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Mining Frequent Item sets in Data Streams 
 

 
1. Introduction: 

 

From the last decade, data mining has become the key technique to analyze and 

understand the data. Typical data mining tasks include association mining, classification 

and clustering. These techniques help find interesting patterns, regularities and anomalies 

in the data. However traditional data mining techniques can not directly apply to the data 

streams. This is because mining algorithms developed in the past target disk-resident or 

in-core datasets, and usually makes several passes of the data. Mining data streams are 

allowed only one look at the data, and techniques have to keep pace with the arrival of 

new data. Furthermore, dynamic data streams pose new challenges, because their 

underlying distribution might be changing. Recently a number of algorithms focus on 

approximate one-pass algorithms, mining over dynamic data streams, and mining 

changes or trends in data streams. 

 

For data stream applications, the volume of data is usually too huge to be stored on 

permanent devices or to be scanned thoroughly more than once. Both approximation and 

the ability to adapt are key ingredients for execute queries and performing mining tasks 

over rapid data streams. The following figure shows a stream mining application 

example: 
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Figure 1 A stream mining application example 

 

So, the work regarding mining of data streams addresses the need to  

- capture the evolving nature of the data stream 

- handle the bursty nature of the stream with limited resources. 

 

With the pass-through feature of data streams, two types of resources, i.e., memory space 

and computation power, are particularly valuable in the streaming environment. An 

effective algorithm for data streams is expected to have the capability of resource-

awareness, which means that it is highly desirable for all resources in a streaming 

environment to be adaptively allocated. The overall goal is to maximize precision by 

making the best use of available resources. Advanced scheduling and memory 

management algorithms are being developed. 

 

1.1. Real world applications of Stream Data Mining: 

 

Some of the motivating examples for stream data mining are: 
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- A typical ISP (internet service provider) would be interested in finding 

information like how much traffic went on a link in a day from a given set of 
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IP addresses, how much of traffic between two routers was is similar, what are 

the top ten heaviest traffics in a day, what are the variations of data traffic in a 

day, determine the total amount of bandwidth used by each source-destination 

pair. The above queries are very useful in rerouting users to backup servers if 

the primary servers are overloaded and also finding denial service attacks. All 

these questions can be answered by stream mining. 

- There are several emerging applications in sensor monitoring where a large 

number of sensors are distributed in the physical world and generate streams 

of data that need to be combined, monitored and analyzed.  

- Think of terrestrial, atmospheric and ocean surface data collected by satellites. 

The data collect by satellites in huge and mining such data gives enormous 

information about weather conditions, which helps in many ways.  

- Analysis of stock prices, identifying trends and forecasting future values, and 

the above examples involves mining streams of data. 

 

1.2. Problem Definition: 

 

Mining frequent itemsets is an essential step in data mining problems. Formally 

presenting the problem of mining frequent itemsets:  

 

- Let Σ = {i1, i2, ….in}be a set of literals called items. 

- A data stream a set of transactions Ti where Ti is a subset of I. 

- Each transaction is associated with a unique identifier or timestamp. 

- Any subset of I is called an itemset. I = {o1, o2, ….., ok} is an itemset for all 

1≤ i ≤ k, oi Є Σ. 

- A k-itemset is an itemset whose size is k. 

- The number of times an itemset occurs in a stream is called its frequency (fI). 

- The support of an itemset is defined as the ratio between frequency of itemset 

and the total number of transactions. If fI is the frequency of an itemset in a N 

number of transactions then its support is fI/N. 
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- An itemset is called a frequent itemset if its support is greater than a user 

specified threshold value (σ). 

 

1.3. Data Stream Model: 

 

Stream data differs from traditional data used for DBMS applications. In DBMS 

applications data is stored on a disk, it can be randomly accessed at any point of time. But 

the stream data can neither be stored on a disk nor can be accessed randomly. Some main 

differences between stream data and traditional DBMS data are: 

 

- Data elements arrive online, but not from a static storage. 

- Data streams are potentially unbound, and this is the reason why they can not 

be stored on a static storage. 

- Data should be discarded or archived as soon as we process it. To retrieve any 

information regarding past stream data, we need to store all the data, which is 

not possible with limited storage resources. So, we have to merge the data and 

should find new data structures for storing them. 

 

1.4. Outline of the Paper: 

 

In this paper, we discuss the major contributions and current techniques, methods and 

algorithms in data stream mining and discuss prevalent issues. The rest of the paper is 

arranged as follows: In sections 2-7 we discuss some of the major algorithms for mining 

frequent itemsets in data streams. Section 2 talks about frequent itemset mining, section 3 

gives approximate techniques for mining data streams, section 4 gives some sequential 

pattern mining algorithms in data stream mining, section 5 talks about algoritms for 

finding top k-frequent itemsets, adaptive algorithms are discussed in section 6. Other 

related algorithms are also discussed in section 7. Challenges that all these algorithms 

face are explained in section 8. In section 9 and 10 we conclude our discussion. 
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2. Algorithms For mining frequent patterns from Stream Data: 

 

We now present some algorithms to find frequent itemsets in data streams. The 

algorithms that we consider in this paper are systematized in the following figure: 

(algorithms are classified by the broad methodology adopted by them). 

 
   Figure 2: Systematization of Algorithms 

 

2.1. A Simple Algorithm: 

 

This algorithm is proposed by (Karp, Papadimitriou et al. 2003). It is a two pass 

algorithm, first pass finds candidate elements and the second pass removes false 

negatives. This algorithm generalizes the idea of finding a majority element (which 

occurs more than half of the time): Occurrences of two different items are found and 

eliminated from the sequence until only one element remains. The element left can only 

be the majority element and no other element can be a majority element as occurrence of 
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another element is also removed with an occurrence of this finally left element. By taking 

another pass over sequence number of occurrences of this item is found and if it is greater 

than half the size of sequence then it is the majority item. Extending this idea to find 

items with support greater than s: 

 

Given a sequence of length N and a support threshold value s, the goal is to find items 

with frequency greater than sN. K is set of frequently occurring items in sequence. 

- Initialize K to empty. 

- As we read an element from the sequence we either increment its count in the 

set K or insert it into the set with count 1. 

- If at any time the size of K, crosses 1/s ie if |K| > 1/s, counts of all elements in 

the set K are decremented and elements whose count becomes zero are 

removed from the set. 

- By taking another pass over the sequence, the elements which occur less than 

sN times in stream are removed from set K. 

- K gives the set of items with support frequency greater than s. 
 

After first pass the elements which are not in the set K have frequencies less than 

Ns(Karp, Papadimitriou et al. 2003). However, not all elements present in set K after first 

pass are frequent. The false negatives are eliminated with a second pass. In the second 

pass occurrences of elements in K are counted and if the count of any element is less than 

sN then that element is removed from K. As the space of set K is always limited to 1/s the 

space complexity of the algorithm is O(1/s) and for the two passes the time complexity is 

O(N). 
 

