13 research outputs found

    Combining similarity in time and space for training set formation under concept drift

    Get PDF
    Concept drift is a challenge in supervised learning for sequential data. It describes a phenomenon when the data distributions change over time. In such a case accuracy of a classifier benefits from the selective sampling for training. We develop a method for training set selection, particularly relevant when the expected drift is gradual. Training set selection at each time step is based on the distance to the target instance. The distance function combines similarity in space and in time. The method determines an optimal training set size online at every time step using cross validation. It is a wrapper approach, it can be used plugging in different base classifiers. The proposed method shows the best accuracy in the peer group on the real and artificial drifting data. The method complexity is reasonable for the field applications

    Adaptive Mining Techniques for Data Streams Using Algorithm Output Granularity Mohamed

    Get PDF
    Mining data streams is an emerging area of research given the potentially large number of business and scientific applications. A significant challenge in analyzing /mining data streams is the high data rate of the stream. In this paper, we propose a novel approach to cope with the high data rate of incoming data streams. We termed our approach "algorithm output granularity". It is a resource-aware approach that is adaptable to available memory, time constraints, and data stream rate. The approach is generic and applicable to clustering, classification and counting frequent items mining techniques. We have developed a data stream clustering algorithm based on the algorithm output granularity approach. We present this algorithm and discuss its implementation and empirical evaluation. The experiments show acceptable accuracy accompanied with run-time efficiency. They show that the proposed algorithm outperforms the K-means in terms of running time while preserving the accuracy that our algorithm can achieve

    Detecting Change in Data Streams

    Get PDF

    An Event-based Analysis Framework for Open Source Software Development Projects

    Get PDF
    The increasing popularity and success of Open Source Software (OSS) development projects has drawn significant attention of academics and open source participants over the last two decades. As one of the key areas in OSS research, assessing and predicting OSS performance is of great value to both OSS communities and organizations who are interested in investing in OSS projects. Most existing research, however, has considered OSS project performance as the outcome of static cross-sectional factors such as number of developers, project activity level, and license choice. While variance studies can identify some predictors of project outcomes, they tend to neglect the actual process of development. Without a closer examination of how events occur, an understanding of OSS projects is incomplete. This dissertation aims to combine both process and variance strategy, to investigate how OSS projects change over time through their development processes; and to explore how these changes affect project performance. I design, instantiate, and evaluate a framework and an artifact, EventMiner, to analyze OSS projects’ evolution through development activities. This framework integrates concepts from various theories such as distributed cognition (DCog) and complexity theory, applying data mining techniques such as decision trees, motif analysis, and hidden Markov modeling to automatically analyze and interpret the trace data of 103 OSS projects from an open source repository. The results support the construction of process theories on OSS development. The study contributes to literature in DCog, design routines, OSS development, and OSS performance. The resulting framework allows OSS researchers who are interested in OSS development processes to share and reuse data and data analysis processes in an open-source manner

    Efficient Temporal Synopsis of Social Media Streams

    Get PDF
    Search and summarization of streaming social media, such as Twitter, requires the ongoing analysis of large volumes of data with dynamically changing characteristics. Tweets are short and repetitious -- lacking context and structure -- making it difficult to generate a coherent synopsis of events within a given time period. Although some established algorithms for frequent itemset analysis might provide an efficient foundation for synopsis generation, the unmodified application of standard methods produces a complex mass of rules, dominated by common language constructs and many trivial variations on topically related results. Moreover, these results are not necessarily specific to events within the time period of interest. To address these problems, we build upon the Linear time Closed itemset Mining (LCM) algorithm, which is particularly suited to the large and sparse vocabulary of tweets. LCM generates only closed itemsets, providing an immediate reduction in the number of trivial results. To reduce the impact of function words and common language constructs, we apply a filltering step that preserves these terms only when they may form part of a relevant collocation. To further reduce trivial results, we propose a novel strengthening of the closure condition of LCM to retain only those results that exceed a threshold of distinctiveness. Finally, we perform temporal ranking, based on information gain, to identify results that are particularly relevant to the time period of interest. We evaluate our work over a collection of tweets gathered in late 2012, exploring the efficiency and filtering characteristic of each processing step, both individually and collectively. Based on our experience, the resulting synopses from various time periods provide understandable and meaningful pictures of events within those periods, with potential application to tasks such as temporal summarization and query expansion for search

    An adaptive, fault-tolerant system for road network traffic prediction using machine learning

