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The increasing popularity and success of Open Source Software (OSS) development projects has 

drawn significant attention of academics and open source participants over the last two decades. 

As one of the key areas in OSS research, assessing and predicting OSS performance is of great 

value to both OSS communities and organizations who are interested in investing in OSS 

projects. Most existing research, however, has considered OSS project performance as the 

outcome of static cross-sectional factors such as number of developers, project activity level, and 

license choice. While variance studies can identify some predictors of project outcomes, 

they tend to neglect the actual process of development. Without a closer examination of 

how events occur, an understanding of OSS projects is incomplete. This dissertation aims to 

combine both process and variance strategy, to investigate how OSS projects change over time 

through their development processes; and to explore how these changes affect project 

performance. I design, instantiate, and evaluate a framework and an artifact, EventMiner, to 

analyze OSS projects’ evolution through development activities. This framework integrates 

concepts from various theories such as distributed cognition (DCog) and complexity theory, 

applying data mining techniques such as decision trees, motif analysis, and hidden Markov 

modeling to automatically analyze and interpret the trace data of 103 OSS projects from an open 

source repository. The results support the construction of process theories on OSS development. 

The study contributes to literature in DCog, design routines, OSS development, and OSS 

performance. The resulting framework allows OSS researchers who are interested in OSS 

development processes to share and reuse data and data analysis processes in an open-source 

manner.  
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1. Introduction 

An open-source software development team is working on its sixth release, 

openPhotoBooth.06. During the past two years, the team has gone through various changes: 

new developers joined and old members dropped out, hundreds of bug requests were 

reported, the project’s vision went through several shifts, thousands of commits were made, 

and the download numbers of the previous releases went up and down. Though release 4.0 

was a huge success, the last release did not garner much attention. Now before the sixth 

release, the team is wondering, “Are we doing well so far? What is the likelihood that this 

version will be a success?” 

This scenario raises interesting questions about Open Source Software (OSS) 

development projects: how do we utilize the huge amount of digital trace data of OSS 

projects to investigate their evolutionary patterns? Can we do more than just taking a 

“snapshot” of an ongoing OSS project and analyzing its static data at a given moment? 

How can we examine and understand the evolving trajectory of the projects to predict their 

future prospects?  

1.1 Motivation 

The success of Open Source Software development projects has generated the interest 

of academics and practitioners over the last two decades. Known for their “chaotic” 

development style, OSS projects have produced software with exceptional quality (Mockus 

et al. 2002). Surveys show that today’s open source software has a higher quality than the 

industry average (Coverity 2012). Most extant literature attributes this superior quality to 

static cross-sectional factors such as number of developers, project activity level and 
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license choice. How the everyday “chaotic” development activities and their characteristics 

shape OSS project performance remains under-researched.  

Researchers have been engaging in analyzing OSS development processes (Mockus et 

al. 2002; Scacchi et al. 2006) and project performance (Crowston et al. 2003; Crowston et 

al. 2004; Crowston et al. 2006; Grewal et al. 2006; Lee et al. 2009; Raja and Tretter 2006; 

Ravi Sen 2012). However, there are several limitations in the current studies. First, many 

studies on OSS success take a “snapshot” of a given project at a given point, but the ever-

changing nature of OSS projects and the dynamic structure of OSS teams require an 

evolution-oriented perspective. Second, extant studies mostly used a cross-sectional 

method to analyze project attributes, while overlooking the change pattern of development 

activities and processes. Consequently, the understanding of the evolution of OSS projects 

through their development processes is limited. Software quality is believed to be heavily 

dependent on development processes (Humphrey 1989). IS researchers have been 

advocating for the empirical examination of projects and IS projects through sequences of 

events (Lewin and Minton 1986; Lucas 1981; Van De Ven 1992) with a process strategy 

(Hirschheim et al. 1991; Sabherwal and Robey 1993; Sabherwal and Robey 1995). 

Although several studies have investigated the development processes of OSS projects, 

many of the studies adopted a qualitative method and used narrative descriptions of OSS 

development processes (Mockus et al. 2002; Reis and De Mattos Fortes 2002; Scacchi 

2002a; Scacchi 2002b; Scacchi 2004; Scacchi 2005; Scacchi et al. 2006). Another set of 

studies applied a simulation approach to model and reenact OSS development processes 

(Jensen and Scacchi 2005; Smith et al. 2004). Among all these studies, the timing and 

sequence of the events in development processes received little attention. Another gap in 
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these studies is that most of them study the processes with a single-case approach, rather 

than in a multiple project setting.   

Within the era of “Big Data”, data with high volume, velocity and variety are made 

available to researchers (Mcafee and Brynjolfsson 2012). Open source software 

repositories, such as SourceForge, GitHub.com, and Google Code, produce and archive a 

large volume of public event data of OSS development, providing researchers with the 

opportunity to investigate multiple OSS projects from a longitudinal and process -oriented 

perspective.  

In summary, despite the attribution of success to identifiable factors associated with 

OSS projects, many successes may still be regarded as “chaotic” and seemingly disregard 

conventional wisdom regarding project success. While variance studies can identify some 

predictors of project outcomes, they tend to neglect the actual process of development, 

which may or may not occur “chaotically.” Without a closer examination of how events 

occur, an understanding of OSS projects is incomplete. A systematic and quantitative 

method of empirically investigating how OSS projects evolve through development 

processes, as well as how the evolution of development processes impacts project 

performance, is warranted.  

In this set of studies, a longitudinal, mixed-method computational method that 

combines sequence mining techniques with quantitative analysis is conducted to analyze 

digital trace data of the development processes of 103 OSS projects. As a framework, 

EventMiner, is designed and instantiated to automatically collect, preprocess, classify, and 

analyze process digital trace data from open source repositories. Drawing from tenets of 

design routine literature (Gaskin et al. 2014; Gaskin et al. 2011; Gaskin et al. 2010) and the 
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theory of distributed cognition (DCog) (Hutchins 1995; Hutchins and Klausen 1996), the 

framework classifies the obtained process data into sequences of theory-based constructs, 

for analysis and interpretation. This framework automatically detects potential changes in 

event streams. Using this framework, I am able to detect behavior transitions in patient 

event streams, and behavior transitions in OSS development processes. In addition, 103 

OSS projects are clustered into five groups, based on their sequence of development 

events. Finally, building on a design routine perspective (Gaskin et al. 2014; Gaskin et al. 

2011; Gaskin et al. 2010), a factor model of impacts of development routine diversity and 

routine change on project success is developed.  

1.2 Research Objectives and Overview of Studies 

This dissertation follows the multi-paper model and includes three studies. The 

objective of this set of studies is to investigate how OSS projects evolve through 

development events, and how the evolution of development processes affects project 

performance. Therefore, the general research questions are:  

How and why do OSS projects evolve through development processes?  

What are the impacts of development processes’ evolution on project performance?  

To answer these two questions, this study approaches OSS development activities as 

design routines, performed by developers through distributed cognition processes 

(Hutchins 1995; Hutchins and Klausen 1996).  

1.2.1 Key Terms 

Before introducing the overview of the dissertation, I will define key terms to be discussed. 

Gaskin et al. (2011) define a design routine as “a sequence of (design) tasks, which 

transform some representational inputs into a set of material and representational outputs, 
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leading ultimately to a generation of design artifact.” In accordance with this definition, I 

define OSS routines as “a sequence of OSS design activities, which are patterns of behavior 

executed by participants to perform a design or development task.” Those routines vary and 

change over time (Feldman 2000; Gaskin et al. 2011), due to changing and ambiguous goals, 

shifting requirements, and internal learning (Gaskin et al. 2011). Given the dynamic nature of 

OSS, the design routines described in this study are more dynamic than ostensive routines with 

standardized steps (such as payroll). In particular, in this dissertation, I will focus on two types of 

routines: issue handling routines and pull-request handling routines. A typical issue handling 

routine begins with a member of an OSS project reporting an issue in the current code base.  

Following this initiating event, other activities are performed: contributors can comment on this 

issue, make suggestions, or reference it to other issues or solutions. Developers can also make 

commits to the code, and reference the commits as “solutions” to the issue. If a solution is made, 

or if the core team decides the issue is not worth pursuing, this issue will be closed, and thus the 

routine ends. Otherwise, an issue will remain open. A typical pull request handling routine starts 

when a developer posts a pull request, proposing to commit changes to the current code base. 

Members then comment on the pull request, make suggestions, and reference other pull requests 

and issues. The pull request is also reviewed by core developers, determining how well the 

proposed commits follow the repository’s standards. The pull request is either merged by core 

developers into the main source code, or rejected. Finally, the pull request is closed. 

I chose these two types of routines for two reasons: first, they are common patterns in OSS 

development (Dabbish et al. 2012). Second, through these two types of routines, uncertain 

requirements are transformed into artifacts (software) through unstandardized procedures.  
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I define routine diversity and routine change similarly to Feldman and Pentland (2003). 

Routine diversity is defined as the number of different configurations/patterns of the same 

routine type (Pentland et al. 2011), and the number of different routine types observed within a 

given period. Routine change is defined as the change of routine configurations/patterns over 

time. 

A framework is a structure intended to serve as a support or guide for the building of 

something that expands the structure into something useful. In particular, a software framework 

is a reusable architecture for various application domains (Pree 1994). I use the term framework 

for both methodological framework and “small” software framework that consist of reusable 

components. Therefore, I define a framework as a set of methodological guidelines to support 

sequence data analysis and process theory building. It can also be considered as a software 

framework that provides general sequence mining functionalities and components, which can be 

reused and modified for different applications.  

1.2.2 OSS Development Processes Comprised of Design Routines 

Design routines are believed to have less clearly defined inputs and outputs as a result 

of changing requirements (Dorst et al. 1996; Gaskin et al. 2011). Unlike ostensive routines 

such as payroll, design routines are more fluid (Gaskin et al. 2011). Given the dynamic 

nature of OSS development, one can expect that design routines are prevailing in OSS 

development processes (Gaskin et al. 2011; Gaskin et al. 2010), and that changes in 

development behavior can be reflected in the changing routines. Therefore, I suggest that 

changes in OSS development processes can be analyzed though changes of routines over 

time. 
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In the OSS contexts, routines are performed in a distributed way. From a sociomaterial 

view, those routines are comprised of social and material elements; they are performed 

through the collaboration of social actors, who draw upon “informalisms” to finish design 

and development tasks. To investigate how OSS design routines change and evolve in a 

distributed way through social and material factors, I will introduce the theory of 

distributed cognition as the analytical lens.  

1.2.3 OSS Development as Distributed Cognitive Processes 

The theory of distributed cognition (DCog) developed by Hutchins (Hutchins and 

Klausen 1996) extends the boundary of cognition processes from individual to socio-

technical systems. It explains how cognition processes distribute socially, structurally, and 

temporally when a distributed team’s members collaborate on information processing tasks. 

Social distribution concerns the dispersion of activities across people and organizations. 

Structural distribution deals with the spread of knowledge across representational media 

and computational artifacts for knowledge validation and propagation. The perspective of 

DCog is well-suited to the OSS project development context; the social and structural 

contexts of OSS projects are rather unique. An open source project can have much more 

distributed social structure than a traditional one; an OSS team is normally self-organized, 

developers are often geographically distributed and have developed a unique mechanism 

for task assignment in which they self-assign their technical roles (Gacek and Arief 2004; 

Scacchi et al. 2006; Ye and Kishida 2003), the decision making is likewise decentralized 

(Gacek and Arief 2004). Scholars have observed an onion-like social structure in OSS 

projects (Gacek and Arief 2004; Mockus et al. 2002), which indicates that knowledge, 

decision making, and technical roles are distributed across different groups of actors in an 
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OSS team. From the structural distribution perspective, OSS communities rely heavily on 

various external artifacts and structural representations such as emails, websites, forums, 

and chats, for cognitive task processing. These structural representations and artifacts are 

referred by Scacchi as “software informalisms” (Scacchi 2002b). One of the reasons that 

OSS development is considered to outperform the commercial method is the 

implementation of distributed and concurrent design and testing (Kogut and Metiu 2001). 

Given the distributed characteristics of OSS development, DCog can serve as an 

appropriate lens to investigate how OSS development processes evolve socially and 

structurally. Therefore, I draw upon DCog to explore the social and structural factors 

involved in the evolution of OSS development behavior.  

1.2.4 Towards a Process Perspective of OSS Development  

One ultimate goal of this set of work is to analyze OSS project development 

processes toward supporting the construction of process theories on OSS development 

process change. Since Mohr advocated the process perspective for studying organizational 

changes in 1982 (Mohr 1982), and Markus and Robey introduced the perspective to IS in 1988 

(Markus and Robey 1988), it has been commonly acknowledged that variance perspective and 

process perspective are two major alternatives for studying information systems. In a variance 

(factor) perspective, models are developed to predict outcomes from predictor static variables, 

whereas process theories are concerned with explaining how outcomes develop over time 

(Markus and Robey 1988). A comparison between variance models and process models is 

presented in Figure 1. More concepts and research in process theories is introduced in 2.4. 
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E1 E2 En En+1

A sequence of events related to information 

system development and change

Antecedent 

conditions

Outcomes

OE

Environment
V1

V2

V3

OV

OV: f (V1, V2, V3, V4, V5)

OV: Outcome variable 

Vn: Independent variable 

E1 à E2 à …à En àOE

OE: Outcome event 
E1: First event in the sequence 

En: Nth event in the sequence

 

 

Figure 1. Comparison between Variance Models and Process Models 

 

Researchers who advocate for process models suggest that they complement variance models 

(Newman and Robey 1992), especially in studying organizational change. Mohr pointed out that 

the variance perspective was ill-suited to studying change, and process models are useful in 

explaining IS changes (Mohr 1982). Similarly, Lyytinen and Newman argued that “(change 

explanations using variance theories) close-box the change process and mask its dynamics and 

generative mechanisms” (Lyytinen and Newman 2008). Yet, over the past 20 years, only 20% of 

articles in leading IS journals used a process perspective (Paré et al. 2008). Although Mohr 

suggested that the process perspective and variance perspective should not be combined within a 

single research study (Mohr 1982), recent studies have been advocating for the joint use of the 

two strategies (Burton-Jones et al. 2014; Sabherwal and Robey 1995). To address my research 

questions regarding change in OSS development processes, a process perspective is an 

appropriate and fruitful strategy.  

In this dissertation, I use both process strategy and variance strategy to examine OSS 

development processes. First, I develop a sequence-mining-enabled framework to automate the 
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task of detecting and displaying patterns of events and patterns of change. I will demonstrate this 

framework in Study 1 of Chapter 3. Second, I draw upon distributed cognition (Hutchins and 

Klausen 1996), hidden Markov modeling and process theorizing to identify and interpret changes 

in OSS projects, for the purpose of formulating process theories on OSS development change. 

This work is described in study 2 of Chapter 4. Finally, in my last study presented in Chapter 5, I 

will make a preliminary effort to develop a variance model that captures the relationship between 

development process change and project performance. This model includes measures of project 

variability and change, which represent the process of OSS development. Thus, process and 

variance approaches are combined in the investigation of OSS development.  

In summary, building on concepts from design routines, distributed cognition, process 

theories, and sequence mining, I designed and developed a framework and artifact, 

EventMiner, to acquire, classify, and analyze low-level sequential patterns and their 

aggregation as design routines from OSS development event data. By applying this 

framework to various data sources, I conducted three studies to investigate OSS 

development process evolution. In the following section, I will describe the topic of each 

study and main research questions addressed by it.  

1.2.5 Study Overview 

To model project evolution dynamics, the framework should first detect behavioral 

changes and identify specific behavioral patterns. Analyzing the sequence of events can 

reveal event patterns as a project evolves. Abnormal changes in the sequence of events 

indicate transitions. Detecting significant behavioral transitions would provide a base for 

further investigation on how and when the changes occur. It can also serve as a platform 

for future investigation on any outcome that might be associated with changes in 
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development processes, such as project performance. This implies the following research 

questions:  

RQ1: How can a framework be developed to facilitate the detection of behavioral 

transitions in OSS projects? 

RQ2: What patterns of evolution are specific to OSS project development activities?  

RQ3: How are sequential patterns related to OSS project performance?  

To answer these three questions, I developed a framework and artifact, EventMiner, for 

behavioral monitoring and demonstrated its application to patient event data in study 1. As 

a framework, EventMiner serves as a methodological support and guide for building 

process theories from event stream data. It provides methods for analyzing event stream 

data in computational and mixed methods research. These methods transform incidents in 

event streams into theory-based entities (Van De Ven and Poole 1990). It is also a software 

framework that provides general, reusable sequence mining components. As an artifact, 

EventMiner provides functionalities for sequence mining event stream data and for 

detection transitions. In this study, I demonstrate how this framework and artifact can be 

applied to monitor software usage behavior. This study, as an initial attempt to develop 

tools for computational analysis of process data, builds the base for answering RQ1 and 

RQ2.  

In the second study, I apply EventMiner to the OSS context. Using DCog as the 

theoretical lens, I detect behavioral transitions in OSS projects. Furthermore, I cluster 103 

projects into five groups based on their sequential patterns, and find that projects in 

different groups have significantly different performances. This study addresses RQ1 – 

RQ3.  
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This study and the resulting artifact, automate the process of identifying (1) behavioral 

transitions, similar to the concepts of “encounters” refereed by Robey and Newman (1996), 

and (2) “recurring sequences of events that comprise the social process of ISD” (Markus 

and Robey 1988). As pointed out by Markus and Robey, “the resulting ‘pictures of the 

process’ can support a variety of theoretical interpretations” (Markus and Robey 1988), for 

building process models. These transition points and recurring patterns, can be interpreted 

by DCog, or other theories, as the base for process theory building. I will extend this study 

to building process theories on OSS development, in future research. 

In the third study, I approach the OSS development processes from a design routine 

perspective. I develop a factor model to connect development behavior and behavioral 

changes, with project performance. This model includes measures of project variability and 

change, which represent the process of OSS development. In this way, I combine process 

and variance approaches, in examining the relationship between OSS development 

processes and project success. Research questions addressed by this model are: 

RQ4: What factors drive routine diversity and routine change in OSS projects?  

RQ5: What is the impact of routine diversity and routine change on OSS project 

performance?  

