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Abstract

This thesis has addressed the design and development of an integrated system for real-time traffic

forecasting based on machine learning methods. Although traffic prediction has been the driving

motivation for the thesis development, a great part of the proposed ideas and scientific contributions

in this thesis are generic enough to be applied in any other problem where, ideally, their definition

is that of the flow of information in a graph-like structure. Such application is of special interest

in environments susceptible to changes in the underlying data generation process. Moreover, the

modular architecture of the proposed solution facilitates the adoption of small changes to the

components that allow it to be adapted to a broader range of problems. On the other hand, certain

specific parts of this thesis are strongly tied to the traffic flow theory.

This thesis has been developed within the context of Aimsun Live —a simulation-based traffic

forecasting solution, developed and marketed by Aimsun—, being the main aim to improve Aimsun

Live products as well as to cooperate in a mutually beneficial relationship between simulation-based

and data-driven forecasting solutions.

The focus in this thesis is on a macroscopic perspective of the traffic flow where the individual road

traffic flows are correlated to the underlying traffic demand. These short-term forecasts include

the road network characterization in terms of the corresponding traffic measurements —traffic flow,

density and/or speed—, the traffic state —whether a road is congested or not, and its severity—,

and anomalous road conditions —incidents or other non-recurrent events—. The main traffic data

used in this thesis is aggregated data coming from inductive-loop detectors installed along the

road networks. Nevertheless, other kinds of traffic data sources could be equally suitable with the

appropriate data preprocessing.

The simulation-based platform —where multiple traffic models are implemented— is Aimsun Next

and the corresponding real-time version for traffic management is Aimsun Live. Furthermore,

the proposed data-driven forecasting system is planned to be linked to the simulation-based traffic

model in a mutually beneficial relationship where they cooperate and assist each other. An example

is when an incident or non-recurrent event is detected with the proposed methods in this thesis,
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Abstract

then the simulation-based forecasting module can simulate different strategies to measure their

impact.

Part of this thesis has been also developed in the context of the EU research project “SETA”

(H2020-ICT-2015) whose aim is the creation of a ubiquitous data and service ecosystem for a better

metropolitan mobility and the analysis of how short-term prediction can be improved through the

use of multiple, highly diverse sources.

The main motivation that has guided the development of this thesis is enhancing those weak points

and limitations previously identified in Aimsun Live, and whose research found in literature has

not been especially extensive. These include:

1. Autonomy, both in the preparation and real-time stages.

2. Adaptation, to gradual or abrupt changes in traffic demand or supply.

3. Informativeness, about anomalous road conditions.

4. Forecasting accuracy improved with respect to previous methodology at Aimsun and a typical

forecasting baseline.

5. Robustness, to deal with faulty or missing data in real-time.

6. Interpretability, adopting modelling choices towards a more transparent reasoning and under-

standing of the underlying data-driven decisions.

7. Scalable, using a modular architecture with emphasis on a parallelizable exploitation of large

amounts of data.

The result of this thesis is an integrated system —Adarules— for real-time forecasting which has the

ability to make the best of the available historical data, while at the same time it also leverages the

theoretical unbounded size of data in a continuously streaming scenario. This is achieved through

the online learning and change detection features of the system along with the automatic finding

and maintenance of patterns in the network graph. In addition to the Adarules system, another

result is a probabilistic model that characterizes a set of interpretable latent variables related to the

traffic state based on the traffic data provided by the sensors along with optional prior knowledge

provided by the traffic expert following a Bayesian approach. On top of this traffic state model, it

is built the probabilistic spatiotemporal model that learns the dynamics of the transition of traffic

states in the network, and whose objectives include the automatic incident detection.

The obtained results conclude:

• Better accuracy than current solution at Aimsun Live.

ii



• Better adaption to changes.

• Efficient and robust to missing values.

• Anomaly detection.

• Informativeness.

• Scalable.
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1 Introduction

1.1 The need for more efficient traffic management

In modern society, human mobility is characterized by an apparently never-ending growth. This

has motivated a broad study in the field including aspects of its measurement and modelling [26].

Understanding the process by placing the correct modelling assumptions is a crucial step to unveil

the underlying patterns that can explain the process [108]. Some empirical studies, e.g. [45, 210],

have found reasonable results in validating human mobility patterns. This finding of patterns is

fundamental to know to which extent such process is predictable [228] and, actually, it does follow

some recognizable patterns [217] that can be used to approach the problem.

This continuous and rapid growth of the transportation systems to meet the users’ mobility de-

mand has been especially prominent in regards to the road transportation system with the private

car as the main protagonist, which has lead to severe problems such as traffic congestion and en-

vironmental pollution in the large urban areas. However, despite the fact that the international

community is gradually getting sensitized about the serious environmental problem, there is still a

long way to go. There is scientific evidence about the human activities impact into the climate due

to greenhouse gases (GHG) emission and the possibility to reach a climate tipping point [132].

In the last report [83] from the European Environment Agency (EEA) it is analyzed how GHG

emissions in the EU were cut down by 22.4% between 1990 and 2016 in compliance with the inter-

national treaties of 1992 United Nations Framework Convention on Climate Change (UNFCCC)

and the 1997 Kyoto Protocol, and which is on track to achieve the EU reduction commitment of

20% GHG by 2020 compared with 1990. In spite of it, looking deeper into the report it can be seen

that GHG emissions from road transport —which was responsible for almost 73% of total GHG

emissions from transport including aviation and international shipping during 2015— constitute

the second largest key source category in terms of CO2 emissions share during 2016 in the EU as

can be seen in Figure 1.1. Even more, it can be also observed how all the large key source cate-

gories have decreased the CO2 emissions from 1990 to 2016 —in terms of absolute change of CO2

emissions exclusively—, with the exception of the road transportation sector which has raised the
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CO2 emissions more than 23%. In this sense, these emissions coming from the road transportation

sector will need to fall by 68% by 2050 in order to meet the 60% GHG emission reduction target

of the 2011 Transport White Paper [82].

Another major problem derived from the rapid and constant growth in transport demand is traffic

congestion, which not only has consequences at the individual level by increasing travel times as

the infrastructure efficiency is reduced, but it also rises fuel and energy consumption. In the end,

it further worsens the situation with a significant increase in the environmental pollution and its

impact on public health and quality of life [47, 158]. Furthermore, in 2018, an estimated 55% of

the total world’s population (7.46 billion) is residing in urban areas, whereas the United Nations

estimation for 2050 is that 68% of the estimated total world’s population (9 billion) is projected

to be urban [249]. How this affects the mentioned environmental problems is subject of ongoing

research [88]. Thus, the aforementioned problems can only be exacerbated in the long-term if no

appropriate measures are taken in order to reach a sustainable transportation where the role of the

private car is still somewhat uncertain [101, 193].

Among such measures, a distinction could be made between behavioral and technological changes.

In general, behavioural changes are aimed to reduce the transport demand or promoting a shift to

less polluting modes of transport, while technological solutions are aimed at reducing the negative

impact of passenger-kilometer (pkm) which include a shift away from transport based on fossil fuels,

and the implementation of smart traffic management strategies. The final goal of these strategies

is to improve environmental quality, urban quality of life and destination accessibility [231].

The required traffic management to address this challenge must be responsive and adaptive and

cannot be limited only to classical measures such as a continuous increase of the infrastructure

supply. Instead, technology and solutions based on research, development and innovation must

play an important role. Certainly, the EU in its Transport White Paper [82] highlights action

points with the aim to reach a reduction of at least 60% of GHG emissions in the transport sector

by 2050 with respect to 1990 and summarizes technology-based solutions as follows:

Technological innovation can achieve a faster and cheaper transition to a more efficient

and sustainable European transport system by acting on three main factors: vehicles’

efficiency through new engines, materials and design; cleaner energy use through new

fuels and propulsion systems; better use of network and safer and more secure operations

through information and communication systems.

It is therefore clear that utilization of information and data has a leading role. For instance,

recently the European Parliament and the Council of the European Union have issued a directive
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Figure 1.1: CO2 emissions for EU-28 and Iceland. Data source: [83].
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[240] urging member states to establish a new legal framework for the deployment of Intelligent

Transport Systems (ITS) in the field of road transport and for interfaces with other modes of

transport. In this framework, the concept of ITS is described as:

Advanced applications which without embodying intelligence as such aim to provide

innovative services relating to different modes of transport and traffic management and

enable various users to be better informed and make safer, more and ‘smarter’ use of

transport networks. [They] integrate telecommunications, electronics and information

technologies with transport engineering in order to plan, design, operate, maintain and

manage transport systems.

In this way, traffic management can be seen as a combination of measures implemented with the

aim of preserving traffic capacity and improve the security, safety and reliability of the overall road

transport system. Therefore, ITS play a very important role in the reduction of road fatalities

[265]. In addition, ITS also contribute to environmental and climate change objectives. Their main

applications, as stated in [59], are:

• Transport demand / Mode choice

– (multi-modal) travel information, journey planning

– car-sharing, ride-sharing

– road charging, integrated ticketing

– access management

– logistics, fleet management (avoidance of empty runs)

• Efficiency of traffic

– traffic management

– travel information, navigation

– public transport priority

• Driver behaviour

– eco-driving support, navigation

A specific example can be found in the EU EasyWay project [79], which pursues to contribute to the

objectives of the European Commission’s ITS Action Plan and the aforementioned ITS Directive

in the way to achieve a sustainable road transport system. In this regard, it identifies a set of

necessary ITS European services to deploy: Traveller Information, Traffic Management and Freight

and Logistic Services.
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In particular, Traveller Information Services is a key element of the ITS ecosystem as they aim to

provide with comprehensive real-time and predictive traffic information, allowing thus to perform

suitable travel decisions before the departure time (pre-trip information) and during the journey

(on-trip information). It has been demonstrated that the use of this kind of information on drivers’

decisions has a beneficial impact on network performance, as can be seen in some studies with

real data. For instance, in [137] it is concluded for a case study in Amsterdam that if drivers

are provided with descriptive pre-trip information and this information is targeted such that the

drivers are given opportunities to change their departure time, routes and/or their entire trips

then this kind of behavior would result in improved network performance in terms of throughput,

congestion length, and average network speeds. Similar conclusions are found in other studies [3,

34, 221], with the additional finding that there is a positive correlation between the tendency to

choose riskier routes —i.e. those characterised by a lower average but greater variance of travel

time— and the experience of the road user with such routes; which means that travelers in the

study were found to be more reluctant to be influenced by pre-trip information if they had more

experience with the routes. On-trip information and traffic forecasts are also advantageous for the

road user, for instance, intelligent devices are able to calculate more efficient routes and reduce the

travel time. Furthermore, it could be a very valuable information for emerging V2X-based traffic

control systems [134], which could also serve for the route planning of self-driving cars.

This generated information is not only useful for the driver agent, but also for the traffic control

agent in the framework of an Advanced Traffic Management System (ATMS) within an ITS. Traffic

Management is defined as an overall plan of strategies and tactical actions for accommodating

traffic flow in an efficient, effective and safe manner during recurrent and non-recurrent events on

the transportation network, and a subset of them could comprehend:

• Lane / line control,

• Speed control,

• Ramp metering,

• Hard shoulder running,

• Incident warning and management.

Future (road) transport systems and mobility patterns are probably subject to substantial changes.

These changes will also depend on the advent and eventual integration of connected (V2X) and

autonomous vehicles (CAVs), and if car-pooling will be widely adopted [229]. There are already

studies that analyze what such impact will be [21, 238]. The future is uncertain, but we are

increasingly able to measure more things, as well as the data availability is vastly increasing. This

will probably lead to data-driven and evidence-based procedures to take a more significant role into
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the field, and more especially favoring those with the ability to detect, react and being adaptable

to changes and new scenarios.

1.2 Real-time traffic forecasting

As previously stated, Advanced Traveler Information System (ATIS) and Advanced Traffic Man-

agement System (ATMS) are key components within the ITS ecosystem. In order to serve properly

to this end, accurate and real-time traffic forecasts are required. These short-term forecasts include

the road network characterization in terms of the corresponding traffic measurements —traffic flow,

density and/or speed—, the traffic state —whether a road is congested or not—, and anomalous

road conditions —incidents, unexpected roadworks, and other non-recurrent events—.

This forecast information has a great value by itself to travelers and traffic managers, but its

value can be further enhanced if the information —network state predictions, incidents…— are

employed to feed a simulation-based traffic model with the aim of reproducing multiple traffic

management strategies and assessing quantitatively their ability to mitigate congestion before their

implementation in the field, all this in the realm of a complete decision support system [244].

Simulation-based traffic models are explicitly programmed to mimic the causality effects over the

entire traffic network. Although they need comprehensive knowledge about the traffic network and

tune a wide amount of parameters, and spite of their high computational cost, they are extremely

useful tools for the traffic management as they allow to test “what-if” scenarios and produce

measures of effectiveness associated with different traffic control strategies.

The issue with simulation-based traffic models for short-term traffic forecasting is that they demand

large amounts of computational resources which can be challenging for real-time operation when

either the traffic network is large-scale or the forecasting horizon is large —e.g. up to one hour—.

Moreover, short-term traffic forecasting is a complex process where traffic demand interplays with

the available traffic supply and it is subject to different kind of changes and influenced by external

factors. For such cases simulation-based models may not perform as well as expected, and it is the

context where a machine learning (ML) approach may perfom a good job in a effective and efficient

manner. However, the strength of simulation-based forecasting resides in their ability to provide a

full picture of the traffic network state with a high level of detail when all required information is

known and modelling assumptions are reasonably met —e.g. behavioural parameters—. This makes

simulation-based solutions potentially more suitable to handle non-recurrent traffic conditions when

similar historical data is hardly available for a ML solution, and also having the possibility to

simulate different response plans to measure their impact on the network.
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1.3 Thesis objectives

This thesis addresses real-time short-term traffic forecasting with the support of machine learning

methods, and focuses on an aggregated macroscopic view where the road traffic flows are correlated

to the underlying traffic demand. These short-term forecasts include the road network characteriza-

tion in terms of the corresponding traffic measurements —traffic flow, density and/or speed—, the

traffic state —whether a road is congested or not—, and anomalous road conditions —incidents or

other non-recurrent events—. The main traffic data used in this thesis is aggregated data coming

from inductive-loop detectors installed along the road networks. In spite of their pitfalls, the main

reason is that they have become the most widely used sensor in traffic management systems since

their introduction in the early 1960s and such the large source of available data. Nevertheless, other

kinds of traffic data sources could be equally suitable with the appropriate data preprocessing.

Furthermore, this approach will be linked to simulation-based traffic models in a mutually beneficial

relationship where they cooperate and improve each other. The simulation-based integrated plat-

form with multi-tier traffic models —macroscopic, mesoscopic and microscopic— is Aimsun Next

and the corresponding real-time version for traffic management is Aimsun Live, which are developed

by Aimsun, a Siemens company [5]. It must be noted that even though contributions to improve

Aimsun products have been a driving motivation, we propose ideas and scientific contributions

that are generic enough to be applicable to other complex monitoring and control environments,

not necessarily traffic-related. Part of this thesis has been also developed in the context of the EU

research project “SETA” (H2020-ICT-2015) [61] which is creating a ubiquitous data and service

ecosystem for a better metropolitan mobility and the analysis of how short-term prediction can be

improved through the use of multiple, highly diverse sources.

In order to achieve the goal of a self-adaptive, fault-tolerant system for road network traffic predic-

tion using machine learning, we need to present context and current shortcomings.

1.3.1 The Aimsun context

The Aimsun transport modelling software was originally the focus of a multi-year research project

at the Technical University of Catalonia —Universitat Politècnica de Catalunya (UPC)—, and cur-

rently it is in its 8th commercial major version. Aimsun has grown from the stated aim of the orig-

inal acronym “Advanced Interactive Microscopic Simulator for Urban and Non-urban Networks”

[87] to a fully integrated application that fuses different traffic models with multiple levels of de-

tail —travel demand modelling, macroscopic functionalities and the mesoscopic-microscopic hybrid
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simulator—. They are currently known as Aimsun Next —the offline traffic modeling software—

, and Aimsun Live —the decision support system for real-time traffic management based on the

former—. The Aimsun company was recently acquired by Siemens with the aim of being integrated

into a wide ITS ecosystem.

As stated in [53], the first versions of Aimsun relied only on simulation-based traffic models within

Aimsun Live. These were considered to deal better with non-recurrent events because fluctuations

in supply could be explicitly factored in and their impact under different scenarios could be quan-

tified. These scenarios could be comprised of different actions —-e.g. a lane closure, rerouting with

variable-message signs (VMS) or speed limit variation—- and they could be activated manually or

automatically based on rules which constantly process detection data. On the other hand, recur-

rent or predictable incidents could be managed using according scenarios picked from a scenario

catalogue and already implemented in the simulation model. In the end, different measures of

effectiveness (safety, environmental, economic, operational or a combination of these) could be

used to compare the response strategies and anticipating the consequences of those actions. These

results ultimately allow the operator to quickly see, first, if any traffic control strategies improve the

situation compared to the “do-nothing” case and if yes, which ones offer the best performance.

The current scene has moved towards a combination of traffic simulation along with machine

learning methods. This combination of methods is called Network Prediction System (NPS) in the

Aimsun context, and it provides traffic forecasts for the full network including traffic flows, speeds,

delays and travel times among others. A schematic view of the functional structure is shown in

Figure 1.2. In this way, the analytical prediction subsystem based on machine learning methods can

enhance the simulation-based subsystem by providing accurate real-time forecasts —in a process

called dynamic demand adjustment— which are then extended to the entire network. Incident

detection and anomalous —i.e. non-recurrent— events identified by the ML-based subsystem are

also extremely valuable for the simulation-based subsystem in order to properly reproduce the

scenarios and the different traffic management strategies.

1.3.2 Identified limitations

The Aimsun Live architecture has been deployed successfully in multiple real projects as in San

Diego [9], Lyon [10], Madrid [7], Gold Coast [6], Sydney [8] or Leicester [11]. Nevertheless, several

challenges and problems have been identified during the deployment, and also during the lifetime

and maintenance of these traffic management applications. Namely:

Issue 1. Lack of consideration of the underlying traffic dynamics: The procedure for
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Figure 1.2: Functional structure of Aimsun Live Network Prediction System (NPS). Source: [5].

fitting the predictive ML models was too fixed and it did not fully consider the traffic dynamics of

the transport network at hand. The design criteria was based on building a predictive ML model

for every location with detection data, every forecasting horizon and every time of the day. For

this reason, it could happen that a vast amount of ML models needed to be built depending on

the number of detection locations, forecasting horizons —it could be assummed to be 15, 30, 45

and 60 minutes in direct forecasting—, and the number of time steps —if time is discretized in 5

minute slots, there would be 288 per day—. This could lead not only to computational inefficiency,

but also to bad performance for the learning stage of ML models if not enough data was presented

—note that, within this approach, one year of data contains only 365 observations per ML model

(detection location, forecasting horizon, time slot)— thus leading to spurious patterns in such small

dataset.

Issue 2. Lack of online learning and adaptation to change: Moreover, this set of predictive

ML models was built offline in batch mode with historical data, and thus there was no more learning

with new incoming data neglecting any opportunity to react and to be adapted to changes. These

changes may have different forms and impact on the transport network. For instance, such changes

can comprehend the advent of a new hot-spot in the network that pulls travel demand —e.g. a new

commercial center—, or changes in the road network geometry that can also lead to new traffic

detectors or the deletion of some of them, or even changes in the travellers’ behavioural patterns.

All of these changes —whose impact on the network is either with local or global scope— have

effects on the underlying travel demand. For this reason, adaptation to change has been one of the

main motivations that has driven this thesis.

Issue 3. Modelling assumptions strongly dependent on available historical data: At the

9



1 Introduction

same time, other kinds of recurrent effects such as seasonality, special days or weather conditions

among other contextual factors which may influence traffic conditions, can only be included in the

predictive modelling if they are available at the modelling time. Although this may seem obvious,

it is worth to note that sometimes long records of historical data are not available for all of the

projects at their starting time or, even if so, sometimes these effects are only noticed after a time,

when more data have been collected.

Issue 4. Limited treatment of non-recurrent effects: On the other hand, non-recurrent ef-

fects —e.g. traffic incidents— are transient and sudden events that depict a challenging situation for

short-term traffic forecasting and traffic state identification. Forecasting under such circumstances

is, by definition, extremely challenging especially for ML models with limited causal inference.

However, the prompt detection and reporting of such events are crucial for a efficient real-time

traffic management including their feed to simulation-based traffic models for selecting the best

traffic control strategy. In the same way, detection and reporting of anomalous road conditions

—e.g. whether the traffic is significantly below or beyond the expected— may require a further di-

agnosis by traffic managers. The incident and anomaly detection found is very limited and mostly

aimed at freeway transport networks, neglecting urban networks.

Issue 5. Little robustness to missing and faulty data: The resilience and robustness of the

method coping with missing data was very limited, with the consequent impact on the forecasting

performance. This is especially relevant as malfunctioning traffic measurement devices are not

uncommon, such leading to missing data during real-time operating.

Issue 6. Lack of automated solution: The solution was not entirely automated because some

decisions were to be made by the modelling analysts at the beginning of the projects —e.g. what

amount of data to use—, and also during the projects’ lifetime —such as the maintenance timings

to update the ML models with new data—. This made it hard in terms of scalability to face new

projects.

Issue 7. Limited interpretability: Finally, one critical issue with the previously established

approach is the interpretability. Traffic engineers and managers do not only wish high forecasting

accuracy, but they also value the possibility to interpret the model and assess which factors have

lead to such forecasting decision. Furthermore, there was scarce information visualization and

reporting.
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1.3.3 Goals

Being this thesis proposal mainly a data-driven approach, the number and quality of the available

data sources along the transport network is totally crucial for good performance. Despite the fact

that more and more data is available, it is known that some kinds of detector installations tend

to be expensive to extend or modify because of the cost of installation and maintenance. For such

reason, the approach presented aims at making the most of the available data, even when these are

scarce.

Thus, the major contributions of this thesis are:

1. To provide the required autonomy and adaptation in order to achieve an automatic opera-

tional level in the real-time traffic forecasting task. Through the automation of the process

the required human intervention in the process operation should be reduced and affordable

to traffic engineers.

2. Additionally, the system must be ‘intelligent’ enough to evolve over time reducing the required

human intervention in the maintenance stage to a minimum. ML-based predictive models

need to be updated in real-time and adapted to detected changes in the data generation

process.

3. At the same time, forecasting accuracy must be appropriate and useful for traffic management

purposes.

4. The approach should be fault-tolerant with missing data such as malfunctioning data devices

during real-time.

5. Robustness to handle properly unexpected mobility patterns that do not match with the

expected pattern behavior.

6. Sudden and transient changes in the data distribution —which includes non-recurrent events

such as incidents— must be detected, identified and at worst case at least handled in order

to avoid a degradation in the short-term traffic forecasting performance.

7. Selection and development of statistical and machine learning models must be aimed to not

sacrifice interpretability for traffic engineers.

Therefore, all identified shortcomings in the previous subsection will be satisfied by the achievement

of these goals.
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1.4 Summary of results

For the validation of the different methods proposed in this thesis, two datasets with different

characteristics have been used: the M4 and M7 motorways in Sydney, Australia; and the urban

network of Santander City, Spain. The main results of this thesis can be classified according to

their scope and the performance indicator used:

• Forecasting

– Accuracy

– Complexity

– Interpretability and informativeness

• Traffic states model

– Interpretability

• Spatiotemporal model for traffic states dynamics

– Interpretability and informativeness

1.4.1 Forecasting

The forecasting evaluation is performed in the context of the Adarules algorithm —described in

Chapter 5— whose validation is shown in Chapter 6. This algorithm [181] is designed as a self-

contained system for real-time forecasting especially suited for the streaming scenario as it contains

modules for change adaption and online pattern mining. The algorithm motivation arises from the

work by Gama [94].

Within the Adarules system, we propose two methods for the aim of pattern mining —i.e. the seek

of graph patterns described as rules—. The two approaches differ in how Adarules performs the

graph pattern mining depending on the spatial scope of such pattern mining: looking only specific

individual points in the road network —single-task mining (STM)— or looking the entire network

as a whole —multi-task mining (MTM)—. The conclusion is clear and identical for both networks’

datasets (M4/M7 and Santander): the resulting complexity is much lower in the case of MTM. In

terms of forecasting accuracy, the MTM approach is also superior on average as shown in Table 1.1

using the normalized root mean squared error (nRMSE) described in Section 6.1.

The second evaluation concerns the comparison of Adarules building the underlying forecasting

models —i.e. the sparse model for the spatiotemporal correlations— using either single-task learn-

ing (STL) or the multi-task learning approach regarding the number of forecasting dimensions
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Table 1.1: Summary of average forecasting accuracy related to the pattern mining procedure: single-
task mining (STM) vs multi-task mining (MTM). KPI is the normalized RMSE.

M4/M7 Santander
Var-forecast STM MTM STM MTM

flow-15m 1.91 1.48 1.89 1.69
flow-60m 5.56 4.31 5.05 4.11
occ-15m 2.49 2.20 3.67 2.85
occ-60m 3.40 3.06 4.16 3.95

speed-15m 6.26 5.78
speed-60m 7.11 6.63

Table 1.2: Summary of average forecasting accuracy related to the forecasting models’ learning pro-
cedure: single-task learning (STL) vs multi-task learning (MTL). KPI is the normalized
RMSE.

M4/M7 Santander
Var-forecast STL MTL STL MTL

flow-15m 1.49 1.52 1.73 1.77
flow-60m 4.31 3.65 5.02 4.22
occ-15m 2.20 2.22 3.20 3.11
occ-60m 3.03 2.99 3.73 3.57

speed-15m 5.53 5.51
speed-60m 6.95 6.52

jointly learned. In this case, the forecasting accuracy for the very short-term —15 minutes— is

practically the same for both approaches. However, for longer forecasting horizons —60 minutes—

the difference is more noticeable since the MTL approach achieves a lower forecasting error on

average.

The following evaluations have been aimed in comparing the forecasting accuracy and adaptation

ability of Adarules —configured using MTM and MTL— against the previous methodology at

Aimsun —ANA— and a seasonal historical average —HA— as baselines. Moreover, as ANA and

HA are static approaches that do not consider the procedure of incremental learning, different

yearly (Y), quarterly (Q) and monthly (M) update schedules have been evaluated. The evaluations

have been performed using different change scenarios in both network datasets.

The first scenario was simply using the real data over the two-year period in both datasets. The

resulting complexity in Adarules has been the identification of 25 rules in the case of the M4/M7

network after the two-year period, and 37 rules in the case of the Santander network. The rules’

antecedents are shown and the interpretability of such rules has been verified with traffic engineers

at Aimsun who have confirmed their agreement and the appropriateness of the rules given the prior
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Table 1.3: Summary of average forecasting accuracy in real data experiment. Comparison between
the thesis’ proposal (Adarules) versus baselines (ANA is the current approach at Aimsun
Live, and HA is a historical average or seasonal naïve forecast) with different model
updating schedules (yearly, quarterly or monthly). KPI is the normalized RMSE.

Var-dim Adarules ANAy ANAq ANAm HAy HAq HAm
M4/M7

flow-15m 1.53 3.05 4.63 6.54 5.16 5.03 4.94
flow-60m 3.55 6.10 7.20 8.14 5.21 5.10 5.00
occ-15m 2.23 2.79 3.08 3.51 3.12 3.31 3.01
occ-60m 2.94 3.48 3.79 3.90 3.19 3.37 3.09

speed-15m 5.74 6.30 6.77 7.55 7.35 7.49 7.08
speed-60m 6.51 7.13 7.45 7.88 7.31 7.45 7.01

Santander
flow-15m 1.71 2.25 2.89 4.17 5.10 5.41 4.93
flow-60m 4.02 5.36 5.91 6.37 5.05 5.37 4.88
occ-15m 3.01 3.72 3.88 4.35 3.76 3.91 3.65
occ-60m 3.44 4.15 4.30 4.71 3.82 3.99 3.71

knowledge —in the form of qualitative variables— used by Adarules in the experiments. Regarding

the evaluation in terms of forecasting accuracy using the nRMSE as shown in the Table 1.3, it can

be observed that, on average, Adarules is always superior as it achieves a lower forecasting error

—both in the 15 and 60 minutes forecasting horizon— compared to the ANA forecast methodology

as well as the HA baseline.

This pattern of results is repeated for the rest of experiments aimed to test the adaptive ability of

Adarules in different change scenarios —from gradual to more extreme—. More specifically:

1. A scenario with explicit no-drift during the second year. This means that the first year on

each dataset is the real one, but the subsequent year data is fake by using a specific month of

the second year —e.g. May— and replicating it for twelve times. The goal of such experiment

is to test the performance in a absolutely no-change scenario, i.e. how the forecasting accuracy

and the model complexity evolves over time.

2. A first year with the real data, and then starting from the second year and every two months

(January, March, May, July, September, November) a fake change is introduced over all the

network by selecting 200 detectors at random where the traffic variables —flow, occupancy,

and speed— from 100 of these detectors are incremented by a 4% while the others 100

detectors experience a 4% decrease in the traffic variable. This is maintained until, two

months later, another round of smooth changes takes place while accumulating the one from

the previous swapping. The goal is to determine the Adarules ability to react and adapt to

these gradual changes.
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3. A first year with the real data, and then starting from the second year and every two months

a fake change is introduced over all the network by swapping the AM and PM periods. This

means that every two months (January, March, May, July, September, November) the traffic

is swapped and, thus, traffic during the night takes place during the day and vice versa. This

is maintained for two months until the next swap takes place. The goal is to determine the

Adarules ability to react and adapt to these abrupt changes.

4. A first year with the real data, and then starting from the second year and every two months

a fake change is introduced over all the network by swapping 100 detectors identifiers selected

at random. This means that every two months (January, March, May, July, September,

November) the traffic from these detectors is swapped with others in the network. This is

maintained until, two months later, another swapping takes place while accumulating the one

from the previous swapping. The goal is to determine the Adarules ability to react and adapt

to these extreme abrupt changes.

In all of these experiments, the performance of Adarules is clearly superior to the baselines compared.

The superiority is not only on the average but also achieving a much less harmful ‘worst case’ as

shown in the different figures and tables in the Chapter 6. These results have been verified by

traffic engineers at Aimsun confirming their suitability for the purpose of real-time forecasting.

1.4.2 Traffic states model

The results related to the traffic states model are presented in Chapter 7. They are mainly sanity

checks in order to test the validity of the model because in this case there is not forecasting involved.

The results are shown for both networks —M4/M7 and Santander—, and they are consistent with

traffic flow theory as verified by traffic engineers in Aimsun.

1.4.3 Spatiotemporal model for traffic state dynamics

The results concerning the spatiotemporal model for traffic states dynamics are presented in Chapter

8. On one hand, they show a use-case to quantify the existing outlierness in a network graph. This

outlierness is measured both from the point of view of Adarules using its identified graph patterns

—rules— and from the point of view of the transition of traffic states in the time-space. On the other

hand, results from the incident detection are shown for some real cases in the M4/M7 network as

well as from some synthetic data coming from simulations performed in the Bristol urban network.

These results are shown to be informative and useful from the perspective of traffic engineers at

Aimsun.
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1.5 Thesis outline

Chapter 1 describes the underlying motivation for the development of this thesis in the context of

pursuing a more intelligent and efficient traffic management. The main goals within the Aimsun

context showing the identified existing limitations are also shown in this chapter, as well as a

summary of the results obtained through the thesis.

Chapter 2 contains a comprehensive background describing the basics about traffic data, traffic

modelling and data modelling, with a special emphasis on the methods used through this thesis,

but giving an overall framework to the reader about traffic and data modelling.

Chapter 3 reviews the literature in the research fields of short-term traffic prediction, traffic state

identification and incident detection, describing what is the current state of the art.

Chapter 4 shows a first overall representation of the proposed solution for short-term traffic fore-

casting. The overview describes the different components in the integrated framework and their

aim.

Chapter 5 presents the Adarules framework for real-time forecasting coupled with the process of

graph pattern mining. The chapter includes the algorithms’ pseudocodes for every module within

Adarules.

Chapter 6 shows an exhaustive set of experiments to validate the performance of Adarules in terms

of forecasting accuracy, adaptation to change and modelling complexity.

Chapter 7 presents the probabilistic graphical model to identify the underlying latent variable

within the fundamental diagram of traffic flow. Some sanity checks are included to show the

expected output.

Chapter 8 presents and describes the spatiotemporal probabilistic model for learning the traffic

states dynamics including the showcase of several incidents detection in the M4/M7 network and

a synthethic dataset from simulations using the Bristol urban network.

Finally, in Chapter 10 conclusions are presented based of the thesis goals and achievements, and

some future work is proposed in order to continue the work.

1.6 Publications

Parts of the developed work in this thesis have been presented in the following publications:
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• Rafael Mena-Yedra, Ricard Gavaldà, and Jordi Casas. «Adarules: Learning rules for realtime

road-traffic prediction». In: Transportation Research Procedia 27 (2017), pp. 11–18. ISSN:

2352-1465. DOI: https://doi.org/10.1016/j.trpro.2017.12.106 URL: http://www.sciencedirec

t.com/science/article/pii/S2352146517310037

– Preliminary version in: Rafael Mena-Yedra, Ricard Gavaldà, and Jordi Casas.

«Adarules: Learning rules for real-time road-traffic prediction». In: Proceedings of

the 20th EURO Working Group on Transportation Meeting (EWGT 2017). Budapest,

Hungary, September 2017.

• Rafael Mena-Yedra, Jordi Casas, and Ricard Gavaldà. «Assessing spatiotemporal correlations

from data for short-term traffic prediction using multi-task learning». In: Transportation

Research Procedia 34 (2018), pp. 155–162. ISSN: 2352-1465. DOI: https://doi.org/10.1016/

j.trpro.2018.11.027 URL: http://www.sciencedirect.com/science/article/pii/S2352146518303
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– Preliminary version in: Rafael Mena-Yedra, Jordi Casas, and Ricard Gavaldà. «Assess-

ing spatiotemporal correlations from data for short-term traffic prediction using multi-

task learning» In: Proceedings of the 6th International Symposium of Transport Simu-

lation (ISTS’18) and the 5th International Workshop on Traffic Data Collection and Its

Standardization (IWTDCS’18). Matsuyama, Japan, August 2018.

• Rafael Mena-Yedra, Jordi Casas and Ricard Gavaldà, «Probabilistic model for robust traf-

fic state identification in urban networks». 2019 IEEE Intelligent Transportation Systems

Conference (ITSC), Auckland, New Zealand, October 2019, pp. 1934-1940. DOI: https:

//doi.org/10.1109/ITSC.2019.8917259 URL: https://ieeexplore.ieee.org/document/8917259

I have also contributed to the related publications by the Aimsun group:

• Yaroslav Hernandez-Potiomkin, Mohammad Saifuzzaman, Emmanuel Bert, Rafael Mena-

Yedra, Tamara Djukic, and Jordi Casas. «Unsupervised incident detection model in urban

and freeway networks». 2018 21st International Conference on Intelligent Transportation

Systems (ITSC), Maui, HI, November 2018, pp. 1763-1769. DOI: https://doi.org/10.1109/

ITSC.2018.8569642 URL: https://ieeexplore.ieee.org/document/8569642

• Mohammad Saifuzzaman, Tamara Djukic, Yaroslav Hernandez-Potiomkin, Rafael Mena-

Yedra, Emmanuel Bert, and Jordi Casas. «Understanding incident impact on traffic variables

to reduce false incident detection». In: Proceedings of the 40th Australasian Transport

Research Forum (ATRF). Darwin, Northern Territory, Australia, November 2018.
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2 Background

2.1 Traffic data

“Measure what is measurable, and make measurable what is not so”

— Galileo Galilei

The quote attributed to Galileo Galilei —with certain controversy on authorship [152]— is a clear

statement that characterizes the methods of modern science and makes even more sense in the

more recent data science. In the specific case of traffic flow, different aspects of its dynamics are

captured by different measurement methods [247]. From a global perspective, an analogy can be

made with field theory where there exists two specifications of the flow field: the Lagrangian and

Eulerian specifications of the field. The Lagrangian specification is the way of looking at the fluid

motion as it moves through space and time, thus giving its path. While the Eulerian specification

is the way of looking at fluid motion that focuses on specific locations in the space through which

the fluid flows as time passes.

Analogously, traffic flow data can be distinguished by how it is measured, i.e. by observing the flow

either with a Lagrangian or a Eulerian specification, although methods of traffic data collection are

diverse as a result of the need to make measurable more traffic aspects and in a more accurate way.

Thus, some of them can be considered from both perspectives depending on the post-processing

performed. For instance, data recorded from traffic cameras or drones can be processed to derive

trajectory data which provides an unbiased estimate of traffic density and lane changes in spite of

the involved technical difficulties. Moreover, equipped vehicles can provide floating-car data with a

high level of microscopic detail, although this data can be biased according to the type of supplier

vehicles. This data can be combined with other floating data such as mobile data or connected

vehicle data. Toll data could be seen as a special type of trajectory data. Finally, cross-sectional

data is captured by stationary induction loops, radar, or infrared sensors which are placed on a

fixed location within the road traffic network. Deriving data from a Lagrangian specification —

trajectory or floating data— to an Eulerian specification —i.e. cross-sectional data— is easier than
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the opposite conversion, which maybe simply not possible —e.g. estimating trajectories or origin-

destination paths from isolated cross-sectional data—. Obviously, each conversion will have its own

error depending on the assumptions. Each of these data sources provides different measurement

with different level of microscopic detail that can be post-processed to derive the desired levels of

aggregation up to a macroscopic detail. Measurement devices and processes have evolved to provide

more accurate and reliable measurements over time, but there is still room for improvement as noisy

and false measurements are significantly present in traffic data measurements. All said, every data

source has its own advantage and the best result is obtained by fusing them [85], as this results in

a better observability of the network.

As previously stated in the thesis objectives, the aim of this thesis is not to deal with microscopic

details of traffic dynamics but from a more aggregated macroscopic level of detail. Besides, the

data used in this thesis is collected from stationary inductive-loop traffic detectors given that they

are historically the most common traffic data collection method, being almost ubiquitous. This

does not prevent, however, using other kinds of data sources that are becoming more extended,

such as mobile data or connected vehicle data. Our proposals are flexible enough to incorporate

this info if available.

Collected data used in this thesis —provided by stationary inductive-loop traffic detectors placed

through the road network— include measurements, recorded as time series, of:

• Traffic flow usually given as traffic counts —i.e. the number of counted vehicles during the

measurement interval ∆𝑡— which are converted to traffic flow 𝑄 given in vehicles per hour.

It is defined as the number of vehicles ∆𝑁 passing through a specific location 𝑥 within a time

interval ∆𝑡:

𝑄(𝑥, 𝑡) = ∆𝑁
∆𝑡

• Occupancy 𝑂(𝑥, 𝑡) is the fraction of the time interval ∆𝑡 during which the location 𝑥 is

occupied by a vehicle:

𝑂(𝑥, 𝑡) = 1
∆𝑡

𝛼0+∆𝑁−1
∑

𝛼=𝛼0

(𝑡1
𝛼 − 𝑡0

𝛼)

where 𝛼 represents each individual vehicle, 𝑡0
𝛼 the instant when the 𝛼th-vehicle’s front passes

the detector and 𝑡1
𝛼 the instant when the 𝛼th-vehicle’s rear end passes the detector. Sometimes,
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2.1 Traffic data

the spatial measurement traffic density 𝜌(𝑥, 𝑡) is derived from the temporal measurement

occupancy with certain assumptions. However, this derivation is not used in this thesis.

• Speed 𝑉 (𝑥, 𝑡), namely arithmetic mean speed or time mean speed, is the average speed of the

∆𝑁 vehicles passing the cross-section 𝑥 during the aggregation interval ∆𝑡:

𝑉 (𝑥, 𝑡) = 1
∆𝑁

𝛼0+∆𝑁−1
∑

𝛼=𝛼0

𝑣𝛼

where 𝑣𝛼 is the microscopic speed of single vehicles. It is important to remark that speed, if

measured using stationary inductive-loop traffic detectors, can only be directly observed when

these devices are composed of more than one loop. Otherwise, it is impossible for single-loop

detectors to measure vehicle speed but being estimated instead using certain assumptions.

For this reason, we have only used speed in one —M4/M7 Western Motorway in Sydney—

of the two datasets used in this thesis because in the case of Santander data is retrieved only

from single-loop detectors.

Sometimes this data is given per road lane detector, but most of the time it is retrieved as aggregated

multilane data —i.e. stations—. Thus, already aggregated data along multiple lanes in the road

pointing to the same direction is used in this thesis. Lastly, the aggregation interval ∆𝑡 used in

this thesis is ∆𝑡 = 15 minutes as it represents a proper timing for real-time traffic management

and also in agreement with the rest of performed operations in Aimsun Live.

