
Georgia State University
ScholarWorks @ Georgia State University

Computer Information Systems Dissertations Department of Computer Information Systems

8-11-2015

An Event-based Analysis Framework for Open
Source Software Development Projects
Tianjie Deng

Follow this and additional works at: https://scholarworks.gsu.edu/cis_diss

This Dissertation is brought to you for free and open access by the Department of Computer Information Systems at ScholarWorks @ Georgia State
University. It has been accepted for inclusion in Computer Information Systems Dissertations by an authorized administrator of ScholarWorks @
Georgia State University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Deng, Tianjie, "An Event-based Analysis Framework for Open Source Software Development Projects." Dissertation, Georgia State
University, 2015.
https://scholarworks.gsu.edu/cis_diss/59

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cis_diss?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cis?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cis_diss?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

1

An Event-based Analysis Framework for Open Source Software

Development Projects

BY

Tianjie Deng

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

Of

Doctor of Philosophy

In the Robinson College of Business

Of

Georgia State University

GEORGIA STATE UNIVERSITY

ROBINSON COLLEGE OF BUSINESS

2015

2

Copyright by

Tianjie Deng

2015

3

ACCEPTANCE

This dissertation was prepared under the direction of the Tianjie Deng Dissertation Committee.

It has been approved and accepted by all members of that committee, and it has been accepted in

partial fulfillment of the requirements for the degree of Doctor of Philosophy in Business

Administration in the J. Mack Robinson College of Business of Georgia State University.

 Richard Phillips, Dean

DISSERTATION COMMITTEE

Dr. William Robinson

Dr. Dr. Balasubramaniam Ramesh

Dr. Mark Keil

Dr. Kalle Lyytinen (Case Western Reserve University)

4

ACKNOWLEDGMENT

I would especially like to express my deepest gratitude to my advisor, Dr. William Robinson, for

his excellent guidance, caring, and patience. My dissertation could not have been completed

without him. I enjoy his creativity and his passion to programming. I especially enjoy

brainstorming with him. I am fortunate to have him as my advisor.

I would like to thank my committee members: Dr. Balasubramaniam Ramesh, whose practical

questions challenged me to grow, Dr. Mark Keil, whose constructive criticism helped me to

improve, and Dr. Kalle Lyytinen, whose open-mindedness encouraged me to reach higher.

I am very grateful to Dr. Dan Robey and Dr. Mike Gallivan, my unofficial committee members.

Dan has helped me greatly during my doctoral study. He has been a mentor, a motivator, and a

close friend. He often refers to me as his “academic family.” His work in process models has

have given me much inspiration. Dr. Gallivan’s suggestions and comments added considerable

value to my study.

I owe a great amount of gratitude to Youyou Tao and Langtao Chen, my colleagues and close

friends. They have spent so many nights helping me with my defense presentation and my job

talks. Those stressful nights have now become some of my happiest memories.

I would also like to thank my colleagues, Arash Akhlaghi, Zirun Qi, and Aron Lindberg who

helped me with data collection and coding. I also want to thank Hyung Koo Lee, who gave me

helpful advice on statistics.

I was very fortunate to have met Lynet Mortensen, Scott Mortensen, and their children, Jake,

Aaron, Carrie, and Elena, through the AMIGO Program in 2009. They have become my family

ever since. I am SO thankful to have them in my life. Special thanks to Lynet’s sister, Terri

Germann, who volunteered to edit my dissertation. I thank her very much for her time and effort.

I want to thank my uncle, Li Deng, his wife, Xiuwen Luo, and their children, George (Eagle) and

Alex. They are my family in Atlanta. My uncle and auntie treat me like their own daughter.

Because of them, I always have a home in Atlanta.

Last but not least, I want to thank my whole family for their support and patience, and for their

faith in me.

5

Table of Contents
Table of Contents .. 5

List of Tables .. 8

List of Figures ... 9

Abstract ... 10

1. Introduction ... 11

1.1 Motivation ... 11

1.2 Research Objectives and Overview of Studies ... 14

1.2.1 Key Terms ... 14

1.2.2 OSS Development Processes Comprised of Design Routines .. 16

1.2.3 OSS Development as Distributed Cognitive Processes .. 17

1.2.4 Towards a Process Perspective of OSS Development .. 18

1.2.5 Study Overview... 20

2. Literature Review .. 25

2.1 Evolution of OSS Development Process... 25

2.2 OSS Development Routines.. 27

2.3 Routine Diversity and Routine Change .. 28

2.3.1 Routine Diversity .. 28

2.3.2 Routine Change ... 29

2.4 Process Models ... 31

2.5 Distributed Cognition .. 32

2.5.1 Distributed Cognition in Software Development Projects and OSS 33

2.6 OSS Performance .. 34

2.6.1 Project Attractiveness ... 38

2.7 Sequence Stream Mining .. 39

3 Discovery and Diagnosis of Behavioral Transitions in Patient Event Streams 42

3.1 Introduction ... 42

3.1.1 A Cognitive Rehabilitation Scenario .. 44

3.1.2 Goal Attainment Scales ... 44

3.1.3 Approach ... 45

3.1.4 Essay Overview... 47

6

3.2 Related Research ... 47

3.2.1 Data Stream Mining .. 47

3.2.2 Model-Based Monitoring in AT ... 49

3.3 Monitor Design and Development .. 49

3.3.1 TAL Data Stream .. 49

3.3.2 Identify Transitions ... 50

3.3.3 Diagnosing Transitions ... 53

3.3.4 Development ... 58

3.4 A Case Demonstration .. 59

3.4.1 Data Mining Models ... 59

3.4.2 Identifying Transitions .. 60

3.4.3 Diagnosing Transitions ... 62

3.4.4 Evaluation ... 65

3.5 Monitoring with Hidden Markov Models ... 67

3.6 Conclusion .. 68

4. OSS Development Behavior Transition Discovery .. 70

4.1 Introduction ... 70

4.1.1 Recognizing Behaviors and Change ... 71

4.1.2 Building a Process Theory .. 72

4.2 Theoretical Background .. 73

4.2.1 Distributed Cognition .. 73

4.2.2 Sequence Stream-Mining .. 74

4.2.3 Model Differencing ... 76

4.2.4 HMM Probabilities ... 76

4.2.5 Volatility Models .. 78

4.3 Approach ... 78

4.3.1 Data Selection ... 79

4.3.2 Data Preparation .. 80

4.3.3 Work Constructs ... 81

4.3.4 Sequence Feature Construction ... 82

4.3.5 Sequence Modeling ... 84

4.3.5.1 Project Clustering .. 85

4.4 Analysis... 87

7

4.4.1 Regression ... 88

4.4.2 Behavioral Transitions .. 90

4.5 Discussion ... 93

4.6 Conclusions ... 94

5. Investigating the Temporal Dynamics and Variety of OSS Development Activities 95

5.1 Introduction ... 95

5.2 Research Model and Hypotheses .. 97

5.2.1 Research Model... 97

5.2.2 Research Hypotheses .. 98

5.3 Method .. 100

5.3.1 Data Collection ... 100

5.3.2 Routine Elicitation .. 100

5.3.3 Constructs and Measurements .. 101

5.4 Data Analysis .. 104

5.5 Results and Discussion ... 104

5.6 Contribution .. 106

6. Conclusion .. 108

6.1 Research Objective Revisited ... 108

6.2 Limitations .. 108

6.3 The Continuing Research Stream ... 109

6.4 Contribution .. 110

6.4.1 Contribution to Practice .. 110

6.4.2 Contribution to Research .. 111

Reference .. 113

Appendix ... 125

Table A1: DCog Metric Table .. 125

Table A2. OSS Success Constructs and Measurements.. 125

Table A3. Pseudo Codes for Tree Differencing .. 127

Table A4. Git Events ... 128

Table A5. List of Projects and Associated Cluster ... 128

Table A6. Summary Statistics of Routines ... 129

8

List of Tables

Table 1. Study Overview .. 23
Table 2. Design Rationale for the Design of the Monitor ... 50
Table 3. Qualities of Model M1 for Read and Compose Email .. 60
Table 4. First Derivative of Accuracy, q'. ... 62
Table 5. Significant Changes in Composing Email ... 63
Table 6. Significant Changes in Reading Email ... 63
Table 7. GitHub Queries for Data Selection ... 80
Table 8. Cluster Characteristics ... 86
Table 9. Regression Results (Five Clusters) ... 89
Table 10. Cluster Characteristics (Four Clusters) .. 89
Table 11. Regression Results (Four Clusters) .. 90
Table 12. Blog Entries for Bootstrap Transitions ... 92
Table 13. Constructs and Measurements ... 102
Table 14. Descriptive Statistics ... 104
Table 15. Regression Results ... 105

9

List of Figures

Figure 1. Comparison between Variance Models and Process Models .. 19
Figure 2. The EventMiner Framework .. 24
Figure 3. Some of Don's Emailing Goals ... 46
Figure 4. Quality of Stream-mined Models for Read and Compose Email, over 2 Years of Data Using

2-week Windows; Potential Goal Transitions Shaded ... 47
Figure 5. A Decision Tree Classifying Compose Events ... 54
Figure 6. A Decision Tree that Classifies DaySegment =2 ... 56
Figure 7. A Decision Tree that Lacks DaySegment =2 .. 57
Figure 8. A KNIME Workflow Example ... 59
Figure 9. Predictive Quality for the Read Models ... 61
Figure 10. Stack Graph of the Read Counts, by Buddy, Weeks 50 – 56 .. 64
Figure 11. Sequence Frequencies for Bootstrap ... 85
Figure 12. HMM Differences of Cluster Samples ... 91
Figure 13. Research Model .. 97
Figure 14. Hypothesized Projects Types ... 106

10

Abstract

An Event-based Analysis Framework for Open Source Software Development Projects

By

Tianjie Deng

July 2015

Committee Chair: Dr. William Robinson

Major Academic Unit: Computer Information Systems

The increasing popularity and success of Open Source Software (OSS) development projects has

drawn significant attention of academics and open source participants over the last two decades.

As one of the key areas in OSS research, assessing and predicting OSS performance is of great

value to both OSS communities and organizations who are interested in investing in OSS

projects. Most existing research, however, has considered OSS project performance as the

outcome of static cross-sectional factors such as number of developers, project activity level, and

license choice. While variance studies can identify some predictors of project outcomes,

they tend to neglect the actual process of development. Without a closer examination of

how events occur, an understanding of OSS projects is incomplete. This dissertation aims to

combine both process and variance strategy, to investigate how OSS projects change over time

through their development processes; and to explore how these changes affect project

performance. I design, instantiate, and evaluate a framework and an artifact, EventMiner, to

analyze OSS projects’ evolution through development activities. This framework integrates

concepts from various theories such as distributed cognition (DCog) and complexity theory,

applying data mining techniques such as decision trees, motif analysis, and hidden Markov

modeling to automatically analyze and interpret the trace data of 103 OSS projects from an open

source repository. The results support the construction of process theories on OSS development.

The study contributes to literature in DCog, design routines, OSS development, and OSS

performance. The resulting framework allows OSS researchers who are interested in OSS

development processes to share and reuse data and data analysis processes in an open-source

manner.

11

1. Introduction

An open-source software development team is working on its sixth release,

openPhotoBooth.06. During the past two years, the team has gone through various changes:

new developers joined and old members dropped out, hundreds of bug requests were

reported, the project’s vision went through several shifts, thousands of commits were made,

and the download numbers of the previous releases went up and down. Though release 4.0

was a huge success, the last release did not garner much attention. Now before the sixth

release, the team is wondering, “Are we doing well so far? What is the likelihood that this

version will be a success?”

This scenario raises interesting questions about Open Source Software (OSS)

development projects: how do we utilize the huge amount of digital trace data of OSS

projects to investigate their evolutionary patterns? Can we do more than just taking a

“snapshot” of an ongoing OSS project and analyzing its static data at a given moment?

How can we examine and understand the evolving trajectory of the projects to predict their

future prospects?

1.1 Motivation

The success of Open Source Software development projects has generated the interest

of academics and practitioners over the last two decades. Known for their “chaotic”

development style, OSS projects have produced software with exceptional quality (Mockus

et al. 2002). Surveys show that today’s open source software has a higher quality than the

industry average (Coverity 2012). Most extant literature attributes this superior quality to

static cross-sectional factors such as number of developers, project activity level and

12

license choice. How the everyday “chaotic” development activities and their characteristics

shape OSS project performance remains under-researched.

Researchers have been engaging in analyzing OSS development processes (Mockus et

al. 2002; Scacchi et al. 2006) and project performance (Crowston et al. 2003; Crowston et

al. 2004; Crowston et al. 2006; Grewal et al. 2006; Lee et al. 2009; Raja and Tretter 2006;

Ravi Sen 2012). However, there are several limitations in the current studies. First, many

studies on OSS success take a “snapshot” of a given project at a given point, but the ever-

changing nature of OSS projects and the dynamic structure of OSS teams require an

evolution-oriented perspective. Second, extant studies mostly used a cross-sectional

method to analyze project attributes, while overlooking the change pattern of development

activities and processes. Consequently, the understanding of the evolution of OSS projects

through their development processes is limited. Software quality is believed to be heavily

dependent on development processes (Humphrey 1989). IS researchers have been

advocating for the empirical examination of projects and IS projects through sequences of

events (Lewin and Minton 1986; Lucas 1981; Van De Ven 1992) with a process strategy

(Hirschheim et al. 1991; Sabherwal and Robey 1993; Sabherwal and Robey 1995).

Although several studies have investigated the development processes of OSS projects,

many of the studies adopted a qualitative method and used narrative descriptions of OSS

development processes (Mockus et al. 2002; Reis and De Mattos Fortes 2002; Scacchi

2002a; Scacchi 2002b; Scacchi 2004; Scacchi 2005; Scacchi et al. 2006). Another set of

studies applied a simulation approach to model and reenact OSS development processes

(Jensen and Scacchi 2005; Smith et al. 2004). Among all these studies, the timing and

sequence of the events in development processes received little attention. Another gap in

13

these studies is that most of them study the processes with a single-case approach, rather

than in a multiple project setting.

Within the era of “Big Data”, data with high volume, velocity and variety are made

available to researchers (Mcafee and Brynjolfsson 2012). Open source software

repositories, such as SourceForge, GitHub.com, and Google Code, produce and archive a

large volume of public event data of OSS development, providing researchers with the

opportunity to investigate multiple OSS projects from a longitudinal and process -oriented

perspective.

In summary, despite the attribution of success to identifiable factors associated with

OSS projects, many successes may still be regarded as “chaotic” and seemingly disregard

conventional wisdom regarding project success. While variance studies can identify some

predictors of project outcomes, they tend to neglect the actual process of development,

which may or may not occur “chaotically.” Without a closer examination of how events

occur, an understanding of OSS projects is incomplete. A systematic and quantitative

method of empirically investigating how OSS projects evolve through development

processes, as well as how the evolution of development processes impacts project

performance, is warranted.

In this set of studies, a longitudinal, mixed-method computational method that

combines sequence mining techniques with quantitative analysis is conducted to analyze

digital trace data of the development processes of 103 OSS projects. As a framework,

EventMiner, is designed and instantiated to automatically collect, preprocess, classify, and

analyze process digital trace data from open source repositories. Drawing from tenets of

design routine literature (Gaskin et al. 2014; Gaskin et al. 2011; Gaskin et al. 2010) and the

14

theory of distributed cognition (DCog) (Hutchins 1995; Hutchins and Klausen 1996), the

framework classifies the obtained process data into sequences of theory-based constructs,

for analysis and interpretation. This framework automatically detects potential changes in

event streams. Using this framework, I am able to detect behavior transitions in patient

event streams, and behavior transitions in OSS development processes. In addition, 103

OSS projects are clustered into five groups, based on their sequence of development

events. Finally, building on a design routine perspective (Gaskin et al. 2014; Gaskin et al.

2011; Gaskin et al. 2010), a factor model of impacts of development routine diversity and

routine change on project success is developed.

1.2 Research Objectives and Overview of Studies

This dissertation follows the multi-paper model and includes three studies. The

objective of this set of studies is to investigate how OSS projects evolve through

development events, and how the evolution of development processes affects project

performance. Therefore, the general research questions are:

How and why do OSS projects evolve through development processes?

What are the impacts of development processes’ evolution on project performance?

To answer these two questions, this study approaches OSS development activities as

design routines, performed by developers through distributed cognition processes

(Hutchins 1995; Hutchins and Klausen 1996).

1.2.1 Key Terms

Before introducing the overview of the dissertation, I will define key terms to be discussed.

Gaskin et al. (2011) define a design routine as “a sequence of (design) tasks, which

transform some representational inputs into a set of material and representational outputs,

15

leading ultimately to a generation of design artifact.” In accordance with this definition, I

define OSS routines as “a sequence of OSS design activities, which are patterns of behavior

executed by participants to perform a design or development task.” Those routines vary and

change over time (Feldman 2000; Gaskin et al. 2011), due to changing and ambiguous goals,

shifting requirements, and internal learning (Gaskin et al. 2011). Given the dynamic nature of

OSS, the design routines described in this study are more dynamic than ostensive routines with

standardized steps (such as payroll). In particular, in this dissertation, I will focus on two types of

routines: issue handling routines and pull-request handling routines. A typical issue handling

routine begins with a member of an OSS project reporting an issue in the current code base.

Following this initiating event, other activities are performed: contributors can comment on this

issue, make suggestions, or reference it to other issues or solutions. Developers can also make

commits to the code, and reference the commits as “solutions” to the issue. If a solution is made,

or if the core team decides the issue is not worth pursuing, this issue will be closed, and thus the

routine ends. Otherwise, an issue will remain open. A typical pull request handling routine starts

when a developer posts a pull request, proposing to commit changes to the current code base.

Members then comment on the pull request, make suggestions, and reference other pull requests

and issues. The pull request is also reviewed by core developers, determining how well the

proposed commits follow the repository’s standards. The pull request is either merged by core

developers into the main source code, or rejected. Finally, the pull request is closed.

I chose these two types of routines for two reasons: first, they are common patterns in OSS

development (Dabbish et al. 2012). Second, through these two types of routines, uncertain

requirements are transformed into artifacts (software) through unstandardized procedures.

16

I define routine diversity and routine change similarly to Feldman and Pentland (2003).

Routine diversity is defined as the number of different configurations/patterns of the same

routine type (Pentland et al. 2011), and the number of different routine types observed within a

given period. Routine change is defined as the change of routine configurations/patterns over

time.

A framework is a structure intended to serve as a support or guide for the building of

something that expands the structure into something useful. In particular, a software framework

is a reusable architecture for various application domains (Pree 1994). I use the term framework

for both methodological framework and “small” software framework that consist of reusable

components. Therefore, I define a framework as a set of methodological guidelines to support

sequence data analysis and process theory building. It can also be considered as a software

framework that provides general sequence mining functionalities and components, which can be

reused and modified for different applications.

1.2.2 OSS Development Processes Comprised of Design Routines

Design routines are believed to have less clearly defined inputs and outputs as a result

of changing requirements (Dorst et al. 1996; Gaskin et al. 2011). Unlike ostensive routines

such as payroll, design routines are more fluid (Gaskin et al. 2011). Given the dynamic

nature of OSS development, one can expect that design routines are prevailing in OSS

development processes (Gaskin et al. 2011; Gaskin et al. 2010), and that changes in

development behavior can be reflected in the changing routines. Therefore, I suggest that

changes in OSS development processes can be analyzed though changes of routines over

time.

17

In the OSS contexts, routines are performed in a distributed way. From a sociomaterial

view, those routines are comprised of social and material elements; they are performed

through the collaboration of social actors, who draw upon “informalisms” to finish design

and development tasks. To investigate how OSS design routines change and evolve in a

distributed way through social and material factors, I will introduce the theory of

distributed cognition as the analytical lens.

1.2.3 OSS Development as Distributed Cognitive Processes

The theory of distributed cognition (DCog) developed by Hutchins (Hutchins and

Klausen 1996) extends the boundary of cognition processes from individual to socio-

technical systems. It explains how cognition processes distribute socially, structurally, and

temporally when a distributed team’s members collaborate on information processing tasks.

Social distribution concerns the dispersion of activities across people and organizations.

Structural distribution deals with the spread of knowledge across representational media

and computational artifacts for knowledge validation and propagation. The perspective of

DCog is well-suited to the OSS project development context; the social and structural

contexts of OSS projects are rather unique. An open source project can have much more

distributed social structure than a traditional one; an OSS team is normally self-organized,

developers are often geographically distributed and have developed a unique mechanism

for task assignment in which they self-assign their technical roles (Gacek and Arief 2004;

Scacchi et al. 2006; Ye and Kishida 2003), the decision making is likewise decentralized

(Gacek and Arief 2004). Scholars have observed an onion-like social structure in OSS

projects (Gacek and Arief 2004; Mockus et al. 2002), which indicates that knowledge,

decision making, and technical roles are distributed across different groups of actors in an

18

OSS team. From the structural distribution perspective, OSS communities rely heavily on

various external artifacts and structural representations such as emails, websites, forums,

and chats, for cognitive task processing. These structural representations and artifacts are

referred by Scacchi as “software informalisms” (Scacchi 2002b). One of the reasons that

OSS development is considered to outperform the commercial method is the

implementation of distributed and concurrent design and testing (Kogut and Metiu 2001).

Given the distributed characteristics of OSS development, DCog can serve as an

appropriate lens to investigate how OSS development processes evolve socially and

structurally. Therefore, I draw upon DCog to explore the social and structural factors

involved in the evolution of OSS development behavior.

1.2.4 Towards a Process Perspective of OSS Development

One ultimate goal of this set of work is to analyze OSS project development

processes toward supporting the construction of process theories on OSS development

process change. Since Mohr advocated the process perspective for studying organizational

changes in 1982 (Mohr 1982), and Markus and Robey introduced the perspective to IS in 1988

(Markus and Robey 1988), it has been commonly acknowledged that variance perspective and

process perspective are two major alternatives for studying information systems. In a variance

(factor) perspective, models are developed to predict outcomes from predictor static variables,

whereas process theories are concerned with explaining how outcomes develop over time

(Markus and Robey 1988). A comparison between variance models and process models is

presented in Figure 1. More concepts and research in process theories is introduced in 2.4.

19

E1 E2 En En+1

A sequence of events related to information

system development and change

Antecedent

conditions

Outcomes

OE

Environment
V1

V2

V3

OV

OV: f (V1, V2, V3, V4, V5)

OV: Outcome variable

Vn: Independent variable

E1 à E2 à …à En àOE

OE: Outcome event
E1: First event in the sequence

En: Nth event in the sequence

Figure 1. Comparison between Variance Models and Process Models

Researchers who advocate for process models suggest that they complement variance models

(Newman and Robey 1992), especially in studying organizational change. Mohr pointed out that

the variance perspective was ill-suited to studying change, and process models are useful in

explaining IS changes (Mohr 1982). Similarly, Lyytinen and Newman argued that “(change

explanations using variance theories) close-box the change process and mask its dynamics and

generative mechanisms” (Lyytinen and Newman 2008). Yet, over the past 20 years, only 20% of

articles in leading IS journals used a process perspective (Paré et al. 2008). Although Mohr

suggested that the process perspective and variance perspective should not be combined within a

single research study (Mohr 1982), recent studies have been advocating for the joint use of the

two strategies (Burton-Jones et al. 2014; Sabherwal and Robey 1995). To address my research

questions regarding change in OSS development processes, a process perspective is an

appropriate and fruitful strategy.

In this dissertation, I use both process strategy and variance strategy to examine OSS

development processes. First, I develop a sequence-mining-enabled framework to automate the

20

task of detecting and displaying patterns of events and patterns of change. I will demonstrate this

framework in Study 1 of Chapter 3. Second, I draw upon distributed cognition (Hutchins and

Klausen 1996), hidden Markov modeling and process theorizing to identify and interpret changes

in OSS projects, for the purpose of formulating process theories on OSS development change.

This work is described in study 2 of Chapter 4. Finally, in my last study presented in Chapter 5, I

will make a preliminary effort to develop a variance model that captures the relationship between

development process change and project performance. This model includes measures of project

variability and change, which represent the process of OSS development. Thus, process and

variance approaches are combined in the investigation of OSS development.

In summary, building on concepts from design routines, distributed cognition, process

theories, and sequence mining, I designed and developed a framework and artifact,

EventMiner, to acquire, classify, and analyze low-level sequential patterns and their

aggregation as design routines from OSS development event data. By applying this

framework to various data sources, I conducted three studies to investigate OSS

development process evolution. In the following section, I will describe the topic of each

study and main research questions addressed by it.