Table 1 lists the topics presented and research questions addressed in each study.  
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Study Topic Research 

Objective 

Research 

Questions 

Study 1 Discovery and diagnosis of 

behavioral transitions in patient 

event streams 

To build 

EventMiner and 

demonstrate its 

application to the 

detection of 

behavioral changes 

R1 

Study 2 (a) OSS development behavior 

transition discovery  

(b) Clustering of OSS projects 

based on sequential patterns 

To detect 

behavioral 

transitions and 

evolutions of 

sequential patterns 

R1-R3 

Study 3 Investigating the temporal 

dynamics and variety of OSS 

development activities  

To investigate the 

relationship 

between OSS 

design routines and 

project performance 

R4-R5 

Table 1. Study Overview 

In addition, the study produces EventMiner, which is both an event-based automatic 

analysis framework and an implemented artifact. IS researchers have been advocating  for 

the sharing of both data and analysis practices in the IS discipline (Lyytinen 2009). OSS 

researchers also suggested sharing and analyzing OSS process data in an open-source 

manner (Scacchi et al. 2006). Similarly to OSSmole developed by Howison and his 

colleagues (Howison et al. 2006), EventMiner can serve as both an open data repository 

and an open source toolkit for analyzing process data. It consists of five components: (1) a 

raw data extraction component to automatically extract raw data from public OSS 

repositories, (2) an extracting method that incorporates the theory of distributed cognition 

to determine data of interest, (3) a rule-based classifier that incorporates DCog theory to 

map extracted data into theory-based constructs, (4) event-based sequence mining 

techniques to analyze event data stream, and (5) an open data repository containing OSS 

process data (Figure 2). This framework can be used by researchers who are engaged in 

OSS development process research and OSS evolution research in particular, and in process 
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research in general. Researchers for data analysis and theory building can reuse each 

component. For example, the rule-based classifier component can be reused for event 

classification with any analytical lens of the researcher’s interest. However, a “rule 

engineer” needs to modify the rules, based on the theory or ontology he or she wants to use 

for event classification.  

(4) Theory-Based Motif Construction
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Repository

Qualitative Data
· Interviews
· Forums
· Blogs

Event Data
· Timeline Data
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Figure 2. The EventMiner Framework 
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2. Literature Review 

In this chapter, I summarize the state of the art in related research areas. I will introduce 

extant literature in OSS evolution and OSS development routines. In particular, I will 

discuss literature on routine diversity and routine change. I will also review the history and 

major works in process theory research. Then I will introduce the theory of distributed 

cognition, which will serve as the theoretical lens for development process analysis.  After 

reviewing current studies in OSS performance, I will introduce the sequence-mining 

techniques that guided the design of EventMiner.  

2.1 Evolution of OSS Development Process 

While software evolution of commercial systems has been in focus of research since 

Lehman and Belady’s work on IBM’s OS/360 operating system (1976), there have been 

only a handful of studies looking into evolution and evolutionary patterns in open source 

software projects. Several of those studies reported a super-linear or exponential growth 

rate of individual OSS projects (Scacchi 2002a; Scacchi 2006; Smith et al. 2004), 

contradicting the well-established Lehman’s law (Lehman 1980). Similar patterns were 

reported in Godfrey and his colleagues’ series of studies on evolutionary patterns of open 

source software projects including Linux Operating System Kernel, VIM text editor, 

fetchmail utility and GCC compiler suite (Godfrey and Tu 2001; Godfrey and Lee 2000; 

Godfrey and Tu 2000; Tu and Godfrey 2001). They examined evolution both on the system 

level and subsystem level. Godfrey and Tu (2001) conducted a case study on the evolution 

of the Linux Operating System Kernel over its six year lifespan, and found the growth at 

system level to be super-linear. They suggested that researchers should take into account 

the nature of the subsystems when studying their evolutionary patterns. They also 
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identified cloning as a useful practice for open source projects to evolve, as opposed to the 

common belief that it is an indicator of poor process (Godfrey and Tu 2001). Koch also 

looked at OSS project evolution from the perspective of growth rate, and found that a 

quadratic model outperformed a linear model when modeling evolutionary behavior  (Koch 

2005). In those studies, cloning, modularization, and self-selection for tasks are found to be 

beneficial to the evolution of OSS projects (Godfrey and Tu 2001; Koch 2005). Overall, 

those studies focused on the system and its growth behavior, not on the community or its 

development behaviors.  

Nakakoji et al. (2002) expanded the focus of the investigation on OSS system evolution 

to the evolution of OSS communities, and further studied the relationship between the two 

types of evolution. They found that different collaboration models resulted in different 

evolutionary patterns of system and communities; for system evolution, GNU and Jun 

evolve as a single version tree; Linux allows multiple implementations for the same 

functionality, and postgreSQL starts with multiple patches but those patches which merge 

into one single core version. As for the evolution of communities, they concluded that it is 

determined by the existence of motivated members and social mechanism of the 

community. This paper proposed to classify OSS projects into three types based on those 

difference models: exploration-oriented, utility-oriented, and service-oriented. Besides 

evolution in project size and project communities, there are also studies looking into 

evolution on OSS developers’ individual participation in projects. Qureshi and colleagues 

looked into the growth patterns of developers' socialization behavior and how that behavior 

relates to their status progression (Qureshi and Fang 2011). They discussed joiner's 

nonlinear growth trajectory and classified those trajectories into four types based on two 
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dimensions: initial level of social resources of the developer (low, medium and high) and 

growth rate of his/her socialization (low, medium and high). Although there could be nine 

possible types of trajectories, the data only yielded four types with different combinations 

of initial level of social resources and growth rate. Researchers have identified five primary 

entities as suitable targets in the study of software evolution: software releases, systems, 

applications, development processes, and process models (Lehman 1980; Lehman and 

Ramil 2003; Scacchi 2006). Most of the above studies focused on the evolution patterns of 

the system, application or community, but lacked a process-oriented perspective (Langley 

1999).  

2.2 OSS Development Routines 

Routines are important to organizations because they are performed to accomplish work 

in organizations (Cyert and March 1963; Feldman 2000; March and Simon 1958; Nelson 

and Winter 1982). Feldman defines routines as “repeated patterns of behavior that are 

bound by rules and customs and that do not change very much from one iteration to 

another” (2000, p.611). However, she pointed out a “discrepancy between the concept and 

the observation”, with the observation that routines were “undergoing substantial changes” 

(Feldman 2000, p.611). Cohen et al. (1996) define a routine as “an executable capability 

for repeated performance in some context that has been learned by an organization in 

response to selective pressures’’. Although slightly different from each other, these 

definitions all consider routines to be repeatable behavioral patterns that also have the 

inherent potential to change.  

Routines and the diversity of routines, have been commonly studied in both 

organizational literature (Feldman 2000; Feldman and Pentland 2003) and IS literature 
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(Gaskin et al. 2014; Gaskin et al. 2011). Recently, Gaskin et al. (2011) argued the 

importance of studying the variations of design routines and defined a design routine as “a 

sequence of (design) tasks” (Gaskin et al. 2010).  

2.3 Routine Diversity and Routine Change 

2.3.1 Routine Diversity 

Routine diversity has been referred to by different terms such as routine variation (Gaskin 

et al. 2014; Gaskin et al. 2011; Gaskin et al. 2010; Pentland et al. 2011), or routine heterogeneity 

(Lindberg et al. 2015a; Lindberg et al. 2015b). There are conflicting theories on the value of 

routine diversity. Pentland et al. (2011) believe that variation is “a prerequisite for change.” Page 

argues that diversity can enhance the robustness of complex and adaptive systems (Page 2010). 

Diversity and variation are considered to be the foundation for learning in general (Campbell 

1960; Weick and Kiesler 1979) and for learning in routines (Levitt and March 1988). Routine 

diversity allows actors to work in different ways, which provides the flexibility required by 

dynamic environments. In the context of open source software development, Lindberg conducted 

a case study on Rubinius, an open source project, to investigate the co-evolving relationship 

between open source software development coding practice and communities (Lindberg 2013). 

A positive relationship between practice diversity and inflow of new developers was reported. 

Conversely, some studies advocate for the reduction of process variation to improve 

process performance. The six sigma framework argues in favor of minimizing process variation 

(Schroeder et al. 2008). Frei et al. investigated the relationship between service process variation 

and firm performance in the retail banking industry (Frei et al. 1999). They found that process 

variation is negatively related to firm performance.  
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Researchers have also attempted to identify drivers of the increases or the decreases in 

routine diversity. Environmental contexts, such as degree of digitalization (Gaskin et al. 2011), 

degree of centralization (Gaskin et al. 2011), degree of volatility (Gaskin et al. 2011; Sutton 

2000), structural variation of the community (Crowston and Howison 2006), social and technical 

challenges (Lindberg et al. 2015b), and social discourse are explored (Lindberg et al. 2015b; 

Scacchi 2009; Winograd 1987). Sutton argued that start-up companies in a “fast-paced, reactive, 

and innovative” environment may not have the foundation to have repeatable and predictable 

processes, which are required by CMM. On the contrary, in an environment where flexibility is 

more important than structure, companies simply need more flexible and adaptable processes 

(Sutton 2000). Gaskin et al. (2011) found that design routines have less variation among more 

centralized organizations than among networked organizations.  

2.3.2 Routine Change 

Routines are a central element of organizations and have been the subject of discussions 

on organizational stability and change (Cyert and March 1963; Feldman 2000; March and Simon 

1958; Nelson and Winter 1982). Pentland et al. suggest that routine changes are changes in 

“patterns of action” (2011,p.1371). Researchers hold different views on whether and how 

routines contribute to organizational stability and change. Some researchers conceptualize 

routines as stable, repetitive, standard operating procedures that do not change (March and 

Simon 1958). Others hold a “routine as change” (Feldman 2000; Feldman and Pentland 2003; 

Pentland et al. 2011), viewing routines as “continuously changing entities”(Geiger and Schröder 

2014. page 171). Pentland et al. (2011) argue that every performance of a routine is different due 

to the different time, places, actors and other objects involved. Levitt and March (1988) attribute 

the routine change to direct organizational experience.  
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Changes of routines have been empirically studied. Different dimensions of routine 

change include: rhythm of change (Klarner and Raisch 2012), frequency of change (Klarner and 

Raisch 2012), magnitude of change (Pentland et al. 2011), and types of change (Feldman 2000). 

Feldman analyzed the changes of five routines in an organization for four years. She found that 

routines change as a response to problems. This view is consistent with Levitt and March’s 

theory that routines change in response to evaluation of outcomes. Pentland et al. (2011) studied 

changing routines in invoice processing in four organizations. They found that some routines are 

stable, whereas the patterns of actions generated by those routines, which are also routines, do 

change over time. They noted that one cause of routine changes is inexperienced users; however, 

routines also changed due to the allowed variability in the system and its potential for user 

exploration (Pentland et al. 2011).  

Adapting from the concepts of “requisite variety” (Ashby 1956), Beer developed a Viable 

System Model (VSM) (Beer 1975; Beer 1979; Beer 1981). VSM is concerned with the essential 

characteristics that systems need to survive in a forever-changing environment. A system 

increases its degrees of freedom to accommodate greater variety in requirements, by increasing it 

variety (Beer 1979). That is, any system has to be able to generate a variety equivalent to the 

variety of the system to be regulated (Beer 1979). It is important to note that both the 

environment and the organization should be complex systems to allow the behavior to emerge 

(Snowdon and Kawalek 2003).  

Similarly, complexity theory suggests that diversity enhances the robustness of complex 

adaptive systems (Benbya and Mckelvey 2006; Page 2010). ISD projects are commonly 

considered as complexity adaptive systems (CAS) (Benbya and Mckelvey 2006; Van Aardt 

2004). OSS projects, are considered by several researchers to be the best example of CAS 
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(Muffatto and Faldani 2003; Van Aardt 2004). Complexity is magnified in the OSS development 

context, by the continuous changes in requirements and thus the continuous changes in resulting 

artifacts. With such complexity and changes, it is essential for the development system to have 

the requisite variety in its processes. For example, Lindberg et al. (2015b) suggest routine 

variation as a “coping mechanism” to both social and technical problems. 

2.4 Process Models 

A process model “explains development in terms of the order in which things occur and 

the stage in the process at which they occur” (Van De Ven 2007). The process model 

perspective is advocated by researchers for its advantage in explaining organizational 

changes (Mohr 1982). Markus and Robey first introduced it to IS discipline in their study 

(Markus and Robey 1988). Newman and Robey (1992) stated the importance of treating the 

information system development (ISD) process as a “dynamic social process ,” and to 

conceive it as a “sequence of events that occurs over time.” 

A process theory can be derived from data by analyzing event sequences. An event can 

be viewed as the change in state of some variable values (Chandy and Schulte 2009). An 

event sequence can be characterized by common metrics, such as length, entropy, 

subsequences, pattern frequency, and similarity to other sequences. Through abduction, a 

researcher can infer common constructs and higher level concepts, and eventually relate 

these terms to a theory that can explain relationships among concepts within a set of 

boundary conditions (Van De Ven 2007).  

The variance perspective and process perspective are often considered a dichotomy (Markus 

and Robey 1988; Mohr 1982; Seddon 1997). However, several researchers argued that although 

the two perspectives cannot be used in the same model, they can be combined together as a 
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method. For example, in their 1995 paper, Sabherwal and Robey demonstrated how variance 

strategy and process strategy can be reconciled (1995). They applied variance strategy to the 

examination of levels of participation of key actors and process strategy with sequences of 

actions, to 50 ISD projects. The results showed that projects that are similar based on 

participation are also similar based on event sequences. More recently, Burton-Jones et al. 

suggested “a shift from the traditional process-variance dichotomy to a broader view,” by using 

different perspectives more flexibly (Burton-Jones et al. 2014). They illustrated how one can use 

different theoretical perspectives (variance, process and system perspectives) to critique and 

extend the IS success model.  

2.5 Distributed Cognition 

Proposed by Hutchins and colleagues in the late 1980s and early 1990s, distributed cognition 

theory (DCog) (Hollan et al. 2000; Hutchins and Lintern 1995; Johnson-Laird 1989; Newell 

1980; Simon and Kaplan 1989; Wright et al. 2000) views cognition as a process of computation 

and expands the unit of analysis from the individual to a socio-technical system attending to a 

specific task. The fundamental concept of this theory is that in collaborative projects, 

information processing activities are not limited to individuals, but are distributed among 

participants, artifacts, and the environment. According to Hutchins, there are three important 

facets within distributed cognition. Cognitive processes can be distributed socially, structurally, 

and over time. Social distribution refers to the distribution of social actors among the projects: 

each member of the team plays a specific role when processing the information. Structural 

distribution refers to cognitive processes involving coordination between internal and external 

structure. Individuals and teams employ external structures such as artifacts in their information 
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processing activities. Finally, cognitive processes distribute in a temporal manner in which the 

prior cognitive processes will influence the future ones.  

2.5.1 Distributed Cognition in Software Development Projects and OSS 

Researchers from different disciplines have studied DCog in several contexts such as 

airline and navigation systems (Hutchins and Klausen 1996; Hutchins and Lintern 1995), human 

computer interaction (Hollan et al. 2000; Wright et al. 2000), peer tutoring (King 1998), 

collaborative activities in different organizational settings (Rogers and Ellis 1994), and 

classroom practice (Hewitt and Scardamalia 1998). More recently, scholars have started to 

explore distributed cognition in the discipline of IS development practices. Lyytinen and 

colleagues have conducted a series of studies to build a distributed process model of RE 

practices, both in traditional software projects and OSS projects (Hansen and Lyytinen 2009; 

Hansen et al. 2012a; Thummadi et al. 2011). Hansen and Lyytinen applied a multi-case study 

approach to explore how requirements are distributed socially, structurally, and temporally 

in RE practices (Hansen and Lyytinen 2009). Later, they examined the nature of distributed 

cognition in RE practices in a more systematic manner by including both a case study and 

simulation experiment (Hansen et al. 2012a). In this study, the authors identified several DCog 

related goals, along with other goals in RE practice, and analyzed how different RE tasks 

satisfied those goals by running a simulation. They suggested DCog could serve as a lens to 

analyze RE processes and provide implications for RE process design and process efficiency 

evaluation. In their study on the quality of RE in open source projects, Thummadi et al. 

(2011) proposed to investigate how social, structural, and temporal dimensions of 

distributed cognition impact the quality of requirements in open source development. Table 

A1 in the Appendix summarizes the matrices used or proposed to measure the three components 



34 

 

of DCog (social distribution, structural distribution, and temporal distribution) from existing 

studies focusing on software development activities.  

2.6 OSS Performance 

Studies in OSS success have been investigating both identification of determinants of 

OSS successes and definition of OSS success measurements. The identified factors leading 

to success mainly fall into two categories: time-invariant factors and time-dependent 

factors (Subramaniam et al. 2009). In the category of time-invariant factors, researchers 

have repeatedly investigated license choice (Comino et al. 2007; Lerner 2005; Sen et al. 

2012; Stewart et al. 2006a; Stewart and Gosain 2006a; Stewart and Gosain 2006b; 

Subramaniam et al. 2009). Most of these studies found that restricted licenses do not 

provide developers with the freedom to modify the code, and thus the licenses have an 

adverse impact on OSS success. Comino et al. (2007) and Sen et al. (2012) have discussed 

how the intended user type might affect project success. For example, Comino et al. (2007) 

found applications for more sophisticated users are more likely to evolve successfully. 

Other time-invariant factors include whether the project accepts financial donations (Sen et 

al. 2012), as well as the choice of programming language (Sen et al. 2012; Subramaniam et 

al. 2009), operating system (Sen et al. 2012; Subramaniam et al. 2009), developer 

motivation and interest (Bonaccorsi and Rossi 2003), sponsorship (Stewart et al. 2006a), 

and modularity (Bonaccorsi and Rossi 2003; Giuri et al. 2010; Mockus et al. 2002).  

Several time-dependent factors have been investigated in terms of their impact on OSS 

success. For example, project activity level is believed to be an important factor 

contributing to OSS success (Crowston and Scozzi 2002; Stewart et al. 2006b; Stewart and 

Gosain 2006b; Subramaniam et al. 2009). An OSS project’s activity level can be indicated 
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by the number of files released, number of bugs fixed, and number of commits. Some other 

examples of time-dependent factors include age and duration of the project  (Beecher et al. 

2009; Indyk et al. 2000; Sen et al. 2012), size of the project and community (Beecher et al. 

2009; Comino et al. 2007; Mockus et al. 2002), developer interest over time (Bonaccorsi 

and Rossi 2003; Subramaniam et al. 2009), user interest (Subramaniam et al. 2009), project 

status (Subramaniam et al. 2009), and knowledge of developers and users (Mockus et al. 

2002). A group of studies has also focused on the social aspect of OSS projects. For example, 

while an effective collaboration structure and process (Bonaccorsi and Rossi 2003; Méndez-

Durón and García 2009) can contribute to OSS success, Bonaccorsi and Rossi (2003) also 

suggested that “a widely accepted leadership” is important. Grewal and associates (2006) 

examined the effect of network embeddedness on project success. They used network 

embeddedness to capture the architecture of network ties, and defined structural, 

junctional, and positional embeddedness as its subconstructs. They found heterogeneity 

existed in network embeddedness in OSS projects and that the effect is quite complex. Both 

positive and negative effects were observed. Singh and colleagues (2008) investigated 

network social capital and found that internal cohesion among the developers has a posit ive 

impact on success, while external cohesion (the cohesion among the external contracts of 

the project) does not always benefit the project. Knowledge flow direction (Méndez-Durón 

and García 2009) within a network and a developer’s status in the network were also studied 

(Frank 2008).  