There exists a correlation among these macroscopic measurements (flow, occupancy or density, and

speed). More specifically, a pairwise non-linear dependence can be observed between them which

underlies the existence of the concepts of capacity and congestion by relating the traffic demand

and supply. These relationships were empirically observed by Greenshields [110] almost 100 years

ago and captured in the form of a fundamental diagram of traffic flow for each pair of macroscopic

measurements. From this fundamental diagram of traffic flow —which will be put in context in the

Traffic state identification section within Chapter 3—, it can be observed the different underlying

traffic states such as free-flow or traffic congestion which relate both sides of transport: traffic

demand and traffic supply.

The concept of the fundamental diagram of traffic flow as shown in Figure 2.1 is observed at

a macroscopic scale of the traffic flow, and it characterizes the traffic state. A large volume of

literature exists on the description of the traffic state [41, 246, 143]. The typical situation is free-

flowing conditions when the demand flows are below the capacity of the road network. Here, speeds

tend to be near the speed limit, the occupancies are low, and vehicle headways are comfortable. In
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Figure 2.1: Traditional fundamental diagram of traffic: Flow-density and speed-concentration
curves. Source: [164].

congested conditions, the actual flows reduce, but the demand flows remain high; the vehicles slow

down, the occupancies increase, and vehicles pack more closely together. During congestion the road

system is operating in an inefficient manner, with increased vehicle delays, driver frustration, and

greater potential for accidents. In addition to these two states, there exist two distinct transition

states, where the traffic state changes from free-flowing to congested and from congested to free-

flow conditions. These two states may be different from each other in their characteristics. Some

properties of the traditional fundamental diagram are the following:

• The variables of flow, density, and space mean speed are related by the definition: 𝑞 = 𝑘 ̄𝑣𝑠.

• When density on the highway is zero, the flow is also zero because there are no vehicles on

the highway.

• As density increases, flow increases.

• When the density reaches a maximum jam density (𝑘𝑗), flow must be zero because vehicles

will line up end to end.

• Flow will also increase to a maximum value (𝑞𝑚), increases in density beyond that point result

in reductions of flow.

• When density is zero, speed is freeflow (𝑣𝑓). The upper half of the flow curve is uncongested

and the lower half is congested.

• The slope of the flow density curve gives speed.

For a comprehensive taxonomy of traffic modelling according to the different scopes of travel de-

mand modelling and traffic flow dynamics, the reader is referred to the Appendix I: Taxonomy of

traffic modelling, and those interested readers in knowing more are referred to [28, 100, 125, 174,

247].
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2.2 Data modelling

2.2 Data modelling

Given that traffic flow in the road transportation systems is a highly non-linear process, mostly

non-stationary and which is affected, or could be explained, with different external factors such as

different levels of seasonality, weather, special days and events, roadworks, among others; many have

been the approaches taken to deal with such problem from a data-driven modelling perspective.

From a very general perspective, the different data modelling techniques could be classified accord-

ing to the data model they use. For instance, some approaches, especially in the beginnings of

the field, have used a scalar-based data model such as for example typical approaches relying on

time series modelling, in order to describe the traffic flow at a specific point in space and time. On

the other hand, the vector-based data model relies on the use of a dimension —either spatial or

temporal— to describe the current traffic state. Lastly, a matrix-based model makes use of both

dimensions —spatial by means of other points in the network and temporal through the use of past

recent information— in their data model to describe the current traffic state.

Another way to make a distinction among data models is by how they are formulated based on

parametric statistics or a non-parametric approach.

2.2.1 Parametrics and non-parametric statistics

Parametric and non-parametric statistics are branches of statistics which differ on the assumptions

done about the data generation process and how it can be effectively modelled. More specifically,

the former assumes that sample data comes from a population that can be adequately modelled by

a probability distribution that has a fixed set of parameters 𝜃. Ocassionally, the assumption about

a specific probability distribution is not performed but the fixed set of model parameters remains.

On the other hand, in non-parametric statistics the number of parameters 𝜃 in the model is not

fixed and can increase —or decrease— as new data is collected.

In the case of parametric statistical models, the advantage is clear as the model complexity is

bounded by definition. Furthermore, as long as the modelling assumptions are met during the

inference stage then the model’s sound basis is guaranteed. Some well-known parametric statistical

models include time series modelling or Kalman filter. Moreover, traffic simulation models also fall

into this category. The possible drawback of the parametric approach is that these models are not

able to utilize additional information which can be present in a large or unbounded dataset.

On the other hand, a non-parametric model does not rely on a fixed parameter set 𝜃 and this

implies that more data is usually required for the model fitting stage. However, this also implies
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that this approach is more flexible because the amount of information that can be allocated in 𝜃
can grow as the amount of data grows, making this approach more suitable for those scenarios

where the size of the dataset is unbounded. This characteristic allow such models to learn more

complex relationships that those which they were initially designed for. A possible pitfall, however,

is that computational cost during fitting or inference stages can be greater compared to those with a

predefined and fixed parameter set 𝜃. Well-known examples of non-parametric approaches include

k-nearest neighbors, decision trees or neural networks. The latter is not a true non-parametric

approach in the sense that the parameter set is not unbounded, but, in the practice it is extremely

large —especially in deep neural networks— that allow them to be classified as it.

For the development of this thesis, a non-parametric approach has been adopted given that the

results of this thesis is intended to run in real-time scenario where size of incoming data is unbounded

and, moreover, complexity of the modelled problem can grow up to such an extent where the

assumptions performed during the modelling stage would have been violated in such non-stationary

and dynamical systems.

2.2.2 Machine learning

Machine learning (ML) is a subfield of computer science which also contributes to the broader area

of study of Artificial Intelligence. Originally, the ML field evolved from the study of pattern recog-

nition and computational learning theory and it lies on the boundary of several different academic

disciplines: namely computer science, statistics, mathematics and engineering. ML explores the

study and construction of algorithms that can learn from and make predictions on data. Such algo-

rithms operate by building a model from example inputs in order to make data-driven predictions

or decisions, rather than following strictly static program instructions. A more formal definition

by Tom M. Mitchell [182]:

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T, as measured by

P, improves with experience E.

Machine learning aims to create solutions to complex problems automatically, faster and more

accurately than a manually programmed solution and in a larger scale. The latter characteristic

is key as ML is often seen as an extension to classical statistical learning to deal with large-scale

problems which are usually described as big data. In fact, there always has existed some controversy

between practicioners of both communities [43, 175]. Some comprehensive references about machine

learning and statistical modelling are [38, 102, 109, 182, 187]
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The recent popularity of the field and its growing study and application is motivated by the abun-

dance of data to learn from, the increase of computation power and at lower cost, and because the

field has matured both in terms of identity and in terms of methods and tools. The abundance of

data is key especially in the traffic scenario as there is an increasing amount of available traffic flow

data ranging from individuals to macroscopic data collected by stationary detectors and comple-

mented with additional data such as floating car data coming from GPS and mobile phones, making

measurable more things and more widely as there are more observable parts of the network.

The common basic type of problem which ML intend to solve in an effective and automated man-

ner are regression, classification, clustering or rule extraction from data. A common taxonomy of

ML algorithms is by the learning procedure; namely supervised learning —when data is labelled,

and the learning method makes corrections according to the datum labels, e.g. in regression or

classification—, unsupervised learning —data has no labels and common problems include cluster-

ing, dimensionality reduction or association rule learning— or a hybrid semi-supervised learning

approach.

During the development of this thesis, both approaches —supervised and unsupervised learning—

have been used for different parts of the thesis that cooperate each other forming a whole. Next,

some of the most important concepts and methods from the machine learning, probability and

statistical learning theory which are used in this thesis are described.

2.2.2.1 Empirical risk minimization (ERM)

One of the cornerstone in this thesis is how we find the proper spatiotemporal correlations between

different areas in the network in order to predict the evolution of the traffic flows dynamically.

In its most elemental form given a regression problem, we have two spaces 𝑋 ∈ ℝ𝑝 and 𝑌 ∈ ℝ and

we seek to learn a function ℎ ∶ 𝑋 → 𝑌 where ℎ is also known as hypothesis. Given a supervised

learning setting, we have a training set of 𝑛 labelled examples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) where 𝑥 ∈ 𝑋
is the input and 𝑦 ∈ 𝑌 is the desired output that we want to learn in the form of the hypothesis

ℎ(𝑥𝑖).

We also assume that we are given a non-negative real-valued loss function 𝐿(𝑦, ̂𝑦) which measures

how different the prediction ̂𝑦 of a hypothesis is from the true outcome 𝑦. The prediction ̂𝑦 is

defined as the inner product of 𝑋 and a vector of weights —also called coefficients— with a value

per feature: ⟨𝛽, 𝑋⟩.

The risk associated with hypothesis ℎ(𝑥) is then defined as the expectation of the loss function:

𝑅(ℎ) = E[𝐿(𝑦, ℎ(𝑥))]. For the problem of finding the set of predictive spatiotemporal correlations
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in the network, we are interested in the squared-error loss function:

𝐿(𝑦, ̂𝑦) = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

The aim of a learning algorithm is to find a given hypothesis ℎ∗ among a fixed class of functions

ℋ for which the risk 𝑅(ℎ) associated with this loss function is minimal:

ℎ∗ = arg min
ℎ∈ℋ

𝑅(ℎ)

Another way to say so is by assuming a joint probability distribution 𝑃 (𝑥, 𝑦) over 𝑋 and 𝑌 and

having a training set which consists of 𝑛 instances (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) drawn independent and

identically distributed (i.i.d.) from 𝑃(𝑥, 𝑦). For this case, the risk associated with hypothesis ℎ(𝑥)
is also defined as:

𝑅(ℎ) = E[𝐿(𝑦, ℎ(𝑥))] = ∫ 𝐿(𝑦, ℎ(𝑥)) 𝑑𝑃 (𝑥, 𝑦)

The problem is that in general 𝑅(ℎ) cannot be directly computed as the true distribution 𝑃 (𝑥, 𝑦)
is unknown to the learning algorithm —which is referred to as agnostic learning—. Therefore, an

approximation called empirical risk 𝑅emp can be computed by averaging the loss function on the

training set:

𝑅emp(ℎ) = 1
𝑛

𝑛
∑
𝑖=1

𝐿(𝑦𝑖, ℎ(𝑥𝑖))

The empirical risk minimization (ERM) principle [251] states that the learning algorithm should

choose a hypothesis ℎ̂ which minimizes this empirical risk:

ℎ̂ = arg min
ℎ∈ℋ

𝑅emp(ℎ)

In our case, ERM is carried out with a linear kernel over 𝑋. 𝑋 is a matrix as it contains the

spatiotemporal data describing the current traffic state. More specifically, 𝑋 is of size 𝑛 × 𝑝 where

each of the 𝑛 observations has 𝑝 coordinates composed of 𝑝𝑠 × 𝑝𝑡 elements, where 𝑝𝑠 refers to each

of the spatial points —𝑖𝑑— within the road network with measurement data and 𝑝𝑡 refers to the

vector of lags used for each of these measurements:
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𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥1,𝑖𝑑1
𝑥1,𝑖𝑑1−1 … 𝑥1,𝑖𝑑1−𝑝𝑡

… 𝑥1,𝑝𝑠
𝑥1,𝑝𝑠−1 … 𝑥1,𝑝𝑠−𝑝𝑡

⋱
⋱

⋱
⋱

⋱
⋱

⋱
⋱

𝑥𝑛,𝑖𝑑1
𝑥𝑛,𝑖𝑑1−1 … 𝑥𝑛,𝑖𝑑1−𝑝𝑡

… 𝑥𝑛,𝑝𝑠
𝑥𝑛,𝑝𝑠−1 … 𝑥𝑛,𝑝𝑠−𝑝𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Depending on the size of the road network at hand, 𝑋 is usually of a high-dimensionality 𝑝 —

often of the order of tens of thousands—, whereas the sample size 𝑛 is dependent of the available

data. Thus, it is often usual to have situations where 𝑝 >> 𝑛 which leads to an ill-posed problem

whose solution is not unique. Furthermore, we are not interested in solutions where the traffic

forecast for a given area is dependent on the full traffic state of the whole network because it has

hardly physical sense. Even though we could manually cut the amount of features based on some

distance criteria, this could lead to suboptimal solutions in terms of forecasting performance, but

also often the cut-off would not be enough as 𝑝 could continue being high-dimensional. Therefore,

we are interested in an optimal and automated method for feature selection to select only those

strongest spatiotemporal correlations leading to a simpler and parsimonious model selection. This

parsimonious model selection is known to have additional benefits such as better interpretability,

fewer chances of overfitting issues —because in high dimensions, ERM overfits the data and gives

poor estimators even for simple linear models [91]— and the result is more computational efficient.

For the sake of comprehensiveness we also describe 𝑦 as the vector of the desired response for each

of the 𝑛 observations:

𝑦 =
⎡
⎢⎢⎢
⎣

𝑦1

⋮
𝑦𝑛

⎤
⎥⎥⎥
⎦

This response matrix contains the desired output for the desired forecasting horizon 𝑡ℎ which must

be learned with the use of the known information until the current time 𝑡0 encoded in 𝑋. This

means we have adopted a direct multi-step forecasting approach based on learning this process for

each of the multiple forecasting horizons 𝑡ℎ. This procedure is more common in machine learning
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compared to more classical statistical modelling such as times series [58, 237]. The main reason

for this choice lies on the higher robustness of direct multi-step estimation when the model is

misspecified especially for non-stationary data generating processes [58].

2.2.2.2 Sparsity regularization learning

Based on the motivation given in the previous subsection about the need of reducing the size of

explanatory variables for each of the forecasting processes, we seek to find the subset of features

from 𝑋 that best describe the output 𝑌 . In this sense, the general class of sparsity regularization

methods seek to exploit this assumption during the learning stage of the problem to find that feature

subset. As commented before, this has additional benefits such as a better model interpretability,

less chances of overfitting issues —because in high dimensions, ERM overfits the data and gives

poor estimators even for simple linear models [91]— and provides the optimal trade-off between

complexity and accuracy.

Given the expectation of the squared loss function we want to minimize:

min
𝛽∈ℝ𝑝

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝛽, 𝑥𝑖⟩)2

The idea is to add to the previous optimization problem a constraint based on a vector norm over

the features’ weights 𝛽. This constraint can be directly plugged into the goal function with the use

of a Lagrange multiplier, 𝜆, by the introduction of a penalty term:

min
𝛽∈ℝ𝑝

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝛽, 𝑥𝑖⟩)2 + 𝜆‖𝛽‖𝑝

This p-norm may have different flavours as shown in Figure 2.2. The intuition behind is that

through the optimization process a solution is to be found where the feasible region of the solution

matches that of the loss contour with the ℓ𝑝 region. This has an effect on the shrinkage of the

coefficients 𝛽, and such effect depends on the type of ℓ𝑝 norm used. Small ℓ𝑝 norms such that

0 ≤ 𝑝 ≤ 1 have the effect of obtaining sparse estimates as there are more chances that the contour

of the residual-sum-of-squares function touches them along the coordinates —because of their more

angular shape— and thus estimating them exactly to zero. On the other hand, ℓ𝑝 norms such that

𝑝 ≥ 2 have still the effect of coefficients shrinkage but not setting them exactly to zero and thus no

sparse estimation. This is shown in Figure 2.3 where ℓ1 and ℓ2 norms are visually compared. This

effect is amplified when the number of coefficients increases in high-dimensional problems.
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More specifically, the ℓ0 norm is equivalent to the best subset selection method, but it is com-

putationally unfeasible especially in high-dimensions as it is equivalent to an exhaustive search

evaluating all possible subsets of variables. In the same way, computation of 0 < 𝐿𝑝 < 1 norms

suffer from numerical stability. Therefore, the most natural approximation for obtaining sparse

estimations is through the ℓ1 norm which, althought not differentiable, is convex. This convex

relaxation allows a more efficient solving of the problem by the use of specific efficient algorithms.

These optimization algorithms take into account both the differentiable convex part of the loss

function along with the non-differentiable convex part of the penalty. For example, projected or

proximal gradient descent methods with subgradients [31], coordinate descent methods coupled

with the soft-thresholding operator [92, 90] or homotopy methods such as least angle regression

(LARS) [80] whose drawback is that it does not scale up to large problems as well as some of the

other methods.

Figure 2.2: ℓ𝑝 ball in three dimensions. As the value of 𝑝 decreases, the size of the corresponding
ℓ𝑝 space also decreases. Source: [117].

Figure 2.3: Estimation picture of the feasible solution space in a two-dimensional space when using
the norms ℓ1 on the left and ℓ2 on the right. The solid blue areas are the constraint
regions of these norms and the red ellipses are the contours of the residual-sum-of-
squares function. The point ̂𝛽 depicts the usual (unconstrained) least-squares estimate.
Source: [117].

In the machine learning field, the ERM procedure for estimating least-squares models applying ℓ1

regularization to obtain sparse estimates is known as lasso —least absolute shrinkage and selection

operator— and was popularized by R. Tibshirani [242]. It is defined as follows:

min
𝛽∈ℝ𝑝

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝛽, 𝑥𝑖⟩)2 + 𝜆‖𝛽‖1
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From a probabilistic point of view, ℓ1 norm would correspond to setting a Laplace prior centered at

zero on the coefficients and selecting the maximum a posteriori (MAP) hypothesis after observing

the data [201]. On the other hand, ℓ2 norm would correspond to setting a Gaussian prior over the

coefficients.

Concluding, with the use of such regularization methods in the estimator we incur in increasing the

model bias, but, at the same time, also reducing its variance which is beneficial because variance

dominates in high dimension within the bias-variance trade-off [73].

A complementary method that aims to reduce the computational burden, but that also has an

indirect effect on obtaining sparse estimates is the use of screening rules. These screening rules aim

to a priori eliminate predictors from the problem before solving it based on the connection between

predictors inner products with the residuals, as those with a small inner product have less chances

to become a nonzero coefficient.

In this sense, there are some safe screening rules that are more conservative as they perform the

discard while still delivering the exact numerical solution. A example of this is the dual polytope

projection (DPP) rule [259]. The global DPP discard the 𝑥𝑗 predictor if:

|𝑥𝑇
𝑗 𝑦| < 𝜆𝑚𝑎𝑥 − ‖𝑥𝑗‖2‖𝑦‖2

𝜆𝑚𝑎𝑥 − 𝜆
𝜆

While the sequential version of the DPP discard the 𝑥𝑗 variable at stage 𝜆′ if:

|𝑥𝑇
𝑗 (𝑦 − 𝑋 ̂𝛽(𝜆′))| < 𝜆′ − ‖𝑥𝑗‖2‖𝑦‖2

𝜆′ − 𝜆
𝜆

where 𝜆 < 𝜆′ ≤ 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗|⟨𝑥𝑗, 𝑦⟩| is the 𝜆 which corresponds to having all coefficients

set to zero, as typically the lasso problem is solved by multiple iterations decreasing the 𝜆 value

starting from 𝜆𝑚𝑎𝑥 —proccess typically called regularization path of the lasso—.

On the other hand, there exist screening rules which are less conservative thus achieving better

performance by allowing occasional failures. For instance, the global strong rule [243] —which is a

variant of the global DPP rule— discards 𝑥𝑗 if:

|𝑥𝑇
𝑗 𝑦| < 𝜆 − (𝜆𝑚𝑎𝑥 − 𝜆)

And the sequential strong rule discards 𝑥𝑗 at 𝜆 if:

|𝑥𝑇
𝑗 (𝑦 − 𝑋 ̂𝛽(𝜆′))| < 𝜆 − (𝜆′ − 𝜆)
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As previously said, sequential version of screening rules are applied when lasso problem is solved

over a grid of decreasing 𝜆 values —regularization path—.

Occasional failures in sequential strong rule can be remediated for each value of 𝜆 by checking the

Karush-Kuhn-Tucker (KKT) conditions on the subset of predictors and, if any of these violates the

conditions they are added back to the subset and the problem is solved again. Otherwise, problem

solving continues to the next 𝜆 value in the grid. Thus, sequential strong rule has been used in this

thesis as it alleviates computational burden without sacrificing the exact solution.

Additionally, other kind of heuristic screening rules are applied which will be described in later

chapters.

2.2.2.3 Multi-task learning

Multi-task learning (MTL) is a broad paradigm in the realm of machine learning itself, whose main

goal is to improve the generalization performance —i.e. out-of-sample accuracy— of a model by

leveraging the domain-specific information contained in a set of correlated tasks. MTL entails the

following benefits:

1. The model selection is biased to prefer hypotheses that other tasks also prefer, and thus

improving the generalization for new tasks in the same domain,

2. Data augmentation is implicitly done by averaging the noise patterns among tasks,

3. It allows to differentiate between relevant and irrelevant features especially when the data is

noisy or high-dimensional as other tasks will provide additional evidence for the relevance or

irrelevance of those features,

4. It has a regularization effect by avoiding the risk of overfitting the random noise of a single

task.

Therefore, the main motivation of appliying MTL is to bias the model selection towards those

hypothesis that best jointly explain the set of related tasks, and thus obtaining more realistic and

consistent models.

Most of the MTL research has been focused on neural networks [52], and their contemporary version

of deep learning [212]. The most usual approach is based on sharing a common representation. This

sharing can be made explicitly by having a neuron or a whole output layer for each task while all

the hidden layers interconnections are shared, which is known as connectionist approach or hard

parameter sharing. Instead of sharing the parameters connections, another approach is to have a
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separate network structure for each task but adding some constraint to force the distance between

parameters to be reduced, which is also known as regularization or soft parameter sharing.

However, MTL has been also developed with non-neural models such as linear models, kernel

methods, decision trees or Bayesian algorithms. One of the more common approaches to apply

MTL is to enforce sparsity across tasks by applying norm-regularization also known as block-

sparse regularization. This usually assumes that only a few features are used across all tasks [19],

by means of generalizing the ℓ1 norm to the MTL setting.

As described in the previous subsection about sparsity regularization, the regularization term 𝜆‖𝛽‖1

imposed by the ℓ1-norm penalizes each 𝛽𝑗 component independently, which means that input fea-

tures may be suppressed —keeping their coefficients as zero— independently from each other. Thus,

more structure can be given to the norms defining the regularization term. For example, by as-

suming a prior partition of the feature space in 𝐺 groups and thus having a subset 𝛽𝑔 ∀𝑔 ∈ 𝐺, the

regularization term turns out to be:

𝜆
𝐺

∑
𝑔=1

‖𝛽𝑔‖𝑞

where ‖𝛽𝑔‖𝑞 is the group ℓ𝑞-norm. A common choice for ℓ𝑞 is the ℓ2-norm:

‖𝛽𝑔‖2 =
√√√
⎷

|𝐺|
∑
𝑗=1

(𝛽𝑗
𝑔)2

where 𝛽𝑗
𝑔 is the j-th feature of group 𝑔 ∈ 𝐺. This norm is referred to as group lasso [272], and it

forces entire coefficient groups 𝛽𝑔 towards zero, rather than individual coefficients.

This group norm can be further generalized to the case of multiple linear regression where there

are multiple responses to be jointly optimized. As aforementioned, it is called block-sparse regu-

larization —or mixed-norm constraints ℓ1/ℓ𝑞— and consists of establishing some specific ℓ𝑞 norm

on each individual coefficient vector shared across the set of tasks —as a synonym of responses—

𝐾, following a ℓ1 norm over the previous vector norms which in the end results in having entire

coefficient vectors set to zero across tasks.

Thus, for the case of multiple response using ERM, the single response vector 𝑦 is replaced by a

matrix 𝑌 of size 𝑛 × 𝐾 where 𝑛 is the sample size and 𝐾 the set of 𝐾 jointly learned tasks, and

the coefficient vector 𝛽 of length 𝑝 features is replaced by a matrix ℬ of size 𝑝 × 𝐾. Then, the

absolute individual penalty on each single coefficient 𝛽𝑗 is replaced by a group-lasso penalty on
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each coefficient 𝐾-vector 𝛽𝑗 for a single predictor 𝑥𝑗, where each group ℬ𝑗 corresponds to the 𝑗th

row of the 𝑝 × 𝐾 coefficient matrix ℬ:

min
ℬ∈ℝ𝑝×𝐾

1
𝑛

𝑛
∑
𝑖=1

‖𝑦𝑖 − ⟨ℬ, 𝑥𝑖⟩‖2
𝐹 + 𝜆

𝑝
∑
𝑗=1

‖ℬ𝑗‖2

where || ⋅ ||𝐹 denotes the Frobenius norm1. In such case, for the ℓ1/ℓ2 penalized multiple Gaussian-

response linear models that are used in this thesis, the sharing involves which features are selected

since when a feature is selected then a coefficient is fit for each response, which turns out to be useful

when there are a number of correlated responses or tasks to learn. There are other approaches,

however, that also aim to achieve within-group sparsity [222].

Nevertheless, deciding which tasks are to be grouped to be jointly learned is a crucial decision in the

MTL paradigm. As Caruana [52] demonstrated with different experimental scenarios, the overall

performance only improves when similar and related tasks are jointly learned, whereas the opposite,

learning unrelated tasks, may lead to suboptimal performance —named as negative transfer—. For

instance, the block-sparseness approach is very dependent on the extent to which the features are

shared across tasks [190], and others [135] have proposed approaches which deal with block-sparse

and element-wise regularization separately. There is wide work referring to the task relatedness

[141, 160, 215].

Finally, in addition to the block-sparse regularization, another form of multi-task learning approach

has been applied in the development of this thesis related to the process of automated rule search

which will be described in later chapters.

2.2.2.4 Data streams and online learning

Historically, machine learning research and practice have focused on batch learning usually using

small and finite datasets. In the batch learning scenario, all the available collected data is used as

training data —along with the corresponding common data splitting techniques in ML— for the

learning algorithm that outputs a decision model after processing all the data. The main assumption

that underlies on it is that data is generated from a stationary probability distribution.

However, this is contradictory with the fact that, when data models are put into production in

real-time environments, they must respond in dynamic environments where data is collected over

time and it is theoretically unbounded in size. Thus, the ability to incorporate new data and to

dinamically adapt to changing environments becomes essential for learning algorithms. It can be
1The Frobenius norm of a matrix is simply the ℓ2-norm applied to its entries
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differentiated, however, between a smooth and gradual change —named as concept drift— that

should be incrementally incorporated in the learning process and an abrupt and sudden change

—named as concept shift—. Moreover, methods to forget outdated data are also necessary. All

this leads to a whole research field for the development and application of ML algorithms for data

streams [36].

What characterizes a data stream [188] is:

1. The data elements in the stream arrive on-line and continuously.

2. There is no control over the order in which data elements arrive, either within a data stream

or across data streams.

3. Data streams are theoretically unbounded in size.

4. Random access to past data must be reduced in the sake of efficiency, or even avoided in some

applications.

In complex systems and for large time periods, changes in the distribution of the examples and

in data relations are expected. Therefore, the solution does not rely on just using an algorithm

specifically adapted for incremental learning, but it is all parts of a whole. Since the most funda-

mental methods such as counting problems or basic statistics aggregates are need to be adapted to

deal efficiently in such online environments. As an example, the sample mean can be recursively

estimated with every new observation 𝑥𝑖:

𝑥𝑖 = (𝑖 − 1) 𝑥𝑖−1 + 𝑥𝑖
𝑖

Similarly, the standard deviation can be recursively estimed:

𝜎𝑖 = √∑ 𝑥2
𝑖 − (∑ 𝑥𝑖)2

𝑖
𝑖 − 1

The use of a sliding window to take into account the most recent past is also common procedure in

the realm of data streams. These can also be used as a method for data synopsis, along with data

reduction methods such as sampling [253], histograms [111] or wavelets [150].

A smooth and gradual change —i.e. when the target concept is gradually changed over time— is

usually handled with the use of an incremental learning approach. In this regard, some ML models

are more naturally prone to such incremental learning than others. This is the case of, for example,

k-nearest neighbors or probabilistic methods; while others require suitable changes. In this thesis,

we have relied on the frequently used decision trees which is a common ML model known for its
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interpretability when compared to other kind of black-box ML models. In the classical or original

sense [44], it is a graphical model in the form of a tree starting from a root node without any

incoming edge and where every other node has exactly one incoming edge and zero or two —or

more than two if it is not a binary decision tree— outgoing edges. Those nodes without outgoing

edges are called leaves, while the rest are called internal nodes as shown in Figure 2.4. Each edge

originating from an internal node is labeled with a splitting predicate. The set of splitting predicates

on the outgoing edges of an internal node must be non-overlapping —i.e. the conjunction of any

two predicates evaluates to false— and exhaustive —the disjunction of all predicates evaluates to

true—.

Figure 2.4: Example of a decision tree.

The decision tree model was not originally aimed to online or non-stationary problems, but several

remarkable works have appeared in the literature that deal with this problem [74, 96]. Indeed,

some parts of the work in this thesis are built on work by Gama [94] and colleagues [12, 131]

to deal with data streaming problems. More specifically, their research has been centered on the

development of methods for learning in streaming scenarios with the need to be quickly adaptable

to non-stationary and dynamic processes, and especially through the building of decision trees. We

use this work to address common problems found in real-time applications with real data —such

as noisy or faulty data sources— and tailor the development towards the thesis goals and Aimsun

Live requirements in the problem of spatiotemporal flow prediction.

In regard to the sparse regularized learning commented in the previous subsections, it is usually

solved in batch mode. However, the problem can be solved iteratively without using the full

dataset at once. If stated in a probabilistic form, the iterative resolution is obvious and natural by

updating posterior probabilities given new evidence and prior probabilities. When not formulated

probabilistically —which is very frequently, given that the problem is usually stated as a high-

dimensional problem and Bayesian methods are not that scalable—, then the combination of loss

function and penalty term must be solved. For this, a closed-form solution is difficult because of

the non-differentiable part of the penalty term and the possible collinearities on data. Thus, it is

commonly solved with first-order optimization methods which can be set to work as an iterated

solver using mini-batches of data. For instance, in our case coordinate descent (coordinate-wise

gradient descent) is used to obtain the parameter estimates because it applies well to the case
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where 𝑛 ≪ 𝑝, and it has been successfully applied to problems with high-dimensionality [92, 90,

116], demonstrating to be efficient in large problems [191]. In online learning, the coordinate

descent is also applicable using mini-batches of incoming data, a small learning rate and the soft-

thresholding technique [219]. Additionally, instead of updating all the coordinates —features—

in every update, it is possible to rely on the variable selector to select probabilistically a subset

of coordinates. Another approach for online learning with sparse solutions is called Truncated

Gradient based on the work by [162], which has other hyperparameters with no direct relationship

with the penalty value 𝜆 from the batch setting. Other references dealing with the same problem

are [248, 271, 57, 99, 16, 84]. Nevertheless, stability in online sparse solvers is of great importance

[173].

Another concept related to incremental learning is gradual forgetting. In this case, the fundamental

idea in time-forgetting mechanisms is to use a function for aging the examples and, thus, giving

less importance or weight to older examples reaching a point where examples older than a certain

age are forgotten. The age decay can be as simple as using a sliding window scheme or a decay

factor [157] or be more sophisticated by detecting when changes occur. Regarding this fact, it is

related the realm of change detection when the underlying data generation process or data relations

being modelled is distinct enough from the initial conditions, which is common in non-stationary

environments. These changes may also take place in an abrupt or sudden manner, thus degrading

the perfomance very quickly. Therefore, incremental learning is a necessary property but not

sufficient to deal with such abrupt changes. Around change detection —and, thus, concept drift

or shift— there is a wide work in the ML literature [97]. In general, methods to deal with concept

drift can be analyzed from different perspectives: data management, detection methods, adaptation

methods, and decision model management.

The data management determines how memory is handled, i.e. it can be a full memory model where

data examples are gradually forgotten using a fading factor that, for instance, can be linear [157] or

exponential [153]. Another way to handle the memory is with the use of sliding window techniques

which could be of a fixed size or an adaptive window size according to when data changes [35].

The detection model determines the techniques and mechanisms for drift detection, so it can identify

the change-point or a small time-window where the change occurs along with a quantification of

the change. There are two main approches: one is based on monitoring the evolution of specific

performance indicators —such as performance metrics or data properties—, while the other is based

on monitoring the difference between two time-windows —one corresponding to a reference past

summary and the other over the most recent examples—. Examples of the first approach include

the FLORA family of algorithms [262], the cumulative sum algorithm (CUSUM) and its variant
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Page-Hinkley (PH) test [199]. Examples of the second class include [95, 147]. More specifically,

the PH test is a sequential test for monitoring an abrupt deviation in the average of a Gaussian

signal, which considers two cumulative variables, 𝑚𝑇
𝐿 and 𝑚𝑇

𝑈 , defined as the cumulated differences

between the observed values and their mean till the current moment:

𝑚𝑇
𝑈 =

𝑇
∑
𝑡=1

(𝑥𝑡 − 𝑥𝑇 − 𝛾), 𝑚𝑇
𝐿 =

𝑇
∑
𝑡=1

(𝑥𝑡 − 𝑥𝑇 + 𝛾),

where 𝑥𝑇 is the online mean of the observed variable till time 𝑇 , and 𝛾 corresponds to the

magnitude of changes that are allowed. The values 𝑀𝑇
𝑈 = min (𝑚𝑡

𝑈 , 𝑡 = 1, … , 𝑇 ) and 𝑀𝑇
𝐿 =

max (𝑚𝑡
𝐿, 𝑡 = 1, … , 𝑇 ) are also computed at every time step 𝑡. Finally, the PH test evaluates the

differences: 𝑚𝑇
𝑈 − 𝑀𝑇

𝑈 and 𝑀𝑇
𝐿 − 𝑚𝑇

𝐿. When any of these differences is greater than a given

threshold 𝜆, an alarm is raised because of a detected change in the distribution which could be a

positive or negative change in the average of the signal. The threshold 𝜆 is set according to the

admissible false alarm rate. Increasing this threshold will entail fewer false alarms, but might miss

some changes.

The adaptation model can be distinguished between blind and informed methods. As the name

suggests, blind methods are defined by adapting the learner at regular intervals without taking into

account if a change has really occured. On the other hand, informed methods rely on a detection

model in order to modify the decision model.

Lastly, the decision model management determines how the decision models are handled in memory,

and when they should be created, removed or maintained simultaneously. For instance, the dy-

namic weighted majority algorithm (DWM) is an ensemble method for tracking concept drift which

maintains an ensemble of base learners and performs a weighted-majority vote of their response.

In addition DWM dynamically creates and deletes experts in response to changes in performance.

Another important aspect is the granularity of decision models. When a change occurs, it does not

have impact in the whole instance space, but in particular regions. Thus, having more granular

models —e.g. decision trees— helps to perform more efficient adaptations.

2.2.2.5 Probabilistic modelling

Normally in data science, models can be formulated from two perspectives: using a model-based

probabilistic approach, or using an empirical or risk minimization approach. The former results

in a generative model [187], while the latter leads to a discriminative model [252, 251]. Generally

speaking, a discriminative model learns the decision boundary between the classes of a problem,
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while a generative model explicitly models the actual distribution of each class. More specifically, a

discriminative model —which was described in the previous subsection of empirical risk minimiza-

tion (ERM)— does not learn the joint probability distribution P(𝑋, 𝑌 ) between the input space

𝑋 and the output space 𝑌 , instead it learns the conditional probability distribution P(𝑌 |𝑋). On

the other hand, a generative model does learn the joint probability distribution P(𝑋, 𝑌 ), having

P(𝑋|𝑌 ) and P(𝑌 ), and deriving the conditional P(𝑌 |𝑋) using Bayes theorem. In the end, both

modelling perspectives are predicting using the conditional probability distribution P(𝑌 |𝑋), but

the way how it is learned differs. An important note, however, is to remark that probabilistic

modelling is not only tied to Bayesian statistics, as probabilistic models can also be fit from a

Frequentist perspective using Maximum Likelihood Estimation (MLE).

No approach is uniformly better than other for doing data modelling, and it depends on the purpose

and aimed operating mode of the model, the available prior knowledge about the structure of the

problem, the amount of available data for model fitting, the complexity and dimensionality of the

problem as well as the available computational resources.

For example, non-probabilistic algorithms are not able to generate new samples after learning the

mapping between the input space 𝑋 and the output space 𝑌 , because they simply give a separating

hyperplane between classes. For this same reason, as discriminative models do not learn the joint

probability distribution P(𝑋, 𝑌 ) and they do not have either the conditional P(𝑋|𝑌 ), it is more

difficult —or less natural— for them to function in outlier detection whereas generative models

generally do.

In general, generative models often outperform discriminative models on smaller datasets because

their generative assumptions place certain structure which performs as regularization preventing

overfitting, whereas the discriminative counterpart might pick up on spurious patterns in such small

dataset that do not really exist. However, in the long run as the dataset grows, discriminative

models can outperform in case the generative assumptions are not satisfied, since discriminative

algorithm make fewer assumptions. An interesting discussion on comparing both approaches is

[192].

Generative models are built on top of the principles of probability theory. Probability theory is

the natural way to quantify the uncertainty in measurements, parameters or around the model. A

probability expresses the degree of confidence that an outcome or an event —a number of outcomes—

will occur. The set of all these possible outcomes of a particular experiment is called the sample

space Ω. The function which performs the mapping from a sample space Ω into the real numbers

is a random variable 𝑋 which can be either discrete or continuous 𝑋 ∶ Ω → ℝ.
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From the axioms of probability theory [155]:

P(𝑋 = 𝑥) ≥ 0

∑
𝑥∈Ω

P(𝑋 = 𝑥) = 1, ∫
𝑥∈Ω

P(𝑋 = 𝑥) 𝑑𝑥 = 1

P(𝑋 ∪ 𝑌 ) = P(𝑋) + P(𝑌 ), with 𝑋 ∩ 𝑌 = ∅

It also derives the addition law of probability or sum rule:

P(𝑋 ∪ 𝑌 ) = P(𝑋) + P(𝑌 ) − P(𝑋 ∩ 𝑌 )

The conditional probability of an event 𝑋 = 𝑥 is the probability that the event will occur given the

knowledge that an event 𝑌 = 𝑦 has already occurred. It is denoted by P(𝑋|𝑌 ), and it expresses

the updated beliefs given the new evidence. If the two events 𝑋 = 𝑥 and 𝑌 = 𝑦 were independent

𝑋 ⟂⟂ 𝑌 then P(𝑋|𝑌 ) = P(𝑋), and if they were mutually exclusive then P(𝑋|𝑌 ) = 0. The product

rule states that:

P(𝑋 ∩ 𝑌 ) = P(𝑋|𝑌 )P(𝑋)

where P(𝑋 ∩ 𝑌 ) is the joint distribution P(𝑋, 𝑌 ) of random variables 𝑋 and 𝑌 . It is easy to

observe that P(𝑋, 𝑌 ) = P(𝑋)P(𝑌 ) when the random variables 𝑋 ⟂⟂ 𝑌 , and when they are mutually

exclusive then P(𝑋, 𝑌 ) = 0. There is also conditional independence: 𝑋 ⟂⟂ 𝑌 |𝑍 ⇔ P(𝑋, 𝑌 |𝑍) =
P(𝑋|𝑍)P(𝑌 |𝑍).

Using the product rule P(𝑋 ∩ 𝑌 ) = P(𝑋|𝑌 )P(𝑋) and P(𝑌 ∩ 𝑋) = P(𝑌 |𝑋)P(𝑌 ), by equating them

we will get P(𝑋|𝑌 )P(𝑋) = P(𝑌 |𝑋)P(𝑌 ), and then the Bayes theorem is obtained:

P(𝑋|𝑌 ) = P(𝑋)P(𝑌 |𝑋)
P(𝑌 )

which is the basis for inference and learning in generative models when a Bayesian approach is used.

Then, the common nomenclature with a model or parameter set 𝜃 and observed data 𝒟 is:

P(𝜃|𝒟) = P(𝜃)P(𝒟|𝜃)
P(𝒟)
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That is, the posterior probability equals the prior probability P(𝜃) times the likelihood ratio P(𝒟|𝜃)
P(𝒟) .

The product rule can be generalized to more than two random variables, 𝑋1, … , 𝑋𝑛, as the chain

rule:

P (
𝑛

⋂
𝑘=1

𝑋𝑘) =
𝑛

∏
𝑘=1

P (𝑋𝑘 ∣
𝑘−1
⋂
𝑗=1

𝑋𝑗)

In probabilistic inference, typical queries include marginal queries where the task is to compute

P(𝑌 |𝑋 = 𝑥) to obtain a marginal distribution, and the Maximum a Posteriori (MAP) queries

—most probable explanation— where the task is to find 𝑦∗ = arg max𝑦∈Ω P(𝑌 |𝑋 = 𝑥).