1.2.5 Study Overview

To model project evolution dynamics, the framework should first detect behavioral

changes and identify specific behavioral patterns. Analyzing the sequence of events can

reveal event patterns as a project evolves. Abnormal changes in the sequence of events

indicate transitions. Detecting significant behavioral transitions would provide a base for

further investigation on how and when the changes occur. It can also serve as a platform

for future investigation on any outcome that might be associated with changes in

21

development processes, such as project performance. This implies the following research

questions:

RQ1: How can a framework be developed to facilitate the detection of behavioral

transitions in OSS projects?

RQ2: What patterns of evolution are specific to OSS project development activities?

RQ3: How are sequential patterns related to OSS project performance?

To answer these three questions, I developed a framework and artifact, EventMiner, for

behavioral monitoring and demonstrated its application to patient event data in study 1. As

a framework, EventMiner serves as a methodological support and guide for building

process theories from event stream data. It provides methods for analyzing event stream

data in computational and mixed methods research. These methods transform incidents in

event streams into theory-based entities (Van De Ven and Poole 1990). It is also a software

framework that provides general, reusable sequence mining components. As an artifact,

EventMiner provides functionalities for sequence mining event stream data and for

detection transitions. In this study, I demonstrate how this framework and artifact can be

applied to monitor software usage behavior. This study, as an initial attempt to develop

tools for computational analysis of process data, builds the base for answering RQ1 and

RQ2.

In the second study, I apply EventMiner to the OSS context. Using DCog as the

theoretical lens, I detect behavioral transitions in OSS projects. Furthermore, I cluster 103

projects into five groups based on their sequential patterns, and find that projects in

different groups have significantly different performances. This study addresses RQ1 –

RQ3.

22

This study and the resulting artifact, automate the process of identifying (1) behavioral

transitions, similar to the concepts of “encounters” refereed by Robey and Newman (1996),

and (2) “recurring sequences of events that comprise the social process of ISD” (Markus

and Robey 1988). As pointed out by Markus and Robey, “the resulting ‘pictures of the

process’ can support a variety of theoretical interpretations” (Markus and Robey 1988), for

building process models. These transition points and recurring patterns, can be interpreted

by DCog, or other theories, as the base for process theory building. I will extend this study

to building process theories on OSS development, in future research.

In the third study, I approach the OSS development processes from a design routine

perspective. I develop a factor model to connect development behavior and behavioral

changes, with project performance. This model includes measures of project variability and

change, which represent the process of OSS development. In this way, I combine process

and variance approaches, in examining the relationship between OSS development

processes and project success. Research questions addressed by this model are:

RQ4: What factors drive routine diversity and routine change in OSS projects?

RQ5: What is the impact of routine diversity and routine change on OSS project

performance?

Table 1 lists the topics presented and research questions addressed in each study.

23

Study Topic Research

Objective

Research

Questions

Study 1 Discovery and diagnosis of

behavioral transitions in patient

event streams

To build

EventMiner and

demonstrate its

application to the

detection of

behavioral changes

R1

Study 2 (a) OSS development behavior

transition discovery

(b) Clustering of OSS projects

based on sequential patterns

To detect

behavioral

transitions and

evolutions of

sequential patterns

R1-R3

Study 3 Investigating the temporal

dynamics and variety of OSS

development activities

To investigate the

relationship

between OSS

design routines and

project performance

R4-R5

Table 1. Study Overview

In addition, the study produces EventMiner, which is both an event-based automatic

analysis framework and an implemented artifact. IS researchers have been advocating for

the sharing of both data and analysis practices in the IS discipline (Lyytinen 2009). OSS

researchers also suggested sharing and analyzing OSS process data in an open-source

manner (Scacchi et al. 2006). Similarly to OSSmole developed by Howison and his

colleagues (Howison et al. 2006), EventMiner can serve as both an open data repository

and an open source toolkit for analyzing process data. It consists of five components: (1) a

raw data extraction component to automatically extract raw data from public OSS

repositories, (2) an extracting method that incorporates the theory of distributed cognition

to determine data of interest, (3) a rule-based classifier that incorporates DCog theory to

map extracted data into theory-based constructs, (4) event-based sequence mining

techniques to analyze event data stream, and (5) an open data repository containing OSS

process data (Figure 2). This framework can be used by researchers who are engaged in

OSS development process research and OSS evolution research in particular, and in process

24

research in general. Researchers for data analysis and theory building can reuse each

component. For example, the rule-based classifier component can be reused for event

classification with any analytical lens of the researcher’s interest. However, a “rule

engineer” needs to modify the rules, based on the theory or ontology he or she wants to use

for event classification.

(4) Theory-Based Motif Construction

Sequences of Event Vectors

(2) Open Data
Repository

Qualitative Data
· Interviews
· Forums
· Blogs

Event Data
· Timeline Data
· Email Logs

Performance Data
· Stars
· Forks
· Contributors

Process Data (1) Extraction EngineProcess Data

Repository
APIs

Web
Crawler
Plugin

Motif
Analysis

(5) Computational Analysis

Sequence Mining

Hidden
Markov
Models

Decision
Trees

Optimal
Matching

Clustering Regression

· Number of
Contributors

· Same vs.
Different Actors

Motif Elicitation

(3) Theory-Based Data
Extraction Method

· Number of
Comments

· Number of
References

Social Structural

Theory-Based Routine
Classification

Sequences of
Theory-Based Motifs

Figure 2. The EventMiner Framework

25

2. Literature Review

In this chapter, I summarize the state of the art in related research areas. I will introduce

extant literature in OSS evolution and OSS development routines. In particular, I will

discuss literature on routine diversity and routine change. I will also review the history and

major works in process theory research. Then I will introduce the theory of distributed

cognition, which will serve as the theoretical lens for development process analysis. After

reviewing current studies in OSS performance, I will introduce the sequence-mining

techniques that guided the design of EventMiner.

2.1 Evolution of OSS Development Process

While software evolution of commercial systems has been in focus of research since

Lehman and Belady’s work on IBM’s OS/360 operating system (1976), there have been

only a handful of studies looking into evolution and evolutionary patterns in open source

software projects. Several of those studies reported a super-linear or exponential growth

rate of individual OSS projects (Scacchi 2002a; Scacchi 2006; Smith et al. 2004),

contradicting the well-established Lehman’s law (Lehman 1980). Similar patterns were

reported in Godfrey and his colleagues’ series of studies on evolutionary patterns of open

source software projects including Linux Operating System Kernel, VIM text editor,

fetchmail utility and GCC compiler suite (Godfrey and Tu 2001; Godfrey and Lee 2000;

Godfrey and Tu 2000; Tu and Godfrey 2001). They examined evolution both on the system

level and subsystem level. Godfrey and Tu (2001) conducted a case study on the evolution

of the Linux Operating System Kernel over its six year lifespan, and found the growth at

system level to be super-linear. They suggested that researchers should take into account

the nature of the subsystems when studying their evolutionary patterns. They also

26

identified cloning as a useful practice for open source projects to evolve, as opposed to the

common belief that it is an indicator of poor process (Godfrey and Tu 2001). Koch also

looked at OSS project evolution from the perspective of growth rate, and found that a

quadratic model outperformed a linear model when modeling evolutionary behavior (Koch

2005). In those studies, cloning, modularization, and self-selection for tasks are found to be

beneficial to the evolution of OSS projects (Godfrey and Tu 2001; Koch 2005). Overall,

those studies focused on the system and its growth behavior, not on the community or its

development behaviors.

Nakakoji et al. (2002) expanded the focus of the investigation on OSS system evolution

to the evolution of OSS communities, and further studied the relationship between the two

types of evolution. They found that different collaboration models resulted in different

evolutionary patterns of system and communities; for system evolution, GNU and Jun

evolve as a single version tree; Linux allows multiple implementations for the same

functionality, and postgreSQL starts with multiple patches but those patches which merge

into one single core version. As for the evolution of communities, they concluded that it is

determined by the existence of motivated members and social mechanism of the

community. This paper proposed to classify OSS projects into three types based on those

difference models: exploration-oriented, utility-oriented, and service-oriented. Besides

evolution in project size and project communities, there are also studies looking into

evolution on OSS developers’ individual participation in projects. Qureshi and colleagues

looked into the growth patterns of developers' socialization behavior and how that behavior

relates to their status progression (Qureshi and Fang 2011). They discussed joiner's

nonlinear growth trajectory and classified those trajectories into four types based on two

27

dimensions: initial level of social resources of the developer (low, medium and high) and

growth rate of his/her socialization (low, medium and high). Although there could be nine

possible types of trajectories, the data only yielded four types with different combinations

of initial level of social resources and growth rate. Researchers have identified five primary

entities as suitable targets in the study of software evolution: software releases, systems,

applications, development processes, and process models (Lehman 1980; Lehman and

Ramil 2003; Scacchi 2006). Most of the above studies focused on the evolution patterns of

the system, application or community, but lacked a process-oriented perspective (Langley

1999).

2.2 OSS Development Routines

Routines are important to organizations because they are performed to accomplish work

in organizations (Cyert and March 1963; Feldman 2000; March and Simon 1958; Nelson

and Winter 1982). Feldman defines routines as “repeated patterns of behavior that are

bound by rules and customs and that do not change very much from one iteration to

another” (2000, p.611). However, she pointed out a “discrepancy between the concept and

the observation”, with the observation that routines were “undergoing substantial changes”

(Feldman 2000, p.611). Cohen et al. (1996) define a routine as “an executable capability

for repeated performance in some context that has been learned by an organization in

response to selective pressures’’. Although slightly different from each other, these

definitions all consider routines to be repeatable behavioral patterns that also have the

inherent potential to change.

Routines and the diversity of routines, have been commonly studied in both

organizational literature (Feldman 2000; Feldman and Pentland 2003) and IS literature

28

(Gaskin et al. 2014; Gaskin et al. 2011). Recently, Gaskin et al. (2011) argued the

importance of studying the variations of design routines and defined a design routine as “a

sequence of (design) tasks” (Gaskin et al. 2010).

2.3 Routine Diversity and Routine Change

2.3.1 Routine Diversity

Routine diversity has been referred to by different terms such as routine variation (Gaskin

et al. 2014; Gaskin et al. 2011; Gaskin et al. 2010; Pentland et al. 2011), or routine heterogeneity

(Lindberg et al. 2015a; Lindberg et al. 2015b). There are conflicting theories on the value of

routine diversity. Pentland et al. (2011) believe that variation is “a prerequisite for change.” Page

argues that diversity can enhance the robustness of complex and adaptive systems (Page 2010).

Diversity and variation are considered to be the foundation for learning in general (Campbell

1960; Weick and Kiesler 1979) and for learning in routines (Levitt and March 1988). Routine

diversity allows actors to work in different ways, which provides the flexibility required by

dynamic environments. In the context of open source software development, Lindberg conducted

a case study on Rubinius, an open source project, to investigate the co-evolving relationship

between open source software development coding practice and communities (Lindberg 2013).

A positive relationship between practice diversity and inflow of new developers was reported.

Conversely, some studies advocate for the reduction of process variation to improve

process performance. The six sigma framework argues in favor of minimizing process variation

(Schroeder et al. 2008). Frei et al. investigated the relationship between service process variation

and firm performance in the retail banking industry (Frei et al. 1999). They found that process

variation is negatively related to firm performance.

29

Researchers have also attempted to identify drivers of the increases or the decreases in

routine diversity. Environmental contexts, such as degree of digitalization (Gaskin et al. 2011),

degree of centralization (Gaskin et al. 2011), degree of volatility (Gaskin et al. 2011; Sutton

2000), structural variation of the community (Crowston and Howison 2006), social and technical

challenges (Lindberg et al. 2015b), and social discourse are explored (Lindberg et al. 2015b;

Scacchi 2009; Winograd 1987). Sutton argued that start-up companies in a “fast-paced, reactive,

and innovative” environment may not have the foundation to have repeatable and predictable

processes, which are required by CMM. On the contrary, in an environment where flexibility is

more important than structure, companies simply need more flexible and adaptable processes

(Sutton 2000). Gaskin et al. (2011) found that design routines have less variation among more

centralized organizations than among networked organizations.

2.3.2 Routine Change

Routines are a central element of organizations and have been the subject of discussions

on organizational stability and change (Cyert and March 1963; Feldman 2000; March and Simon

1958; Nelson and Winter 1982). Pentland et al. suggest that routine changes are changes in

“patterns of action” (2011,p.1371). Researchers hold different views on whether and how

routines contribute to organizational stability and change. Some researchers conceptualize

routines as stable, repetitive, standard operating procedures that do not change (March and

Simon 1958). Others hold a “routine as change” (Feldman 2000; Feldman and Pentland 2003;

Pentland et al. 2011), viewing routines as “continuously changing entities”(Geiger and Schröder

2014. page 171). Pentland et al. (2011) argue that every performance of a routine is different due

to the different time, places, actors and other objects involved. Levitt and March (1988) attribute

the routine change to direct organizational experience.

30

Changes of routines have been empirically studied. Different dimensions of routine

change include: rhythm of change (Klarner and Raisch 2012), frequency of change (Klarner and

Raisch 2012), magnitude of change (Pentland et al. 2011), and types of change (Feldman 2000).

Feldman analyzed the changes of five routines in an organization for four years. She found that

routines change as a response to problems. This view is consistent with Levitt and March’s

theory that routines change in response to evaluation of outcomes. Pentland et al. (2011) studied

changing routines in invoice processing in four organizations. They found that some routines are

stable, whereas the patterns of actions generated by those routines, which are also routines, do

change over time. They noted that one cause of routine changes is inexperienced users; however,

routines also changed due to the allowed variability in the system and its potential for user

exploration (Pentland et al. 2011).

Adapting from the concepts of “requisite variety” (Ashby 1956), Beer developed a Viable

System Model (VSM) (Beer 1975; Beer 1979; Beer 1981). VSM is concerned with the essential

characteristics that systems need to survive in a forever-changing environment. A system

increases its degrees of freedom to accommodate greater variety in requirements, by increasing it

variety (Beer 1979). That is, any system has to be able to generate a variety equivalent to the

variety of the system to be regulated (Beer 1979). It is important to note that both the

environment and the organization should be complex systems to allow the behavior to emerge

(Snowdon and Kawalek 2003).

Similarly, complexity theory suggests that diversity enhances the robustness of complex

adaptive systems (Benbya and Mckelvey 2006; Page 2010). ISD projects are commonly

considered as complexity adaptive systems (CAS) (Benbya and Mckelvey 2006; Van Aardt

2004). OSS projects, are considered by several researchers to be the best example of CAS

31

(Muffatto and Faldani 2003; Van Aardt 2004). Complexity is magnified in the OSS development

context, by the continuous changes in requirements and thus the continuous changes in resulting

artifacts. With such complexity and changes, it is essential for the development system to have

the requisite variety in its processes. For example, Lindberg et al. (2015b) suggest routine

variation as a “coping mechanism” to both social and technical problems.

2.4 Process Models

A process model “explains development in terms of the order in which things occur and

the stage in the process at which they occur” (Van De Ven 2007). The process model

perspective is advocated by researchers for its advantage in explaining organizational

changes (Mohr 1982). Markus and Robey first introduced it to IS discipline in their study

(Markus and Robey 1988). Newman and Robey (1992) stated the importance of treating the

information system development (ISD) process as a “dynamic social process ,” and to

conceive it as a “sequence of events that occurs over time.”

A process theory can be derived from data by analyzing event sequences. An event can

be viewed as the change in state of some variable values (Chandy and Schulte 2009). An

event sequence can be characterized by common metrics, such as length, entropy,

subsequences, pattern frequency, and similarity to other sequences. Through abduction, a

researcher can infer common constructs and higher level concepts, and eventually relate

these terms to a theory that can explain relationships among concepts within a set of

boundary conditions (Van De Ven 2007).

The variance perspective and process perspective are often considered a dichotomy (Markus

and Robey 1988; Mohr 1982; Seddon 1997). However, several researchers argued that although

the two perspectives cannot be used in the same model, they can be combined together as a

32

method. For example, in their 1995 paper, Sabherwal and Robey demonstrated how variance

strategy and process strategy can be reconciled (1995). They applied variance strategy to the

examination of levels of participation of key actors and process strategy with sequences of

actions, to 50 ISD projects. The results showed that projects that are similar based on

participation are also similar based on event sequences. More recently, Burton-Jones et al.

suggested “a shift from the traditional process-variance dichotomy to a broader view,” by using

different perspectives more flexibly (Burton-Jones et al. 2014). They illustrated how one can use

different theoretical perspectives (variance, process and system perspectives) to critique and

extend the IS success model.

2.5 Distributed Cognition

Proposed by Hutchins and colleagues in the late 1980s and early 1990s, distributed cognition

theory (DCog) (Hollan et al. 2000; Hutchins and Lintern 1995; Johnson-Laird 1989; Newell

1980; Simon and Kaplan 1989; Wright et al. 2000) views cognition as a process of computation

and expands the unit of analysis from the individual to a socio-technical system attending to a

specific task. The fundamental concept of this theory is that in collaborative projects,

information processing activities are not limited to individuals, but are distributed among

participants, artifacts, and the environment. According to Hutchins, there are three important

facets within distributed cognition. Cognitive processes can be distributed socially, structurally,

and over time. Social distribution refers to the distribution of social actors among the projects:

each member of the team plays a specific role when processing the information. Structural

distribution refers to cognitive processes involving coordination between internal and external

structure. Individuals and teams employ external structures such as artifacts in their information

33

processing activities. Finally, cognitive processes distribute in a temporal manner in which the

prior cognitive processes will influence the future ones.

2.5.1 Distributed Cognition in Software Development Projects and OSS

Researchers from different disciplines have studied DCog in several contexts such as

airline and navigation systems (Hutchins and Klausen 1996; Hutchins and Lintern 1995), human

computer interaction (Hollan et al. 2000; Wright et al. 2000), peer tutoring (King 1998),

collaborative activities in different organizational settings (Rogers and Ellis 1994), and

classroom practice (Hewitt and Scardamalia 1998). More recently, scholars have started to

explore distributed cognition in the discipline of IS development practices. Lyytinen and

colleagues have conducted a series of studies to build a distributed process model of RE

practices, both in traditional software projects and OSS projects (Hansen and Lyytinen 2009;

Hansen et al. 2012a; Thummadi et al. 2011). Hansen and Lyytinen applied a multi-case study

approach to explore how requirements are distributed socially, structurally, and temporally

in RE practices (Hansen and Lyytinen 2009). Later, they examined the nature of distributed

cognition in RE practices in a more systematic manner by including both a case study and

simulation experiment (Hansen et al. 2012a). In this study, the authors identified several DCog

related goals, along with other goals in RE practice, and analyzed how different RE tasks

satisfied those goals by running a simulation. They suggested DCog could serve as a lens to

analyze RE processes and provide implications for RE process design and process efficiency

evaluation. In their study on the quality of RE in open source projects, Thummadi et al.

(2011) proposed to investigate how social, structural, and temporal dimensions of

distributed cognition impact the quality of requirements in open source development. Table

A1 in the Appendix summarizes the matrices used or proposed to measure the three components

34

of DCog (social distribution, structural distribution, and temporal distribution) from existing

studies focusing on software development activities.

2.6 OSS Performance

Studies in OSS success have been investigating both identification of determinants of

OSS successes and definition of OSS success measurements. The identified factors leading

to success mainly fall into two categories: time-invariant factors and time-dependent

factors (Subramaniam et al. 2009). In the category of time-invariant factors, researchers

have repeatedly investigated license choice (Comino et al. 2007; Lerner 2005; Sen et al.

2012; Stewart et al. 2006a; Stewart and Gosain 2006a; Stewart and Gosain 2006b;

Subramaniam et al. 2009). Most of these studies found that restricted licenses do not

provide developers with the freedom to modify the code, and thus the licenses have an

adverse impact on OSS success. Comino et al. (2007) and Sen et al. (2012) have discussed

how the intended user type might affect project success. For example, Comino et al. (2007)

found applications for more sophisticated users are more likely to evolve successfully.

Other time-invariant factors include whether the project accepts financial donations (Sen et

al. 2012), as well as the choice of programming language (Sen et al. 2012; Subramaniam et

al. 2009), operating system (Sen et al. 2012; Subramaniam et al. 2009), developer

motivation and interest (Bonaccorsi and Rossi 2003), sponsorship (Stewart et al. 2006a),

and modularity (Bonaccorsi and Rossi 2003; Giuri et al. 2010; Mockus et al. 2002).

Several time-dependent factors have been investigated in terms of their impact on OSS

success. For example, project activity level is believed to be an important factor

contributing to OSS success (Crowston and Scozzi 2002; Stewart et al. 2006b; Stewart and

Gosain 2006b; Subramaniam et al. 2009). An OSS project’s activity level can be indicated

35

by the number of files released, number of bugs fixed, and number of commits. Some other

examples of time-dependent factors include age and duration of the project (Beecher et al.

2009; Indyk et al. 2000; Sen et al. 2012), size of the project and community (Beecher et al.

2009; Comino et al. 2007; Mockus et al. 2002), developer interest over time (Bonaccorsi

and Rossi 2003; Subramaniam et al. 2009), user interest (Subramaniam et al. 2009), project

status (Subramaniam et al. 2009), and knowledge of developers and users (Mockus et al.

2002). A group of studies has also focused on the social aspect of OSS projects. For example,

while an effective collaboration structure and process (Bonaccorsi and Rossi 2003; Méndez-

Durón and García 2009) can contribute to OSS success, Bonaccorsi and Rossi (2003) also

suggested that “a widely accepted leadership” is important. Grewal and associates (2006)

examined the effect of network embeddedness on project success. They used network

embeddedness to capture the architecture of network ties, and defined structural,

junctional, and positional embeddedness as its subconstructs. They found heterogeneity

existed in network embeddedness in OSS projects and that the effect is quite complex. Both

positive and negative effects were observed. Singh and colleagues (2008) investigated

network social capital and found that internal cohesion among the developers has a posit ive

impact on success, while external cohesion (the cohesion among the external contracts of

the project) does not always benefit the project. Knowledge flow direction (Méndez-Durón

and García 2009) within a network and a developer’s status in the network were also studied

(Frank 2008).

Many different measurements of OSS success have been used in these studies mentioned

above. To obtain a better understanding of OSS success and to help facilitate the empirical study

of OSS success, several scholars attempted to systematically define OSS success and its

36

measurements. Most of them found that the measures of OSS success are interrelated. A

summary of those measures is in Table A2. Crowston and colleagues have conducted three

studies to define OSS success and measures (Crowston et al. 2003; Crowston et al. 2004;

Crowston et al. 2006). They reviewed existing IS success models developed by Delone and

Mclean (1992) and Seddon (Seddon 1997) to propose potential measurements for the OSS

context. They then reexamined the OSS development process to remove measurements, which

are not applicable to OSS and proposed additional measurements. They categorized

measurements of OSS success into three types: measurements concerning the process,

measurements concerning project output, and measurements concerning outcomes for project

members. Similarly, Lee and colleagues proposed five measures based on DeLone and McLean’s

model by incorporating OSS characteristics: software quality, use, user satisfaction, individual

net benefits, and community service quality. They then tested the relationship among those

measures and found that usage is determined by user satisfaction and software quality; and user

satisfaction is determined by software quality and community service quality. Based on the

categorization summarized by Crowston and colleagues (2006), some commonly-used success

measures in previously discussed empirical studies regarding project outputs are: user and

developer satisfaction (Crowston et al. 2006; Lee et al. 2009), project status (Comino et al. 2007;

Crowston and Scozzi 2002), and community service quality (Lee et al. 2009). User interest has

been used often, being operationalized as the number of downloads (Crowston and Scozzi 2002;

Grewal et al. 2006; Méndez-Durón and García 2009), page reviews (Crowston and Scozzi 2002),

and number of subscribers (Sen et al. 2012; Subramaniam et al. 2009). Because user interest can

change over time, some studies have measured the change of number of subscribers over time

(Stewart et al. 2006b). Another indication of success for project outcome suggested by Crowston,

37

Howison and colleagues (2006) is project completion. This often measures the technical

achievements of the project, such as movement from alpha to beta to stable and the achievements

of the identified goals (Crowston et al. 2006). Size achieved is also a common measure, in the

form of lines of code (Beecher et al. 2009), or number of commits (Giuri et al. 2010; Grewal et

al. 2006) . Other measurements to evaluate the achievements of the project include number of

releases (Giuri et al. 2010; Grewal et al. 2006) and defect density (Mockus et al. 2002). Another

set of OSS success measurements focuses on the development process. For example, during the

development process, a more successful OSS project would be able to attract inputs from

developers (Stewart and Gosain 2006a). Therefore, the number of developers of an OSS project

has been used repeatedly to measure success (Beecher et al. 2009; Crowston et al. 2006; Sen et

al. 2012; Stewart and Gosain 2006a; Subramaniam et al. 2009). Another important indicator of

success is activity level, which can be measured by the number of commits within a time period

(Beecher et al. 2009; Grewal et al. 2006), or the number of releases (Crowston et al. 2003;

Crowston et al. 2006; Crowston and Scozzi 2002). Others have suggested or used cycle time

such as the time required to fix bugs or implement features (Crowston et al. 2006; Mockus et al.