Many different measurements of OSS success have been used in these studies mentioned 

above. To obtain a better understanding of OSS success and to help facilitate the empirical study 

of OSS success, several scholars attempted to systematically define OSS success and its 
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measurements. Most of them found that the measures of OSS success are interrelated. A 

summary of those measures is in Table A2. Crowston and colleagues have conducted three 

studies to define OSS success and measures (Crowston et al. 2003; Crowston et al. 2004; 

Crowston et al. 2006). They reviewed existing IS success models developed by Delone and 

Mclean (1992) and Seddon (Seddon 1997) to propose potential measurements for the OSS 

context. They then reexamined the OSS development process to remove measurements, which 

are not applicable to OSS and proposed additional measurements. They categorized 

measurements of OSS success into three types: measurements concerning the process, 

measurements concerning project output, and measurements concerning outcomes for project 

members. Similarly, Lee and colleagues proposed five measures based on DeLone and McLean’s 

model by incorporating OSS characteristics: software quality, use, user satisfaction, individual 

net benefits, and community service quality. They then tested the relationship among those 

measures and found that usage is determined by user satisfaction and software quality; and user 

satisfaction is determined by software quality and community service quality. Based on the 

categorization summarized by Crowston and colleagues (2006), some commonly-used success 

measures in previously discussed empirical studies regarding project outputs are: user and 

developer satisfaction (Crowston et al. 2006; Lee et al. 2009), project status (Comino et al. 2007; 

Crowston and Scozzi 2002), and community service quality (Lee et al. 2009). User interest has 

been used often, being operationalized as the number of downloads (Crowston and Scozzi 2002; 

Grewal et al. 2006; Méndez-Durón and García 2009), page reviews (Crowston and Scozzi 2002), 

and number of subscribers (Sen et al. 2012; Subramaniam et al. 2009). Because user interest can 

change over time, some studies have measured the change of number of subscribers over time 

(Stewart et al. 2006b). Another indication of success for project outcome suggested by Crowston, 
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Howison and colleagues (2006) is project completion. This often measures the technical 

achievements of the project, such as movement from alpha to beta to stable and the achievements 

of the identified goals (Crowston et al. 2006). Size achieved is also a common measure, in the 

form of lines of code (Beecher et al. 2009), or number of commits (Giuri et al. 2010; Grewal et 

al. 2006) . Other measurements to evaluate the achievements of the project include number of 

releases (Giuri et al. 2010; Grewal et al. 2006) and defect density (Mockus et al. 2002). Another 

set of OSS success measurements focuses on the development process. For example, during the 

development process, a more successful OSS project would be able to attract inputs from 

developers (Stewart and Gosain 2006a). Therefore, the number of developers of an OSS project 

has been used repeatedly to measure success (Beecher et al. 2009; Crowston et al. 2006; Sen et 

al. 2012; Stewart and Gosain 2006a; Subramaniam et al. 2009). Another important indicator of 

success is activity level, which can be measured by the number of commits within a time period 

(Beecher et al. 2009; Grewal et al. 2006), or the number of releases (Crowston et al. 2003; 

Crowston et al. 2006; Crowston and Scozzi 2002). Others have suggested or used cycle time 

such as the time required to fix bugs or implement features (Crowston et al. 2006; Mockus et al. 

2002), or the time between releases (Crowston et al. 2003; Crowston et al. 2004; Crowston et al. 

2006). A third group of OSS success measurements are concerned with outcome for members, 

such as individual jobs, opportunities and salaries, knowledge creation, and individual 

reputations (Crowston et al. 2006). Lee and his colleagues used individual net benefit as one 

construct and found that it is influenced by use and user satisfaction (Lee et al. 2009).  

Different methods are deployed to explore the success of open source projects. There 

have been several case studies which attempted to explore the nature of open source 

projects and their success (Mockus et al. 2002; Stamelos et al. 2002). Later, more 
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researchers started to study OSS success quantitatively, trying to identify the factors 

contributing to it and quantify the effects of those factors. There are also studies applying 

data mining methods to predicting OSS success (Raja and Tretter 2006; Wang 2007). Raja 

and Tretter (2006) used three data mining techniques to mine OSS data to predict success: 

logistic regression, decision trees, and neural networks. The factors identified as 

contributors to success are: number of downloads, number of bugs reported, team size, and 

use of a project manager or not. They also used text mining to cluster the projects based on 

their description. Wang (2007) used k-means clustering to predict OSS project success, 

with a performance accuracy of over 94% (i.e., just 2 prediction failures among 42 

projects).  

However, most of those studies looked at static attributes of projects, without 

investigating the dynamic changes of projects and teams while those projects evolve.  

Subramaniam et al. (2009) pointed out that since most open source software projects are 

continual, the dynamics should be analyzed. Aksulu and Wade (2010) also suggested that 

“multi-dimensional frameworks covering all procedural stages would likely lead to the 

emergence of better performance.” 

2.6.1 Project Attractiveness  

The OSS literature has emphasized the importance of attracting users and developers to 

keep a project active and successful (Arakji and Lang 2007; Koch 2004; Krishnamurthy 2002; 

Von Krogh et al. 2003). Developer motivation and participant interest has been suggested as one 

important factor for OSS success (Bonaccorsi and Rossi 2003). Some researchers also attribute 

OSS success to user interest (Subramaniam et al. 2009). Users, often serving as the observing 

“eye balls” to bugs (Raymond 1999), contribute to a project’s success. Hence, it is important for 
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an OSS project to attract both developers and users to be successful. Several studies attempted to 

identify what makes an OSS project favored by developers and users. Drivers of attractiveness 

include contributors’ intrinsic and extrinsic motivations for joining OSS projects (Crowston and 

Scozzi 2002; Fang and Neufeld 2009; Hertel et al. 2003; Krishnamurthy 2006; Roberts et al. 

2006), contextual factors of the project (Santos et al. 2013), visibility of the project, and the work 

activities performed toward software maintenance and improvement (Santos et al. 2013).  

2.7 Sequence Stream Mining  

Sequence mining aims to find statistically relevant patterns between data examples where the 

values are delivered in a sequence (Mabroukeh and Ezeife 2010). Common problems include 

pattern discovery, prediction, classification, clustering, the efficient building of an index for 

sequence data, and the comparison of sequence for similarity. Agrawal and Srikant (1995) made 

the first attempt to discover sequential patterns in transactions, proposing two algorithms 

AprioriSome and AprioriAll. Some important applications in sequential patterns include choice 

of patterns (closed vs. regular) (Chang et al. 2008), and efficient algorithms which include exact 

methods and approximate methods. Several algorithms were developed in order to efficiently 

mine frequent sequential patterns, such as SPADE (Zaki 2001), GSP (Srikant and Agrawal 

1996), SPAM (Ayres et al. 2002), and PreFixSpan (Han et al. 2001). Some common algorithms 

to mine closed sequential patterns include CloSpan (Yan et al. 2003) and BIDE (Wang and Han 

2004).  

A Markov model is a stochastic model that can be used to model a random system that 

changes states according to a transition rule that depends solely on the current state. In particular, 

a hidden Markov model (HMM) is a type of Markov model in which the system being modeled 

is assumed to be a Markov process with unobserved (hidden) states. As a commonly-used stream 
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mining technique, HMM has been used to detect changes in the sequence patterns (Rabiner and 

Juang 1986). Common applications of the hidden Markov model include speech recognition, 

artificial intelligence, pattern recognition, and bioinformatics. More recently, HMM has been 

used to detect anomalies in behavior. For example, Joshi and Phoha (2005) applied the HMM 

method to anomaly detection in network traffic. Cho and Park (2003) used HMM to build an 

intrusion detection system, while Ourston et al. (2003) applied HMM to detect multi-stage 

network attacks. Hoang et al. (2003) applied HMM to process sequences of system calls for 

anomaly detection. Additionally, human behaviors are modeled by HMM in studies. Lane (1999) 

presents a method for human behavior modeling in the computer security domain. HMM models 

of normal human behaviors from genuine users are built and then any deviation from the model 

will be considered a potential attack. Later on, Srivastava, Kundu et al. (2008) applied HMM to 

detect credit card fraud. Customers’ previous transaction history was obtained as a training set to 

construct an HMM model on the customer’s spending profile. Any new transactions are added to 

the observation sequence of the old transaction behavior sequence to calculate the probability 

using the constructed model. If the probability is lower than the old one, the new transaction 

might be fraudulent.  

This dissertation aims to investigate the change in the development behavior, which is 

captured by the sequence of development events. Therefore, I reviewed studies that have 

analyzed the change of sequence patterns in time series data. There have been a limited number 

of studies looking into variations on a single pattern over a data stream. Silberschatz and 

Tuzhilin (1996) proposed a method to measure the “interestingness” of patterns to monitor 

variation. Both Agrawal and Psaila (1995) and Chakrabarti et al. (1998) measure variation of a 

pattern. However, these studies only analyze change over a single pattern. Ganti et al. (2002a) 
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proposed a framework FOCUS, in which they generalize a method to compute the deviation 

among a series of same data mining models (decision tree models, frequent item-set models) to 

detect changes among datasets.  
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3 Discovery and Diagnosis of Behavioral Transitions in Patient Event 

Streams 

3.1 Introduction 

In this study, I demonstrate how various data mining techniques, as components of 

EventMiner, are applied to discover and diagnose behavioral transitions in patient event streams.  

More than one million adults in the U.S. are diagnosed each year with cognitive impairments 

(CI) due to neurological disease or trauma (e.g., traumatic brain injury, stroke, tumor, epilepsy, 

infectious disease). Currently, there are between 13.3 to 16.1 million Americans living with 

chronic brain disorders and associated CI (Alliance 2001). In addition, approximately 4 million 

Americans have developmental disabilities that impact cognitive functioning (Services 2002). 

Cognitive impairments prevent this large and growing segment of our society from fully 

integrating into society; they are unable to participate in mainstream computer-based activities 

(Mccoll et al. 1998). 

Clinics provide assistive technology (AT) to help with cognitive rehabilitation. However, 

studies have found that AT systems are abandoned by CI users at shockingly high rates (De 

Joode et al. 2010; Lopresti et al. 2004; Wilson et al. 2001; Wright et al. 2001). One major cause 

of abandonment is an eventual misalignment with: (1) user goals and abilities, and (2) the 

functionality delivered by the system. To support the monitoring of this relationship between 

user goals and their satisfaction to the system, I developed EventMiner. It is a data-mining 

enabled, event analysis framework, for change detection in user behavior. Users are given an 

email system to aid in their activities of daily living (ADLs). At appropriate times, the system is 

adapted to meet the changing needs of the user. By monitoring a user’s event stream, 

EventMiner can detect changes in user behavior that indicate that the system should be adapted.  
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Over the past 10 years, a multi-disciplinary group of cognitive psychologists, computer 

scientists, and clinical workers have been successfully delivering AT to CI clients (Fickas et al. 

2005; Sohlberg et al. 2003a; Sohlberg et al. 2002; Sohlberg et al. 2003b; Sohlberg et al. 2005a; 

Sohlberg et al. 2005b; Sohlberg and Mateer 1989; Sohlberg and Mateer 2001; Sutcliffe et al. 

2006; Sutcliffe et al. 2003; Todis et al. 2005). As part of the Think and Link (TAL) project, 

which developed an email AT for cognitive rehabilitation, EventMiner serves as the tool to 

provide real-time data analysis. By combining and extending stream mining techniques, I 

develop EventMiner as an AT-monitoring software system with ever-increasing functionality. 

This article summarizes unique data mining aspects of EventMiner as a monitoring system. 

This research provides two significant contributions to real-time data analytics: 

(1) Automated recognition of changes in user behavior, where a user’s behavior is defined by 

the stream of events that they initiate with the AT. The tool can automatically detect 

change by differencing models such as decision tree models and Hidden Markov models. 

(2) Automated diagnosis of a user’s behavioral change, as characterized by the most 

influential behavioral differences around a moment of change.  

This analytic technique that discovers transitions from routine behavior will be helpful in 

identifying potential problems in planned behavior. This study is an initial attempt to develop a 

framework that integrates and extends event stream mining techniques to achieve personalized 

user monitoring; it can generalize to monitoring voluminous streams of event data. Consider, for 

example, business processing in support of order fulfillment. The sequence of events generated 

with each business process represents the planned behavior of the organization. Similarly, a 

computer hacker generates a sequence of events, such as improper Logins, in an effort to fulfill 

the goal of a system break-in. In both cases, EventMiner helps detecting transitions from routine 
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behavior and thus identifying potential problems. Although this framework is currently applied 

to AT monitoring, it is scalable to other contexts such as business processes monitoring, 

transaction monitoring to detect potential fraud, and software development processes monitoring 

(Robinson and Deng 2015). In Chapter 4 and 5, I will show its application to OSS event streams.  

3.1.1 A Cognitive Rehabilitation Scenario 

Assume that Don is learning to email his friend. His cognitive impairment impedes his 

progress. His TAL caregiver, Andrew, uses the CORE methodology to obtain two important 

items (Sohlberg et al. 2002): (1) Don’s personal goals for using email, and (2) Don’s existing 

skills for using email independently. Using this information, Andrew produces a user profile and 

a training plan that fit with both Don’s current skills and his personal goals.  

As a user operates TAL, events are logged and then analyzed in support of decision-making 

about deferred goals. Don’s daily usage of the email system produces raw data. This data 

includes that which is generated from the email system itself, along with Andrew’s input on 

training progress. Working backwards, Don has goals that are not satisfied currently. In the AT 

context, goal failure is often associated with a poor fit between the client’s goals and the goals 

supported by the AT. By monitoring user goals TAL can responsively react to changes in goal 

satisfaction. Such changes are attributed to TAL’s success. 

 This study thus focuses on raising alerts when patients like Don need help and thus when the 

system needs to adapt. Rather than looking for specific events, the monitor looks for significant 

variations from historically normal behavior. 

 

3.1.2 Goal Attainment Scales 

The cognitive rehabilitation field uses a goal attainment scale to specify the individual goals 

and desires of a person. Each goal is broken into a set of attainment levels to provide a measure 
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of attainment. Using this style, each user is asked to first list a goal and then five levels of 

attainment, ranging from not-attained to fully-attained. For example, Don’s goals is to be socially 

involved through online communications. One of the subgoals was to learn to email with no 

help. He divided this goal into five levels: (1) level 1 (not attained): will not be able to learn how 

to use email; (2) level 2: can email, but only with lots of prompting and help; (3) can email, with 

some prompting and help; (4) level 4: can email with no prompting and help, and (5) level 5 

(fully attained): can teach others how to email. Figure 3 illustrates Don’s formalized emailing 

goals. Don wants to use email to engage in online social communication. This need is shown as 

the root goal in Figure 3. Supporting emailing subgoals are shown below the root.  

 Clinicians want to see goal satisfaction, and in particular: (1) a good success-to-failure 

ratio over sessions, and (2) a constant or improving trend of this ratio. In the case of Don, who is 

just acquiring simple email skills, clinicians want to see Don succeed with: (1) read email and 

(2) compose and send email. In support of clinicians, the monitoring system needs to: (1) 

recognize changes in user behavior in using the email AT, and (2) diagnose each significant 

change by characterizing by the most influential attributes of in AT usage, These two monitoring 

goals are demonstrated for Don’s two email skills in the case study in section 3.4. 

3.1.3 Approach  

The approach to the monitoring of behavior is summarized as follows:  

(1) A patient uses target software in the context of learning higher-level goals. 

(2) The monitor builds models of the user’s behaviors and changes in the user’s behaviors.  

These models are structured according to the events generated by the software, such as 

composing an email message. 
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(3) A human analyst interprets the generated models to determine the changes in user 

learning and goal attainment. 

 

Figure 3. Some of Don's Emailing Goals 

 
 

The automation of the first two steps, achieved by EventMiner, dramatically reduces the 

monitoring effort on the post-clinical team. The monitor provides notification and 

characterization of transitions, vastly simplifying the work of the caregivers. The contribution of 

this research is the automated characterization of behavioral sequences as potential behavioral 

transitions, which is a prerequisite to the interpretation task. 

 Figure 4 presents the kind of analysis automated by EventMiner. Consider the line graphs 

as a representation of consistent behavior. The sharp dips in the graph are the significant points 

of interest. They suggest that the user substantially changed his or her behavior. My automated 

analysis reveals these potential goal transitions, and the automated diagnostic technique presents 

the behavioral differences. For example, there is a potential transition around week 10, and the 

change in behavior is a 30 percent reduction in sending email.  
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Figure 4. Quality of Stream-mined Models for Read and Compose Email, over 2 Years of 

Data Using 2-week Windows; Potential Goal Transitions Shaded 

 

3.1.4 Essay Overview 

This essay introduces the approach to the problem of monitoring individuals with cognitive 

impairments. Related research are presented in 3.2 followed by the design of the monitor (3.3) 

which is part of the EventMiner framework. A case study (3.4) precedes the conclusion (3.6). 

3.2 Related Research  

This study applies process mining techniques to AT monitoring. Research in process mining 

is introduced in 2.7. Here, I will focus on literature in data stream mining in particular, and 

model-based monitoring.  

3.2.1 Data Stream Mining 

Data stream systems analyze voluminous, continuous data streams where it is not practical to 

store all the data. Instead, sequential data subsets, called windows, are analyzed as they arrive. 

Consequently, there is an inherit tradeoff between accuracy (which requires all data) and timeliness 

(which dictates continuous updates). Stream mining aims to find interesting relationships over a 
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sequence of data segments (Gaber et al. 2005; Gama 2010; Gama et al. 2009). A variety of 

techniques can be applied to stream data (Aggarwal et al. 2004; Ferrer-Troyano et al. 2004; Hulten 

et al. 2001; Last 2002)–much of the work is focused on the efficiency of incrementally updating 

the model (Domingos and Hulten 2000). Phua et al. (2007) address the issue of recognizing spikes 

in the data stream.  

Detecting changes in data-streams is important for monitoring, in particular for AT monitoring 

systems. Two types of algorithms are common: (1) distribution detection, which watches for 

changes in the data distributions, and (2) burst detection, which watches for sudden large and 

unusual changes in a data-stream. Distribution detection algorithms have two common forms: (1) 

data from two windows (current and reference) are compared using some distance measure, (2) a 

predictive model is created from a prior window and then its prediction is compared with the 

current window—high prediction error indicates a significant change. 

Many data stream techniques address change detection of item sets (Aggarwal et al. 2003; 

Agrawal and Psaila 1995; Chakrabarti et al. 1998; Ganti et al. 2002a; Ganti et al. 2002b; Kifer et 

al. 2004; Silberschatz and Tuzhilin 1996). For example, Agrawal and Psaila (1995) and 

Chakrabarti et al. (1998) monitor the change on the support of an item set over temporally 

ordered transactions. Ganti et al. (2002a) propose a framework, FOCUS, in which changes are 

detected by quantifying the difference between the two models induced by the datasets. Two 

trees are first extended so that they become identical, and then they are compared to derive a 

numeric difference value. The differencing approach in this study is similar to FOCUS. 