All this probability theory can be merged with a graph-based representation which leads to the

field of probabilistic graphical models (PGMs). PGMs use graphs to represent the complex proba-

bilistic relationships between the random variables, allowing to compactly represent distributions

of variables and in a intuitive manner —such as conditional independences—. In PGMs, nodes

represent random variables and edges reflect dependencies between variables. Popular PGMs for

inference include Bayesian networks based on a directed acyclic graph (DAG) or Markov random

fields based on undirected graphs and factor graphs.

Z

X Y

(a) Case 1

Z

X Y

(b) Case 2

Z

X Y

(c) Case 3

Z

X Y

(d) Case 4

Figure 2.5: Bayesian networks cases. Blue nodes are those whose evidence has been observed.

Bayesian networks are a case of PGM whose structure is a DAG, thus not allowing cycles among

the variables. The graph-based structure allows to easily impose dependences between variables

and conditional independences which reduce complexity in the inference. Their interpretability is

also a clear advantage. The factorisation rule for Bayesian networks (DAGs) is:

P(𝑥1, … , 𝑥𝑛) =
𝑛

∏
𝑖=1

P(𝑥𝑖|Pa(𝑥𝑖))

where Pa(𝑥𝑖) denotes parent of 𝑥𝑖.

For example, in Figure 2.5 it can be observed 4 cases of small Bayesian networks. In the case

(a), 𝑋 and 𝑌 are not independent each other so P(𝑋, 𝑌 ) ≠ P(𝑋)P(𝑌 ). But in the second case
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(b), as random variable 𝑍 is observed, we can say 𝑋 is independent of 𝑌 given the evidence 𝑍
—conditional independence 𝑋 ⟂⟂ 𝑌 | 𝑍—, thus P(𝑋, 𝑌 |𝑍) = P(𝑋|𝑍)P(𝑌 |𝑍). Lastly, both cases (c)

and (d) denote 𝑋 ⟂⟂ 𝑌 and 𝑋 ⟂⟂ 𝑌 | 𝑍, respectively, then P(𝑋, 𝑌 ) = P(𝑋)P(𝑌 ).

Other benefits using PGMs is the exploitation of optimizations to reduce the computational com-

plexity such as variable elimination or message passing. Furthermore, inference algorithms can be

exact or approximate. More details are found in Chapter 8 of [38] and especially in [154].
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3.1 Short-term traffic prediction

The field of short-term traffic forecasting has been active since the early 1980s [4] when it started

to be integrated along most of Intelligent Transportation Systems (ITS). It has become a crucial

component of them and, thus, it is being widely considered in many areas of transportation research.

The traffic characteristics which are usually modelled include the volume, density, speed or travel

times of the traffic network, and the forecasting horizon target is over the period of a few seconds

to a few hours in the future. Given that road traffic is the visible result of the complex interplay

between traffic demand —i.e. the amount of travelers making a trip at a particular place and time—,

and traffic supply —i.e. the network infrastructure—, it is usual to find during the modelling stage

that the input–output relationship is noisy and such relations in data are multivariate and highly

nonlinear [170]. Additionally, the process is usually high-dimensional, non-stationary and tackled

in real-time.

In the literature, there are two main approaches to deal with road traffic prediction: model-driven

and data-driven [30]. Model-driven approaches try to reproduce the road network behaviour

through simulation, and depending on the level of detail and the underlying traffic flow theory

they are based on, they could be distinguished among microscopic, mesoscopic, macroscopic and

hybrid variants [28, 247]. Aimsun [5] is an example of a commercial product that integrates dif-

ferent simulators for such tasks [53]. One requirement for such model-driven approaches to obtain

accurate predictions is to have a detailed knowledge about the network geometry including junc-

tions, lanes, roundabouts and signals, but also certain operational details such as speed limits or

control plans. Then, during simulation all the entities, including vehicles, pedestrians and interac-

tions among them, are moved through the network’ roads. In this way, it is possible to obtain a

prediction of the whole network state in the future.

Model-driven approaches are especially well-suited for long-term predictions that include trans-

portation planning, as for example those planning changes to the existing infrastructure which

require modelling future —months or years ahead— traffic conditions while disregarding any type
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of real-time information. Model-driven approaches are within the parametric category of models

as their number of parameters are fixed in advance as well as the model structure. However, their

main drawback is that a detailed knowledge about each road network being modeled is required to

obtain accurate predictions, and also it is especially important the inherent fact that both, road

network infrastructures as well as traffic demand, are continuously changing and such changes must

be reflected into the model structure and assumptions to maintain the accuracy. Further ore, es-

timating boundary conditions is a challenging task for physics-based approaches, e.g. when ramps

have not measurement devices to make them observable, requiring specific methods to deal with it

[186, 213]. The ability of this kind of models to model urban arterials and provide good forecasts

is also more limited due to the existing traffic flow dispersion [209].

On the other hand, the data-driven approach aims to reproduce the input–output mapping but

usually neglecting the underlying data generation process —i.e. well-founded mathematical models

that are based on macroscopic and microscopic theories of traffic flow— and disregarding, in general,

the network topology. Despite this, integrating the network spatio-temporal information within the

short-term traffic prediction task is of ultimate importance [81]. This data-driven research branch

has taken advantage from the fact that over time different measuring devices, such as induction

loop detectors, controllers, video surveillance systems and even GPS devices installed on buses and

taxis, have been deployed within road networks to measure and verify road traffic conditions, thus

increasing the network observability. In addition, nowadays with the spread of smartphones, it is

easier to collect location, incident information, travel times and routes typically used by drivers.

Among the data-driven algorithms, some authors in the literature distinguish between a classical

statistical perspective and a more novel research area based on the increasing amount of data

mining methodologies and algorithms for analyzing vast quantities of data [142].

At the beginning of its development, most of the research was focused on a classical statistical data-

driven approach to predict traffic at a single point [4, 227]. Such classical statistical approaches,

commonly ARIMA and derivates or filtering techniques such as the Kalman filter stated as a time

series approach, usually match with the above parametric definition in the sense that their number

of parameters, model structure and assumptions are fixed in advance [263]. Over time, there have

been attempts to enhance the approach, e.g. using a Bayesian perspective [105] or including the

existing spatio-temporal correlations in the road network [183]. The main drawbacks of using time

series models are that they can not deal efficiently with non-linear processes, and it is hard to

integrate environmental data sources into them. Moreover, these parametric models can achieve a

good performance when traffic shows regular variations, but the forecast error is obvious when the

traffic shows irregular variations.
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The growing data availability including the fusion of multiple data sources makes possible to relate

traffic conditions to external information sources such as weather, incidents, road works and other

special events. This data fusion of heterogeneous data sources coupled with the increased storage

capacity and processing power has led to the advent of a novel research area based on the application

of more sophisticated methodologies derived from the data science and machine learning fields [189,

214]. Another reason for the focus placed on ML-based methods is that most classical approaches

have weaknesses under unstable traffic conditions, complex road settings, as well as when dealing

with large datasets [256]. A part of this modelling branch is also called non-parametric in some

literature, which implies that the number of parameters can grow indefinitely as more data is

gathered as part of the learning process, so the point is that the number of parameters is flexible

and not fixed in advance, thus getting a model structure and parameters’ values that are totally

determined from the data [189]. Nevertheless, a lot of research in this field has assumed an ad-hoc

selection of the predictors for each of the network locations depending on the network topology,

instead of performing automatic selection based on data. Finally, most of the literature deal with

the problem of traffic forecasting from a classical perspective using a bounded dataset and not

paying enough attention to the problem of concept drift and changes that may occur both in the

supply or the demand, and thus the initial assumptions over the model are not further checked and

the model does not evolve or learn with new data. Therefore, in the following lines, the focus is

placed on those works whose model proposal is intended to deal in some way with this problem.

Regarding examples of applied methodologies, several research has applied a k-Nearest neighbours

schema (k-NN), also known as non-parametric regression. k-NN is a well-suited technique for real-

time given that online learning is naturally done with the addition of new cases to the database.

In the literature, typically a simple form of k-NN is used. More sophisticated forms include [112]

which used a k-NN schema based on weighted Euclidean distance using past time series from a

specific spatial point and coupled with some enhancements to deal with specific problems: e.g. a

locally weighted smoothing (loess) is adopted in order to reduce the inherent noisy traffic data,

the weighted Euclidean distance strengths the recent measurements, and winsorization is used to

limit extreme values. Given the continuous addition of new cases to the database, some issues

must be handled in order to avoid an excessive penalty in the computational cost. In [129], for

instance, a framework named Spinning network is proposed to deal with the continuously growing

database size and the associated cost with searching and calculating the nearest observations. [149]

integrated a k-NN based on weighted Euclidean distance approach with historical time-series traffic

patterns which were built on different qualitative criteria such as weekdays or holidays in order to

improve the accuracy with the longer forecasting horizons. In any case, a common drawback of

the k-NN methodology is the extreme sensitivity to the selected distance function as well as the
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selected number of k-neighbors which, with high number of neighbors, can suffer from the so-called

curse of dimensionality.

Another common data-driven methodology is based on graphical models, which seem suitable to

model road traffic networks. For example, [72] use continuous conditional random fields for speed

forecasting, giving probabilistic intervals around predictions and handling missing data with robust-

ness; however, their experiments deal with a small dataset where lot of information —weekends,

holidays, and days with a large fraction of missing or corrupted data— has been pulled out for the

tests, and as they point out the framework lacks the use of contextual information and thus it is

insufficient during special events. Bayesian networks have been appropriately applied to the traffic

prediction task. JamBayes [126] is commonly shown as a Bayesian inference application to identify

the traffic jam formation, it has the ability to include different kind of contextual information and

to deal with uncertainty through a probabilistic graphical representation; and even that apparently

it is suited for real-time operating, almost no details are given about the structure and parame-

ter learning stages which are especially important for real-time operations. In [234], a Gaussian

mixture model (GMM) is used whose parameters are estimated via the competitive expectation

maximization (CEM) algorithm. They also adopt the idea of conditional independence, that is,

given the adjacent upstream traffic flows at different time delays, traffic flow at the current link is

assumed to be independent of other upstream traffic flows. In [55] a method based on Bayesian

networks is proposed in order to deal with traffic demand matrix estimation (OD flows) using

the link flows and knowing the network topology, they use the Bayesian networks for the matrix

estimation step going from individual link flows and turning proportions to aggregated demand

matrix (OD flows) and then the traffic assignment, such as Stochastic User Equilibrium (SUE),

is used to go from aggregated demand matrix to individuals link flows and turning proportions

using certain assumptions. They make some assumptions, e.g. that OD flows follow a multivariate

normal distribution as well as that conditional distribution on each link flow given the OD flows

follows a normal distribution. Additionally, they use algebraic derivations to update parameters

with new evidence one to one but they state that Markov Chain Monte Carlo (MCMC) should be

used when the number of nodes in the transportation network is large. In [13, 14], a probabilistic

parametric model is proposed, called multiregression dynamic model, built upon the definition of

the directed acyclic graph (DAG) of the network where the goal is to estimate the flow propagation

in the forks and merges within the network, and therefore it is essential for the method to have

available data at such sites.

Other applications related to real-time and online operation is [56] where a support vector machine

for regression is used for one-step ahead prediction and updating the parameters after each obser-
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vation is seen. [69] proposed a fuzzy rule-based system optimized with genetic algorithms for the

modelling and short-term forecasting of traffic flow in urban arterial networks. Such an approach

has the advantage of suitably addressing data imprecision and uncertainty, and it enables the in-

corporation of expert’s knowledge on local traffic conditions within the model structure, however

it is also sensitive to the prior definitions of fuzzy memberships derived from expert knowledge.

Linear regression coupled with regularization techniques [166, 233] has been also used for traffic

prediction. [124] gives some reference about approaches to deal with online lasso, and more specif-

ically, with the sparse variations of the input signals over time with use of ℓ1-norm combined with

ℓ2-norm for numerical stability. Their focus is on predicting link travel times using taxi probe data.

In [139], a regime-switching analysis, e.g. from free-flow periods to congested periods, is performed

in order to later build a linear model within these time periods [140, 183].

The Kalman filter stated in the form of time series modelling [196, 270, 171] has been also applied

to short-term traffic forecasting.

Neural networks have been widely used in transportation research, including for example traffic

control through reinforcement learning [2, 37, 230]. Regarding short-term traffic prediction, they

have been considered suitable as the input–output data relationship is noisy and nonlinear and thus

there is a vast amount of literature about different kind of implementations [133, 255], even in their

most recent form with deep learning [130, 172]. [267] combines different neural network structures

—such as long short-term and convolutional neural networks— for mining spatio-temporal patterns.

In [106], they build an autoencoder neural network trained to minimize the reconstruction loss,

and, because they used a complete data matrix to train the model, they use different matrix

completion methods to benchmark, remarking the importance of the missing data imputation

problem in networks of traffic sensors. [208] propose another deep learning approach for short-

term traffic prediction performing a preliminar step using regularized linear regression for feature

selection, and they remark the importance of performing trend filtering in order to smooth the

inherent noise in traffic data. Another long short-term memory deep neural network is proposed

in [273], where missing data is remedied by using adjacent data in temporal order. Recently,

other deep architectures have been applied to the task of traffic forecasting, such as graph neural

networks [168, 218]. However, besides the good behavior in accuracy terms of the neural networks

approach, a review comparing statistical methods and neural networks [142], pointed out that

researchers often implement this approach blindly, ignoring some of their shortcomings such as

limited inherent explanatory power, so it is important to know when to use them as this model has

limited explanatory power.

Besides, most of the data-driven traffic prediction works found in the literature have been focused
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on predicting the traffic from an individual task perspective, neglecting to fully leverage the implicit

knowledge shared in a road-network through space and time. This is inconsistent, however, given

the recent growing availability of traffic data and, more specifically, the spatial coverage along

the road networks which makes it sense to take benefit of the inherent existing spatiotemporal

correlations in order to infer the future traffic state. Moreover, papers which have used a multi-

task learning paradigm applied to traffic flow modelling have focused the attention on predicting

multiple forecasting steps as the set of related tasks, and they have been relied on a neural network

modelling architecture. Examples of this application include the works by [130, 136, 235], with a

few exceptions [236].

A final remark between model-driven and data-driven approaches is that while data-driven

approaches usually forecast the traffic state on specific points —those observable points with

measurements—, model-driven approaches simulate the whole network allowing more compre-

hensive prediction outputs, including what-if scenarios. For this reason, some hybrid approaches

have appeared, for example [223] proposed an approach based on parametric macroscopic traffic

flow model but enhanced with some parts derived from data-driven methods: a Gaussian mixture

model for missing data replacement and handling of uncertainty, and an incident detection method

based on support vector machines with corrections using a Bayesian network. Other examples of

hybrid approaches integrating simulation with data-driven methods are [1, 93, 200].

For additional references and an extended review of the various works on short-term traffic forecast-

ing, the reader is referred to the works of: [250, 170] especially for travel time prediction. [254, 256],

contain a comprehensive table with numerous references covering multiple research works. [142]

focuses on the comparison between statistical methods and neural networks, listing many research

work references in a tabular form. For a review on the importance of including spatio-temporal

information into the short-term traffic forecasting, as well as a comprehensive list of works about

it, see [81].

3.2 Traffic state identification

Efficient estimation of local traffic states from the fundamental diagram at each detection site is

crucial for many real-time traffic management applications both in urban and freeway networks.

Usually, these traffic states are inferred from the bivariate relationship between traffic flow and

density using a deterministic approach. However, due to traffic congestion and position of detection

sites especially in urban networks, this relation is highly scattered making these methods not

suitable to handle the associated uncertainty in the process.
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The fundamental diagram describes the flow-density and speed-density relationships as well as the

speed of kinematic waves and shock waves (i.e. jam fronts) in the case of a freeway scenario where

flow conservation and equilibrium state conditions are met. There has been different approaches

to model the shape of the fundamental diagram, including pioneer work by Greenshields [110], and

Drake’s model [76], which are univariate models. Bivariate models distinguished formulation for

the congested and uncongested regimes. These include the triangular fundamental diagram and

Daganzo’s truncated triangular fundamental diagram [62]. The distinction between both branches

allowed to analytically estimate parameters such as the free speed equivalent to the slope of the

uncongested regime, and the shock wave speed corresponding to the slope of the congested regime.

Another traffic phenomenon is related to the traffic hysteresis and the associated capacity drop

which is included in some of the fundamental diagram models such as findings by Koshi et al. [156]

and the Wu’s diagram which has an inverse 𝜆 shape [266].

Still, all these approaches are deterministic, leading to a single hyperplane in the flow-density plane,

without leaving space for the stochasticity. However, this modelling assumption is problematic

because of the wide scattering found in the bivariate relationship, especially in the congested regime.

In fact, this wide scattering has its roots in several factors which are not modeled explicitly, namely

drivers’ behavior, vehicle and environmental conditions, among others. One such work that aimed

to deal with the existing stochasticity can be found in [258].

In an urban road the relation is even more chaotic because of the existence of transient phases

which are difficult to distinguish from equilibrium phases, and that it is caused by irregular inter-

ruptions such as traffic lights, pedestrian crossings or side-street parking. Moreover, the location

of inductive loop detectors along the urban roads plays a crucial role in the shape of the result-

ing local fundamental diagram, especially if they are located just before or after a signaling or

intersection, as studied in [257]. However, there have been attempts in the literature to find this

flow-density relationship in urban areas. Work by Leclercq [163] is a notable example, where flows

and occupancies coming from several inductive loop detectors in the city of Toulouse are used. The

aim is to characterize those traffic states which are stable enough and filter the transient ones. He

applies data preprocessing and uses a frequency histogram to filter those regions in the plane with

higher data frequency in free-flow, while keeping the extremes which are related to the congested

regime.

Another research branch that has generated a lot of literature in the recent years is the application

of an urban-scale macroscopic fundamental diagram to the whole, usually urban, network. Daganzo

and Geroliminis [65] provided experimental evidence, using data from the city of Yokohama, that a

macroscopic fundamental diagram with low scattering exists linking space-mean flow and density.
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However, Buisson and Ladier [48] showed with data from Toulouse that heterogeneity has a strong

impact on the wide scattering and final shape of a macroscopic fundamental diagram. Mazloumian

et al. [178] emphasized that the spatial aggregation of traffic variables cannot guarantee a well-

defined relationship between the average density and flow, especially when the network is congested,

because, in urban networks, congestion is by nature unevenly distributed in space by factors such

as demand, road infrastructure and control.

All these works on traffic state identification models are based on a single best-fit curve approach.

Another kind of methods in the literature also classify different regions of the fundamental diagram

considering a certain amount of stochasticity in the data.

Xia and Chen [268] applied a nested clustering technique based on an agglomerative clustering

algorithm to freeway data from California. However, their method is too time-consuming for an

online implementation, as it retrains the model each time that a traffic data record arrived in real

time. Later, in [269] they proposed a modification of the previous model, where instead of storing

all the historical traffic data, they stored statistical features of data in an online agglomerative

clustering algorithm, and using Bayesian Information Criterion (BIC) to determine automatically

the optimal number of clusters. Kianfara and Edara [146] carried out a comparison with freeway

data using hierarchical clustering, K-means clustering and Gaussian mixture model (GMM) for

the task of classifying the fundamental diagram in two states: congested and uncongested. Azimi

and Zhang [23] also compared K-means, fuzzy C-means, and CLARA algorithms to classify the

fundamental diagram into six states using freeway data. Lastly, Antoniou et al. [18] applied, using

highway data within an integrated framework for traffic state transition estimation and speed

prediction, a model-based clustering (Gaussian mixture model) for the classification of regions in

the fundamental diagram, where the number of traffic states was decided using BIC and some

manual verification.

In all these referenced works, generally an information-theoretic criterion is used to determine the

optimum number of clusters or identified states in the fundamental diagram, such as the one with

lowest Bayesian Information Criteria (BIC). In essence, this criterion chooses the model with best

trade-off between the maximized value of the likelihood function of the model and an introduced

penalty by the number of parameters estimated by the model. While very reasonable, it can still

lead to solutions where the number of identified clusters is higher than the desired one, in order to

be interpretable or in accordance with the fundamental diagram; or, on the other hand, it can lead

to solutions with a small but mixed set of traffic states. Moreover, it often happens that certain

locations have not observed the full spectrum of traffic states, e.g. when a section has not been

totally congested ever, and in such situations there is no guarantees to make accurate predictions
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with such information-based criterion. Finally, the interpretability of the discovered clusters is

sometimes problematic, because many models can explain the observed data and not all have a

reasonable semantics.

3.3 Incident detection

Recurrent congestion [75, 225] exhibits a daily pattern and its location and duration is usually

known by regular commuters and traffic operators. It is mainly caused by excess travel demand,

inadequate traffic capacity or poor signal control [114]. On the other hand, non-recurrent congestion

may suddenly occur at any time of day and location, as its occurence depends on the local conditions

of the road network, as well as travel demand and traffic capacity. A non-recurrent congestion is

mainly caused by unexpected events like traffic accidents or vehicle breakdowns. It can also occur

due to planned engineering works, special events —e.g. football matches or concerts— or inclement

weather [161]. Furthermore, non-recurrent congestion events are considered to be the major source

of variability in traffic forecasts [195].

Nearly all non-recurrent congestion events are caused by the simultaneous action of three factors:

high traffic load, a bottleneck, and disturbances of traffic flow caused by individual drivers [247].

A high traffic load is necessary as otherwise traffic disturbances cannot grow and propagate since

traffic is unconditionally stable for sufficiently low densities. A bottleneck is that weakest link with

a local reduction of the road capacity, and it can be permanent —e.g. on-ramps and off-ramps, lane

closures, road narrowings or curves— or temporary —e.g., when caused by accidents—. The last

needed factor is perturbations in the traffic flow itself such as inattentive drivers braking abruptly,

speeding cars, lane changes, or trucks overtaking each other.

Despite the fact that the definition, roots and consequences of non-recurrent congestion events are

clear; most automatic incident detection algorithms in the literature are developed for freeways,

as the detection in urban network remains as a challenging task. Besides, most algorithms in the

literature are based on the measurements from loop detectors, partially because loop detector sys-

tems have been the most widely used traffic measurement method and are of relatively low cost

compared to other detection technologies. However, they present other kinds of pitfalls due to their

Eulerian nature as they are placed fixed along the cross-sections. This makes the detection algo-

rithm very dependant on the position of such detection sites, and standard performance measures

such as detection rates (DR), false alarm rates (FAR) and mean time to detect (MTTD) are very

dependant on their physical placement and distribution through the road network.

51



3 Literature survey

Some of the existing reviews in the literature [24, 68, 202, 232] already perform a classification to

summarize the historical trend of applied methodologies in the task of traffic incident detection

in freeways. Another distinction can be made in the approach these algorithms are learned. If

data with labelled known incidents is used, then the problem is usually stated as discriminative

classification problem —supervised learning approach— and the goal is to calibrate the algorithm

parameters or to define the distributions of normal and abnormal traffic. On the other hand,

the problem can stated using a distance-based approach or stated as a outlier detection problem

—unsupervised learning approach—.

Historically, comparative algorithms were designed to compare the value of traffic measurements

—volume, occupancy or speed— and their differences against certain pre-established threshold

values, thus these algorithms are based on expert-designed rules. They are one of the oldest family

of algorithms widely applied in the field of traffic research, and the most widely known are the

different versions of the California algorithm [204], which has served as inspiration for multiple

posterior modifications and improvements [216]. Other kinds of similar comparative algorithms are

[60, 177]. Their major drawback is the difficulty of making them transferable to different networks

as they rely heavily on expert knowledge in order to define the rules. For instance, California #8

algorithm involves 21 individual tests, but there exist many variants on the literature. Furthermore,

there is the additional difficulty of calibrating these algorithms as this depends on observing incident

observations for each monitoring site.

Distance-based approaches have been common in the literature. Standard statistical methods

have been used to determine whether observed detector data differ significantly from estimated or

predicted traffic characteristics. For instance, the standard normal deviate (SND) algorithm [77]

developed by the Texas Transportation Institute is based on detecting significant deviations from

the mean of the lanes’ occupancy. In the University of California Berkeley (UCB) algorithm [169],

the statistical fluctuations of time occupancy are recognized as random walks and those values

out of range are indicative of traffic incidents. Another distance-based approach, similar to the

previous one, relies on time series modelling methods which assume that traffic normally follows a

predictable pattern over time, and therefore they detect incidents when the observed signal deviates

significantly from the modelled time series. Although these methods can be stated as unsupervised

problem, obviously the challenging part of such approach is to define what is the normal behavior

—i.e. pattern— and which features can discriminate properly.

Another widely applied approach is based on aspects of the macroscopic modelling as for example

the dynamic model [264]. The McMaster algorithm [207] is based on the catastrophe theory model

and relies on a segmentation of the fundamental diagram using data for each detection site, and
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the incident detection makes also use of each detection site independently.

In the practice, though, most of freeway management centers has historically relied on a modified

version of the California algorithm or the McMaster algorithm for incident detection.

Additionally, much research concluded that raw detector data —e.g. coming from inductive loop

detectors— is often inappropriate for incident detection if traffic noise cannot be filtered out. This

is because when data is corrupted by noise, the incident patterns can be hidden in the traffic data

making them difficult to be detected by certain algorithms, whereas certain fluctuations produced

by noise sources can be often detected as incidents. In this sense, smoothing and filtering techniques

have been applied to remove noise from traffic data that cause false alarms and hence permit true

traffic patterns to be more visible in order to detect true incidents.

More recent approaches to deal with the problem of incident identification have made use of statis-

tical and machine learning methods, and integrating alternative sources of data measurement. For

example, [148] proposes a probabilistic approach based on a Bayesian network integrating external

factors such as weather for urban networks and using labelled data of reported incidents. In [39,

185] an approach based on frequent subgraph mining is presented to deal with anomalous events.

In [15], a spatio-temporal clustering is performed over the link journey times (LJTs) —i.e. the

estimated journey time through a link at an established time interval— which are retrieved using

automatic number plate recognition cameras, and thus those clusters of substantially high LJTs

are identified as incidents. [20] make use of individual vehicle data from GPS trajectories to apply

traffic flow theory in order to detect incidents in an urban expressway. In [151], they propose a

probabilistic mixture model —also known as probabilistic topic model— of Poisson distributions

for the speeds of a segment —i.e. a link— which is processed from probe-car data in an expressway,

then they check for anomalous observation in the set of mixtures with the use of the Kullback–

Leibler (KL) divergence. A similar approach is adopted in [121] with the difference of using data

from inductive loop detectors from a real-data freeway and a simulated urban network, and there-

fore using a mixture of Gaussian distributions instead over the differences of flow and occupancy

between adjacents of each detection site, and using the Mahalanobis distance instead of the KL

divergence for checking the outlierness distance. In [224], they perform statistical tests to check for

statistical differences in the normal and incident scenarios in data which comprehends speeds, travel

times, acceleration and lane-change ratio from simulated probe-car data. [118] also uses simulated

data, from inductive loop detectors, in order to evaluate a rule-based fuzzy logic approach.
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3.4 Contributions

As can be seen, there is a vast literature about short-term traffic forecasting. Despite this fact, there

is much less of it that approaches directly the problem of change detection and model self-adaptation.

This is surprising, however, because it is well known the high volatility in the relationship between

traffic demand and supply, especially in the context of urban networks. In addition, it is not frequent

to find details about how to deal with missing or faulty data, as authors usually preprocess data

removing rare observations, special days, etc. This constrasts with the situation found in real-time

where noisy and faulty data sources are not uncommon. Moreover, there is very little work that

integrates such forecasting methods with an automated process of graph pattern mining with ability

to measure the outlierness, which has the potential benefit of anticipating anomalous conditions

within the road network. Many data-driven works neglect the interpretability of the proposed

model despite the fact that the end-user —i.e. a traffic engineer or traffic manager— needs not to

be an expert data scientist. In line with this, there is almost no probabilistic approach that deals

with the task of automatic traffic state identification, and very few giving a probabilistic approach

to the task of incident detection in spite of its good properties to be interpreted. Additionally, many

of these incident detection methods usually are trained in an supervised approach with provided

incident data, but this data is hard to obtain and it is known of its low reliability. Besides, incident

detection methods for urban networks are not frequent.

Finally, it is very rare to find an integrated approach, such as we propose in this thesis, that deals

with the real-time traffic forecasting in a self-adaptative manner, graph pattern mining, outlierness

detection, and incident detection. We aim to fill in this gap.
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In this thesis, the aim has been first to identify the existing limitations in Aimsun concerning the

real-time analytical prediction system for Aimsun Live, and then to propose an integrated system

in order to solve or alleviate such shortcomings. The identified limitations in Aimsun Live can be

summarized as follows:

• Fixed architecture of parametric modelling without taking into account the network traffic

dynamics.

• Forecasting models were built offline in batch mode with no subsequent online learning.

• No detection nor reaction to changes —either in the supply or the demand— over time.

• No detection of anomalous patterns in the network traffic dynamics.

• No incident detection.

• Very limited handling of missing data.

• No automated process to decide which amount of data to use.

• Lack of robustness in real-time operation.

• Limited interpretability by traffic engineers and managers.

4.1 Modelling assumptions and motivation

4.1.1 Spatiotemporal correlations

The main assumption behind the adopted predictive modelling is to use the information from the

current traffic network state in order to infer its evolution in the subsequent short-term time steps

—namely from 5 minutes until 60 minutes ahead—. This assumption is motivated by the fact that

traffic flow behaves like a stream of a fluid where it is conserved and propagated through the road

network, likewise the macroscopic traffic flow theory does with the use of hydrodynamic theory of

fluids. Certainly, this implies we ignore about the behaviour of individual vehicles and concern only

with the behaviour of sizable aggregate of vehicles. As already mentioned, the network traffic state

is described based on the traffic flows, either density or occupancy and the average time speeds
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which are measured by detection devices —usually loop detectors— which are spread along the

traffic roads in order to provide periodic measurements also in real-time.

In our case, this assumption leads to the search and exploitation of existing spatio-temporal corre-

lations in the road network. One important difference between our proposal and a solution purely

based on simulation is that, as we do not aim to provide so in-detail output information as macro-

scopic simulation would do, we can also relax some of the assumptions compliance as well as reduce

the level of detail of the required knowledge, such as for the network geometry for instance. In this

sense, one of the main motivations which has led the development of the proposed approach is to

provide a robust solution which makes the most of the observable data.

More specifically, in a transportation road network there is a lot of shared information given that

all roads are connected. This and the existance of entrance-exit points motivates the seek and

calibration of the proper spatiotemporal correlations for an accurate forecasting. Moreover, it is

frequent that not the whole road network is observable —i.e. there are not installed detection

devices to measure the traffic—, so the temporal aspect of these correlations can become extremely

useful in practice. On the other hand, these spatiotemporal correlations are dynamic as they are

not just time-dependent, but also conditioned on the different movement patterns underlying the

transportation system which responds to the existing traffic demand.

4.1.2 Mobility patterns

These mobility patterns —that we refer to as rules— are to be sought by exploiting the graph

structure of the road network, following an evidence-based decision making procedure. Without a

doubt, historical patterns are far from being stationary and they must evolve in the same manner

traffic demand do because of changes in the needs or behaviour from the users of the transportation

system. In this sense, the process must be performed online and it must be adaptable in order to

react to changes.

Despite the model is constantly evolving to match the current traffic demand, we are using past

seen traffic patterns coupled with real-time traffic information to predict the future. This means

that it can happen at some point that the rule that matches the current qualitative conditions is not

actually the best fit in terms of traffic pattern but still there would be another rule which fits better

such traffic conditions —i.e. we refer to this as recurrent conditions—. At first, this situation may

be handled through graph matching for a better rule selection. But in the end, the system should

reorganize itself to better acommodate such traffic patterns and it will depend on how fast demand

changes occur and the system’s ability to detect them and adapt itself. On the other hand, there
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could also happen that current rule do not match properly the current traffic conditions because

there are non-recurrent events in the network —e.g. an incident, traffic rerouting by authorities…—

that modify the usual drivers’ route choices. This latter case would be an example of non-recurrent

traffic conditions which are hard to handle by a predictive data-driven approach —beyond the

ability to properly identify them— because of its implicit unpredictability, and is best suited for

a simulation-based solution with different case scenarios which works paired with the proposed

approach.

4.1.3 Non-stationarity and change

These situations can be viewed as part of a more broad adversarial machine learning [128]. This

means that the presence of such non-stationarity must be taken into account in the learning process

so the system must adapt to the gradual changes as it learns, as well as react on sudden shifts. Of

course, any approach which does not fulfill with online learning is condemned to become outdated,

which invalidates the forecasting utility. In this sense, we also believe that non-stationarity is a

fundamental problem bounded to forecasting and empirical modelling and thus, the key is not just

to choose the best model but to find those relationships that survive long enough to be useful [120].

For this reason, the core idea of using more data for learning is always best is half true, because

learning with a significant proportion of outdated data may produce suboptimal results.

4.1.4 Non-parametric modelling

This is what has led us to place as minimum assumptions as possible on the data modelling and

the reason why we have adopted a non-parametric approach where data relationships are found

and controlled using evidence-based criteria in a online manner for an accurate adaptation to

changes in the traffic demand or supply. We thus depart from to other common approaches in time-

series forecasting such as parametric time-series approaches which rely on a proper beforehand

definition of trend and seasonality components during the modelling stage. In addition, such

time-series forecasting models are especially vulnerable to concept drift because as previously said

the underlying generating process of the time series observations may change, making forecasting

models obsolete and, furthermore, making challenging to identify long seasonality components when

new data is limited.

Above all and especially in statistical modelling, the assumptions placed by the analyst during

the modelling stage determine which type of conclusions may be extracted and how significant

are they. On the other hand, within the machine learning culture this point is not so crucial as
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the peformance of the forecasting task. Often, this is seen as two different cultures within the

statistical modelling field [43, 175]. In this sense, as aforementioned, we have decided not to place

very strong assumptions in the data model and thus, approaching the problem from a machine

learning perspective.

4.1.5 Interpretable reasoning

However, although treating the problem with a black-box model is common in many machine

learning techniques, we have endeavoured to not sacrifice the human interpretability of the model,

especially regarding end users such as traffic engineers or managers.

We assume that aforementioned rules are expressed using qualitative variables as it can ease the

interpretation for end-users —e.g. traffic engineers or managers— as well as allowing for easier

diagnostic, unlike other black-box modelling techniques in the statistical and machine learning

fields. In addition, other parts of the thesis rely on probabilistic models as they are more human-

interpretable and easier to diagnose.

Besides the aforementioned usual nonstationarity behaviour found within the process of traffic mod-

elling, there exists other underlying statistical characteristics bounded to it. For instance, traffic

is highly nonlinear in relation to the roads’ capacity and how traffic congestion is formed, and the

process has a high degree of multicollinearity among the road network’s locations. Heteroscedas-

ticity is also present because of different existing variabilities due to e.g. measurement errors. The

proposals within this thesis aim to deal with them in a efficient manner using techniques adopted

from the machine learning field.

In essence, for the real-time traffic prediction task we are seeking the best predictive spatiotemporal

correlations within the proper identified context —rule—. Nevertheless, despite the fact that

traffic prediction has been the driving motivation for the thesis development, the proposed ideas

and solutions in this thesis are generic enough to be applied in any other problem where, ideally,

their definition is that of the flow of information in a graph-like structure with special interest

in environments susceptible to changes in the underlying data generation process. Moreover, the

modular architecture of the proposed solution facilitates the adoption of small changes to the

components that allow it to be adapted to a broader range of problems.
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4.2 Modelling goals

The modelling goal is to build a set of rules in an online manner —adaptative rules— for the

forecasting task in a graph-like structure. These rules are to be learned and managed autonomously

following an evidence-based criteria with incoming streaming data in a non-stationary environment

that evolves over time.

The main modelling goals are:

• The model complexity grows to adapt to that of the modelled process —non-parametric

approach—, meaning that the number of rules is not fixed beforehand. This certainly requires

control and regularization mechanisms in order to keep generalization and avoid overfitting.

• Adaptation to change in an online learning scenario. Both from a point of view of gradual

changes as well as sudden changes through concept drift detection.

• Minimum number of assumptions in order to delegate in data the finding of relationships

following an evidence-based criteria. This way, it would be possible to start modelling the

problem from a point where the collected historical data is still scarce or the structural

information about the graph is diffuse. This is motivated by the inherent volatility in the

traffic demand an supply characteristics, thus an empirical approach is followed which reduces

the uncertainty and the forecasting error.

• Autonomy. It is very important for a real-time system to have the ability to autonomously

make decisions and being able to self-calibrate with new streaming data. This let the system

to be more reactive and efficient about the usage of data as it free the end users from deciding

which data size is more appropiate and how often a maintenance must be scheduled to build

again the models with new data.

• Interpretability. The end-user of the system —e.g. a traffic engineer or traffic manager— does

not have to be an expert data scientist to be able to interpret the output as well as have a

high level interpretation of how the system works and what is the reasoning behind it. This

is what has motivated our modelling decisions instead of selecting other popular techniques

within the machine learning field, such as deep learning, as the interpretation of their internal

workings is more black box.

• Robustness when facing outliers and missing data, which is rather common in real-time noisy

traffic data.

• Prone to be scalable by the design of a modular architecture with emphasis on a parallelizable

exploitation of large amounts of data.

Lastly, given that we are using a data-driven approach for real-time traffic forecasting instead of
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a purely traffic simulation approach, we consider an accurate forecast is as important as a prompt

warning of anomalous traffic conditions —e.g. non-recurrent events or incidents— which may lead

to an unsatisfactory forecast accuracy but their identification constitute a great value both to traffic

managers as well as an input for simulation-based traffic prediction systems.

4.3 Architecture of the proposed solution

The system architecture proposed in this thesis, which is shown in Figure 4.1, aims to deal with

these problems. This architecture is thought to be modular but working as a whole for the purpose

of real-time traffic forecasting.

As shown in Figure 4.1, the proposed system architecture is composed of several components for

different responsibilities. First, previous to the real-time operation mode, the system must receive

a list of inputs during an offline configuration stage. This list of inputs includes:

• The graph of the network which is being modelled —e.g. a city, an inter-urban network,

etc.— which ideally derives from the work done by transport modellers and traffic engineers

at Aimsun that build the Aimsun model of the network, otherwise it should be derived from

external services such as the free project OpenStreetMap [197] along with a post-process of

map-matching.

• The second input is the set of prior assumptions that the data analyst or ideally the traffic

engineer has thought might be relevant for the specific network or city. These are expressed

in the form of qualitative factors —e.g. the weekdays, time, weather or special days calendar,

etc.— and they do not need to be exhaustive as the system is thought to find relevant patterns

associated with such factors and their interactions. This means that such prior knowledge

can be vague or very informative according to the expert’s experience and knowledge.

• The last input is optional and consists of the available historical traffic data. It allows the

system to start its real-time forecasting tasks from scratch without considering previously

collected traffic data, thus starting to learn the data relations and relevant patterns with no

accumulated experience.

During the real-time operation mode, the system continuously receives streams of data that are used

for real-time forecasting tasks, and also for improving the experience of the system by learning from

this data probably with certain periodicity —e.g. once every midnight or weekly—. This streaming

data is used to feed different components of the system, namely the main one corresponds to

Adarules whose main responsibility is that of performing the real-time forecasting and data mining.

Adarules seeks to unveil recurrent patterns from data in the network graph, but also to check for
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Figure 4.1: Functional architecture and workflow of the proposed system.

61



4 Overview of the proposed solution

the on-going validity, updating, and removal of these patterns over time. On top of this process

of mining graph patterns, it is built the processes of detecting anomalies of flow in these graph

patterns, and the detection of changes in these patterns —i.e. global changes in the scope of the

network— in order to react by giving proper warnings or changing the patterns’ structure or

even removing them. These patterns can also be used for basic imputation of missing data as

they are associated with recurrent traffic conditions. Forecasting models of traffic conditions are

built according to the process of pattern mining, so they can take advantage of such recurrent

condition which is a standard procedure in machine learning and data mining. The detection of

local changes —i.e. not affecting the scope of the complete network— are detected by this set of

forecasting models. Streaming data also feeds the process of local traffic states identification for all

the network which, in addition, serves as input for the spatiotemporal probabilistic model. This

component is responsible for detecting anomalies in the traffic states, performing incident detection,

and estimating the most probable network traffic state which can be also useful for an informed

imputation of missing data.