When applied to find frequent itemsets(Jin and Agrawal 2005) the algorithm faces 

following problems: Finding candidate k-itemsets with first pass and finding exact k-

itemsets from set K after second pass require large amount of spaces. If each transaction 

is of length l, and if we are interested in k-itemsets then the space requirement would be 

(1/s).lCk and for large values l, the space required would huge. In streaming environments 

a second pass over a stream is not feasible. 
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2.2. In-core Mining: 

 

Based on the above algorithm(Karp, Papadimitriou et al. 2003) a new algorithm for 

finding frequent itemsets was proposed by (Jin and Agrawal 2005). (Jin and Agrawal 

2005) uses (Karp, Papadimitriou et al. 2003) to find 2-length frequent itemsets and then 

apply apriori property to find k-length frequent itemsets. Let s (0 < s < 1) be the support 

threshold value and ε (0 < ε < 1) be a factor that determines the accuracy of the 

algorithm. A lattice L is maintained to maintain the frequent itemsets. Li is the set of all i 

length frequent itemsets. L is the union of all Lis. L =L1 U L2 U..... U Lk. A buffer T is 

maintained to store new transactions. 

 

- Initialize L to empty. 

- If a new transaction t arrives, first it is kept in a buffer T then counts of all 

subsets of t which are in lattice L are incremented by unit count. 

- Any m-length subset p of t is inserted into Lm, under the following cases. 

o If m ≤ 2 or 

o If m > 2 and all the immediate subsets of p (subsets of p with length 

m-1) are present in Lm-1. 

- The size of L1 is bounded by the number of literals. But the size of Lm(m>1) 

can go up to |L1|Cm. Therefore, the size of Lm is bounded by a certain threshold 

(Sthr). This is done by a process called Crossover. 

- The counts of all itemsets in lattice are decremented by unity, and itemsets 

whose count becomes zero are deleted from lattice. This process is called 

Crossover. 

 

The threshold Sthr value depends on how frequently we call routine Crossover. To have a 

bound on the accuracy, initial the number of times Crossover is invoked is reduced by a 

factor of 1/ε. Therefore any itemsets with frequency greater than εsN are included in L. 

Before outputting itemsets with count less than (1 - ε)sN are removed. If user asks for 

frequent itemsets at any instant of time, the itemsets in L are outputted. 
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2.3. FP-Stream Algorithm: 

 

Stream management differs from traditional DBMS applications, as lifetime of stream 

may be very huge sometimes it is never ending and it is not possible to store the whole 

stream. Thereby we may have to merge or dissipate some of the data. This gives rise to 

summary data structures with small memories which can answer most of the queries 

posed upon a stream. Mostly users of applications, which produce stream data, are 

interested in recent changes at a fine granularity and changes in long term at a coarse 

granularity. A summary data structure called Tilted Time Window has been proposed to 

serve this purpose. 

  

Tilted time window (Giannella, Han et al. 2002; MAIDS 2003) class is a general 

structure that does not enforce natural time boundaries. An example to a natural tilted 

time window with time granularities is: 15min, 1 hour, 24 hour, 31 days, 12 months...and 

so on. As new transactions arrive tilted time window tables will grow. In order to make 

tilted time tables compact a window construction strategy is employed. One of the most 

famous constructions of tilted time tables is on logarithmic time scale. If the current 

window holds frequencies of transactions in current quarter, next window holds 

frequencies in next two quarters and next window has next 4 quarters and so on. By this 

mechanism transactions of one year at the finest precision of one hour require log2(365 x 

24) + 1 = 4, and with finest granularity of one quarter log2(365 x 24 x 4) + 1 = 17 

frequency counts.  

 
Figure 3 Tilted Time window (Logarothmic Construction)(Giannella, Han et al. 2002) 

 

Stream is updated into tilted time windows in batches of fixed size. Each batch is 

identified with an integer identifier starting with unity. Let B1, B2,… Bn denote batches of 
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fixed sizes. Bn denotes the latest batch and B1 denotes the oldest. fI(i, j) gives the 

frequency of itemset I in batches from Bi to Bj. At any instant of time there are 

┌log2(n)┐+ 1 number of frequencies. The following sequence of frequencies is kept in 

tilted time windows. 

f(n, n); f(n-1, n-1)[]; f(n-2, n-3)[]; f(n-4, n-7)[]; f(n-8,n-15)[];…… 

f(n, n) gives the finest granularity frequency ie the frequency in current batch. f(n-1, n-1) 

gives frequency in the next level of granularity. Every level has an intermediate window 

which is used in updating tilted time tables. […] denotes the intermediate window in a 

granularity level. 

  

Updating tilted time window: If a new batch Bn arrives and the frequency of an itemset I 

in the current batch be f(B). f(B) replaces f(n, n) from the first level of granularity, and 

f(n. n) is shifted to the next level of granularity. If the intermediate window in the next 

granularity level is free then f(n-1, n-1) is shifted to the intermediate window. If the 

intermediate window is not free and carries a frequency f, then the total frequency f(n-1, 

n-1) + f is merged and shifted to next level of granularity. This process continues until 

there are no further shifts. For example: 

 

Initially:  f(8, 8); f(7, 7)[]; f(6, 5)[]; f(4, 1)[]; 

When B9 arrives: f(9, 9);f(8, 8) [f(7, 7)]; f(6, 5)[]; f(4, 1)[]; 

When B10 arrives: f(10, 10);f(9, 9)[];f(8, 7)[ f(6, 5)]; f(4, 1)[]; 

    //merge f(8, 8) and f(7, 7) and f(8, 7) is shifted to next level 

When B11 arrives: f(11, 11);f(10, 10) [f(9, 9)]; f(8, 7)[ f(6, 5)]; f(4, 1)[]; 

When B12 arrives: f(12, 12);f(11, 11); f(10, 9); f(8, 5) [f(4, 1)]; 

 

Now coming to the FP-Stream algorithm(Giannella, Han et al. 2002), the central idea is 

to find frequent itemsets in every new batch with the help of FP-tree using FP-growth 

algorithm(Han, Pei et al. 2000), and update these frequencies in to tilted time window of 

FP-stream structure. Itemsets in FP-stream structure, whose approximate frequency in the 

given time period are greater than a threshold value are frequent in that given time period. 
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As, storing all the frequencies of all itemsets takes a huge amount of space, therefore 

some of the frequencies are pruned without loss of any knowledge. 

 

Let t0, t1,…. tn be the tilted time windows where tn is the oldest. σ be the threshold 

support value and ε be the error rate. We are interested in finding frequent itemsets in 

time period from tk to tk’ or T = tk + tk+1 + …..+tk’. Let wi be the size of number of 

transactions in time interval ti. fI(ti) denotes frequency of itemset I in tilted time window i. 