However, I efficiently derive the first n attributes ordered by their contribution to the difference 

(Robinson et al. 2011a). This approach allows us to not only detect changes, but also discover 

the nature of these changes such as what attributes (decision rules) impact the change and how 
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the degree of attribute impact changes over time. Such information can give an analyst unique 

insight into the causes of changes.  

3.2.2 Model-Based Monitoring in AT 

Work on model-based monitoring in the context of assisted living includes (1) the use 

biometric and sensor data from home activity to identify trends and drifts from those trends (Jain 

et al. 2006), and (2) the use of positional data to detect behavioral deviations from routine 

patterns (Virone et al. 2008). This work differs in that I am concerned with the attainment or 

denial of goals—the long-term trend is less important than identifying departures from recent 

trends. Clinicians need to be notified when a client appears to transition to satisfying (or failing) 

an AT-based goal. 

3.3 Monitor Design and Development  

The monitor is designed to provide feedback to clinicians about AT usage by clients with CI. 

This monitor needs to: (1) identify transitions in user behavior, where a user’s behavior is 

defined by the stream of events that they initiate with the AT; and (2) diagnose transitions of a 

user’s behavioral change, as characterized by the most influential behavioral differences around 

a moment of change. Table 2 presents design rationale for the monitor. Two strategic decisions 

are: how to recognize transitions, and how to diagnosis transitions. These two choices are 

intertwined. I chose to use error rate to identify transitions and model differencing for diagnoses.  

3.3.1 TAL Data Stream 

The TAL email client provides an automated custom logger. To obtain real-time data 

access, a log file can be monitored. Here is a simplified entry from the log. 

09:48:41 NewMailEvent [id=765406159;in-reply-to=311149530;chars=770;words=179;sentences=16] 
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This logged event specifies the time, the program event, and its associated arguments. 

The example logs the arrival of a new email that is in reply to previous e-mail; the identity of the 

sender and receiver and characteristics of the e-mail message, such as its length, are also 

included. The significant event types are: read email, compose email, delete email, and new 

(arriving) email. A database view provides a continuously updated stream. The dataset for one 

client, Don, included 3,695,086 records occupying 737 MB in Microsoft SQL Server 2005.  

 

How to diagnosis 

transitions 

Difference two models to find 

the rank-ordered changed 

attributes. 

Ordered trees, like decision trees, 

simplify computation. 

T
a

ct
ic

a
l 

Which mining 

algorithm(s) to 

apply 

Decision tree  Differencing, attribute ordering, and 

explanation is simpler using decision 

tree than most other models. 

How to select data 

window size 

Sufficient data for good accuracy 

while being timely led us to 2-

weeks. 

Larger windows can increase accuracy 

but miss transitions. 

Which data 

attributes to mine 

Predicting event type is the 

focus. Attributes that improved 

that prediction were included. 

Some logged data was dropped because 

had no predictive value, which may be 

common for DI data streams. 

Table 2. Design Rationale for the Design of the Monitor 

3.3.2 Identify Transitions  

The approach to the analysis of user behavior has been to extend classic data mining 

techniques. Two extensions are important. First, logged events are processed with stream-mining 

methods. Second, changes in mined-model qualities are considered an indicator of changes in 

user behavior. Overall, the approach automatically models user behavior based on events and 

recognizes significant changes in those events. 

This approach depends on a few assumptions: 

(1) User behavior is characterized by the stream of events that user initiates with the user 

interface. 

(2) User behavior can be characterized as planned event sequences for goal fulfillment.  
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(3) User behavior is less consistent when involved in less familiar tasks, and more consistent 

when involved in more familiar, routinized tasks. 

Based on these assumptions, the monitor analyzes patterns in event sequences to find 

inconsistent behaviors, which are interpreted as goal transitions, i.e., moving from a state of low 

goal achievement to higher goal achievement (or vice versa). Consider a user goal set, Gi, which 

specifies the currently attained goals. I want to be notified when a user transitions to new goal 

set, Gj, where the difference between the user goal attainment is Gj - Gi = g. EventMiner applies a 

data-stream mining approach to identify unusual behavioral patterns and specific metrics to 

select those most likely to be associated with goal transitions. 

3.3.2.1 Model Changes as Behavioral Changes 

EventMiner applies a predictive model approach to distribution detection to identify 

changes in the data stream. Stream mining produces a sequence of models, m1 .. mn that predict 

the behavior observed in windows w2 .. wn+1. After a predicted window is observed, wi, the 

prediction quality of its model, q(mi-1,wi) = [0,1], can be calculated. For example, the classic 

metrics of accuracy and precision can be used individually or in combination.  

Accuracy measures how error-free the model's predictions are, according to this equation:  

accuracy = (true negative cases + true positive cases) / all cases where all cases = true negative + 

true positive + false negative + false positive cases 

 Precision measures fidelity, according to this equation:  

precision = true positive cases / (true positive + false positive cases) 

Predictive quality can be automatically evaluated with each new window during stream 

mining. Given that model mi is trained over window wi, one can evaluate the predicted values of 

mi against the known data in wi+1. 
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Consider the case where the predictive quality is nearly a constant 0.9. This suggests that the 

models are good and that the behavior from one window to the next is nearly constant. Now, 

consider a sequence of some n predictions, with q1 .. qn, where each qi ≈ 0.9 with the exception of 

qk (1 < k < n) which is 0.1. This suggests that the models are good with the exception of mk-1, 

which was trained on window wk-1 to predict window wk. I infer that something interesting 

happened during window wk. That is, the events in window wk are so different from the events of 

window wk-1 that the model trained on wk-1 cannot reasonably classify the new window wk 

behavior.  

The predictive quality change is dq/dt. Thus, |q'|>ε implies behavioral changes from window 

wk-1 to window wk. We can also consider how quickly the predictive quality changes, which is q''. 

An analysis of typical domain values for q' and q'' can provide guidelines that distinguish normal 

behavioral variations from significant behavioral changes (Robinson and Akhlaghi 2010).  

3.3.2.2 Good Model Quality is Sufficient 

A good model is sufficient for finding significant differences in a model sequence. Great or 

nearly perfect predictive models are wonderful, but unnecessary for identifying transitions. The 

model differences are more important. Low quality models will have substantial variance from 

model to model in stream mining. Good quality models have less variance and the differences 

will be striking. The key is that the differences are more prominent than the random variance in 

the models. In the TAL domain, the goal is better than 70% for both accuracy and precision.  

There are many ways to improve model quality, such as selecting the best mining technique, 

apply multiple techniques simultaneously, and apply multiple window sizes simultaneously.  

Selecting the appropriate window size, ws, is important. If ws is small, then insufficient data 

will be available when the mining model is derived. Conversely, if ws is large, then the analyst 
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must wait, perhaps a long time, before the model is derived—moreover, model construction itself 

can take a long time. Finally, large data windows have a regression to the mean problem—short 

variations in behavior will be discounted in favor of more common behavior, and thus short 

variations may not be represented in the mined model. Thus, widow size affects precision, 

accuracy, and availability of the mined model.  

In the case study of section 3.4, I applied: (1) multiple concurrent windows, (2) multiple 

models, and (3) decision trees because: (1) their pre-testing accuracy was better than Bayesian 

networks, neural networks, and association rules; and (2) decision trees simplify transition 

diagnosis, which I describe next. 

3.3.3 Diagnosing Transitions 

A discovered transition change begs the question, “what exactly has changed?” Diagnosing a 

transition provides an answer, which is used by clinicians to decide if a goal transition has 

occurred. In the TAL diagnosis context, it can reveal that the user “now sends more emails on 

Wednesday than in the past.” (Failing to take medications on Wednesday was an underlying 

cause for this real example.)  

Model differencing reveals the most significant changes between two models. A data mined 

model, mi, provides a model of the data observed in window wi. When a model quality falls 

substantially from wk-1 to window wk, it means that the data varies substantially from wk-1 to 

window wk. Thus, given a window wk with |q'|>ε, three data windows are of interest: wk-1 (before 

change data), wk (change data), and wk+1 (after change data). To diagnose persistent change, I 

compare the models associated with windows wk-1 with wk+1. I consider wk (change data) of lesser 

importance because it represents the transition from between two models of more consistent 

behavior. Next, I illustrate (decision tree) model comparisons. 
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3.3.3.1 Decision Tree Differencing 

Recall the TAL dataset from section 3.3.1. Figure 5 illustrates a portion of a decision tree 

that models user email events. For a data window, the model summarizes the kind of email event 

(Event: read, receive, delete, compose), the day of the week (weekday: 1-7), and a 2-hour period 

in which the event occurred (DaySegment: 0 - 11). The leaves of the tree represent the email 

events. A path from the root to a leaf can be considered a query (or proposition) that 

characterizes the leaf data. For example, the path DaySegment = 4, weekday = 1 leads to the 

events satisfying those two attribute values. In Figure 5, the data distribution is represented by 

the colored bar chart on the leaves. Thus, the bottom left leaf shows that the path DaySegment = 

4, weekday = 1 has only read email events. On the other hand, other leaves have a mix of colors, 

indicating a mixed distribution of email events. (The node is labeled with the dominant event 

number—read = 1, compose = 5.) 

 

Figure 5. A Decision Tree Classifying Compose Events 

 

To illustrate model differencing, consider two hypothetical decision trees. The first has only 

read events for day segment 1, while the second has only read events for day segment 2. The 

difference of the two models (m2 - m1) reveals that read has shifted from DaySegment 1 to 
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DaySegment 2 (i.e. DaySegment 1 is dropped and DaySegment 2 is added). This observation is 

the basis for THE diagnosis. By differencing two decision trees, one can characterize the change. 

The algorithm is sufficiently efficient because it stops on each branch comparison when it finds 

the first difference (or leaves) (Robinson et al. 2011b).  

3.3.3.2 Significant Attributes in Decision Trees 

In general, completely comparing unordered trees is computationally expensive (NP-

complete) (Bille 2005). Even if we assume ordered trees, which is common for decision trees, 

the algorithmic complexity of complete comparison is high. The complexity arises because a 

node in tree A may move to anywhere within the next tree B (however unlikely in practice). In 

practice, I have found that comparing sequential decision trees reveal small changes in the tree, 

such as the attribute or attribute value changes. Thus, the entire tree must be exhaustively 

searched. Even so, complete comparison is practical for small decision trees. Yet, I do not need a 

complete comparison for diagnostic problem. Instead, an algorithm that returns the most 

influential changes is sufficient. 

Decision trees use an attribute selection measure as a criterion for splitting at a node. Popular 

choices include information gain, Gini impurity measure, and gain ratio. The attribute with the 

highest metric determines the splitting rule. The improvement at each node is calculated using 

the selection measure and fraction of data split. For each attribute, the importance measure is 

derived using a weighted sum of the improvements due to that attribute. Such importance values 

are used to rank the decision tree attributes.  

More influential attributes are found at the top of the tree, while less influential attributes are 

found closer to the leaves (Wu et al. 2008). Thus, when comparing two trees, the most significant 

differences are found by first comparing the roots and working towards the leaves. I apply this 
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method, stopping along each branch when either a difference or a leaf-node is found (Robinson 

et al. 2011b). 

By comparing structures of two trees based on the order in which attributes appear near the 

top, I can determine the differences in attribute influence between two models. This ordering of 

attributes by significance simplifies comparison and is one reason why we use decision trees to 

model behavior. 

Given two decision trees, there are two kinds of differences to consider: (1) value differences 

at the nodes, and (2) attribute difference. Additionally, it is possible that the two models have 

nothing in common. These issues are considered next. 

3.3.3.3 Model Differences in Attribute Values 

Given two decision tree models, it is possible that they have an attribute value difference. 

Consider the models in Figure 6 and Figure 7. The two trees branch on day segment. The 

absence of a branch for DaySegment =2 in Figure 7 is the only structural difference.  

Dropping a tree branch, from m1 to m2, occurs when the latter model is constructed from a 

dataset lacking data for the branch. In the case of Figure 7 compared to the prior model of Figure 

6, the user quit reading email during DaySegment =2.  

 

 

Figure 6. A Decision Tree that Classifies DaySegment =2 
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Figure 7. A Decision Tree that Lacks DaySegment =2 

 

3.3.3.4 Model Differences in Attributes 

Given two decision tree models, it is possible that they have an attribute difference. As an 

illustration, compare Figure 6 with the previous Figure 5. The attribute difference occurs in the 

path DaySegment =4. In Figure 6, there is no subsequent branching, whereas in Figure 5 

DaySegment =4 is segmented into three weekday branches (1, 6, and 7).  

Adding an attribute, from m1 to m2, occurs when the latter model is constructed from a dataset 

that includes data for the branches (e.g., weekdays 1, 6, and 7), and that data is non-uniformly 

distributed over the attribute (weekday). Thus, we can infer from Figure 5 that the user, during 

DaySegment =4, mostly had email events on weekdays 1, 6, and 7. 

We cannot infer specific quantity changes from attribute differences alone — the addition of 

weekday in Figure 5 does not suggest that more events occurred during weekdays 1, 6, and 7. 

Instead, it shows that the distribution of events changed from Figure 6 to Figure 5. It is likely, 

however, that fewer events occurred for the weekdays other than 1, 6, and 7, thereby creating a 

non-uniform distribution.  

It is worth noting here the pathological case of two identical models, m1 to m2, for which the 

events occur with the same distribution, but different quantities. For example, consider Figure 6. 

There is no indication of the quantity of DaySegment =10; the figure simply indicates that at 

least one event occurred at DaySegment =10. It is possible, but not likely, that another model, 
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identical to that of Figure 6 would have twice as many total events with the same distribution. 

Therefore, the decision-tree model differencing is a diagnostic aid, which can be improved by 

computing the classified quantities in each leaf. Once a tree difference is identified, our 

algorithm does compute the difference in data counts. However, analysis is not applied to 

identical trees, because the pathological case is exceedingly unlikely in practice.  

3.3.3.5 Models with No Common Attributes 

Given two decision tree models, it is possible that they have no attributes in common. For 

example, model m1 branches only on DaySegment 1 and model m2 branches only on weekday 1. 

From this example, we can deduce that the concentration of email events was first on 

DaySegment 1, uniformly distributed for all weekdays, while the second model concentration 

shifted to weekday 1 uniformly distributed on all hours. Such a dramatic change has not occurred 

in our data, but may occur in other domains. In such cases, my algorithm reports the entire two 

trees as the differences. 

3.3.3.6 Summary of Approach 

I summarize the transition and diagnosis approach as follows: 

(1) The mined model provide statistical summary of the distribution of events. 

(2) Model differencing reveals the top-most influential attributes changes over a period. 

(3) The method is automated and as accurate as the mined-models, which are dependent on 

the quality of the data.  

3.3.4 Development  

EventMiner was developed in KNIME, an open source, Java-based platform. 

Multiple workflows were developed in KNIME to automate the monitoring process. 

KNIME allows me to integrate my own algorithms as nodes, as well as use specialized 
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tools, like the sequence-mining R package, TraMineR. Figure 8 shows an example KNIME 

workflow we used for model differencing. A sample pseudo codes for tree differencing is 

presented in Table A3 in the appendix.  

 

Figure 8. A KNIME Workflow Example 

3.4 A Case Demonstration  

In this study, I have applied a design science approach to the analysis of analytic techniques 

(Hevner et al. 2004). Having described the use of decision tree models in modeling event streams 

and identifying transitions, I will illustrate in a case study, on how I apply this approach to 

analyze the behavior of a randomly selected client from the TAL project. The data includes 

3,695,086 email events collected from one single patient over two years.  

3.4.1 Data Mining Models 

Transition detection requires a good quality model. In pre-testing, a variety of classification 

models were considered, including decision trees, Bayesian networks, neural networks, and 

association rules. I chose three decision tree algorithms, which were the best in quality: (1) M1: 

Gain Ratio (C4.5) is a successor of ID3; (2) M2: Information Gain (ID3) minimizes the 

information needed to classify the data represented as tuples, the resulting partitions reflect the 
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least randomness or impurity in these partitions; and (3) M3: Gini Index (CART) uses a formula 

based on probability to branch on nodes.  

In pre-testing, I considered a variety of data window sizes. I decided to run three window 

sizes: two-, four-, and eight-week windows. These allowed me to consider short-term and long-

term behavioral patterns. Shorter than two weeks produced poor quality models due to 

insufficient data, while longer than eight weeks was not valued for diagnoses. 

3.4.2 Identifying Transitions  

The decision tree models predict the event type (read email, or compose email) for a 

time-slot within a day-of-week. Table 3 summarizes accuracy and precision for read and 

compose event types. The values for the different window sizes are very similar. The read 

models are good — the models predict well the number of emails that will be read during a time-

segment on a day-of-week. The compose model is not as good. It weakly predicts the number of 

emails that will be composed during a time-segment on a day-of-week. Because read models 

have the best quality and least variability, I rely on them to predict behavioral changes. The 

compose graph mostly supports the same transition points, but with less accuracy. (See Figure 4, 

which compares the two model qualities.) 

  Read  Compose  

  Accuracy Precision Accuracy Precision 

2-week window Average 0.967 0.970 0.631 0.484 

 StdD. 0.049 0.018 0.241 0.144 

4-week window Average 0.984 0.971 0.657 0.478 

 StdD. 0.027 0.011 0.202 0.119 

8-week window Average 0.983 0.971 0.657 0.478 

 StdD. 0.027 0.011 0.202 0.119 

Table 3. Qualities of Model M1 for Read and Compose Email 

Consider the read model. The predictive qualities of the three data mined models (M1, M2, 

M3) for three windows are graphed in Figure 9. The graph shows that the models roughly track 
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the same events. Windows of four and eight weeks are nearly the same. They both hide or 

diminish events considered interesting by the two-week window (e.g., weeks 66 – 68). In 

general, the two-week window analysis has greater variability and foreshadows the larger 

window analysis. Notice that week 34 has poor predictive quality (q) as identified in both the 

two- and four-week window analysis. Moreover, the quality in the immediately surrounding 

weeks is good; thus, the rate in change of the quality (q') around week 34 is also high. Together 

the dramatic decrease in q and zeroing of q' suggest that week 34 may be a behavioral inflection 

point worthy of further analysis.  

 

 

Figure 9. Predictive Quality for the Read Models 

Table 4 presents q' for two- and four-week windows for the three models; it illustrates 

the significance of the transition identification technique. The table shows where q' turns 

negative between 0 and 36 weeks. The analyst can combine these values to automate the 
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recognition of interesting events. The rule is that two consecutive q' windows means that the 

transition began on the first window. Table 4 shows that week 12 and 32 are potential transitions.  