The first point concerning the fixed structure of the modelling assumptions implied that the same

assumptions and modelling structure was being applied for every new project and network, and

thus disregarding the underlying traffic dynamics for each network. More specifically, the criteria

was based on building a forecasting model for every location with detection data, every forecasting

horizon and every specific time of the day. This leads to a large number of forecasting models

entailing a considerable computational cost. Furthermore, besides the fact of ignoring the specific

traffic network dynamics, there were additional issues related to the sample size of the dataset

used to calibrate the models which could lead to suboptimal results. This is because as every

model has only one observation per day, the learning process could find spurious correlations in

such small dataset. For these reasons, in this thesis a non-parametric approach is proposed —

Adarules— which uses certain prior knowledge in the form of qualitative factors put by the data

analyst or the traffic engineer in order to automatically find patterns in the network graph. This

means that for every network the system will unveil automatically these graph patterns from data

according to the underlying traffic dynamics. This performs the modelling in a more realistic way.

Its non-parametric nature allows to accommodate the complexity as it is needed, which means that

networks with more complex dynamics will have, as expected, more patterns to be extracted in

order to characterise the underlying demand properly. This also entail a more efficient usage of

data as it is segmented per pattern and there is no need to further split the data, thus it allows

models to be fit using more data granting them to find proper dependences and correlations in data

and reducing the risk of spurious correlations. Computational efficiency is also improved as it is

now tied to the number of found pattern in the network.
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In addition, the previous large list of forecasting models were built in offline with all the available

historical data without assesing for changes in the data which could make that some of that data

were outdated already. The training of the models was performed in batch mode, and then they

were not updated until the next maintenance, thus ignoring any online learning or detection of

possible changes in the travel demand or the supply of the network. On the other hand, Adarules

has automated methods to detect and react to changes both at a global scale in regard to the found

graph patterns in the network, as well as at a local scale concerning the spatiotemporal correlations

within the network. It also means that online learning is performed in the system both when new

patterns are found, when change is detected in some of them, or periodically with mini-batches

of data —incremental learning— to take into account smooth gradual changes. This way, either

changes in the underlying traffic demand or in the network supply are properly detected making

the system responsive.

An important issue is also the lack of anomalous traffic pattern detection. This is particularly

important in order to be able to anticipate unreliable traffic forecasts given certain anomalous

traffic conditions. Therefore, before there was no more option than waiting until observing how

well was actually the forecasts performing. This was risky because those traffic forecasts were

used to feed subsequent processes such as dynamic adjustments of the base travel demand for

simulation, without any clue about their reliability. Additionally, this had also consequences on

the trustworthiness of the forecasts by traffic managers. In the proposed system, it is possible

to measure how anomalous are the current dynamics of the traffic network both in terms of the

current matched graph pattern by Adarules which is based on the degree of anomaly of the flows

through the graph, and in terms of the probabilities of the current traffic state measured by the

spatiotemporal probabilistic model.

In the same way, there was not any implemented method for incident detection —which can be

seen as a particular form of anomalous traffic pattern—. Besides the obvious shortcoming of not

having such useful information for traffic managers, it could have consequences on the reliability of

future forecasts and their utilization for other processes. The proposed spatiotemporal probabilistic

model based on traffic states is able to calculate probabilities on the detection of traffic incidents,

as well as calculating a normalized score which is based on their severity, temporal persistence, and

spatial propagation.

Missing data, which is quite usual in traffic data and during real-time operations, was not handled

at all. This fact was very harmful to the online performance of the system and only very basic and

vague patterns —such as one pattern per weekday— were used to replace missing data in order

to feed the forecasting models which were not able to deal with such missing data in a natural

63



4 Overview of the proposed solution

way. For this purpose, there are two proposals which aim to deal with such problem. The first is

a fairly basic method based on the replacement by the average value in the context of every graph

pattern, as these already represent recurrent traffic conditions. The second one is based on the

spatiotemporal probabilistic model in order to calculate the current most probable network traffic

state which can serve as a method for a more informative imputation of missing data.

In regard to the available historical traffic data before the beginning of each Aimsun Live project,

there was always a controversial decision about the amount of data to use in order to feed the

process of training the forecasting models. Apparently, one might think that the more data the

better but in some cases, this could lead to learning from outdated patterns. In addition, for some

projects the amount of available collected traffic data was scarce and, thus, it was hard to make

certain assumptions such as seasonality for instance. In any case, it was a time-consuming task for

data analysts and a hard decision to take for traffic engineers. In the current proposal, this process

of deciding what data to use is automatically tied to the process of patterns mining on the network

graph which is already based on the observed data. In the same way, as aforementioned, there are

methods in Adarules to also detect outdated patterns.

During the real-time operation, it is very common that a considerable part of the traffic measure-

ment devices become temporally faulty or provide unreliable or noisy measurements. Although this

is also related to how missing data is handled, it is also important to include methods that take

into account the reliability of such data sources in order to avoid using them for the forecasting

task as they are unreliable. This could lead, for example, that some forecasting models simply

take a smaller amount of inputs but with a higher degree of reliability in order to become more

robust. This fact was simply ignored in the past, and forecasting models could take any number

of inputs —typically a large number— regardless of their reliability. Now, this fact is considered

and integrated as part of the fit of the forecasting models.

Lastly, an important consideration that has guided part of the decisions taken in this thesis is the

degree of interpretability of the whole system. Historically, it has been always a controversial issue

of how interpretable machine learning methods are, especially nowadays with the reappearance

of models based on neural-networks such as deep learning. In the past, there was limited inter-

pretability in the analytical forecasting process in Aimsun Live, as there was a lot of forecasting

models where each one, in addition, could have a large number of dependencies making difficult to

diagnose the forecasting decisions. In this regard, the proposal has relied on methods and models

whose output has a higher degree of interpretability, aimed mainly for traffic engineers and man-

agers. For example, the pattern mining in the network graph is tied to qualitative factors which

are placed as prior assumptions by them —traffic engineers and managers— and thus, they can
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evaluate how much sense these identified rules have. Forecasting models have been thought to in-

clude a fewer number of dependencies but with stronger predictive correlations. Additionally, the

traffic states and the spatiotemporal probabilistic model built on top of them, are models which

allow the diagnose and interpretation of its decisions, as well as a more natural output based on

probabilities.

4.4 Datasets used for this thesis

For the validation of the different methods proposed in this thesis, two datasets with different

characteristics have been used. The first corresponds to the M4 and M7 motorways in Sydney,

Australia. The dataset is provided by the New South Wales Government - Roads and Maritime

Services. Real macroscopic traffic flow data whose time span is two years, corresponding to periods

January, 2015 – December, 2016, has been used in order to include the impact of seasonality and

all public holidays. The network consists of 455 double-loop detectors spread uniformly at every

500 metres, as presented in Figure 4.2, measuring traffic flow, occupancy and speed. This type of

network —highway— is usually easier to forecast because traffic is usually more homogeneus at a

network-level, as well as for the lack of traffic disruptions and the less occurence of non-recurring

congestion and events. However, there is an additional challenge present in this specific network

which is tied to the position of boundary detectors, i.e. those on-ramp and off-ramp detectors which

serve as entrances and exits to the motorways respectively, because of the lack of observability

beyond these sites.

The second dataset corresponds to the urban network of Santander City, Spain. The data is

provided by the Santander City Council, and the data is publicly accessible through its open data

portal [67]. In this case, a similar period of two years corresponding to January, 2016 – December,

2017 has been used. The urban network is composed of 4106 links which are measured with 489

single-loop detectors, as shown in Figure 4.3, observing traffic flow and occupancy without ability to

observe the vehicles’ speed. The urban topology of network is naturally more complicated to forecast

because of its mesh connectivity, as well as the higher variability in data associated with traffic

flow disruptions —such as traffic signals and lights, higher number of incidents, among others—

and the more complex knowledge about drivers’ routing decisions especially during special days

or non-recurrent events and congestion. Furthermore, this dataset exhibits several challenging but

interesting problems for the tests of non-stationarity and adaptation to change. Figure 4.5 shows

the overall normalized flow aggregated over all the detectors for each traffic network, showing the

differences in the temporal dynamic of traffic as well as the different variability associated with the
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4 Overview of the proposed solution

higher complexity in urban environments. In both cases, the frequency of data sampling is ∆𝑡 = 15
minutes and these macroscopic measurements are already aggregated to the level of multi-lane

stations, i.e. each of the data measurements are aggregated for the different road lanes at a specific

detection site.

The choice of ∆𝑡 = 15 minutes as data sampling time for the learning and validation stages of the

different experimental scenarios in this thesis is made for several reasons:

1. Mitigating the inherent noise in road network measuring devices,

2. Reducing the running time for the experiments in the current research work without compro-

mising the validity of the results,

3. Convenience for commercial purposes from Aimsun SLU and its product Aimsun Live,

4. Furthermore, when the system learning is done with a frequency of sampling time ∆𝑡 = 15
minutes, it means that observed variables are also associated with a measurement window size

∆𝑊 = 15 minutes. Then, whenever real-time requirements need to update the forecasts in a

shorter time span —e.g. ∆𝑡 = 5 minutes—, the same model —whose learning was performed

using ∆𝑡 = 15— is valid as long as the observed variables are processed to be consistent

with the same data distribution as used during the learning. This implies to keep the same

measurement sliding window size ∆𝑊 = 15 minutes for that new shorter ∆𝑡 = 5 frequency

of data sampling.

According to the theoretical fundamental relations of traffic flow described in Chapter 2 and Chapter

3, these can be also observed in the data used for this thesis. As an example, Figure 4.4 shows the

fundamental relations between traffic flow 𝑄 against occupancy 𝑂, traffic flow 𝑄 against speed 𝑉 ,

and speed 𝑉 against occupancy 𝑂, respectively and only using data from a specific detection site

for each network. In the case of Santander, only the fundamental relation between traffic flow and

occupancy is shown because of the inability of single-loop detectors to observe vehicles’ speed.
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4.4 Datasets used for this thesis

Figure 4.2: M4 (46-kilometre-long) and M7 (41-kilometre-long) motorways in Sydney, where loop-
detectors are presented as dark blue dots.

Figure 4.3: Location of loop-detectors (red dots) and signalized intersections (yellow dots) in San-
tander (36 km2, 4106 links).
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5 The Adarules algorithm: towards a

non-parametric approach

Adarules [181] —whose name derives from Adaptive rules— is a framework for predictive modelling

based on a multi-level decision-tree structure which is built online using streaming data. It is

composed of rules —in the form: if antecedent(s) is satisfied, then […]— that corresponds to

recurrent conditions in the modelled problem —i.e. patterns— and they are automatically extracted

and maintained in an autonomous manner from such streaming data within a non-stationary system

which can change over time.

These rules —that in the task of traffic forecasting can be seen as mobility patterns in the network—

are to be learned and managed autonomously by exploiting the associations and recurrent conditions

within the problem —in the case of traffic, it is the graph structure of the road network—, following

an evidence-based decision making procedure. However in the real world, historical patterns are far

from being stationary and they must evolve and being updated over time. For instance in traffic,

these patterns must evolve in the same manner traffic demand do because of changes in the needs or

behaviour from the users of the transportation system. Therefore, the system is thought to perform

in a real-time operation mode with the ability to be adaptable in order to react to changes.

In addition to the automated mining of patterns over time, one of the main features in Adarules for

the forecasting ability is the proper identification of spatiotemporal correlations under the specific

context or rule. In the case of traffic forecasting, the fact that in a transportation road network there

is a lot of shared information given that all roads are connected and the existance of entrance-exit

points motivates the seek and calibration of the proper spatiotemporal correlations for an accurate

forecasting. Moreover, given that it is frequent that not the whole road network is observable

—i.e. there are not installed detection devices to measure the traffic—, the temporal aspect of these

correlations can become extremely useful in practice. On the other hand, these spatiotemporal

correlations are dynamic as they are not just time-dependent, but they are also conditioned on the

different movement patterns underlying the transportation system which responds to the existing

traffic demand.
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5 The Adarules algorithm: towards a non-parametric approach

We have developed Adarules so that it complies the goals listed in Section 4.2. Namely:

• Adopting a non-parametric approach

This implies adapting the modelling complexity as the complexity of the problem grows, thus

the number of rules is not fixed beforehand and it can increase or decrease over time. This

makes the approach well-behaved for the streaming scenario where the size of the data is

theoretically unbounded.

It also makes an implicit efficient usage of the sample size for fitting the forecasting models

and automates the process of finding relevant patterns for every new problem being modelled.

• Adaptation to change

Adaptation to changes in an online learning scenario. Both from a point of view of gradual

changes as well as sudden changes through concept drift and shift detection. This adaptation

can also be considered from the point of view of the scope of the change, either if it is a

global change whose impact is significant on a wide part of the problem or it is local whose

impact is solely on specific forecasting models. The handling of such changes is also different

as different reaction methods are integrated such as gradual forgetting and rearrangement of

the rules.

• Reducing the number of assumptions

Relying on data in order to find relationships following an evidence-based criteria. This way,

it would be possible to start modelling a problem even when the collected historical data is

scarce.

• Autonomy

It is very important for a real-time system to have the ability to autonomously make decisions

and being able to self-calibrate with new streaming data. This let the system to be more

reactive and efficient about the usage of data as it frees the end users from deciding which

data size is more appropiate and how often a maintenance must be scheduled to build again

the models with new data.

• Interpretability

The end-user of the system —e.g. a traffic engineers or traffic managers— does not have to

be an expert data analyst to be able to interpret the output as well as have a high level

interpretation of how the system works and what is the reasoning behind it. This is what
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has motivated our modelling decisions instead of selecting other popular techniques within

the machine learning field as the interpretation of their internal workings is more black box.

Even though Adarules is able to find rules associated with any kind of variable —either

discrete or continuous—, during its application in this thesis it has been decided to rely only

on qualitative variables as it can ease the interpretation for end-users as well as it would allow

an easier diagnostic.

• Scalable

The partition of the data into the different rules makes the solving of the problem more

scalable by exploiting its parallelization capability. A great effort has been made to achieve

an efficient implementation that exploits the data in parallel at the level of rule and prediction

model. Moreover, the implementation relies heavily on matrix calculus to speed up the

computations.

In addition, as working with large amounts of data is challenging because most of the time

it doesn’t into the computer’s main memory, a great effort has also been put on processing

chunks of data instead of the entire dataset at once. Thus, the system implementation is

ready to deal with theoretical unbounded data or big data.

• Robustness dealing with outliers and missing data

Given that the data-driven modelling proposal is intended for real-time forecasting instead

of a pure simulation approach, we consider an accurate forecast is as important as a prompt

warning of anomalous pattern conditions —i.e. non-recurrent conditions— which may lead

to unsatisfactory forecast accuracy. Therefore, their identification constitutes a great value

both as an output itself, but also when it is used as an input for other processes.

• Modular software architecture

Therefore, it makes easier to replace certain components or methods of the framework accord-

ing to the needs.

5.1 Methodology

The foundations of Adarules lay on an automatic knowledge discovery through rule identification.

The fundamental components of Adarules are:
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5 The Adarules algorithm: towards a non-parametric approach

• There is one ruleset ℛ for each of the modelling tasks. These tasks could be for instance

a single measurement station in the network, a group of links or the whole network. The

structure of such ruleset corresponds to a decision tree.

• Every ruleset ℛ contains multiple rules. A rule 𝑅 is analogous to a specific pattern found in

data —e.g. certain similar traffic conditions—. A rule corresponds to a leaf node within the

aforementioned decision tree.

• Every rule 𝑅 has the form Antecedent A ⇒ Consequent C.

• A literal 𝐿 is a single condition over a specific attribute 𝑥𝑖 with a specific split-point 𝑣: with

the form (𝑥𝑖 > 𝑣), (𝑥𝑖 ≤ 𝑣) if 𝑥𝑖 is numerical, or (𝑥𝑖 = 𝑣) if 𝑥𝑖 is categorical data. 𝐿(𝑥𝑖)
returns True if 𝑥𝑖 satisfies 𝐿, and False otherwise.

• The antecedent 𝐴 is composed from multiple literals 𝐿; the antecedent as a whole is evaluated

as True or False. A rule 𝑅 is said to cover an example or observation 𝑥 if all of its literals are

satisfied. Every literal from the series within an antecedent of a rule is extracted from every

node in the decision tree on its path from the root node to the leaf node of that rule.

• The consequent 𝐶 of a rule 𝑅 may have multiple forms (constant value, summary statistic or

a more complex function). It is built from the examples gathered in the scope of 𝑅.

The Adarules system has already been published in the scientific literature [181]. However, the final

implementation used in this thesis results differ in certain key points with respect to the published

in [181]. The main differences are:

• In [181] both contextual qualitative variables, as well as traffic continuous variables —flow,

occupancy, and speed— from the road network, were considered as candidates to be evalu-

ated during the splitting procedure. In this thesis, only contextual qualitative variables are

considered during the splitting procedure for the reasons given in Section 5.1.1.

• The Adarules underlying data structure in [181] was a boosting of ternary decision trees —

missing values were also considered as a third split in every rule—. This implies multiple rules

could cover a given observation, then weighting their outputs according to their respective

forecasting error. Conversely, in this thesis a single decision tree is built for a given modelling

task —either a single detector or the entire road network as will be later described—, and

thus, only a single rule is triggered for a given observation.

• The split function used during the pattern mining process in [181] was based on entropy min-

imization of the outcome variable. In this thesis, a scoring function based on the underlying

graph structure of the problem is used.

Adarules design follows a modular architecture, as shown in Figure 5.1, making easier to replace the

proposed algorithms within the different components according to different needs in other problems.
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5.1 Methodology

In the following, the main components within the Adarules architecture are described in detail.

5.1.1 Pattern mining

Rules are analogous to high-level features or underlying patterns in the problem at hand, e.g. a

road network. Therefore, they correspond to a certain behaviour that is repeated with enough

frequency under specific conditions, which is known as recurrent conditions in traffic. The initial

hypothesis ℎ0 is that no pattern exists, which is equivalent to let Adarules start from scratch with

only the root node 𝑅0. From then on, every rule has a chance periodically to run an expansion

evaluation process. If the evaluation process is favorable, that rule disappears and it is specialized

into two new rules with the respective observations and statistics. Every expansion is dependent

on a specific attribute and split-point —value or set of values— and hence the resulting number

of two leaf nodes after the expansion. This leads to a binary decision tree as the underlying data

structure which represents the patterns where every leaf corresponds to a rule. Nevertheless, if

every split-point considers the special case of missing value as a third split, then the structure

happens to be a ternary decision tree. However, although possible and developed within Adarules,

this scenario has not been considered in this thesis as only qualitative features with always observed

values are the only ones that have been considered as candidates for the expansion process.

The frequency of this evaluation, which takes place for each rule separately, is crucial as a low

frequency can lead to slow learning and finding of the patterns while a high frequency can make

the process too sensitive to transient noise. The parameter 𝑁min dictates the minimum amount

of observations which must be seen, separately on each rule scope, to proceed with an evaluation

for rule expansion. This threshold 𝑁min is preset to an initial value 𝑁min0 = 100, that is later

dynamically adjusted. The motivation behind the dynamical adjustment of 𝑁min is to initially

perform frequent evaluations for rule expansion, and then decrease the frequency when a rule

is stable in order to avoid an unnecessary computational burden. Therefore, every time a rule

undergoes a change of state —i.e. it has been created—, its 𝑁min value is set back to 𝑁min0 for a

frequent pattern mining. On the other hand, every time a rule fails in the process of being expanded

—i.e. no more specific patterns could be found with observed data so far—, its current 𝑁min value

is multiplied by a certain decay factor 𝑁𝑚𝑖𝑛𝛾 = 2 which results in slowing the expansion attempts

in order to wait until collecting further data.

The rule expansion evaluation process seeks to determine which is the attribute and split-point

combination that best perform by evaluating with a specific scoring function on the examples seen

so far. Once chosen, it will become a new literal that will tell apart the two new rules. A left-side

rule with the form (𝑥𝑖 ≤ 𝑣) and a right-side rule with the form (𝑥𝑖 > 𝑣) if 𝑥𝑖 is a numerical or
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Figure 5.1: Modular architecture of Adarules. Main classes and their relationships are shown.
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time-based attribute, whereas (𝑥𝑖 ∈ 𝑣) and (𝑥𝑖 ∉ 𝑣), respectively, when 𝑥𝑖 is a qualitative attribute.

This binary splitting could be also turned out into a ternary splitting by considering the missing

value state as the third child node.

An important clarification about the type of variables used in the process of pattern mining. Even

though Adarules is able to find rules associated with any kind of variable —either discrete or

continuous—, during its application in this thesis it has been decided to rely only on qualitative

variables which are contextual (weekday, hour of the day, holidays calendar, season, timestamp).

The reasons for such decision are:

1. To potentially ease the interpretation for end-users as well as to allow an easier diagnostic for

the identified rules.

2. A modelling choice to isolate changes in the traffic demand-supply relationship from the rules’

antecedents. This is intended to separate responsibilities between the modules for evaluating

feature splits and change detection. An example of this could be: there is an antecedent

relying on the flow for a given detector A > a, but then the road where such detector is

placed changes. Then, immediately the definition of this rule would become invalid.

3. Reducing the number of splitting combinations to be considered also obviously reduces the

computational cost.

5.1.1.1 Split-point selector

The only duty for this component is to generate a set of candidate split-points values for each of

the input attributes acting as candidates to split on. These split-points can be a unique value or a

set of values, and they will form the attribute and split-points combinations to be evaluated during

the process of node expansion.

More specifically, the split-point selector used during the validation experiments for this thesis has

followed a simple approach. For each of the selected continuous attributes including the timeline

attribute such as timestamp, the split-points are those single values statistically selected by the

cumulative probabilities —i.e. quantile functions— of the attribute with the aim of representing its

full distribution. While in the case of discrete attributes the selection is based on the generation

of continuous sub-intervals using their factor levels.

5.1.1.2 Scoring function

The scoring function is responsible for giving a score to every combination of attribute and split-

point. Thus, after evaluating all candidate combinations of attributes and split-points, the one
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5 The Adarules algorithm: towards a non-parametric approach

with the highest score is selected to perform the node expansion in the decision tree which defines

the rules.

The scoring function used in this thesis is motivated by the directed graph-structure of the problem

at hand and the passing of information between nodes within the topological space. The assump-

tion is that there underlie patterns in the flow of information across the graph. In the case of

a road network, every node in the graph corresponds to a specific spatial point in the network

—usually, a point with traffic measurements provided by a sensor—, and the edges between nodes

correspond to the underlying network geometry connecting roads each other. This definition and

discretization of the space naturally match well with the common procedure of measuring traffic in

roads, i.e. measurements from inductive loop detectors placed over the road network like the ones

used within this thesis.

Then, given nodes1 𝑣1, 𝑣2 from a graph 𝐺 and an edge 𝑒 connecting both nodes 𝑣1 → 𝑣2 that

represents the directed flow of information from node 𝑣1 to node 𝑣2 as shown in Figure 5.2, it is

assumed that there exists a probability distribution that describe such information flow. Therefore,

in this way it is possible to measure not only the expected value but also the uncertainty around

the information flow among nodes. However, it is expected that such uncertainty —or variability—

is going to be reduced under certain recurrent conditions which respond for instance to mobility

patterns in the network. The goal, thus, is to perform a proper identification of the underlying

flow patterns between both nodes according to their recurrence under certain conditions. The

characterization of such probability distribution is given by the differentiation of 𝑣2 minus its

upstream node 𝑣1, i.e. in the case of the road network it corresponds to subtracting the vehicle

flows 𝑣2 − 𝑣1 at a given time interval. The choice of the subtraction operation to define this

probability distribution over the information flow instead of other reasonable choices such as the

division operation corresponds to (1) numerical stability and (2) proper differentiation not only by

relative differences but also by the magnitude of the flows of information.

v1 v2
e

Figure 5.2: Basic graph example where 𝑣1 and 𝑣2 nodes correspond to specific points within the dis-
cretized space of the road network, and it is assumed there is a probability distribution
over the directed flow of information represented by 𝑒.

For every evaluation of the combinations of attribute and split-point, the goal is to determine if

there is a relevant pattern in the resulting probability distribution over information flow between

two nodes after performing the split. To this end, a statistical test performs a comparison between
1For a matter of clarity, let us remind that node can refer to those 𝑅 within the decision tree defining the rule set

in Adarules, or a node 𝑣 from the graph within the topological space of the network.
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the existing probability distribution and the resulting one after the split in order to check for

statistical significant differences by means of the two-sample Kolmogorov-Smirnov (K-S) test [176,

226]. The K-S test is a nonparametric method for comparing two samples, being sensitive to

differences in both location and shape of the empirical cumulative distribution functions of the

two samples. Its simplicity is also an advantage as it can be also used for measuring the distance

𝐷∗ between two probability distributions in an efficient manner, especially if compared to other

distances for probability distributions such as e.g. the Wasserstein distance. More formally, the two-

sample K-S test evaluates the difference between the empirical distribution functions (CDFs) of the

distributions of the two sample data vectors over the complete range in each data set, performing

the maximum absolute difference between the CDFs of these distributions which is defined as the

Kolmogorov–Smirnov statistic 𝐷∗:

𝐷∗ = sup
𝑥

| ̂𝐹1(𝑥) − ̂𝐹2(𝑥)|

where ̂𝐹1(𝑥) and ̂𝐹2(𝑥) are the CDFs of the first and the second sample respectively, and sup is the

supremum function corresponding to the maximum value within a vector. Thus the 𝐷∗ statistic is

bounded in [0, 1]. Another advantage of the K-S test is that, being a non-parametric test, it relies

on the CDFs and makes no assumptions about the underlying true distributions of ̂𝐹1(𝑥) and ̂𝐹2(𝑥)
which might be unknown.

This K-S statistic 𝐷∗ can be employed to assess if the null hypothesis —that the two samples are

drawn from the same distribution— can be rejected. More specifically, the null hypothesis 𝐻0 is

rejected at a certain level of significance 𝛼 if:

𝐷∗ > 𝑐(𝛼)√(𝑛1 + 𝑛2
𝑛1𝑛2

)

where 𝑛1 and 𝑛2 are the sizes of the first and second sample respectively. The value of 𝑐(𝛼) is given

by:

𝑐(𝛼) = √−1
2 ln 𝛼

Typically a level of significance 𝛼 = 0.05 is used. This way, it can be assessed in a rigorous

manner if both distributions —before and after the split— are significantly different. Nevertheless,

when the sample size is large enough, even a seemingly small difference in the CDFs could be

considered significant. Thus another check is performed in order to assess if the new significantlly
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different distribution after the split is due to an increment of the uncertainty measured as the

dispersion before and after the split. In such case, the split —even resulting in a different probability

distribution— is not desirable.

In order to account for how the shape of the probability distribution changes after the split, an

additional check is added. The dispersion of the probability distribution before the split 𝜎1 and

after the split 𝜎2 are estimated —by using the standard deviation for instance, as it is easy to be

calculated online— along with the ratio between them:

𝜎∗ = 𝜎1
𝜎2

Then, we a define a certain threshold 𝜎𝜏 , and a vote for variance reduction (VR) is cast in the

following way:

VR =

⎧{{{
⎨{{{⎩

−1, for 𝜎∗ < (1 − 𝜎𝜏)

0, for (1 − 𝜎𝜏) ≤ 𝜎∗ ≤ (1 + 𝜎𝜏)

1, for 𝜎∗ > (1 + 𝜎𝜏)

⎫}}}
⎬}}}⎭

A common value for the threshold is 𝜎𝜏 = 0.10. In order to mark a certain split as favorable, the

following conditions must be satisfied:

1. The K-S test must have rejected the null hypothesis 𝐻0 that the two samples are drawn from

the same probability distribution.

2. In order to account only for big enough differences, a threshold 𝐷𝜏 is imposed so that the

condition 𝐷∗ > 𝐷𝜏 must be satisfied. A value for this threshold can be 𝐷𝜏 = 0.025.

3. The new probability distribution after the split must be less uncertain than before the split,

so 𝑉 𝑅 ≥ 0.

If the split complies with these conditions, a score is assigned based on the sample size of the split

𝑛2 with regards to the sample size before the split 𝑛1, and the K-S statistic:

𝑔∗(𝑥) = 𝑛2
𝑛1

𝐷∗

Otherwise, if the split does not comply with the above conditions, it is not considered in the scoring

process. Finally, the split with highest score is selected for the node expansion.
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5.1.1.2.1 Extending the scoring function to a multi-task mining approach The described scor-

ing method is defined for a single task, i.e. a unique directional flow of information between a pair

of nodes. However, this definition can be easily extended to consider a set of related tasks. In the

case of the problem of traffic forecasting whose underlying structure is the directed graph from the

road network, the extension involves considering both the temporal and spatial dimension of the

problem.

More specifically, the temporal dimension implies that we are not only interested in finding a flow

pattern for the current time, but also to consider its temporal consistency in multiple time steps

ahead related to those of the considered forecasting horizons —e.g. from 𝑡 = 0 until 𝑡 = 60 in

∆𝑡 steps—. This means considering multiple probability distributions for each consecutive time

interval, but dealing with such joint probability distributions is unfeasible because of computational

costs and more importantly because true distributions are not known. Nevertheless, performing

independent individual statistical tests on each temporal distribution may carry another series

of risks given that statistical hypothesis testing is based on rejecting the null hypothesis if the

likelihood of the observed data under the null hypotheses is low, and thus if multiple hypotheses

are tested, the chance of a rare event increases and so does the likelihood of incorrectly rejecting

a null hypothesis, i.e. incurring in a type I error (or false positive). For this purpose, methods

for multiple hypothesis testing [78] such as the Bonferroni correction [40] aims to compensate by

testing each individual hypothesis at a significance level of 𝛼/𝑚 where 𝛼 is the desired overall level

of significance and 𝑚 is the number of hypotheses to test. However, this type of procedures to

control the family-wise error rate (FWER) which is the probability of making a type I error comes

with the cost of being conservative when there are a large number of tests or when the tests statistics

are positively correlated, thus reducing the statistical power and increasing the probability of type

II error (or false negatives). Therefore, given that K-S statistics 𝐷∗ of multiple tests consecutive in

time are positively correlated, a more practical approach has been adopted that assumes 𝑝-values,

𝐷∗, and 𝑉 𝑅 values are random variables and then taking the expected value of them.

On the other hand, the spatial dimension defines how different nodes in the graph with their own

relations are taken into account in such multi-task setting. With this aim, a voting schema has been

adopted where every node casts a vote during the scoring stage. More specifically, after performing

the temporal evaluation for each node, these cast a vote that can be negative, positive or abstention.

Such vote decision per node is defined by:
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𝜐 =

⎧{{{
⎨{{{⎩

−1, for VR < 0

1, for 𝑝-value < 𝛼 ∧ 𝐷∗ > 𝐷𝜏 ∧ VR >= 0

0, for otherwise

⎫}}}
⎬}}}⎭

Let us define 𝜐−
𝑚𝑎𝑥 as the maximum admissible fraction of negative votes among all nodes in order

to further considering a given split decision criteria. Analogously, 𝜐+
𝑚𝑖𝑛 is the minimum fraction of

positive votes among all nodes to further considering a given split decision criteria. General values

for these thresholds can be 𝜐+
𝑚𝑖𝑛 = 0.75 and 𝜐−

𝑚𝑎𝑥 = 0.15. From those splitting evaluations which

meet these criteria, 𝜐− ≤ 𝜐−
𝑚𝑎𝑥 and 𝜐+ ≥ 𝜐+

𝑚𝑖𝑛, the one with the highest final score is chosen for

the node expansion, where the score for each split is given by:

𝐺∗(𝑥) = 𝜐+ 𝑛2
𝑛1

𝐸(𝐷∗)

,

where 𝜐+ is the fraction of positive votes among all nodes in a specific split, 𝑛1 and 𝑛2 are the

samples sizes before and after the split respectively, and 𝐸(𝐷∗) is the expected value of the random

variable defined with the K-S statistic 𝐷∗ values from those nodes whose VR ≥ 0.

Therefore, the scoring function 𝐺∗(𝑥) gives a score for all the graph at multiples consecutive time

intervals, using the underlying assumed spatiotemporal representation constituted by multiple prob-

ability distributions coming from every connection in the graph between a pair of nodes and at

multiple time intervals representing the flow of information between nodes.

5.1.1.3 Anomaly detection

After having characterized different patterns or rules using the aforementioned pattern mining

procedure which is based on the flow of information through a directed graph, it is possible to use

such probability distributions among nodes in order to quantify the outlierness of an observation.

As aforementioned in the scoring function subsection, the underlying true distribution on such flow

connections among nodes is not known but a reasonable assumption is to assume normality.

Thus a simple parametric approach as calculating the Z-score —also called standard score— which

relies on an underlying normal distribution, can be used to quantify the outlierness of an observation.

The Z-score is a metric that indicates how many standard deviations 𝜎 an observation 𝑥 is from

the population mean 𝜇. In practice, however, as the population mean and standard deviation are
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not known, the sample mean 𝑥 and sample standard deviation 𝑆 are used instead. It is equivalent

to perform a standardizing or normalization of the variable 𝑥, and it is formally defined by:

𝑧 = 𝑥 − 𝜇
𝜎

The motivation behind using the Z-score as a metric to quantify the outlierness relies on the shape

itself of a Gaussian distribution around certain location. Therefore, any observation that has a

Z-score higher than 3 can be considered an outlier, and likely to be an anomaly. As the Z-score

increases above 3, observations become more obviously anomalous.

The method can be extended to the whole graph by considering a random variable 𝑍∗ composed

of every Z-score from the graph connection. Then, the expected value of the distribution can be

inferred.

The procedure for anomaly detection can be extremely useful to detect flow anomalies in the

graph that can be centered in certain regions of the graph or spread through it. Thus providing

useful information about weird conditions that can result in wrong forecasts. Moreover, this simple

method for anomaly detection has the advantage of being very efficient to compute during real-time

operation.

5.1.1.4 Basic filling in of missing data

Statistics for the complete feature space are updated in real-time with new incoming streams of data.

Usually, basic descriptive statistics such as the mean, standard deviation, minimum, maximum and

sample size are gathered. These are collected overall and specifically for each one of the rules. Thus,

by means of the use of gathered statistics, it is possible to replace missing values from incoming

streams with an unbiased estimator which also depends on the current identified pattern.

This property, albeit simple, is cheap and can be very useful in practice, as missing data is not

uncommon at all in real-time applications.

5.1.2 Change detection

Change detection and adaptation in Adarules is tackled from two perspectives: a global and a local

one.

The global perspective aims to detect those changes whose impact concerns a significant part of the

graph and it involves restructuring the patterns by modifying the Adarules underlying tree structure.
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This is motivated by the definition itself of pattern mining given in previous subsections. More

specifically, given the aforementioned spatiotemporal representation over the complete network

graph based on probability distributions for the flow of information between nodes, the goal is

to detect changes in a significant part of such distributions. To this end, these distributions are

assumed to be Gaussian and thus are represented by a mean 𝜇 and a standard deviation 𝜎 which are

updated online with new streams of data. Then, these probability distributions can be continuously

monitored in streaming with new observations in order to detect change —concept drift or shift—

in such distribution. For each spatial node 𝑣𝑖 in the graph, every time-specific 𝑡𝑗 distribution is

monitored for change 𝜗G(𝑣𝑖, 𝑡𝑗). A change is detected in a node 𝑣𝑖 by the logical disjunction of the

detected changes in its series of time intervals:

𝜗G(𝑣𝑖) = 𝜗G(𝑣𝑖, 𝑡1) ∨ … ∨ 𝜗G(𝑣𝑖, 𝑡𝑚𝑎𝑥)

In order to raise a global change alarm in the context of a rule 𝑅𝑖, it is checked if change has

been detected in a significant region 𝜗𝜏 of the graph among nodes 𝑣: 𝜗𝐺(𝐺) > 𝜗𝐺
𝜏 . In general,

a significant part can be defined as half of the network graph, i.e. 𝜗G
𝜏 = 0.5. When such global

change is detected in a node 𝑅𝑖 of the ruleset, that rule becomes outdated and a restructuring must

be performed in the decision tree of Adarules. However, in order to perform such restructuring

only when certainly global change has been confirmed, a second check is performed to assess if

that global has also affected to enough (e.g. 𝜗G-Siblings
𝜏 = 2/3) related nodes of 𝑅𝑖 in the decision

tree —its sibling/s and their descendants— or, equivalently, such global change has been detected

enough consecutive times in 𝑅𝑖 (e.g. 𝜗G-ConsecutiveSolo
𝜏 = 3) with the aim of reducing the risk of false

positives. Once the global change is confirmed, the restructuring around rule 𝑅𝑖 in the decision

tree is performed as shown in the example in Figure 5.3, the marked node 𝑅𝑖 —in red— along with

its sibling nodes and their descendants —with dashed borders— are all merged again in a parent

node 𝑅 —in green— thus less specialized as a pattern but that will have future opportunities to

be expanded as its 𝑁min parameter is reset to its default value.

There is a special case of global change detection which is not monitored nor performed the same

way as described above, that occurs when a certain node 𝑅 is expanded during the rule expansion

process using the timestamp as splitting attribute. In such a scenario —shown as blue nodes in

Figure 5.3—, a broadcast message is sent from that leaf node 𝑅 to the whole decision tree in

Adarules in order to revert the whole structure back to the root node and creating two child nodes

𝑅1 and 𝑅2 —in green— that will split up the data based on the selected timestamp 𝑡split. From

then on, only data after 𝑡split will be considered for future rule expansions. Actually, this would be

equivalent to set that new node 𝑅2 as the new root node, thus ignoring older data —corresponding
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Figure 5.3: Restructuring performed within Adarules decision tree after a global change is detected
in a node 𝑅, or whenever an expansion based on timestamp has been carried out in a
node 𝑅.

to the node 𝑅1—. Even though this would be the actual procedure in a real-time production system,

we have decided to let alive such node 𝑅1 in order to have the possibility to perform post-mortem

analysis in the current implementation.

The second kind of perspective considered is concerned about a change within a local scope in the

graph in the context of a specific rule 𝑅, 𝜗L
𝑅(𝑣). More specifically, the forecasting error is monitored

the same manner as described above for each 𝑣𝑖 from the graph in the context of a specific rule

𝑅𝑖, and since the expectation of the residuals from the forecasting models is zero by definition, it

can also be detected when a deviation occurs alerting of concept drift or shift. When this happens,

actions are taken by reducing the weight on those observations before the local change took place

in the context of that rule 𝑅𝑖 and for that node 𝑣𝑖, thus performing an effect of gradual forgetting.

This is carried out by using a decay factor 𝜆𝜗L to be multiplied on the observations’ weights —which

initially could be 1—. For instance, applying a decay factor 𝜆𝜗L = 2/3.

The underlying algorithm that has been applied for monitoring change detection in each of the

aforementioned cases is the Page-Hinkley (PH) test. More specifically, the PH test is a sequential

test for monitoring an abrupt deviation in the average of a Gaussian signal, which considers two

cumulative variables, 𝑚𝑇
𝐿 and 𝑚𝑇

𝑈 , defined as the cumulated differences between the observed values

and their mean till the current moment:
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𝑚𝑇
𝑈 =

𝑇
∑
𝑡=1

(𝑥𝑡 − 𝑥𝑇 − 𝛾), 𝑚𝑇
𝐿 =

𝑇
∑
𝑡=1

(𝑥𝑡 − 𝑥𝑇 + 𝛾),

where 𝑥𝑇 is the online mean of the observed variable till time 𝑇 , and 𝛾 corresponds to the

magnitude of changes that are allowed. The values 𝑀𝑇
𝑈 = min (𝑚𝑡

𝑈 , 𝑡 = 1, … , 𝑇 ) and 𝑀𝑇
𝐿 =

max (𝑚𝑡
𝐿, 𝑡 = 1, … , 𝑇 ) are also computed at every time step 𝑡. Finally, the PH test evaluates the

differences: 𝑚𝑇
𝑈 − 𝑀𝑇

𝑈 and 𝑀𝑇
𝐿 − 𝑚𝑇

𝐿. When any of these differences is greater than a given thresh-

old 𝜆, an alarm is raised because of a detected change in the distribution which could be a positive

or negative change in the average of the signal. The threshold 𝜆 is set according to the admissible

false alarm rate. Increasing this threshold will entail fewer false alarms, but it might miss some

changes. Thus, an empirical evaluation has been performed in order to assess an optimal tuning of

such parameters, 𝛾 and 𝜆, for the PH test.