    Get PDF
    This thesis has addressed the design and development of an integrated system for real-time traffic forecasting based on machine learning methods. Although traffic prediction has been the driving motivation for the thesis development, a great part of the proposed ideas and scientific contributions in this thesis are generic enough to be applied in any other problem where, ideally, their definition is that of the flow of information in a graph-like structure. Such application is of special interest in environments susceptible to changes in the underlying data generation process. Moreover, the modular architecture of the proposed solution facilitates the adoption of small changes to the components that allow it to be adapted to a broader range of problems. On the other hand, certain specific parts of this thesis are strongly tied to the traffic flow theory. The focus in this thesis is on a macroscopic perspective of the traffic flow where the individual road traffic flows are correlated to the underlying traffic demand. These short-term forecasts include the road network characterization in terms of the corresponding traffic measurements –traffic flow, density and/or speed–, the traffic state –whether a road is congested or not, and its severity–, and anomalous road conditions –incidents or other non-recurrent events–. The main traffic data used in this thesis is data coming from detectors installed along the road networks. Nevertheless, other kinds of traffic data sources could be equally suitable with the appropriate preprocessing. This thesis has been developed in the context of Aimsun Live –a simulation-based traffic solution for real-time traffic prediction developed by Aimsun–. The methods proposed here is planned to be linked to it in a mutually beneficial relationship where they cooperate and assist each other. An example is when an incident or non-recurrent event is detected with the proposed methods in this thesis, then the simulation-based forecasting module can simulate different strategies to measure their impact. Part of this thesis has been also developed in the context of the EU research project "SETA" (H2020-ICT-2015). The main motivation that has guided the development of this thesis is enhancing those weak points and limitations previously identified in Aimsun Live, and whose research found in literature has not been especially extensive. These include: • Autonomy, both in the preparation and real-time stages. • Adaptation, to gradual or abrupt changes in traffic demand or supply. • Informativeness, about anomalous road conditions. • Forecasting accuracy improved with respect to previous methodology at Aimsun and a typical forecasting baseline. • Robustness, to deal with faulty or missing data in real-time. • Interpretability, adopting modelling choices towards a more transparent reasoning and understanding of the underlying data-driven decisions. • Scalable, using a modular architecture with emphasis on a parallelizable exploitation of large amounts of data. The result of this thesis is an integrated system –Adarules– for real-time forecasting which is able to make the best of the available historical data, while at the same time it also leverages the theoretical unbounded size of data in a continuously streaming scenario. This is achieved through the online learning and change detection features along with the automatic finding and maintenance of patterns in the network graph. In addition to the Adarules system, another result is a probabilistic model that characterizes a set of interpretable latent variables related to the traffic state based on the traffic data provided by the sensors along with optional prior knowledge provided by the traffic expert following a Bayesian approach. On top of this traffic state model, it is built the probabilistic spatiotemporal model that learns the dynamics of the transition of traffic states in the network, and whose objectives include the automatic incident detection.Esta tesis ha abordado el diseño y desarrollo de un sistema integrado para la predicción de tráfico en tiempo real basándose en métodos de aprendizaje automático. Aunque la predicción de tráfico ha sido la motivación que ha guiado el desarrollo de la tesis, gran parte de las ideas y aportaciones científicas propuestas en esta tesis son lo suficientemente genéricas como para ser aplicadas en cualquier otro problema en el que, idealmente, su definición sea la del flujo de información en una estructura de grafo. Esta aplicación es de especial interés en entornos susceptibles a cambios en el proceso de generación de datos. Además, la arquitectura modular facilita la adaptación a una gama más amplia de problemas. Por otra parte, ciertas partes específicas de esta tesis están fuertemente ligadas a la teoría del flujo de tráfico. El enfoque de esta tesis se centra en una perspectiva macroscópica del flujo de tráfico en la que los flujos individuales están ligados a la demanda de tráfico subyacente. Las predicciones a corto plazo incluyen la caracterización de las carreteras en base a las medidas de tráfico -flujo, densidad y/o velocidad-, el estado del tráfico -si la carretera está congestionada o no, y su severidad-, y la detección de condiciones anómalas -incidentes u otros eventos no recurrentes-. Los datos utilizados en esta tesis proceden de detectores instalados a lo largo de las redes de carreteras. No obstante, otros tipos de fuentes de datos podrían ser igualmente empleados con el preprocesamiento apropiado. Esta tesis ha sido desarrollada en el contexto de Aimsun Live -software desarrollado por Aimsun, basado en simulación para la predicción en tiempo real de tráfico-. Los métodos aquí propuestos cooperarán con este. Un ejemplo es cuando se detecta un incidente o un evento no recurrente, entonces pueden simularse diferentes estrategias para medir su impacto. Parte de esta tesis también ha sido desarrollada en el marco del proyecto de la UE "SETA" (H2020-ICT-2015). La principal motivación que ha guiado el desarrollo de esta tesis es mejorar aquellas limitaciones previamente identificadas en Aimsun Live, y cuya investigación encontrada en la literatura no ha sido muy extensa. Estos incluyen: -Autonomía, tanto en la etapa de preparación como en la de tiempo real. -Adaptación, a los cambios graduales o abruptos de la demanda u oferta de tráfico. -Sistema informativo, sobre las condiciones anómalas de la carretera. -Mejora en la precisión de las predicciones con respecto a la metodología anterior de Aimsun y a un método típico usado como referencia. -Robustez, para hacer frente a datos defectuosos o faltantes en tiempo real. -Interpretabilidad, adoptando criterios de modelización hacia un razonamiento más transparente para un humano. -Escalable, utilizando una arquitectura modular con énfasis en una explotación paralela de grandes cantidades de datos. El resultado de esta tesis es un sistema integrado –Adarules- para la predicción en tiempo real que sabe maximizar el provecho de los datos históricos disponibles, mientras que al mismo tiempo también sabe aprovechar el tamaño teórico ilimitado de los datos en un escenario de streaming. Esto se logra a través del aprendizaje en línea y la capacidad de detección de cambios junto con la búsqueda automática y el mantenimiento de los patrones en la estructura de grafo de la red. Además del sistema Adarules, otro resultado de la tesis es un modelo probabilístico que caracteriza un conjunto de variables latentes interpretables relacionadas con el estado del tráfico basado en los datos de sensores junto con el conocimiento previo –opcional- proporcionado por el experto en tráfico utilizando un planteamiento Bayesiano. Sobre este modelo de estados de tráfico se construye el modelo espacio-temporal probabilístico que aprende la dinámica de la transición de estado
    corecore