2,904 research outputs found

    Graph Mining for Object Tracking in Videos

    No full text
    International audienceThis paper shows a concrete example of the use of graph mining for tracking objects in videos with moving cameras and without any contextual information on the objects to track. To make the mining algorithm efficient, we benefit from a video representation based on dy- namic (evolving through time) planar graphs. We then define a number of constraints to efficiently find our so-called spatio-temporal graph pat- terns. Those patterns are linked through an occurrences graph to allow us to tackle occlusion or graph features instability problems in the video. Experiments on synthetic and real videos show that our method is effec- tive and allows us to find relevant patterns for our tracking application

    Modeling Complex Object Changes in Satellite Image Time-Series: Approach based on CSP and Spatiotemporal Graph

    Full text link
    This paper proposes a method for automatically monitoring and analyzing the evolution of complex geographic objects. The objects are modeled as a spatiotemporal graph, which separates filiation relations, spatial relations, and spatiotemporal relations, and is analyzed by detecting frequent sub-graphs using constraint satisfaction problems (CSP). The process is divided into four steps: first, the identification of complex objects in each satellite image; second, the construction of a spatiotemporal graph to model the spatiotemporal changes of the complex objects; third, the creation of sub-graphs to be detected in the base spatiotemporal graph; and fourth, the analysis of the spatiotemporal graph by detecting the sub-graphs and solving a constraint network to determine relevant sub-graphs. The final step is further broken down into two sub-steps: (i) the modeling of the constraint network with defined variables and constraints, and (ii) the solving of the constraint network to find relevant sub-graphs in the spatiotemporal graph. Experiments were conducted using real-world satellite images representing several cities in Saudi Arabia, and the results demonstrate the effectiveness of the proposed approach

    Dance-the-music : an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    Get PDF
    In this article, a computational platform is presented, entitled “Dance-the-Music”, that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers’ models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method can determine the quality of a student’s performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures

    08451 Abstracts Collection -- Representation, Analysis and Visualization of Moving Objects

    Get PDF
    From 02.11. to 07.11.2008, the Dagstuhl Seminar 08451 ``Representation, Analysis and Visualization of Moving Objects \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling, and understanding of stream data.

    Get PDF
    This paper proposes a new method for an optimized mapping of temporal variables, describing a temporal stream data, into the recently proposed NeuCube spiking neural network architecture. This optimized mapping extends the use of the NeuCube, which was initially designed for spatiotemporal brain data, to work on arbitrary stream data and to achieve a better accuracy of temporal pattern recognition, a better and earlier event prediction and a better understanding of complex temporal stream data through visualization of the NeuCube connectivity. The effect of the new mapping is demonstrated on three bench mark problems. The first one is early prediction of patient sleep stage event from temporal physiological data. The second one is pattern recognition of dynamic temporal patterns of traffic in the Bay Area of California and the last one is the Challenge 2012 contest data set. In all cases the use of the proposed mapping leads to an improved accuracy of pattern recognition and event prediction and a better understanding of the data when compared to traditional machine learning techniques or spiking neural network reservoirs with arbitrary mapping of the variables.Comment: Accepted by IEEE TNNL

    Interpreting Pedestrian Behaviour by Visualising and Clustering Movement Data

    Get PDF
    Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour

    Self-Organizing Time Map: An Abstraction of Temporal Multivariate Patterns

    Full text link
    This paper adopts and adapts Kohonen's standard Self-Organizing Map (SOM) for exploratory temporal structure analysis. The Self-Organizing Time Map (SOTM) implements SOM-type learning to one-dimensional arrays for individual time units, preserves the orientation with short-term memory and arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM attempts thus twofold topology preservation, where the horizontal direction preserves time topology and the vertical direction data topology. This enables discovering the occurrence and exploring the properties of temporal structural changes in data. For representing qualities and properties of SOTMs, we adapt measures and visualizations from the standard SOM paradigm, as well as introduce a measure of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world setting is shown on poverty, welfare and development indicators
    • …
    corecore