The goal of such empirical evaluation is to determine a setting of parameters which perform well

in terms of detection ratio —true postives—, mean time to detect and a low false alarm ratio

—false positives—. For this aim, the experimental design has contempled simulated data which

is generated from two processes: a normal distribution and a log-normal distribution, this latter

is intended in order to account for right-skewed data. Different changes of magnitude have been

considered in order to evaluate the detection algorithm performance as shown in Figure 5.4, where

every change of magnitude is made with respect to the immediately preceding state each one

composed of a sample size 𝑁 = 10000. The testing values considered for each parameter are:

𝛾 =

⎡
⎢⎢⎢⎢⎢
⎣

0.005
0.05
0.1
0.5

⎤
⎥⎥⎥⎥⎥
⎦

, 𝜆 =

⎡
⎢⎢⎢⎢⎢
⎣

100
200
500
1000

⎤
⎥⎥⎥⎥⎥
⎦

,

that constitute the evaluating grid shown in Table 5.1. The summary of results is shown in Table

5.2 describing the percentage of true positives %TP+ —only for positive changes as all the changes

of magnitude are positive—, the mean time to detect the change (MTTD) and the total number

of false positives #FP+,− alarming a change —either positive or negative— when there was not

any. The detection algorithm is able to perform in a streaming mode digesting every element

sequentially, but a mini-batch digesting approach has been adopted based on a size of 100 elements

per chunk in order to perform more efficient algebraic operations. Then, for instance a MTTD of

2 would be equivalent to detecting the change in the data chunk between the element 100th to

the 200th. As can be seen, results among different parameter settings are not extremely different,
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Table 5.1: Hyperparameter grid to explore in the empirical evaluation for the Page-Hinkley algo-
rithm.

𝛾 𝜆
0.005 100
0.050 100
0.100 100
0.500 100
0.005 200
0.050 200
0.100 200
0.500 200
0.005 500
0.050 500
0.100 500
0.500 500
0.005 1000
0.050 1000
0.100 1000
0.500 1000

and it is observed that lower levels of 𝛾 parameter implies a higher risk of false positives especially

when combined with a low 𝜆. An important fact is that the first change of magnitude equivalent

to 1.5 is extremely subtle and thus it is not really convenient to flag it as an abrupt change in the

signal. This lead to consider only those combinations with a 80% of %TP+. Among these, those

with shortest MTTD are desired, and being conservative to reduce the risk of false positives with

new signals, the final parameter combination selected for the PH change detection algorithm are

𝛾 = 0.5 and 𝜆 = 200.

5.1.3 Feature penalizer

The feature penalizer is aimed to generate penalties —understood as the opposite of the probability

of being relevant for a given task— into the feature space and under a given task, on the basis of

prior structural assumptions.

In the case of features coming directly from the road network graph, the penalties are calculated

on the basis of four penalty components: (1) spatiotemporal 𝜌𝒮𝒯, (2) fraction of missing values 𝜌𝜂,

(3) near zero variance 𝜌𝜎0
and (4) differences between the flow levels 𝜌∆𝑄.

The spatiotemporal component of the penalty 𝜌𝒮𝒯 relies on the distance between the pair of nodes

𝑣1 and 𝑣2 both in the spatial and temporal dimensions, usually 𝑣1 corresponds to the current task

and 𝑣2 performs as feature for such task. In general, a distance function is sought with the form
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Figure 5.4: Normal and log-Normal distributions with different consecutive changes of magnitude
using synthetic data. Every change of magnitude is made with respect to the immedi-
ately preceding state.
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Table 5.2: Summary results from the assessment of PH test with different parameters.

𝛾 𝜆 Data %TP+ MTTD #FP+,−

0.005 100 Log-Normal 100 3.20 54
0.005 100 Normal 100 3.00 55
0.005 200 Log-Normal 100 3.60 10
0.005 200 Normal 100 3.20 8
0.005 500 Log-Normal 100 6.80 0
0.005 500 Normal 100 7.80 0
0.005 1000 Log-Normal 80 3.25 0
0.005 1000 Normal 80 4.25 0
0.050 100 Log-Normal 100 3.40 0
0.050 100 Normal 100 3.40 0
0.050 200 Log-Normal 100 3.80 0
0.050 200 Normal 100 4.00 0
0.050 500 Log-Normal 80 3.75 0
0.050 500 Normal 80 3.75 0
0.050 1000 Log-Normal 80 4.50 0
0.050 1000 Normal 80 4.75 0
0.100 100 Log-Normal 100 3.40 0
0.100 100 Normal 100 3.40 0
0.100 200 Log-Normal 100 3.80 0
0.100 200 Normal 100 4.20 0
0.100 500 Log-Normal 80 3.75 0
0.100 500 Normal 80 3.75 0
0.100 1000 Log-Normal 80 4.75 0
0.100 1000 Normal 80 4.75 0
0.500 100 Log-Normal 100 4.00 0
0.500 100 Normal 80 3.00 0
0.500 200 Log-Normal 80 3.25 0
0.500 200 Normal 80 3.25 0
0.500 500 Log-Normal 80 3.75 0
0.500 500 Normal 80 4.00 0
0.500 1000 Log-Normal 80 5.00 0
0.500 1000 Normal 80 5.25 0

87



5 The Adarules algorithm: towards a non-parametric approach

𝑓 ∶ 𝑉 → ℝ. As there is already a natural distance function that takes into account both dimensions

at the same time, i.e. the travel time, such function 𝑡𝑡 ∶ 𝑉 → ℝ can be directly used. As the

underlying problem structure is a directed graph and the function 𝑡𝑡(𝑣1, 𝑣2) is asymmetric, we

define:

𝑡𝑡∗(𝑣1, 𝑣2) = min{𝑡𝑡(𝑣1, 𝑣2), 𝑡𝑡(𝑣2, 𝑣1)}

Thus, the spatial part 𝒮 of the spatiotemporal component is given by the travel time already in

time units 𝒮(𝑣1, 𝑣2) = 𝑡𝑡∗(𝑣1, 𝑣2). The temporal part 𝒯 of the component is defined by its relation

with the lag operator 𝐿. Given a time series 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑡, …}, the lag operator is defined

as 𝐿𝑘𝑋𝑡 = 𝑋𝑡−𝑘. Then, the temporal part takes into account this lag operator and the associated

sampling frequency ∆𝑡 of data: 𝒯(𝑣2) = 𝑘∆𝑡, and the spatiotemporal component is defined as the

addition of both parts:

𝜌𝒮𝒯(𝑣1, 𝑣2) = 𝒮(𝑣1, 𝑣2) + 𝒯(𝑣2)

Finally, there exists a threshold 𝜌𝜏
𝒮𝒯 that can be fixed in advance at a certain constant value 𝑐 or

dynamically adjusted according to a given forecasting horizon ℎ(𝑡):

𝜌𝜏
𝒮𝒯 =

⎧{{{
⎨{{{⎩

ℎ(𝑡)

𝑐

∞

The objetive of such threshold is to impose an infinity penalty to those features whose spatiotem-

poral penalty exceeds the threshold: 𝜌𝒮𝒯(𝑣1, 𝑣2) > 𝜌𝜏
𝒮𝒯 ⟹ 𝜌𝒮𝒯(𝑣1, 𝑣2) = ∞. Obviously, when

𝜌𝜏
𝒮𝒯 = ∞ there is no such imposition.

For the rest of the penalty components, a sliding window 𝜔 of a given size, e.g. the last 30 days, is

used in order to account for the most recent data statistics.

Penalty for the fraction of missing values 𝜌𝜂 aims to impose a higher penalty to those features with

a higher ratio of missing data recently, as these can be considered unreliable features. Having a

function 𝜂(𝑣2, 𝜔) that returns the fraction [0, 1] of missing values for the feature 𝑣2 in the window 𝜔,

we define 𝜌𝜂(𝑣2) = 𝜂(𝑣2, 𝜔). Additionaly, a threshold is also defined 𝜌𝜏
𝜂 = 0.90, generally, so that:
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𝜌𝜂(𝑣2) =
⎧{
⎨{⎩

∞, for 𝜌𝜂(𝑣2) > 𝜌𝜏
𝜂

0 for 𝜌𝜂(𝑣2) ≤ 𝜌𝜏
𝜂

⎫}
⎬}⎭

The motivation behind the near-zero-variance penalty component 𝜌𝜎0
is to impose a penalization

on those features with an extremely low observed variance. This is due, first, to the numerical

instabilities —e.g. divisions by zero or numerical precision issues— they can cause in practice

because of resampling methods that are used through the thesis. Moreover, this is also supported

by the prior domain knowledge as predictors whose variance are extremely low can be due to the

fact that either they are irrelevant as they represent a small part of the flows, or they correspond

to regions of the graph that have not seen enough flow until that moment with the consequent

risk of experiencing a structural change —for instance, a new road where the traffic has been

restricted until construction is finished thus letting to pass the road traffic—. Therefore, a threshold

𝜌𝜏
𝜎0

= 0.01 is defined, so that 𝜌𝜎0
(𝑣2) ≤ 𝜌𝜏

𝜎0
⟹ 𝜌𝜎0

(𝑣2) = ∞, where 𝜌𝜎0
(𝑣2) = 𝜎(𝑣2) returns the

variance of 𝑣2 using the window 𝜔:

𝜌𝜎0
(𝑣2) =

⎧{
⎨{⎩

∞, for 𝜌𝜎0
(𝑣2) ≤ 𝜌𝜏

𝜎0

0 for 𝜌𝜎0
(𝑣2) > 𝜌𝜏

𝜎0

⎫}
⎬}⎭

Lastly, the penalty component regarding the differences between the flow levels 𝜌∆𝑄 aims to impose

more penalty to those features 𝑣2 with a significantly lower flow level 𝑄 compared to that of the

current task 𝑣1. To this end, 𝜌∆𝑄 is defined as:

𝜌∆𝑄(𝑣1, 𝑣2) =
⎧{
⎨{⎩

0, for 𝑄̄(𝑣2) ≥ 𝑄̄(𝑣1)
𝑄̄(𝑣1)−𝑄̄(𝑣2)

𝑄̄(𝑣1) for 𝑄̄(𝑣2) < 𝑄̄(𝑣1)

⎫}
⎬}⎭

where 𝑄̄ corresponds to the average of the flow using the window 𝜔.

After having all the separate penalty components, their composition into a single penalty 𝜌 takes

the spatiotemporal penalty 𝜌𝒮𝒯 as the natural baseline and the rest as influential factors that can

increase it as they are in the range [0, 1] along with the special value of ∞:

𝜌(𝑣1, 𝑣2) = 𝜌𝒮𝒯(𝑣1, 𝑣2) ⋅ (1 + 𝜌𝜂(𝑣2)) ⋅ (1 + 𝜌𝜎0
(𝑣2)) ⋅ (1 + 𝜌∆𝑄(𝑣1, 𝑣2))
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5.1.4 Feature selector

The aim of the features selector component is to provide these upon request. This selection can be

deterministic —e.g. performing a full selection of features within a category or the whole feature

space, or performing a cyclical selection over features, etc.— or could be stochastic —e.g. by

assigning probabilities to features as a way to a priori calculate their suitability for the specific

task.

In this thesis, it operates for two goals. One is to provide features as possible choices for the

rule expansions process, which is carried out by simply selecting all the qualitative features among

different categories —date and time, weather, calendars of special days, etc.—. The other purpose

is to also serve relevant features during the process of fitting the forecasting models, which is

performed on demand. This also includes trimming irrelevant features, which is performed in

combination with the feature penalizer for those features 𝑣𝑗 whose penalty 𝜌(𝑣𝑖, 𝑣𝑗) = ∞ for a

given task 𝑣𝑖, as part of the screening rules schema used for fitting the forecasting models.

5.1.5 Feature outlier filter

In a real-time application, it is crucial to detect univariate spurious outliers, i.e. those that are not

truly part of the process but are caused by faulty measurement devices instead, in order to perform

online filtering.

To this end, the interquartile range IQR [122] is a robust measure of scale, i.e. less sensitive to

outliers, showing how the data is spread about the median. It is defined by:

IQR = 𝑄3 − 𝑄1

From that, a certain threshold is used, typically IQR𝜏 = 1.5 which is used to multiply the IQR

value. Then, detection of suspected outliers below the range of data can be performed by those

which are lesser than 𝑄1 − IQR ⋅ IQR𝜏 , while detection of suspected outliers above the range of

data can be performed by those which are greater than 𝑄3 + IQR ⋅ IQR𝜏 .

Estimation of quartiles 𝑄1 and 𝑄3 benefit from the streaming data using a sliding window 𝜔 of a

given size, e.g. the last 30 days. Such estimation is individual per feature.

In addition, for those features whose support is well-defined, their minimum and maximum valid

measurement range still holds. For instance, traffic measurement —either flow, occupancy or

speed— cannot be negative.
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5.1.6 Forecasting model: sparse model for spatiotemporal correlations

The proposed forecasting modelling approach has the form of linear dependence between every

region in the network with respect to all the road network state and at different times, i.e. spa-

tiotemporal correlations. Given that traffic is a highly non-linear process where changes in traffic

dynamics occur suddenly, a linear model may not seem appropriate for short-term traffic prediction.

However, the linear model is built using the examples covered by each rule, letting that these unveil

the nonlinearities in the traffic dynamics leading to the creation of specialized linear models, which

also benefit from simpler and more efficient procedures to learn.

The functional form of such modelling approach can be represented by:

𝑌 (𝑡 + ℎ) = 𝑓(𝑋(𝑡))

where:

• matrix 𝑌 corresponds to the network traffic state —flow, occupancy or speeds— at a given

future time 𝑡 + ℎ which is ℎ time steps ahead of current time 𝑡,
• matrix 𝑋 is the matrix containing all the necessary input information at a given set of time:

(𝑡, 𝑡 − 1, … , 𝑡 − 𝐿𝑚𝑎𝑥),
• 𝑓 is the analytical model representing the relationship between 𝑋 and 𝑌 .

The matrix 𝑋 is built containing explicative variables of the model, i.e. those variables considered

as necessary to explain the behaviour and evolution of 𝑌 , which may include the network spatial

information involving the current network traffic state –including upstreams and downstreams of

the selected measurement source to predict—, along with past values (𝑡, 𝑡−1, … , 𝑡−𝐿𝑚𝑎𝑥) of these

to infer the future evolution of the network traffic state over time.

The motivation behind using the temporal facet, i.e. lags of variables, is to include an important

source of information to infer the evolution of the network traffic state over time, especially when

there is an important lack of network observability, i.e. that not all the network has traffic mea-

surement devices in order to provide observations.

However, it is not convenient to use data from every road segment to develop a forecast for a

given location for two reasons: (1) it would be computationally prohibitive, and (2) locality effect

in the causal relations between congestion patterns on different road segments could be hidden

by such high-dimensionality. Moreover, there could be other correlated effects in data but which

are not evident, for example when an arterial road is an alternative to a highway, those roads
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will be strongly related even that they are not topological neighbours. To this end, methods

of regularization provide with an automated approach to perform feature selection and model

selection.

In addition, there exists a large effect of multicollinearity among features in a road network graph,

and in such situation, some modelling approaches simply would fail in their attempt to fit the

data —such as ordinary least squares regression (OLS)—, while other approaches that perform

regularization on the feature space can surpass this effect. For example, a ridge penalty would

shrink the coefficients of correlated predictors towards each other while the lasso penalty tends to

pick one of them and discard the others. The latter is more interesting to the problem of short-term

traffic prediction as we are interested in the strongest correlations to make more robust the solution:

a sparse linear model for forecasting.

In this sense, the adaptive penalties generated from the feature penalizer component can perform

as input of the fitting process for these sparse models, performing as prior information and helping

to guide the fitting process towards more meaningful and robust solutions, and alleviating the

aforementioned problem of multicollinearity. It is also convenient as the standard lasso approach

does not have oracle properties as the adaptive lasso does have [274].

Thus, we are interested in a sparse linear model for the forecasting whose empirical risk minimization

—for computational reasons in such high-dimensional setting— has the following form:

min
(𝛽0,𝛽)∈ℝ𝑝+1

1
2

1
𝑁

𝑁
∑
𝑖=1

𝑤𝑖(𝑦𝑖 − 𝛽0 − 𝑥𝑇
𝑖 𝛽)2 + 𝜆

𝑝
∑
𝑗=1

𝑐𝑗
̄𝑐 |𝛽𝑗|

The first part corresponds to a squared loss, i.e. the minimization of the residual sum of squares,

which weight every 𝑖-th observation out of 𝑁 by a relative weight 𝑤𝑖 ∈ [0, 1] describing its impor-

tance within the entire dataset. The second part corresponds to the regularization part over the

vector of coefficients 𝛽 whose relative importance within the optimization problem is determined

by the regularization hyperparameter 𝜆 which is tuned used resampling techniques on data such

as cross-validation. Every 𝑝-th feature is adaptively penalized according to a certain given value

𝑐𝑗 which is normalized using ̄𝑐 = 1
𝑝 ∑𝑝

𝑗=1 𝑐𝑗. Such formulation is known as adaptive lasso in ERM

literature.

Concerning the learning procedure, coordinate descent (coordinate-wise gradient descent) has been

used to obtain the parameter estimates 𝛽 because it applies well to the case where 𝑁 ≪ 𝑝, being

successfully applied to this problem in high-dimensionality settings [90] and demonstrated to be

efficient in large problems [191]. This family of first-order methods optimizes a target function with
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respect to a single parameter at a time, iteratively cycling through all parameters until convergence

is reached. Thus, application of coordinate descent to solve the problem involves performing per-

feature updates until convergence.

More specifically, having 𝑋 features already centered and standardized —and optionally also the

response Y—, so that:

𝑁
∑
𝑖=1

𝑥𝑖𝑗 = 0,
𝑁

∑
𝑖=1

𝑥2
𝑖𝑗 = 𝑁, ∀𝑗 = 1, 2, … , 𝑝

and given current values for the coefficients 𝛽𝑘 = ̃𝛽𝑘, 𝑘 ≠ 𝑗, computing the gradient with respect

to 𝛽𝑗 derives 𝐿𝑗:

𝐿𝑗(𝛽𝑗, 𝜆) = 1
2𝑁

𝑁
∑
𝑖=1

𝑤𝑖 (𝑦𝑖 − ∑
𝑘≠𝑗

𝑥𝑖𝑘 ̃𝛽𝑘 − 𝑥𝑖𝑗𝛽𝑗)
2

+ 𝜆𝑐𝑗|𝛽𝑗|

It can be denoted ̃𝑟𝑖𝑗 as the partial residual with respect to the 𝑗-th feature which removes from

the outcome the current fit from all but the 𝑗-th predictor:

̃𝑟𝑖𝑗 = 𝑦𝑖 − ̃𝑦𝑖𝑗

where ̃𝑦𝑖𝑗 is defined as:

̃𝑦𝑖𝑗 = ∑
𝑘≠𝑗

𝑥𝑖𝑘 ̃𝛽𝑘

and denoting ̃𝑧𝑗 as:

̃𝑧𝑗 = 1
𝑁

𝑁
∑
𝑖=1

𝑤𝑖𝑥𝑖𝑗 ̃𝑟𝑖𝑗

Finally the update to the coefficient 𝛽𝑗 is defined as:

̃𝛽𝑗 = 𝒮 ( ̃𝑧𝑗, 𝜆)
1 + 𝜆
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where 𝒮(𝑧, 𝜆) is the soft-thresholding operator with value 𝒮(𝑧, 𝜆) = sign(𝑧)(|𝑧| − 𝜆)+ which trans-

lates2 its argument 𝑧 toward zero by the amount 𝜆, and sets it to zero if |𝑧| ≤ 𝜆 as shown in Figure

5.5.

λSλ(x)

x(0, 0)

Figure 5.5: Soft thresholding function 𝒮(𝑥, 𝜆) = sign(𝑥)(|𝑥| − 𝜆)+ is shown in blue (dashed lines),
along with the 45∘ line in black.

Such parameter estimation could also be applicable in an online manner using mini-batches of

streaming data, a small learning rate 𝜂 and the soft-thresholding technique [219]. Moreover, instead

of performing a naïve cyclical update of all the coordinates in every iteration, it would be possible

to rely on the feature selector to probabilistically select a subset of more relevant coordinates to be

updated. Even though its potential online applicability for an active incremental learning strategy,

eventually in this thesis a passive incremental learning strategy has been chosen for the forecasting

models. This strategy relies on the local change detection previously described in order to estimate

again the coefficients using the updated weights vector 𝑤 over the dataset observations. This is

part of a gradual forgetting strategy which eventually could simply discard old data after a certain

number of local changes have been detected. On the other hand, if no local change is detected in a

significant amount of time, then parameters are estimated again including all the new observations,

and relying on resampling techniques such as cross-validation (CV) in order to avoid a loss of

generalization performance.

Solving for the lasso problem requires determining the optimal amount of sparsity which is imposed

by the 𝜆 hyperparameter as stated in the ERM-like formulation. An strategy to address this is

through what is known as regularization path of the lasso, which relies on solving the problem over

a grid of 𝜆 values on a log scale ranging from the sparsest 𝜆𝑚𝑎𝑥 which corresponds to having all

coefficients set to zero to the least sparse equivalent to an ordinary least-squares solution 𝜆𝑚𝑖𝑛 =
2𝑟+ denotes the positive part of 𝑟 ∈ ℝ, equal to 𝑟 if 𝑟 > 0 and 0 otherwise
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𝜆OLS. More specifically, let 𝜆0 > 𝜆1 > … > 𝜆𝑘 be a grid of decreasing 𝜆-values, where 𝜆0 =
𝜆𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗|(𝑥𝑇

𝑗 𝑥𝑗)−1𝑥𝑇
𝑗 𝑦|, and 𝜆𝑘 = 𝜆𝑚𝑖𝑛 = 0 if the design matrix is full rank, or, otherwise

𝜆𝑚𝑖𝑛 = 𝜀𝜆𝑚𝑎𝑥 with a given small 𝜀 = 10−4. The path starts to be solved from 𝜆0, proceeding along

the grid using value of ̂𝛽 at the previous 𝜆𝑘−1 solution as the initial solution for the current 𝜆𝑘, in

a procedure known as warm start. Then, for every specific 𝜆𝑘, the coordinate descent algorithm

performs as stated in Algorithm 5.6.

Algorithm 1: Coordinate Descent (CD) algorithm for a given 𝜆𝑘
Input : 𝛽(0): initial vector of coefficients from 𝜆𝑘−1

𝑠∗: accumulated passes over the data in the 𝜆-path so far
𝑠𝑚𝑎𝑥: max number of iterations (passes over the data for all the 𝜆 path)

Output: 𝛽: vector of coefficients for current 𝜆𝑘

1 𝑠 ← 0
2 while (¬ converge) ∧ (𝑠∗ ≤ 𝑠𝑚𝑎𝑥) do
3 foreach 𝑗 = 1, … , 𝑝 do cyclical CD over the active set 𝒜
4 Calculate ̃𝑧𝑗 = 1

𝑁 ∑𝑁
𝑖=1 𝑥𝑖𝑗𝑟𝑖 + ̃𝛽(𝑠)

𝑗
5 where 𝑟𝑖 = 𝑦𝑖 − ̃𝑦𝑖 = 𝑦𝑖 − ∑𝑝

𝑗=1 𝑥𝑖𝑗 ̃𝛽(𝑠)
𝑗 is the current residual

6 Update ̃𝛽𝑗 ← 𝒮( ̃𝑧𝑗,𝜆)
1+𝜆

7 Update 𝑟𝑖 ← 𝑟𝑖 − ( ̃𝛽𝑠
𝑗 − ̃𝛽𝑠−1

𝑗 )𝑥𝑖𝑗 ∀𝑖, … , 𝑁
8 end
9 𝑠 ← 𝑠 + 1

10 𝑠∗ ← 𝑠∗ + 1
11 end

Figure 5.6: Coordinate Descent algorithm.

The convergence criterion focuses on the impact of the change on the fitted values using a weighted

norm of the coefficient change vector. Let 𝑣𝑗 be the weighted sum-of-squares for the feature 𝑥𝑗

using the weights vector 𝑤 for every observation 𝑖:

𝑣𝑗 =
𝑁

∑
𝑖=1

𝑤𝑖𝑥2
𝑖𝑗

If there is an intercept ̂𝛽0 in the model, these 𝑥𝑗 will be centered by the weighted mean, and

hence this would be a weighted variance. After the previous state of the coefficient ̂𝛽(𝑛−1)
𝑗 has been

updated to ̂𝛽(𝑛)
𝑗 in the 𝑛-th iteration, then Δ𝑗 measures the weighted sum of squares of changes in

fitted values for feature 𝑥𝑗 and can be computed as:

Δ𝑗 = 𝑣𝑗 ( ̂𝛽(𝑛−1)
𝑗 − ̂𝛽(𝑛)

𝑗 )
2

= 1
𝑁

𝑁
∑
𝑖=1

𝑤𝑖 (𝑥𝑖𝑗 ̂𝛽(𝑛−1)
𝑗 − 𝑥𝑖𝑗 ̂𝛽(𝑛)

𝑗 )
2

After every complete cycle of coordinate descent, the maximum difference over all 𝑗 is checked
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Δ𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗Δ𝑗 and when such largest change is negligible Δ𝑚𝑎𝑥 < 𝜀, then convergence has been

achieved.

It is important to note the parameter 𝑠𝑚𝑎𝑥 that dictates the maximum number of iterations —

number of passes over the 𝑁 observations within the dataset— to perform if the solution has not

converged before. For this thesis, an intended 𝑠𝑚𝑎𝑥 = 1000 has been set for two reasons: (1) seeking

for more sparse and thus more real-time robust and interpretable models, and (2) computational

saving.

Such computational efficiency in solving the lasso problem is also achieved with the use of an active

set 𝒜 and the strong screening rules. More specifically, after a single CD iteration 𝑠 = 0 through

the set of 𝑝 variables at a new 𝜆𝑘 starting from the warm start ̂𝛽(𝜆𝑘−1), the active set 𝒜 can be

defined as the set of non-zero features at that time. From then on, the cyclical CD iteration is only

performed on such features contained in the active set 𝒜 during the subsequent 𝑠 iterations. Upon

convergence, the test 1
𝑁 |⟨𝑥𝑗, 𝑟⟩| < 𝜆𝑘 —where 𝑟 is the current residual— is performed over all the

omitted variables, and if all of them pass the exclusion test then the solution has been reached for

the entire set of 𝑝 variables. Otherwise, those variables that fail the test are included back in 𝒜
and the process is repeated. In practice, an ever-active set 𝒜 is maintained, i.e. any feature that

had a non-zero coefficient somewhere along the regularization path until current 𝜆𝑘 is kept in 𝒜.

Similarly, such active set 𝒜 can be enhanced with the use of strong screening rules assists in the

identification of a subset of features likely to be candidates for 𝒜, by defining the strong set 𝕊 for

a given 𝜆𝑘 as:

𝕊 = {𝑗 | | 1
𝑁 ⟨𝑥𝑗, 𝑟⟩| > 𝜆𝑘 − (𝜆𝑘−1 − 𝜆𝑘)}

where 𝑟 is the residual at ̂𝛽(𝜆𝑘−1). Therefore, the solution is computed restricting the attention to

only the elements of 𝕊. Apart from rare exceptions, the strong set 𝕊 will cover the optimal active

set 𝒜. The use of such strong rules is extremely useful to perform a much more efficient problem

solving especially when 𝑝 is very high-dimensional. Moreover, the set of heuristic rules described

in the feature selector section are also applied before starting to solve the lasso at 𝜆0.

Finally, after fitting the complete regularization path it becomes necessary to select a specific value

of the 𝜆 path, say, 𝜆∗, in order to use ̂𝛽(𝜆∗) as the final estimator. This model selection step

is usually performed using information criterion methods such as AIC or BIC that integrate the

performance using an error measurement (e.g. the MSE) coupled with a penalty over the number

of parameters, or by resampling methods such as CV which has been the choice for this thesis.

Hence the necessity to have a fast algorithm to compute the complete regularization path over a
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grid of 𝜆 values, which is achieved with the use of the strong screening rules for efficient restriction

of the active set along with the highly efficient parameter updates and the use of warm starts

through the regularization path. Moreover, coordinate descent is especially fast for solving the

lasso because the coordinate-wise minimizers are explicitly available and thus an iterative search

along each coordinate is not needed. Secondly, it exploits the sparsity of the problem as for large

enough values of 𝜆 most coefficients will be zero and will not be moved from zero. Using the CD

approach to solve the lasso, it is very easy to allow for upper and lower bounds on each coefficient

in the model —e.g. allowing a non-negative lasso—, by simply setting back them to the specified

bound when such coefficients would attempt to exceed an upper or lower bound during the CD

cycle.

5.1.6.1 Extension to a multi-task learning approach

In the case of having multiple responses, the aforementioned ERM formulation can be extended to

tackle a multi-task learning approach, where the single response vector 𝑦 is replaced by a matrix 𝑌
of size 𝑁 ×𝐾 where 𝑁 is the sample size and 𝐾 the set of 𝐾 jointly learned tasks, and the coefficient

vector 𝛽 of length 𝑝 features is replaced by a matrix ℬ of size 𝑝 × 𝐾. Then, the absolute individual

penalty on each single coefficient 𝛽𝑗 is replaced by a group-lasso penalty on each coefficient 𝐾-vector

ℬ𝑗 for a single predictor 𝑥𝑗, where each group ℬ𝑗 corresponds to the 𝑗th row of the 𝑝×𝐾 coefficient

matrix ℬ:

min
ℬ∈ℝ𝑝×𝐾

1
𝑁

𝑁
∑
𝑖=1

𝑤𝑖‖𝑦𝑖 − ⟨ℬ, 𝑥𝑖⟩‖2
𝐹 + 𝜆

𝑝
∑
𝑗=1

𝑐𝑗
̄𝑐 ‖ℬ𝑗‖2

For this case, within the ℓ1/ℓ2 penalized multiple Gaussian-response linear models, the sharing

involves which features are selected across tasks 𝐾 since when a feature 𝑥𝑗 is selected, then a

coefficients vector ℬ𝑗 becomes non-zero with an individual coefficient 𝛽𝑗𝑘 fit for each response 𝐾,

which turns out to be useful when there are a number of correlated responses or tasks to learn.

For example, these tasks could comprehend the forecasting of multiple steps ahead, multiple traffic

responses —flow, occupancy, and speed together—, or multiple road sections within the network.

Similarly as before, coordinate descent techniques are one reasonable choice, whereas in this case

a block coordinate descent is performed on each vector 𝛽𝑗 while holding all the others fixed.
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5.2 Pseudocode

5.2.1 Main corpus - streaming scenario

Figure 5.7.

Algorithm 2: Main corpus of the streaming scenario for Adarules
Input : ℛ: A given ruleset

Δ𝑁ℛ: Size of the buffer of elements to be digested
𝒫PredictionInterval: Probability for the prediction interval
𝒪Graph: Whether to measure or not outlierness using the graph structure
𝒪TrafficStates: Whether to measure or not outlierness using traffic states
ℐ𝒟: Whether to perform or not incident detection

1 begin
2 foreach observation 𝑥𝑖 in streaming do
3 Call ℛ.predict(𝑥𝑖, 𝒫PredictionInterval, 𝒪TrafficStates, 𝒪Graph, ℐ𝒟)
4 if size(buffer) = Δ𝑁ℛ then
5 Call ℛ.digest-observations(𝑋, ℱThresholding, 𝒞TrafficStates)
6 else append elements into buffer
7 𝑋 ← (𝑋, 𝑥𝑖)
8 end
9 end

10 end

Figure 5.7: Main corpus of the streaming scenario for Adarules.

5.2.2 Ruleset: digest observations

Most of the operations (filtering, filling in of missing data, generating features, …) are performed

in streaming or, preferably, in chunks to avoid having in memory all the data.

Figure 5.8 and Figure 5.9.

5.2.3 Ruleset: predict observations

Figure 5.10.

5.2.4 Rule: digest observations

Figure 5.11.
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Algorithm 3: Ruleset ℛ: digest observations
Input : 𝑋: Input data matrix [𝑁 × 𝑝]

ℱThresholding: Whether to filter or not data using thresholding
𝒞TrafficStates: Whether to fill in or not missing data using the informed approach

based on traffic states
Output: ℛ state is modified

1 begin
2 Store new raw data 𝑋
3 Update statistics Θ𝜔 within the sliding window 𝜔
4 if ℱThresholding then filter spurious outliers using thresholding

// ℱ𝜏− and ℱ𝜏+ are the vectors of features' lower and upper bounds,
// respectively, for those which are known
// IQR𝜏 is the threshold for the interquartile range method

5 𝑋 ← filter-thresholding(𝑋, ℱ𝜏− , ℱ𝜏+ , Θ𝜔, IQR𝜏)
6 end
7 Update global statistics Θ for features using new data in 𝑋
8 𝑋∗ ← split-evaluator.generate-graph-features(𝑋)
9 if ℛ is using Traffic states then

10 𝒯𝒮 ← trafficstates-model.classify-trafficstates(𝑋)
11 end
12 𝑅∗ ← evaluation of each rule 𝑅 ∈ ℛ on dataset 𝑋

// Perform filling in of missing data using the informed approach
13 if 𝒞TrafficStates then
14 𝑋Clean ← fill-missing-data-with-trafficstates(𝑋, 𝒯𝒮, 𝑅𝐼𝐷)
15 end

// Perform filling in of (remaining) missing data using the basic
approach

16 𝑋Clean ← fill-missing-data-by-rule(𝑋, Θ, Θ𝑅)
17 Store 𝑋Clean
18 foreach rule 𝑅 in 𝑅∗ do
19 Select the sets 𝑋𝑅 ⊆ 𝑋 and 𝑋∗

𝑅 ⊆ 𝑋∗ belonging to 𝑅
20 𝑅.digest-observations(𝑋𝑅, 𝑋∗

𝑅)
21 if Global drift detected in 𝑅 then
22 𝑘 ← current time index within 𝑋𝑅
23 Append 𝑘 to the vector in 𝑅 𝑅. ⃗𝜗G ← (𝑅. ⃗𝜗G, 𝑘)
24 else
25 Forget previous detected global changes in 𝑅 by emptying its vector

𝑅.ConceptDriftGlobalDetected ← ∅
26 end
27 end
28 Select the set 𝑅∗

𝜗G
⊆ 𝑅∗ of activated rules 𝑅∗ with global change

𝑅∗
𝜗G

← {𝑅 ∈ 𝑅∗ ∶ 𝜗G(𝑅) = 1}
29 Select the set 𝑅∗

𝜗G∗ ⊆ 𝑅∗
𝜗G

that meet the criteria 𝜗G-Siblings
𝜏 ∨ 𝜗G-ConsecutiveSolo

𝜏
30 foreach rule 𝑅 in 𝑅∗

𝜗G∗ do
31 Perform restructuring of node 𝑅 within the decision tree ℛ
32 end
33 Select the set 𝑅∗

E ⊆ 𝑅∗ of rules to be expanded 𝑅∗
E ← {𝑅 ∈ 𝑅∗ ∶ 𝐸(𝑅) = 1}

Figure 5.8: Ruleset ℛ: digest observations. Part I.
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(34)

(35) foreach rule 𝑅 in 𝑅∗
E do

(36) Perform expansion of node 𝑅 by creating two child nodes 𝑅Left, 𝑅Right
(37) end
(38) Update spatiotemporal bayesian networks 𝒮𝒯ℬ𝒩 using new data 𝑋
(39) foreach local node 𝑣 in ℛ.𝑉 do
(40) Call the feature penalizer to generate penalties 𝜌𝜔(𝑣) using statistics in Θ𝜔
(41) foreach rule 𝑅 in 𝑅∗ do
(42) Call the feature penalizer to generate penalties 𝜌𝑅(𝑣) using statistics in 𝑅
(43) 𝜌(𝑣) ← max(𝜌𝜔(𝑣), 𝜌𝑅(𝑣))
(44) 𝑅(𝑣).digest-observations(𝑋𝑅, 𝜌(𝑣))
(45) end
(46) end
(47) Select the set (𝑅∗

𝜗L
(𝑣) ⊆ 𝑅∗ ∀ 𝑣 ∈ ℛ.𝑉 ) of rules with local change

𝑅∗
𝜗L

(𝑣) ← {𝑅(𝑣) ∈ 𝑅∗ ∶ 𝜗L(𝑅(𝑣)) = 1}
(48) foreach rule 𝑅 in 𝑅∗

𝜗L
do

(49) Select the set 𝑉 ∗ ⊆ ℛ.𝑉 that meet the spatial or temporal criteria
(50) foreach local node 𝑣 in 𝑉 ∗ do
(51) Generate vector of weights 𝑤𝑅(𝑣) for 𝑅(𝑣) according to local changes in 𝑅(𝑣)
(52) Update learners in 𝑅(𝑣) using 𝑋𝑅, 𝑤𝑅(𝑣), 𝜌(𝑣)
(53) end
(54) end
(55) end

Figure 5.9: Ruleset ℛ: digest observations. Part II.

5.2.5 Rule(v): digest observations

Figure 5.12.

5.2.6 Rule(v): predict observations

Figure 5.13.

5.2.7 Filter spurious outliers using thresholding

Figure 5.14.

5.2.8 Change detection

Figure 5.15.
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5.2 Pseudocode

Algorithm 4: Ruleset ℛ: predict observations
Input : 𝑋: Input data matrix [𝑁 × 𝑝]

ℱThresholding: Whether to filter or not data using thresholding
𝒞TrafficStates: Whether to fill in or not missing data using the informed approach
𝒫PredictionInterval: Probability for the prediction interval
𝒪Graph: Whether to measure or not outlierness using the graph structure
𝒪TrafficStates: Whether to measure or not outlierness using traffic states
ℐ𝒟: Whether to perform or not incident detection

Output: ̂𝑌 , ̂𝑌𝑃 : Forecasts for every 𝑣 ∈ ℛ.𝑉 , and prediction intervals
̂𝒪Graph: Measure of outlierness using graph patterns
̂𝒪TrafficStates: Probabilities of outlierness using traffic states
̂𝐼𝐷: Probabilities of incident detection using traffic states

1 begin
2 if ℱThresholding then filter spurious outliers using thresholding

// ℱ𝜏− and ℱ𝜏+ are the vectors of features' lower and upper bounds,
// respectively, for those which are known
// IQR𝜏 is the threshold for the interquartile range method
// Θ𝜔 are the statistics within the sliding window

3 𝑋 ← filter-thresholding(𝑋, ℱ𝜏− , ℱ𝜏+ , Θ𝜔, IQR𝜏)
4 end
5 if ℛ is using Traffic states then
6 𝒯𝒮 ← trafficstates-model.classify-trafficstates(𝑋)
7 end
8 𝑅∗ ← evaluation of each rule 𝑅 ∈ ℛ on dataset 𝑋

// Perform filling in of missing data using the informed approach
9 if 𝒞TrafficStates then

10 𝑋 ← fill-missing-data-with-trafficstates(𝑋, 𝒯𝒮)
11 end

// Perform filling in of (remaining) missing data using the basic
approach

12 𝑋 ← fill-missing-data-by-rule(𝑋)
13 foreach local node 𝑣 in ℛ.𝑉 do
14 foreach rule 𝑅 in 𝑅∗ do
15 Select the set 𝑋𝑅 ⊆ 𝑋 belonging to 𝑅
16 ( ̂𝑌 , ̂𝑌𝑃 ) ← 𝑅(𝑣).predict(𝑋𝑅, 𝒫PredictionInterval)
17 end
18 end
19 if 𝒪Graph then
20 𝑋∗ ← split-evaluator.generate-features(𝑋)
21 ̂𝒪Graph ← 𝑅.measure-graph-outlierness(𝑋∗, Θ∗

𝑅)
22 end
23 if 𝒪TrafficStates then
24 ̂𝒪TrafficStates ← 𝒮𝒯ℬ𝒩.measure-trafficstates-outlierness(𝒯𝒮)
25 end
26 if ℐ𝒟 then
27 ̂𝐼𝐷 ← 𝒮𝒯ℬ𝒩.incident-detection(𝒯𝒮)
28 end
29 end

Figure 5.10: Ruleset ℛ: predict observations.
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5 The Adarules algorithm: towards a non-parametric approach

Algorithm 5: Rule 𝑅: digest observations
Input : 𝑋𝑅: Input data matrix [𝑁 × 𝑝] whose observations belongs to this rule 𝑅

𝑋∗
𝑅: Graph-features data matrix [𝑁 × 𝑞] 𝑞 is the number of graph connections

Output: 𝐸𝑅: result of the possible attempt to expand 𝑅
𝜗𝐺

𝑅: Whether if a global change has been detected in rule 𝑅 or not
1 begin
2 Update rule statistics Θ𝑅 for features using new data in 𝑋𝑅
3 Update rule graph statistics Θ∗

𝑅 using new data in 𝑋∗
𝑅

// Perform change detection in every data distribution over the graph
(spatial and temporal)

4 𝜗𝐺(𝑣, 𝑡) ← change-detection(𝑋∗
𝑅, Θ∗

𝑅)
5 Evaluate if there exists global change in rule 𝑅 checking the whole graph 𝐺

𝜗𝐺
𝑅 ← 𝜗𝐺

𝑅(𝐺) > 𝜗𝐺
𝜏

// 𝑁min𝑅 is the number of observations seen since the last expansion in
𝑅

6 if 𝑁 ∗
𝑅 > 𝑁min𝑅 then

7 𝐸𝑅 ← evaluate-rule-expansion(𝑋𝑅, 𝑋∗
𝑅)

8 if 𝐸𝑅 then
9 return 𝜗𝐺

𝑅, 𝑅Left, 𝑅Right
10 else

// If attempt to expand 𝑅 has failed, delay its timing to make a
new attempt

11 𝑁min ← 𝑁min ⋅ 𝑁min𝛾
12 end
13 end
14 return 𝜗𝐺

𝑅, 𝐸𝑅 = False
15 end

Figure 5.11: Rule 𝑅: digest observations.