2002), or the time between releases (Crowston et al. 2003; Crowston et al. 2004; Crowston et al.

2006). A third group of OSS success measurements are concerned with outcome for members,

such as individual jobs, opportunities and salaries, knowledge creation, and individual

reputations (Crowston et al. 2006). Lee and his colleagues used individual net benefit as one

construct and found that it is influenced by use and user satisfaction (Lee et al. 2009).

Different methods are deployed to explore the success of open source projects. There

have been several case studies which attempted to explore the nature of open source

projects and their success (Mockus et al. 2002; Stamelos et al. 2002). Later, more

38

researchers started to study OSS success quantitatively, trying to identify the factors

contributing to it and quantify the effects of those factors. There are also studies applying

data mining methods to predicting OSS success (Raja and Tretter 2006; Wang 2007). Raja

and Tretter (2006) used three data mining techniques to mine OSS data to predict success:

logistic regression, decision trees, and neural networks. The factors identified as

contributors to success are: number of downloads, number of bugs reported, team size, and

use of a project manager or not. They also used text mining to cluster the projects based on

their description. Wang (2007) used k-means clustering to predict OSS project success,

with a performance accuracy of over 94% (i.e., just 2 prediction failures among 42

projects).

However, most of those studies looked at static attributes of projects, without

investigating the dynamic changes of projects and teams while those projects evolve.

Subramaniam et al. (2009) pointed out that since most open source software projects are

continual, the dynamics should be analyzed. Aksulu and Wade (2010) also suggested that

“multi-dimensional frameworks covering all procedural stages would likely lead to the

emergence of better performance.”

2.6.1 Project Attractiveness

The OSS literature has emphasized the importance of attracting users and developers to

keep a project active and successful (Arakji and Lang 2007; Koch 2004; Krishnamurthy 2002;

Von Krogh et al. 2003). Developer motivation and participant interest has been suggested as one

important factor for OSS success (Bonaccorsi and Rossi 2003). Some researchers also attribute

OSS success to user interest (Subramaniam et al. 2009). Users, often serving as the observing

“eye balls” to bugs (Raymond 1999), contribute to a project’s success. Hence, it is important for

39

an OSS project to attract both developers and users to be successful. Several studies attempted to

identify what makes an OSS project favored by developers and users. Drivers of attractiveness

include contributors’ intrinsic and extrinsic motivations for joining OSS projects (Crowston and

Scozzi 2002; Fang and Neufeld 2009; Hertel et al. 2003; Krishnamurthy 2006; Roberts et al.

2006), contextual factors of the project (Santos et al. 2013), visibility of the project, and the work

activities performed toward software maintenance and improvement (Santos et al. 2013).

2.7 Sequence Stream Mining

Sequence mining aims to find statistically relevant patterns between data examples where the

values are delivered in a sequence (Mabroukeh and Ezeife 2010). Common problems include

pattern discovery, prediction, classification, clustering, the efficient building of an index for

sequence data, and the comparison of sequence for similarity. Agrawal and Srikant (1995) made

the first attempt to discover sequential patterns in transactions, proposing two algorithms

AprioriSome and AprioriAll. Some important applications in sequential patterns include choice

of patterns (closed vs. regular) (Chang et al. 2008), and efficient algorithms which include exact

methods and approximate methods. Several algorithms were developed in order to efficiently

mine frequent sequential patterns, such as SPADE (Zaki 2001), GSP (Srikant and Agrawal

1996), SPAM (Ayres et al. 2002), and PreFixSpan (Han et al. 2001). Some common algorithms

to mine closed sequential patterns include CloSpan (Yan et al. 2003) and BIDE (Wang and Han

2004).

A Markov model is a stochastic model that can be used to model a random system that

changes states according to a transition rule that depends solely on the current state. In particular,

a hidden Markov model (HMM) is a type of Markov model in which the system being modeled

is assumed to be a Markov process with unobserved (hidden) states. As a commonly-used stream

40

mining technique, HMM has been used to detect changes in the sequence patterns (Rabiner and

Juang 1986). Common applications of the hidden Markov model include speech recognition,

artificial intelligence, pattern recognition, and bioinformatics. More recently, HMM has been

used to detect anomalies in behavior. For example, Joshi and Phoha (2005) applied the HMM

method to anomaly detection in network traffic. Cho and Park (2003) used HMM to build an

intrusion detection system, while Ourston et al. (2003) applied HMM to detect multi-stage

network attacks. Hoang et al. (2003) applied HMM to process sequences of system calls for

anomaly detection. Additionally, human behaviors are modeled by HMM in studies. Lane (1999)

presents a method for human behavior modeling in the computer security domain. HMM models

of normal human behaviors from genuine users are built and then any deviation from the model

will be considered a potential attack. Later on, Srivastava, Kundu et al. (2008) applied HMM to

detect credit card fraud. Customers’ previous transaction history was obtained as a training set to

construct an HMM model on the customer’s spending profile. Any new transactions are added to

the observation sequence of the old transaction behavior sequence to calculate the probability

using the constructed model. If the probability is lower than the old one, the new transaction

might be fraudulent.

This dissertation aims to investigate the change in the development behavior, which is

captured by the sequence of development events. Therefore, I reviewed studies that have

analyzed the change of sequence patterns in time series data. There have been a limited number

of studies looking into variations on a single pattern over a data stream. Silberschatz and

Tuzhilin (1996) proposed a method to measure the “interestingness” of patterns to monitor

variation. Both Agrawal and Psaila (1995) and Chakrabarti et al. (1998) measure variation of a

pattern. However, these studies only analyze change over a single pattern. Ganti et al. (2002a)

41

proposed a framework FOCUS, in which they generalize a method to compute the deviation

among a series of same data mining models (decision tree models, frequent item-set models) to

detect changes among datasets.

42

3 Discovery and Diagnosis of Behavioral Transitions in Patient Event

Streams

3.1 Introduction

In this study, I demonstrate how various data mining techniques, as components of

EventMiner, are applied to discover and diagnose behavioral transitions in patient event streams.

More than one million adults in the U.S. are diagnosed each year with cognitive impairments

(CI) due to neurological disease or trauma (e.g., traumatic brain injury, stroke, tumor, epilepsy,

infectious disease). Currently, there are between 13.3 to 16.1 million Americans living with

chronic brain disorders and associated CI (Alliance 2001). In addition, approximately 4 million

Americans have developmental disabilities that impact cognitive functioning (Services 2002).

Cognitive impairments prevent this large and growing segment of our society from fully

integrating into society; they are unable to participate in mainstream computer-based activities

(Mccoll et al. 1998).

Clinics provide assistive technology (AT) to help with cognitive rehabilitation. However,

studies have found that AT systems are abandoned by CI users at shockingly high rates (De

Joode et al. 2010; Lopresti et al. 2004; Wilson et al. 2001; Wright et al. 2001). One major cause

of abandonment is an eventual misalignment with: (1) user goals and abilities, and (2) the

functionality delivered by the system. To support the monitoring of this relationship between

user goals and their satisfaction to the system, I developed EventMiner. It is a data-mining

enabled, event analysis framework, for change detection in user behavior. Users are given an

email system to aid in their activities of daily living (ADLs). At appropriate times, the system is

adapted to meet the changing needs of the user. By monitoring a user’s event stream,

EventMiner can detect changes in user behavior that indicate that the system should be adapted.

43

Over the past 10 years, a multi-disciplinary group of cognitive psychologists, computer

scientists, and clinical workers have been successfully delivering AT to CI clients (Fickas et al.

2005; Sohlberg et al. 2003a; Sohlberg et al. 2002; Sohlberg et al. 2003b; Sohlberg et al. 2005a;

Sohlberg et al. 2005b; Sohlberg and Mateer 1989; Sohlberg and Mateer 2001; Sutcliffe et al.

2006; Sutcliffe et al. 2003; Todis et al. 2005). As part of the Think and Link (TAL) project,

which developed an email AT for cognitive rehabilitation, EventMiner serves as the tool to

provide real-time data analysis. By combining and extending stream mining techniques, I

develop EventMiner as an AT-monitoring software system with ever-increasing functionality.

This article summarizes unique data mining aspects of EventMiner as a monitoring system.

This research provides two significant contributions to real-time data analytics:

(1) Automated recognition of changes in user behavior, where a user’s behavior is defined by

the stream of events that they initiate with the AT. The tool can automatically detect

change by differencing models such as decision tree models and Hidden Markov models.

(2) Automated diagnosis of a user’s behavioral change, as characterized by the most

influential behavioral differences around a moment of change.

This analytic technique that discovers transitions from routine behavior will be helpful in

identifying potential problems in planned behavior. This study is an initial attempt to develop a

framework that integrates and extends event stream mining techniques to achieve personalized

user monitoring; it can generalize to monitoring voluminous streams of event data. Consider, for

example, business processing in support of order fulfillment. The sequence of events generated

with each business process represents the planned behavior of the organization. Similarly, a

computer hacker generates a sequence of events, such as improper Logins, in an effort to fulfill

the goal of a system break-in. In both cases, EventMiner helps detecting transitions from routine

44

behavior and thus identifying potential problems. Although this framework is currently applied

to AT monitoring, it is scalable to other contexts such as business processes monitoring,

transaction monitoring to detect potential fraud, and software development processes monitoring

(Robinson and Deng 2015). In Chapter 4 and 5, I will show its application to OSS event streams.

3.1.1 A Cognitive Rehabilitation Scenario

Assume that Don is learning to email his friend. His cognitive impairment impedes his

progress. His TAL caregiver, Andrew, uses the CORE methodology to obtain two important

items (Sohlberg et al. 2002): (1) Don’s personal goals for using email, and (2) Don’s existing

skills for using email independently. Using this information, Andrew produces a user profile and

a training plan that fit with both Don’s current skills and his personal goals.

As a user operates TAL, events are logged and then analyzed in support of decision-making

about deferred goals. Don’s daily usage of the email system produces raw data. This data

includes that which is generated from the email system itself, along with Andrew’s input on

training progress. Working backwards, Don has goals that are not satisfied currently. In the AT

context, goal failure is often associated with a poor fit between the client’s goals and the goals

supported by the AT. By monitoring user goals TAL can responsively react to changes in goal

satisfaction. Such changes are attributed to TAL’s success.

 This study thus focuses on raising alerts when patients like Don need help and thus when the

system needs to adapt. Rather than looking for specific events, the monitor looks for significant

variations from historically normal behavior.

3.1.2 Goal Attainment Scales

The cognitive rehabilitation field uses a goal attainment scale to specify the individual goals

and desires of a person. Each goal is broken into a set of attainment levels to provide a measure

45

of attainment. Using this style, each user is asked to first list a goal and then five levels of

attainment, ranging from not-attained to fully-attained. For example, Don’s goals is to be socially

involved through online communications. One of the subgoals was to learn to email with no

help. He divided this goal into five levels: (1) level 1 (not attained): will not be able to learn how

to use email; (2) level 2: can email, but only with lots of prompting and help; (3) can email, with

some prompting and help; (4) level 4: can email with no prompting and help, and (5) level 5

(fully attained): can teach others how to email. Figure 3 illustrates Don’s formalized emailing

goals. Don wants to use email to engage in online social communication. This need is shown as

the root goal in Figure 3. Supporting emailing subgoals are shown below the root.

 Clinicians want to see goal satisfaction, and in particular: (1) a good success-to-failure

ratio over sessions, and (2) a constant or improving trend of this ratio. In the case of Don, who is

just acquiring simple email skills, clinicians want to see Don succeed with: (1) read email and

(2) compose and send email. In support of clinicians, the monitoring system needs to: (1)

recognize changes in user behavior in using the email AT, and (2) diagnose each significant

change by characterizing by the most influential attributes of in AT usage, These two monitoring

goals are demonstrated for Don’s two email skills in the case study in section 3.4.

3.1.3 Approach

The approach to the monitoring of behavior is summarized as follows:

(1) A patient uses target software in the context of learning higher-level goals.

(2) The monitor builds models of the user’s behaviors and changes in the user’s behaviors.

These models are structured according to the events generated by the software, such as

composing an email message.

46

(3) A human analyst interprets the generated models to determine the changes in user

learning and goal attainment.

Figure 3. Some of Don's Emailing Goals

The automation of the first two steps, achieved by EventMiner, dramatically reduces the

monitoring effort on the post-clinical team. The monitor provides notification and

characterization of transitions, vastly simplifying the work of the caregivers. The contribution of

this research is the automated characterization of behavioral sequences as potential behavioral

transitions, which is a prerequisite to the interpretation task.

 Figure 4 presents the kind of analysis automated by EventMiner. Consider the line graphs

as a representation of consistent behavior. The sharp dips in the graph are the significant points

of interest. They suggest that the user substantially changed his or her behavior. My automated

analysis reveals these potential goal transitions, and the automated diagnostic technique presents

the behavioral differences. For example, there is a potential transition around week 10, and the

change in behavior is a 30 percent reduction in sending email.

47

Figure 4. Quality of Stream-mined Models for Read and Compose Email, over 2 Years of

Data Using 2-week Windows; Potential Goal Transitions Shaded

3.1.4 Essay Overview

This essay introduces the approach to the problem of monitoring individuals with cognitive

impairments. Related research are presented in 3.2 followed by the design of the monitor (3.3)

which is part of the EventMiner framework. A case study (3.4) precedes the conclusion (3.6).

3.2 Related Research

This study applies process mining techniques to AT monitoring. Research in process mining

is introduced in 2.7. Here, I will focus on literature in data stream mining in particular, and

model-based monitoring.

3.2.1 Data Stream Mining

Data stream systems analyze voluminous, continuous data streams where it is not practical to

store all the data. Instead, sequential data subsets, called windows, are analyzed as they arrive.

Consequently, there is an inherit tradeoff between accuracy (which requires all data) and timeliness

(which dictates continuous updates). Stream mining aims to find interesting relationships over a

48

sequence of data segments (Gaber et al. 2005; Gama 2010; Gama et al. 2009). A variety of

techniques can be applied to stream data (Aggarwal et al. 2004; Ferrer-Troyano et al. 2004; Hulten

et al. 2001; Last 2002)–much of the work is focused on the efficiency of incrementally updating

the model (Domingos and Hulten 2000). Phua et al. (2007) address the issue of recognizing spikes

in the data stream.

Detecting changes in data-streams is important for monitoring, in particular for AT monitoring

systems. Two types of algorithms are common: (1) distribution detection, which watches for

changes in the data distributions, and (2) burst detection, which watches for sudden large and

unusual changes in a data-stream. Distribution detection algorithms have two common forms: (1)

data from two windows (current and reference) are compared using some distance measure, (2) a

predictive model is created from a prior window and then its prediction is compared with the

current window—high prediction error indicates a significant change.

Many data stream techniques address change detection of item sets (Aggarwal et al. 2003;

Agrawal and Psaila 1995; Chakrabarti et al. 1998; Ganti et al. 2002a; Ganti et al. 2002b; Kifer et

al. 2004; Silberschatz and Tuzhilin 1996). For example, Agrawal and Psaila (1995) and

Chakrabarti et al. (1998) monitor the change on the support of an item set over temporally

ordered transactions. Ganti et al. (2002a) propose a framework, FOCUS, in which changes are

detected by quantifying the difference between the two models induced by the datasets. Two

trees are first extended so that they become identical, and then they are compared to derive a

numeric difference value. The differencing approach in this study is similar to FOCUS.

However, I efficiently derive the first n attributes ordered by their contribution to the difference

(Robinson et al. 2011a). This approach allows us to not only detect changes, but also discover

the nature of these changes such as what attributes (decision rules) impact the change and how

49

the degree of attribute impact changes over time. Such information can give an analyst unique

insight into the causes of changes.

3.2.2 Model-Based Monitoring in AT

Work on model-based monitoring in the context of assisted living includes (1) the use

biometric and sensor data from home activity to identify trends and drifts from those trends (Jain

et al. 2006), and (2) the use of positional data to detect behavioral deviations from routine

patterns (Virone et al. 2008). This work differs in that I am concerned with the attainment or

denial of goals—the long-term trend is less important than identifying departures from recent

trends. Clinicians need to be notified when a client appears to transition to satisfying (or failing)

an AT-based goal.

3.3 Monitor Design and Development

The monitor is designed to provide feedback to clinicians about AT usage by clients with CI.

This monitor needs to: (1) identify transitions in user behavior, where a user’s behavior is

defined by the stream of events that they initiate with the AT; and (2) diagnose transitions of a

user’s behavioral change, as characterized by the most influential behavioral differences around

a moment of change. Table 2 presents design rationale for the monitor. Two strategic decisions

are: how to recognize transitions, and how to diagnosis transitions. These two choices are

intertwined. I chose to use error rate to identify transitions and model differencing for diagnoses.

3.3.1 TAL Data Stream

The TAL email client provides an automated custom logger. To obtain real-time data

access, a log file can be monitored. Here is a simplified entry from the log.

09:48:41 NewMailEvent [id=765406159;in-reply-to=311149530;chars=770;words=179;sentences=16]

50

This logged event specifies the time, the program event, and its associated arguments.

The example logs the arrival of a new email that is in reply to previous e-mail; the identity of the

sender and receiver and characteristics of the e-mail message, such as its length, are also

included. The significant event types are: read email, compose email, delete email, and new

(arriving) email. A database view provides a continuously updated stream. The dataset for one

client, Don, included 3,695,086 records occupying 737 MB in Microsoft SQL Server 2005.

How to diagnosis

transitions

Difference two models to find

the rank-ordered changed

attributes.

Ordered trees, like decision trees,

simplify computation.

T
a

ct
ic

a
l

Which mining

algorithm(s) to

apply

Decision tree Differencing, attribute ordering, and

explanation is simpler using decision

tree than most other models.

How to select data

window size

Sufficient data for good accuracy

while being timely led us to 2-

weeks.

Larger windows can increase accuracy

but miss transitions.

Which data

attributes to mine

Predicting event type is the

focus. Attributes that improved

that prediction were included.

Some logged data was dropped because

had no predictive value, which may be

common for DI data streams.

Table 2. Design Rationale for the Design of the Monitor

3.3.2 Identify Transitions

The approach to the analysis of user behavior has been to extend classic data mining

techniques. Two extensions are important. First, logged events are processed with stream-mining

methods. Second, changes in mined-model qualities are considered an indicator of changes in

user behavior. Overall, the approach automatically models user behavior based on events and

recognizes significant changes in those events.

This approach depends on a few assumptions:

(1) User behavior is characterized by the stream of events that user initiates with the user

interface.

(2) User behavior can be characterized as planned event sequences for goal fulfillment.

51

(3) User behavior is less consistent when involved in less familiar tasks, and more consistent

when involved in more familiar, routinized tasks.

Based on these assumptions, the monitor analyzes patterns in event sequences to find

inconsistent behaviors, which are interpreted as goal transitions, i.e., moving from a state of low

goal achievement to higher goal achievement (or vice versa). Consider a user goal set, Gi, which

specifies the currently attained goals. I want to be notified when a user transitions to new goal

set, Gj, where the difference between the user goal attainment is Gj - Gi = g. EventMiner applies a

data-stream mining approach to identify unusual behavioral patterns and specific metrics to

select those most likely to be associated with goal transitions.

3.3.2.1 Model Changes as Behavioral Changes

EventMiner applies a predictive model approach to distribution detection to identify

changes in the data stream. Stream mining produces a sequence of models, m1 .. mn that predict

the behavior observed in windows w2 .. wn+1. After a predicted window is observed, wi, the

prediction quality of its model, q(mi-1,wi) = [0,1], can be calculated. For example, the classic

metrics of accuracy and precision can be used individually or in combination.

Accuracy measures how error-free the model's predictions are, according to this equation:

accuracy = (true negative cases + true positive cases) / all cases where all cases = true negative +

true positive + false negative + false positive cases

 Precision measures fidelity, according to this equation:

precision = true positive cases / (true positive + false positive cases)

Predictive quality can be automatically evaluated with each new window during stream

mining. Given that model mi is trained over window wi, one can evaluate the predicted values of

mi against the known data in wi+1.

52

Consider the case where the predictive quality is nearly a constant 0.9. This suggests that the

models are good and that the behavior from one window to the next is nearly constant. Now,

consider a sequence of some n predictions, with q1 .. qn, where each qi ≈ 0.9 with the exception of

qk (1 < k < n) which is 0.1. This suggests that the models are good with the exception of mk-1,

which was trained on window wk-1 to predict window wk. I infer that something interesting

happened during window wk. That is, the events in window wk are so different from the events of

window wk-1 that the model trained on wk-1 cannot reasonably classify the new window wk

behavior.

The predictive quality change is dq/dt. Thus, |q'|>ε implies behavioral changes from window

wk-1 to window wk. We can also consider how quickly the predictive quality changes, which is q''.

An analysis of typical domain values for q' and q'' can provide guidelines that distinguish normal

behavioral variations from significant behavioral changes (Robinson and Akhlaghi 2010).

3.3.2.2 Good Model Quality is Sufficient

A good model is sufficient for finding significant differences in a model sequence. Great or

nearly perfect predictive models are wonderful, but unnecessary for identifying transitions. The

model differences are more important. Low quality models will have substantial variance from

model to model in stream mining. Good quality models have less variance and the differences

will be striking. The key is that the differences are more prominent than the random variance in

the models. In the TAL domain, the goal is better than 70% for both accuracy and precision.

There are many ways to improve model quality, such as selecting the best mining technique,

apply multiple techniques simultaneously, and apply multiple window sizes simultaneously.

Selecting the appropriate window size, ws, is important. If ws is small, then insufficient data

will be available when the mining model is derived. Conversely, if ws is large, then the analyst

53

must wait, perhaps a long time, before the model is derived—moreover, model construction itself

can take a long time. Finally, large data windows have a regression to the mean problem—short

variations in behavior will be discounted in favor of more common behavior, and thus short

variations may not be represented in the mined model. Thus, widow size affects precision,

accuracy, and availability of the mined model.

In the case study of section 3.4, I applied: (1) multiple concurrent windows, (2) multiple

models, and (3) decision trees because: (1) their pre-testing accuracy was better than Bayesian

networks, neural networks, and association rules; and (2) decision trees simplify transition

diagnosis, which I describe next.

3.3.3 Diagnosing Transitions

A discovered transition change begs the question, “what exactly has changed?” Diagnosing a

transition provides an answer, which is used by clinicians to decide if a goal transition has

occurred. In the TAL diagnosis context, it can reveal that the user “now sends more emails on

Wednesday than in the past.” (Failing to take medications on Wednesday was an underlying

cause for this real example.)

Model differencing reveals the most significant changes between two models. A data mined

model, mi, provides a model of the data observed in window wi. When a model quality falls

substantially from wk-1 to window wk, it means that the data varies substantially from wk-1 to

window wk. Thus, given a window wk with |q'|>ε, three data windows are of interest: wk-1 (before

change data), wk (change data), and wk+1 (after change data). To diagnose persistent change, I

compare the models associated with windows wk-1 with wk+1. I consider wk (change data) of lesser

importance because it represents the transition from between two models of more consistent

behavior. Next, I illustrate (decision tree) model comparisons.

54

3.3.3.1 Decision Tree Differencing

Recall the TAL dataset from section 3.3.1. Figure 5 illustrates a portion of a decision tree

that models user email events. For a data window, the model summarizes the kind of email event

(Event: read, receive, delete, compose), the day of the week (weekday: 1-7), and a 2-hour period

in which the event occurred (DaySegment: 0 - 11). The leaves of the tree represent the email

events. A path from the root to a leaf can be considered a query (or proposition) that

characterizes the leaf data. For example, the path DaySegment = 4, weekday = 1 leads to the

events satisfying those two attribute values. In Figure 5, the data distribution is represented by

the colored bar chart on the leaves. Thus, the bottom left leaf shows that the path DaySegment =

4, weekday = 1 has only read email events. On the other hand, other leaves have a mix of colors,

indicating a mixed distribution of email events. (The node is labeled with the dominant event

number—read = 1, compose = 5.)