 
2-week window 4-week window 

Week M1 M2 M3 M1 M2 M3 

10 -0.012 -0.012 -0.012 0.000 0.000 0.000 

12 -0.007 -0.007 -0.007 -0.018 -0.018 -0.018 

16 -0.037 -0.037 -0.037 0.018 0.018 0.018 

18 0.021 -0.043 -0.043 0.000 0.000 0.000 

20 0.005 0.054 0.054 -0.023 -0.023 -0.023 

… 
      

30 -0.014 -0.014 -0.014 0.000 0.000 0.000 

32 -0.040 -0.040 -0.040 -0.010 -0.010 -0.010 

36 0.033 0.009 0.009 -0.032 -0.032 -0.032 

Table 4. First Derivative of Accuracy, q'. 

3.4.3 Diagnosing Transitions  

As transitions are identified, diagnosis is automatically applied. For example, if a transition is 

identified in the read model, then diagnosis will be applied to the read model as well as other 

models such as the compose email and delete email models. This is based on the assumption that 

a significant change in any usage of the AT may signal a transition (however slight) for any of 

the monitored goals. Thus, identified goal transitions are considered signs of behavioral changes 

that may be reflected across the AT system usage. 

Table 5 and Table 6 summarize the diagnostic analysis identified in the read email and 

compose and send email data streams underling Figure 9. Here I present the results of comparing 

pairs of M3 decision trees over 2-week windows. The results are similar for the other models and 

windows. 

Table 5 presents the results of model differencing the inflection points found in the compose 

and send email data stream. One potential goal transition occurs during the two weeks of 32 and 

33 of the dataset. The three data windows for this inflection point begin at 32, 34, and 36 weeks. 
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The model differencing technique compares the models beginning at 32 and 36—it does not 

consider the intervening transitional model. For the transition at week 32, there was a 15% 

increase is email composition during the periods from 6 to 12 A.M. and 2 to 8 P.M. There were 

48% and 9% increases for the inflection points of beginning at weeks 50 and 80, respectively. 

These changes indicate an increased attainment for the compose email goal of Figure 3. 

 

Weeks Compose  

in Selected Hours 

Total Compose for Model % Activity Δ Activity 

10 PM 

10 - 12 7 111 6%  

14 - 16 0 115 0% -6% 

Tuesday (6-12 AM and 2-8 PM) 

32-34 3 46 6%  

36-38 14 67 21% 15% 

Saturday 

50-52 0 55 0%  

54-56 39 81 48%  48% 

Saturday, Sunday, Monday and Friday (6-12 AM) 

80-82 5 31 16%  

84-86 23 91 25%  9% 
 

   Table 5. Significant Changes in Composing Email 

 

Weeks Read 

in Selected Hours 

Total Read for Model % Activity Δ Activity 

10 PM 

10 - 12 6 290 2%  

14 - 16 0 365 0% -2% 

12 AM - 2 AM 

32-34 0 146 0%  

36-38 2 162 1.23% 1.23% 

Sunday 

50-52 0 203 0%  

54-56 57 272 21%  21% 

10 PM – 2 AM 

80-82 0 121 0%  

84-86 13 442 3%  3% 

Table 6. Significant Changes in Reading Email 
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Figure 10 presents a stack graph showing the differences in read count, with the top-5 

buddies, for weeks 50 – 56. The graph shows that some buddy increases and decreases occurred 

in the transition week 52, followed by general increases in week 54. The graph reveals the 

increase in the number of reads, which was identified in the metrics of Table 6. This illustrates 

the value of the metrics — rather than generating and reviewing numerous graphs, the metrics 

point to windows where the data and their graphs have the most change. These changes indicate 

an increased attainment for the read email goal of Figure 3. Table 6 presents the results of the 

model differencing for inflection points found in reading email. For the transitions beginning at 

weeks 32, 50, and 80 the increases were 1.2%, 21%, and 3%, respectively. 

 

 

 

Figure 10. Stack Graph of the Read Counts, by Buddy, Weeks 50 – 56 

 

In summary, the preceding tables summarize how model differencing applies. They 

demonstrate how transitions can be characterized by their underlying behavioral changes. It 

should be noted that, for this presentation, consecutive time segments were collapsed. The actual 
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mined model considered 2-hour day segments. Thus, for example, the Saturday statistics of 

Table 5 is an aggregation of the 12 time-periods. The other statistics are automatically 

calculated (e.g., total and percent). Finally, it should be noted, that the results are 

calculated in real-time, as each window closes, immediately after the calculation of goal 

transitions. 

3.4.4 Evaluation  

The research evaluation considers two concerns, introduced at the beginning of this article: 

(1) Can the EventMiner framework provide automated recognition of changes in user 

behavior, where a user’s behavior is defined by the stream of events? 

(2) Can the framework provide automated diagnosis of a user’s behavioral change, as 

characterized by the most prominent behavioral differences around a moment of change? 

Through software construction, testing, experimentation, and case study, I affirm both 

propositions. Next, I will discuss two more issues: (1) model quality and (2) validation by real-

world events. 

3.4.4.1 Accuracy and Precision 

Accuracy and precision are standard metrics for determining predictive model quality. As 

Table 5 and Table 6 show, the read model is very good and while the compose model is not as 

good. This may be an anticipated because the read model depends on received emails and free 

time of the client; these elements are mostly routinized for the user population. On the other 

hand, email composition depends on the client’s skills and interest in communicating. In a prior 

study, we showed that client interest and email composition increased with the addition of new 

email buddies, while decreasing slowly thereafter (Fickas et al. 2005). Therefore, given the 

limited information in the data and the real-world behavioral variations of the users, the 
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availability of at least one very good model appears to provide adequate information to identify 

some significant behavioral changes. 

3.4.4.2 Real-World Events 

Changes in model quality reveal real changes in user behavior. This case study illustrates this 

with the inflection points that Table 5 and Table 6 summarize. There is a causality chain from the 

user’s manipulation of the AT to the diagnosis of goal transitions: 

(1) A user exercises the AT interface, such as reading and composing email. 

(2) Data mined models are generalized from and accordance with the distribution of the events. 

(3) Model differences are calculated, revealing changes in the models, which reflect changes 

in the event distribution, and thus changes in the user behavior. 

(4) Model differences, at goal transitions, are characterized according to the events observed. 

Thus, assuming the algorithms and software are correct, there is a direct causal chain from 

changes in usage of the AT and the diagnosed changes presented to clinicians.  

 Discussion on the monitored analysis with other TAL researchers reveals that the goal 

transitions do seem to reflect persistent changes in behavior. For example, week 34 of the data 

corresponds to 8/20/2006 - 8/26/2006, while week 82 of the data corresponds to 7/29/2007 - 

8/4/2007 (week 31 of 2007). I hypothesize that something interesting happens to the client in the 

August summer holiday, such as a family member visit. Client anonymity prevented us from 

directly correlating such real-world events, but it has been intimated that such events have 

occurred. 

Don’s event data shows a general trend of increasing email usage. He consistently composes 

email and replies to emails, which is in support of his know and use basic email skills ( Figure 3). 

Don also has periodic behavior of increasing emails after the introduction of a new buddy 
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(Fickas et al. 2005). A recent analysis of Don’s sequences (e.g., read followed by compose), 

reveals that Don is becoming (1) more consistent over time because of the increasing length of 

non-variable sequences, and (2) becoming more conversational with email because of the 

increased usage of reply (Robinson et al. 2012). This latter point is significant, because it 

suggests that Don may be transitioning from using email for simple notifications or requests to 

dialogs. 

3.5 Monitoring with Hidden Markov Models 

One disadvantage of the decision tree differencing technique is that it cannot directly 

recognize changes in sequence distributions. Decision tree differencing monitoring is good 

for strict compliance checking; however, it ignores unmatched sequences, and thus is of 

limited use where there is a great variety of sequential patterns. Therefore, we extend 

EventMiner by adding another component: a hidden-Markov-model (HMM) based monitor. 

This component applies a HMM approach to complement the existing decision tree 

differencing component. A hidden Markov model is a stochastic signal model (Rabiner 

1989) that commonly used for pattern recognition and anomaly detection. As introduced in 

2.7, several studies have applied HMM for anomaly detection. 

This new component is similar to the decision tree differencing monitor: windowed 

models are differenced to identify significant transitions in both methods. The difference is 

that, hidden Markov models are used to characterize user behavior. This HMM-based 

method is also applied to the usage data of a randomly selected client (Robinson et al. 

2013b). In this work, we detected behavioral changes in the usage behavior. Furthermore, 

building on a Transtheortical theory perspective (Prochaska et al. 1997), we explained the 

identified transitions as normal learning and transitional learning states.  
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3.6 Conclusion  

In this study, I describe and demonstrate how decision trees and hidden Markov models can 

be used to characterize software usage, look for unusual behaviors, and guide diagnosis of 

significant behavioral changes. By differencing the resulting sequence of generated models, 

this approach can identify transitions in software usage. The transition identification and 

diagnosis is automated by EventMiner.  

This study contributes to both practitioners and researchers. It is important to the field of AT-

based clinical therapy. Dynamically interpreting and adapting therapy plans for individuals 

currently requires substantial effort of clinicians. With the CI user population increasing, the 

need for some automation in therapy analysis is critical. For caregivers, when transitions are 

detected, they can provide assistance to ensure the client is not relapsing and 

encouragement to aid a progressing client. The tool and the analysis method provided will be 

a critical factor in addressing the needs of the millions of people with cognitive disabilities.  

For researchers, the identification of behavioral transition points, similar to the 

concepts of “encounters” refereed by Robey and Newman (1996), can serve as a starting 

point for process theory building. Those identified transition points and recurring 

sequences of events can support different theoretical interpretations, by the choice of the 

researchers (Robey and Newman 1996, page 31). Process models, known for their faithful 

account of actual experiences, can become cumbersome and analytically complex (Kling 1987; 

Markus and Robey 1988). For researchers who are interested in building process models, this 

study provides the tool and method to automatically analyze stream data, for transition detection 

and pattern recognition. , greatly reducing the effort for data analysis. Researchers can then 
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theoretically interpret the transition points, as a start pointing for theory building. In the 

following chapters, I will show how this framework can be applied to the OSS context. 
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4. OSS Development Behavior Transition Discovery 

4.1 Introduction  

Following the previous study in Chapter 3, this study applies EventMiner to an open 

Source Software (OSS) context. I have two major goals with this study: (1) to provide a 

project dashboard that can raise alerts when the OSS team appears to be losing its 

effectiveness, and (2) to develop a methodological and software framework to analyze OSS 

development process data. This framework can reduce process researchers’ analysis effort 

and provide a “pictures of the process” (Markus and Robey 1988) by identifying transition 

points and behavioral patterns in the given data. This picture of process can be theoretically 

interpreted for building process models. Having already developed the data-mining 

framework EventMiner, I apply it to the team’s repository event log to observe their 

activities and look for interesting transition points in the development processes. The 

approach of the monitoring framework EventMiner is summarized as follows: 

(1) Developers use their standard team tools (e.g., Eclipse, GitHub, etc.) to develop 

software. 

(2) EventMiner continually monitors the event log provided by the team’s source code 

repository (e.g., GitHub). 

(3) EventMiner builds models of the developer’s behaviors and their changes by 

identifying transition points and recurring patterns. These models are structured 

according to the events generated by the repository events. 

(4) Researchers can theoretically interpret those models of an individual project or 

multiple projects, generated in step (3), to build process theories on OSS 

development. 
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(5) Researchers can also develop models on the relationship between behavioral 

sequential patterns and project performance.  

(6) Based on insights drawn from step (4) and step (5), developers can review the data 

analysis results for their own project’s development history, and make inferences as 

to how successful the project will be. 

In this study, I will describe the automation for steps 2 – 3 (model building). I will 

demonstrate how this process is applied to 103 projects from GitHub.com, an open source 

repository. Much research remains to extend our models. I also made an initial attempt to 

address step 5 in my third study in Chapter 5. I will address automation of steps 4 – 6 

(model interpretation and forecasting) in the future, which will be discussed in 6.3. In the 

following, I introduce two major goals for this study in details.  

4.1.1 Recognizing Behaviors and Change 

This study aims to identify and analyze common sequences of actions by OSS 

developers. Several actions can be performed by developers in an OSS project, such as 

making a commit, raise an issue, and comment to an issue. I would like to know, for 

example, if the pattern sequence (Issue x, Comment x, Commit x) occurs frequently in the 

stream of events generated by the developer tools. I suspect that successful projects will 

apply this pattern more frequently than simply (Commit x)—that is, having no previously 

specified issue or comment for a code commit.  

To uncover sequential patterns, sequential data mining techniques are commonly 

applied. When such techniques are applied directly to event streams generated by OSS 

developers, I found that it generates long lists of varied, low-level action sequences, which 

are not easily interpreted. To address this issue, I first specify work constructs, which are 
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recognized by a rule-base system that integrate concepts from theory of distributed 

cognition. More generally, I am working towards a theory of OSS development by 

incrementally improving partial process models, which recognize theoretical constructs in 

OSS event streams.  

The analysis proceeds as follows: 

(1) Specify recognition rules for our theoretical constructs, such as an issue-based work 

unit. 

(2) Apply the rules to the OSS event-stream data, to recognize theoretical constructs. 

(3) Data mine the theoretical constructs, using sequence-mining techniques. 

(4) Apply model-differencing techniques, to recognize changes in behaviors over time.  

This approach allows me to analyze OSS developer behavior (as action sequences) and 

their changes over time. 

4.1.2 Building a Process Theory 

This work on analyzing OSS projects represents a study in the efforts toward supporting 

the construction of process theories. A process model “explains development in terms of the 

order in which things occur and the stage in the process at which they occur” (Van De Ven 

2007). Abbott, for example, illustrates how time ordered events affect the lifecycle of 

individuals, which supports theorizing about process steps, and cause-effect relationships 

(Abbott 1990). The OSS study presented herein illustrates this approach to abducting theory 

elements from sequence data. I start with simple sequence-based constructs, such as higher-level 

development workflows that are comprised of lower-level development activities (raising an 

issue, making a commit, etc.). I have in mind some general theories which appear applicable to 

the analysis of OSS development, such as theory of distributed cognition (Hutchins and Klausen 
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1996). To bridge the gap between the hypothesized theoretical elements and the data, sequence 

data mining was applied. Process models can become cumbersome and analytically complex 

(Kling 1987; Markus and Robey 1988). The minor contribution of the study to building process 

theories is demonstrating how much of the data mining can be automatically applied to reduce 

the analytical effort.  

4.2 Theoretical Background 

4.2.1 Distributed Cognition  

Several information system theories provide a conceptual lens to frame my analysis. 

The theory of distributed cognition provides a theoretical lens to understand software 

development. As developed by Hutchins, it posits the perspective that the boundary of 

cognition processes go beyond individuals to socio-technical systems (Hutchins and 

Klausen 1996). It presents how cognition processes distribute socially, structurally, and 

temporally when a distributed team collaborate on information processing tasks. 

By conceptualizing cognition as “the propagation of representational state across 

representational media” (Hutchins 1995, p.118), distributed cognition expands the unit of 

cognitive analysis from that of the individual to that of the entire team attending to a 

specific task. With this shift in perspective on cognition, the theory asserts  (Hutchins and 

Klausen 1996): (1) thought processes are distributed among members of social groups, (2) 

cognition employs both internal and external structures, and (3) cognitive processes are 

distributed over time.  

Nearly all software design efforts are executed through a team structure (Guinan et al. 

1998). While addressing complex design challenges, teams must bring together individuals 

from a variety of technical and functional domains. For example, the cognitive task of 
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arriving at a stable requirements set, referred to as the computation of requirements, cannot 

be localized to any one participant, such as a designer (as is often assumed)  (Hansen et al. 

2012b; Jarke et al. 2011). Rather, it resides in the holistic process of cognitive computation 

that enables requirements to emerge as a quality of the social system.  

In practical terms, this means that you can interpret the team member activities in 

distributed cognition terms. For example, team members may rely on the source-code 

commit log to share progress information about the project. When members fail to submit 

comments, then this form of distributed information sharing breaks down. Distributed 

cognition indicates, generally, the kinds of communications and breakdowns they 

commonly occur. 

Other theories provide a background for the development of variables, constructs, and 

concepts needed to understand information processes in OSS development. For example, 

the recent theory of collaboration through open superposition suggests specific ways in 

which members collaborate in OSS projects (Howison and Crowston). Classic theories may 

not be as specific, but establish useful concepts. For example, Galbraith’s information 

processing view suggests the need to examine structural mechanisms, such as information 

buffers (e.g., a repository), to reduce information uncertainty (Galbraith 1977).  

In general, in this study I demonstrate, adapt, and extend software development theories 

by encoding them in process models and using them to conduct exploratory analysis.  

4.2.2 Sequence Stream-Mining 

OSS Developers have many interactions, directly or indirectly, through their tools.  

Some co-located OSS developers will go to their computers to meet, thereby ensuring a 

record on their meeting (as well as providing access to development records).  



75 

 

Many OSS interactions are logged as event histories. For example, the history of 

source code changes is maintained by source control systems (e.g., CVS, subversion, Git). 

As each change is committed to the source repository, the new code and comments are 

recorded as a change event. Similarly, edits within a code editor (e.g., Eclipse), messages 

within a chat session, forum comments, feature requests, FAQ edits, etc. are all event 

sequences. Such sequences can be mined for patterns. 

Sequence data mining concerns analysis of events in sequence. The event data are 

often nominal-valued or symbolic and the goal is to discover variables and their 

correlations (Laxman and Sastry 2006; Zhao and Bhowmick 2003). This contrasts to the 

well-studied domain of time series analysis, which considers real or complex-valued time 

series of known parameters using methods such as autoregressive integrated moving 

average (ARIMA) modeling. Sequence mining techniques address: (1) prediction, (2) 

classification, (3) clustering, (4) search and retrieval, and (5) pattern discovery.   

I apply sequence mining in the context of stream mining. Concepts, techniques and 

applications of stream mining were reviewed in 3.2.1. Stream mining can detect changes in 

the data-stream. Two types of algorithms are common: (1) distribution detection, which 

watches for changes in the data distributions, and (2) burst detection, which watches for 

sudden large and unusual changes in a data-stream. Distribution detection algorithms have 

two common forms: (a) data from two windows (current and reference) are compared using 

some distance measure, (b) a predictive model is created from a prior window and then its 

prediction is compared with the current window—high prediction error indicates a 

significant change. In this study, I apply both distribution detection techniques to discover 
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changes, as well as model differencing, which was introduced in 3.3.3.1, and will be 

reviewed briefly next. 