One type of pruning is called tail pruning. In this, we drop frequencies fI(tm),… fI(tk’) of 

an itemset I, where m satisfies the following condition: 

 
There is another type of pruning called Type-2 pruning. If I, I’ are two itemsets and I is a 

subset of I’. If we are able to drop frequencies fI(tm), fI(tm+1), …. fI(tn) then we can also 

drop frequencies fI’(tm), fI’(tm+1), …. fI’(tn). Having known the types of frequency pruning, 

let us look at the steps in algorithm. 

 

Algorithm maintains an FP-Stream structure(Han, Pei et al. 2000; Borgelt 2005). The 

parameters σ support threshold and ε the error rate are specified by user. 

 

- Initialize a FP-tree to empty. 

- If a new batch B of transactions gets accumulated, frequent itemsets in this 

batch are found by using FP-tree structure and following FP-growth 

algorithm(Han, Pei et al. 2000; Borgelt 2005). 

- For every frequent itemset I found, there are two possible cases: If I is in the 

FP-Stream structure then, fI(B) (frequency of I in batch B) is added to the 

tilted time window of I in FP-Stream, and tail pruning on frequencies of I is 

conducted. If after tail pruning, the tilted time table of I is empty then the 

supersets of I are not mined (Type-2 pruning). 
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- If I is not in the FP-Stream structure and if fI(B) ≥ ε |B| then I is inserted into 

FP-Stream structure with fI(B) as the only element in I’s tilted time window. 
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- After all itemsets processing all itemsets, FP-Stream is scanned in depth first 

search manner for itemsets I, which are not updated by the new batch, and 0 is 

inserted into I’s tilted time windows and tail pruning is done. 

- In the process of scanning in depth first search manner, if any leaf’s tilted time 

window is empty then that leaf is dropped from the FP-Stream structure. 

Scanning is proceeded to the siblings of dropped leaf if it does not have any 

siblings then its parent is scanned. If all children of a parent node are dropped 

then the parent node becomes the leaf. 

 

FP-stream efficiently maintains frequent itemsets with approximate support estimation 

and with low memory resources. 

 

3. Approximate Mining Frequent Itemset Mining: 

 

Data streams are continuous and high speed flow of data. Stream management differs 

from traditional DBMS applications, as lifetime of stream may be very huge sometimes it 

is never ending and it is not possible to store the whole stream. Thereby we may have to 

merge or dissipate some of the data. This gives rise to summary data structures with 

small memories which can answer most of the queries posed upon a stream. Also we can 

not have as many passes over the streaming data sets as they are huge in number, 

sometimes “we may get only one look”. As said above it is not possible to store the 

whole stream and therefore we have summary data structures, however high-quality 

approximate answers are often acceptable in lieu of exact answers. By taking such 

approximate data structures we also have to give bounds on the support of each pattern. 

Many algorithms have been proposed for approximate mining of frequent itemsets in 

recent years like APstream Algorithm by (Silvestri and Orlando 2005), random sampling, 

histograms, wavelets. There are differences storing the concise data among these 

algorithms. We will discuss all these algorithms according to differences in their 

methodologies (probabilistic, deterministic, etc) and different summary data structures 

they use. 
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3.1. Sampling: 

 

In some data streaming applications data arrival rates are greater than, algorithm 

execution rates. Therefore some of the datasets have to be skipped without processing, so 

that query is processed over a sample of data rather than entire data. By this way 

approximate answers can be produced, but in some cases confidence bounds like 

maximum allowable degree of error in answers can be provided. 

 

The central idea of sampling is frequent items and their support can be estimated by a 

good sample of data. Counts of each itemset are stored in a data structure. As one sample 

rate can not handle a potentially infinite stream. Decrease sample rate to handle more and 

more new data. As sample rate changes also change counts of itemsets accordingly. 

 

Algorithm accepts three inputs, support s, error ε (ε << s) and probability of failure δ. Let 

N denote the current length of stream. At any point of time algorithm can be asked to 

produce frequent itemsets along their estimated frequencies. The answers produced will 

have the following guarantees: 

 

- All itemsets whose true frequency exceeds sN are outputted. 

- No itemset with true frequency less than (s-ε)N will be in output. 

- Estimated frequencies are less than the true frequencies by at most εN. 

 

If user specifies minimum support s to be 0.2% and error to be 10% of s ie, 0.02% then 

itemsets with actual support frequency greater than 0.2% will be in output. Itemsets with 

actual support count less than 0.18% (0.2 – 0.02) will not be in output. The estimated 

frequencies of itemsets will have a minimum error of 0.02%. Such algorithms which 

satisfies these three properties are called ε-deficient synopsis(Manku and Motwani 2002). 
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Algorithm follows the following steps: 

 

- Maintain a set S of entries (e, f), where e is a singleton item and f is estimated 

frequency. 

- Initially S is empty. Sampling rate r is unity. 

- If an incoming item e is already present in S, then we increment its estimated 

frequency by unit count, otherwise we sample it with rate r. 

- Sampling an item with rate r means, the item is selected with probability 1/r. 

- After sampling it the item is selected, a new entry (e, 1) is inserted into S. If 

item e is not selected after sampling then it is discarded. 

- The sampling rate is changed with over time as follows: 

o Let t = [log (s-1δ-1)] / ε. 

o The first 2t elements are sampled with rate r = 1. Next 2t elements are 

sampled with sampling rate r = 2, the next 4t elements with r = 4, and 

so on till the life time of stream. 

- Counts of each items has to be handled according to the change in the 

sampling rate. For each item, diminish count by unit count with a probability 

that follows a geometric distribution. 

- If any items f becomes zero, it is pruned from S. 

 

The above Sampling algorithm computes ε-deficient synopsis with probability 1-δ using 

at most [2log (s-1δ-1)] / ε number of entries(Manku and Motwani 2002). At any time, the 

items whose estimated frequencies are greater than (σ - ε) N gives the frequent itemsets 

with threshold support s. 

 

This algorithm is called Sticky Sampling algorithm, as it sticks elements in a stream if it 

already has an entry in S. Space complexity of Sticky sampling is independent of N. 

 

In many situations sampling based approaches can not give reliable approximation 

guarantees, for example queries involving joins(Babcock B., Babu S. et al. 2002). Sticky 
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sampling performs worse in many cases like zipfian distributions(Charikar, Chen et al. 

2002), because of its tendency to remember every unique element that gets 

sampled(Manku and Motwani 2002). In the process of skipping new data, sticky 

sampling might skip items which are frequent after a long time the algorithm started. 

Sampling methods are not applicable in finding maximum item in a stream. 

 

Many different sampling methods have been proposed: domain sampling, universe 

sampling, distinct sampling, reservoir sampling etc. Different sampling algorithms can be 

found in (Badcock, Datar et al.; Toivonen 1996; Gibbons and Matias 1998; Babcock B., 

Babu S. et al. 2002; Muthukrishnan 2003; Gaber, Zaslavsky et al. 2005). 

 

3.2. Lossy Counting Algorithm: 

 

Lossy counting was proposed by (Manku and Motwani 2002). Lossy counting is a 

deterministic algorithm that computes frequency counts over a stream of singleton items. 