Figure 5. A Decision Tree Classifying Compose Events

To illustrate model differencing, consider two hypothetical decision trees. The first has only

read events for day segment 1, while the second has only read events for day segment 2. The

difference of the two models (m2 - m1) reveals that read has shifted from DaySegment 1 to

55

DaySegment 2 (i.e. DaySegment 1 is dropped and DaySegment 2 is added). This observation is

the basis for THE diagnosis. By differencing two decision trees, one can characterize the change.

The algorithm is sufficiently efficient because it stops on each branch comparison when it finds

the first difference (or leaves) (Robinson et al. 2011b).

3.3.3.2 Significant Attributes in Decision Trees

In general, completely comparing unordered trees is computationally expensive (NP-

complete) (Bille 2005). Even if we assume ordered trees, which is common for decision trees,

the algorithmic complexity of complete comparison is high. The complexity arises because a

node in tree A may move to anywhere within the next tree B (however unlikely in practice). In

practice, I have found that comparing sequential decision trees reveal small changes in the tree,

such as the attribute or attribute value changes. Thus, the entire tree must be exhaustively

searched. Even so, complete comparison is practical for small decision trees. Yet, I do not need a

complete comparison for diagnostic problem. Instead, an algorithm that returns the most

influential changes is sufficient.

Decision trees use an attribute selection measure as a criterion for splitting at a node. Popular

choices include information gain, Gini impurity measure, and gain ratio. The attribute with the

highest metric determines the splitting rule. The improvement at each node is calculated using

the selection measure and fraction of data split. For each attribute, the importance measure is

derived using a weighted sum of the improvements due to that attribute. Such importance values

are used to rank the decision tree attributes.

More influential attributes are found at the top of the tree, while less influential attributes are

found closer to the leaves (Wu et al. 2008). Thus, when comparing two trees, the most significant

differences are found by first comparing the roots and working towards the leaves. I apply this

56

method, stopping along each branch when either a difference or a leaf-node is found (Robinson

et al. 2011b).

By comparing structures of two trees based on the order in which attributes appear near the

top, I can determine the differences in attribute influence between two models. This ordering of

attributes by significance simplifies comparison and is one reason why we use decision trees to

model behavior.

Given two decision trees, there are two kinds of differences to consider: (1) value differences

at the nodes, and (2) attribute difference. Additionally, it is possible that the two models have

nothing in common. These issues are considered next.

3.3.3.3 Model Differences in Attribute Values

Given two decision tree models, it is possible that they have an attribute value difference.

Consider the models in Figure 6 and Figure 7. The two trees branch on day segment. The

absence of a branch for DaySegment =2 in Figure 7 is the only structural difference.

Dropping a tree branch, from m1 to m2, occurs when the latter model is constructed from a

dataset lacking data for the branch. In the case of Figure 7 compared to the prior model of Figure

6, the user quit reading email during DaySegment =2.

Figure 6. A Decision Tree that Classifies DaySegment =2

57

Figure 7. A Decision Tree that Lacks DaySegment =2

3.3.3.4 Model Differences in Attributes

Given two decision tree models, it is possible that they have an attribute difference. As an

illustration, compare Figure 6 with the previous Figure 5. The attribute difference occurs in the

path DaySegment =4. In Figure 6, there is no subsequent branching, whereas in Figure 5

DaySegment =4 is segmented into three weekday branches (1, 6, and 7).

Adding an attribute, from m1 to m2, occurs when the latter model is constructed from a dataset

that includes data for the branches (e.g., weekdays 1, 6, and 7), and that data is non-uniformly

distributed over the attribute (weekday). Thus, we can infer from Figure 5 that the user, during

DaySegment =4, mostly had email events on weekdays 1, 6, and 7.

We cannot infer specific quantity changes from attribute differences alone — the addition of

weekday in Figure 5 does not suggest that more events occurred during weekdays 1, 6, and 7.

Instead, it shows that the distribution of events changed from Figure 6 to Figure 5. It is likely,

however, that fewer events occurred for the weekdays other than 1, 6, and 7, thereby creating a

non-uniform distribution.

It is worth noting here the pathological case of two identical models, m1 to m2, for which the

events occur with the same distribution, but different quantities. For example, consider Figure 6.

There is no indication of the quantity of DaySegment =10; the figure simply indicates that at

least one event occurred at DaySegment =10. It is possible, but not likely, that another model,

58

identical to that of Figure 6 would have twice as many total events with the same distribution.

Therefore, the decision-tree model differencing is a diagnostic aid, which can be improved by

computing the classified quantities in each leaf. Once a tree difference is identified, our

algorithm does compute the difference in data counts. However, analysis is not applied to

identical trees, because the pathological case is exceedingly unlikely in practice.

3.3.3.5 Models with No Common Attributes

Given two decision tree models, it is possible that they have no attributes in common. For

example, model m1 branches only on DaySegment 1 and model m2 branches only on weekday 1.

From this example, we can deduce that the concentration of email events was first on

DaySegment 1, uniformly distributed for all weekdays, while the second model concentration

shifted to weekday 1 uniformly distributed on all hours. Such a dramatic change has not occurred

in our data, but may occur in other domains. In such cases, my algorithm reports the entire two

trees as the differences.

3.3.3.6 Summary of Approach

I summarize the transition and diagnosis approach as follows:

(1) The mined model provide statistical summary of the distribution of events.

(2) Model differencing reveals the top-most influential attributes changes over a period.

(3) The method is automated and as accurate as the mined-models, which are dependent on

the quality of the data.

3.3.4 Development

EventMiner was developed in KNIME, an open source, Java-based platform.

Multiple workflows were developed in KNIME to automate the monitoring process.

KNIME allows me to integrate my own algorithms as nodes, as well as use specialized

59

tools, like the sequence-mining R package, TraMineR. Figure 8 shows an example KNIME

workflow we used for model differencing. A sample pseudo codes for tree differencing is

presented in Table A3 in the appendix.

Figure 8. A KNIME Workflow Example

3.4 A Case Demonstration

In this study, I have applied a design science approach to the analysis of analytic techniques

(Hevner et al. 2004). Having described the use of decision tree models in modeling event streams

and identifying transitions, I will illustrate in a case study, on how I apply this approach to

analyze the behavior of a randomly selected client from the TAL project. The data includes

3,695,086 email events collected from one single patient over two years.

3.4.1 Data Mining Models

Transition detection requires a good quality model. In pre-testing, a variety of classification

models were considered, including decision trees, Bayesian networks, neural networks, and

association rules. I chose three decision tree algorithms, which were the best in quality: (1) M1:

Gain Ratio (C4.5) is a successor of ID3; (2) M2: Information Gain (ID3) minimizes the

information needed to classify the data represented as tuples, the resulting partitions reflect the

60

least randomness or impurity in these partitions; and (3) M3: Gini Index (CART) uses a formula

based on probability to branch on nodes.

In pre-testing, I considered a variety of data window sizes. I decided to run three window

sizes: two-, four-, and eight-week windows. These allowed me to consider short-term and long-

term behavioral patterns. Shorter than two weeks produced poor quality models due to

insufficient data, while longer than eight weeks was not valued for diagnoses.

3.4.2 Identifying Transitions

The decision tree models predict the event type (read email, or compose email) for a

time-slot within a day-of-week. Table 3 summarizes accuracy and precision for read and

compose event types. The values for the different window sizes are very similar. The read

models are good — the models predict well the number of emails that will be read during a time-

segment on a day-of-week. The compose model is not as good. It weakly predicts the number of

emails that will be composed during a time-segment on a day-of-week. Because read models

have the best quality and least variability, I rely on them to predict behavioral changes. The

compose graph mostly supports the same transition points, but with less accuracy. (See Figure 4,

which compares the two model qualities.)

 Read Compose

 Accuracy Precision Accuracy Precision

2-week window Average 0.967 0.970 0.631 0.484

 StdD. 0.049 0.018 0.241 0.144

4-week window Average 0.984 0.971 0.657 0.478

 StdD. 0.027 0.011 0.202 0.119

8-week window Average 0.983 0.971 0.657 0.478

 StdD. 0.027 0.011 0.202 0.119

Table 3. Qualities of Model M1 for Read and Compose Email

Consider the read model. The predictive qualities of the three data mined models (M1, M2,

M3) for three windows are graphed in Figure 9. The graph shows that the models roughly track

61

the same events. Windows of four and eight weeks are nearly the same. They both hide or

diminish events considered interesting by the two-week window (e.g., weeks 66 – 68). In

general, the two-week window analysis has greater variability and foreshadows the larger

window analysis. Notice that week 34 has poor predictive quality (q) as identified in both the

two- and four-week window analysis. Moreover, the quality in the immediately surrounding

weeks is good; thus, the rate in change of the quality (q') around week 34 is also high. Together

the dramatic decrease in q and zeroing of q' suggest that week 34 may be a behavioral inflection

point worthy of further analysis.

Figure 9. Predictive Quality for the Read Models

Table 4 presents q' for two- and four-week windows for the three models; it illustrates

the significance of the transition identification technique. The table shows where q' turns

negative between 0 and 36 weeks. The analyst can combine these values to automate the

0.75

0.8

0.85

0.9

0.95

1

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

Accuracy Rate
3 Models, 3 Windows

M1w2 M2w2 M3w2 M1w4 M2w4 M3w4 M1w8 M2w8 M3w8

62

recognition of interesting events. The rule is that two consecutive q' windows means that the

transition began on the first window. Table 4 shows that week 12 and 32 are potential transitions.

2-week window 4-week window

Week M1 M2 M3 M1 M2 M3

10 -0.012 -0.012 -0.012 0.000 0.000 0.000

12 -0.007 -0.007 -0.007 -0.018 -0.018 -0.018

16 -0.037 -0.037 -0.037 0.018 0.018 0.018

18 0.021 -0.043 -0.043 0.000 0.000 0.000

20 0.005 0.054 0.054 -0.023 -0.023 -0.023

…

30 -0.014 -0.014 -0.014 0.000 0.000 0.000

32 -0.040 -0.040 -0.040 -0.010 -0.010 -0.010

36 0.033 0.009 0.009 -0.032 -0.032 -0.032

Table 4. First Derivative of Accuracy, q'.

3.4.3 Diagnosing Transitions

As transitions are identified, diagnosis is automatically applied. For example, if a transition is

identified in the read model, then diagnosis will be applied to the read model as well as other

models such as the compose email and delete email models. This is based on the assumption that

a significant change in any usage of the AT may signal a transition (however slight) for any of

the monitored goals. Thus, identified goal transitions are considered signs of behavioral changes

that may be reflected across the AT system usage.

Table 5 and Table 6 summarize the diagnostic analysis identified in the read email and

compose and send email data streams underling Figure 9. Here I present the results of comparing

pairs of M3 decision trees over 2-week windows. The results are similar for the other models and

windows.

Table 5 presents the results of model differencing the inflection points found in the compose

and send email data stream. One potential goal transition occurs during the two weeks of 32 and

33 of the dataset. The three data windows for this inflection point begin at 32, 34, and 36 weeks.

63

The model differencing technique compares the models beginning at 32 and 36—it does not

consider the intervening transitional model. For the transition at week 32, there was a 15%

increase is email composition during the periods from 6 to 12 A.M. and 2 to 8 P.M. There were

48% and 9% increases for the inflection points of beginning at weeks 50 and 80, respectively.

These changes indicate an increased attainment for the compose email goal of Figure 3.

Weeks Compose

in Selected Hours

Total Compose for Model % Activity Δ Activity

10 PM

10 - 12 7 111 6%

14 - 16 0 115 0% -6%

Tuesday (6-12 AM and 2-8 PM)

32-34 3 46 6%

36-38 14 67 21% 15%

Saturday

50-52 0 55 0%

54-56 39 81 48% 48%

Saturday, Sunday, Monday and Friday (6-12 AM)

80-82 5 31 16%

84-86 23 91 25% 9%

 Table 5. Significant Changes in Composing Email

Weeks Read

in Selected Hours

Total Read for Model % Activity Δ Activity

10 PM

10 - 12 6 290 2%

14 - 16 0 365 0% -2%

12 AM - 2 AM

32-34 0 146 0%

36-38 2 162 1.23% 1.23%

Sunday

50-52 0 203 0%

54-56 57 272 21% 21%

10 PM – 2 AM

80-82 0 121 0%

84-86 13 442 3% 3%

Table 6. Significant Changes in Reading Email

64

Figure 10 presents a stack graph showing the differences in read count, with the top-5

buddies, for weeks 50 – 56. The graph shows that some buddy increases and decreases occurred

in the transition week 52, followed by general increases in week 54. The graph reveals the

increase in the number of reads, which was identified in the metrics of Table 6. This illustrates

the value of the metrics — rather than generating and reviewing numerous graphs, the metrics

point to windows where the data and their graphs have the most change. These changes indicate

an increased attainment for the read email goal of Figure 3. Table 6 presents the results of the

model differencing for inflection points found in reading email. For the transitions beginning at

weeks 32, 50, and 80 the increases were 1.2%, 21%, and 3%, respectively.

Figure 10. Stack Graph of the Read Counts, by Buddy, Weeks 50 – 56

In summary, the preceding tables summarize how model differencing applies. They

demonstrate how transitions can be characterized by their underlying behavioral changes. It

should be noted that, for this presentation, consecutive time segments were collapsed. The actual

65

mined model considered 2-hour day segments. Thus, for example, the Saturday statistics of

Table 5 is an aggregation of the 12 time-periods. The other statistics are automatically

calculated (e.g., total and percent). Finally, it should be noted, that the results are

calculated in real-time, as each window closes, immediately after the calculation of goal

transitions.

3.4.4 Evaluation

The research evaluation considers two concerns, introduced at the beginning of this article:

(1) Can the EventMiner framework provide automated recognition of changes in user

behavior, where a user’s behavior is defined by the stream of events?

(2) Can the framework provide automated diagnosis of a user’s behavioral change, as

characterized by the most prominent behavioral differences around a moment of change?

Through software construction, testing, experimentation, and case study, I affirm both

propositions. Next, I will discuss two more issues: (1) model quality and (2) validation by real-

world events.

3.4.4.1 Accuracy and Precision

Accuracy and precision are standard metrics for determining predictive model quality. As

Table 5 and Table 6 show, the read model is very good and while the compose model is not as

good. This may be an anticipated because the read model depends on received emails and free

time of the client; these elements are mostly routinized for the user population. On the other

hand, email composition depends on the client’s skills and interest in communicating. In a prior

study, we showed that client interest and email composition increased with the addition of new

email buddies, while decreasing slowly thereafter (Fickas et al. 2005). Therefore, given the

limited information in the data and the real-world behavioral variations of the users, the

66

availability of at least one very good model appears to provide adequate information to identify

some significant behavioral changes.

3.4.4.2 Real-World Events

Changes in model quality reveal real changes in user behavior. This case study illustrates this

with the inflection points that Table 5 and Table 6 summarize. There is a causality chain from the

user’s manipulation of the AT to the diagnosis of goal transitions:

(1) A user exercises the AT interface, such as reading and composing email.

(2) Data mined models are generalized from and accordance with the distribution of the events.

(3) Model differences are calculated, revealing changes in the models, which reflect changes

in the event distribution, and thus changes in the user behavior.

(4) Model differences, at goal transitions, are characterized according to the events observed.

Thus, assuming the algorithms and software are correct, there is a direct causal chain from

changes in usage of the AT and the diagnosed changes presented to clinicians.

 Discussion on the monitored analysis with other TAL researchers reveals that the goal

transitions do seem to reflect persistent changes in behavior. For example, week 34 of the data

corresponds to 8/20/2006 - 8/26/2006, while week 82 of the data corresponds to 7/29/2007 -

8/4/2007 (week 31 of 2007). I hypothesize that something interesting happens to the client in the

August summer holiday, such as a family member visit. Client anonymity prevented us from

directly correlating such real-world events, but it has been intimated that such events have

occurred.

Don’s event data shows a general trend of increasing email usage. He consistently composes

email and replies to emails, which is in support of his know and use basic email skills (Figure 3).

Don also has periodic behavior of increasing emails after the introduction of a new buddy

67

(Fickas et al. 2005). A recent analysis of Don’s sequences (e.g., read followed by compose),

reveals that Don is becoming (1) more consistent over time because of the increasing length of

non-variable sequences, and (2) becoming more conversational with email because of the

increased usage of reply (Robinson et al. 2012). This latter point is significant, because it

suggests that Don may be transitioning from using email for simple notifications or requests to

dialogs.

3.5 Monitoring with Hidden Markov Models

One disadvantage of the decision tree differencing technique is that it cannot directly

recognize changes in sequence distributions. Decision tree differencing monitoring is good

for strict compliance checking; however, it ignores unmatched sequences, and thus is of

limited use where there is a great variety of sequential patterns. Therefore, we extend

EventMiner by adding another component: a hidden-Markov-model (HMM) based monitor.

This component applies a HMM approach to complement the existing decision tree

differencing component. A hidden Markov model is a stochastic signal model (Rabiner

1989) that commonly used for pattern recognition and anomaly detection. As introduced in

2.7, several studies have applied HMM for anomaly detection.

This new component is similar to the decision tree differencing monitor: windowed

models are differenced to identify significant transitions in both methods. The difference is

that, hidden Markov models are used to characterize user behavior. This HMM-based

method is also applied to the usage data of a randomly selected client (Robinson et al.

2013b). In this work, we detected behavioral changes in the usage behavior. Furthermore,

building on a Transtheortical theory perspective (Prochaska et al. 1997), we explained the

identified transitions as normal learning and transitional learning states.

68

3.6 Conclusion

In this study, I describe and demonstrate how decision trees and hidden Markov models can

be used to characterize software usage, look for unusual behaviors, and guide diagnosis of

significant behavioral changes. By differencing the resulting sequence of generated models,

this approach can identify transitions in software usage. The transition identification and

diagnosis is automated by EventMiner.

This study contributes to both practitioners and researchers. It is important to the field of AT-

based clinical therapy. Dynamically interpreting and adapting therapy plans for individuals

currently requires substantial effort of clinicians. With the CI user population increasing, the

need for some automation in therapy analysis is critical. For caregivers, when transitions are

detected, they can provide assistance to ensure the client is not relapsing and

encouragement to aid a progressing client. The tool and the analysis method provided will be

a critical factor in addressing the needs of the millions of people with cognitive disabilities.

For researchers, the identification of behavioral transition points, similar to the

concepts of “encounters” refereed by Robey and Newman (1996), can serve as a starting

point for process theory building. Those identified transition points and recurring

sequences of events can support different theoretical interpretations, by the choice of the

researchers (Robey and Newman 1996, page 31). Process models, known for their faithful

account of actual experiences, can become cumbersome and analytically complex (Kling 1987;

Markus and Robey 1988). For researchers who are interested in building process models, this

study provides the tool and method to automatically analyze stream data, for transition detection

and pattern recognition. , greatly reducing the effort for data analysis. Researchers can then

69

theoretically interpret the transition points, as a start pointing for theory building. In the

following chapters, I will show how this framework can be applied to the OSS context.

70

4. OSS Development Behavior Transition Discovery

4.1 Introduction

Following the previous study in Chapter 3, this study applies EventMiner to an open

Source Software (OSS) context. I have two major goals with this study: (1) to provide a

project dashboard that can raise alerts when the OSS team appears to be losing its

effectiveness, and (2) to develop a methodological and software framework to analyze OSS

development process data. This framework can reduce process researchers’ analysis effort

and provide a “pictures of the process” (Markus and Robey 1988) by identifying transition

points and behavioral patterns in the given data. This picture of process can be theoretically

interpreted for building process models. Having already developed the data-mining

framework EventMiner, I apply it to the team’s repository event log to observe their

activities and look for interesting transition points in the development processes. The

approach of the monitoring framework EventMiner is summarized as follows:

(1) Developers use their standard team tools (e.g., Eclipse, GitHub, etc.) to develop

software.

(2) EventMiner continually monitors the event log provided by the team’s source code

repository (e.g., GitHub).

(3) EventMiner builds models of the developer’s behaviors and their changes by

identifying transition points and recurring patterns. These models are structured

according to the events generated by the repository events.

(4) Researchers can theoretically interpret those models of an individual project or

multiple projects, generated in step (3), to build process theories on OSS

development.

71

(5) Researchers can also develop models on the relationship between behavioral

sequential patterns and project performance.

(6) Based on insights drawn from step (4) and step (5), developers can review the data

analysis results for their own project’s development history, and make inferences as

to how successful the project will be.

In this study, I will describe the automation for steps 2 – 3 (model building). I will

demonstrate how this process is applied to 103 projects from GitHub.com, an open source

repository. Much research remains to extend our models. I also made an initial attempt to

address step 5 in my third study in Chapter 5. I will address automation of steps 4 – 6

(model interpretation and forecasting) in the future, which will be discussed in 6.3. In the

following, I introduce two major goals for this study in details.

4.1.1 Recognizing Behaviors and Change

This study aims to identify and analyze common sequences of actions by OSS

developers. Several actions can be performed by developers in an OSS project, such as

making a commit, raise an issue, and comment to an issue. I would like to know, for

example, if the pattern sequence (Issue x, Comment x, Commit x) occurs frequently in the

stream of events generated by the developer tools. I suspect that successful projects will

apply this pattern more frequently than simply (Commit x)—that is, having no previously

specified issue or comment for a code commit.

To uncover sequential patterns, sequential data mining techniques are commonly

applied. When such techniques are applied directly to event streams generated by OSS

developers, I found that it generates long lists of varied, low-level action sequences, which

are not easily interpreted. To address this issue, I first specify work constructs, which are

72

recognized by a rule-base system that integrate concepts from theory of distributed

cognition. More generally, I am working towards a theory of OSS development by

incrementally improving partial process models, which recognize theoretical constructs in

OSS event streams.

The analysis proceeds as follows:

(1) Specify recognition rules for our theoretical constructs, such as an issue-based work

unit.

(2) Apply the rules to the OSS event-stream data, to recognize theoretical constructs.

(3) Data mine the theoretical constructs, using sequence-mining techniques.

(4) Apply model-differencing techniques, to recognize changes in behaviors over time.

This approach allows me to analyze OSS developer behavior (as action sequences) and

their changes over time.

4.1.2 Building a Process Theory

This work on analyzing OSS projects represents a study in the efforts toward supporting

the construction of process theories. A process model “explains development in terms of the

order in which things occur and the stage in the process at which they occur” (Van De Ven

2007). Abbott, for example, illustrates how time ordered events affect the lifecycle of

individuals, which supports theorizing about process steps, and cause-effect relationships

(Abbott 1990). The OSS study presented herein illustrates this approach to abducting theory

elements from sequence data. I start with simple sequence-based constructs, such as higher-level

development workflows that are comprised of lower-level development activities (raising an

issue, making a commit, etc.). I have in mind some general theories which appear applicable to

the analysis of OSS development, such as theory of distributed cognition (Hutchins and Klausen

73

1996). To bridge the gap between the hypothesized theoretical elements and the data, sequence

data mining was applied. Process models can become cumbersome and analytically complex

(Kling 1987; Markus and Robey 1988). The minor contribution of the study to building process

theories is demonstrating how much of the data mining can be automatically applied to reduce

the analytical effort.

4.2 Theoretical Background

4.2.1 Distributed Cognition

Several information system theories provide a conceptual lens to frame my analysis.

The theory of distributed cognition provides a theoretical lens to understand software

development. As developed by Hutchins, it posits the perspective that the boundary of

cognition processes go beyond individuals to socio-technical systems (Hutchins and

Klausen 1996). It presents how cognition processes distribute socially, structurally, and

temporally when a distributed team collaborate on information processing tasks.

By conceptualizing cognition as “the propagation of representational state across

representational media” (Hutchins 1995, p.118), distributed cognition expands the unit of

cognitive analysis from that of the individual to that of the entire team attending to a

specific task. With this shift in perspective on cognition, the theory asserts (Hutchins and

Klausen 1996): (1) thought processes are distributed among members of social groups, (2)

cognition employs both internal and external structures, and (3) cognitive processes are

distributed over time.

Nearly all software design efforts are executed through a team structure (Guinan et al.