4.2.3 Model Differencing 

Model differencing provides a mean to recognize important changes occurring 

within an event stream. Consider a stream of development repository events divided into 

data windows, (w1, w2, …, wn). Transition identification marks each data window as either 

being normal or transitional. For example, (normal, normal, transitional, normal, normal 

…). Transitional behavior is historically unusual behavior, according to some measure such 

as statistical variance. I use the term transitional because the behavior is unusual and 

transient, and thus interesting from a theoretical perspective, such as cognition or learning 

theory. 

In this study, a repository stream is divided into data windows. Each window is 

characterized by a model, (wi  λi). Consider two models in sequence, λ1 and λ2. The 

software finds the difference of the models to characterize the change: dλ/dt = (λ2- λ1) / (t2 

– t1). If the difference Δλ is significant, by some measure, then we have found a transition 

point (Robinson et al. 2013a). The models (λ) vary, but include hidden Markov models 

(HMMs) for example. Now, because of this automated differencing technique, a monitoring 

system can quickly identify changes in the models. Thus, some intervention may be 

applied. In OSS development, this may be changing the project lead, increasing testing, or 

releasing the software.  

4.2.4 HMM Probabilities 

Given data containing sequences, a common task is find transition probabilities. That 

is, given an observed event A, what is the probably that the next event observed with be B 
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or C? A hidden Markov model (HMM) can solve this problem by building a probabil ity 

model from observed event sequences.  

A hidden Markov model (HMM) is a stochastic signal model (Rabiner 1989). In our 

application to OSS repository analysis, the signals are sequences of discrete typed events 

(e.g., code commit). A HMM provides algorithms to solve three important problems:  

1. Compute the probability that an observed sequence, O, is represented by a HMM, λ 

(using the Forward-Backward Procedure (Baum and Eagon 1967)). 

2. Adjust the parameters of a HMM, λ, to maximize the fit to an observed sequence, O 

(using the Baum-Welch algorithm (Baum et al. 1970)). 

3. Compute the optimal HMM state sequence that best explains an observed sequence, 

O (using the Viterbi Algorithm (Forney Jr 1973)). 

Similar to the work presented in Chapter 3, I use HMMs to model patterns of sequential 

events within the stream of OSS repository events. 

HMM transition identification detects significant changes in modeled events 

between consecutive windows of event data. HMMs can be used to identify transitions by: 

(1) comparing consecutive HMMs generated from the observation sequences, or (2) 

comparing consecutive acceptance probabilities (Robinson et al. 2013a).  

Technique 1 compares consecutive HMMs. This a model differencing technique is 

generally characterized as follows: 

Δλ = λ2 – λ1 

Here, λ denotes a HMM. To find the distance between two HMMs, the widely applied 

Kullback-Leibler algorithm is used (Kullback 1997). 
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Technique 1 directly compares two HMMs, each generated from observation 

sequences. Technique 2 compares the acceptance probabilities of the observation sequences 

using the first HMM. Because the two techniques produce similar results, this analysis 

applies Technique 1. 

4.2.5 Volatility Models 

A variety of models can be applied to the sequential events found within the data 

windows of repositories. I consider two that measure variance in sequences: turbulence and 

optimal matching. 

Given a sequence, turbulence calculates a metric based on the number distinct 

subsequences within a data window (Elzinga and Liefbroer 2007). Turbulence increases 

with the number distinct subsequences. 

Optimal matching (OM) generates edit distances that are the minimal cost, in terms 

of insertions, deletions and substitutions, for transforming one sequence into another. OM 

can be applied to a repository data window to derive a measure of variance. Consider a data 

window with two observed sequences: O i and Oi+1. Optimal matching, OM (Oi , Oi+1), is 0 

if the two sequences are identical; OM increases with the differences between sequences.  

Like HMM models, turbulence and OM can be calculated for each data window, as well as 

differenced between two consecutive windows. Thus, I can measure ΔHMM, ΔTurbulence, 

and ΔOM between consecutive windows of repository data.  

4.3 Approach 

I obtained development data of 103 OSS projects from GitHub, the most popular open-

source code repository site. Founded in 2008, GitHub had over 3 million users and over 5 

million repositories as of January 2013. I applied the approach presented in the 
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introduction. In particular, after selecting projects, a KNIME workflow generated sequence 

models and then clustered the projects. I then characterized the clusters and regressed them 

with summary project measures. For single project analysis, HMM differencing was 

applied and transitions were identified. All the steps are automated, from the retrieval of 

data from the repositories, up to the regression analysis. Finally, I validated some results by 

comparing the automated analysis with qualitative information. The results suggest that the 

sequence mining is helpful in clustering projects and detecting interesting transitions 

within a project. 

4.3.1 Data Selection 

The search function of the GitHub web site was used to enumerate the projects. The 

queries are listed in Table 7. To ensure the diversity of the projects, I searched for projects 

at different level of popularity. I used number of stars and number of forks as proxy for 

level of popularity. Furthermore, I included a control group which only includes java 

projects (see query #4 in Table 7), to investigate if language plays a role in projects’ 

development patterns. Note that for the first three queries, the result of each query is a 

subset of the result of the next query. For example, the 43 projects returned for query #1, 

are included in the 148 projects returned for query #2. Therefore, to select 30 projects from 

each query result without any overlap, I sorted each query result differently. The top 30 

projects from each query result were selected, for an initial set of 120 projects. Subsequent 

processing reduced the final set to 103 projects. Projects were dropped because they lacked 

data. Many Java projects, for example, maintain their issue database outside of GitHub. 

The analysis was limited to projects contained within GitHub.com. Table A5 in the 

appendix enumerates the projects. 
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# Query Sort Count 

1 stars:>10000 

forks:>1000 

most forks 43 

2 stars:>5000 

forks:>750 

fewest forks 148 

3 stars:>1000 

forks:>500 

fewest forks 651 

4 stars:>1000 

forks:>250 java 

most forks 78 

Table 7. GitHub Queries for Data Selection 

4.3.2 Data Preparation 

A workflow automated the data acquisition and preparation. GitHub.com data was obtained 

from two sources: 

1. GHTorrent provides access to a GitHub database (Gousios and Spinellis 2012). That 

MongoDB database is the result of GHTorrent monitoring the GitHub public event timeline. 

2. GitHub API provides direct access to the project data by sending JSON over HTTPS. 

GHTorrent provided the basis for the data. The GitHub API was used to validate the data, and in 

some cases provide missing data. 

The GitHub data is comprised of a 16 collections, which we combined, through filtering 

and joining, into a single table. The data was derived mainly from these collections: issues, issue 

events, issues comments, pull requests, and pull request comments. The resulting table consists 

of these fields: Issue number, body, diff hunk, path, position, original position, commit id, 

original comment id, create at, updated at, event comments, milestone, title, assignee, closed at, 

state, merged at, head, base, and actor. Each record in the table provides a vector for input into 

our data mining process.  

The table represents a sequence Git events. Of the 18 Git events, I focused on six, which 

most closely associated with teamwork: 
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1. IssuesEvent: An issue is created, closed, or reopened. 

2. PushEvent: Code is committed (pushed) to the repository.  

3. PullRequestEvent: A user requests that new code be pushed to the repository.  

4. IssueCommentEvent: A comment is associated with an issue. 

5. CommitCommentEvent: A comment is associated with a commit (PushEvent). 

6. PullRequestReviewCommentEvent: A comment is associated with a PullRequest. 

Other events, such as watch events in which users subscribe to a repository to get updates, do not 

concern teamwork. They are thus excluded from the study. A list of Git events are summarized 

in Table A4. The prepared table of sequential Git events is further process to represent elements 

of teamwork. 

4.3.3 Work Constructs 

Git events, such as push and commit, represent work; however, the context of  the 

work is missing. For example, it seems that 10 code commits for the same issue is different 

than 10 code commits, each for a single issue. A rule-based system is applied to the 

prepared event data to derive a table of abstracted work events.  

Work in most GitHub projects begins with an IssueEvent or a PullRequestEvent. Both 

represent a typical unit of development work, which may be scheduled, opened, closed, 

reopened, etc. An IssueEvent typically represents a bug or enhancement. It follows a common 

lifecycle of being opened, followed by code changes represented by commits, and then an 

issue close. For example: 

IssuesEvent.open, PushEvent, PushEvent, IssuesEvent.close 

Of course, other events may intervene (e.g., comment events), as well as the issue may be 

reopened or never closed. 
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The PullRequestEvent is similar to the IssueEvent, but the subsequent work events are 

related to integrating the new code into the project’s code repository. A rule-based system 

is applied to recognize event sequences beginning with IssueEvent or a PullRequestEvent. I 

think about them as min-workflows, which are initiated in response to a work request (e.g., 

issue or pull request). However, here I use the more neutral term, motif, to indicate 

recognition of these common sequence patterns.  

The rule-based system recognizes two kinds of work motifs in the prepared table of 

sequential Git events. The basic form is as follows: 

1. (IssueEvent | PullRequestEvent) .*  

2. (Reopen (of #1)) .* 

As indicated above, a work motif begins with either an IssueEvent or PullRequestEvent, 

followed by any other Git event that references the initiating event (by number). The motif 

records the initial event, and all subsequent events (and their attributes). When either an 

IssueEvent or PullRequestEvent is reopened, it is consider a new instance of the second 

motif pattern (above). Thus, open and reopen are each considered the beginning of a work 

motif. The subsequent analysis shows common event sequences; however, those are Git 

event sequences within the context of these work motifs. 

These work motifs are derived from the prepared data in support of our theoretical 

background. Thus, I call these derived, abstracted elements work constructs, to be consistent 

with theorizing process theories (Van De Ven 2007).  

4.3.4 Sequence Feature Construction 

Before the work motifs can be sequence mined, they are encoded. Most sequence 

data-mining algorithms process event sequences, where events are identified as members of 
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a fixed alphabet. An event sequence, for example, could be A-B-A-B-B-C. Few algorithms 

directly address object sequences, where each sequence member is comprised of an 

information object. An object sequence, for example, could be 

[Issue.ID=1,Issue.Author=a1,Issue.State=open]- 

[Commit.ID=10,Issue.Author=a1,Commit.IID=1]- 

[Issue.ID=1,Issue.Author=a1,Issue.State=close].  

Object sequences can be processed by dropping information. For example, just 

processing object type information: Issue-Commit-Issue. More information can be 

processed by first encoding the object information into another alphabet; for example, 

[Issue.ID=1,Issue.Author=a1] becomes I1A1. We applied this transformation concept to the 

sequence of work motifs. 

Given the work-motif sequences for a GitHub project, we using k-means clustering 

to transform each work motif into one of 50 clusters. The work motif is represented by a 

vector of these attributes: 

IssueEvent | PullRequestEvent (open|reopen), ID, openDate, events, actors, state(open|closed), 

merged(true|false), duration, comments, turbulence.  

The rationale for selecting those attributes is as follows: different instantiations of 

the same work motif might present different levels of collaboration. For example, in an 

IssueEventàCommentEventàPushEvent work motif, the level of collaboration would be 

different between an instantiation in which the same actor performed these three activities, 

and an instantiation in which three different actors performed these three activities. As 

discussed before, DCog seems an appropriate lens to interpret the development activities. 

Therefore, I used concepts from this theory, to extract relevant attributes of a work motif, 
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to differentiate instantiations of work motif. I reviewed the indicators of distributed 

cognition based on existing literatures (Hansen and Lyytinen 2009; Hansen et al. 2012a; 

Thummadi et al. 2011) and summarized them in Table A1. From these indicators, relevant 

attributes in the work motifs were identified. This input vector is then encoded as cluster 

number [0, 49]. The sequence miner then processes sequences of these work-motif clusters 

numbers. 

4.3.5 Sequence Modeling 

Give sequences, EventMiner constructs models of (a) sequence pattern probabilities, 

(b) entropy within sequences, and (c) changes in the patterns and entropy over data 

windows. Sequence pattern frequencies are determined by simply counting pattern 

occurrence. For example, Figure 11 illustrates the frequency of the top 20 sequential 

patterns from the bootstrap project. Additionally, a hidden Markov model (HMM) 

calculates the sequence pattern probabilities. Optimal matching (OM) is applied to pairs of 

sequences, to determine a matching distance.  
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Figure 11. Sequence Frequencies for Bootstrap  

Turbulence and OM are applied to sequential data windows of work motifs 

(themselves sequences). A series of data windows results in a series of values (Turbt, OMt 

… Turbt+n, OMt+n) indicating kinds of sequence entropy over time. Change in sequences 

over time can be calculated for turbulence, OM, and HMMs. The general equation is 

simply Δλ = λ2 – λ1, where λ represents either turbulence, OM, and HMM models. I 

calculate the models and their differences for each data window for each project. After 

some preliminary analysis, I choose four weeks for the data window size—it contains 

sufficient data and represents a common unit of work for open source development 

methodologies. The subsequent Figure 12 illustrates ΔHMM for a project from each cluster 

derived. 

4.3.5.1 Project Clustering 

Projects can be clustered by their change of sequencing, as represented by models of 

the prior section. Each project gets sequences of change in sequence turbulence, OM, and 
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HMMs; that is, Δλi where the model λ is one of sequence turbulence, OM, and HMM. 

Given the projects, each represented by a sequence of values, I pairwise compare them 

using optimal matching to generate a distance matrix. I apply hierarchical clustering to the 

distance matrix to deriver the clusters. (The appendix Table A5 includes the cluster number 

for each project.) 

Table 8 summarizes the cluster characteristics. Clusters 3 and 4 have relatively more 

stars, forks, open issues, and have relative short cycles1. I reviewed one project from each 

cluster. From clusters 3 and 4, ember.js and brackets, respectively, are relatively active. 

Ember.js has a 15 day release cycle, and brackets has a 17 day release cycle—relatively 

small comparing to the average of 101 days among all projects. Ember.js also has a big 

community of 360 contributors and has very frequent group meetings through google 

hangout. They used various communication channels including discussion forum, blogs, 

GitHub site and stackoverflow.com. Project information from such sources provides 

detailed projects information.  

Cluster # of 

Projects 

Forks Stars Daily 

Forks 

Daily 

Stars 

Release 

Time 

(Days) 

Age  

(Days) 

0 29 1363.55 5952.55 1.37 5.96 141.72 1099.31 

1 38 1094.00 5453.66 0.72 3.53 137.21 1581.16 

2 21 885.10 5239.43 1.81 10.82 40.62 579.19 

3 7 2432.71 14103.29 2.34 14.23 28.00 1081.00 

4 8 2025.88 10131.25 3.64 19.89 8.25 576.00 

project mean 1290.66 6501.59 1.46 7.70 101.35 1129.15 

Table 8. Cluster Characteristics 

The other three clusters (cluster 0, cluster 1 and cluster 2) are similar in terms of 

popularity—they have relatively similar number of forks, stars and watchers. However, 

                                                           
1 Space limitations prevents us from showing all the cluster attributes. 
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among these three clusters, the daily stars of cluster 2 suggest that projects in th is cluster 

were able to attract stars faster than the projects in the other two clusters. Clusters 2 also 

have a shorter release cycle time: 40 days compared to 142 days in cluster 0 and 137 days 

in cluster 1. Projects in clusters 0 - 1 are the least popular—they have the lowest forks rate, 

and star rate. They also grow relatively slower—both of them have smaller open issues rate 

than others, and have longer release cycles.  

4.4 Analysis 

The goal of the study is to monitor an OSS project by observing and analyzing its 

activities, I focused on two analysis tasks here: (1) detecting behavioral transitions within a 

project, to achieve step 3 in the introduction, and (2) investigating the relationship between 

sequential behaviors and project measures. Understanding on this relationship can help us 

achieve step 5 and step 6, in which inference between behavioral patterns and success 

needs to be made explicit. The descriptive characteristics of the clusters suggest that the 

KNIME workflow for sequence mining is useful for the classification of GitHub.com 

projects by their sequential behaviors. Because I want to relate the sequential behavior with 

project outcomes, I performed a linear regression of the clusters with summary project 

features. Finally, as an added level of validation, I sampled the clusters and correlated their 

mined characteristics with independent information. In particular, I showed how we used 

sequence mining to detect behavioral transitions in a project, and how the transitions were 

evaluated.  
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4.4.1 Regression 

For exploration, I applied linear regression to determine if the clusters were related 

to project summary characteristics, some of which can be interpreted as project 

performance measurements.  

I created dummy variables for the clusters and then ran the linear regression 

between those dummy variables and project summary variables. I chose cluster 4 as the 

reference group because it has the most daily stars and daily forks. I included project age 

and number of collaborators as control variables. The results in Table 9 show that the 

clusters are related to daily stars (adjusted R2 of 0.576) and daily forks (adjusted R2 of 

0.477). The control variable collaborator is not significant, and therefore it is not included 

in the result table. The coefficients show that projects in cluster 0, 1, and 2 have 

significantly fewer daily forks and daily stars than projects in cluster 4. To better compare 

the clusters, I collapsed cluster 3 and cluster 4. This procedure resulted in four new 

clusters. Their characteristics are summarized in Table 10.  
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Variables Daily Forks Daily Stars 

  Model 1  Model 2  Model 3 Model 4 

Constant 2.943*** 4.158*** 16.705*** 23.017*** 

Project Age -.001*** -0.001*** -0.008*** -0.005*** 

Cluster 0  -1.800***  -11.903*** 

Cluster 1  -2.025***  -10.906*** 

Cluster 2  -1.833***  -9.052*** 

Cluster 3  -0.845  -2.923 

 R2 0.319 0.503 0.386 0.596 

 R2 0.319*** 0.184*** 0.386*** 0.211*** 

Adjusted R2 0.313 0.477 0.380 0.576 

Observations 103 103 103 103 

***: P ≤ 0.001 

Cluster 0, Cluster 1, and Cluster 2 and Cluster 3 are dummy variables created for the 5 

clusters. 

Table 9. Regression Results (Five Clusters) 

 

Cluster # of 

Projects 

Forks Stars Daily 

Forks 

Daily 

Stars 

Release 

Time 

(Days) 

Age  

(Days) 

0 29 1363.55 5952.55 1.37 5.96 141.72 1099.31 

1 38 1094.00 5453.66 0.72 3.53 137.21 1581.16 

2 21 885.10 5239.43 1.81 10.82 40.62 579.19 

3 15 2215.73 11984.87 3.04 17.25 17.47 811.67 

project mean 1290.66 6501.59 1.46 7.70 101.35 1129.15 

Table 10. Cluster Characteristics (Four Clusters) 

Dummy variables were again created for the new clusters, with cluster 3 as the 

reference group. I applied linear regression again to determine if the clusters were related 

to project performance. The results in Table 11 show that the clusters are related to daily 

stars (adjusted R2 of 0.573) and daily forks (adjusted R2 of 0.466). The results also show 

that projects in cluster 0 - 2 have significantly fewer daily stars than projects in cluster 3. 

Likewise, projects in cluster 0-2 have a significantly slower fork rate. Given the great 

variability of the projects, as well as the internal variability of the sequential behaviors 
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within projects, I am encouraged by the R2. It suggests that, with improved models, we may 

be able to correlate project behaviors with summary project features.  