In Lossy counting algorithm , the set of the frequent itemsets in a data stream is found 

when minimum support s and an error parameter ε are given. The data stream is loaded 

into main memory and it is processed in batches. The exact current counts of all single 

items in the data stream are maintained main memory separately. Let N denote the 

number of transactions seen so far. The incoming stream is theoretically divided into 

buckets of size w = ┌1/ε┐. Each bucket is given a label starting from 1. The latest bucket 

bcurrent has label ┌N/ε┐. A data structure D, is maintained to store estimated frequencies 

of items. Each entry in D has the form (e, f, ∆), where e is an element in the stream, f is 

estimated frequency, and ∆ represents maximum possible error in f. 

 

- Initially D is empty. Let a new item e arrives.  

- When there is no entry corresponding to e in D, then a new entry (e, 1, bcurrent-

1) is inserted into D.  

- If the element e is already present in D, then the frequency count is increased 

by unit count.  
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- After each bucket of transactions ie, after ┌1/ ε ┐number of transactions, 

items are pruned if f + ∆ ≤ bcurrent.  

- Justification for having ∆ is if an item is not found in D, then the maximum 

number of times it is pruned from D is bcurrent-1, because D is subjected to item 

pruning for bcurrent-1 times. Therefore if a new item is inserted the maximum 

possible error in its frequency is bcurrent-1, and once the entry is inserted ∆ is 

invariable.  

 

If an item e does not appear in D then its true frequency fe ≤ εN (Manku and Motwani 

2002). Lossy counting computes an ε-deficient synopsis using at most [log(εN)]/ε 

entries(Manku and Motwani 2002). Frequent items with minimum threshold s, at any 

point of time are entries in D, whose estimated frequency f ≥ (s - ε)N. 

 

Lossy counting requires space that grows logarithmically with N. Lossy counting 

performs better than Sticky sampling(Manku and Motwani 2002). Lossy counting can not 

answer queries like frequent items in a particular time period. Lossy counting same as 

Sticky sampling can not find recent frequent itemsets accurately over data, because the 

maximum allowable error increases as the bucket count increases. Items, which are 

frequent recently and did not, occurred in any of the transactions before, and then their 

approximate frequency is estimated with high error (bcurrent-1). Other references to Lossy 

counting can be found in (Chang and Lee 2004; Cormode and Muthukrishnan 2005). 

 

Some more algorithms have been proposed by extending Lossy Counting, some of them 

are mentioned below. 

 

3.3. Frequent Itemsets Algorithm: 

 

We now discuss a Lossy counting based algorithm that finds frequency counts over a data 

stream of itemsets. Frequent Itemsets algorithm was first proposed by (Manku and 

Motwani 2002). The basic difference between Lossy counting and Frequent Itemset 
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algorithms is, lossy counting processes each data set at a time, but the latter processes 

batches of transactions at a time. 

 

We follow same notations of Lossy counting here too. Entries in data structure have the 

form (set, f, ∆), where set is a subset of items, f is estimated approximate frequency and 

∆ represents maximum allowable error in f. Let N be the number of transactions from 

stream seen so far. The algorithm takes two user specified parameters as inputs, support s 

and error ε. 

 

Algorithm follows the following steps: 

 

- Available memory is filled with as many transactions as possible. Then these 

transactions are divided into buckets of equal size w =┌1/ε┐. The space 

available in main memory varies with respect to time. Let β be the number of 

buckets present in memory at any instant of time.  

- Each bucket is labeled with an integer starting from 1. bcurrent gives the current 

bucket id and is equal to ┌N/ε┐. 

- Data structure D is initially empty. 

- For each entry (set, f, ∆) in D, the number of occurrences of set in the current 

bucket are counted, and corresponding f is updated accordingly. If the updated 

entry satisfies the condition f + ∆ ≤ bcurrent then it is pruned form D. 

- If a set whose frequency in the current batch is greater than β then a new entry 

(set, f, bcurrent-β) is inserted into D. 

- If in above two steps, if a set is does not make into D, then all the supersets of 

set need not to be considered. 

 

Similar to Lossy counting, if (set, f, ∆) Є D then the actual true frequency of set fset 

satisfies the condition fset ≥ ε N. sets whose frequency f ≥ (s - ε) N are frequent itemsets 

at any instant of time(Manku and Motwani 2002). 
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The value β should be large enough so as to prune spurious itemsets, because itemsets 

whose occurrence is β+1 times or more, will have an entry in D. Value of β depends on 

the available memory and which varies with time. In this algorithm in each bucket, 

transactions are ordered in lexicographic order, and this step is a bottle neck in terms of 

time. 

 

3.4. AP-stream Algorithm: 

 

There is another new approximate mining algorithm APstream for mining frequent patterns 

over stream data, and is proposed by (Silvestri and Orlando 2005; Orlando, Perego et al. 

2006). Basic idea of the algorithm is to infer frequencies of previously infrequent 

itemsets by interpolating present support values. As interpolation is an approximation and 

therefore upper and lower bounds should be returned too.  

 

APstream is based on Partition Algorithm, which partitions dataset into different partitions 

and calculates local frequent itemsets, and then merges these local frequent itemsets to 

get global answer. The set of all locally frequent patterns is a superset of global solution. 

Process each partition to get local frequent itemsets. With a second pass over the data to 

remove all the false positives from this set of local frequent itemsets or the superset of 

global answer. As we can not store all the streaming data, the second pass of partition 

algorithm is restricted to limited datasets. 

 

APstream (Silvestri and Orlando 2005; Orlando, Perego et al. 2006) extends Partition 

algorithm, and tries to remove problems faced by it. Let x be an itemset. Di gives ith 

partition of data steram, and σi gives support of an itemset in ith partition. σ[1,i) gives 

support of an itemset in all partitions from [1,i) taken collectively. Let an itemset x is not 

frequent in a partition Di, or σi(x) < minsup.|Di|, then the count of x in ith will not be in 

our knowledge as it would not be in our superset of global solution. APstream tackles this 

skew by interpolating present frequency to previous support. Possible cases are:
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σ[1,i)(x) (Past support) σi(x) (Recent support) Action 

Known Known Sum recent support to past support 

and bounds. 

Known Unknown Recount support on recent, still 

available, data. 

Unknown Known Interpolate past support. 

Table 1: Three possible cases in interpolating 

 

In the first case, the new support σ[1,i](x) is just sum of σ[1,i)(x) and σi(x). If σ[1,i)(x) was 

approximated then the bounds to error in σ[1,i](x) remain same as there is no error in σi(x). 

In the second case, we just have to look at new partition to get σi(x). The most interesting 

is the third case, where an itemset was not frequent and it became frequent in present 

partition. In this case, we need to approximate the past support so as to find the complete 

support σ[1,i](x). The algorithm interpolates σ[1,i)(x) as follows: 

 

 
 

In the previous formula the result of the first min is the minimum among the ratios of 

supports of items contained in patterns x in past and recent data and the same values 

computed for itemsets obtained from x removing one of its items.  