1998). While addressing complex design challenges, teams must bring together individuals

from a variety of technical and functional domains. For example, the cognitive task of

74

arriving at a stable requirements set, referred to as the computation of requirements, cannot

be localized to any one participant, such as a designer (as is often assumed) (Hansen et al.

2012b; Jarke et al. 2011). Rather, it resides in the holistic process of cognitive computation

that enables requirements to emerge as a quality of the social system.

In practical terms, this means that you can interpret the team member activities in

distributed cognition terms. For example, team members may rely on the source-code

commit log to share progress information about the project. When members fail to submit

comments, then this form of distributed information sharing breaks down. Distributed

cognition indicates, generally, the kinds of communications and breakdowns they

commonly occur.

Other theories provide a background for the development of variables, constructs, and

concepts needed to understand information processes in OSS development. For example,

the recent theory of collaboration through open superposition suggests specific ways in

which members collaborate in OSS projects (Howison and Crowston). Classic theories may

not be as specific, but establish useful concepts. For example, Galbraith’s information

processing view suggests the need to examine structural mechanisms, such as information

buffers (e.g., a repository), to reduce information uncertainty (Galbraith 1977).

In general, in this study I demonstrate, adapt, and extend software development theories

by encoding them in process models and using them to conduct exploratory analysis.

4.2.2 Sequence Stream-Mining

OSS Developers have many interactions, directly or indirectly, through their tools.

Some co-located OSS developers will go to their computers to meet, thereby ensuring a

record on their meeting (as well as providing access to development records).

75

Many OSS interactions are logged as event histories. For example, the history of

source code changes is maintained by source control systems (e.g., CVS, subversion, Git).

As each change is committed to the source repository, the new code and comments are

recorded as a change event. Similarly, edits within a code editor (e.g., Eclipse), messages

within a chat session, forum comments, feature requests, FAQ edits, etc. are all event

sequences. Such sequences can be mined for patterns.

Sequence data mining concerns analysis of events in sequence. The event data are

often nominal-valued or symbolic and the goal is to discover variables and their

correlations (Laxman and Sastry 2006; Zhao and Bhowmick 2003). This contrasts to the

well-studied domain of time series analysis, which considers real or complex-valued time

series of known parameters using methods such as autoregressive integrated moving

average (ARIMA) modeling. Sequence mining techniques address: (1) prediction, (2)

classification, (3) clustering, (4) search and retrieval, and (5) pattern discovery.

I apply sequence mining in the context of stream mining. Concepts, techniques and

applications of stream mining were reviewed in 3.2.1. Stream mining can detect changes in

the data-stream. Two types of algorithms are common: (1) distribution detection, which

watches for changes in the data distributions, and (2) burst detection, which watches for

sudden large and unusual changes in a data-stream. Distribution detection algorithms have

two common forms: (a) data from two windows (current and reference) are compared using

some distance measure, (b) a predictive model is created from a prior window and then its

prediction is compared with the current window—high prediction error indicates a

significant change. In this study, I apply both distribution detection techniques to discover

76

changes, as well as model differencing, which was introduced in 3.3.3.1, and will be

reviewed briefly next.

4.2.3 Model Differencing

Model differencing provides a mean to recognize important changes occurring

within an event stream. Consider a stream of development repository events divided into

data windows, (w1, w2, …, wn). Transition identification marks each data window as either

being normal or transitional. For example, (normal, normal, transitional, normal, normal

…). Transitional behavior is historically unusual behavior, according to some measure such

as statistical variance. I use the term transitional because the behavior is unusual and

transient, and thus interesting from a theoretical perspective, such as cognition or learning

theory.

In this study, a repository stream is divided into data windows. Each window is

characterized by a model, (wi  λi). Consider two models in sequence, λ1 and λ2. The

software finds the difference of the models to characterize the change: dλ/dt = (λ2- λ1) / (t2

– t1). If the difference Δλ is significant, by some measure, then we have found a transition

point (Robinson et al. 2013a). The models (λ) vary, but include hidden Markov models

(HMMs) for example. Now, because of this automated differencing technique, a monitoring

system can quickly identify changes in the models. Thus, some intervention may be

applied. In OSS development, this may be changing the project lead, increasing testing, or

releasing the software.

4.2.4 HMM Probabilities

Given data containing sequences, a common task is find transition probabilities. That

is, given an observed event A, what is the probably that the next event observed with be B

77

or C? A hidden Markov model (HMM) can solve this problem by building a probabil ity

model from observed event sequences.

A hidden Markov model (HMM) is a stochastic signal model (Rabiner 1989). In our

application to OSS repository analysis, the signals are sequences of discrete typed events

(e.g., code commit). A HMM provides algorithms to solve three important problems:

1. Compute the probability that an observed sequence, O, is represented by a HMM, λ

(using the Forward-Backward Procedure (Baum and Eagon 1967)).

2. Adjust the parameters of a HMM, λ, to maximize the fit to an observed sequence, O

(using the Baum-Welch algorithm (Baum et al. 1970)).

3. Compute the optimal HMM state sequence that best explains an observed sequence,

O (using the Viterbi Algorithm (Forney Jr 1973)).

Similar to the work presented in Chapter 3, I use HMMs to model patterns of sequential

events within the stream of OSS repository events.

HMM transition identification detects significant changes in modeled events

between consecutive windows of event data. HMMs can be used to identify transitions by:

(1) comparing consecutive HMMs generated from the observation sequences, or (2)

comparing consecutive acceptance probabilities (Robinson et al. 2013a).

Technique 1 compares consecutive HMMs. This a model differencing technique is

generally characterized as follows:

Δλ = λ2 – λ1

Here, λ denotes a HMM. To find the distance between two HMMs, the widely applied

Kullback-Leibler algorithm is used (Kullback 1997).

78

Technique 1 directly compares two HMMs, each generated from observation

sequences. Technique 2 compares the acceptance probabilities of the observation sequences

using the first HMM. Because the two techniques produce similar results, this analysis

applies Technique 1.

4.2.5 Volatility Models

A variety of models can be applied to the sequential events found within the data

windows of repositories. I consider two that measure variance in sequences: turbulence and

optimal matching.

Given a sequence, turbulence calculates a metric based on the number distinct

subsequences within a data window (Elzinga and Liefbroer 2007). Turbulence increases

with the number distinct subsequences.

Optimal matching (OM) generates edit distances that are the minimal cost, in terms

of insertions, deletions and substitutions, for transforming one sequence into another. OM

can be applied to a repository data window to derive a measure of variance. Consider a data

window with two observed sequences: O i and Oi+1. Optimal matching, OM (Oi , Oi+1), is 0

if the two sequences are identical; OM increases with the differences between sequences.

Like HMM models, turbulence and OM can be calculated for each data window, as well as

differenced between two consecutive windows. Thus, I can measure ΔHMM, ΔTurbulence,

and ΔOM between consecutive windows of repository data.

4.3 Approach

I obtained development data of 103 OSS projects from GitHub, the most popular open-

source code repository site. Founded in 2008, GitHub had over 3 million users and over 5

million repositories as of January 2013. I applied the approach presented in the

79

introduction. In particular, after selecting projects, a KNIME workflow generated sequence

models and then clustered the projects. I then characterized the clusters and regressed them

with summary project measures. For single project analysis, HMM differencing was

applied and transitions were identified. All the steps are automated, from the retrieval of

data from the repositories, up to the regression analysis. Finally, I validated some results by

comparing the automated analysis with qualitative information. The results suggest that the

sequence mining is helpful in clustering projects and detecting interesting transitions

within a project.

4.3.1 Data Selection

The search function of the GitHub web site was used to enumerate the projects. The

queries are listed in Table 7. To ensure the diversity of the projects, I searched for projects

at different level of popularity. I used number of stars and number of forks as proxy for

level of popularity. Furthermore, I included a control group which only includes java

projects (see query #4 in Table 7), to investigate if language plays a role in projects’

development patterns. Note that for the first three queries, the result of each query is a

subset of the result of the next query. For example, the 43 projects returned for query #1,

are included in the 148 projects returned for query #2. Therefore, to select 30 projects from

each query result without any overlap, I sorted each query result differently. The top 30

projects from each query result were selected, for an initial set of 120 projects. Subsequent

processing reduced the final set to 103 projects. Projects were dropped because they lacked

data. Many Java projects, for example, maintain their issue database outside of GitHub.

The analysis was limited to projects contained within GitHub.com. Table A5 in the

appendix enumerates the projects.

80

Query Sort Count

1 stars:>10000

forks:>1000

most forks 43

2 stars:>5000

forks:>750

fewest forks 148

3 stars:>1000

forks:>500

fewest forks 651

4 stars:>1000

forks:>250 java

most forks 78

Table 7. GitHub Queries for Data Selection

4.3.2 Data Preparation

A workflow automated the data acquisition and preparation. GitHub.com data was obtained

from two sources:

1. GHTorrent provides access to a GitHub database (Gousios and Spinellis 2012). That

MongoDB database is the result of GHTorrent monitoring the GitHub public event timeline.

2. GitHub API provides direct access to the project data by sending JSON over HTTPS.

GHTorrent provided the basis for the data. The GitHub API was used to validate the data, and in

some cases provide missing data.

The GitHub data is comprised of a 16 collections, which we combined, through filtering

and joining, into a single table. The data was derived mainly from these collections: issues, issue

events, issues comments, pull requests, and pull request comments. The resulting table consists

of these fields: Issue number, body, diff hunk, path, position, original position, commit id,

original comment id, create at, updated at, event comments, milestone, title, assignee, closed at,

state, merged at, head, base, and actor. Each record in the table provides a vector for input into

our data mining process.

The table represents a sequence Git events. Of the 18 Git events, I focused on six, which

most closely associated with teamwork:

81

1. IssuesEvent: An issue is created, closed, or reopened.

2. PushEvent: Code is committed (pushed) to the repository.

3. PullRequestEvent: A user requests that new code be pushed to the repository.

4. IssueCommentEvent: A comment is associated with an issue.

5. CommitCommentEvent: A comment is associated with a commit (PushEvent).

6. PullRequestReviewCommentEvent: A comment is associated with a PullRequest.

Other events, such as watch events in which users subscribe to a repository to get updates, do not

concern teamwork. They are thus excluded from the study. A list of Git events are summarized

in Table A4. The prepared table of sequential Git events is further process to represent elements

of teamwork.

4.3.3 Work Constructs

Git events, such as push and commit, represent work; however, the context of the

work is missing. For example, it seems that 10 code commits for the same issue is different

than 10 code commits, each for a single issue. A rule-based system is applied to the

prepared event data to derive a table of abstracted work events.

Work in most GitHub projects begins with an IssueEvent or a PullRequestEvent. Both

represent a typical unit of development work, which may be scheduled, opened, closed,

reopened, etc. An IssueEvent typically represents a bug or enhancement. It follows a common

lifecycle of being opened, followed by code changes represented by commits, and then an

issue close. For example:

IssuesEvent.open, PushEvent, PushEvent, IssuesEvent.close

Of course, other events may intervene (e.g., comment events), as well as the issue may be

reopened or never closed.

82

The PullRequestEvent is similar to the IssueEvent, but the subsequent work events are

related to integrating the new code into the project’s code repository. A rule-based system

is applied to recognize event sequences beginning with IssueEvent or a PullRequestEvent. I

think about them as min-workflows, which are initiated in response to a work request (e.g.,

issue or pull request). However, here I use the more neutral term, motif, to indicate

recognition of these common sequence patterns.

The rule-based system recognizes two kinds of work motifs in the prepared table of

sequential Git events. The basic form is as follows:

1. (IssueEvent | PullRequestEvent) .*

2. (Reopen (of #1)) .*

As indicated above, a work motif begins with either an IssueEvent or PullRequestEvent,

followed by any other Git event that references the initiating event (by number). The motif

records the initial event, and all subsequent events (and their attributes). When either an

IssueEvent or PullRequestEvent is reopened, it is consider a new instance of the second

motif pattern (above). Thus, open and reopen are each considered the beginning of a work

motif. The subsequent analysis shows common event sequences; however, those are Git

event sequences within the context of these work motifs.

These work motifs are derived from the prepared data in support of our theoretical

background. Thus, I call these derived, abstracted elements work constructs, to be consistent

with theorizing process theories (Van De Ven 2007).

4.3.4 Sequence Feature Construction

Before the work motifs can be sequence mined, they are encoded. Most sequence

data-mining algorithms process event sequences, where events are identified as members of

83

a fixed alphabet. An event sequence, for example, could be A-B-A-B-B-C. Few algorithms

directly address object sequences, where each sequence member is comprised of an

information object. An object sequence, for example, could be

[Issue.ID=1,Issue.Author=a1,Issue.State=open]-

[Commit.ID=10,Issue.Author=a1,Commit.IID=1]-

[Issue.ID=1,Issue.Author=a1,Issue.State=close].

Object sequences can be processed by dropping information. For example, just

processing object type information: Issue-Commit-Issue. More information can be

processed by first encoding the object information into another alphabet; for example,

[Issue.ID=1,Issue.Author=a1] becomes I1A1. We applied this transformation concept to the

sequence of work motifs.

Given the work-motif sequences for a GitHub project, we using k-means clustering

to transform each work motif into one of 50 clusters. The work motif is represented by a

vector of these attributes:

IssueEvent | PullRequestEvent (open|reopen), ID, openDate, events, actors, state(open|closed),

merged(true|false), duration, comments, turbulence.

The rationale for selecting those attributes is as follows: different instantiations of

the same work motif might present different levels of collaboration. For example, in an

IssueEventàCommentEventàPushEvent work motif, the level of collaboration would be

different between an instantiation in which the same actor performed these three activities,

and an instantiation in which three different actors performed these three activities. As

discussed before, DCog seems an appropriate lens to interpret the development activities.

Therefore, I used concepts from this theory, to extract relevant attributes of a work motif,

84

to differentiate instantiations of work motif. I reviewed the indicators of distributed

cognition based on existing literatures (Hansen and Lyytinen 2009; Hansen et al. 2012a;

Thummadi et al. 2011) and summarized them in Table A1. From these indicators, relevant

attributes in the work motifs were identified. This input vector is then encoded as cluster

number [0, 49]. The sequence miner then processes sequences of these work-motif clusters

numbers.

4.3.5 Sequence Modeling

Give sequences, EventMiner constructs models of (a) sequence pattern probabilities,

(b) entropy within sequences, and (c) changes in the patterns and entropy over data

windows. Sequence pattern frequencies are determined by simply counting pattern

occurrence. For example, Figure 11 illustrates the frequency of the top 20 sequential

patterns from the bootstrap project. Additionally, a hidden Markov model (HMM)

calculates the sequence pattern probabilities. Optimal matching (OM) is applied to pairs of

sequences, to determine a matching distance.

85

Figure 11. Sequence Frequencies for Bootstrap

Turbulence and OM are applied to sequential data windows of work motifs

(themselves sequences). A series of data windows results in a series of values (Turbt, OMt

… Turbt+n, OMt+n) indicating kinds of sequence entropy over time. Change in sequences

over time can be calculated for turbulence, OM, and HMMs. The general equation is

simply Δλ = λ2 – λ1, where λ represents either turbulence, OM, and HMM models. I

calculate the models and their differences for each data window for each project. After

some preliminary analysis, I choose four weeks for the data window size—it contains

sufficient data and represents a common unit of work for open source development

methodologies. The subsequent Figure 12 illustrates ΔHMM for a project from each cluster

derived.

4.3.5.1 Project Clustering

Projects can be clustered by their change of sequencing, as represented by models of

the prior section. Each project gets sequences of change in sequence turbulence, OM, and

86

HMMs; that is, Δλi where the model λ is one of sequence turbulence, OM, and HMM.

Given the projects, each represented by a sequence of values, I pairwise compare them

using optimal matching to generate a distance matrix. I apply hierarchical clustering to the

distance matrix to deriver the clusters. (The appendix Table A5 includes the cluster number

for each project.)

Table 8 summarizes the cluster characteristics. Clusters 3 and 4 have relatively more

stars, forks, open issues, and have relative short cycles1. I reviewed one project from each

cluster. From clusters 3 and 4, ember.js and brackets, respectively, are relatively active.

Ember.js has a 15 day release cycle, and brackets has a 17 day release cycle—relatively

small comparing to the average of 101 days among all projects. Ember.js also has a big

community of 360 contributors and has very frequent group meetings through google

hangout. They used various communication channels including discussion forum, blogs,

GitHub site and stackoverflow.com. Project information from such sources provides

detailed projects information.

Cluster # of

Projects

Forks Stars Daily

Forks

Daily

Stars

Release

Time

(Days)

Age

(Days)

0 29 1363.55 5952.55 1.37 5.96 141.72 1099.31

1 38 1094.00 5453.66 0.72 3.53 137.21 1581.16

2 21 885.10 5239.43 1.81 10.82 40.62 579.19

3 7 2432.71 14103.29 2.34 14.23 28.00 1081.00

4 8 2025.88 10131.25 3.64 19.89 8.25 576.00

project mean 1290.66 6501.59 1.46 7.70 101.35 1129.15

Table 8. Cluster Characteristics

The other three clusters (cluster 0, cluster 1 and cluster 2) are similar in terms of

popularity—they have relatively similar number of forks, stars and watchers. However,

1 Space limitations prevents us from showing all the cluster attributes.

87

among these three clusters, the daily stars of cluster 2 suggest that projects in th is cluster

were able to attract stars faster than the projects in the other two clusters. Clusters 2 also

have a shorter release cycle time: 40 days compared to 142 days in cluster 0 and 137 days

in cluster 1. Projects in clusters 0 - 1 are the least popular—they have the lowest forks rate,

and star rate. They also grow relatively slower—both of them have smaller open issues rate

than others, and have longer release cycles.

4.4 Analysis

The goal of the study is to monitor an OSS project by observing and analyzing its

activities, I focused on two analysis tasks here: (1) detecting behavioral transitions within a

project, to achieve step 3 in the introduction, and (2) investigating the relationship between

sequential behaviors and project measures. Understanding on this relationship can help us

achieve step 5 and step 6, in which inference between behavioral patterns and success

needs to be made explicit. The descriptive characteristics of the clusters suggest that the

KNIME workflow for sequence mining is useful for the classification of GitHub.com

projects by their sequential behaviors. Because I want to relate the sequential behavior with

project outcomes, I performed a linear regression of the clusters with summary project

features. Finally, as an added level of validation, I sampled the clusters and correlated their

mined characteristics with independent information. In particular, I showed how we used

sequence mining to detect behavioral transitions in a project, and how the transitions were

evaluated.

88

4.4.1 Regression

For exploration, I applied linear regression to determine if the clusters were related

to project summary characteristics, some of which can be interpreted as project

performance measurements.

I created dummy variables for the clusters and then ran the linear regression

between those dummy variables and project summary variables. I chose cluster 4 as the

reference group because it has the most daily stars and daily forks. I included project age

and number of collaborators as control variables. The results in Table 9 show that the

clusters are related to daily stars (adjusted R2 of 0.576) and daily forks (adjusted R2 of

0.477). The control variable collaborator is not significant, and therefore it is not included

in the result table. The coefficients show that projects in cluster 0, 1, and 2 have

significantly fewer daily forks and daily stars than projects in cluster 4. To better compare

the clusters, I collapsed cluster 3 and cluster 4. This procedure resulted in four new

clusters. Their characteristics are summarized in Table 10.

89

Variables Daily Forks Daily Stars

 Model 1 Model 2 Model 3 Model 4

Constant 2.943*** 4.158*** 16.705*** 23.017***

Project Age -.001*** -0.001*** -0.008*** -0.005***

Cluster 0 -1.800*** -11.903***

Cluster 1 -2.025*** -10.906***

Cluster 2 -1.833*** -9.052***

Cluster 3 -0.845 -2.923

 R2 0.319 0.503 0.386 0.596

 R2 0.319*** 0.184*** 0.386*** 0.211***

Adjusted R2 0.313 0.477 0.380 0.576

Observations 103 103 103 103

***: P ≤ 0.001

Cluster 0, Cluster 1, and Cluster 2 and Cluster 3 are dummy variables created for the 5

clusters.

Table 9. Regression Results (Five Clusters)

Cluster # of

Projects

Forks Stars Daily

Forks

Daily

Stars

Release

Time

(Days)

Age

(Days)

0 29 1363.55 5952.55 1.37 5.96 141.72 1099.31

1 38 1094.00 5453.66 0.72 3.53 137.21 1581.16

2 21 885.10 5239.43 1.81 10.82 40.62 579.19

3 15 2215.73 11984.87 3.04 17.25 17.47 811.67

project mean 1290.66 6501.59 1.46 7.70 101.35 1129.15

Table 10. Cluster Characteristics (Four Clusters)

Dummy variables were again created for the new clusters, with cluster 3 as the

reference group. I applied linear regression again to determine if the clusters were related

to project performance. The results in Table 11 show that the clusters are related to daily

stars (adjusted R2 of 0.573) and daily forks (adjusted R2 of 0.466). The results also show

that projects in cluster 0 - 2 have significantly fewer daily stars than projects in cluster 3.

Likewise, projects in cluster 0-2 have a significantly slower fork rate. Given the great

variability of the projects, as well as the internal variability of the sequential behaviors

90

within projects, I am encouraged by the R2. It suggests that, with improved models, we may

be able to correlate project behaviors with summary project features.

As discussed before, I am interested on the relationship between usage of language

and development behaviors. Especially, I wanted to investigate if projects that development

with java would present different development behavioral patterns. Therefore, I compared

the usage of java among the five groups. I found that projects in cluster 0 use java more

frequently than projects in other clusters. Interestingly, projects in this cluster are the least

popular, with slow growth rate. It would be interesting to look into the behavioral patterns

of projects in this group and compare them with that of other projects.

Variables Daily Forks Daily Stars

 Model 1 Model 2 Model 3 Model 4

Constant 2.943*** 3.866*** 16.705*** 22.006***

Project Age -.001*** -0.001*** -0.008*** -0.006***

Group 0 -1.369*** -9.603***

Group 1 -1.534*** -9.207***

Group 2 -1.467*** -7.789***

 R2 0.319 0.487 0.386 0.590

 R2 0.319*** 0.167*** 0.386*** 0.204***

Adjusted R2 0.313 0.466 0.380 0.573

Observations 103 103 103 103

***: P ≤ 0.001

Group0, Group1, and Group2 are dummy variables created for the 4

groups after consolidation

Table 11. Regression Results (Four Clusters)

4.4.2 Behavioral Transitions

Transition identification detects significant changes in modeled events between

consecutive windows of event data. Space limitations prevent us from showing all projects,

or even all of a single project. However, Figure 12 shows five projects, one from each

91

cluster. Two projects discuss herein, ember.js and bootstrap, are the first and second

projects.

The x-axis represents the Kullback-Leibler comparison of HMMs generated from

the data windows. Each point represents the comparison between two HMMs, each

representing a month of data. The trend values are more important than the specific HMM

comparison values. Notice that all projects have periods of transition, where their behavior

models change significantly, as shown by the spikes. This illustrate how well HMM

differencing discriminates unusual periods of sequential behaviors from the more common

background.

Figure 12. HMM Differences of Cluster Samples

The transitions (spikes) displayed in Figure 12 represent real changes in developer

behavior—the developers have changed their patterns of their work motifs. We have

correlated those changes with web data to validate that interesting team behaviors are being

monitored.

92

Table 12 summarizes bootstrap blog entries that correlate to the transitions

presented in Figure 12. (The x-axis is window count, not date.) These entries provide

corroborating evidence that the transitions capture meaningful team behavior.

Week Events

34 On 14th, there was an announcement about a future release of 2.0.3 on the blog. On

15th, the team asked for help on testing 2.0.3. Version 2.0.3 was released on 24th.

41 Version 2.0.4 was released on June 1st, 2012

57 The Bootstrap team announced on the blog on Sept 29th, 2012 that they were leaving

twitter.

63 On Nov 9th, 2012, the team informed on their blog that version 2.2.2 will not include

glyphicons.

67 The team asked for help on their blog for testing version 2.2.2 on Dec 2nd. 2012. They

released version 2.2.2 on Dec 8th. Later on the 12th, they posted plans for Bootstrap 3.

68 The same as above.

70 Two pull requests were posted on GitHub on Dec 20th, 2012: (1) a pull request for

Bootstrap 3, which would be the next major release with lots of changes, and (2) a pull

request for version 2.3.0.