Algorithm 6: Rule 𝑅(𝑣): digest observations
Input : 𝑋𝑅: Input data matrix [𝑁 × 𝑝] whose observations belongs to this rule 𝑅

𝑤𝑅(𝑣): Vector of weights for the observations belonging to 𝑅 in the context of
local node 𝑣

𝜌(𝑣): Vector of adaptive penalties for all the features in the context of local node 𝑣
Output: 𝜗L

𝑅(𝑣): Whether if a local change has been detected for node 𝑣 in the context rule
of 𝑅 or not

1 begin
2 Generate prediction 𝑌𝑅
3 Update error statistics ℰ𝑅(𝑣), ℰ𝑅(𝑣, 𝑙) for rule 𝑅(𝑣) and for every learner 𝑙 ∈ ℒ using 𝑌𝑅
4 𝜗L

𝑅(𝑣) ← change-detection(𝑌𝑅, ℰ𝑅(𝑣))
5 Update learners 𝑙 ∈ ℒ using new data 𝑋𝑅 according to 𝑤𝑅(𝑣), 𝜌(𝑣)
6 return 𝜗L

𝑅(𝑣)
7 end

Figure 5.12: Rule 𝑅(𝑣): digest observations.
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5.2 Pseudocode

Algorithm 7: Rule 𝑅(𝑣): predict observations
Input : 𝑋𝑅: Input data matrix [𝑁 × 𝑝] whose observations belongs to this rule 𝑅

𝒫PredictionInterval: Probability for the prediction interval
Output: ̂𝑌 , ̂𝑌𝑃 : Forecasts for every 𝑣 ∈ ℛ.𝑉 , and prediction intervals

1 begin
2 foreach learner 𝑙 in ℒ do
3 𝑌 (𝑙), ̂𝑌𝑃 (𝑙) ← 𝑙.predict(𝑋𝑅, 𝒫PredictionInterval)
4 end
5 Combine predictions 𝑌 (𝑙), ̂𝑌𝑃 (𝑙) into ̂𝑌 , ̂𝑌𝑃
6 return ̂𝑌 , ̂𝑌𝑃
7 end

Figure 5.13: Rule 𝑅(𝑣): predict observations.

Algorithm 8: Filter spurious outliers using thresholding
Input : 𝑋: Input data matrix [𝑁 × 𝑝]

ℱ𝜏− : Vector of features’ lower bounds (for those which are known)
ℱ𝜏+ : Vector of features’ upper bounds (for those which are known)
Θ𝜔: Feature statistics in the context of a recent sliding window 𝜔
IQR𝜏 : Threshold used for the interquartile range method

Output: 𝑋𝐹 : Filtered 𝑋
1 begin
2 𝑋𝐹 ← Filter features values in 𝑋 using lower limits in ℱ𝜏− for those which are known
3 𝑋𝐹 ← Filter features values in 𝑋 using upper limits in ℱ𝜏+ for those which are known
4 𝑋𝐹 ← Filter (for the rest of) features values using lower and upper limits given by

IQR(𝑋𝐹 , Θ𝜔, IQR𝜏)
5 return 𝑋𝐹

6 end

Figure 5.14: Filter spurious outliers using thresholding.
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5 The Adarules algorithm: towards a non-parametric approach

Algorithm 9: Change detection
Input : 𝑥: Vector of standardized data

𝜃: vector of statistics for 𝑥 and Page-Hinkley hyperparameters
Output: 𝜗: Whether if a change has been detected in 𝑥 or not

1 begin
2 𝑇 ← length(𝑥)
3 foreach time 𝑡 in 𝑇 do
4 ̄𝑥𝑡 ← mean( ̄𝑥𝑡, 𝑥𝑡)
5 𝑚𝑡

𝑈 ← 𝑚𝑡
𝑈 + (𝑥𝑡 − ̄𝑥𝑡 − 𝛾)

6 𝑚𝑡
𝐿 ← 𝑚𝑡

𝐿 + (𝑥𝑡 − ̄𝑥𝑡 + 𝛾)
7 𝑀 𝑡

𝑈 ← min(𝑀 𝑡
𝑈 , 𝑚𝑡

𝑈)
8 𝑀 𝑡

𝐿 ← max(𝑀 𝑡
𝐿, 𝑚𝑡

𝐿)
9 𝜗+ ← (𝑚𝑡

𝑈 − 𝑀 𝑡
𝑈) > 𝜆

10 𝜗− ← (𝑀 𝑡
𝐿 − 𝑚𝑡

𝐿) > 𝜆
11 if 𝜗+ ∨ 𝜗− then
12 break
13 end
14 end
15 return 𝜗
16 end

Figure 5.15: Change detection.

5.2.9 Classify Traffic states

Figure 5.16.

Algorithm 10: Classify Traffic states
Input : 𝑋: Input data matrix [𝑁 × 𝑝]
Output: 𝒯𝒮: Classification of traffic states for each observation in the context of every

node 𝑣
1 begin
2 foreach local node 𝑣 in 𝑉 do
3 𝒯𝒮(𝑣) ← the most probable local traffic state using the calibrated components in the

trafficstates-model(𝑣) with data 𝑋(𝑣)
4 end
5 return 𝒯𝒮
6 end

Figure 5.16: Classify Traffic states.

5.2.10 Filling in of missing data using the basic approach based on graph patterns

Figure 5.17.
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5.2 Pseudocode

Algorithm 11: Filling in of missing data using the basic approach based on graph patterns
Input : 𝑋: Input data matrix [𝑁 × 𝑝]

Θ: Global statistics for every feature in 𝑋
Θ𝑅: Statistics in the context of every rule 𝑅 for every feature in 𝑋

Output: 𝑋Clean: 𝑋 data with filled missing data
1 begin
2 Fill in every missing data feature in 𝑋 with their corresponding expected values from Θ𝑅
3 return 𝑋Clean
4 end

Figure 5.17: Filling in of missing data using the basic approach based on graph patterns.

5.2.11 Generating graph features

Figure 5.18. Graph feature is an abstract variable that is built using the network flows and the

definition of the network graph, and using the scoring function described in Section 5.1.1.2. They

are used in the context of the pattern mining processes to characterize such patterns.

Algorithm 12: Generating graph features
Input : 𝑋: Input data matrix [𝑁 × 𝑝]
Output: 𝑋∗: Graph-features data matrix [𝑁 × 𝑞] 𝑞 is the number of graph connections

1 begin
2 foreach local node 𝑣 in 𝑉 do
3 Get upstream nodes 𝑣𝑢 of 𝑣
4 foreach time step ∆𝑡 in 𝑇 do e.g. from 𝑡 = 0 until 𝑡 = 60 in ∆𝑡 steps
5 𝑋∗(𝑣, 𝑣𝑢, 𝑡) ← 𝑣(𝑡) − 𝑣𝑢(𝑡)
6 end
7 end
8 return 𝑋∗

9 end

Figure 5.18: Generating graph features.

5.2.12 Measure outlierness based on graph features

Figure 5.19.

5.2.13 Incident detection using the probabilistic traffic states approach

Figure 8.5 and Figure 8.6.
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Algorithm 13: Measure outlierness based on graph features
Input : 𝑋∗: Graph-features data matrix [𝑁 × 𝑞] 𝑞 is the number of graph connections

Θ∗
𝑅: Graph feature statistics in rule 𝑅

Output: 𝒪(𝑣): Outlierness degree in every node 𝑣 of the graph
1 begin
2 foreach local node 𝑣 in 𝑉 do
3 Get upstream nodes 𝑣𝑢 of 𝑣
4 𝒪𝑣(𝑣) ← Calculate 𝑍-score(𝑣) using data in 𝑋∗(𝑣, 𝑣𝑢) according to statistics in Θ∗

𝑅
within graph pattern 𝑅

5 end
6 return 𝒪(𝑣)
7 end

Figure 5.19: Measure outlierness based on graph features.

Algorithm 14: Incident detection using the probabilistic traffic states approach
Input : 𝒯𝒮: Traffic states for every node 𝑣

𝑅𝐼𝐷: Name or identifier for the corresponding graph patterns / rules
Output: 𝐼𝐷(𝑣): Severity of incidents in every spot of the network graph

1 begin
// The first stage consists of assigning a raw score based on the

identification of anomalous congestion spots (congestions which are
non-recurrent in terms of probability) through the network graph

2 foreach local node 𝑣 in 𝑉 do
3 𝑣𝑢 ← upstreams(𝑣)
4 𝑣𝑑 ← downstreams(𝑣)
5 𝑣𝐿 ← lags(𝑣)

// Find suspicious observations 𝑛 ∈ 𝑁 where 𝑣 spot is congested and
any of its neighbour spots 𝑣𝑥 are not

6 𝒮𝑖𝑑𝑥 ← 𝒯𝒮(𝑣) is congested
∧ ∃ 𝑣𝑥 ∶ (𝒯𝒮(𝑣𝑢1

) ∨ … ∨ 𝒯𝒮(𝑣𝑢𝑛
) ∨ 𝒯𝒮(𝑣𝑑1

) ∨ … ∨ 𝒯𝒮(𝑣𝑑𝑛
) is not congested)

7 foreach observation 𝑛 in 𝒮𝑖𝑑𝑥 do
8 Get the set of non-congested neighbour spots 𝑣𝑁𝐶 ⊆ {𝑣𝑢, 𝑣𝑑} of 𝑣
9 𝑣𝐿

𝑁𝐶 ← lags(𝑣𝑁𝐶)
// Which is the joint probability for the current traffic state and

its lags in 𝑣, 𝑣𝐿 given the evidence 𝐸?
// Evidence 𝐸 is composed of those traffic states from

non-congested neighbours 𝑣𝑁𝐶, 𝑣𝐿
𝑁𝐶 and the current graph pattern

(rule) 𝑅
10 𝐸 ← ( 𝒯𝒮(𝑣𝑁𝐶) ∪ 𝒯𝒮(𝑣𝐿

𝑁𝐶) ) ∪ 𝑅𝐼𝐷
// Joint probability distribution 𝐽𝑣 of 𝑣 ∩ 𝑣𝐿 given the evidence in

𝐸
11 𝒥𝑣 ← P(𝒯𝒮(𝑣) ∩ 𝒯𝒮(𝑣𝐿) | 𝐸)

// Calculate outlierness raw score 𝑂𝑟𝑎𝑤𝑣,𝑛 using the joint
probability distribution 𝒥𝑣

12 𝑂̂𝑟𝑎𝑤𝑣,𝑛 ← (max 𝒥𝑣)−(𝒥𝑣(𝒯𝒮(𝑣)= ̃𝑣 ∩ 𝒯𝒮(𝑣𝐿)= ̃𝑣𝐿))
max 𝒥𝑣

13 end
14 end

Figure 5.20: Incident detection using the probabilistic traffic states approach. Part I.
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5.2 Pseudocode

(15)

// The second stage consists of assigning a final score for those enough
raw anomalous spots

(16) 𝑂̂𝜏𝑟𝑎𝑤 ← 0.50
(17) foreach observation 𝑛 in 𝒮𝑖𝑑𝑥(𝑣) do
(18) For those enough anomalous spots 𝑂̂𝑟𝑎𝑤 > 𝑂̂𝜏𝑟𝑎𝑤

// The final score is composed of three different contributions:
(𝑂̂1 ∈ [0, 1]) a relative severity of the existing congestion (50%),
(𝑂̂2 ∈ [0, 1]) the temporal recurrence of the existing non-recurrent
congestion (25%), and (𝑂̂3 ∈ [0, 1]) the spatial propagation of the
incident through the network graph (25%)

(19) 𝑂̂1 ← 𝒯𝒮(𝑣) − 𝐻(𝒯𝒮(𝑣𝑁𝐶))
// Here 𝐻(𝑥) is the harmonic mean of vector 𝑥

(20) 𝑡𝑚𝑎𝑥 ← 30 minutes
(21) 𝑂̂2 ← min(𝑂̂2 + ∆𝑡/𝑡𝑚𝑎𝑥, 1)
(22) Find recursively congested neighbours of 𝑣 in order to assess the spatial propagation

of the incident
(23) 𝑂̂3 ← number of nodes linked to 𝑣 in a congested state through the graph up to a

given maximum
(24) 𝐼𝐷(𝑣) ← 0.50 ⋅ 𝑂̂1 + 0.25 ⋅ 𝑂̂2 + 0.25 ⋅ 𝑂̂3
(25) end
(26) return 𝐼𝐷(𝑣)
(27) end

Figure 5.21: Incident detection using the probabilistic traffic states approach. Part II.
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6 Validation of Adarules under different change

scenarios

The aim of this chapter is to evaluate the performance of the Adarules algorithm described in the

previous Chapter 5 in terms of forecasting accuracy, model complexity and interpretability.

To this end, the validation has been performed using the two datasets described in previous sections.

More specifically, the evaluation is performed on both networks: the M4/M7 motorways network

from Sydney (Australia) and the urban network from the city of Santander (Spain). The M4/M7

network consists of 455 double-loop detectors spread uniformly at every 500 metres measuring

traffic flow, occupancy and speed; while the Santander network is measured by a total of 489 single-

loop detectors that observe the traffic flows and occupancies. All of these detectors have been

used as input information for Adarules in order to capture the traffic dynamics and to build the

forecasts. However, the evaluation of the forecasting error has only been performed on a selection

of both sets of detectors in order to better manage —in terms of computational efficiency and

time availability— the large set of experiments and their evaluation. Therefore, a selection of 20

detectors has been chosen for each network. In Figure 6.1 for M4/M7 network, and Figure 6.2

for the Santander network, the whole set of detectors located through the network —in blue— as

well as those selected to validate the results —in red— are shown. This selection is given in more

detail in the Table 6.1 which contains, for each network, all these detectors’ identifiers and their

description. The selection of detectors has been done manually by checking in detail both networks,

and their geometry with the aim of giving a fair and unbiased representation of each network. The

reasons for such selection —instead of evaluating the results on the whole set of detectors— are:

1. Choosing detectors spread through the network and with different surrounding geometry

settings. This leads to obtaining a representative picture of the network by focusing on those

key places through the road network, instead of having certain network areas over-represented

simply because there are a larger number of detectors placed in such areas.

2. Hastening the whole evaluation process without sacrificing the validity of the results.
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6 Validation of Adarules under different change scenarios

For both networks, a time period of two years has been used for the experiments, splitting such

data in training data to build the models while leaving the rest only to validate the forecasting

generalization. This data splitting procedure depends on the experiment and the baseline model,

and thus it will be described later. The time period for the M4/M7 dataset spans from January,

2015 – December, 2016, and the time period for the Santander dataset spans from January, 2016

– December, 2017. Different flow profiles for the selected validation detectors can be observed in

Figure 6.3 for the M4/M7 network and in Figure 6.4 for the Santander network using the two-year

datasets, which gives certain insight about the daily traffic dynamics by showing different flow

profiles with the associated variability and a strong skewness depending on the hour of the day.

Loop detector Input Input and validation

Figure 6.1: Network layout for the M4/M7 motorways in Sydney with the position of all the detec-
tors used as input information for Adarules —as blue points—, as well as those which
are used to evaluate the forecasting accuracy —as red points—.
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Loop detector Input Input and validation

Figure 6.2: Network layout for the Santander urban network with the position of all the detectors
used as input information for Adarules —as blue points—, as well as those which are
used to evaluate the forecasting accuracy —as red points—.
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Table 6.1: Selection of detectors for the evaluation in the different experiments for Adarules validation.

Identifier Latitude Longitude Road type Details

Santander urban network

1001 43.45361 -3.829633 2-lane arterial [70 km/h] Entering the city before a roundabout

1021 43.45116 -3.829085 1-lane on-ramp [80 km/h] Exiting the city after a roundabout

1022 43.45111 -3.829028 2-lane arterial [50 km/h] Exiting the city

1023 43.45099 -3.829055 2-lane arterial [50 km/h] Entering the city

1027 43.45367 -3.829654 2-lane arterial [60 km/h] Exiting from the city after roundabout

1031 43.45534 -3.813856 3-lane road [50 km/h] Between an intersection and a traffic light

1035 43.45659 -3.831832 3-lane road [40 km/h] Exiting the city between traffic light and roundabout, including bus lane

1036 43.45629 -3.833374 2-lane road [50 km/h] Entering the city between traffic light and roundabout

1037 43.45636 -3.833322 2-lane road [50 km/h] Exiting from the city between roundabout and traffic light

1908 43.45650 -3.831721 3-lane road [50 km/h] Entering the city between two roundabouts with traffic light

2014 43.46208 -3.811698 2-lane road [50 km/h] Between two pedestrian crossings, in the city centre

2034 43.46400 -3.796720 2-lane road [50 km/h] Between two traffic lights, in the city centre

2057 43.46238 -3.809530 2-lane road [40 km/h] Between a traffic light and an intersection

2910 43.46234 -3.798376 3-lane road [50 km/h] Between two traffic lights, including bus lane

3027 43.47023 -3.804956 2-lane road [50 km/h] After a roundabout

3035 43.47303 -3.788181 2-lane road [50 km/h] Before a traffic light

3078 43.46123 -3.835693 2-lane road [50 km/h] Exiting from the city between a roundabout and a pedestrian crossing

3085 43.47643 -3.796507 2-lane road [50 km/h] Exiting before pedestrian crossing and roundabout
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Table 6.1: Selection of detectors for the evaluation in the different experiments for Adarules validation. (continued)

Identifier Latitude Longitude Road type Details

3088 43.47010 -3.805456 2-lane road [50 km/h] Before a join and a roundabout

3924 43.46255 -3.823636 2-lane road [50 km/h] Between two traffic lights

M4/M7 motorways network

MS004029B -33.81531 150.960449 3-lane motorway Heading East at the end of M4

MS004029X -33.81512 150.960290 1-lane off-ramp Heading East, exiting the M4 before MS004029B

MS004048E -33.79967 150.862664 1-lane on-ramp Heading East, joining M4 after exit from M7 in Light Horse Interchange

MS004050A -33.79788 150.853041 3-lane motorway Heading West in M4 in the middle of Light Horse Interchange

MS004050B -33.79761 150.853036 3-lane motorway Heading East in M4 in the middle of Light Horse Interchange

MS004052E -33.79552 150.844381 1-lane on-ramp Heading West, joining M4 after exit from M7 in Light Horse Interchange

MS004076A -33.78550 150.722001 3-lane motorway Heading West in M4

MS004078B -33.78600 150.711301 3-lane motorway Heading East at the start of M4

MS004079E -33.78547 150.705801 1-lane on-ramp Heading East, joining M4 and before MS004078B

MS009023A -33.87778 150.842866 2-lane motorway Heading South at the end of M7

MS009023B -33.87760 150.842691 2-lane motorway Heading South at the start of M7

MS009023E -33.87857 150.842546 1-lane on-ramp Joining M7 after MS009023A

MS009023X -33.87832 150.841876 1-lane off-ramp Exiting M7 before MS009023B

MS009040A -33.80595 150.852810 2-lane motorway Heading South in M7 after Light Horse Interchange entrance

MS009041E -33.80240 150.853716 1-lane on-ramp Heading South in M7 coming from Light Horse Interchange

MS009043A -33.79203 150.855874 2-lane motorway Heading South in M7 through Light Horse Interchange
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Table 6.1: Selection of detectors for the evaluation in the different experiments for Adarules validation. (continued)

Identifier Latitude Longitude Road type Details

MS009044E -33.79183 150.855468 1-lane on-ramp Heading North in M7 coming from Light Horse Interchange

MS009045A -33.78659 150.857515 2-lane motorway Heading South in M7 heading to Light Horse Interchange

MS009046A -33.78086 150.858310 2-lane motorway Heading South in M7 heading to Light Horse Interchange

MS009046B -33.78088 150.858043 2-lane motorway Heading North in M7 coming from Light Horse Interchange

MS009055A -33.74490 150.846849 2-lane motorway Heading South in M7 after the entrance MS009057E
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The first set of experiments aim to determine which learning configuration —either single-task or

multi-task learning— performs better in Adarules concerning both the pattern mining process to

create rules and the learning process to build the forecasting models. To this end, the comparison

is assessed in terms of forecasting accuracy (𝑅2, GEH, RMSE and normalized RMSE) and model

complexity measured as the number of rules identified. The evaluation is performed in both network

datasets, for every available traffic measurement (traffic flow, occupancy, and speed) and for two

forecasting horizons —15 and 60 minutes ahead—. Two learning strategies are evaluated and

compared:

• Single-task versus multi-task rule mining: This comparison aims to measure the ex-

ploitation of the existing spatial information in the problem. The idea is to measure the

effect, in accuracy and complexity, of letting Adarules to unveil the patterns in the network

graph using only limited information —i.e. only the flow distributions from the adjacent nodes

from each of the twenty nodes being evaluated in a single-task approach—, or using the com-

plete network graph information —i.e. all the nodes in the network graph with their directed

connections in a multi-task approach—. The difference lies in the network scope used to iden-

tify new graph patterns —rules— as well as determine when these become outdated. The

underlying network traffic state information is equally available to both approaches, i.e. fore-

casting models can use the information from all the detectors in the network in order to

perform the forecasts.

• Single-task versus multi-task forecasting models: This comparison aims to measure

the exploitation of the existing temporal information in the problem. In this case, the idea is

to measure the effect over the accuracy of the forecasting models —the sparse model for spa-

tiotemporal correlations— of using a single-task or multi-task learning approach. The multi-

task here refers to jointly learning these spatiotemporal correlations for multiple forecasting

steps ahead —e.g. 15, 30, 45 and 60 minutes ahead— instead of learning them separately

for each one of them. Same as before, the underlying network traffic state information is

equally available to both approaches, i.e. forecasting models can use the information from all

the detectors in the network in order to perform the forecasts.

Second, the strategy combination of single-task and multi-task learning —in both pattern mining

and forecasting models— which achieves a better ratio of accuracy and low complexity is used to

afterwards perform a battery of tests with different change scenarios. Namely, this battery of tests

comprehends:

1. A scenario with no artificial changes induced, i.e. real data from the two subsequent years is

used. Thus, only the real change —either in the demand or the supply— is present for this
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6 Validation of Adarules under different change scenarios
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Figure 6.3: Traffic flow for the detectors used in validation for the M4/M7 network, showing the
temporal dynamics summarized over the two-years period. Boxplot reflects the in-
terquartile range (25th and 75th percentiles) with the median (50th percentile) as the
horizontal line. Outlying lines show the range.
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Figure 6.4: Traffic flow for the detectors used in validation for the Santander network, showing
the temporal dynamics summarized over the two-years period. Boxplot reflects the
interquartile range (25th and 75th percentiles) with the median (50th percentile) as the
horizontal line. Outlying lines show the range.
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6 Validation of Adarules under different change scenarios

experiment in the datasets.

2. A scenario with explicit no-drift during the second year. This means that the first year on each

dataset is the real one, but the subsequent year data is fake by using a specific month of the

second year —e.g. May— and replicating it for twelve times. The goal of this experiment is

to test the performance in an absolutely no-change scenario, i.e. how the forecasting accuracy

and the model complexity evolves over time.

3. A first year with the real data, and then starting from the second year and every two months

(January, March, May, July, September, November) a fake change is introduced over all the

network by selecting 200 detectors at random where the traffic variables —flow, occupancy,

and speed— from 100 of these detectors are incremented by a 4% while the other 100 detectors

experience a 4% decrease in the traffic variable. This is maintained until, two months later,

another round of smooth changes takes place while accumulating the one from the previous

swapping. The goal is to determine the Adarules ability to react and adapt to these gradual

changes.

4. A first year with the real data, and then starting from the second year and every two months

a fake change is introduced over all the network by swapping the AM and PM periods. This

means that every two months (January, March, May, July, September, November) the traffic

is swapped and, thus, traffic during the night takes place during the day and vice versa. This

is maintained for two months until the next swap takes place. The goal is to determine the

Adarules ability to react and adapt to these abrupt changes.

5. A first year with the real data, and then starting from the second year and every two months

a fake change is introduced over all the network by swapping 100 detectors identifiers selected

at random. This means that every two months (January, March, May, July, September,

November) the traffic from these detectors is swapped with others in the network. This is

maintained until, two months later, another swapping takes place while accumulating the one

from the previous swapping. The goal is to determine the Adarules ability to react and adapt

to these extreme abrupt changes.

6.1 Evaluation metrics

All these experiments are evaluated in both network datasets, for every available traffic measure-

ment (traffic flow, occupancy, and speed) and for two forecasting horizons —15 and 60 minutes

ahead—.

Experimental results, including those from the first and the second stage of the experiments setup,
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6.1 Evaluation metrics

are evaluated using different criteria.

• Forecasting accuracy

Forecasting accuracy or its inverse the forecasting error is the main driving motivation for this

thesis focused on real-time short-term traffic prediction. The metric used for this criteria is based

on the root mean squared error (RMSE) and its normalized version (nRMSE) using the range of

the forecasting variable.

The RMSE is a common performance indicator in the machine learning domain and it is defined

by:

RMSE =
√

MSE = √ 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

The normalized RMSE takes the RMSE and divides it by the range of the variable:

nRMSE = RMSE
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

The nRMSE is an easy-to-understand performance indicator that relates the forecasting error with

a normalized value in [0, 1] or [0, 100]%, where the lower value is the better. It makes also possible

and easier to compare the performance between different datasets and models. We prefer using

RMSE as it penalizes large differences more than absolute metrics such as the Mean Absolute

Error (MAE). This is important to give more importance to large forecasting errors in situations

of high-traffic instead of, for instance, forecasting error in a situation of low traffic —e.g. during

the night—. This effect is also taken into account when doing the normalization using the range

instead of other alternatives such as the mean or the variance. Moreover, RMSE is also consistent

with the typical squared loss function used to train the forecasting models [107].

Other common forecasting accuracy metrics, especially in the transportation domain, are the GEH-

statistic [86] and the well-known coefficient of determination 𝑅2 [29]. Nevertheless, they are strongly

correlated with the RMSE used in this thesis since they all make use of the squared error. The

difference lies in how they normalize the resulting forecasting error, and we have preferred the

normalization by the range of the variable for the reasons given in the previous paragraph.

The forecasting accuracy is visually analyzed using a specific type of plot. This type of plot shows

—for a given traffic variable, network dataset, and forecasting horizon— the temporal evolution

—in monthly bins— of a given key performance indicator (KPI) such as the nRMSE. For each

monthly bin, a distribution is shown —violin plot— containing the 𝑁 = 20 KPIs for each of
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6 Validation of Adarules under different change scenarios

the selected network points for validation which have been aggregated over the whole monthly

period. In addition, a black horizontal line is depicted representing the median —50% of the

sample— of every group —a given learning approach, baseline, …—. These plots are placed in

Appendix II: Detailed results for the validation of Adarules under different change scenarios for

the interested reader, with the aim of reducing an excessive length of the current chapter. Instead,

within the current chapter, the information regarding the median per group and monthly period

is summarized in a table per experiment containing all the network datasets, traffic variables and

forecasting horizons.

• Model complexity

As Adarules is a non-parametric approach that evolves and thus can increase or decrease its size

over time, it is important to measure the current complexity of the system. To this end, the number

of rules and its evolution over time is measured and used as a performance indicator so it can be

compared between different Adarules runs.

• Intepretability

Despite the fact that efforts have been put during the development of this thesis to drive the choices

towards methods and models with higher transparency to user end-user, however, it is still difficult

to objectively measure the human interpretability of a machine-learning model.

For this reason, the best way to assess this criterion is simply by getting feedback from the expert

user by showing the modelling results —i.e. the identified rules in the graph and the spatiotem-

poral correlations in the forecasting models— to the traffic engineers at Aimsun to ask them how

interpretable and consistent they seem to them.

6.2 Baselines

Two baseline approaches have been considered in order to compare them to Adarules whose code-

names are HA and ANA:

1. HA: An historical average or seasonal naïve forecast ̄𝑦(𝐷𝑜𝑊, 𝑡) for each considered traffic

measurement (traffic flow, occupancy and speed) as a function of the day of the week or

holidays (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, Holiday) and

the time of the day (hour and minute).
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6.3 Missing data

2. ANA: The current existing methodology in Aimsun Live to build the data-driven short-term

forecasting models. It consists on estimating the most predictive spatial correlations for

every time of the day (HH:MM), every detector node 𝑣, every forecasting variable, and every

forecasting horizon ̂𝑡ℎ, but independently of the day of the week.

These two baselines have been implemented using a block-evolution updating schema [98], i.e. mod-

els perform periodic blind updates with a sliding window:

• Yearly: using the first year of the dataset to learn and validating over the second year.

• Quarterly: using three months to learn and validating on the following three months, then

using these last three to learn and repeat four times —during the second year—.

• Monthly: using one month to learn and validating on the following month, then using that

last month to learn and repeat twelve times —during the second year—.

6.3 Missing data

Given how usual the traffic data measurement devices are faulty, it is important to notice the

proportion of missing data for each network dataset and traffic variable as shown in Figure 6.5.

Therefore, it can be assessed the correlation between this proportion of missing data and its impact

on the forecasting accuracy.

6.4 Adarules: pattern mining using a single-task or a multi-task

approach

The first set of experiments aim to compare the ability to completely exploit the network spatial

information —multi-task mining (MTM)— or not —single-task mining (STM)—- during the rule

mining procedure. More specifically, the idea is to measure the effect, in accuracy and complexity,

of letting Adarules to unveil the patterns in the network graph using only limited information —

i.e. using only the flow distributions from the adjacent nodes from each of the twenty nodes being

evaluated in a single-task approach (STM)—, or using the complete network graph information

—i.e. all the nodes in the network graph with their directed connections in a multi-task approach

(MTM)—. The difference lies in the network scope used to identify new graph patterns —rules—

as well as determine when these become outdated. On the other hand, the underlying network

traffic state information is equally available to both approaches, i.e. forecasting models can use the

information from all the detectors in the network in order to perform the forecasts.

121



6 Validation of Adarules under different change scenarios
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Figure 6.5: Proportion of the missing data for each network dataset and traffic variable as a function
of the date.
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6.4 Adarules: pattern mining using a single-task or a multi-task approach

In both cases —STM and MTM—, they have available the same set of contextual qualitative

variables —day of the week, holidays, the hour of the day, etc.— to perform the splitting evaluations.

As described in the previous paragraph, the difference lies in the network spatial used to evaluate

such splitting evaluations. At a first glance, it may seem that limiting the spatial scope for the

pattern mining process in STM could yield limited observability of the network thus perhaps not

being able to observe some traffic dynamics effects through the network. On the other hand, such

STM may be able to faster capture and in a more accurate way such patterns as it is observing

only —and thus, giving more weight— the traffic surrounding the site where a given detector is

placed.

The evaluation is performed in both network datasets, M4/M7 and Santander, for every available

traffic measurement (traffic flow, occupancy, and speed) and for two forecasting horizons —15 and

60 minutes ahead—.

The first criterion used to assess both approaches —STM and MTM— relies on the complexity of

the resulting model. This complexity is measured by the total number of rules found during the

learning using the two years dataset for each network. The goal is both to evaluate how fast the

number of rules increases depending on the mining approach, and which is the total number of

rules. Both rule mining approaches start with one rule —default rule— during the first 15 days

until enough data has been gathered before mining for rules. In Figure 6.6, it can be seen: the

total number of rules for the MTM approach in red, and (a) the total number of rules over all the

𝑁 = 20 rulesets for the STM approach in the dashed blue line —in a scale (⋅ 10−1)—, as well as (b)

the average number of rules per ruleset in the blue solid line together with the range of minimum

and maximum number of rules among the 𝑁 = 20 rulesets denoted by the blue ribbon.

In the figure, it can be seen that both approaches unveil rules at a similar pace starting from the

15th day in both networks. In the case of the M4/M7 network, the MTM approach decreases its

rule mining pace after observing a couple of weeks, starting to raise the pace again until the 2015/04

where the rule mining slows down by increasing the rules on a logarithmic scale until number of

rules is stabilized in 25 rules over the last four months —2016/07 to 2016/12—. In the case of

Santander network, the MTM approach increases the number of rules linearly as a function of the

time until a stabilization point is reached after observing the first three months. At this point, the

number of rules increases slowly until reaching 36 rules at the end of the second year —2017/12—.

This matches the intuitive rationale of having more number of rules describing a more complex

network —Santander urban network— as the existing traffic dynamics are richer compared to a

motorway network. Moreover, it is also interesting to observe the small slowdown in the M4/M7

MTM rule mining at the beginning given that it must be challenging to find graph pattern until
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6 Validation of Adarules under different change scenarios

more data is observed given the lack of observability beyond entrance/exits and boundaries of the

motorway. On the other hand, the STM approach has a similar trend at the beginning but then

becomes much more unstable having abrupt changes in the number of rules —i.e. the number of

rules either increases or decreases— probably due to spurious observed effects which are regularized

in the case of MTM. Moreover, the total number of rules represented by the dashed line in a scale of

(⋅ 10−1) shows that counting all the existing rules becomes difficult to be interpreted —even though

many of them will probably overlap or be redundant as they are simultaneously found at different

spots of the network— with some time periods reaching a total of 600 over all the 𝑁 = 20 rulesets

in both networks.

In this case, the assessment in terms of forecasting accuracy relies on the use of the normalized

RMSE (nRMSE) as it is an easy-to-understand performance indicator that relates the forecasting

error with a normalized value in [0, 1] or [0, 100]%, where a lower value is better.

One figure per forecasting traffic variable is included: Figure 9.1 for the flow, Figure 9.2 for the

occupancy and Figure 9.3 for the speed. Each of these figures has subfigures for the two network

datasets and for each forecasting horizon, resulting in four subfigures with the exception of speed

which has only two because there is no measured speed data in the Santander dataset.

In these figures, it can be seen the evolution of the forecasting error —aggregated in monthly bins—

during the two years for each network dataset. In Figure 9.1, the nRMSE is shown for the traffic

flow forecasting. In the case of the M4/M7 network, it is noticeable a similar learning pace at the

beginning of the two years. However, this pace changes after the fourth month (2015/05) and the

MTM approach achieves a much lower nRMSE median value than its STM counterpart. It is also

noticeable how not only the median value but also the shape of the distribution of the different

nRMSE values across all the validation detectors is significantly different too, as the STM approach

always get a much wider distribution showing that some of the detector forecasts are performing

significantly worse compared to the MTM approach. In the case of the Santander network, the

difference is not so evident but, still, it can be appreciated that the MTM approach achieves a

lower nRMSE median value as well as having a shorter tail in the nRMSE distribution in almost

all the months especially more visible during the second year. The situation is similar for both

forecasting horizons —15 and 60 minutes— for both network datasets. For the cases of occupancy

and speed forecasting, the differences are not that significant but still the tendency is always the

same as the MTM approach achieves a lower forecasting error both in terms of the median value

as well as the extreme values in the tail of the distributions. This information is also numerically

depicted in Table 6.2 where the nRMSE values for the last twelve months are shown for all the

network datasets, variables, and forecasting horizons.
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6.4 Adarules: pattern mining using a single-task or a multi-task approach
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Figure 6.6: Comparison of the resulting model complexity for both pattern mining approches using
Adarules: single-task and multi-task. Number of identified rules as a function of the
time —every iteration corresponds to one day—. In the case of STM, the solid line
reflects the average and its ribbon reflects the minimum and maximum number of rules
among the 𝑁 = 20 rulesets, whereas the dashed line reflects the total sum of rules
(⋅ 10−1) across the 𝑁 = 20 rulesets.
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6 Validation of Adarules under different change scenarios

The difference in the gain of forecasting accuracy between both networks may be probably due to

the fact that learning more realistic patterns in a motorway network is harder when only a very

reduced scope of it is observed. Additionally, the limited observability in the STM approach when

finding rules may also lead to recognizing spurious effects as true patterns, and henceforth the

unstable number of rules over time and the associated drops in the forecasting accuracy.

Lastly, it is also very interesting not only that the MTM is achieving a better forecasting perfor-

mance in all networks, variables and forecasting horizons compared to the STM approach, but also

that it is doing it much more efficiently because the number of identified rules is considerably lower

over all the two-years period in both network datasets as previously commented. For this reason,

the multi-task mining (MTM) approach has been chosen for the following experiments.

Finally, some important clarifications about the results related to the number of rules shown in

Figure 6.6. Among every single execution of Adarules, there cannot be rules’ duplicities because the

underlying Adarules’ decision tree is exhaustive —i.e. every single observation is covered just by one

and only one rule—. This happens to be for the MTM execution and every of the STM executions

for each detector. However, among the different STM executions —one per detector included in

the evaluation— there could be duplicated rules since they are executed independently —e.g. a

rule Monday-Fridays at 7 a.m. could be found for two different detector sites in independents

STM executions—. Nevertheless, by looking at Figure 6.6 it can been observed that the average

number rules for STM executions —blue solid line— is similar to the single number obtained for

the MTM execution —red solid line—. This fact would validate the hypothesis that every single

STM execution is finding the same set of rules that the obtained in the MTM execution. However,

by looking at the blue ribbon in Figure 6.6, it can be seen how the range —the minimum and

the maximum size of a given ruleset among the different STM executions— has a wide amplitude

denoting that some STM executions found a number of rules equivalent to three times the average,

while others STM executions were not able to find any valid rule probably because of a lack of data

or enough variability on it. This last fact does not occur in the MTM execution since the rules

are found at network-level and, hence, there is an implicit knowledge transfer to those network

points where there is not enough data. In addition, it can also be observed certain abrupt drops

in the upper bound of such blue ribbon, indicating that the maximum number of rules found by

Adarules in any given STM execution has decreased due to a hard global change detected thus

restructuring the ruleset decision tree entirely. This fact reflects how the simple observation of just

the local traffic makes the pattern mining process more sensitive to variations in such local traffic

since it lacks from a regularization effect provided by observing the traffic dynamics over the entire

network.
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CONCLUSION: In summary, the MTM approach brings the following benefits over the STM

approach:

1. Knowledge transfer to network sites where data is not enough to perform pattern mining.

2. Smaller models, hence:

a. Easier interpretation for a traffic engineer.

b. More computational efficient procedures (see Figure 6.3.

3. Regularization effect to make the patterns less sensitive to noise or spurious patterns.

4. Better forecasting accuracy as measured by a lower —in most cases— or same forecasting

error at worst.