 

For example, in a stream with items {a, b, c} let itemset ‘abc’ was not frequent for some 

partitions and became frequent afterwards. Then σ[1,i)(abc) is found in the following way.
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x σi(x) σ[1,i)(x)interp σ[1,i)(x)interp / σi(x) 

abc 6 - - 

ab 12 50 4.2 

ac 19 30 1.6 

bc 20 100 5 

a 25 160 6.4 

b 30 140 4.7 

c 25 160 6.4 

Table 2: Example for interpolating frequency 

 

According to the above formula minimum value is 1.6. Calculating σ[1,i)(abc)intrep= 6*1.6 

= 9.2. We should also give bounds to the support that we are guessing with by the above 

formula. Each support can not be negative. If a pattern was not frequent in a time interval 

then its interpolated support should be less than minimum support threshold for the same 

interval. Support values should follow apriori property: no itemset should have more 

support than any of its subset. If a subpattern is missing during interpolation of a itemset 

it means it has been examined during a previous level and discarded. In that case all its 

supersets can be discarded as well. 

 

APstream can very efficiently find recent frequent itemsets but not the itemsets which were 

frequent at past time. 
 

4. Mining Sequential Patterns: 
 

The input is a set of sequences, called data sequences, each data sequence is set of 

transactions and each transaction is a set of items. All transactions are attached with 

transaction-timestamps. Support of a sequential pattern is the fraction of transactions in 

which it is present. Mining for sequential patterns implies finding sequential patterns 

whose support is at least greater than user specified threshold. Mining sequential patterns 
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has a great number of applications in real world. For example in web-logs, logs with 

userID and the page requested by that user are stored. Each data sequence consists of sets 

of requests of web pages by different users with attached time stamps. By mining 

sequential patterns from web-logs we will be able to say which pages are visited 

consecutively? which web pages are revisited again and again? By predicting sequence of 

user requests of web pages we can intelligently manage our network frame work to 

reduce the traffic. The knowledge from data streams in medical treatments like the 

oxygen consumption, chest volume and heart rate, may indicate or predicate the patient’s 

situation, by discovering knowledge from different sensor data streams, sensors can 

automatically update themselves for efficient management of data flow. 
 

There are extensive research works for mining frequent itemsets and association rules 

from stream data. There is a little research in mining sequential patterns in data streams. 

Sequential pattern mining was first introduced by (Srikant and Agrawal 1996). We now 

discuss some of the sequential pattern mining algorithms in data streams. 
 

4.1. SMDS:  
 

SMDS (Sequence Mining in Data Streams)(Marascu and Masseglia 2005) is based on 

sequence alignment of approximate sequential patterns in data streams. Let I = {i1, 

i2,….im} be a set of m items. A sequence is an ordered list of itemsets. Typically a data 

sequence is denoted by <s1, s2,….sn>. A data sequence <a1, a2,….am> is a subsequence of 

another data sequence <b1, b2, …. bk> if there exists a sequence of integers i1 < i2 < ….< 

in such that a1 bi1, a1 bi2, …, am bim. If a data sequence is of the form S = < (a) (be) (f) (g) 

>, then the itemsets in this sequence are a, be, f and g.  
 

- Stream is processed in batches of fixed sizes. For each batch of transactions 

frequent sequential patterns are extracted and stored in a prefix tree. 

- The data sequences are first clustered according to the similarity between two 

sequences. 
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- If s1 and s2 are two data sequences, then LCS[s1, s2] represent the longest 

common subsequence of s1and s2.  
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- Similarity between two sequences s1and s2, denoted by sim(s1, s2) and is found 

by: 

 
- Algorithm is initiated with one cluster containing the first transaction. Each 

new transaction is compared with each cluster and is inserted into a cluster c if 

there exists sc Є c such that sim(s, sc) ≤ minSim, where minSim is specified by 

user. 

- If no such cluster satisfying the above condition exists then a new cluster is 

made with this new sequence as the only sequence in it. 

- After clustering a batch of sequences, for every cluster c, first two data 

sequences in c are aligned. After the second sequence each other sequence is 

aligned with the previously aligned sequence (will be clear after we take an 

example). This process is called summarizing a cluster. 

- Each aligned sequence is represented in a weighted sequence as follows: 

SA = <I1:n1, I2:n2, …. Im:nm>, where Ik is an itemset, nk is number of 

occurrences of Ik in alignment. Ik has the form <xi1 :mi1, xi2 :mi2, …, xit :mit> 

mit is the number of sequences containing the item xip at the pth position in the 

aligned sequence. 

- All sequences belonging to a cluster are aligned, to get one aligned sequence 

in the above form, and if this aligned sequence is not present in the prefix tree 

data structure then it is inserted into it, otherwise its count is incremented by 

unit count. 

- Prefix tree maintains tilted time windows(Giannella, Han et al. 2002) for each 

itemset, and after each batch of transactions Tailpruning (Giannella, Han et al. 

2003) is done so as to drop frequencies from fine granularities so as to store 

least number of frequencies and without loosing any knowledge. 
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- Prefix tree has a null root. Each path from the root to any node in tree gives a 

sequence. Each node has the support values in corresponding to its sequence 

(example to prefix tree structure is given below). 
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Let us take an example to show how sequences are aligned in a batch. Consider the 

following sequences: S1 = < (a,c) (e) (m,n) >, S2 =< (a,d) (e) (h) (m,n) >, S3 =< (a,b) (e) 

(i,j) (m) >, S4 =< (b) (e) (h,i) (m) >. At first S1 is inserted into an empty set and then S1 

and S2 are aligned to get SA12, and then SA12 and S3 are aligned to get SA13, after that 

SA13 and S4 are aligned to get SA14. The procedure is explained in the figure. 
 

 
Figure 4 Steps in Sequence Alignment (Marascu and Masseglia 2005) 
 

SA14 is the summary of the corresponding cluster. To get frequent sequential patterns, 

summary of each cluster can be filtered with a user specified minimum support. If 

sequence SA14 is filtered with minimum support 2, then we obtain sequence <(ab)(e)(hi) 

(mn)>. Prefix tree for sequences (<(a c)>, <(a d)>, <(b)>, <(c d)>, <(c)(e)>, <(d)(a)>) is 

as follows: 

 
Figure 5 Prefix Tree Construction (Marascu and Masseglia 2005) 
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Let us consider the sequence <(a)>, the support of sequence a is -1, which means that 

sequence a is extracted from more than one cluster. Consider the sequence <(d)(a)>, the 

support of this sequence is 3 meaning it was filtered with minimum support of 3. The 

dotted lines in tree (between c and e and between d and a), shows that the two sequences 

(<(c)(a)>, <(d)(a)>) are not same. 

 

SMDS processes stream in batches. The number of candidates generated in any batch can 

be huge in number, leading to a blocking operator. Related works on sequential patterns 

can be seen in (Agrawal and Srikant 1995; Srikant and Agrawal 1996; Zheng, Xu et al. 