As discussed before, I am interested on the relationship between usage of language 

and development behaviors. Especially, I wanted to investigate if projects that development 

with java would present different development behavioral patterns. Therefore, I compared 

the usage of java among the five groups. I found that projects in cluster 0 use java more 

frequently than projects in other clusters. Interestingly, projects in this cluster are the least 

popular, with slow growth rate. It would be interesting to look into the behavioral patterns 

of projects in this group and compare them with that of other projects.   

Variables Daily Forks Daily Stars 

  Model 1  Model 2  Model 3 Model 4 

Constant 2.943*** 3.866*** 16.705*** 22.006*** 

Project Age -.001*** -0.001*** -0.008*** -0.006*** 

Group 0  -1.369***  -9.603*** 

Group 1  -1.534***  -9.207*** 

Group 2  -1.467***  -7.789*** 

 R2 0.319 0.487 0.386 0.590 

 R2 0.319*** 0.167*** 0.386*** 0.204*** 

Adjusted R2 0.313 0.466 0.380 0.573 

Observations 103 103 103 103 

***: P ≤ 0.001 

Group0, Group1, and Group2 are dummy variables created for the 4 

groups after consolidation 

Table 11. Regression Results (Four Clusters) 

4.4.2 Behavioral Transitions  

Transition identification detects significant changes in modeled events between 

consecutive windows of event data. Space limitations prevent us from showing all projects, 

or even all of a single project. However, Figure 12 shows five projects, one from each 
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cluster. Two projects discuss herein, ember.js and bootstrap, are the first and second 

projects.  

The x-axis represents the Kullback-Leibler comparison of HMMs generated from 

the data windows. Each point represents the comparison between two HMMs, each 

representing a month of data. The trend values are more important than the specific HMM 

comparison values. Notice that all projects have periods of transition, where their behavior 

models change significantly, as shown by the spikes. This illustrate how well HMM 

differencing discriminates unusual periods of sequential behaviors from the more common 

background.  

 

Figure 12. HMM Differences of Cluster Samples 

 

The transitions (spikes) displayed in Figure 12 represent real changes in developer 

behavior—the developers have changed their patterns of their work motifs. We have 

correlated those changes with web data to validate that interesting team behaviors are being 

monitored.   
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Table 12 summarizes bootstrap blog entries that correlate to the transitions 

presented in Figure 12. (The x-axis is window count, not date.) These entries provide 

corroborating evidence that the transitions capture meaningful team behavior.  

Week Events 

34 On 14th, there was an announcement about a future release of 2.0.3 on the blog. On 

15th, the team asked for help on testing 2.0.3. Version 2.0.3 was released on 24th. 

41 Version 2.0.4 was released on June 1st, 2012 

57 The Bootstrap team announced on the blog on Sept 29th, 2012 that they were leaving 

twitter.  

63 On Nov 9th, 2012, the team informed on their blog that version 2.2.2 will not include 

glyphicons. 

67 The team asked for help on their blog for testing version 2.2.2 on Dec 2nd. 2012. They 

released version 2.2.2 on Dec 8th. Later on the 12th, they posted plans for Bootstrap 3. 

68 The same as above.  

70 Two pull requests were posted on GitHub on Dec 20th, 2012: (1) a pull request for 

Bootstrap 3, which would be the next major release with lots of changes, and (2) a pull 

request for version 2.3.0.  

Table 12. Blog Entries for Bootstrap Transitions 

For example, there is a spike at window 41. In the week, the bootstrap team posted a 

blog entry introducing a new plan of Bootstrap 3. Therefore, an explanation for the spike is 

that the team began work for Bootstrap 3 after the announcement, bringing a change on 

their development behavior. Another example is the spike of window 68. Several big events 

occurred during this period: on the Sunday of the first week, the team asked their 

contributors for help on the blog, for testing the coming new version 2.2.2. The version 

came out on Saturday of the same work. Therefore, we can expect that the first week would 

be a busy week for the team, compared to the following week, after version 2.2.2 was 

released. A similar example occurred at window 34, when the team went through another 

release announcement. Other spikes can be similarly explained. 
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4.5 Discussion 

This study is aimed at understanding the sequential behaviors of developers in OSS 

projects. The experiment produced meaningful clusters from 103 GitHub.com projects. Our 

regression of clusters with daily stars and daily forks is encouraging, but limited. It 

demonstrates how automatically mined constructs may be linked to higher-level theoretical 

concepts. This experiment is an instance of our overall methodology for theory exploration.   

Automation was implicit in our discussion; however, all the steps, from project data 

retrieval up to the regression analysis are automated. Retrieval of the project records is, by 

far, the slowest part of the analysis. On an ongoing basis, a dashboard can update many 

projects every minute.  

Based on these results, the dashboard would simply cluster projects into those that have 

more daily downloads and stars. Note that such characterization was obtained exclusively 

from the sequential behaviors of the developers. This suggests that in the future, with more 

complete models, we may produce more refined behavioral analysis on what is most 

effective for OSS team success. 

For future research, I plan to further investigate transitions within sample projects. I 

will examine quantitative and qualitative measurements of the project at transition points. 

For example, it would be interesting to examine if the team size and team structure changes 

around those transition points. I will apply theory of distribute cognition to explore the 

nature and reasons of those changes, for the purpose of constructing a process theory on 

OSS project development behaviors. This model will contribute to achieving step 4 -6.  

 Limitations of this study include: (1) sampling, in that the projects may not be 

representative of OSS projects in general; and (2) modeling, in that the measurement of and 
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constructs for sequential behaviors are incomplete. Future work will seek to diminish these 

limitations. 

4.6 Conclusions 

OSS developers generate many events, through their tools, which can be used to 

monitor their progress and predict their results. A carefully constructed data mining 

workflow can automat the acquisition and analysis of repository events to present a 

dashboard of clustered projects, highlight when significant changes in developer behaviors 

have occurred. Now, such automation is of great help to researchers who seek to 

demonstrate, adapt, and extend software development theories by encoding them in 

operational process models and using them to conduct exploratory analysis. When such 

research results become practical, then the future dashboards will produce more refined 

behavioral analysis on what is most effective for OSS team success.  
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5. Investigating the Temporal Dynamics and Variety of OSS Development 

Activities 

5.1 Introduction  

The previous study of Chapter 4 reveals the relationship between sequential patterns of 

development processes and project performance. To extend my understanding on this 

relationship, I examine the role of design routines in shaping the OSS project performance. 

I develop a factors model that includes measures of variability and change in routines, 

which represent the process of OSS development. A relationship between routine diversity 

and change and project performance is found and discussed. 

OSS projects are known for their chaotic development style (Mockus et al. 

2002).Several significant characteristics of OSS development are the following:  

• Work is self-assigned: contributors choose what they want to undertake (Crowston 

et al. 2007; Crowston and Scozzi 2008). 

• There is a lack of coordination mechanisms, which are observed in traditional 

development settings—there are few formal “plans, system-level design, schedules, and 

defined processes” (Crowston et al. 2007; Herbsleb and Grinter 1999; Mockus et al. 2002). 

• Multiple different processes are performed by contributors simultaneously 

(Christley and Madey 2007).  

However, the “chaotic” development processes produce high quality software. Most 

extant literature attributes this superior quality to static cross-sectional factors such as 

number of developers, project activity level and license choice. Despite the attribution of 

success to identifiable factors associated with OSS projects, many successes may still be 
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regarded as “chaotic” and seemingly disregard conventional wisdom regarding project 

success. While variance studies can identify some predictors of project outcomes, they tend 

to neglect the actual process of development, which may or may not occur “chaotically.” 

Without a closer examination of how events occur, an understanding of OSS projects is 

incomplete. This motivates me to look at the impact of characteristics of the development 

processes, such as process variation and change, on OSS performance. Although a variance 

model is developed, the characteristics of the development processes is considered. Thus, 

this study combines process and variance approaches.  

In this study, OSS development is conceived as a sequence of design routines. Gaskin et 

al. (2010) defines a design routine as “a sequence of (design) tasks, which transform some 

representational inputs into a set of material and representational outputs, leading 

ultimately to a generation of design artifact.” Design routines are believed to have less 

clearly defined inputs and outputs resulting from changing requirements (Dorst et al. 1996; 

Gaskin et al. 2011). In the context of open source software development, design routines 

are the prevailing activities (Gaskin et al. 2014; Gaskin et al. 2011; Gaskin et al. 2010). 

However, there is a lack of research that empirically investigates routine diversity and 

routine changes in the OSS context, and the underlying theoretical relationships, via 

analysis of big, digital trace data. To fill this gap, and to explore the relationship between 

the changing dynamics of development processes and project performance, I propose to 

address the following research question:  

What are the impacts of routine diversity and routine changes on OSS project 

performance?  
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I base the analysis on a view that OSS projects are comprised of sequences of design 

routines, which take a diversified set of forms and change over time (Pentland et al. 2011). 

Drawing upon literatures in routine, I develop and empirically test a model of design 

routine diversity and change, and their impact on project performance. Extracting digital 

trace data from GitHub.com, I examine this model with a computational, mixed-method 

approach. This study contributes to both OSS and routine literature, and provides 

implication for OSS practitioners. 

5.2 Research Model and Hypotheses  

5.2.1 Research Model 

The research model in Figure 13 includes routine diversity and routine change, and the 

effect of these constructs on OSS project performance. This model incorporates theoretical 

concepts including routine diversity, routine change, and project attractiveness. In this model, 

routine diversity and routine change contribute to project attractiveness. The unit of analysis is at 

the project level. 

Control Variables
· Project Age

· Event Size

· Number of Actors

Routine Change 

Routine Diversity

Project 

Attractiveness

H1(+)

H2(-)

 

Figure 13. Research Model 
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5.2.2 Research Hypotheses 

5.2.2.1 Relationship between Routine Diversity and Project Attractiveness 

There are four explanations why routine diversity in OSS development processes can 

attract users and developers. Firstly, a complexity theory perspective suggests that diversity 

enhances robustness of complex adaptive systems (Benbya and Mckelvey 2006; Page 2010). ISD 

projects are commonly considered as complexity adaptive systems (CAS) (Benbya and 

Mckelvey 2006; Van Aardt 2004). OSS projects, are considered by researchers as the best 

example of CAS (Muffatto and Faldani 2003; Van Aardt 2004). Complexity is magnified in the 

OSS development context, by the continuous changes in the requirements. As a complex system, 

an OSS project with more diversified processes maintains more robustness, which in turn attracts 

potential developers and users. Secondly, a diversified set of routines allow developers to 

contribute to the project in multiple ways, thereby encouraging developers’ contribution 

(Lindberg 2013). Pentland (1995) and Pentland and Rueter (1994) conceptualized routines as 

grammar to explain how variation in routines allow participants to produce a variety of 

performances. As they explained, “in the same way that English grammar allows speakers to 

produce a variety of sentences, an organizational routine allows members to produce a variety of 

performances” (Pentland and Rueter 1994, p.490). An OSS project with a higher level of routine 

diversity will allow developers to use more routine configurations, thus attracting more 

developers to participate. Thirdly, routine diversity is believed to be an indicator of innovation 

(Nelson and Winter 1982; Pentland and Rueter 1994). A project with higher routine variety 

provides more innovation opportunities, which can attract more developers. A project with low 

routine variety suggests simpler, repetitive routines, and thus failing to attract developers and 

users. Fourthly, routine diversity can facilitate learning. Variation has been considered as 
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foundation for learning in general (Campbell 1960). A diversified set of routines, provide 

participants with more opportunities to learn the “lesson of history” as (Levitt and March 1988) 

suggests. As a result, developers will be more willing to participate in a project in which they can 

learn from various routines that codify experience. Therefore, I expect that: 

H1: Routine diversity is positively associated with project attractiveness.  

5.2.2.2 Relationship between Routine Change and Project Attractiveness  

A project with unpredictability, such as a high level of temporal change, requires a 

substantial effort for participants to learn and adapt (Conboy 2009). Dramatic changes in 

design routines result in information overload (Dierickx and Cool 1989; Hambrick et al. 

2005) and increased design difficulty, and thus hinders participation (Cant et al. 1995; 

Robbins and Redmiles 1996; Subramanyam and Krishnan 2003). Additionally, a high level 

of temporal change indicates a lack of control. Such projects will lose the capability of 

attracting new users and developers. This line of reasoning leads to the following:  

H2: Routine change is negatively associated with project attractiveness.  

5.2.2.3 Control Variables  

A variety of characteristics can affect the popularity of an OSS project. For example, 

the longer a project has existed, the more likely that it will be widely known and 

consequently obtain forks and stars. Number of contributors may also increase  forks and 

stars. Therefore, I control for project age, average number of actors per routine, and 

average number of events per routine.  
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5.3 Method 

To test the model, I use a computational, mixed-method approach to analyze digital trace 

data collected from an open source repository.  

5.3.1 Data Collection 

A web crawler collected digital trace data from GitHub.com, one of the most popular 

open-source code repository sites. A stratified sample strategy was applied to ensure variation 

along the performance variables. Average number of stars a project gets per day (daily stars) and 

average number of forks a project gets per day (daily forks), are proxies for the level of 

attractiveness to users and developers. Random samples of projects are selected from the 

following three groups: (1) projects with more than 10,000 stars and more than 1,000 forks, (2) 

projects whose number of stars is between 5,000 and 10,000 and number of forks is between 750 

and 1,000, and (3) projects whose number of stars is between 1,000 and 5,000 and number of 

forks is between 500 and 750. In total, the development activity data across seven years (January 

2008 to April 2015) from 150 OSS projects were obtained. 

5.3.2 Routine Elicitation  

Each of the 150 projects is represented as a sequence of development activities. Design 

routines are extracted from the activity sequences. As discussed previously, I only focus on two 

kinds of routines: issue handling routines, and pull-request handling routines. A design routine 

begins with either an IssueEvent or PullRequestEvent, followed by events that reference the 

initiating event. A typical handling routine starts when a developer posts a pull request, 

proposing to commit changes to the current code base. Members then comment on the pull 

request, making suggestions, and referencing other pull requests and issues. Core developers, 

determining how well the proposed commits follow the repository’s standards, also review the 
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pull request. The pull request is either merged by core developers into the main source code, or 

rejected. Finally, the pull request is closed. Using a rule-based system, I extracted 92988 routines 

from the 150 projects; with an average of 46 routines per month per project (summary statistics 

of those routines is provided in Table A6 in the Appendix).  

In accordance with the definition of routine diversity as “different configures of the same 

routine type” (Pentland et al. 2011), I clustered the extracted routines into 50 clusters based on 

eight configuration elements: type of open event (issue event or pull request event), open actor 

and close actor (same or different), duration, final state, outcome, number of unique actors, 

number of comments, and number of activities in the routine. Thus, each routine instance is 

coded into one of 50 routine types. 

5.3.3 Constructs and Measurements  

After extracting routines from activity sequences, I constructed a dataset to test the 

proposed model. Table 13 presents the constructs in the proposed model along with their 

measures. Because the unit of analysis is at the project level, I collected and constructed the 

measures for each project.  
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Constructs and Measurements 

Construct Measurement 

Item 

Definition Reference 

Routine 

Diversity 

Activity entropy  Sum of probability of activity 

types at a given period 

(Lindberg 2013; 

Robinson and Deng 

2015) 

Routine 

Change 

HMM difference 

 

Magnitude of changes in varied 

sequences of routines between time 

windows 

(Rabiner 1989; Robinson 

et al. 2013b; Robinson 

and Deng 2015) 

Project 

Attractiveness 

Daily fork and 

daily star 

Average number of forks (and 

stars) a project gets per day 

(Dabbish et al. 2012) 

Project Age Project Age Number of days since the project 

was created on GitHub 

 

Event Size Event Size Average number of events per 

motif of the project 

(Robinson and Deng 

2015) 

Number of 

Actors 

Number of Actors Average number of actors per 

motif of the project 

(Robinson and Deng 

2015) 

Table 13. Constructs and Measurements 

5.3.3.1 Routine Diversity and Routine Change 

I use the Shannon-Wiener index (Shannon 2001), to measure the average routine 

diversity in a project. Shannon’s index has been used to calculate entropy, which has been 

defined as a transversal distribution of activities (Gabadinho et al. 2011). In our context, entropy 

captures the distribution of different design routine variations in a given time.  

I use average Hidden Markov Model (HMM) difference, to measures the degree of 

design routine change in each project. A Hidden Markov model (HMM) is a commonly-used 

probability model for anomaly detection (Rabiner 1989). Each project is divided into data 

windows. For each window, an HMM (λi) is created representing the sequence of activities in the 

design routines. Given two HMMs in sequence, λ1 and λ2, model differencing characterizes the 

change: dλ/dt = (λ2- λ1) / (t2 – t1). This gives the magnitude of change in the transition 

probabilities, for a sequence of data windows — their average is used to measure the magnitude 

of design routine change. 
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5.3.3.2 Project Attractiveness 

I use daily fork (daily numbers of new forks) and daily star (daily number of new stars), to 

measure the project attraction of users and developers. Forks show the popularity of a project 

with users or developers, or how useful this project is perceived by developers (Dabbish et al. 

2012). Creating a star for a project allows the user to create a bookmark for easier access [to the 

project] and show appreciation to the repository maintainers (Github.Com). Crowston and 

colleagues categorized OSS success measures into three types: measurements concerning with 

the process, measurements concerning with project output, and measurements concerning with 

outcomes for project members (Crowston et al. 2003; Crowston et al. 2004; Crowston and 

Howison 2006). A summary of OSS success measures is listed Table A2. Mcdonald and 

Goggins (2013) suggested that “process measures may be more salient than product quality 

measures in distributed source code management systems like GitHub” (Mcdonald and Goggins 

2013, p141). They argued that although studies have attempted to provide success metrics of 

success in OSS projects, the role of a code hosting workspace plays in how performance is 

viewed and measured has not been examined. By conducting interviews with members of 

projects hosted on GitHub, they found that developers used GitHub’s visible metrics of 

contribution (commits, pull requests, forks, etc.) and metrics of activity (commits, forks and 

stars) to measure success. Release quality and bug fixing, which are measures on product quality, 

were rarely mentioned as measures of success. Because measurements of commits and pull 

requests are already included in the development routines, I choose daily fork and daily star as 

the measures of project performance.  
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5.4 Data Analysis 

At the current stage of the research, I have obtained the following data for 88 projects (some 

projects were excluded due to missing performance data): activity entropy, HMM difference, 

fork and star rate, event size, and average number of actors per routine. The descriptive statistics is 

presented in Table 14.  