Table 12. Blog Entries for Bootstrap Transitions

For example, there is a spike at window 41. In the week, the bootstrap team posted a

blog entry introducing a new plan of Bootstrap 3. Therefore, an explanation for the spike is

that the team began work for Bootstrap 3 after the announcement, bringing a change on

their development behavior. Another example is the spike of window 68. Several big events

occurred during this period: on the Sunday of the first week, the team asked their

contributors for help on the blog, for testing the coming new version 2.2.2. The version

came out on Saturday of the same work. Therefore, we can expect that the first week would

be a busy week for the team, compared to the following week, after version 2.2.2 was

released. A similar example occurred at window 34, when the team went through another

release announcement. Other spikes can be similarly explained.

93

4.5 Discussion

This study is aimed at understanding the sequential behaviors of developers in OSS

projects. The experiment produced meaningful clusters from 103 GitHub.com projects. Our

regression of clusters with daily stars and daily forks is encouraging, but limited. It

demonstrates how automatically mined constructs may be linked to higher-level theoretical

concepts. This experiment is an instance of our overall methodology for theory exploration.

Automation was implicit in our discussion; however, all the steps, from project data

retrieval up to the regression analysis are automated. Retrieval of the project records is, by

far, the slowest part of the analysis. On an ongoing basis, a dashboard can update many

projects every minute.

Based on these results, the dashboard would simply cluster projects into those that have

more daily downloads and stars. Note that such characterization was obtained exclusively

from the sequential behaviors of the developers. This suggests that in the future, with more

complete models, we may produce more refined behavioral analysis on what is most

effective for OSS team success.

For future research, I plan to further investigate transitions within sample projects. I

will examine quantitative and qualitative measurements of the project at transition points.

For example, it would be interesting to examine if the team size and team structure changes

around those transition points. I will apply theory of distribute cognition to explore the

nature and reasons of those changes, for the purpose of constructing a process theory on

OSS project development behaviors. This model will contribute to achieving step 4 -6.

 Limitations of this study include: (1) sampling, in that the projects may not be

representative of OSS projects in general; and (2) modeling, in that the measurement of and

94

constructs for sequential behaviors are incomplete. Future work will seek to diminish these

limitations.

4.6 Conclusions

OSS developers generate many events, through their tools, which can be used to

monitor their progress and predict their results. A carefully constructed data mining

workflow can automat the acquisition and analysis of repository events to present a

dashboard of clustered projects, highlight when significant changes in developer behaviors

have occurred. Now, such automation is of great help to researchers who seek to

demonstrate, adapt, and extend software development theories by encoding them in

operational process models and using them to conduct exploratory analysis. When such

research results become practical, then the future dashboards will produce more refined

behavioral analysis on what is most effective for OSS team success.

95

5. Investigating the Temporal Dynamics and Variety of OSS Development

Activities

5.1 Introduction

The previous study of Chapter 4 reveals the relationship between sequential patterns of

development processes and project performance. To extend my understanding on this

relationship, I examine the role of design routines in shaping the OSS project performance.

I develop a factors model that includes measures of variability and change in routines,

which represent the process of OSS development. A relationship between routine diversity

and change and project performance is found and discussed.

OSS projects are known for their chaotic development style (Mockus et al.

2002).Several significant characteristics of OSS development are the following:

• Work is self-assigned: contributors choose what they want to undertake (Crowston

et al. 2007; Crowston and Scozzi 2008).

• There is a lack of coordination mechanisms, which are observed in traditional

development settings—there are few formal “plans, system-level design, schedules, and

defined processes” (Crowston et al. 2007; Herbsleb and Grinter 1999; Mockus et al. 2002).

• Multiple different processes are performed by contributors simultaneously

(Christley and Madey 2007).

However, the “chaotic” development processes produce high quality software. Most

extant literature attributes this superior quality to static cross-sectional factors such as

number of developers, project activity level and license choice. Despite the attribution of

success to identifiable factors associated with OSS projects, many successes may still be

96

regarded as “chaotic” and seemingly disregard conventional wisdom regarding project

success. While variance studies can identify some predictors of project outcomes, they tend

to neglect the actual process of development, which may or may not occur “chaotically.”

Without a closer examination of how events occur, an understanding of OSS projects is

incomplete. This motivates me to look at the impact of characteristics of the development

processes, such as process variation and change, on OSS performance. Although a variance

model is developed, the characteristics of the development processes is considered. Thus,

this study combines process and variance approaches.

In this study, OSS development is conceived as a sequence of design routines. Gaskin et

al. (2010) defines a design routine as “a sequence of (design) tasks, which transform some

representational inputs into a set of material and representational outputs, leading

ultimately to a generation of design artifact.” Design routines are believed to have less

clearly defined inputs and outputs resulting from changing requirements (Dorst et al. 1996;

Gaskin et al. 2011). In the context of open source software development, design routines

are the prevailing activities (Gaskin et al. 2014; Gaskin et al. 2011; Gaskin et al. 2010).

However, there is a lack of research that empirically investigates routine diversity and

routine changes in the OSS context, and the underlying theoretical relationships, via

analysis of big, digital trace data. To fill this gap, and to explore the relationship between

the changing dynamics of development processes and project performance, I propose to

address the following research question:

What are the impacts of routine diversity and routine changes on OSS project

performance?

97

I base the analysis on a view that OSS projects are comprised of sequences of design

routines, which take a diversified set of forms and change over time (Pentland et al. 2011).

Drawing upon literatures in routine, I develop and empirically test a model of design

routine diversity and change, and their impact on project performance. Extracting digital

trace data from GitHub.com, I examine this model with a computational, mixed-method

approach. This study contributes to both OSS and routine literature, and provides

implication for OSS practitioners.

5.2 Research Model and Hypotheses

5.2.1 Research Model

The research model in Figure 13 includes routine diversity and routine change, and the

effect of these constructs on OSS project performance. This model incorporates theoretical

concepts including routine diversity, routine change, and project attractiveness. In this model,

routine diversity and routine change contribute to project attractiveness. The unit of analysis is at

the project level.

Control Variables
· Project Age

· Event Size

· Number of Actors

Routine Change

Routine Diversity

Project

Attractiveness

H1(+)

H2(-)

Figure 13. Research Model

98

5.2.2 Research Hypotheses

5.2.2.1 Relationship between Routine Diversity and Project Attractiveness

There are four explanations why routine diversity in OSS development processes can

attract users and developers. Firstly, a complexity theory perspective suggests that diversity

enhances robustness of complex adaptive systems (Benbya and Mckelvey 2006; Page 2010). ISD

projects are commonly considered as complexity adaptive systems (CAS) (Benbya and

Mckelvey 2006; Van Aardt 2004). OSS projects, are considered by researchers as the best

example of CAS (Muffatto and Faldani 2003; Van Aardt 2004). Complexity is magnified in the

OSS development context, by the continuous changes in the requirements. As a complex system,

an OSS project with more diversified processes maintains more robustness, which in turn attracts

potential developers and users. Secondly, a diversified set of routines allow developers to

contribute to the project in multiple ways, thereby encouraging developers’ contribution

(Lindberg 2013). Pentland (1995) and Pentland and Rueter (1994) conceptualized routines as

grammar to explain how variation in routines allow participants to produce a variety of

performances. As they explained, “in the same way that English grammar allows speakers to

produce a variety of sentences, an organizational routine allows members to produce a variety of

performances” (Pentland and Rueter 1994, p.490). An OSS project with a higher level of routine

diversity will allow developers to use more routine configurations, thus attracting more

developers to participate. Thirdly, routine diversity is believed to be an indicator of innovation

(Nelson and Winter 1982; Pentland and Rueter 1994). A project with higher routine variety

provides more innovation opportunities, which can attract more developers. A project with low

routine variety suggests simpler, repetitive routines, and thus failing to attract developers and

users. Fourthly, routine diversity can facilitate learning. Variation has been considered as

99

foundation for learning in general (Campbell 1960). A diversified set of routines, provide

participants with more opportunities to learn the “lesson of history” as (Levitt and March 1988)

suggests. As a result, developers will be more willing to participate in a project in which they can

learn from various routines that codify experience. Therefore, I expect that:

H1: Routine diversity is positively associated with project attractiveness.

5.2.2.2 Relationship between Routine Change and Project Attractiveness

A project with unpredictability, such as a high level of temporal change, requires a

substantial effort for participants to learn and adapt (Conboy 2009). Dramatic changes in

design routines result in information overload (Dierickx and Cool 1989; Hambrick et al.

2005) and increased design difficulty, and thus hinders participation (Cant et al. 1995;

Robbins and Redmiles 1996; Subramanyam and Krishnan 2003). Additionally, a high level

of temporal change indicates a lack of control. Such projects will lose the capability of

attracting new users and developers. This line of reasoning leads to the following:

H2: Routine change is negatively associated with project attractiveness.

5.2.2.3 Control Variables

A variety of characteristics can affect the popularity of an OSS project. For example,

the longer a project has existed, the more likely that it will be widely known and

consequently obtain forks and stars. Number of contributors may also increase forks and

stars. Therefore, I control for project age, average number of actors per routine, and

average number of events per routine.

100

5.3 Method

To test the model, I use a computational, mixed-method approach to analyze digital trace

data collected from an open source repository.

5.3.1 Data Collection

A web crawler collected digital trace data from GitHub.com, one of the most popular

open-source code repository sites. A stratified sample strategy was applied to ensure variation

along the performance variables. Average number of stars a project gets per day (daily stars) and

average number of forks a project gets per day (daily forks), are proxies for the level of

attractiveness to users and developers. Random samples of projects are selected from the

following three groups: (1) projects with more than 10,000 stars and more than 1,000 forks, (2)

projects whose number of stars is between 5,000 and 10,000 and number of forks is between 750

and 1,000, and (3) projects whose number of stars is between 1,000 and 5,000 and number of

forks is between 500 and 750. In total, the development activity data across seven years (January

2008 to April 2015) from 150 OSS projects were obtained.

5.3.2 Routine Elicitation

Each of the 150 projects is represented as a sequence of development activities. Design

routines are extracted from the activity sequences. As discussed previously, I only focus on two

kinds of routines: issue handling routines, and pull-request handling routines. A design routine

begins with either an IssueEvent or PullRequestEvent, followed by events that reference the

initiating event. A typical handling routine starts when a developer posts a pull request,

proposing to commit changes to the current code base. Members then comment on the pull

request, making suggestions, and referencing other pull requests and issues. Core developers,

determining how well the proposed commits follow the repository’s standards, also review the

101

pull request. The pull request is either merged by core developers into the main source code, or

rejected. Finally, the pull request is closed. Using a rule-based system, I extracted 92988 routines

from the 150 projects; with an average of 46 routines per month per project (summary statistics

of those routines is provided in Table A6 in the Appendix).

In accordance with the definition of routine diversity as “different configures of the same

routine type” (Pentland et al. 2011), I clustered the extracted routines into 50 clusters based on

eight configuration elements: type of open event (issue event or pull request event), open actor

and close actor (same or different), duration, final state, outcome, number of unique actors,

number of comments, and number of activities in the routine. Thus, each routine instance is

coded into one of 50 routine types.

5.3.3 Constructs and Measurements

After extracting routines from activity sequences, I constructed a dataset to test the

proposed model. Table 13 presents the constructs in the proposed model along with their

measures. Because the unit of analysis is at the project level, I collected and constructed the

measures for each project.

102

Constructs and Measurements

Construct Measurement

Item

Definition Reference

Routine

Diversity

Activity entropy Sum of probability of activity

types at a given period

(Lindberg 2013;

Robinson and Deng

2015)

Routine

Change

HMM difference

Magnitude of changes in varied

sequences of routines between time

windows

(Rabiner 1989; Robinson

et al. 2013b; Robinson

and Deng 2015)

Project

Attractiveness

Daily fork and

daily star

Average number of forks (and

stars) a project gets per day

(Dabbish et al. 2012)

Project Age Project Age Number of days since the project

was created on GitHub

Event Size Event Size Average number of events per

motif of the project

(Robinson and Deng

2015)

Number of

Actors

Number of Actors Average number of actors per

motif of the project

(Robinson and Deng

2015)

Table 13. Constructs and Measurements

5.3.3.1 Routine Diversity and Routine Change

I use the Shannon-Wiener index (Shannon 2001), to measure the average routine

diversity in a project. Shannon’s index has been used to calculate entropy, which has been

defined as a transversal distribution of activities (Gabadinho et al. 2011). In our context, entropy

captures the distribution of different design routine variations in a given time.

I use average Hidden Markov Model (HMM) difference, to measures the degree of

design routine change in each project. A Hidden Markov model (HMM) is a commonly-used

probability model for anomaly detection (Rabiner 1989). Each project is divided into data

windows. For each window, an HMM (λi) is created representing the sequence of activities in the

design routines. Given two HMMs in sequence, λ1 and λ2, model differencing characterizes the

change: dλ/dt = (λ2- λ1) / (t2 – t1). This gives the magnitude of change in the transition

probabilities, for a sequence of data windows — their average is used to measure the magnitude

of design routine change.

103

5.3.3.2 Project Attractiveness

I use daily fork (daily numbers of new forks) and daily star (daily number of new stars), to

measure the project attraction of users and developers. Forks show the popularity of a project

with users or developers, or how useful this project is perceived by developers (Dabbish et al.

2012). Creating a star for a project allows the user to create a bookmark for easier access [to the

project] and show appreciation to the repository maintainers (Github.Com). Crowston and

colleagues categorized OSS success measures into three types: measurements concerning with

the process, measurements concerning with project output, and measurements concerning with

outcomes for project members (Crowston et al. 2003; Crowston et al. 2004; Crowston and

Howison 2006). A summary of OSS success measures is listed Table A2. Mcdonald and

Goggins (2013) suggested that “process measures may be more salient than product quality

measures in distributed source code management systems like GitHub” (Mcdonald and Goggins

2013, p141). They argued that although studies have attempted to provide success metrics of

success in OSS projects, the role of a code hosting workspace plays in how performance is

viewed and measured has not been examined. By conducting interviews with members of

projects hosted on GitHub, they found that developers used GitHub’s visible metrics of

contribution (commits, pull requests, forks, etc.) and metrics of activity (commits, forks and

stars) to measure success. Release quality and bug fixing, which are measures on product quality,

were rarely mentioned as measures of success. Because measurements of commits and pull

requests are already included in the development routines, I choose daily fork and daily star as

the measures of project performance.

104

5.4 Data Analysis

At the current stage of the research, I have obtained the following data for 88 projects (some

projects were excluded due to missing performance data): activity entropy, HMM difference,

fork and star rate, event size, and average number of actors per routine. The descriptive statistics is

presented in Table 14.

 Mean SD 1 2 3 4 5 6 7 8

1. Daily Star 8.22 6.99 —

2. Daily Fork 1.54 1.25 .77** —

3. Motif Event Size 4.42 1.92 0.19 0.16 —

4. Motif Actor

Number
2.22 0.58 .29** .26* .87** —

5. Project Age

(day)
1058.15 516.50 -.61** -.55** 0.15 0.13 —

6. Cycle Time 91.40 175.54 -.28* -0.16 -.28* -.25* 0.01 —

7.  HMM 1.61 0.79 -0.18 -.31** -0.10 -0.04 0.06 0.17 —

8. Entropy 1.83 0.87 .48** .47** .61** .63** -0.08 -.46** -0.19 —

n = 88

*: P ≤ 0.05. **: P ≤ 0.01.

Table 14. Descriptive Statistics

I applied ordinary least-squares (OLS) regression to estimate the two dependent variables:

fork rate and star rate. Before completing our analysis, assumptions of the multiple linear

regression model for the ordinary least squares method were checked (i.e., normality and

multicollinearity among independent variables). Diagnostic checks on residuals were conducted

to ensure the assumptions of normal distribution of residuals are not violated. I also examined the

multicollinearity among explanatory variables.

5.5 Results and Discussion

Table 15 presents the regression results. Daily forks, is positively and significantly associated

at the 0.001 significance level with entropy. It is negatively and significantly associated at the

0.01 significance level with ΔHMM. A similar pattern arises from the other dependent variable,

105

daily star; it is positively and significantly associated at the 0.001 significance level with entropy.

However, it is not significantly associated with ΔHMM. Thus, there is strong statistical support

for design routine diversity and change with outcomes of project attractiveness. Additionally,

variables that significantly affect daily forks and daily stars include workflow size, number of

actors, and project age. Thus, H1 is supported and H2 is partially supported.

Variables Daily Forks Daily Stars

 Model 1 Model 2 Model 3 Model 4

Constant 1.178* 1.598*** 6.294* 6.89**

Event Size -.117 -0.228* -0.615 -1.071*

Number of Actors 1.068** 0.875* 6.295*** 4.89**

Project Age -0.001*** -0.001*** -0.009*** -0.008***

Entropy 0.497*** 2.706***

 HMM -0.378** -0.844

R2 0.417 0.561 0.518 0.598

 R2 0.417*** 0.144*** 0.518*** 0.08***

Adjusted R2 0.396 0.534 0.500 0.574

Observations 88 88 88 88

*: P ≤ 0.05. **: P ≤ 0.01. ***: P ≤ 0.001

Table 15. Regression Results

In the context of OSS development routines, entropy measures routine diversity, while

ΔHMM measures the magnitude of change. The results reveal that a project attracts more

developers and users, with a more diversified set of routines. On the other hand, when a project

experiences dramatic routines changes, it becomes less appealing to developers. Furthermore, it

would seem that active developers who usually fork projects to contribute, are more sensitive to

both measures, while more passive people (e.g., users and occasional developers who usually

‘star” projects just to get easy access) are less sensitive. People that only occasionally interact

with a project may not even notice the change. Taken to the extreme, an uncontrolled, chaotic

project with wild swings in routine diversity may be recognized by active developers as a failure,

which then causes a drop in daily forks; yet, those less aware or affected by the apparent pending

doom do not significantly alter their daily stars. This line of reasoning rationalizes the findings of

106

Table 15. These findings will contribute to both researchers and practitioners. With the insights

provided by this study, OSS participants can better steer their projects to attract more developer

participation. The study also contributes to literature in both OSS development and routines.

To extend the discussion, I illustrate a speculation about projects types according to the two

dimensions of entropy and ΔHMM in Figure 14. Chaotic, floundering projects, commonly

termed thrashing (or death march (Yourdon 2003)), are illustrated in the upper right of Figure 14.

A maintenance project, with its simple, occasional updates, is the opposite. Regular moderate

change indicates an innovative, successful project (Klarner and Raisch 2012). While frequent

changes that have little lasting effect on routine diversity may indicate ineffective management

interventions (Salvato 2009). Future research is necessary to understand how these dimensions

affect project type.

Figure 14. Hypothesized Projects Types

5.6 Contribution

Building on literatures on routine, this study proposes and tests a model that captures the

underlying theoretical relationship between routine diversity and change, and OSS project

107

performance. The contributions of this paper are epistemological and methodological. The study

also provides insights to practitioners for project management.

The study contributes to literature both in OSS development and in design routines. It

extends the current understanding of why and how OSS design routines change over time, and

what is the effect of such diversity and changes on project performance. It also provides a novel

perspective to predict OSS project performance by routine characteristics. The study makes a

further methodological contribution by identifying and demonstrating appropriate data analysis

methods for digital process data. For practitioners, a better understanding on drivers and effects

of diversity and change of routines can help them to better manage and steer their projects to

attract and sustain developer participation.

108

6. Conclusion

6.1 Research Objective Revisited

Motivated by the importance of OSS development process evolution and gaps in extant

literature, this dissertation aims to address the following research questions:

How and why do OSS projects evolve through development processes?

What are the impacts of development processes’ evolution on project performance?

To answer these questions, I developed EventMiner, an event-based analysis framework that

integrates several stream mining techniques. I applied it to two different data sources: stream

data from software usage and the event stream data of 103 OSS projects on GitHub.com, an open

source repository. In the first study, I tested and demonstrated the application of the framework

in the context of software usage behaviors. In the second study, I detected behavioral transitions

of projects and clustered projects based on their sequential patterns. By doing this, I addressed

the “how” in the first research question. A future research direction of this study will be to

interpret the change patterns of OSS development, to explore “why” those changes occur, and to

build process models on OSS development. In study 3, I developed a factor model to relate

development process changes with project performance, thus addressing the second research

question.

6.2 Limitations

Like any other research, this dissertation is not without limitations. The findings are based on

the sample projects, which may not be representative of OSS projects in general. One advantage

of EventMiner is that the automatic, workflow-based feature makes it easy to scale up the

109

analysis to different contexts and much bigger datasets. One future research direction will be to

apply EventMiner to other OSS projects from other open source repositories, such as Jazz.net

and SourceForge.

In addition, the findings are limited to the data I can obtained from GitHub. A lot of

communication among GitHub developers is stored in emails, forums, and bug track systems that

are independent from the GitHub site. Obtaining and analyzing such data for the projects I

studied will be my next step.

6.3 The Continuing Research Stream

I plan to extend my current study in three main directions.

Firstly, I want to build process models of OSS development. I have demonstrated in study 1

and study 2 that the EventMiner framework can assist in detecting behavioral transitions and

sequential patterns in process data. This framework can greatly reduce the analytical effort

required for process theory building. As I discussed before, study 2 of Chapter 4 only addresses

the question of how OSS development processes change over time. It is important to

theoretically interpret those changes and patterns (Newman and Robey 1992; Robey and

Newman 1996). In the future, I plan to perform “zoom in” and “zoom out” analysis. I will “zoom

in” at transition points, to examine specific patterns before and after transitions. I will also zoom

out to look at the bigger picture, by identifying general patterns in development events. Building

on these analyses, I will theoretically interpret why those patterns occur. I will use the theory of

distributed cognition as the theoretical lens with which to interpret the results. Robey and

Newman suggested that the “form of the process model allows researchers who operate from

different perspectives to enrich their understanding of the process of system development”

(Robey and Newman 1996). They used five different theoretical perspectives to interpret the

110

sequential patterns identified by their model in this 1996 study. Similarly, the transition patterns

identified in my dissertation can be explored with and explained by different theoretical lenses.

I have interviewed several developers who have worked in at least one of the sample projects

studied in this dissertation. I am planning to conduct a second round of interviews and collect

more qualitative data from GitHub, such as issue contents and discussion contents. This data can

provide richer details of the picture of development processes.

Secondly, I want to theoretically interpret the project clusters identified in study 2. I clustered

OSS projects into five different groups based on their sequential patterns. A future research

direction can be to provide project taxonomy based on development patterns. Furthermore, this

study shows that projects in different clusters perform significantly differently. Therefore, it

would be interesting to explore the relationship between certain sequential patterns and project

performance.

Thirdly, I am currently obtaining more data for the empirical tests needed for the complete

model in study 3 presented in Chapter 5. Currently, this model only captures the outcomes of

development process routine characteristics (diversity and change). The new round of data

analysis will help prepare the testing for the remaining relationships.

6.4 Contribution

6.4.1 Contribution to Practice

For OSS participants, a better understanding of their team’s evolving trajectory, as

well as what patterns of development activity sequence might indicate DCog effectiveness

transitions, will help them better steer and control their development activities. OSS teams

can use the tool EventMiner to automatically monitor OSS projects in order to detect

111

transitions, and thus improve the performance. OSS project investors can apply the toolset

to evaluate a project’s previous progress and its ability to manage distributed cognitive

tasks, and can even use the toolset to predict future success.

6.4.2 Contribution to Research

The findings of this study contribute to literature in OSS development, theory of

distributed cognition, and design routines. Firstly, the study applies and expands the

concept of distributed cognition to the context of OSS and investigates the phenomenon in

a quantitative manner. Future studies can build on this concept and further investigate an

OSS team’s ability to manage distributed cognition processes. This concept can be also

applied in other areas where work, knowledge, or artifacts are distributed. Secondly, it will

be the first attempt to investigate OSS success from a process-based view. Previous studies

have focused mostly on static attributes as determinants of success and have not looked at

how previous development processes can indicate an OSS project’s performance. This

study will be the first study to investigate how OSS projects evolve through sequences of

development events and explore evolving patterns of events associated with project

performance. It will also be the first study to model dynamics of team development

behavior in an OSS context. The theoretic findings on OSS project development events can

contribute to general software development literature. Future research can extend the

findings and develop theories on software development processes, such as how the

sequence of the processes and their evolving patterns might relate to project success.

Finally, it extends the current understanding of why and how OSS design routines change

over time, and explores the effect of such diversity and changes on project performance. It

112

also provides a novel perspective to understanding OSS development processes and

predicts project performance by routine characteristics.

Methodically, this set of studies identifies, demonstrates, and validates appropriate data

analysis methods for digital process data.