2002; Chen, and et al. 2005; Yu and Chen 2005; Jiang and Gruenwald 2006). 

 

There exists an algorithm which mines sequential patterns over multiple data streams 

proposed by (Chen, Wu et al. 2005). They have proposed a recursive algorithm MILE 

which makes new patterns with the knowledge of existing patterns. 

 

5. Mining k-Top Frequent Items: 

 

Mining frequent items in a data stream has its applications iceberg queries(Fang, 

Shivakumar et al. 1998; Manku and Motwani 2002), iceberg cubes (Manku and Motwani 

2002) and also in finding association rules. Frequent items in market data are highly 

influential in decision making. There are other areas such as data warehousing, and 

information retrieval where frequent items find applications. Knowing frequent items is 

very useful in skew data. In many applications stated above, the frequency count of items 

change quite rapidly. Keeping track of frequent data also arises in application domains 

outside traditional databases. For example, in telecommunication networks such as the 

Internet telephone, it is of great importance for network operators to see meaningful 

statistics about the operation of the network. 

 

Let us assume that we are looking at a data stream of transactions, and at any time we 

want to find top k frequently occurring items. Saying in the formal words, Let S be a 

 
 Page No. 24 W.P.  No.  2008-01-06 

 
 



 IIMA    INDIA Research and Publications 

sequence transactions. Each transaction is a subset of a set of items O = {i1, i2,…. it}. 

Then S = {T1, T2,….Tn} and each Ti Є O. The frequency of an item ik is defined as the 

ratio of number of transactions it appears in and to the total number of transactions. Now 

if items are arranged in decreasing order of their frequencies, then we are interested in 

first k items of that ordered list. 

 

Some of the algorithms that find top k frequent items and majority items (Boyer and 

Moore 1982; Fischer and Salzberg 1982; Misra and Gries 1982; Gilbert, Guha et al. 

2002). We now discuss some new algorithms for finding k-top candidate items in data 

streams. 

 

5.1. Count Sketch: 

 

In algorithm Count Sketch (Charikar, Chen et al. 2002), a randomized sketch structure is 

constructed and updated which guarantees with high probability that the count of  an item 

can be approximated up to a value which is function of the frequencies of infrequent 

items. A heap is maintained to storage frequent items. If a new frequent item arrives and 

the heap is full, then the item with least frequency is removed from heap and the new 

item is inserted. 

 

Given three parameters data stream S, an integer k(the number of top items) and a real 

number ε, if nm denotes the count of an element m in the stream then (Charikar, Chen et 

al. 2002) finds a list of k-elements from stream S, such that every element i in the list has 

ni > (1-ε) nk. t and b be two parameters depending on ε. Let h1, h2… ht be hash functions 

from objects to {1, 2,….,b}(means hi maps any object p to m Є [1,b]) and s1, s2,..st be 

hash functions from objects to {1, -1}. These hash functions can be interpreted as t hash 

functions each containing b buckets.  

 

- For each transaction q in data stream, update hash table as hi[q] += si[q] for all 

i Є [1, t]. 
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- If that transaction q is in heap increment its count. 

- Otherwise add q to heap if median{hi[q].si[q]} i Є [1, t] is greater than the 

smallest estimated count in heap and eject the smallest estimated count from 

the heap. 

The value b depends on ε. t is taken as O(log(n/δ)), where δ the maximum probability 

with which algorithm fails. To estimate frequency of an element median is used because 

median is sufficiently robust to eliminate collisions of high frequency elements. By 

adopting this algorithm we can also find items whose frequencies change the 

most(Charikar, Chen et al. 2002). 

 

5.2. Finding Hot Items in Dynamic Streams: 

 

(Cormode and Muthukrishnan 2005) have proposed an algorithm based on group testing 

for finding k top most frequent items in dynamic data streams (transactions either insert 

or delete an itemset). The algorithm deterministically maintains the majority item in data 

stream and then finds frequent items with group testing (explained later in detail). The 

basic approach of this algorithm is: each item belongs to a different subset of items. The 

count of a subset is incremented or decremented by unity whether an item belonging to 

that subset is inserted or deleted. If a subset count exceeds a certain threshold then there 

will be a frequent item in that subset otherwise there are no frequent items in that subset. 

Now get information from all the subsets to find the global solution. This is exactly is 

idea of group testing: to arrange a number of test, each of which groups together a 

number of the m items in order to find up to k items which test “positive”.  

 

Without loss of generality the items are represented with integers 1,2,….m. The items are 

mapped onto integers 1,2,…W with a family of hash functions. Let P (P>m>W) be a 

prime number, define a family of hash functions fa,b where a and b ranges from [0, P-1]. 

Then fa,b(x) = ((ax+b) mod P) mod W). The non adaptive group testing data structure is 

initialized with two parameters W and T and its other components are:c is a three 

dimensional array of counters, of dimensions TxWx(logm + 1), universal hash functions 
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h, defined by a[1,..T] and b[1,…T]. The values c[i][j][0] are used to store the counts of 

subsets Gi,j. Each subset Gi,j has items Gi,j,l = {x| x Є Gi,j and bit(x,l) = 1}. bit(x, j) gives 

the binary digit at position j, when x is converted into binary number. Initially all values 

in c are initialized to zero. a[1,..T] and b[1,…T] are initialized with uniformly random in 

the range [0, P-1]. If we are looking for top k frequent items, then we need to find items 

whose occurrences are greater than n / (k+1). 

  

- If a input item x, it is determined to which subset it belongs to and the 

appropriate log(m) counters are updated based on bit representation of x. If 

transaction is an insertion then counters are incremented by unit count, 

otherwise if it is a deletion then decremented by unit count. The item count is 

also appropriately incremented or decremented by one. 

 

If (insertion)  

   d = 1;  // if item x is inserted then make d as 1. 

  else 

   d = -1;  // if x is deleted then make d as -1. 

  For i = 1 to T 

   c[i][hi(x)][0] = c[i][hi(x)][0] + d;  

    // increment or decrement the count accordingly. 

   For j = 1 to log(m) 

    c[i][hi(x)][j] = c[i][hi(x)][j] + bit(x, j) * d 

// the counters are updated at the respective 1bits in 

// the binary form of x. 

- To find frequent items, each group is checked whether there exists any 

frequent item in it or not. If the count of a subgroup is less than n/(k+1) 

[minimum frequency of top k frequent items], then there exists no frequent 

item in that subgroup(group testing). Discard those subgroups Gi,j if c[i][j][0] 

≤ n/(k+1). 

- For an item to be frequent should satisfy the following conditions:  
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o The candidate item found in that group must belong to that group ie 

hi(x) = j. 

o The occurrences of frequent item in every group must be greater than 

the threshold, ie, c[i][hi(x)][0] > n/(k+1) for all i. 

- Frequent items should give “positive” to the above tests (group testing). 