Table 6.2: Comparison of the forecasting performance measured by nRMSE for both rule mining
approaches. The KPIs are aggregated over the results during the last year in each of the
datasets.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M4/M7 | flow | t = 15 | nRMSE

STM 1.94 2.24 2.07 1.94 1.78 1.78 1.74 1.74 1.77 1.60 1.71 2.29

MTM 1.49 1.69 1.62 1.62 1.41 1.46 1.48 1.45 1.49 1.38 1.47 1.71

M4/M7 | flow | t = 60 | nRMSE

STM 6.13 6.04 5.92 5.56 5.07 4.82 4.41 4.63 4.85 4.32 4.52 7.05

MTM 4.84 4.44 4.35 4.31 3.91 3.84 3.62 3.80 3.92 3.63 4.02 5.29

M4/M7 | occupancy | t = 15 | nRMSE

STM 2.04 2.44 2.81 2.36 2.55 2.49 2.39 2.61 2.77 2.10 2.77 2.81

MTM 1.90 2.20 2.40 2.26 2.33 2.20 2.28 2.44 2.62 1.88 2.63 2.42

M4/M7 | occupancy | t = 60 | nRMSE

STM 2.54 3.46 3.65 3.63 3.24 3.44 3.33 3.40 3.67 2.72 3.30 3.49

MTM 2.27 3.21 3.03 3.57 2.95 3.18 2.95 3.06 3.45 2.34 3.19 3.38

M4/M7 | speed | t = 15 | nRMSE

STM 6.13 6.76 6.64 5.89 5.95 6.12 6.09 6.23 6.26 5.63 6.63 6.42

MTM 5.62 6.05 6.23 5.51 5.83 5.88 5.63 5.67 5.94 5.39 5.83 5.78

M4/M7 | speed | t = 60 | nRMSE

STM 6.58 8.32 8.07 6.97 6.90 7.23 6.72 6.81 7.11 6.48 7.13 7.85

MTM 6.41 7.56 7.99 6.59 6.76 6.95 6.63 6.20 6.49 5.97 6.94 6.53
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Table 6.2: Comparison of the forecasting performance measured by nRMSE for both rule mining
approaches. The KPIs are aggregated over the results during the last year in each of the
datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Santander | flow | t = 15 | nRMSE

STM 1.98 1.71 1.60 1.95 1.68 1.82 2.19 1.97 1.84 2.00 1.89 1.99

MTM 1.71 1.37 1.56 1.72 1.69 1.73 1.86 1.94 1.52 1.85 1.76 1.75

Santander | flow | t = 60 | nRMSE

STM 5.71 3.84 4.10 4.70 4.53 4.68 5.57 4.96 4.60 5.52 5.05 6.10

MTM 4.42 3.45 4.14 4.61 4.55 4.68 5.30 5.30 3.98 4.45 4.14 4.83

Santander | occupancy | t = 15 | nRMSE

STM 3.12 2.70 2.90 2.91 2.78 2.85 3.67 3.32 3.01 3.74 3.98 4.53

MTM 2.80 2.56 2.73 2.89 2.64 2.85 3.47 2.95 3.06 3.79 3.71 4.50

Santander | occupancy | t = 60 | nRMSE

STM 3.77 3.20 3.65 3.29 3.45 3.68 4.42 4.34 4.16 4.02 4.26 5.04

MTM 3.40 3.04 3.12 3.48 3.13 3.39 3.99 3.95 4.00 4.17 4.23 5.52

6.4.1 A note on computational efficiency

In this section, some facts about the computational aspects comparing the different methods will

be given. The hardware used to run all the experiments has been the same desktop computer,

whose specifications are:

• Processor: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz, 4 Core(s), 8 Logical Processor(s).

• Installed Physical Memory (RAM): 64.0 GB.

• SSD (where the software is installed and run): Toshiba KXG50ZNV512G XG5 NVMe PCIe

M.2 512GB.

• HDD (where data and models are stored and read/write): Seagate Desktop HDD

ST2000DM001 - hard drive - 2 TB - SATA 6Gb/s.

We have tried to measure the computational times as fair as possible, taking into account that the

methods differ completely in the way they are built —i.e. static batch processes or incremental

processes— as well as the kind of information they provide —there is no pattern mining, anomaly

detection or fill in of missing values in the case of the ANA method—. For such reason, all methods

have been executed using mini-batches of 1 month of data. Therefore, ANA models are iteratively
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6.4 Adarules: pattern mining using a single-task or a multi-task approach

trained using one month, then predicting the next one, and repeating this 24 times since there are

two years of data for each network dataset. On the other hand, Adarules executions have been run

using mini-batches of 1 month of data too, which means Adarules system is updated —i.e. finding

new patterns, updating patterns and statistics, detecting changes and anomalies, updating the

forecasting models, etc.— with a new data stream 24 times too —once every month of data until

having observed all the two years—. Every time Adarules receives a chunk of one month of data,

it first generates the prediction for such month before updating the system with the new data.

In both cases, it has been used the entire network —315 detectors in M4/M7 network, and 254

detectors in Santander network— both as input and as an output of the network predictions. It has

been evaluated only one forecasting variable —flow— and one forecasting horizon —15 minutes—

.

Average computational performance for the different methods —Adarules single-task mining,

Adarules multi-task mining, and ANA forecasting models used in Aimsun Live— using the

two-years dataset from both networks —M4/M7 and Santander— are shown in Figure 6.3. First,

it is interesting to check how the multi-task mining approach used in Adarules makes it to be much

more efficient than its single-task mining counterpart —almost 100 times faster if considering

running the STM approach in the entire network—. It can be also observed that the Adarules

MTM proposal is much more computational efficient than current solution used in Aimsun Live

(ANA) —almost 9 times faster depending on the network—. Another interesting fact is observing

how the average time taken by Adarules MTM is higher in the Santander network compared to

the M4/M7 network, in spite of M4/M7 network has some more detectors —i.e. more forecasting

models to be built—. This may be probably because of the more complex traffic dynamics in the

urban network of Santander —i.e. more pattern rules— as well as the potentially higher number

of changes and drift that may lead to higher change detection and models’ readjustment.

It is also worth to note some more facts about computational performance:

• Prediction time for Adarules, including rule pattern matching and forecasts calculation, is

remarkably small making it very appropriate for real-time usage. The time taken to match

the graph pattern —rule— in Adarules MTM and then calculating the forecasts for the entire

network is less than a second.

• Digest time —i.e. to observe a new traffic data stream to perform all the system’s updatings:

pattern mining, anomaly detection, change detection, forecasting models’ update, etc.— for a

1-month chunk of data using the entire network is approximately 10 minutes for both network

datasets.
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Table 6.3: Average computational performance for the different methods —Adarules single-task
mining, Adarules multi-task mining, and ANA forecasting models used in Aimsun Live—
using the two-years dataset from both networks —M4/M7 and Santander—.

Method Time [h] Peak RAM use [GB] CPU threads
M4/M7 motorways network

Adarules STM 1.75 h ⋅ 315 IDs 2.1 8
Adarules MTM 5.5 2.5 8

ANA 48 2.5 8
Santander urban network

Adarules STM 2 h ⋅ 254 IDs 2.1 8
Adarules MTM 6 2.5 8

ANA 45.5 2.4 8

• Pattern mining using a 1-month data for the entire network —i.e. evaluating all the candidate

splits and choosing the best in order to create a new rule— takes less than 3 minutes in both

networks.

• A big emphasis has been put on the ability of Adarules to be able to handle large amounts of

data, and thus the implementation is able to work with chunks of data —or data streams—

instead of having all the data in memory. Therefore, internal parameters related to the chunk

size is configurable according to the available computer resources.

• The big computational advantage of Adarules, when running in real-time, is its ability to

perform incremental updates and only asking for the exact amount of historical data that is

required and when it is required.

6.5 Adarules: forecasting model learning using a single-task or a

multi-task approach

Therefore, from now on we forget about single-task mining (STM) and continue experiments with

multi-task mining (MTM) approach as it achieved better forecasting accuracy and generalization

error, while also resulting in lower model complexity as described in the previous set of experiments.

The objective for this second set of experiments is to assess the ability of jointly learning multiple

related tasks —the set of forecasting horizons 15, 30, 45, 60 minutes for a given traffic variable— at

the forecasting models level by using a multi-task learning (MTL) approach or just independently

learning every forecasting horizon in a single-task learning (STL) approach. This relates to how

the spatiotemporal correlations are selected in the case of forecasting a specific traffic variable in

a given network location, because in the MTL when a feature is selected it is shared across all

the tasks —-the forecasting horizons— despite that their relevance may vary across them —i.e. far
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away network locations will have a small relevance for the shortest forecasting horizon compared

to longer forecasting horizons—. Conversely, in the STL approach, there is no such constraint and,

therefore, spatiotemporal correlations for every forecasting horizon may vary freely and completely.

The main driving motivation for applying this MTL approach is that the process of rule mining itself

is considering not only spatial but also temporal dynamics when identifying the graph patterns, and

thus it is reasonable to assume that spatiotemporal correlations will be shared across the timing

span —e.g. 60 minutes— in the context of a given rule —if no anomalies or incidents are taking

place— as these rules are learned to consider the traffic dynamics for the whole time span. The

second motivation arises from the fact that we consider preferable to bias the feature selection

towards those locations which are relevant in multiple subsequent time steps as this forces to select

those strongest correlations relevant in all the multiple time steps. Once again, a clarification: the

underlying network traffic state information is equally available to both approaches, i.e. forecasting

models can use the information from all the detectors in the network in order to perform the

forecasts.

The evaluation is performed in both network datasets, M4/M7 and Santander, for every available

traffic measurement (traffic flow, occupancy, and speed) and for two forecasting horizons —15 and

60 minutes ahead—.

The assessment in terms of forecasting accuracy is performed using the normalized RMSE (nRMSE).

There is one figure per forecasting traffic variable: Figure 9.4 for the flow, Figure 9.5 for the

occupancy and Figure 9.6 for the speed. Each of these figures has subfigures for the two network

datasets and for each forecasting horizon, resulting in four subfigures with the exception of speed

which has only two because there is no measured speed data in the Santander dataset. These

results can be also corroborated in the Table 6.4.

In this case, the differences between the MTL and STL approaches are more subtle among the

different traffic variables. Still, when using the MTM approach it can be appreciated a small im-

provement in the forecasting horizon of 60 minutes which is more noticeable in the traffic flow

variable especially during the second year in each network dataset, with respect to the STM ap-

proach. For this reason, the MTL approach for the forecasting models has been chosen in order to

perform the rest of the experiments.

CONCLUSION: MTL performs slightly worse than STL at shorter forecasting horizons —15

minutes—, but performs better in longer forecasting horizons —60 minutes—. Furthermore, the

advantage improves as time passes.
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Table 6.4: Comparison of the forecasting performance measured by nRMSE for both forecasting
learning approaches. The KPIs are aggregated over the results during the last year in
each of the datasets.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M4/M7 | flow | t = 15 | nRMSE

STL 1.49 1.69 1.62 1.62 1.41 1.46 1.48 1.45 1.49 1.38 1.47 1.71

MTL 1.60 1.81 1.67 1.71 1.49 1.52 1.54 1.44 1.58 1.42 1.53 1.77

M4/M7 | flow | t = 60 | nRMSE

STL 4.84 4.44 4.35 4.31 3.91 3.84 3.62 3.80 3.92 3.63 4.02 5.29

MTL 4.62 4.20 4.22 4.09 3.65 3.70 3.55 3.53 3.69 3.30 3.67 4.92

M4/M7 | occupancy | t = 15 | nRMSE

STL 1.90 2.20 2.40 2.26 2.33 2.20 2.28 2.44 2.62 1.88 2.63 2.42

MTL 1.87 2.20 2.37 2.36 2.38 2.22 2.34 2.50 2.65 1.84 2.69 2.51

M4/M7 | occupancy | t = 60 | nRMSE

STL 2.27 3.21 3.03 3.57 2.95 3.18 2.95 3.06 3.45 2.34 3.19 3.38

MTL 2.25 3.18 3.03 3.51 2.96 3.46 2.88 2.98 3.42 2.44 3.22 3.30

M4/M7 | speed | t = 15 | nRMSE

STL 5.62 6.05 6.23 5.51 5.83 5.88 5.63 5.67 5.94 5.39 5.83 5.78

MTL 5.59 6.19 6.25 5.53 5.79 5.80 5.74 5.55 5.85 5.32 5.72 5.76

M4/M7 | speed | t = 60 | nRMSE

STL 6.41 7.56 7.99 6.59 6.76 6.95 6.63 6.20 6.49 5.97 6.94 6.53

MTL 6.28 7.42 7.68 6.56 6.63 6.84 6.53 6.14 6.39 5.92 6.92 6.52

Santander | flow | t = 15 | nRMSE

STL 1.73 1.40 1.61 1.75 1.73 1.73 1.88 1.96 1.51 1.84 2.07 1.86

MTL 1.77 1.44 1.72 1.86 1.78 1.83 1.96 1.99 1.46 1.71 1.74 1.76

Santander | flow | t = 60 | nRMSE

STL 4.38 3.33 3.97 4.49 4.36 4.51 5.09 5.33 3.97 4.42 5.83 5.33

MTL 4.24 3.31 3.90 4.22 4.69 4.53 4.89 5.33 3.50 4.25 4.00 4.59

Santander | occupancy | t = 15 | nRMSE

STL 2.80 2.58 2.73 2.87 2.64 2.85 3.46 2.92 3.11 3.84 3.81 4.00

MTL 2.89 2.54 2.78 2.85 2.54 2.90 3.42 3.20 2.76 3.87 3.80 4.45

Santander | occupancy | t = 60 | nRMSE
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Table 6.4: Comparison of the forecasting performance measured by nRMSE for both forecasting
learning approaches. The KPIs are aggregated over the results during the last year in
each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

STL 3.73 3.11 3.12 3.48 3.15 3.38 3.95 3.98 4.01 4.16 4.46 4.98

MTL 3.47 2.86 3.11 3.43 3.10 3.37 3.94 3.95 3.76 4.21 4.18 5.32

6.6 Adarules vs baselines: Real data scenario

From this experiment onwards the objective is to evaluate the Adarules performance —configured

using multi-task mining for rule mining and multi-task learning for forecasting models— against

the set of baselines —the current methodology ANA and a seasonal naïve forecast HA— described

in Section 6.2 in a set of different change scenarios.

This section describes the first scenario and it consists simply on using the real data from both

network datasets in order to evaluate and compare the forecasting performance from Adarules, ANA

and HA approaches in the three traffic variables and two forecasting horizons. The goal, then, is to

compare the Adarules performance using the already existing changes and non-stationarities within

the networks during the two years against the set of baselines.

Given that all the subsequent experiments related to change scenario have been designed so that

synthetic changes are introduced during the second year of each network dataset, the results of

the experiments are shown, both graphically and in tables, only for the months during the second

year. This does not imply that the first year of each dataset is not used. In fact, that first year is

used to learn —as corresponds to every approach— the real situation before facing new unexpected

situations.

Firstly, the resulting number of rules for Adarules in both networks (Figure 6.7) is identical to

the one using multi-task-mining in the subsection dedicated to evaluating the MTM and STM

approaches for rule mining —i.e. 25 rules in the case of the M4/M7 network, and 36 rules in the

case of Santander network—. This makes sense as the underlying data used in both experiments

is identical, Adarules has been configured in MTM rule mining and the process is deterministic.

Table 6.5 shows the antecedents for the resulting list of rules after the learning process is finished

at the end of the two years in both datasets —25 rules in the case of M4/M7 and 37 rules in the

case of Santander network—. There is an interesting situation regarding two specific rules found

for the Santander network. These correspond to the pair of rules whose set of antecedents include
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Figure 6.7: Evolution of the Adarules complexity in the real-data scenario. Number of identified
rules as a function of the time —every iteration corresponds to one day—.
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the definition of a Datetime antecedent: Datetime ≤ 2016-05-18, and Datetime > 2016-05-18. This

may seem strange, but as was described in Section 5.1.2, this situation corresponds to a special

case of global change detection where a broadcast message would be sent from that node to the

whole decision tree in Adarules in order to revert the whole structure back to the root node and

creating two child nodes that will split up the data based on the selected timestamp 2016-05-18,

thus ignoring older data than such timestamp. However, we have decided to include the list of all

the rules without proceeding with such reestructuring in order to show all the identified rules until

that moment.

From the observation of the lists of rules and their antecedents in Table 6.5, one may think that a

generic distance-based clustering such as the well-known k-means performed over the data would

have been enough to achieve the same result. Nevertheless, it is important to remark that such

clustering would have had to also consider the same set of qualitative variables as described in

Section 5.1.1, and moreover, it would have to be flexible to be able to consider new prior information

in the form of new candidates for the pattern mining process —e.g. weather, events calendar, or

even quantitative measurements from traffic sensors— the same way Adarules is. Furthermore,

even though the list of rules presented in Table 6.5 corresponds to a specific moment —at the

end of the two years in both dataset—, the key point of the pattern mining process in Adarules

is its online evolving nature. This implies that patterns (rules) are found dynamically as more

data is observed, and additionally they are monitored to cope with and adapt to global changes.

This contrasts with a classic clustering approach that is usually done offline with no incremental

learning. Finally, the online nature of the pattern mining in Adarules makes it especially efficient

for a real-time application.

Table 6.5: List of rules identified by Adarules in each network dataset just at the end of the two
years. Size corresponds to the number of observations gathered under the scope of a
specific rule.

Antecedent(s) Size

M4/M7 motorways network

Hour = [1 - 2] 5856

Hour = [0] 2928

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [3] 908

Weekday = [Monday - Friday] ∧ Hour = [3] 2020

Weekday = [Sunday, Holiday] ∧ Hour = [4 - 5] 1000

Weekday = [Saturday] ∧ Hour = [4 - 5] 816
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Table 6.5: List of rules identified by Adarules in each network dataset just at the end of the two
years. Size corresponds to the number of observations gathered under the scope of a
specific rule. (continued)

Antecedent(s) Size

Weekday = [Monday - Friday] ∧ Hour = [4] 2020

Weekday = [Monday - Friday] ∧ Hour = [5] 2020

Hour = [22, 23] 5855

Hour = [20 - 21] 5856

Hour = [19] 2928

Weekday = [Sunday] ∧ Hour = [18] 404

Weekday = [Monday - Saturday] ∧ Hour = [18] 2524

Weekday = [Sunday, Holiday] ∧ Hour = [6] 500

Weekday = [Sunday, Holiday] ∧ Hour = [7] 500

Weekday = [Sunday, Holiday] ∧ Hour = [8 - 9] 1000

Weekday = [Sunday, Holiday] ∧ Hour = [10 - 17] 4000

Weekday = [Saturday] ∧ Hour = [6 - 8] 1224

Weekday = [Saturday] ∧ Hour = [9 - 17] 3672

Weekday = [Monday - Friday] ∧ Hour = [9 - 13] 10100

Weekday = [Monday - Friday] ∧ Hour = [14 - 15] 4040

Weekday = [Monday - Friday] ∧ Hour = [17] 2020

Weekday = [Monday - Friday] ∧ Hour = [6] 2020

Weekday = [Monday - Friday] ∧ Hour = [8] 2020

Weekday = [Monday - Friday] ∧ Hour = [7, 16] 4040

Santander urban network

Weekday = [Monday - Friday] ∧ Hour = [2 - 3] 3944

Weekday = [Monday - Friday] ∧ Hour = [1, 4] 3944

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [3 - 4] 1912

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [1 - 2] 1912

Hour = [5] 2928

Weekday = [Saturday, Sunday] ∧ Hour = [6] 840

Weekday = [Monday - Friday] ∧ Hour = [6] 2088

Weekday = [Monday - Friday] ∧ Hour = [0] 1972

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [0] 956

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [7] 956
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Table 6.5: List of rules identified by Adarules in each network dataset just at the end of the two
years. Size corresponds to the number of observations gathered under the scope of a
specific rule. (continued)

Antecedent(s) Size

Weekday = [Friday] ∧ Hour = [7] 392

Weekday = [Monday - Thursday] ∧ Hour = [7] 1580

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [23] 955

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [22] 956

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [21] 956

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [8] 956

Weekday = [Sunday, Holiday] ∧ Hour = [9 - 10] 1072

Weekday = [Saturday] ∧ Hour = [9 - 10] 840

Weekday = [Saturday, Sunday, Holiday] ∧ Hour = [15 - 16] 1912

Weekday = [Saturday] ∧ Hour = [14, 17] 840

Weekday = [Saturday] ∧ Hour = [11 - 13, 18 - 20] 2520

Weekday = [Sunday, Holiday] ∧ Hour = [14, 17] 1072

Weekday = [Sunday, Holiday] ∧ Hour = [11 - 13, 18 - 20] 3216

Weekday = [Monday - Friday] ∧ Hour = [23] 1972

Weekday = [Monday - Friday] ∧ Hour = [22] 1972

Weekday = [Monday - Friday] ∧ Hour = [21] 1972

Weekday = [Monday - Friday] ∧ Hour = [9 - 11] 5916

Weekday = [Monday - Friday] ∧ Hour = [15 - 16] 3944

Weekday = [Monday - Friday] ∧ Hour = [17 - 19] ∧ Season = [Spring] 1524

Weekday = [Monday - Friday] ∧ Hour = [17 - 19] ∧ Month = [August] 504

Weekday = [Monday - Friday] ∧ Hour = [17 - 19] ∧ Season ≠ [Spring] ∧
Month ≠ [August] ∧ Datetime ≤ 2016-05-18

600

Weekday = [Monday - Friday] ∧ Hour = [17 - 19] ∧ Season ≠ [Spring] ∧
Month ≠ [August] ∧ Datetime > 2016-05-18

3288

Weekday = [Monday - Friday] ∧ Hour = [8] ∧ Month = [July - August] 320

Weekday = [Monday - Friday] ∧ Hour = [8] ∧ Month ≠ [July - August] 1652

Weekday = [Monday - Friday] ∧ Hour = [20] 1972

Weekday = [Monday - Friday] ∧ Hour = [14] 1972

Weekday = [Monday - Friday] ∧ Hour = [12 - 13] 3944

The assessment in terms of forecasting accuracy is performed using the normalized RMSE (nRMSE).
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There is one figure per forecasting traffic variable: Figure 9.7 for the flow, Figure 9.8 for the

occupancy and Figure 9.9 for the speed. Each of these figures has subfigures for the two network

datasets and for each forecasting horizon, resulting in four subfigures with the exception of speed

which has only two because there is no measured speed data in the Santander dataset. These

results can be also corroborated in the Table 6.6.

It can be observed the clear superiority of Adarules compared to the rest of baselines in any of

their configurations —yearly, quarterly or monthly blind updates—. This is especially noticeable

in the very short-term traffic forecasting —15 minutes— in both the median values of the nRMSE

indicator through all the months as well as the tails of the distributions showing those worst

nRMSE indicators in every month. The better performance of Adarules is reproducible in all the

three traffic variables compared to the baselines. Between both networks, it can be seen how the

performance in the M4/M7 network is slightly better to that of the Santander urban network which

is logical due to the higher probability of non-recurrent and unexpected events within a city. Other

interesting facts are observing the performance instabilities achieved by ANA baseline according

to the period of its training, and also how the performance of the HA baseline is greatly influenced

by the seasonality. In the comparison for the longer forecasting horizon —60 minutes— is less

evident to observe great differences, but still, it is visible how Adarules performance shows more

performance stability along the year than the baselines.

Among the different features of Adarules described in Chapter 5 that makes it obtain better fore-

casting results, one important difference with respect to the ANA baseline already being used in

Aimsun Live is how data is used in order to build the forecasting models. In ANA, the data fragmen-

tation was extremely harsh since every forecasting model was built using only data corresponding

to the same time of the day (HH:MM) and hence, for a year-dataset only 365 observations were

available to build the model. Conversely, Adarules rely on the online pattern mining process in

order to accommodate the data —in rules— and therefore being able to build forecasting models

with more data by taking into account the traffic dynamics more realistically.

CONCLUSION: Using the real data from both networks —M4/M7 and Santander—, Adarules

achieves better forecasting accuracy than its baseline competitors —ANA and HA— in both net-

works, all the forecasting variables, and forecasting horizons. Rules interpretation have been checked

to be in line with expected knowledge from an expert traffic engineer.
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6.6 Adarules vs baselines: Real data scenario

Table 6.6: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the real data scenario. The KPIs are aggregated over the results during the
last year in each of the datasets.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M4/M7 | flow | t = 15 | nRMSE

Adarules 1.60 1.78 1.67 1.67 1.48 1.50 1.54 1.44 1.56 1.40 1.53 1.76

ANA-y 2.99 3.04 3.17 3.05 2.99 3.09 3.07 2.89 3.01 3.05 2.97 3.54

ANA-q 4.30 4.02 4.20 4.76 4.82 5.13 4.39 3.98 4.36 4.42 3.92 5.47

ANA-m 5.43 7.25 6.94 6.21 6.23 7.01 6.26 5.60 5.54 6.54 6.11 7.70

HA-y 6.59 4.04 5.03 4.18 3.92 4.13 4.00 4.39 5.30 5.06 5.85 9.43

HA-q 7.64 3.89 5.03 4.22 3.99 4.36 3.50 3.22 4.14 3.24 3.64 8.99

HA-m 6.59 3.98 4.81 3.92 3.34 3.86 3.45 3.34 4.10 3.62 3.99 8.87

M4/M7 | flow | t = 60 | nRMSE

Adarules 4.58 4.16 4.18 3.97 3.65 3.69 3.54 3.53 3.68 3.31 3.67 4.92

ANA-y 6.26 5.71 6.18 6.09 5.76 6.15 6.19 5.89 6.30 6.36 6.10 7.37

ANA-q 7.77 6.50 7.20 7.12 7.04 7.34 7.00 6.54 7.08 7.62 6.66 8.56

ANA-m 8.14 8.33 8.51 7.67 7.19 8.23 7.46 6.91 7.62 8.33 7.20 9.98

HA-y 6.68 4.10 5.11 4.25 3.98 4.19 4.06 4.47 5.38 5.14 5.93 9.57

HA-q 7.76 3.94 5.12 4.28 4.04 4.42 3.55 3.27 4.21 3.29 3.68 9.12

HA-m 6.68 4.05 4.89 3.99 3.38 3.92 3.50 3.39 4.16 3.68 4.05 9.01

M4/M7 | occupancy | t = 15 | nRMSE

Adarules 1.87 2.21 2.42 2.37 2.37 2.23 2.38 2.53 2.61 1.85 2.75 2.52

ANA-y 2.22 2.65 2.82 2.79 2.79 2.77 2.79 2.91 3.20 2.69 3.40 3.37

ANA-q 2.61 2.89 2.89 3.24 3.08 2.90 3.04 2.96 3.29 2.77 4.21 3.58

ANA-m 2.56 3.57 3.43 3.95 3.51 3.33 3.20 3.41 3.96 3.41 3.76 4.32

HA-y 2.58 2.93 2.91 3.29 2.77 3.05 2.97 3.12 3.68 2.46 3.48 3.86

HA-q 3.03 3.08 3.01 3.42 3.02 3.24 3.11 3.18 3.60 2.47 3.35 4.07

HA-m 2.58 2.93 2.89 3.23 2.74 3.04 2.96 3.09 3.54 2.38 3.30 3.87

M4/M7 | occupancy | t = 60 | nRMSE

Adarules 2.25 3.21 3.07 3.25 3.01 3.46 2.94 3.01 3.45 2.48 3.24 3.33

ANA-y 2.72 3.30 3.43 3.48 3.29 3.45 3.28 3.38 3.91 3.19 3.86 3.78

ANA-q 2.94 3.36 3.86 3.79 3.55 3.70 3.60 3.49 3.96 3.16 6.08 4.20

ANA-m 2.68 3.69 3.92 3.92 3.69 3.90 3.53 3.46 4.34 3.49 5.67 4.94
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6 Validation of Adarules under different change scenarios

Table 6.6: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the real data scenario. The KPIs are aggregated over the results during the
last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

HA-y 2.62 2.97 2.95 3.34 2.81 3.08 3.05 3.17 3.72 2.50 3.53 3.83

HA-q 3.07 3.12 3.06 3.47 3.06 3.28 3.17 3.23 3.64 2.51 3.40 4.08

HA-m 2.62 2.97 2.93 3.27 2.77 3.07 3.03 3.13 3.58 2.42 3.34 3.87

M4/M7 | speed | t = 15 | nRMSE

Adarules 5.59 6.17 6.25 5.53 5.79 5.78 5.74 5.55 5.85 5.29 5.72 5.76

ANA-y 5.74 6.34 6.80 5.98 6.17 6.16 6.17 6.03 6.28 5.66 6.53 6.30

ANA-q 6.20 6.77 7.75 6.87 6.62 6.57 6.70 6.87 6.56 6.05 7.16 6.77

ANA-m 6.65 8.23 9.08 7.19 7.06 7.24 7.27 7.35 7.26 6.56 8.79 8.05

HA-y 6.79 7.29 8.28 6.68 6.81 7.09 7.05 7.38 6.64 6.58 8.21 7.51

HA-q 7.08 7.49 8.37 7.17 7.14 7.40 6.88 7.38 6.76 6.54 8.29 7.52

HA-m 6.79 7.26 8.25 6.65 6.60 6.97 6.80 7.34 6.48 6.20 8.01 7.40

M4/M7 | speed | t = 60 | nRMSE

Adarules 6.29 7.42 7.70 6.57 6.64 6.85 6.54 6.15 6.39 5.90 6.92 6.52

ANA-y 6.40 7.49 7.99 6.80 6.81 7.04 7.13 6.67 7.01 6.60 7.79 6.88

ANA-q 6.52 7.76 8.19 7.25 7.28 7.45 7.16 7.36 7.09 7.03 8.44 7.38

ANA-m 6.87 8.80 9.29 7.72 7.66 7.64 7.52 7.66 7.53 7.50 8.96 8.56

HA-y 6.74 7.29 8.12 6.61 6.80 7.07 7.03 7.23 6.61 6.48 7.97 7.20

HA-q 6.97 7.53 8.28 7.12 7.07 7.39 6.84 7.22 6.67 6.44 8.02 7.37

HA-m 6.74 7.27 8.06 6.57 6.62 6.95 6.77 7.12 6.41 6.12 7.76 7.10

Santander | flow | t = 15 | nRMSE

Adarules 1.62 1.44 1.71 1.84 1.78 1.81 1.95 1.95 1.46 1.69 1.71 1.75

ANA-y 1.83 1.70 1.87 2.11 1.81 2.23 2.18 2.21 2.42 3.09 2.50 2.45

ANA-q 2.43 2.22 2.55 2.56 2.63 2.64 2.72 2.52 2.99 2.68 3.99 5.40

ANA-m 4.17 4.09 4.91 3.82 3.22 3.63 4.29 3.22 7.07 3.59 5.38 4.38

HA-y 5.53 3.50 3.51 4.40 3.42 4.02 5.98 6.17 3.92 5.10 4.70 5.48

HA-q 5.25 3.48 3.16 4.76 3.68 5.14 5.90 6.47 3.87 5.43 6.53 6.42

HA-m 5.53 3.44 3.64 4.35 3.32 3.83 5.88 5.94 3.77 4.23 4.31 5.09

Santander | flow | t = 60 | nRMSE

Adarules 3.81 3.31 3.91 4.24 4.72 4.53 4.86 5.31 3.50 3.99 4.02 4.57
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6.7 Adarules vs baselines: Zero drift scenario

Table 6.6: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the real data scenario. The KPIs are aggregated over the results during the
last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ANA-y 4.61 4.12 4.60 5.36 4.59 5.21 5.58 5.33 5.29 5.54 5.39 6.30

ANA-q 5.16 4.75 4.95 5.56 5.37 5.56 6.15 5.00 6.18 5.55 7.04 7.23

ANA-m 6.49 5.41 5.67 6.70 5.39 6.09 6.64 4.95 10.31 6.32 6.49 6.40

HA-y 5.45 3.53 3.51 4.47 3.45 4.07 5.97 6.23 3.94 4.25 4.76 5.58

HA-q 5.24 3.52 3.20 4.82 3.73 5.14 5.88 6.40 3.91 4.54 6.41 6.46

HA-m 5.45 3.47 3.64 4.42 3.35 3.87 5.87 6.00 3.78 3.85 4.35 5.12

Santander | occupancy | t = 15 | nRMSE

Adarules 2.89 2.54 2.78 2.85 2.55 2.91 3.42 3.21 2.74 3.88 3.80 4.46

ANA-y 3.28 2.82 3.04 3.25 2.92 3.26 3.72 3.92 4.00 4.46 4.27 5.40

ANA-q 3.64 3.14 3.28 3.14 3.08 3.41 4.27 4.03 3.88 3.93 4.07 5.68

ANA-m 4.12 3.46 3.63 3.75 3.22 3.63 4.56 3.86 7.86 4.13 4.25 5.11

HA-y 3.68 3.05 3.06 3.44 3.13 3.49 4.13 4.52 3.76 4.02 5.02 6.66

HA-q 3.82 3.01 3.20 3.46 3.32 3.70 4.30 4.45 3.67 4.16 4.48 6.22

HA-m 3.68 3.06 3.07 3.45 3.09 3.34 4.03 4.23 3.69 3.52 3.78 6.18

Santander | occupancy | t = 60 | nRMSE

Adarules 3.47 2.87 3.12 3.44 3.10 3.36 3.93 3.96 3.77 4.27 4.18 5.33

ANA-y 3.70 3.06 3.20 3.53 3.33 3.51 4.17 4.31 4.20 4.95 5.00 6.30

ANA-q 4.04 3.27 3.44 3.54 3.41 3.76 4.60 4.33 4.23 4.11 4.88 6.44

ANA-m 4.61 3.92 3.80 3.96 3.36 3.82 5.08 4.49 7.43 3.92 4.42 5.92

HA-y 3.72 3.10 3.11 3.49 3.15 3.54 4.18 4.57 3.80 3.48 5.10 6.77

HA-q 3.88 3.05 3.23 3.51 3.37 3.76 4.35 4.50 3.71 3.51 4.55 6.31

HA-m 3.72 3.10 3.12 3.49 3.07 3.39 4.08 4.31 3.73 3.28 3.84 6.27

6.7 Adarules vs baselines: Zero drift scenario

This section describes the second scenario, which consists of replacing the second year in each

network dataset using the month of May from the second year repeated twelve times. The objective

is to evaluate and compare the forecasting performance from Adarules, ANA and HA approaches in

the three traffic variables and two forecasting horizons when there is absolute certainty that there

is no kind of change along the second year of the evaluation. This implies that the first year is used
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6 Validation of Adarules under different change scenarios

to be learned as is —with the original real data— by Adarules, and the rest of baselines according

to their updating schedule. Therefore, the results of the experiments are shown, both graphically

and in tables, only for the months during the second year.

Firstly, the evolution of the number of rules for Adarules in both networks (Figure 6.8) is identical

during the first year to the previously observed within the experiment which used real-data (Figure

6.7). This was expected, as the data used during the first year of this second change scenario is also

real data, and it is only during the second year when artificial changes are introduced in the datasets.

Starting from the second year in each dataset, it is observed that the number of rules is growing

much slower compared to the experiment with the real data. Again, this is the expected behaviour

as all the data corresponding to the second year is just a copy of just one month. However, after

several months —i.e. several copies of the same month of May— Adarules starts to identify new

rules in both datasets. This may be due to the fact that, with enough sample size of data, even

small differences can be identified as significant. Besides, data from both years —the first one with

real data, and the second one with artificial copies— is suspected to differ to some extent. Even

though this may seem a bit confusing at a first glance, an example may clarify it: supposing there

exists a specific rule for the traffic between [2 - 4] p.m., and by just looking the traffic during the

first year the pattern mining process is not able to differentiate the traffic at 2 p.m. from the traffic

at 4 p.m. because of the existing variability. However, if the same data —the month of May— is

received once and again, it may come to a point where such differences are accentuated and, thus,

that rule may become more specialized for the traffic at 2, 3, and 4 p.m., respectively, because

of more data sample size makes statistical tests more confidently reject hypothesis based on the

statistical significance. This scenario seems to correspond to what is observed in Figure 6.8, as the

evolution of the number of rules in both networks is virtually stable during the first months in the

second year, and it is not until the middle of the year —after six copies of the same data has been

observed— when the number of rules starts to raise again lineally. This hardly can be classified

as overfitting because, as said, the rules’ increase does not occur until six copies of May have been

observed; instead, it is a sample of the good adaptation and confident specialization of Adarules in

the face of a new scenario.

The assessment in terms of forecasting accuracy is performed using the normalized RMSE (nRMSE).

There is one figure per forecasting traffic variable: Figure 9.10 for the flow, Figure 9.11 for the

occupancy and Figure 9.12 for the speed. Each of these figures has subfigures for the two network

datasets and for each forecasting horizon, resulting in four subfigures with the exception of speed

which has only two because there is no measured speed data in the Santander dataset. These

results can be also corroborated in the Table 6.7.
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6.7 Adarules vs baselines: Zero drift scenario
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Figure 6.8: Evolution of the Adarules complexity in the zero drift scenario. Number of identified
rules as a function of the time —every iteration corresponds to one day—.
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6 Validation of Adarules under different change scenarios

The first observable fact is that, overall, the forecasting performance is better compared to the

previous experiment with real data. It is clear that this was the expected behaviour especially after

observing more and more data with the same distribution. Overall, it can be seen that Adarules

shows a good balance between what has been learned —memory— and the new situation where

new data is always the same but probably not that different from what was seen in the past. Still,

Adarules outperforms the rest of baselines especially in the very short-term —15 minutes—. Those

ANA and HA baselines that use exclusively data from the second year to learn —some quarterly

and monthly periods— can compete in performance with Adarules during the first months in the

60-minutes traffic forecast. The only exception is in the case of speed forecasting where the ANA

baseline using a sliding window of 3 months to learn —quarterly— obtain a lower error when it

starts to use exclusively 3 months from the new fake data and, conversely, the ANA version using

only one month is not able to reach such performance even that the data distribution is always

the same. Nevertheless, it can be appreciated how Adarules gradually improves its performance

because of the gradual specialization as more data is observed.

CONCLUSION: Using data modified to incur in a zero drift scenario during the second year —all

twelve months being a copy of May—, it is observed how Adarules performs an intelligent adaption

by gradually specializing the rules when the data sample sizes are large enough —i.e. around mid

of such second year— to confidently reject the statistical hypothesis, avoiding to overfit the data

with low sample sizes during the first months of the second year. The forecasting accuracy with

Adarules is far better than the baselines, being also interesting to observe the monthly gradual

improvement of the accuracy for Adarules.