Finally, the resulting event-based analysis framework EventMiner can serve as both an

open data repository and an open source toolkit for analyzing process data. This framework

can facilitate research in OSS development process research and OSS evolution research in

particular, and in process research in general.

113

Reference

Abbott, A. 1990. "A Primer on Sequence Methods," Organization Science (1:4), pp. 375-392.

Aggarwal, C., Han, J., Wang, J., and Yu, P. 2004. "On Demand Classification of Data Streams,"

ACM New York, NY, USA, pp. 503-508.

Aggarwal, C.C., Han, J., Wang, J., and Yu, P.S. 2003. "A Framework for Clustering Evolving

Data Streams," VLDB Endowment, pp. 81-92.

Agrawal, R., and Psaila, G. 1995. "Active Data Mining."

Agrawal, R., and Srikant, R. 1995. "Mining Sequential Patterns," Published by the IEEE

Computer Society, p. 3.

Aksulu, A., and Wade, M. 2010. "A Comprehensive Review and Synthesis of Open Source

Research," Journal of the Association for Information Systems (11:11), pp. 576-656.

Alliance, F.C. 2001. "Incidence and Prevalence of the Major Causes of Brain Impairment." from

http://www.caregiver.org/caregiver/jsp/content_node.jsp?nodeid=438

Arakji, R.Y., and Lang, K.R. 2007. "Digital Consumer Networks and Producer-Consumer

Collaboration: Innovation and Product Development in the Digital Entertainment

Industry," System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International

Conference on: IEEE, pp. 211c-211c.

Ashby, W.R. 1956. "An Introduction to Cybernetics," An introduction to cybernetics.

Ayres, J., Flannick, J., Gehrke, J., and Yiu, T. 2002. "Sequential Pattern Mining Using a Bitmap

Representation," ACM, pp. 429-435.

Baum, L.E., and Eagon, J. 1967. "An Inequality with Applications to Statistical Estimation for

Probabilistic Functions of Markov Processes and to a Model for Ecology," Bull. Amer.

Math. Soc (73:3), pp. 360-363.

Baum, L.E., Petrie, T., Soules, G., and Weiss, N. 1970. "A Maximization Technique Occurring

in the Statistical Analysis of Probabilistic Functions of Markov Chains," The annals of

mathematical statistics (41:1), pp. 164-171.

Beecher, K., Capiluppi, A., and Boldyreff, C. 2009. "Identifying Exogenous Drivers and

Evolutionary Stages in Floss Projects," Journal of Systems and Software (82:5), pp. 739-

750.

Beer, S. 1975. Platform for Change. Wiley London.

Beer, S. 1979. The Heart of Enterprise. New York: Wiley Chichester.

Beer, S. 1981. Brain of the Firm. New York: Chichester

Belady, L.A., and Lehman, M.M. 1976. "A Model of Large Program Development," IBM

Systems Journal (15:3), pp. 225-252.

Benbya, H., and Mckelvey, B. 2006. "Toward a Complexity Theory of Information Systems

Development," Information Technology & People (19:1), pp. 12-34.

Bille, P. 2005. "A Survey on Tree Edit Distance and Related Problems," Theoretical computer

science (337:1-3), pp. 217-239.

Bonaccorsi, A., and Rossi, C. 2003. "Why Open Source Software Can Succeed," Research policy

(32:7), pp. 1243-1258.

Burton-Jones, A., Mclean, E.R., and Monod, E. 2014. "Theoretical Perspectives in IS Research:

From Variance and Process to Conceptual Latitude and Conceptual Fit," European

Journal of Information Systems.

Campbell, D.T. 1960. "Blind Variation and Selective Retentions in Creative Thought as in Other

Knowledge Processes," Psychological review (67:6), p. 380.

http://www.caregiver.org/caregiver/jsp/content_node.jsp?nodeid=438

114

Cant, S., Jeffery, D.R., and Henderson-Sellers, B. 1995. "A Conceptual Model of Cognitive

Complexity of Elements of the Programming Process," Information and Software

Technology (37:7), pp. 351-362.

Chakrabarti, S., Sarawagi, S., and Dom, B. 1998. "Mining Surprising Patterns Using Temporal

Description Length," Citeseer, pp. 606-617.

Chandy, K., and Schulte, W.R. 2009. Event Processing: Designing It Systems for Agile

Companies. McGraw-Hill Osborne Media.

Chang, L., Wang, T., Yang, D., and Luan, H. 2008. "Seqstream: Mining Closed Sequential

Patterns over Stream Sliding Windows," IEEE, pp. 83-92.

Cho, S.B., and Park, H.J. 2003. "Efficient Anomaly Detection by Modeling Privilege Flows

Using Hidden Markov Model," Computers & Security (22:1), pp. 45-55.

Christley, S., and Madey, G. 2007. "Analysis of Activity in the Open Source Software

Development Community," System Sciences, 2007. HICSS 2007. 40th Annual Hawaii

International Conference on: IEEE, pp. 166b-166b.

Cohen, M.D., Burkhart, R., Dosi, G., Egidi, M., Marengo, L., Warglien, M., and Winter, S. 1996.

"Routines and Other Recurring Action Patterns of Organizations: Contemporary

Research Issues," Industrial and corporate change (5:3), pp. 653-698.

Comino, S., Manenti, F.M., and Parisi, M.L. 2007. "From Planning to Mature: On the Success of

Open Source Projects," Research policy (36:10), pp. 1575-1586.

Conboy, K. 2009. "Agility from First Principles: Reconstructing the Concept of Agility in

Information Systems Development," Information Systems Research (20:3), pp. 329-354.

Coverity. 2012. "Coverity Scan Open Source Report," Coverity Scan Open Source Report.

Crowston, K., Annabi, H., and Howison, J. 2003. "Defining Open Source Software Project

Success."

Crowston, K., Annabi, H., Howison, J., and Masango, C. 2004. "Towards a Portfolio of Floss

Project Success Measures."

Crowston, K., and Howison, J. 2006. "Hierarchy and Centralization in Free and Open Source

Software Team Communications," Knowledge, Technology & Policy (18:4), pp. 65-85.

Crowston, K., Howison, J., and Annabi, H. 2006. "Information Systems Success in Free and

Open Source Software Development: Theory and Measures," Software Process:

Improvement and Practice (11:2), pp. 123-148.

Crowston, K., Li, Q., Wei, K., Eseryel, U.Y., and Howison, J. 2007. "Self-Organization of

Teams for Free/Libre Open Source Software Development," Information and Software

Technology (49:6), pp. 564-575.

Crowston, K., and Scozzi, B. 2002. "Open Source Software Projects as Virtual Organisations:

Competency Rallying for Software Development," IET, pp. 3-17.

Crowston, K., and Scozzi, B. 2008. "Bug Fixing Practices within Free/Libre Open Source

Software Development Teams."

Cyert, R.M., and March, J.G. 1963. "A Behavioral Theory of the Firm," Englewood Cliffs, NJ

(2).

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. 2012. "Social Coding in Github: Transparency

and Collaboration in an Open Software Repository," Proceedings of the ACM 2012

conference on Computer Supported Cooperative Work: ACM, pp. 1277-1286.

De Joode, E., Van Heugten, C., Verhey, F., and Van Boxtel, M. 2010. "Efficacy and Usability of

Assistive Technology for Patients with Cognitive Deficits: A Systematic Review,"

Clinical Rehabilitation (24:8), p. 701.

115

Delone, W.H., and Mclean, E.R. 1992. "Information Systems Success: The Quest for the

Dependent Variable," Information systems research (3:1), pp. 60-95.

Dierickx, I., and Cool, K. 1989. "Asset Stock Accumulation and Sustainability of Competitive

Advantage," Management science (35:12), pp. 1504-1511.

Domingos, P., and Hulten, G. 2000. "Mining High-Speed Data Streams," ACM New York, NY,

USA, pp. 71-80.

Dorst, K., Christianns, H., and Cross, N. 1996. "Analyzing Design Activity." Wiley West

Sussex.

Elzinga, C.H., and Liefbroer, A.C. 2007. "De-Standardization of Family-Life Trajectories of

Young Adults: A Cross-National Comparison Using Sequence Analysis," European

Journal of Population/Revue européenne de Démographie (23:3-4), pp. 225-250.

Fang, Y., and Neufeld, D. 2009. "Understanding Sustained Participation in Open Source

Software Projects," Journal of Management Information Systems (25:4), pp. 9-50.

Feldman, M.S. 2000. "Organizational Routines as a Source of Continuous Change,"

Organization science (11:6), pp. 611-629.

Feldman, M.S., and Pentland, B.T. 2003. "Reconceptualizing Organizational Routines as a

Source of Flexibility and Change," Administrative Science Quarterly (48:1), pp. 94-118.

Ferrer-Troyano, F., Aguilar-Ruiz, J., and Riquelme, J. 2004. "Discovering Decision Rules from

Numerical Data Streams," ACM New York, NY, USA, pp. 649-653.

Fickas, S., Robinson, W., and Sohlberg, M. 2005. "The Role of Deferred Requirements: A Case

Study," International Conference on Requirements Engineering (RE'05), Paris, France:

IEEE.

Forney Jr, G.D. 1973. "The Viterbi Algorithm," Proceedings of the IEEE (61:3), pp. 268-278.

Frank. 2008. "Harness Networked Innovation," Marketing Management (17:5).

Frei, F.X., Kalakota, R., Leone, A.J., and Marx, L.M. 1999. "Process Variation as a Determinant

of Bank Performance: Evidence from the Retail Banking Study," Management Science

(45:9), pp. 1210-1220.

Gabadinho, A., Ritschard, G., Mueller, N.S., and Studer, M. 2011. "Analyzing and Visualizing

State Sequences in R with Traminer," Journal of Statistical Software (40:4), pp. 1-37.

Gaber, M., Zaslavsky, A., and Krishnaswamy, S. 2005. "Mining Data Streams: A Review," ACM

Sigmod Record (34:2), pp. 18-26.

Gacek, C., and Arief, B. 2004. "The Many Meanings of Open Source," Software, IEEE (21:1),

pp. 34-40.

Galbraith, J.R. 1977. "Organization Design: An Information Processing View," Organizational

Effectiveness Center and School, p. 21.

Gama, J. 2010. Knowledge Discovery from Data Streams. Boca Raton: Chapman & Hall/CRC.

Gama, J., Ganguly, A., Omitaomu, O., Vatsavai, R., and Gaber, M. 2009. "Knowledge

Discovery from Data Streams," Intelligent Data Analysis (13:3), pp. 403-404.

Ganti, V., Gehrke, J., and Ramakrishnan, R. 2002a. "Mining Data Streams under Block

Evolution," ACM SIGKDD Explorations Newsletter (3:2), pp. 1-10.

Ganti, V., Gehrke, J., Ramakrishnan, R., and Loh, W.Y. 2002b. "A Framework for Measuring

Differences in Data Characteristics," Journal of Computer and System Sciences (64:3),

pp. 542-578.

Gaskin, J., Berente, N., Lyytinen, K., and Yoo, Y. 2014. "Toward Generalizable Sociomaterial

Inquiry: A Computational Approach for Zooming in and out of Sociomaterial Routines,"

Mis Quarterly (38:3), pp. 849-871.

116

Gaskin, J., Thummadi, V., Lyytinen, K., and Yoo, Y. 2011. "Digital Technology and the

Variation in Design Routines: A Sequence Analysis of Four Design Processes."

Gaskin, J.E., Schutz, D.M., Berente, N., and Lyytinen, K. 2010. "The DNA of Design Work:

Physical and Digital Materiality in Project-Based Design Organizations," Academy of

Management Proceedings: Academy of Management, pp. 1-6.

Geiger, D., and Schröder, A. 2014. "Ever-Changing Routines? Toward a Revised Understanding

of Organizational Routines between Rule-Following and Rule-Breaking," Schmalenbach

Business Review (SBR) (66:2), pp. 170-190.

Ghosh, R.A., Glott, R., Krieger, B., and Robles, G. 2002. "Free/Libre and Open Source

Software: Survey and Study." Maastricht Economic Research Institute on Innovation and

Technology, University of Maastricht, The Netherlands, June.

Github.Com. "Github Help: About Stars." from https://help.github.com/articles/about-stars/

Giuri, P., Ploner, M., Rullani, F., and Torrisi, S. 2010. "Skills, Division of Labor and

Performance in Collective Inventions: Evidence from Open Source Software,"

International Journal of Industrial Organization (28:1), pp. 54-68.

Godfrey, M., and Tu, Q. 2001. "Growth, Evolution, and Structural Change in Open Source

Software," Proceedings of the 4th international workshop on principles of software

evolution: ACM, pp. 103-106.

Godfrey, M.W., and Lee, E.H. 2000. "Secrets from the Monster: Extracting Mozilla’s Software

Architecture," Proceedings of Second Symposium on Constructing Software Engineering

Tools (CoSET’00).

Godfrey, M.W., and Tu, Q. 2000. "Evolution in Open Source Software: A Case Study," Software

Maintenance, 2000. Proceedings. International Conference on: IEEE, pp. 131-142.

Gousios, G., and Spinellis, D. 2012. "Ghtorrent: Github's Data from a Firehose," Mining

Software Repositories (MSR), 2012 9th IEEE Working Conference on: IEEE, pp. 12-21.

Grewal, R., Lilien, G.L., and Mallapragada, G. 2006. "Location, Location, Location: How

Network Embeddedness Affects Project Success in Open Source Systems," Management

science (52:7), p. 1043.

Guinan, P.J., Cooprider, J.G., and Faraj, S. 1998. "Enabling Software Development Team

Performance During Requirements Definition: A Behavioral Versus Technical

Approach," Information Systems Research (9:2), pp. 101-125.

Hambrick, D.C., Finkelstein, S., and Mooney, A.C. 2005. "Executive Job Demands: New

Insights for Explaining Strategic Decisions and Leader Behaviors," Academy of

management review (30:3), pp. 472-491.

Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., and Hsu, M. 2001.

"Prefixspan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth,"

Citeseer, pp. 215-224.

Hansen, S., and Lyytinen, K. 2009. "Distributed Cognition in the Management of Design

Requirements."

Hansen, S.W., Robinson, W.N., and Lyytinen, K.J. 2012a. "Computing Requirements: Cognitive

Approaches to Distributed Requirements Engineering," System Science (HICSS), 2012

45th Hawaii International Conference on, pp. 5224-5233.

Hansen, S.W., Robinson, W.N., and Lyytinen, K.J. 2012b. "Computing Requirements: Cognitive

Approaches to Distributed Requirements Engineering " Hawaii International Conference

on Software Systems, HI, USA: IEEE.

117

Herbsleb, J.D., and Grinter, R.E. 1999. "Splitting the Organization and Integrating the Code:

Conway's Law Revisited," Proceedings of the 21st International Conference on Software

Engineering: ACM, pp. 85-95.

Hertel, G., Konradt, U., and Orlikowski, B. 2004. "Managing Distance by Interdependence: Goal

Setting, Task Interdependence, and Team-Based Rewards in Virtual Teams," European

Journal of Work and Organizational Psychology (13:1), pp. 1-28.

Hertel, G., Niedner, S., and Herrmann, S. 2003. "Motivation of Software Developers in Open

Source Projects: An Internet-Based Survey of Contributors to the Linux Kernel,"

Research policy (32:7), pp. 1159-1177.

Hevner, A.R., March, S.T., Park, J., and Ram, S. 2004. "Design Science in Information Systems

Research," MIS Quarterly (28:1), p. 75.

Hewitt, J., and Scardamalia, M. 1998. "Design Principles for Distributed Knowledge Building

Processes," Educational Psychology Review (10:1), pp. 75-96.

Hirschheim, R., Klein, H., and Newman, M. 1991. "Information Systems Development as Social

Action: Theoretical Perspective and Practice," Omega (19:6), pp. 587-608.

Hoang, X.D., Hu, J., and Bertok, P. 2003. "A Multi-Layer Model for Anomaly Intrusion

Detection Using Program Sequences of System Calls," Citeseer.

Hollan, J., Hutchins, E., and Kirsh, D. 2000. "Distributed Cognition: Toward a New Foundation

for Human-Computer Interaction Research," ACM Transactions on Computer-Human

Interaction (TOCHI) (7:2), pp. 174-196.

Howison, J., Conklin, M., and Crowston, K. 2006. "Flossmole: A Collaborative Repository for

Floss Research Data and Analyses," International Journal of Information Technology

and Web Engineering (IJITWE) (1:3), pp. 17-26.

Howison, J., and Crowston, K. "Collaboration through Open Superposition," MIS Quarterly.

Hulten, G., Spencer, L., and Domingos, P. 2001. "Mining Time-Changing Data Streams," ACM

New York, NY, USA, pp. 97-106.

Humphrey, W.S. 1989. Managing the Software Process (Hardcover). Addison-Wesley

Professional.

Hutchins, E. 1995. Cognition in the Wild. MIT press Cambridge, MA.

Hutchins, E., and Klausen, T. 1996. "Distributed Cognition in an Airline Cockpit," Cognition

and communication at work, pp. 15-34.

Hutchins, E., and Lintern, G. 1995. Cognition in the Wild. MIT press Cambridge, MA.

Indyk, P., Koudas, N., and Muthukrishnan, S. 2000. "Identifying Representative Trends in

Massive Time Series Data Sets Using Sketches," pp. 363-372.

Jain, G., Cook, D.J., and Jakkula, V. 2006. "Monitoring Health by Detecting Drifts and Outliers

for a Smart Environment Inhabitant," in: 4th International Conference on Smart Homes

and Health Telematics.

Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., and Robinson, W. 2011. "The Brave

New World of Design Requirements," Information Systems (36:7), pp. 992-1008 (most

downloaded, 2011).

Jensen, C., and Scacchi, W. 2005. "Process Modeling across the Web Information

Infrastructure," Software Process: Improvement and Practice (10:3), pp. 255-272.

Johnson-Laird, P.N. 1989. The Computer and the Mind: An Introduction to Cognitive Science.

Harvard University Press.

Joshi, S.S., and Phoha, V.V. 2005. "Investigating Hidden Markov Models Capabilities in

Anomaly Detection," ACM, pp. 98-103.

118

Kifer, D., Ben-David, S., and Gehrke, J. 2004. "Detecting Change in Data Streams," VLDB

Endowment, pp. 180-191.

King, A. 1998. "Transactive Peer Tutoring: Distributing Cognition and Metacognition,"

Educational Psychology Review (10:1), pp. 57-74.

Klarner, P., and Raisch, S. 2012. "Move to the Beat-Rhythms of Change and Firm Performance,"

Academy of Management Journal, p. amj. 2010.0767.

Kling, R. 1987. "Defining the Boundaries of Computing across Complex Organizations,"

Critical issues in information systems research: John Wiley & Sons, Inc., pp. 307-362.

Koch, S. 2004. "Profiling an Open Source Project Ecology and Its Programmers," Electronic

Markets (14:2), pp. 77-88.

Koch, S. 2005. "Evolution of Open Source Software Systems–a Large-Scale Investigation,"

Proceedings of the 1st International Conference on Open Source Systems.

Kogut, B., and Metiu, A. 2001. "Open‐Source Software Development and Distributed

Innovation," Oxford Review of Economic Policy (17:2), pp. 248-264.

Krishnamurthy, S. 2002. "Cave or Community?."

Krishnamurthy, S. 2006. "On the Intrinsic and Extrinsic Motivation of Free/Libre/Open Source

(Floss) Developers," Knowledge, Technology & Policy (18:4), pp. 17-39.

Kullback, S. 1997. Information Theory and Statistics. Dover Pubns.

Lane, T. 1999. "Hidden Markov Models for Human/Computer Interface Modeling," Citeseer, pp.

35-44.

Langley, A. 1999. "Strategies for Theorizing from Process Data," Academy of Management

review, pp. 691-710.

Last, M. 2002. "Online Classification of Nonstationary Data Streams," Intelligent Data Analysis

(6:2), pp. 129-147.

Laxman, S., and Sastry, P.S. 2006. "A Survey of Temporal Data Mining," Sadhana (31:2), pp.

173-198.

Lee, S.Y.T., Kim, H.W., and Gupta, S. 2009. "Measuring Open Source Software Success,"

Omega (37:2), pp. 426-438.

Lehman, M.M. 1980. "Programs, Life Cycles, and Laws of Software Evolution," Proceedings of

the IEEE (68:9), pp. 1060-1076.

Lehman, M.M., and Ramil, J.F. 2003. "Software Evolution—Background, Theory, Practice,"

Information Processing Letters (88:1), pp. 33-44.

Lerner, J. 2005. "The Scope of Open Source Licensing," Journal of Law, Economics and

Organization (21:1).

Levitt, B., and March, J.G. 1988. "Organizational Learning," Annual review of sociology, pp.

319-340.

Lewin, A.Y., and Minton, J.W. 1986. "Determining Organizational Effectiveness: Another Look,

and an Agenda for Research," Management science (32:5), pp. 514-538.

Lindberg, A. 2013. "Understanding Change in Open Source Communities: A Co-Evolutionary

Framework," Academy of Management Proceedings: Academy of Management, p.

16619.

Lindberg, A., Berente, N., Howison, J., and Lyytinen, K. 2015a. "Variations in Information

Processing Capacity: A Study of Routine Heterogeneity in Open Source Projects," in:

Academy of Management Meeting. Vancouver, Canada.

119

Lindberg, A., Berente, N., and Lyytinen, K. 2015b. "Towards an Open Source Software

Development Life Cycle: A Study of Routine Heterogeneity and Discourse across

Multiple Releases," Academy of Management Proceedings Vancouver, Canada.

Lopresti, E., Mihailidis, A., and Kirsch, N. 2004. "Assistive Technology for Cognitive

Rehabilitation: State of the Art," Neuropsychological Rehabilitation (14:1-2), pp. 5-39.

Lucas, H.C. 1981. Implementation: The Key to Successful Information Systems. Columbia

University Press.

Lyytinen, K. 2009. "Data Matters in IS Theory Building," Journal of the Association for

Information Systems (10:10), pp. 715-720.

Lyytinen, K., and Newman, M. 2008. "Explaining Information Systems Change: A Punctuated

Socio-Technical Change Model," European Journal of Information Systems (17:6), pp.

589-613.

Mabroukeh, N.R., and Ezeife, C. 2010. "A Taxonomy of Sequential Pattern Mining Algorithms,"

ACM Computing Surveys (CSUR) (43:1), p. 3.

March, J.G., and Simon, H.A. 1958. "Organizations."

Markus, M.L., and Robey, D. 1988. "Information Technology and Organizational Change:

Causal Structure in Theory and Research," Management science (34:5), pp. 583-598.

Mcafee, A., and Brynjolfsson, E. 2012. "Big Data: The Management Revolution," Harvard

business review (90), pp. 60-66, 68, 128.

Mccoll, M., Carlson, P., Johnston, J., Minnes, P., Shue, K., Davies, D., and Karlovitz, T. 1998.

"The Definition of Community Intergration: Perspectives of People with Brain Injuries,"

Brain Injury (12:1), pp. 15-30.

Mcdonald, N., and Goggins, S. 2013. "Performance and Participation in Open Source Software

on Github," CHI'13 Extended Abstracts on Human Factors in Computing Systems: ACM,

pp. 139-144.

Méndez-Durón, R., and García, C.E. 2009. "Returns from Social Capital in Open Source

Software Networks," Journal of Evolutionary Economics (19:2), pp. 277-295.

Mockus, A., Fielding, R.T., and Herbsleb, J.D. 2002. "Two Case Studies of Open Source

Software Development: Apache and Mozilla," ACM Transactions on Software

Engineering and Methodology (TOSEM) (11:3), pp. 309-346.

Mohr, L.B. 1982. Explaining Organizational Behavior. Jossey-Bass San Francisco, CA.

Muffatto, M., and Faldani, M. 2003. "Open Source as a Complex Adaptive System," Emergence

(5:3), pp. 83-100.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and Ye, Y. 2002. "Evolution Patterns

of Open-Source Software Systems and Communities," Proceedings of the international

workshop on Principles of software evolution: ACM, pp. 76-85.

Nelson, R., and Winter, S. 1982. An Evolutionary Theory of Economic Change. Cambridge:

Belknap Press/Harvard University Press.

Newell, A. 1980. "Physical Symbol Systems," Cognitive science (4:2), pp. 135-183.

Newman, M., and Robey, D. 1992. "A Social Process Model of User-Analyst Relationships,"

Mis Quarterly, pp. 249-266.