  Mean SD 1 2 3 4 5 6 7 8 

1. Daily Star 8.22 6.99 —        

2. Daily Fork 1.54 1.25 .77** —       

3. Motif Event Size 4.42 1.92 0.19 0.16 —      

4. Motif Actor 

Number  
2.22 0.58 .29** .26* .87** —     

5. Project Age 

(day) 
1058.15 516.50 -.61** -.55** 0.15 0.13 —    

6. Cycle Time 91.40 175.54 -.28* -0.16 -.28* -.25* 0.01 —   

7.  HMM 1.61 0.79 -0.18 -.31** -0.10 -0.04 0.06 0.17 —  

8. Entropy 1.83 0.87 .48** .47** .61** .63** -0.08 -.46** -0.19 — 

n = 88 

*: P ≤ 0.05. **: P ≤ 0.01.  

Table 14. Descriptive Statistics 

I applied ordinary least-squares (OLS) regression to estimate the two dependent variables: 

fork rate and star rate. Before completing our analysis, assumptions of the multiple linear 

regression model for the ordinary least squares method were checked (i.e., normality and 

multicollinearity among independent variables). Diagnostic checks on residuals were conducted 

to ensure the assumptions of normal distribution of residuals are not violated. I also examined the 

multicollinearity among explanatory variables. 

5.5 Results and Discussion 

Table 15 presents the regression results. Daily forks, is positively and significantly associated 

at the 0.001 significance level with entropy. It is negatively and significantly associated at the 

0.01 significance level with ΔHMM. A similar pattern arises from the other dependent variable, 
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daily star; it is positively and significantly associated at the 0.001 significance level with entropy. 

However, it is not significantly associated with ΔHMM. Thus, there is strong statistical support 

for design routine diversity and change with outcomes of project attractiveness. Additionally, 

variables that significantly affect daily forks and daily stars include workflow size, number of 

actors, and project age. Thus, H1 is supported and H2 is partially supported.  

Variables Daily Forks Daily Stars 

  Model 1 Model 2 Model 3 Model 4 

Constant     1.178*     1.598***     6.294*     6.89** 

Event Size     -.117     -0.228*     -0.615     -1.071* 

Number of Actors     1.068**     0.875*     6.295***     4.89** 

Project Age     -0.001***     -0.001***     -0.009***     -0.008*** 

Entropy      0.497***      2.706*** 

 HMM      -0.378**      -0.844 

R2     0.417     0.561     0.518     0.598 

 R2     0.417***     0.144***     0.518***     0.08*** 

Adjusted R2     0.396     0.534     0.500     0.574 

Observations     88     88     88     88 

*: P ≤ 0.05. **: P ≤ 0.01. ***: P ≤ 0.001 

Table 15. Regression Results 

In the context of OSS development routines, entropy measures routine diversity, while 

ΔHMM measures the magnitude of change. The results reveal that a project attracts more 

developers and users, with a more diversified set of routines. On the other hand, when a project 

experiences dramatic routines changes, it becomes less appealing to developers. Furthermore, it 

would seem that active developers who usually fork projects to contribute, are more sensitive to 

both measures, while more passive people (e.g., users and occasional developers who usually 

‘star” projects just to get easy access) are less sensitive. People that only occasionally interact 

with a project may not even notice the change. Taken to the extreme, an uncontrolled, chaotic 

project with wild swings in routine diversity may be recognized by active developers as a failure, 

which then causes a drop in daily forks; yet, those less aware or affected by the apparent pending 

doom do not significantly alter their daily stars. This line of reasoning rationalizes the findings of 
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Table 15. These findings will contribute to both researchers and practitioners. With the insights 

provided by this study, OSS participants can better steer their projects to attract more developer 

participation. The study also contributes to literature in both OSS development and routines. 

To extend the discussion, I illustrate a speculation about projects types according to the two 

dimensions of entropy and ΔHMM in Figure 14. Chaotic, floundering projects, commonly 

termed thrashing (or death march (Yourdon 2003)), are illustrated in the upper right of Figure 14. 

A maintenance project, with its simple, occasional updates, is the opposite. Regular moderate 

change indicates an innovative, successful project (Klarner and Raisch 2012). While frequent 

changes that have little lasting effect on routine diversity may indicate ineffective management 

interventions (Salvato 2009). Future research is necessary to understand how these dimensions 

affect project type. 

 

Figure 14. Hypothesized Projects Types 

5.6 Contribution  

Building on literatures on routine, this study proposes and tests a model that captures the 

underlying theoretical relationship between routine diversity and change, and OSS project 
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performance. The contributions of this paper are epistemological and methodological. The study 

also provides insights to practitioners for project management.  

The study contributes to literature both in OSS development and in design routines. It 

extends the current understanding of why and how OSS design routines change over time, and 

what is the effect of such diversity and changes on project performance. It also provides a novel 

perspective to predict OSS project performance by routine characteristics. The study makes a 

further methodological contribution by identifying and demonstrating appropriate data analysis 

methods for digital process data. For practitioners, a better understanding on drivers and effects 

of diversity and change of routines can help them to better manage and steer their projects to 

attract and sustain developer participation.  
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6. Conclusion 

6.1 Research Objective Revisited 

Motivated by the importance of OSS development process evolution and gaps in extant 

literature, this dissertation aims to address the following research questions:  

How and why do OSS projects evolve through development processes? 

What are the impacts of development processes’ evolution on project performance?  

To answer these questions, I developed EventMiner, an event-based analysis framework that 

integrates several stream mining techniques. I applied it to two different data sources: stream 

data from software usage and the event stream data of 103 OSS projects on GitHub.com, an open 

source repository. In the first study, I tested and demonstrated the application of the framework 

in the context of software usage behaviors. In the second study, I detected behavioral transitions 

of projects and clustered projects based on their sequential patterns. By doing this, I addressed 

the “how” in the first research question. A future research direction of this study will be to 

interpret the change patterns of OSS development, to explore “why” those changes occur, and to 

build process models on OSS development. In study 3, I developed a factor model to relate 

development process changes with project performance, thus addressing the second research 

question.  

6.2 Limitations  

Like any other research, this dissertation is not without limitations. The findings are based on 

the sample projects, which may not be representative of OSS projects in general. One advantage 

of EventMiner is that the automatic, workflow-based feature makes it easy to scale up the 
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analysis to different contexts and much bigger datasets. One future research direction will be to 

apply EventMiner to other OSS projects from other open source repositories, such as Jazz.net 

and SourceForge.  

In addition, the findings are limited to the data I can obtained from GitHub. A lot of 

communication among GitHub developers is stored in emails, forums, and bug track systems that 

are independent from the GitHub site. Obtaining and analyzing such data for the projects I 

studied will be my next step.  

6.3 The Continuing Research Stream 

I plan to extend my current study in three main directions.  

Firstly, I want to build process models of OSS development. I have demonstrated in study 1 

and study 2 that the EventMiner framework can assist in detecting behavioral transitions and 

sequential patterns in process data. This framework can greatly reduce the analytical effort 

required for process theory building. As I discussed before, study 2 of Chapter 4 only addresses 

the question of how OSS development processes change over time. It is important to 

theoretically interpret those changes and patterns (Newman and Robey 1992; Robey and 

Newman 1996). In the future, I plan to perform “zoom in” and “zoom out” analysis. I will “zoom 

in” at transition points, to examine specific patterns before and after transitions. I will also zoom 

out to look at the bigger picture, by identifying general patterns in development events. Building 

on these analyses, I will theoretically interpret why those patterns occur. I will use the theory of 

distributed cognition as the theoretical lens with which to interpret the results. Robey and 

Newman suggested that the “form of the process model allows researchers who operate from 

different perspectives to enrich their understanding of the process of system development” 

(Robey and Newman 1996). They used five different theoretical perspectives to interpret the 
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sequential patterns identified by their model in this 1996 study. Similarly, the transition patterns 

identified in my dissertation can be explored with and explained by different theoretical lenses.  

I have interviewed several developers who have worked in at least one of the sample projects 

studied in this dissertation. I am planning to conduct a second round of interviews and collect 

more qualitative data from GitHub, such as issue contents and discussion contents. This data can 

provide richer details of the picture of development processes.  

Secondly, I want to theoretically interpret the project clusters identified in study 2. I clustered 

OSS projects into five different groups based on their sequential patterns. A future research 

direction can be to provide project taxonomy based on development patterns. Furthermore, this 

study shows that projects in different clusters perform significantly differently. Therefore, it 

would be interesting to explore the relationship between certain sequential patterns and project 

performance.  

Thirdly, I am currently obtaining more data for the empirical tests needed for the complete 

model in study 3 presented in Chapter 5. Currently, this model only captures the outcomes of 

development process routine characteristics (diversity and change). The new round of data 

analysis will help prepare the testing for the remaining relationships.  

6.4 Contribution 

6.4.1 Contribution to Practice  

For OSS participants, a better understanding of their team’s evolving trajectory, as 

well as what patterns of development activity sequence might indicate DCog effectiveness 

transitions, will help them better steer and control their development activities.  OSS teams 

can use the tool EventMiner to automatically monitor OSS projects in order to detect 
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transitions, and thus improve the performance. OSS project investors can apply the toolset 

to evaluate a project’s previous progress and its ability to manage distributed cognitive 

tasks, and can even use the toolset to predict future success. 

6.4.2 Contribution to Research 

The findings of this study contribute to literature in OSS development, theory of 

distributed cognition, and design routines. Firstly, the study applies and expands the 

concept of distributed cognition to the context of OSS and investigates the phenomenon in 

a quantitative manner. Future studies can build on this concept and further investigate an 

OSS team’s ability to manage distributed cognition processes. This concept can be also 

applied in other areas where work, knowledge, or artifacts are distributed. Secondly, it will 

be the first attempt to investigate OSS success from a process-based view. Previous studies 

have focused mostly on static attributes as determinants of success and have not looked at 

how previous development processes can indicate an OSS project’s performance. This 

study will be the first study to investigate how OSS projects evolve through sequences of 

development events and explore evolving patterns of events associated with project 

performance. It will also be the first study to model dynamics of team development 

behavior in an OSS context. The theoretic findings on OSS project development events can 

contribute to general software development literature. Future research can extend the 

findings and develop theories on software development processes, such as how the 

sequence of the processes and their evolving patterns might relate to project success. 

Finally, it extends the current understanding of why and how OSS design routines change 

over time, and explores the effect of such diversity and changes on project performance. It 
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also provides a novel perspective to understanding OSS development processes and 

predicts project performance by routine characteristics.  

Methodically, this set of studies identifies, demonstrates, and validates appropriate data 

analysis methods for digital process data. 

Finally, the resulting event-based analysis framework EventMiner can serve as both an 

open data repository and an open source toolkit for analyzing process data. This framework 

can facilitate research in OSS development process research and OSS evolution research in 

particular, and in process research in general.  
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Appendix 

Table A1: DCog Metric Table 
 

 
          Definition  Metric 

Social 

distribution 

Distribution of 

social actors 

among the projects 

domain knowledge distribution, application knowledge 

distribution, decision making distribution, role distribution, 

task focus distribution, distribution of access to information, 

communication channels, domain of use, reference system 

distribution(requirement related), constraint sources(RE 

related), percentage of co-development 

Structural 

distribution 

Distribution of 

internal and 

external(material 

or environmental) 

structure 

Internal:  

Representations distribution in the internal minds of the 

developers;  

External:  

Artifacts and ecology including(emails, forums, threads, 

chats, documents, CVS, Mock-ups/Prototypes), existing 

platforms(programs)(RE related), system models(RE related) 

Temporal* Outcome of earlier 

actions influence 

the cognitive 

processes enacted 

in later efforts 

*Interaction between people and artifacts for 

encoding/retrieving (RE) knowledge, interaction of the 

people/artifacts to retrieve/encode archival (RE knowledge), 

interaction mediated by computers instead of face-to-face, 

Use of external consultants, reliance upon the higher 

education user group forum for insights from earlier 

PeopleSoft initiatives  

Table A2. OSS Success Constructs and Measurements 

Category Construct Source Measurement 

Project 

Output 

User satisfaction (Lee et al. 2009) User ratings, opinions 

expressed on project 

software quality (Lee et al. 2009) User ratings 

perceived ease of 

use and useful-

ness 

(Lee et al. 2009) User ratings 

use and user 

interest/popularity 

(Crowston et al. 2003; 

Crowston et al. 2004) 

(Crowston and Scozzi 

2002; Lee et al. 2009), 

Grewal, Lilien et al. 

2006, Stewart et all.06, 

(Méndez-Durón and 

García 2009) 

Subramaniam, Sen et 

al. 2009) 

number of downloads, 

number of page views, 

number of subscribers, 

change of number 

subscribers 
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community 

service quality 

(Lee et al. 2009) User ratings 

project/developme

nt status 

(Comino et al. 2007) 

(Subramaniam et al. 

2009), (Crowston and 

Scozzi 2002) 

Status in the six stage 

model(planning, pre-

alpha, alpha, beta, 

stable) 

Project 

Completion  

(Crowston and Scozzi 

2002),(Giuri et al. 

2010; Mockus et al. 

2002),(Stewart and 

Gosain 2006b) 

number of release, 

number of bugs fixed, 

defect density, size 

achieved, number of 

commits, achieved 

identified goals 

Developer 

satisfaction  

(Crowston and Scozzi 

2002), (Crowston et al. 

2006),  (Ghosh et al. 

2002) (Hertel et al. 

2004) 

Developer ratings 

Process 

 

Level of activity 

 

 

 

 

(Subramaniam et al. 

2009),(Stewart and 

Gosain 

2006b),(Crowston and 

Scozzi 2002),(Stewart 

et al. 2006b),(Beecher 

et al. 2009; Crowston 

et al. 2003; Grewal et 

al. 2006) 

Number of files 

released, number of 

bugs fixed, number of 

CVS commits, 

Proportion of bugs fixed 

 Number of 

developers 

(Beecher et al. 2009; 

Crowston et al. 2006; 

Stewart et al. 2006b; 

Stewart and Gosain 

2006b; Subramaniam 

et al. 2009) 

Number of developers 

Process 

 

Cycle Time (Stewart and Ammeter 

2002), (Crowston et al. 

2006), 

Time taken to fix the 

bugs, movement from 

alpha to beta to stable, 

time between releases, 

time to implement 

features 

Outcomes 

for project 

members 

 

Individual Impact (Lee et al. 2009), 

(Crowston et al. 2003; 

Crowston et al. 2004; 

Crowston et al. 2006) 

Individual job 

opportunities and salary, 

Individual reputation 
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Knowledge 

creation 

 

(Singh et al. 2008), 

(Lee et al. 2009), 

(Crowston et al. 2003; 

Crowston et al. 2004; 

Crowston et al. 2006) 

New procedural and 

programming skills, 

improvement on 

knowledge, skill, 

productivity, 

performance 

 

 

Table A3. Pseudo Codes for Tree Differencing 

 

levelOrder 

public int levelorder (Tree tree, LinkedList<Edge> resultTree, LinkedList<String> 

resultString, LinkedList<String> treeMatrix, LinkedList<Integer> matricsList) { 

  { 

LinkedList<Edge> q = new LinkedList(); 

Iterator<Edge> iter = tree.childIterator(); 

While(the tree still has childInterator) 

{ 

 Push iter.next to the linkedlist; 

} 

..... 

While(the LinkedList q is not empty) 

{ 

Poll an edge from q; 

Get the child tree of this edge; 

Initialize an childIterator for the child tree; 

While(the tree still has childInterator) 

{ 

 Push iter.next to the LinkedList q; 

} 

} 

... 

} 

             treeDiff 

public int treeDiff(LinkedList<Edge> arraya, LinkedList<Edge> arrayb, 

LinkedList<NewEdge> depthTreeA,LinkedList<NewEdge> 

depthTreeB,LinkedList<String> DiffColumn) 

{ 

 While(arraya and arrayb are not empty) 

{  

Compare each item of arraya and arrayb; 

Stop when the first different edge is found; 

} 

 

} 
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Table A4. Git Events 

Event/Activity Description 

CommitCommentEvent A comment is posted to a commit 

CreateEvent A repository or a readme or a branch is created 

DeleteEvent A branch or a tag or a repository is deleted 

DownloadEvent Repository is downloaded 

FollowEvent A user starts to follow another user on GitHub 

ForkEvent A user forks a repository 

ForkApplyEvent A patch is applied in the fork queue 

GistEvent A gist is created 

GollumEvent A Wiki page is created or updated 

IssueCommentEvent A comment is created to an issue 

IssuesEvent An issue is created or closed 

MemberEvent Add a member to the repository 

PublicEvent A  repository is open sourced 

PullRequestEvent A user notifies others about changes he has pushed to a GitHub 

repository 

PullRequestReviewComment

Event 

A review comment made to the pull requests is posted 

PushEvent User submits a commit to a repository 

TeamAddEvent A user is added to a team, or a repository is added to a team  

WatchEvent A user subscribe to a repository to get its updates  

 

Table A5. List of Projects and Associated Cluster 

Cluster 

# 

Projects 

0 ActionBarSherlock, AFNetworking, android-bootstrap, authlogic, AwesomeMenu, 

backbone-boilerplate, capistrano, chosen, courser, docker, fabric.js, Font-Awesome, 

gitlabhq, GMGridView, history.js, jasmine, KineticJS, less.js, moment, netty, 

TimelineJS, phantomjs, platform_frameworks_base, SlidingMenu, wysihtml5, 

socket.io, storm, rubinius 

1 android-bootstrap, annotated_redis_source, annotated_redis_source, async, atom, 

backbone-fundamentals, brackets, cocos2d-html5, CodeIgniter-Ion-Auth, colour-

schemes, ember.js, grunt, hackathon-starter, handlebars.js, highlight.js, intro.js, jade, 

javascript-patterns, Jekyll, jquery-pjax, jquerytools, jScrollPane, masonry, Ghost, 

Modernizr, MWFeedParser, zepto, NewsBlur, normalize.css, phonegap-plugins, 

statsd, OpenTLD, reddit, underscore, Vundle.vim, raphael, sizzle, resque, retire, tag-

it 

2 Android-ViewPagerIndicator, AngularJS-Learning, async, bash-it, coffeescript, 

compass, fastclick, FlatUIKit, idiomatic.js, jQuery-menu-aim, libgdx, metrics, 

onepage-scroll, parallax, Probabilistic-Programming-and-Bayesian-Methods-for-

Hackers, ProjectTox-Core, ratchet, pure, ReactiveCocoa, x-editable, typeahead.js 

3 cw-omnibus, elasticsearch, flight, jqGrid, meteor, node-webkit 

4 bootstrap-sass, devise, discourse, Front-end-Developer-Interview-Questions, 

gitflow, guzzle, Semantic-UI, Telescope 
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Table A6. Summary Statistics of Routines 

 
Issue Handling 

Routines 

Pull Request Handling 

Routines 

Reopen 

Routines 

Number 68,095 21,776 3,117 

Average Duration 53 days 17 days 46 days 

Average number of 

Comments 2.68 2.27 3.83 

Number of Unique 

Actors 2.7 2.5 2.6 

Number of Events 5.4 5.7 7.2 
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