposal. For any successful waste management practice, the efficient planning of the
waste collection is essential, not only because of its impact on the total cost of waste management but
also due to the environmental implications of uncollected wastes. However, to effectively collect the
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generated wastes, the number of collection points and their corresponding locations are required to
serve the collection requests of customers in any given community. These factors largely determine the
level of success that may be attained at the collection phase of waste management. Thus, modeling
an optimal collection system always revolves around these two variables: the number of collection
facilities and the locations of these facilities. Importantly, the location of facilities in waste management
is not restricted to the collection facilities alone. Other facilities such as the treatment centers,
recycling centers, and landfills may also be the subject of consideration when applying FLPs in waste
management practices.

Due to the associated cost of waste collection, municipal authorities are beginning to engage
the participation of optimization analysts in the quest to ascertain the maximum number of facilities
required for daily collection and the optimal locations of the facilities. This has given rise to some
studies on waste collection FLPs, many of which have been reported in the literature. Badran and
El-Hagar [6] proposed a MIP model to optimize the municipal waste collection in Port Said, Egypt.
The model presented in their study can select between the different candidate locations for collection
facilities to minimize the total cost of municipal waste management. The results they obtained showed
that the best model would include 27 locations. Hazardous wastes, usually products of industrial
processes and characterized by either their ignitability, corrosiveness, reactivity, or toxicity, form the
basis of a study by Alumur and Kara [7]. Their proposed MIP model locates treatment and disposal
centers and finds the appropriate choice of technology for the treatment centers. The study used the
CPLEX solver to obtain a solution to the optimization model. Erkut et al. [8] proposed a mixed-integer
linear programming (MILP) model with multiple criteria for solving the location problem at the
regional level of waste collection leading to a solution that was obtained using a technique known as
the lexicographic minimax approach. The facilities considered in their study include transfer stations,
material recovery facilities, incinerators, and sanitary landfills. A similar approach was used by Tralhão
and colleagues [9] who considered a multi-objective modeling approach for urban sorted waste.

In a study conducted in Nardo, a city in the southern part of Italy, Ghiani and colleagues [10]
described an IP model for the capacitated location of collection facilities. Their proposed IP model
considered capacitating each facility so that all customers’ demands are satisfied every day. The
study also introduced the quality of service in the model so that each customer is served by the
collection site nearest to him. Their model minimized the total number of facilities to be opened among
the set of candidate facilities. It also determined the optimal assignment of customers to opened
facilities, as well as allocating waste bins to these facilities so that all the demands were satisfied. They
solved the optimization model directly on a solver and proposed a construction heuristic for obtaining
approximate solutions. Building on this work, Ghiani and co-workers [11] introduced an additional
feature of zoning to determine service territories. Exact and approximate techniques were proposed to
implement the model. A considerable number of studies on the location of landfills have also been
reported in the literature, a summary of some of these studies may be found in a study by Eiselt and
Marianov [12]. Some recently proposed studies on the applications of FLPs in waste collection are
presented in Table 1.
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Table 1. Some recent studies on the applications of facility location problems (FLPs) to waste management.

Study Objective Mathematical Model
Method Waste Specification Data/Application

AreaExact Approximate

Chauhan and Singh [63] Selection of sustainable disposal locations Multi-criteria - Fussy optimization Healthcare waste Case study: India

Zhao et al. [64]
Minimization of total cost and risk of locating
waste facilities and finding optimal transportation
routes

MILP
CPLEX for
single-objective
problems

The customized multi-objective
optimization approach Hazardous waste

Hypothetical and
realistic cases from
Sichuan Province,
China

Yadav et al. [65] Minimization of the number of facility locations
under uncertainty Stochastic - Interval analysis heuristic - Hypothetical case

study

Hu et al. [66] Minimization of multi-objective function MIP CCG - Waste-to-energy Case study: Shanghai,
China

Boonmee et al. [67] Minimization of total cost in the supply chain of
sellable waste MIP - PSO + differential evolution Post-disaster wastes Theoretical datasets

Wichapa and
Khokhajaikiat [14]

Minimization of multi-objective functions
comprising of the total cost and the final priority
weight

Fuzzy analytical hierarchy
process (FAHP) and hybrid
FAHP and goal programming

LINGO - Infectious waste Case study:
Northeast Thailand

Aydemir-Karadag [15] Maximization of total annual profit MIP CPLEX - Hazardous waste Case study: Turkey

Rabbani et al. [68]

Minimization of multi-objective functions
comprising of the total cost, total transportation
risk of hazardous waste related to population
exposure, and site risk

MIP Linearized version
solved by CPLEX

Nondominated Sorting Genetic
Algorithm (NSGA) and
multi-objective (MOPSO)

Hazardous waste Hypothetical instance

Rabbani et al. [69] Minimization of multi-objective function (total
cost, total site risk, transportation risk) MIP - GA + Monte Carlo - Randomly generated

dataset

Rathore and Sarmah [16] Optimal selection of transfer stations for
segregated and unsegregated wastes MIP CPLEX + ArcGIS - Segregated and

unsegregated wastes
Case study: Bilaspur,
India

Asefi et al. [17] Minimization of the total cost of facility location
and transportation MILP CPLEX VNS + SA Solid waste Case study: Tehran,

Iran

Gergin et al. [70] Optimal site locations for healthcare wastes Multiple FLP as MIP - Artificial Bee Colony based
clustering algorithm Healthcare waste Real-life problem:

Turkey

Toutouh et al. [71] Optimal locations of garbage accumulation points MIP -
PageRank Method +
Multi-objective Evolutionary
Algorithm

Solid waste (garbage) Case study: Uruguay
and Argentina

Adeleke and Ali [72] Minimization of the number of activated waste
collection sites IP - Lagrangian heuristic Solid waste Hypothetical instance:

Lagos, Nigeria

CCG = column-and-constraint generation; MILP = mixed integer linear programming; VNS = variable neighborhood search; MIP = mixed-integer programming; SA = simulated annealing;
PSO = particle swarm optimization; IP = integer programming; CPLEX and LINGO are optimization solvers suitable for implementing FLP models.
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7. Conclusions

This paper presents a brief survey of literature on facility location problems (FLPs). To convey
the concept of this class of problems, the study tried to review the underlying ideas of the distance
function, which are very important in FLPs. Several mathematical models were reviewed, along
with some optimization methods that have been used to find near-optimal solutions because of the
complexity of the problems. This survey concludes by describing some critical studies where FLPs are
directly applied on waste collection, a vital activity of waste management. The content of this paper
will provide early career researchers with some necessary starting information required to formulate
and solve problems relating to FLPs.

As part of the contribution, this survey study provides a number of managerial insights for
stakeholders in the waste management industries as well as other related industries where the proposed
model can be utilized. These are highlighted in the following:

1. The study provides tangible information on some existing FLP models that have been applied
to the problems associated with locating waste collection facilities. These models with little
modifications can be utilized to address some current challenges arising from waste collection in
many developing urban centers.

2. The various optimization algorithms described for solving the existing mathematical models
can serve as tools for designing more efficient approximating techniques that will be capable of
finding quality solutions to very large-scale problems. Waste collection managers can utilize
the ideas in the existing models and solution techniques presented in this study to handle
problem-specific factors that are necessary to improve the quality of services they provide at their
various customers’ locations.

3. The information presented regarding the application of FLPs to waste management is sufficient to
guide the stakeholders in the current trends of collection approaches being adopted in different
regions of the world.
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