 

Choosing W ≥ 2k and T = log2(k/δ), for a user specified parameter δ ensures that the 

probability of all hot items being output is at least 1- δ.(Cormode and Muthukrishnan 

2005). 

 

6. Adaptive Mining: 

 

In stream data mining, data arrives sequentially and processed by an online algorithm 

whose workspace is limited. The system has no control over the order in which data 

elements arrive to be processed, either within a data stream or across data streams. Most 

of the real world data stream applications generate data with very high speeds. For 

example, network traffic management systems for large network. Such systems monitor a 

variety of continuous data streams that may be characterized as unpredictable and 

arriving at a high rate, including both packet traces and network performance 

measurements. Mining data streams has to be online, and we may only get a single look 

at this high speed data. Therefore our mining technique should adapt to the data flow. 

There have been number of techniques to approximately mine data streams(Manku and 

Motwani 2002; Silvestri and Orlando 2005), methods to merge knowledge into small data 

structures like tilted time windows(Giannella, Han et al. 2002; Marascu and Masseglia 

2005). Here we present some adaptive techniques for mining data streams.  

 

6.1. Algorithm Granularity based Mining Techniques: 

 

Our aim is to increase the accuracy of output of an algorithm with limited availability of 

resources like memory, processing speed. Algorithm output granularity(AG) is defined as 

 
 Page No. 28 W.P.  No.  2008-01-06 

 
 



 IIMA    INDIA Research and Publications 

the amount of generated results kept in memory before doing incremental integration in 

order to catch up with the high data rate(Gaber, Krishnaswamy et al. 2003; Gaber, 

Krishnaswamy et al. 2004). 

 

- The algorithm rate (AR) is function of data rate (DR). ie AR = f(DR). 

- The time needed to fill the memory (TM) is dependent on algorithm rate 

(AR). 

- The algorithm accuracy is function in TM. That is if the time needed to fill the 

available memory is enough to the algorithm at the highest data rate without 

any sampling or algorithm granularity, this would be the best solution. 
 

Therefore higher the algorithm granularity, the more accurate the algorithm output will 

be(Gaber, Krishnaswamy et al. 2003).  
 

6.2. Light Weight Frequent Items (LWF): 

  

The algorithm(Gaber, Krishnaswamy et al. 2003) outputs frequent items over a data 

stream. By the definition of AG, AG represents the number of frequent items that the 

algorithm can calculate and the some counters that the algorithm uses. Algorithm follows 

the following steps: 

 

- Data elements are processed one by one.  

- When a new element arrives it is looked up in data structure and if the look up 

is successful then the counter allocated to that item is incremented by unity.  

- If the lookup is a failure, then if any of the counters are free then, new item is 

inserted with counter 1. 

- If the item is new and all the counters are full, now if the present time is more 

than a threshold time then a number of items which are least in count are 

pruned and the new item is inserted. 
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- But if the algorithm time is not greater than a threshold value, then the new 

items are dropped till a threshold time. 
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6.3. Finding Recent Frequent Itemsets Adaptively: 

 

(Chang and Lee 2003) have proposed an adaptive algorithm to find recent frequent 

patterns in a data stream. The algorithm diminishes effect of old transactions on the 

present knowledge thereby effectively mining recent frequent itemsets. The basic ideas 

behind the (Chang and Lee 2003) algorithm are: 

 

1) All itemsets are not frequent at all times. We need not to monitor itemsets whose 

occurrences are much less than a predefined value since it can not be frequent in 

near future. 

2) Insertion of any itemset into a monitoring lattice is done only when the itemset 

becomes frequent enough. 

3) The effect of past transactions should be decayed so as to efficiently find recent 

frequent itemsets. 

4) If an itemset in monitoring lattice (it means it was frequent in past time) becomes 

less significant or its recent frequency is much less than a specified value then it 

has to be pruned from monitoring lattice. 

 

Before explaining the algorithm let us look at some preliminary derivations: 

 

The upper bound for frequency count of any itemset is the minimum of the frequency 

count of its immediate subsets. Let C(e) denote count of itemset e, then 

 

Cmax(e) = min(C(e’)) where e’ is immediate subset of e. (If e is of length n, 

then subsets of e with length n-1 are called its immediate subsets). 

 

Let C(e1U e2) be the count of transactions in which at least one of the itemsets e1 or e2 

occur. The minimum value Cmin(e1 U e2) as follows 
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  Max[ 0, C(e1) + C(e2) – C(e1 ∩ e2)]  if e1 ∩ e2 ≠ Θ 

Cmin(e1 U e2) =  

      Max[ 0, C(e1) + C(e2) – |D|]   if e1 ∩ e2 = Θ 

where |D| is the total number of transactions in D. 

 

The minimum count of an itemset can be found as follows: 

 Cmin(e) = max({Cmin( si U sj)} | for all si, sj immediate subsets of e). 

As we have lower and upper bounds for counts of an itemset therefore, the difference 

between them gives the estimated error.  

 

Having some basic idea, let us get back to the algorithm. The algorithm maintains a data 

structure called monitoring lattice in which maintains entries of the form (cnt, err, MRtid) 

for its corresponding itemset e. d is a given decay rate. D denotes the stream data. |D| 

denotes the number of transactions. Each transaction is provided with a transaction id 

which starts from one. k denotes the current transaction id. 

 

- Initialize monitoring lattice to empty. 

- For each new transaction Tk in data stream total number of transactions |D| is 

updated as  

|D|k = |D|k-1* d + 1 

- The itemsets in monitoring lattice (cntpre, errpre, MRtidpre), that are present in 

the new transaction are updated to (cntk, errk, MRtidk)as follows: 

cntk = cntpre * d(k - MRtidpre) + 1. 

errk = errpre * d(k - MRtidpre)

MRtidk = k. 

- As the cnt of itemsets in monitoring lattice changes, we prune those itemsets 

whose count values (cntk) are less than a specified threshold. This threshold 

value should be less than minimum support Smin specified by user. 
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- If any new 1-itemset (itemset with unit length) appears in transaction Tk, then 

it is immediately inserted into monitoring lattice with corresponding entry (1, 

0, k)[cnt = 1, err = 0, MRtid = k]. 

- For any n-itemset (itemset with length n) (n≥2), if the estimated support 

(cnt/|Dk|) is greater than a specified threshold Sins, then it is inserted into 

monitoring lattice with corresponding entry values, cnt = Cmax(e), err = 

Cmax(e) - Cmin(e), MRtid = k. 

- An itemset in monitoring lattice is frequent if its support is greater than a 

predefined minimum support Smin,  

Support is given by [cnt * d(k - MRtid)] / |D|k
Error in support is given by [err * d(k - MRtid)] / |D|k. 

 

The complete details of the algorithm can be found in (Chang and Lee 2003). 