Ourston, D., Matzner, S., Stump, W., and Hopkins, B. 2003. "Applications of Hidden Markov

Models to Detecting Multi-Stage Network Attacks," IEEE, p. 10 pp.

Page, S.E. 2010. Diversity and Complexity. Princeton University Press.

120

Paré, G., Bourdeau, S., Marsan, J., Nach, H., and Shuraida, S. 2008. "Re-Examining the Causal

Structure of Information Technology Impact Research," European Journal of

Information Systems (17:4), pp. 403-416.

Pentland, B.T. 1995. "Grammatical Models of Organizational Processes," Organization science

(6:5), pp. 541-556.

Pentland, B.T., Hærem, T., and Hillison, D. 2011. "The (N) Ever-Changing World: Stability and

Change in Organizational Routines," Organization Science (22:6), pp. 1369-1383.

Pentland, B.T., and Rueter, H.H. 1994. "Organizational Routines as Grammars of Action,"

Administrative Science Quarterly, pp. 484-510.

Phua, C., Smith-Miles, K., Lee, V., and Gayler, R. 2007. "Adaptive Spike Detection for Resilient

Data Stream Mining," Proceedings of the sixth Australasian conference on Data mining

and analytics-Volume 70: Australian Computer Society, Inc., pp. 181-188.

Pree, W. 1994. "Meta Patterns—a Means for Capturing the Essentials of Reusable Object-

Oriented Design," in Object-Oriented Programming. Springer, pp. 150-162.

Prochaska, J.O., Redding, C.A., and Evers, K. 1997. "The Transtheoretical Model and Stages of

Change," Health behavior an d health e—ducation. San Francisco, pp. 61-83.

Qureshi, I., and Fang, Y. 2011. "Socialization in Open Source Software Projects: A Growth

Mixture Modeling Approach," Organizational Research Methods (14:1), pp. 208-238.

Rabiner, L., and Juang, B. 1986. "An Introduction to Hidden Markov Models," ASSP Magazine,

IEEE (3:1), pp. 4-16.

Rabiner, L.R. 1989. "A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition," Proceedings of the IEEE (77:2), pp. 257-286.

Raja, U., and Tretter, M.J. 2006. "Investigating Open Source Project Success: A Data Mining

Approach to Model Formulation, Validation and Testing," Investigating open source

project success: a data mining approach to model formulation, validation and testing.

Ravi Sen, S.S.S.a.S.B. 2012. "Open Source Software Success: Measures and Analysis."

Raymond, E. 1999. "The Cathedral and the Bazaar," Knowledge, Technology & Policy (12:3),

pp. 23-49.

Reis, C.R., and De Mattos Fortes, R.P. 2002. "An Overview of the Software Engineering Process

and Tools in the Mozilla Project."

Robbins, J.E., and Redmiles, D. 1996. "Software Architecture Design from the Perspective of

Human Cognitive Needs," Proceedings of the California Software Symposium (CSS’96),

pp. 16-27.

Roberts, J.A., Hann, I.-H., and Slaughter, S.A. 2006. "Understanding the Motivations,

Participation, and Performance of Open Source Software Developers: A Longitudinal

Study of the Apache Projects," Management science (52:7), pp. 984-999.

Robey, D., and Newman, M. 1996. "Sequential Patterns in Information Systems Development:

An Application of a Social Process Model," ACM Transactions on Information Systems

(TOIS) (14:1), pp. 30-63.

Robinson, W.N., and Akhlaghi, A. 2010. "Monitoring Behavioral Transitions in Cognitive

Rehabilitation with Multi-Model, Multi-Window Stream Mining," Hawaii International

Conference on Software Systems, Kauai, HI, USA: IEEE.

Robinson, W.N., Akhlaghi, A., and Deng, T. 2013a. "Transition Discovery of Sequential

Behaviors in Email Application Usage Using Hidden Markov Models," Hawaii

International Conference on Software Systems, HI, USA: IEEE, p. (best paper nominee).

121

Robinson, W.N., Akhlaghi, A., and Deng, T. 2013b. "Transition Discovery of Sequential

Behaviors in Email Application Usage Using Hidden Markov Models," 46th Hawaii

International Conference on System Sciences (HICSS), Maui, HI: IEEE, pp. 2656-2665.

Robinson, W.N., Akhlaghi, A., Deng, T., and Syed, A. 2011a. "Automated Differential

Diagnosis of Behavioral Transitions in Stream Mining with Decision Trees," Hawaii

International Conference on Software Systems, HI, USA: IEEE.

Robinson, W.N., Akhlaghi, A., and Syed, A. 2011b. "A Framework for Mining Behaviors in

Clinical Data Streams," Draft, HI, USA: IEEE.

Robinson, W.N., and Deng, T. 2015. "Data Mining Behavioral Transitions in Open Source

Repositories," 48th Hawaii International Conference on System Science (HICSS).

Forthcoming, Kauai, HI: IEEE.

Robinson, W.N., Syed, A.R., Akhlaghi, A., and Deng, T. 2012. "Pattern Discovery of User

Interface Sequencing by Rehabilitation Clients with Cognitive Impairments," Hawaii

International Conference on Software Systems, HI, USA: IEEE.

Rogers, Y., and Ellis, J. 1994. "Distributed Cognition: An Alternative Framework for Analysing

and Explaining Collaborative Working," Journal of information technology (9), pp. 119-

119.

Sabherwal, R., and Robey, D. 1993. "An Empirical Taxonomy of Implementation Processes

Based on Sequences of Events in Information System Development," Organization

Science (4:4), pp. 548-576.

Sabherwal, R., and Robey, D. 1995. "Reconciling Variance and Process Strategies for Studying

Information System Development," Information systems research (6:4), pp. 303-327.

Salvato, C. 2009. "Capabilities Unveiled: The Role of Ordinary Activities in the Evolution of

Product Development Processes," Organization Science (20:2), pp. 384-409.

Santos, C., Kuk, G., Kon, F., and Pearson, J. 2013. "The Attraction of Contributors in Free and

Open Source Software Projects," The Journal of Strategic Information Systems (22:1),

pp. 26-45.

Scacchi, W. 2002a. "Understanding the Requirements for Developing Open Source Software

Systems," IET, pp. 24-39.

Scacchi, W. 2002b. "Understanding the Requirements for Developing Open Source Software

Systems," IEEE Proceedings - Software (149:1), pp. 24-39.

Scacchi, W. 2004. "Free and Open Source Development Practices in the Game Community,"

Software, IEEE (21:1), pp. 59-66.

Scacchi, W. 2005. "Socio-Technical Interaction Networks in Free/Open Source Software

Development Processes," in Software Process Modeling. Springer, pp. 1-27.

Scacchi, W. 2006. "Understanding Open Source Software Evolution," Software Evolution and

Feedback: Theory and Practice (9), pp. 181-205.

Scacchi, W. 2009. Understanding Requirements for Open Source Software. Springer.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., and Lakhani, K. 2006. "Understanding

Free/Open Source Software Development Processes," Software Process: Improvement

and Practice (11:2), pp. 95-105.

Schroeder, R.G., Linderman, K., Liedtke, C., and Choo, A.S. 2008. "Six Sigma: Definition and

Underlying Theory," Journal of operations Management (26:4), pp. 536-554.

Seddon. 1997. "A Respecification and Extension of the Delone and Mclean Model of IS

Success."

122

Sen, R., Singh, S.S., and Borle, S. 2012. "Open Source Software Success: Measures and

Analysis," Decision Support Systems (52:2), pp. 364-372.

Services, U.S.D.O.H.a.H. 2002. "Add Fact Sheet," Administration of Developmental

Disabilities.

Shannon, C.E. 2001. "A Mathematical Theory of Communication," ACM SIGMOBILE Mobile

Computing and Communications Review (5:1), pp. 3-55.

Silberschatz, A., and Tuzhilin, A. 1996. "What Makes Patterns Interesting in Knowledge

Discovery Systems," Knowledge and Data Engineering, IEEE Transactions on (8:6), pp.

970-974.

Simon, H.A., and Kaplan, C.A. 1989. "Foundations of Cognitive Science."

Singh, P.V., Tan, Y., and Mookerjee, V. 2008. "Network Effects: The Influence of Structural

Social Capital on Open Source Project Success," SSRN eLibrary.

Smith, N., Capiluppi, A., and Ramil, J. 2004. "Qualitative Analysis and Simulation of Open

Source Software Evolution."

Snowdon, B., and Kawalek, P. 2003. "Active Meta-Process Models: A Conceptual Exposition,"

Information and software Technology (45:15), pp. 1021-1029.

Sohlberg, M., Ehlhardt, L., Fickas, S., and Sutcliffe, A. 2003a. "A Pilot Study Exploring

Electronic (or E-Mail) Mail in Users with Acquired Cognitive-Linguistic Impairments,"

Brain Injury (17:7), pp. 609-629.

Sohlberg, M.M., Ehlhardt, L., Fickas, S., and Todis, B. 2002. "Core: Comprehensive Overview

of Requisite E-Mail Skills," University of Oregon, Department of Computer and

Information Science, Eugene, OR.

Sohlberg, M.M., Ehlhardt, L.A., Fickas, S., and Sutcliffe, A. 2003b. "A Pilot Study Exploring

Electronic Mail in Users with Acquired Cognitive-Linguistic Impairments," Brain Injury

(17:7), pp. 609-629.

Sohlberg, M.M., Fickas, S., Ehlhardt, L., and Todis, B. 2005a. "Case Study Report: The

Longitudinal Effects of Accessible Email for Four Participants with Severe Cognitive

Impairments.," Journal of Aphasiology, in press.

Sohlberg, M.M., Fickas, S., Ehlhardt, L., and Todis, B. 2005b. "The Longitudinal Effects of

Accessible Email for Individuals with Severe Cognitive Impairments," Aphasiology

(19:7), pp. 651-681.

Sohlberg, M.M., and Mateer, C.A. 1989. Introduction to Cognitive Rehabilitation. Guilford

Press.

Sohlberg, M.M., and Mateer, C.A. 2001. Cognitive Rehabilitation: An Integrated

Neuropsychological Approach. New York: Guilford Publication.

Srikant, R., and Agrawal, R. 1996. "Mining Sequential Patterns: Generalizations and

Performance Improvements," Advances in Database Technology—EDBT'96, pp. 1-17.

Srivastava, A., Kundu, A., Sural, S., and Majumdar, A.K. 2008. "Credit Card Fraud Detection

Using Hidden Markov Model," Dependable and Secure Computing, IEEE Transactions

on (5:1), pp. 37-48.

Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G.L. 2002. "Code Quality Analysis in

Open Source Software Development," Information Systems Journal (12:1), pp. 43-60.

Stewart, K.J., Ammeter, A.P., and Maruping, L.M. 2006a. "Impact of License Choice and

Organizational Sponsorship on Success in Open Source Software Development Projects,"

Information System Research (17:2), pp. 126-144.

123

Stewart, K.J., Ammeter, A.P., and Maruping, L.M. 2006b. "Impacts of License Choice and

Organizational Sponsorship on Success in Open Source Software Development Projects,"

Information systems research (17:2), pp. 126-144.

Stewart, K.J., and Ammeter, T. 2002. "An Exploratory Study of Factors Influencing the Level of

Vitality and Popularity of Open Source Projects," Barcelona, pp. 853-857.

Stewart, K.J., and Gosain, S. 2006a. "The Impact of Ideology on Effectiveness in Open Source

Software Development Teams," Mis Quarterly, pp. 291-314.

Stewart, K.J., and Gosain, S. 2006b. "The Impact of Ideology on Effectiveness in Open Source

Software Development Teams," Management Information Systems Quarterly (30:2), p.

291.

Subramaniam, C., Sen, R., and Nelson, M.L. 2009. "Determinants of Open Source Software

Project Success: A Longitudinal Study," Decision Support Systems (46:2), pp. 576-585.

Subramanyam, R., and Krishnan, M.S. 2003. "Empirical Analysis of Ck Metrics for Object-

Oriented Design Complexity: Implications for Software Defects," Software Engineering,

IEEE Transactions on (29:4), pp. 297-310.

Sutcliffe, A., Fickas, S., and Sohlberg, M.K.M. 2006. "Pc-Re: A Method for Personal and

Contextual Requirements Engineering with Some Experience," Requirements

Engineering (11:3), pp. 157-173.

Sutcliffe, A., Fickas, S., Sohlberg, M.M., and Ehlhardt, L.A. 2003. "Investigating the Usability

of Assistive User Interfaces," Interacting with Computers (15), pp. 577-602.

Sutton, S.M. 2000. "The Role of Process in a Software Start-Up," IEEE Software (17:4), pp. 33-

39.

Thummadi, B., Lyytinen, K., and Hansen, S. 2011. "Quality in Requirements Engineering (Re)

Explained Using Distributed Cognition: A Case of Open Source Development."

Todis, B., Sohlberg, M.M., Hood, D., and Fickas, S. 2005. "Making Electronic Mail Accessible:

Perspectives of People with Acquired Cognitive Impairments, Caregivers and

Professionals," Brain Injury (19:6), pp. 389-402.

Tu, Q., and Godfrey, M.W. 2001. "The Build-Time Software Architecture View," Proceedings

of the IEEE International Conference on Software Maintenance (ICSM'01): IEEE

Computer Society, p. 398.

Van Aardt, A. 2004. "Open Source Software Development as Complex Adaptive Systems,"

Proceedings of the 17th Annual Conference of the National Advisory Committee on

Computing Qualifications, Christchurch, New Zealand, pp. 6-9.

Van De Ven, A.H. 1992. "Suggestions for Studying Strategy Process: A Research Note,"

Strategic management journal (13:5), pp. 169-188.

Van De Ven, A.H. 2007. Engaged Scholarship: A Guide for Organizational and Social

Research: A Guide for Organizational and Social Research. Oxford University Press.

Van De Ven, A.H., and Poole, M.S. 1990. "Methods for Studying Innovation Development in

the Minnesota Innovation Research Program," Organization science (1:3), pp. 313-335.

Virone, G., Alwan, M., Dalal, S., Kell, S.W., Turner, B., Stankovic, J.A., and Felder, R. 2008.

"Behavioral Patterns of Older Adults in Assisted Living," Information Technology in

Biomedicine, IEEE Transactions on (12:3), pp. 387-398.

Von Krogh, G., Spaeth, S., and Lakhani, K.R. 2003. "Community, Joining, and Specialization in

Open Source Software Innovation: A Case Study," Research Policy (32:7), pp. 1217-

1241.

124

Wang, J., and Han, J. 2004. "Bide: Efficient Mining of Frequent Closed Sequences," IEEE, pp.

79-90.

Wang, Y. 2007. "Prediction of Success in Open Source Software Development." UNIVERSITY

OF CALIFORNIA.

Weick, K.E., and Kiesler, C.A. 1979. The Social Psychology of Organizing. Random House New

York.

Wilson, B.A., Emslie, H.C., Quirk, K., and Evans, J.J. 2001. "Reducing Everyday Memory and

Planning Problems by Means of a Paging System: A Randomised Control Crossover

Study," Journal of Neurology, Neurosurgery, and Psychiatry (70:4), pp. 477-482.

Winograd, T. 1987. "A Language/Action Perspective on the Design of Cooperative Work,"

Human–Computer Interaction (3:1), pp. 3-30.

Wright, P., Rogers, N., Hall, C., Wilson, B., Evans, J., Emslie, H., and Bartram, C. 2001.

"Comparison of Pocket-Computer Memory Aids for People with Brain Injury," Brain

Injury (15:9), pp. 787-800.

Wright, P.C., Fields, R.E., and Harrison, M.D. 2000. "Analyzing Human-Computer Interaction

as Distributed Cognition: The Resources Model," Human-Computer Interaction (15:1),

pp. 1-41.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., Mclachlan, G., Ng, A.,

Liu, B., and Yu, P. 2008. "Top 10 Algorithms in Data Mining," Knowledge and

Information Systems (14:1), pp. 1-37.

Yan, X., Han, J., and Afshar, R. 2003. "Clospan: Mining Closed Sequential Patterns in Large

Datasets," pp. 166-177.

Ye, Y., and Kishida, K. 2003. "Toward an Understanding of the Motivation of Open Source

Software Developers," Software Engineering, 2003. Proceedings. 25th International

Conference on: IEEE, pp. 419-429.

Yourdon, E. 2003. Death March. Pearson Education.

Zaki, M.J. 2001. "Spade: An Efficient Algorithm for Mining Frequent Sequences," Machine

Learning (42:1), pp. 31-60.

Zhao, Q., and Bhowmick, S.S. 2003. "Sequential Pattern Mining: A Survey," ITechnical Report

CAIS Nayang Technological University Singapore, pp. 1–26.

125

Appendix

Table A1: DCog Metric Table

 Definition Metric

Social

distribution

Distribution of

social actors

among the projects

domain knowledge distribution, application knowledge

distribution, decision making distribution, role distribution,

task focus distribution, distribution of access to information,

communication channels, domain of use, reference system

distribution(requirement related), constraint sources(RE

related), percentage of co-development

Structural

distribution

Distribution of

internal and

external(material

or environmental)

structure

Internal:

Representations distribution in the internal minds of the

developers;

External:

Artifacts and ecology including(emails, forums, threads,

chats, documents, CVS, Mock-ups/Prototypes), existing

platforms(programs)(RE related), system models(RE related)

Temporal* Outcome of earlier

actions influence

the cognitive

processes enacted

in later efforts

*Interaction between people and artifacts for

encoding/retrieving (RE) knowledge, interaction of the

people/artifacts to retrieve/encode archival (RE knowledge),

interaction mediated by computers instead of face-to-face,

Use of external consultants, reliance upon the higher

education user group forum for insights from earlier

PeopleSoft initiatives

Table A2. OSS Success Constructs and Measurements

Category Construct Source Measurement

Project

Output

User satisfaction (Lee et al. 2009) User ratings, opinions

expressed on project

software quality (Lee et al. 2009) User ratings

perceived ease of

use and useful-

ness

(Lee et al. 2009) User ratings

use and user

interest/popularity

(Crowston et al. 2003;

Crowston et al. 2004)

(Crowston and Scozzi

2002; Lee et al. 2009),

Grewal, Lilien et al.

2006, Stewart et all.06,

(Méndez-Durón and

García 2009)

Subramaniam, Sen et

al. 2009)

number of downloads,

number of page views,

number of subscribers,

change of number

subscribers

126

community

service quality

(Lee et al. 2009) User ratings

project/developme

nt status

(Comino et al. 2007)

(Subramaniam et al.

2009), (Crowston and

Scozzi 2002)

Status in the six stage

model(planning, pre-

alpha, alpha, beta,

stable)

Project

Completion

(Crowston and Scozzi

2002),(Giuri et al.

2010; Mockus et al.

2002),(Stewart and

Gosain 2006b)

number of release,

number of bugs fixed,

defect density, size

achieved, number of

commits, achieved

identified goals

Developer

satisfaction

(Crowston and Scozzi

2002), (Crowston et al.

2006), (Ghosh et al.

2002) (Hertel et al.

2004)

Developer ratings

Process

Level of activity

(Subramaniam et al.

2009),(Stewart and

Gosain

2006b),(Crowston and

Scozzi 2002),(Stewart

et al. 2006b),(Beecher

et al. 2009; Crowston

et al. 2003; Grewal et

al. 2006)

Number of files

released, number of

bugs fixed, number of

CVS commits,

Proportion of bugs fixed

 Number of

developers

(Beecher et al. 2009;

Crowston et al. 2006;

Stewart et al. 2006b;

Stewart and Gosain

2006b; Subramaniam

et al. 2009)

Number of developers

Process

Cycle Time (Stewart and Ammeter

2002), (Crowston et al.

2006),

Time taken to fix the

bugs, movement from

alpha to beta to stable,

time between releases,

time to implement

features

Outcomes

for project

members

Individual Impact (Lee et al. 2009),

(Crowston et al. 2003;

Crowston et al. 2004;

Crowston et al. 2006)

Individual job

opportunities and salary,

Individual reputation

127

Knowledge

creation

(Singh et al. 2008),

(Lee et al. 2009),

(Crowston et al. 2003;

Crowston et al. 2004;

Crowston et al. 2006)

New procedural and

programming skills,

improvement on

knowledge, skill,

productivity,

performance

Table A3. Pseudo Codes for Tree Differencing

levelOrder

public int levelorder (Tree tree, LinkedList<Edge> resultTree, LinkedList<String>

resultString, LinkedList<String> treeMatrix, LinkedList<Integer> matricsList) {

 {

LinkedList<Edge> q = new LinkedList();

Iterator<Edge> iter = tree.childIterator();

While(the tree still has childInterator)

{

 Push iter.next to the linkedlist;

}

.....

While(the LinkedList q is not empty)

{

Poll an edge from q;

Get the child tree of this edge;

Initialize an childIterator for the child tree;

While(the tree still has childInterator)

{

 Push iter.next to the LinkedList q;

}

}

...

}

 treeDiff

public int treeDiff(LinkedList<Edge> arraya, LinkedList<Edge> arrayb,

LinkedList<NewEdge> depthTreeA,LinkedList<NewEdge>

depthTreeB,LinkedList<String> DiffColumn)

{

 While(arraya and arrayb are not empty)

{

Compare each item of arraya and arrayb;

Stop when the first different edge is found;

}

}

128

Table A4. Git Events

Event/Activity Description

CommitCommentEvent A comment is posted to a commit

CreateEvent A repository or a readme or a branch is created

DeleteEvent A branch or a tag or a repository is deleted

DownloadEvent Repository is downloaded

FollowEvent A user starts to follow another user on GitHub

ForkEvent A user forks a repository

ForkApplyEvent A patch is applied in the fork queue

GistEvent A gist is created

GollumEvent A Wiki page is created or updated

IssueCommentEvent A comment is created to an issue

IssuesEvent An issue is created or closed

MemberEvent Add a member to the repository

PublicEvent A repository is open sourced

PullRequestEvent A user notifies others about changes he has pushed to a GitHub

repository

PullRequestReviewComment

Event

A review comment made to the pull requests is posted

PushEvent User submits a commit to a repository

TeamAddEvent A user is added to a team, or a repository is added to a team

WatchEvent A user subscribe to a repository to get its updates

Table A5. List of Projects and Associated Cluster

Cluster

Projects

0 ActionBarSherlock, AFNetworking, android-bootstrap, authlogic, AwesomeMenu,

backbone-boilerplate, capistrano, chosen, courser, docker, fabric.js, Font-Awesome,

gitlabhq, GMGridView, history.js, jasmine, KineticJS, less.js, moment, netty,

TimelineJS, phantomjs, platform_frameworks_base, SlidingMenu, wysihtml5,

socket.io, storm, rubinius

1 android-bootstrap, annotated_redis_source, annotated_redis_source, async, atom,

backbone-fundamentals, brackets, cocos2d-html5, CodeIgniter-Ion-Auth, colour-

schemes, ember.js, grunt, hackathon-starter, handlebars.js, highlight.js, intro.js, jade,

javascript-patterns, Jekyll, jquery-pjax, jquerytools, jScrollPane, masonry, Ghost,

Modernizr, MWFeedParser, zepto, NewsBlur, normalize.css, phonegap-plugins,

statsd, OpenTLD, reddit, underscore, Vundle.vim, raphael, sizzle, resque, retire, tag-

it

2 Android-ViewPagerIndicator, AngularJS-Learning, async, bash-it, coffeescript,

compass, fastclick, FlatUIKit, idiomatic.js, jQuery-menu-aim, libgdx, metrics,

onepage-scroll, parallax, Probabilistic-Programming-and-Bayesian-Methods-for-

Hackers, ProjectTox-Core, ratchet, pure, ReactiveCocoa, x-editable, typeahead.js

3 cw-omnibus, elasticsearch, flight, jqGrid, meteor, node-webkit

4 bootstrap-sass, devise, discourse, Front-end-Developer-Interview-Questions,

gitflow, guzzle, Semantic-UI, Telescope

129

Table A6. Summary Statistics of Routines

Issue Handling

Routines

Pull Request Handling

Routines

Reopen

Routines

Number 68,095 21,776 3,117

Average Duration 53 days 17 days 46 days

Average number of

Comments 2.68 2.27 3.83

Number of Unique

Actors 2.7 2.5 2.6

Number of Events 5.4 5.7 7.2

	Georgia State University
	ScholarWorks @ Georgia State University
	8-11-2015

	An Event-based Analysis Framework for Open Source Software Development Projects
	Tianjie Deng
	Recommended Citation

	tmp.1438609043.pdf.czhj9