 

7. Other Related Algorithms: 

 

7.1. Mining Closed Frequent Itemsets: 

 

An itemset is closed if none of its proper superset has the same support as it has. Frequent 

itemsets can be derived from the set of closed itemset as every frequent itemset I must be 

a subset of one or more closed frequent itemset, and I’s support is equal to the maximal 

support of these closed itemsets that contain I. An algorithm for finding closed frequent 

itemsets has been proposed by (Chi, Wang et al. 2004). 

 

A Closed Enumeration Tree similar to prefix tree maintains closed frequent itemsets and 

itemsets that form a boundary between closed frequent itemsets and other itemsets. A 

sliding window slides maintains recent itemsets. The closed enumeration tree is 

incrementally updated(Chi, Wang et al. 2004) when newly arrived transactions change 

the content of the sliding window. Other related works for mining closed itemsets are 

(Zaki and Charm 2002). 
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7.2. Path Traversal Patterns: 

 

Traversal patterns can be best explained with an example of web mining. Consider a 

network monitoring application which maintains the web page addresses that are visited 

by an internet user in the exact order that the user visits. These patterns will have forward 

as well as backward references. A backward reference means that page is revisited by the 

same user. A maximal forward reference means a forward reference sequence without 

any backward references. Finding frequent traversal patterns can be viewed as finding 

frequent maximal forward references.  

 

(Li, Lee et al. 2004) have proposed an algorithm for mining frequent traversal patterns in 

a data stream. This algorithm is derived from FP-growth algorithm(Han, Pei et al. 2000). 

Algorithm maintains a Stream Header table and Stream FP-tree. Header table contains 

starting items of a pattern. The web click sequences by all users are divided into maximal 

forward references. These maximal forward references are then inserted into Stream FP-

tree with starting of pattern same as the header item of tree. 

 

Other frequent tree pattern mining algorithm is proposed by (Hsieh, Wu et al. 2006). 

 

7.3. Regression Based Mining: 

 

Discovering temporal relations among huge databases has its applications in market 

basket analysis, for understanding customer behaviors by finding frequent sets of items in 

market transactions. Most of the methods designed for mining frequent sets in traditional 

databases can not be directly applied to mine data streams due to several obvious reasons. 

A regression based scheme is given by (Teng, Chen et al. 2003) for mining temporal 

pattern mining from data streams. FTP-DS(Frequent temporal patterns of Data streams) 

algorithm, proposed by (Teng, Chen et al. 2003) analyses synopsis of frequency 

variations of frequent temporal patterns by a regression. It processes stream slot by slot. 
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The data of new slot is scanned with the previous candidate patterns and a set of 

candidate patterns for next time slot is created. 

 

There are many other algorithms related to frequent pattern mining in data streams, like 

Hierarchical Heavy hitters (Cormode, Korn et al. 2003), Sliding window queries over 

data streams (Hammad, Aref et al. 2003) Load shedding for Aggregation queries 

(Babcock B., Babu S. et al. 2002; Babcock, MayurDatar et al. 2004). Research issues 

regarding stream mining can be found in (Domingos and Hulten 2001; Aggarwal 2002; 

Babcock B., Babu S. et al. 2002; Ganti, Gehrke et al. 2002; Garofalakis, Gehrke et al. 

2002; Indyk, Datar et al. 2002; Zhu and Shasha 2002; Dong, Han et al. 2003; Golab and 

Ozsu 2003; Koudas and Srivastava 2003; Muthukrishnan 2003; Gaber, Krishnaswamy et 

al. 2004; Gaber, Zaslavsky et al. 2005; Jiang and Gruenwald 2006). 

 

8. Challenges in Stream Data Mining: 

 

• Unbounded requirement of Memory: 

Data streams are potentially unbound and the amount of storage requirements to 

process such data can grow unboundedly. For example, if the data has many items and 

each transaction in stream has a considerable length of items, then just enumerating 

possible itemsets it self takes lot of time and not only that maintaining counters to all 

such itemsets will definitely require huge amounts of spaces. 

 

• We may get only one look: 

In any streaming environment large volumes of data gets produced continuously at high 

rate over time. These huge data can not be stored on any static storage as discussed 

above. It is highly impossible to have another look at stream data. At most we can only 

have another pass over recent data and whose bounds are very close. 
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• Retrieve knowledge from discarded data: 

As we can not store all the stream data we have to discard data elements after we 

process them. If a user is interested in knowledge regarding past data, there has to be a 

mechanism to retrieve knowledge of discarded data by some estimation or 

approximation. 

 

• Speed at which data arrives Vs Speed with which Algorithm processes: 

In any data stream large volumes of data that are being continually produced at a high 

rate over time. New data is constantly arriving even as the old data is being processed; 

the amount of computation time per data element must be low, or else the latency of the 

computation will be too high and the algorithm will not be able to keep pace with the 

data stream. Most of the time, we might have to discard data without processing it but 

we do not know which data to process and which to discard? 

 

• Adapting to data: 

Mining data streams is done online. The algorithm that mines a stream data should 

adapt itself to the pace at which data arrives. Data adaptation techniques to catch up 

with the high-speed data stream and at the same time to achieve the optimum accuracy 

according to the available resources have to be designed. 

 

• Approximate answering: 

User can pose queries on past data which is discarded so we need to retrieve knowledge 

from discarded data. As storing streams is not possible we have to merge some of the 

data. This gives rise to the concept of summary data structures with small memories. 

Summary data structures can only find approximate answers, however high quality 

approximate answers are often acceptable. With the approximate answers we should 

also provide bounds on the errors in answers. 
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9. Discussion: 

 

We have discussed some of the major algorithms for mining frequent itemsets in stream 

data. Most of the algorithms that we discussed only talk about mining frequent itemsets 

in recent data. Many of them (Charikar, Chen et al. 2002; Manku and Motwani 2002; 

Chang and Lee 2003; Karp, Papadimitriou et al. 2003) fail if we ask for knowledge about 

frequent itemsets in the stream at a past time or in a particular interval of time. Few 

algorithms(Karp, Papadimitriou et al. 2003; Jin and Agrawal 2005) require second pass 

over data. Algorithms like (Giannella, Han et al. 2002; Manku and Motwani 2002; 

Marascu and Masseglia 2005; Silvestri and Orlando 2005) process the transactions in a 

batches or buckets of fixed size. In any real world stream mining application, fixing batch 

size is not realistic. If we only process transactions batch wise, then we are restricting 

stream to only have fixed multiples of transactions in fixed intervals of time and it is not 

going to be the scenario, as the algorithm has no control over the stream, and number of 

transactions in a fixed interval of time can not exactly be the multiples some fixed batch 

size. So, to process transactions in batch wise, the batch size should not be fixed as it is 

more realistic. 

 

10. Conclusion: 

 

There are many emerging applications which generate stream data. We have discussed 

the need of stream data mining by exemplifying some real world applications. Related 

work, algorithms for mining frequent itemsets and the challenges faced by them have 

been discussed. We classified all these works according to their methodology. However, 

there is no algorithm that uses variable batch size processing. 
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