Table 6.7: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the zero drift scenario. The KPIs are aggregated over the results during the
last year in each of the datasets.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M4/M7 | flow | t = 15 | nRMSE

Adarules 1.61 1.56 1.56 1.51 1.48 1.43 1.39 1.39 1.37 1.33 1.29 1.29

ANA-y 3.26 3.06 3.23 3.12 3.12 3.11 3.26 3.18 3.11 3.21 3.10 3.24

ANA-q 4.12 4.03 4.10 4.91 4.91 4.91 4.95 4.95 4.99 4.65 4.68 4.64

ANA-m 6.78 6.33 7.04 6.77 6.72 7.02 6.82 7.06 6.49 6.70 6.86 6.97

HA-y 3.95 3.86 3.95 3.98 3.95 3.98 3.95 3.95 3.98 3.95 3.98 3.95

HA-q 3.95 3.96 3.95 2.40 2.41 2.40 2.30 2.30 2.29 2.30 2.29 2.30

HA-m 3.95 3.41 3.21 3.05 2.87 2.77 2.56 2.50 2.45 2.41 2.38 2.36
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6.7 Adarules vs baselines: Zero drift scenario

Table 6.7: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the zero drift scenario. The KPIs are aggregated over the results during the
last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M4/M7 | flow | t = 60 | nRMSE

Adarules 3.86 3.78 3.72 3.57 3.44 3.38 3.25 3.21 3.18 3.08 3.03 2.99

ANA-y 5.96 5.89 5.93 5.96 5.89 5.96 5.96 5.91 5.96 5.92 5.95 5.97

ANA-q 7.01 7.10 7.01 6.54 6.48 6.54 6.33 6.33 6.40 6.34 6.40 6.33

ANA-m 8.42 7.95 7.71 7.67 7.57 7.83 7.54 7.76 7.92 7.50 7.53 7.73

HA-y 4.00 3.91 4.00 4.03 4.00 4.03 4.00 4.00 4.03 4.00 4.03 4.00

HA-q 3.99 4.00 3.99 2.43 2.44 2.43 2.33 2.33 2.31 2.33 2.31 2.33

HA-m 4.00 3.45 3.24 3.08 2.90 2.81 2.59 2.52 2.48 2.44 2.40 2.38

M4/M7 | occupancy | t = 15 | nRMSE

Adarules 2.51 2.42 2.42 2.38 2.34 2.29 2.13 2.08 2.08 2.00 1.90 1.92

ANA-y 2.85 2.85 2.85 2.88 2.83 2.86 2.85 2.84 2.88 2.84 2.86 2.86

ANA-q 3.25 3.03 3.25 1.77 1.79 1.80 1.79 1.79 1.82 1.74 1.70 1.74

ANA-m 3.63 2.93 3.40 3.22 3.26 3.31 3.27 3.26 3.12 3.29 3.25 3.24

HA-y 3.08 2.77 3.08 3.06 3.08 3.06 3.08 3.08 3.06 3.08 3.06 3.08

HA-q 3.45 3.08 3.45 2.59 2.62 2.59 2.61 2.61 2.59 2.61 2.59 2.61

HA-m 3.08 2.66 2.91 2.84 2.79 2.74 2.71 2.68 2.64 2.65 2.61 2.62

M4/M7 | occupancy | t = 60 | nRMSE

Adarules 3.29 2.88 3.20 3.09 2.96 2.92 2.77 2.75 2.60 2.51 2.46 2.52

ANA-y 3.68 3.37 3.67 3.72 3.64 3.72 3.68 3.67 3.72 3.66 3.72 3.68

ANA-q 3.94 3.55 3.94 2.09 2.09 2.09 1.97 2.01 2.01 1.77 1.78 1.77

ANA-m 4.16 3.21 3.54 3.54 3.57 3.62 3.45 3.47 3.55 3.57 3.70 3.64

HA-y 3.13 2.80 3.13 3.11 3.13 3.11 3.13 3.13 3.11 3.13 3.11 3.13

HA-q 3.50 3.12 3.50 2.63 2.65 2.63 2.65 2.65 2.62 2.65 2.62 2.65

HA-m 3.13 2.69 2.94 2.87 2.83 2.78 2.75 2.72 2.68 2.68 2.64 2.66

M4/M7 | speed | t = 15 | nRMSE

Adarules 6.13 5.92 6.00 5.57 5.46 5.10 4.83 4.72 4.40 4.37 4.04 3.92

ANA-y 6.31 6.23 6.31 6.32 6.30 6.32 6.30 6.30 6.32 6.30 6.32 6.30

ANA-q 6.81 6.39 6.82 2.98 3.08 2.99 3.22 3.23 3.03 3.21 3.02 3.21

ANA-m 7.59 6.29 6.62 6.42 6.63 6.42 6.63 6.58 6.34 6.66 6.38 6.67
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6 Validation of Adarules under different change scenarios

Table 6.7: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the zero drift scenario. The KPIs are aggregated over the results during the
last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

HA-y 6.92 6.75 6.92 6.86 6.92 6.86 6.92 6.92 6.86 6.92 6.86 6.92

HA-q 7.12 7.09 7.12 5.45 5.52 5.45 5.51 5.51 5.43 5.51 5.43 5.51

HA-m 6.92 6.49 6.48 6.23 6.14 5.98 5.94 5.85 5.72 5.63 5.50 5.52

M4/M7 | speed | t = 60 | nRMSE

Adarules 6.98 6.70 6.78 6.24 6.00 5.60 5.39 5.06 4.88 4.75 4.58 4.42

ANA-y 7.20 7.12 7.19 7.12 7.19 7.12 7.20 7.19 7.12 7.19 7.12 7.18

ANA-q 7.51 7.44 7.51 3.10 3.10 3.12 3.25 3.26 3.12 3.47 3.11 3.48

ANA-m 8.08 6.95 7.01 6.93 6.84 6.77 7.02 6.96 6.76 7.05 6.85 7.00

HA-y 6.86 6.69 6.86 6.80 6.86 6.80 6.86 6.86 6.80 6.86 6.80 6.86

HA-q 7.06 7.00 7.06 5.40 5.47 5.40 5.46 5.46 5.38 5.46 5.38 5.46

HA-m 6.86 6.43 6.43 6.17 6.09 5.91 5.88 5.79 5.65 5.60 5.47 5.47

Santander | flow | t = 15 | nRMSE

Adarules 1.88 2.01 1.95 1.90 1.79 1.85 1.84 1.58 1.47 1.35 1.33 1.30

ANA-y 2.31 2.38 2.35 2.36 2.29 2.36 2.35 2.32 2.37 2.31 2.36 2.37

ANA-q 2.97 3.07 3.01 2.02 2.01 2.02 2.05 2.05 2.06 2.09 2.11 2.09

ANA-m 4.37 3.14 3.30 3.04 3.08 3.10 3.16 3.02 3.20 3.09 3.17 3.23

HA-y 3.69 3.71 3.69 3.70 3.69 3.70 3.69 3.69 3.70 3.69 3.70 3.69

HA-q 3.92 3.97 3.92 2.07 2.08 2.07 2.06 2.06 2.06 2.06 2.06 2.06

HA-m 3.69 3.48 3.28 3.11 2.98 2.90 2.72 2.43 2.26 2.21 2.17 2.12

Santander | flow | t = 60 | nRMSE

Adarules 4.56 5.03 4.89 4.60 4.17 4.31 4.19 3.44 3.02 2.52 2.46 2.40

ANA-y 4.79 5.02 4.90 4.95 4.72 4.94 4.92 4.82 4.97 4.79 4.94 5.02

ANA-q 5.63 5.88 5.72 4.35 4.31 4.35 4.38 4.38 4.42 4.34 4.38 4.37

ANA-m 7.48 5.71 5.57 5.66 5.57 5.70 5.55 5.66 5.70 5.68 5.71 5.57

HA-y 3.75 3.76 3.75 3.76 3.75 3.76 3.75 3.75 3.76 3.75 3.76 3.75

HA-q 3.97 4.02 3.97 2.09 2.10 2.09 2.08 2.08 2.08 2.08 2.08 2.08

HA-m 3.75 3.53 3.32 3.15 2.99 2.91 2.73 2.45 2.28 2.23 2.19 2.14

Santander | occupancy | t = 15 | nRMSE

Adarules 3.08 2.90 2.90 2.80 2.67 2.66 2.43 2.55 2.46 2.06 1.97 1.87
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6.8 Adarules vs baselines: Gradual change scenario

Table 6.7: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the zero drift scenario. The KPIs are aggregated over the results during the
last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ANA-y 3.24 3.24 3.27 3.27 3.22 3.28 3.26 3.24 3.28 3.24 3.28 3.27

ANA-q 3.95 3.87 3.97 1.31 1.36 1.31 1.41 1.41 1.40 1.51 1.52 1.51

ANA-m 4.84 2.92 3.02 2.97 2.99 3.05 2.95 2.87 2.94 2.96 2.90 2.93

HA-y 3.47 3.50 3.47 3.51 3.47 3.51 3.47 3.47 3.51 3.47 3.51 3.47

HA-q 4.20 4.25 4.20 2.46 2.45 2.46 2.44 2.44 2.46 2.44 2.46 2.44

HA-m 3.47 3.31 3.16 3.07 2.95 2.89 2.82 2.76 2.72 2.54 2.51 2.46

Santander | occupancy | t = 60 | nRMSE

Adarules 3.66 3.53 3.35 3.22 3.01 3.04 2.78 2.85 2.66 2.19 2.10 2.02

ANA-y 3.62 3.67 3.64 3.66 3.61 3.67 3.63 3.63 3.67 3.62 3.67 3.64

ANA-q 4.48 4.45 4.50 1.42 1.45 1.43 1.38 1.38 1.33 1.40 1.39 1.41

ANA-m 5.21 3.22 3.31 3.23 3.23 3.24 3.20 3.22 3.15 3.27 3.18 3.26

HA-y 3.44 3.47 3.44 3.48 3.44 3.48 3.44 3.44 3.48 3.44 3.48 3.44

HA-q 4.18 4.25 4.18 2.41 2.40 2.41 2.39 2.39 2.41 2.39 2.41 2.39

HA-m 3.44 3.28 3.13 3.04 2.92 2.86 2.78 2.72 2.69 2.50 2.47 2.42

6.8 Adarules vs baselines: Gradual change scenario

This section describes the third scenario and it consists of introducing a large number of small

changes during the second year in each of the network datasets —M4/M7 and Santander—. More

specifically, first year corresponds to real data and then during the second and every two months

(January, March, May, July, September, November) a fake change is introduced over all the network

by selecting 200 detectors at random where the traffic variables —flow, occupancy, and speed—

from 100 of these detectors are incremented by a 4% while the other 100 detectors experience a

4% decrease in the traffic variable. This is maintained until, two months later, another round of

smooth changes takes place while accumulating the one from the previous swapping. This implies

that the first year is used to be learned as is —with the original real data— by Adarules, and as

corresponds to every other baseline according to their updating schema. Therefore, the results of

the experiments are shown, both graphically and in tables, only for the months during the second

year. For this experimental scenario, the goal is to determine the Adarules ability to react and

adapt to these gradual changes.
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6 Validation of Adarules under different change scenarios

Firstly, the evolution of the number of rules for Adarules in both networks (Figure 6.9) is identical

during the first year to the previously observed within the experiment which used real-data (Figure

6.7). This was expected, as the data used during the first year of this second change scenario is also

real data, and it is only during the second year when artificial changes are introduced in the datasets.

Starting from the second year, the evolution in the number of rules differs for each dataset. In the

case of the M4/M7 network, there is certain stationarity in the number of rules during the first four

months of the second year and then, after two consecutive executions of small artificial gradual

changes —around the end of 2016/04—, Adarules detects several global concept drifts as observed

in the small subsequent reduction in the number of rules. Following, Adarules detects and performs

a timeline split as shown by the abrupt drop in the number of rules from around 20 to 2. This

means that data before the specific datetime chosen in the splitting procedure is discarded, thus

only considering observed data from that point in time. The reason probably because too many

changes have been accumulated —and probably the tube-shaped network geometry also plays a

role— which has lead Adarules to take the decision of performing such timeline splitting. Two

months later, a similar situation occurs probably to make more accurate the timeline point where

network flow patterns are different. After that point (2016/07), the number of rules in M4/M7

increases linearly as a function of time. On the other hand, in the case of Santander network, the

evolution of rules and decisions performed by Adarules is different from that described for M4/M7.

For the Santander network dataset, the number of rules grows quickly during the first three months

and, afterwards, the pace for obtaining new rules is much slower during the second year. The key

difference in how Adarules treats this kind of change in both networks may be explained because of

as there is more uncertainty in the propagation of the flows within an urban network, these small

changes are not detected as such hard breakpoints in time. Conversely, in a motorway network, the

uncertainty around the propagation of the flows is much smaller and, thus, even small changes like

these are probably going to be detected as global changes. This probably explains the two abrupt

drops in the number of rules observed in the M4/M7 network, which are related to detected global

changes in a given rule tied to the timestamp splitting attribute. As described in the previous

paragraph, the selection of the 200 detectors every two months is random and, furthermore, these

small changes are accumulated every two months. Thus, it could lead to a situation where a lot

of small changes are focused on certain detectors that, on such motorway network with bounded

variability, are eventually detected as hard global changes.

The assessment in terms of forecasting accuracy is performed using the normalized RMSE (nRMSE).

There is one figure per forecasting traffic variable: Figure 9.13 for the flow, Figure 9.14 for the

occupancy and Figure 9.15 for the speed. Each of these figures has subfigures for the two network

datasets and for each forecasting horizon, resulting in four subfigures with the exception of speed
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6.8 Adarules vs baselines: Gradual change scenario
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Figure 6.9: Evolution of the Adarules complexity in the gradual change scenario. Number of iden-
tified rules as a function of the time —every iteration corresponds to one day—.
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6 Validation of Adarules under different change scenarios

which has only two because there is no measured speed data in the Santander dataset. These

results can be also corroborated in the Table 6.8.

In this case, it is clear how Adarules outperforms the rest of baselines in all the network datasets,

traffic variables, and forecasting horizons. Even in the situation when Adarules structure is com-

pletely restored due to hard global concept drifts —in the M4/M7 network around the middle of

the second year—, the performance is downgraded for a while but still more competitive than the

baselines. Therefore, the response from Adarules is proper for such gradual changes in a network.

CONCLUSION: Adarules response is kept at suitable quality levels during the entire second year,

showing the ability of Adarules to adapt itself when coping with — a lot of— small gradual changes.

Furthermore, its accuracy outperforms that of the baselines competitors —ANA and HA—.

Table 6.8: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the gradual change scenario. The KPIs are aggregated over the results
during the last year in each of the datasets.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M4/M7 | flow | t = 15 | nRMSE

Adarules 1.62 1.76 1.78 1.79 1.71 1.78 1.83 1.76 1.92 1.66 1.70 2.33

ANA-y 2.91 2.91 3.17 2.97 3.00 3.23 3.21 2.95 3.10 3.07 2.81 3.52

ANA-q 4.32 4.00 4.31 3.81 3.71 4.18 4.10 3.32 3.76 3.89 3.28 4.66

ANA-m 5.64 6.74 7.11 6.39 6.76 6.98 6.07 5.30 5.58 7.01 6.04 7.45

HA-y 6.67 4.14 5.03 4.69 3.97 4.46 3.93 3.87 5.20 4.86 5.68 9.19

HA-q 7.49 4.00 5.09 4.52 4.32 4.51 3.99 3.93 4.50 3.47 3.67 9.05

HA-m 6.67 3.98 5.01 4.49 3.91 4.26 3.67 3.60 4.20 3.65 3.79 8.87

M4/M7 | flow | t = 60 | nRMSE

Adarules 4.72 4.16 4.35 5.33 4.64 4.83 5.45 4.36 4.48 4.01 3.98 6.86

ANA-y 6.20 5.52 6.12 6.31 5.58 6.17 5.99 5.85 6.17 6.30 5.90 7.29

ANA-q 7.78 6.57 7.48 6.81 6.05 6.37 6.89 6.42 6.64 7.19 6.28 8.17

ANA-m 8.21 8.44 8.61 7.76 7.45 8.14 7.81 6.81 7.64 8.32 7.04 9.54

HA-y 6.78 4.19 5.11 4.76 4.03 4.52 3.98 3.93 5.28 4.94 5.76 9.33

HA-q 7.61 4.05 5.17 4.59 4.39 4.58 4.06 3.98 4.56 3.52 3.72 9.19

HA-m 6.78 4.04 5.09 4.56 3.97 4.32 3.72 3.66 4.26 3.70 3.85 9.00

M4/M7 | occupancy | t = 15 | nRMSE

Adarules 1.91 2.28 2.43 2.44 2.44 2.47 2.40 2.49 2.67 2.19 3.06 2.83

ANA-y 2.22 2.69 2.91 2.93 2.73 2.76 2.85 2.97 3.00 2.64 3.31 3.25
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6.8 Adarules vs baselines: Gradual change scenario

Table 6.8: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the gradual change scenario. The KPIs are aggregated over the results
during the last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ANA-q 2.59 2.85 3.03 3.42 3.12 2.99 3.15 3.13 3.28 2.72 4.25 3.58

ANA-m 2.59 3.57 3.43 3.75 3.57 3.45 3.20 3.23 3.81 3.21 3.73 4.54

HA-y 2.58 2.85 2.97 3.36 2.80 3.09 2.84 3.15 3.59 2.54 3.52 3.77

HA-q 3.03 3.05 3.08 3.56 2.98 3.23 3.15 3.22 3.58 2.49 3.37 4.13

HA-m 2.58 2.86 2.96 3.30 2.75 3.10 2.85 3.12 3.42 2.41 3.19 3.85

M4/M7 | occupancy | t = 60 | nRMSE

Adarules 2.31 3.04 3.20 3.54 3.23 3.44 3.32 3.24 3.64 2.51 3.62 3.53

ANA-y 2.77 3.26 3.50 3.69 3.49 3.62 3.27 3.40 3.88 3.19 4.04 3.76

ANA-q 2.94 3.33 3.93 3.97 3.57 3.70 3.50 3.40 3.90 3.18 5.21 4.09

ANA-m 2.80 3.59 4.05 4.06 3.75 3.92 3.37 3.44 4.17 3.46 5.17 4.94

HA-y 2.61 2.89 3.01 3.40 2.84 3.13 2.91 3.19 3.62 2.57 3.57 3.77

HA-q 3.07 3.07 3.12 3.61 3.02 3.27 3.18 3.26 3.62 2.53 3.41 4.14

HA-m 2.61 2.90 3.00 3.34 2.78 3.14 2.92 3.16 3.45 2.45 3.23 3.85

M4/M7 | speed | t = 15 | nRMSE

Adarules 5.63 5.95 6.73 5.60 6.07 6.11 5.94 6.27 6.20 6.03 6.24 6.45

ANA-y 5.83 6.34 7.49 6.33 6.48 6.67 6.36 6.49 6.35 5.75 6.56 6.34

ANA-q 6.24 6.94 8.11 6.81 6.92 7.32 7.19 7.54 7.30 6.15 7.51 7.32

ANA-m 6.74 7.90 9.69 7.46 8.01 7.27 7.65 7.27 7.71 6.41 9.40 7.86

HA-y 6.81 7.39 8.67 7.15 7.22 7.55 7.19 7.65 7.22 6.86 8.58 7.62

HA-q 7.23 7.60 8.89 7.36 7.50 7.96 8.08 7.94 8.09 6.60 8.31 8.12

HA-m 6.81 7.32 8.67 7.00 7.16 7.45 7.34 7.63 7.41 6.59 8.04 7.66

M4/M7 | speed | t = 60 | nRMSE

Adarules 6.22 7.59 8.07 6.81 7.15 7.19 7.23 6.88 7.22 6.73 7.97 7.01

ANA-y 6.41 7.59 8.45 7.35 7.57 7.76 7.41 7.27 7.85 6.68 8.07 7.10

ANA-q 6.69 7.78 8.86 7.55 7.86 8.04 8.17 7.71 8.37 6.39 8.41 7.79

ANA-m 6.96 8.18 9.63 7.65 8.35 7.46 8.42 7.45 7.84 7.83 9.56 8.20

HA-y 6.71 7.34 8.53 6.97 7.19 7.60 7.25 7.45 7.19 6.76 8.31 7.31

HA-q 7.17 7.65 8.71 7.26 7.40 7.85 8.05 7.76 7.96 6.51 8.20 7.98

HA-m 6.71 7.29 8.48 6.82 7.13 7.41 7.38 7.37 7.31 6.51 7.88 7.38
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6 Validation of Adarules under different change scenarios

Table 6.8: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the gradual change scenario. The KPIs are aggregated over the results
during the last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Santander | flow | t = 15 | nRMSE

Adarules 1.54 1.42 1.76 1.93 1.91 1.92 1.94 2.13 1.57 1.83 1.76 1.74

ANA-y 1.85 1.61 1.87 2.10 1.80 2.19 2.25 2.17 2.44 2.93 2.31 2.39

ANA-q 2.52 2.41 2.60 2.39 2.57 2.56 2.86 2.48 3.10 2.67 4.52 4.33

ANA-m 4.09 4.04 4.85 3.54 3.38 3.58 4.35 3.24 7.42 3.31 5.43 4.23

HA-y 5.57 3.55 3.74 4.26 3.70 4.63 6.12 6.54 4.83 5.78 5.04 5.94

HA-q 5.70 3.68 3.48 4.58 4.18 5.05 5.78 6.60 4.41 5.53 6.05 6.57

HA-m 5.57 3.48 3.85 4.29 3.62 3.78 6.00 6.17 4.37 4.56 4.51 5.50

Santander | flow | t = 60 | nRMSE

Adarules 3.75 3.32 3.96 4.75 4.38 4.45 5.10 5.07 3.94 4.33 4.31 4.58

ANA-y 4.73 4.15 4.68 5.18 4.53 5.47 5.90 5.67 5.38 5.63 5.66 6.55

ANA-q 5.13 4.73 5.13 5.40 5.51 5.61 6.16 5.25 6.19 5.18 6.82 7.81

ANA-m 6.33 5.69 5.93 6.66 5.68 6.03 6.77 4.91 11.27 6.14 7.84 6.62

HA-y 5.35 3.58 3.77 4.29 3.74 4.69 6.04 6.59 4.86 4.25 5.10 6.00

HA-q 5.42 3.71 3.51 4.63 4.24 5.11 5.72 6.68 4.47 4.54 6.13 6.65

HA-m 5.35 3.51 3.90 4.33 3.66 3.80 5.93 6.10 4.42 4.32 4.58 5.57

Santander | occupancy | t = 15 | nRMSE

Adarules 2.75 2.62 2.76 2.99 2.50 2.86 3.58 3.38 2.86 3.89 3.91 4.62

ANA-y 3.19 2.85 3.02 3.09 3.10 3.32 3.85 3.96 3.77 4.50 4.52 5.51

ANA-q 3.57 3.14 3.13 3.12 3.13 3.38 4.17 4.29 3.96 3.79 4.14 5.78

ANA-m 4.13 3.58 3.56 3.77 3.21 3.66 4.87 3.75 7.58 4.09 4.57 5.82

HA-y 3.63 2.99 3.03 3.24 3.21 3.52 4.33 4.40 3.61 4.03 5.47 6.79

HA-q 3.82 3.10 3.18 3.29 3.57 3.79 4.51 4.49 3.62 4.12 4.35 6.27

HA-m 3.63 3.00 3.00 3.25 3.18 3.39 4.21 4.17 3.88 3.53 3.82 6.27

Santander | occupancy | t = 60 | nRMSE

Adarules 3.40 3.08 3.19 3.56 3.12 3.49 3.87 3.92 3.51 4.64 4.51 5.67

ANA-y 3.71 3.24 3.53 3.42 3.53 3.64 4.28 4.34 4.20 5.27 5.14 6.39

ANA-q 4.04 3.39 3.44 3.41 3.48 3.78 4.63 4.59 4.22 4.02 4.58 6.38

ANA-m 4.83 3.79 3.90 3.95 3.40 3.95 5.04 4.51 8.08 3.68 4.68 6.22
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6.9 Adarules vs baselines: Abrupt change (AM-PM) scenario

Table 6.8: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the gradual change scenario. The KPIs are aggregated over the results
during the last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

HA-y 3.67 3.03 3.08 3.29 3.26 3.57 4.33 4.40 3.65 3.55 5.56 6.90

HA-q 3.88 3.14 3.22 3.33 3.62 3.84 4.49 4.54 3.64 3.51 4.42 6.36

HA-m 3.67 3.04 3.05 3.29 3.23 3.44 4.21 4.22 3.94 3.36 3.88 6.36

6.9 Adarules vs baselines: Abrupt change (AM-PM) scenario

This section describes the fourth scenario and it consists of introducing abrupt changes by swapping

the AM and PM periods during the second year in each network dataset. More specifically, first

year corresponds to real data and then during the second and every two months (January, March,

May, July, September, November) a fake change is introduced over all the network by swapping the

AM and PM periods: i.e. the traffic is swapped and, thus, traffic during the night takes place during

the day and vice versa. This is maintained for two months until the next swap takes place. This

implies that the first year is used to be learned as is —with the original real data— by Adarules,

and as corresponds to every other baseline according to their updating schema. Therefore, the

results of the experiments are shown, both graphically and in tables, only for the months during

the second year. For this experimental scenario, the goal is to determine the Adarules ability to

react and adapt to these abrupt changes.

Firstly, the evolution of the number of rules for Adarules in both networks (Figure 6.10) is identical

during the first year to the previously observed within the experiment which used real-data (Figure

6.7). This was expected, as the data used during the first year of this second change scenario

is also real data, and it is only during the second year when artificial changes are introduced in

the datasets. Starting from the second year, the rulesets run on each network dataset undergo

similar changes in their structure and number of rules. Firstly, after the first change introduced

in the month of January, several subsequent global concept drifts are detected as can be seen on

the drops in the number of rules. The number of rules drops to half of the number of rules before

the introduced changes in each dataset —from 22 to 14 rules in M4/M7, and from 30 to 16 rules

in Santander—. Then, Adarules decides to simply restore the entire ruleset structure by forgetting

certain past data as can be seen in abrupt drops of the number of rules. This is especially visible

in the Santander network with several changes of this kind. Interestingly, Adarules seems to build

the ruleset in a different way with the newly observed data in both datasets starting from around
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6 Validation of Adarules under different change scenarios

July of the second year, as can be seen by the increasing number of rules over time with only minor

corrections.

The assessment in terms of forecasting accuracy is performed using the normalized RMSE (nRMSE).

There is one figure per forecasting traffic variable: Figure 9.16 for the flow, Figure 9.17 for the

occupancy and Figure 9.18 for the speed. Each of these figures has subfigures for the two network

datasets and for each forecasting horizon, resulting in four subfigures with the exception of speed

which has only two because there is no measured speed data in the Santander dataset. These

results can be also corroborated in the Table 6.9.

In this case, it is clear how Adarules outperforms the rest of baselines in all the network datasets,

traffic variables, and forecasting horizons. Even in those situations when Adarules structure is

completely restored due to hard global concept drifts, the performance is a bit downgraded for a

while but Adarules is able to quickly learn and recover a good forecasting performance using the

new observed data. Therefore, the response from Adarules is proper for such abrupt changes in a

network.

CONCLUSION: Adarules is able to autonomously detect the abrupt changes and perform the

required restructuring in order to quickly recover the expected level of forecasting quality. More-

over, the timings taken by Adarules to forget and learn new concepts seem appropriate given the

comparison with the baseline competitors in terms of forecasting error.

Table 6.9: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the abrupt change (AM-PM) scenario. The KPIs are aggregated over the
results during the last year in each of the datasets.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M4/M7 | flow | t = 15 | nRMSE

Adarules 4.77 3.16 6.35 4.92 4.74 2.63 6.21 4.01 3.82 4.13 6.56 4.01

ANA-y 9.60 10.21 3.06 3.10 10.61 10.60 3.03 2.94 10.73 10.38 2.89 3.51

ANA-q 13.30 14.66 4.40 12.19 7.95 8.54 13.24 13.47 8.15 13.36 7.20 7.66

ANA-m 19.45 6.88 26.28 6.21 21.43 7.09 22.52 5.70 24.00 7.79 25.37 7.48

HA-y 45.63 48.79 5.03 4.18 49.09 48.76 4.00 4.39 49.80 48.34 5.85 9.43

HA-q 46.07 48.91 5.03 32.10 18.72 19.64 33.03 34.47 18.24 33.21 18.30 18.87

HA-m 45.63 45.68 8.97 8.44 41.83 37.52 16.87 17.47 34.73 28.89 25.19 24.01

M4/M7 | flow | t = 60 | nRMSE

Adarules 18.09 8.66 14.45 13.10 11.59 5.95 15.56 11.00 9.12 9.76 14.48 11.32

ANA-y 26.17 28.24 6.27 6.38 29.25 29.53 6.15 6.19 29.67 28.63 6.16 7.27

ANA-q 30.96 32.65 7.30 15.77 11.21 11.33 18.58 19.10 10.50 17.57 10.38 10.44
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6.9 Adarules vs baselines: Abrupt change (AM-PM) scenario

Table 6.9: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the abrupt change (AM-PM) scenario. The KPIs are aggregated over the
results during the last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ANA-m 39.25 8.71 41.53 7.69 37.32 8.51 38.69 7.24 40.33 8.80 41.90 9.91

HA-y 45.61 48.82 5.11 4.25 49.11 48.77 4.06 4.47 49.73 48.29 5.93 9.57

HA-q 46.07 48.96 5.12 32.06 18.78 19.62 33.05 34.42 18.16 33.09 18.24 18.91

HA-m 45.61 45.70 9.04 8.47 41.88 37.66 16.89 17.46 34.57 28.80 25.16 24.00

M4/M7 | occupancy | t = 15 | nRMSE

Adarules 3.95 2.67 4.08 3.72 4.12 2.67 3.99 3.02 3.26 2.90 4.63 3.65

ANA-y 6.80 7.96 2.84 2.80 7.68 7.79 2.77 2.95 8.24 7.61 3.46 3.25

ANA-q 6.85 7.76 2.99 4.30 3.43 3.44 4.80 4.26 3.71 4.08 3.93 3.97

ANA-m 6.98 3.55 9.46 3.97 8.69 3.34 8.56 3.34 9.83 3.15 10.23 4.14

HA-y 9.37 10.69 2.91 3.29 10.01 10.50 2.97 3.12 10.98 10.01 3.48 3.86

HA-q 9.49 10.73 3.01 7.39 5.01 5.00 7.67 8.09 5.41 7.34 5.65 5.15

HA-m 9.37 10.17 3.38 3.76 8.70 8.28 4.55 4.71 8.21 6.27 6.70 5.83

M4/M7 | occupancy | t = 60 | nRMSE

Adarules 5.48 4.04 5.16 4.79 5.23 3.73 5.38 4.12 4.51 3.80 5.93 4.79

ANA-y 7.90 8.89 3.42 3.45 9.30 8.85 3.31 3.43 9.54 9.06 3.90 3.79

ANA-q 7.95 9.04 3.81 4.92 4.10 4.27 5.01 5.04 4.21 4.60 4.20 4.23

ANA-m 8.63 3.68 10.61 3.84 9.68 3.95 10.00 3.53 10.06 3.28 11.94 4.85

HA-y 9.36 10.67 2.95 3.34 10.05 10.48 3.05 3.17 11.00 9.97 3.53 3.83

HA-q 9.50 10.73 3.06 7.42 4.95 5.00 7.70 8.12 5.45 7.35 5.71 5.19

HA-m 9.36 10.17 3.43 3.81 8.63 8.29 4.57 4.75 8.24 6.29 6.76 5.74

M4/M7 | speed | t = 15 | nRMSE

Adarules 7.60 6.66 8.62 7.65 7.78 5.98 7.27 7.06 6.87 5.89 8.71 7.45

ANA-y 10.73 10.93 7.01 5.98 11.80 11.98 6.15 6.04 11.90 10.77 6.45 6.37

ANA-q 10.80 12.27 7.76 7.58 7.12 7.31 7.76 7.60 6.82 6.96 7.46 7.10

ANA-m 11.09 8.00 14.46 7.21 12.90 7.44 12.66 7.29 13.65 6.70 13.44 7.93

HA-y 13.49 14.91 8.28 6.68 14.67 14.85 7.05 7.38 15.17 14.43 8.21 7.51

HA-q 13.30 14.89 8.37 10.71 8.43 8.96 11.23 11.39 8.21 10.44 8.99 8.02

HA-m 13.49 14.26 8.52 6.92 13.06 12.31 7.81 8.18 11.06 9.55 9.94 9.00

M4/M7 | speed | t = 60 | nRMSE

Adarules 9.95 8.63 10.34 8.73 8.94 7.67 8.66 7.91 8.68 7.43 10.41 9.76

ANA-y 12.22 13.48 7.96 6.81 13.30 13.70 7.10 6.78 13.86 13.15 7.75 6.94

ANA-q 12.29 14.08 8.30 8.66 8.12 8.37 8.53 8.45 7.72 8.05 8.56 7.57

ANA-m 12.34 8.90 15.56 7.58 14.65 7.90 14.11 7.65 14.15 7.71 20.78 8.56

HA-y 13.57 14.96 8.12 6.61 14.70 14.84 7.03 7.23 15.25 14.52 7.97 7.20
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6 Validation of Adarules under different change scenarios

Table 6.9: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the abrupt change (AM-PM) scenario. The KPIs are aggregated over the
results during the last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

HA-q 13.44 15.01 8.28 10.57 8.48 8.98 11.18 11.30 8.28 10.54 8.90 7.99

HA-m 13.57 14.31 8.36 6.91 13.10 12.33 7.79 8.09 11.12 9.67 9.93 8.97

Santander | flow | t = 15 | nRMSE

Adarules 5.00 2.67 4.28 2.45 3.54 2.88 3.51 3.03 3.07 2.88 4.51 3.13

ANA-y 6.63 6.77 2.07 2.20 7.16 7.05 2.21 2.69 8.70 8.32 2.13 2.41

ANA-q 9.34 9.44 2.97 6.55 5.71 5.72 7.03 9.03 5.34 5.40 9.07 9.83

ANA-m 14.04 4.44 19.15 3.79 12.68 3.87 13.69 3.56 20.51 3.54 21.19 4.13

HA-y 34.33 34.52 3.51 4.40 34.29 34.66 5.98 6.17 38.75 34.53 4.70 5.48

HA-q 34.78 35.03 3.16 19.98 15.94 15.92 24.20 26.65 12.81 22.95 18.15 17.58

HA-m 34.33 31.29 6.83 6.57 28.89 26.45 11.38 12.91 25.43 22.93 19.65 20.25

Santander | flow | t = 60 | nRMSE

Adarules 14.71 6.67 13.64 6.52 8.92 7.10 8.70 8.13 9.11 6.68 11.84 8.31

ANA-y 20.82 20.71 4.55 5.41 25.44 23.83 5.68 6.19 28.79 30.82 5.39 6.39

ANA-q 22.57 22.49 4.94 10.09 9.03 10.29 11.64 14.74 9.16 12.13 12.87 13.82

ANA-m 24.73 6.40 28.09 6.73 24.21 6.26 27.92 5.81 36.42 6.39 33.52 6.44

HA-y 34.36 34.56 3.51 4.47 34.38 34.28 5.97 6.23 38.73 38.96 4.76 5.58

HA-q 34.78 35.05 3.20 20.05 15.92 15.61 24.16 26.53 12.84 22.93 18.25 17.81

HA-m 34.36 31.35 6.75 6.59 28.86 26.33 11.37 12.89 25.41 22.71 19.74 20.13

Santander | occupancy | t = 15 | nRMSE

Adarules 5.23 2.98 4.30 2.83 3.21 3.40 4.85 3.71 4.14 3.90 6.88 4.85

ANA-y 7.39 6.44 3.02 3.26 6.12 6.02 3.73 3.99 10.51 6.85 4.26 5.38

ANA-q 9.13 7.99 3.24 4.03 3.86 4.20 6.00 5.71 4.94 4.91 6.24 6.54

ANA-m 9.87 3.47 8.49 3.76 7.92 3.64 9.55 3.90 17.40 4.09 13.37 5.18

HA-y 10.79 10.46 3.06 3.44 10.11 10.65 4.13 4.52 16.53 10.03 5.02 6.66

HA-q 11.22 11.38 3.20 6.74 5.99 6.15 9.38 12.14 5.81 6.87 9.32 9.22

HA-m 10.79 9.62 3.86 4.17 8.86 8.49 7.14 6.15 11.08 6.64 9.83 9.78

Santander | occupancy | t = 60 | nRMSE

Adarules 6.36 3.63 6.02 3.99 4.57 4.60 6.69 5.33 6.23 4.38 8.13 6.73

ANA-y 10.06 10.11 3.43 3.53 9.46 9.67 4.17 4.60 13.72 10.33 4.93 6.30

ANA-q 10.60 10.39 3.43 4.27 4.46 4.87 7.35 7.51 6.29 5.58 6.93 8.11

ANA-m 10.98 3.74 13.94 4.10 10.84 3.74 11.17 4.77 19.24 3.86 16.48 5.74

HA-y 10.73 10.15 3.11 3.49 10.15 10.54 4.18 4.57 16.45 9.82 5.10 6.77

HA-q 11.10 11.27 3.23 6.71 5.96 6.08 9.47 12.15 5.75 6.77 9.26 9.29

HA-m 10.73 9.32 3.88 4.21 8.91 8.50 7.19 6.18 11.01 6.45 9.92 9.90
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6.9 Adarules vs baselines: Abrupt change (AM-PM) scenario
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Figure 6.10: Evolution of the Adarules complexity in the abrupt change (AM-PM) scenario. Num-
ber of identified rules as a function of the time —every iteration corresponds to one
day—.
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6 Validation of Adarules under different change scenarios

6.10 Adarules vs baselines: Abrupt change (IDs) scenario

This section describes the fifth scenario and it consists of introducing extreme abrupt changes

by swapping 100 detectors identifiers selected at random during the second year in each network

dataset. More specifically, first year corresponds to real data and then during the second and

every two months (January, March, May, July, September, November) a fake change is introduced

over all the network by swapping 100 detectors identifiers selected at random: i.e. the traffic from

these detectors is swapped with others in the network. This is maintained until, two months later,

another swapping takes place while accumulating the one from the previous swapping. This implies

that the first year is used to be learned as is —with the original real data— by Adarules, and as

corresponds to every other baseline according to their updating schema. Therefore, the results of

the experiments are shown, both graphically and in tables, only for the months during the second

year. For this experimental scenario, the goal is to determine the Adarules ability to react and

adapt to these extreme abrupt changes.

Firstly, the evolution of the number of rules for Adarules in both networks (Figure 6.11) is identical

during the first year to the previously observed within the experiment which used real-data (Figure

6.7). This was expected, as the data used during the first year of this second change scenario is

also real data, and it is only during the second year when artificial changes are introduced in the

datasets. Starting from the second year, the rulesets run on each network dataset undergo similar

changes in their structure in spite of the differences in the magnitude of the number of rules. In

both networks, the number of rules experiments a drop during the first month of the second year

as it is the first moment that an ID swap has been performed, and Adarules identifies it as several

global changes. Then, the number of rules in M4/M7 decreases from 22 to 12, while on Santander

the number drops from 30 to 26. Afterward, Adarules consider as best decision to restructure

completely the ruleset after several of the bimonthly changes which are introduced in the datasets.

This is performed similarly for M4/M7 and Santander networks.

The assessment in terms of forecasting accuracy is performed using the normalized RMSE (nRMSE).

There is one figure per forecasting traffic variable: Figure 9.19 for the flow, Figure 9.20 for the

occupancy and Figure 9.21 for the speed. Each of these figures has subfigures for the two network

datasets and for each forecasting horizon, resulting in four subfigures with the exception of speed

which has only two because there is no measured speed data in the Santander dataset. These

results can be also corroborated in the Table 6.10.

In this scenario, it is again clear how Adarules outperforms the rest of baselines in all the network

datasets, traffic variables, and forecasting horizons. Even in those situations when Adarules struc-
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6.10 Adarules vs baselines: Abrupt change (IDs) scenario

0

10

20

30

2015−01 2015−04 2015−07 2015−10 2016−01 2016−04 2016−07 2016−10

N
um

be
r 

of
 r

ul
es

Adarules

(a) M4/M7 network.

0

10

20

30

2016−01 2016−04 2016−07 2016−10 2017−01 2017−04 2017−07 2017−10

N
um

be
r 

of
 r

ul
es

Adarules

(b) Santander network.

Figure 6.11: Evolution of the Adarules complexity in the abrupt change (IDs) scenario. Number of
identified rules as a function of the time —every iteration corresponds to one day—.
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6 Validation of Adarules under different change scenarios

ture is completely restored due to hard global concept drifts, the performance is a bit downgraded

for a while but still more competitive than the baselines. Therefore, the response from Adarules is

proper for such extreme abrupt changes in a network.

CONCLUSION: Adarules is able to autonomously detect the extreme abrupt changes and per-

form the required restructuring in order to quickly recover the expected level of forecasting quality.

Moreover, the timings taken by Adarules to forget and learn new concepts seem appropriate given

the comparison with the baseline competitors in terms of forecasting error.

Table 6.10: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the abrupt change (IDs) scenario. The KPIs are aggregated over the results
during the last year in each of the datasets.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M4/M7 | flow | t = 15 | nRMSE

Adarules 2.38 2.71 3.71 2.26 3.60 1.66 2.87 2.12 3.52 1.75 4.06 2.85

ANA-y 5.16 5.54 7.86 8.15 9.57 9.25 9.30 10.29 9.70 9.28 9.69 9.37

ANA-q 7.20 7.61 9.47 2.78 4.93 4.78 6.30 6.06 8.58 2.88 7.23 5.85

ANA-m 8.36 5.50 10.95 4.55 11.62 4.99 9.04 4.41 13.90 4.58 13.78 4.96

HA-y 6.35 6.09 14.93 15.60 18.86 13.91 15.72 16.08 22.08 18.03 18.93 18.33

HA-q 6.86 5.30 15.99 7.37 14.81 13.44 7.90 7.81 13.92 4.75 18.95 17.28

HA-m 6.35 6.07 13.83 13.33 14.84 11.20 11.02 11.61 12.10 12.68 13.31 12.01

M4/M7 | flow | t = 60 | nRMSE

Adarules 6.15 5.96 8.23 6.22 8.99 4.60 6.29 4.92 8.27 4.37 8.73 6.12

ANA-y 13.34 15.17 26.66 26.93 27.19 26.14 24.83 25.76 27.03 24.85 33.10 29.44

ANA-q 14.18 15.67 33.72 5.37 12.66 12.46 12.99 14.04 28.76 6.07 15.22 14.98

ANA-m 26.95 6.50 25.28 5.68 22.30 6.05 25.67 5.03 19.60 6.06 31.72 7.26

HA-y 6.45 6.18 15.17 15.86 19.16 14.14 15.96 16.33 22.21 18.32 19.22 18.52

HA-q 6.96 5.38 16.25 7.49 15.07 13.66 8.11 7.94 14.22 4.82 19.26 17.45

HA-m 6.45 6.16 14.06 13.55 15.07 11.36 11.21 11.80 12.24 12.94 13.52 12.14

M4/M7 | occupancy | t = 15 | nRMSE

Adarules 2.24 2.00 2.43 2.25 2.45 2.20 2.64 2.02 2.77 2.08 3.12 2.48

ANA-y 2.89 3.00 4.04 3.69 4.08 4.11 4.51 4.09 5.78 5.64 6.17 5.64

ANA-q 3.15 3.34 4.68 2.55 3.44 3.30 3.71 3.11 4.56 2.91 5.05 3.69

ANA-m 3.37 2.72 4.84 2.48 4.39 3.05 4.11 2.48 5.31 3.26 6.04 3.11

HA-y 3.27 3.49 5.26 4.72 4.04 4.29 5.79 6.26 6.59 6.13 7.77 6.89

HA-q 3.24 3.29 5.35 3.61 4.68 4.57 3.95 4.38 5.05 3.74 4.87 5.06

HA-m 3.27 3.32 5.04 4.48 4.13 4.15 4.57 4.15 5.22 4.43 6.15 4.36

M4/M7 | occupancy | t = 60 | nRMSE
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6.10 Adarules vs baselines: Abrupt change (IDs) scenario

Table 6.10: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the abrupt change (IDs) scenario. The KPIs are aggregated over the results
during the last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Adarules 2.64 2.82 3.49 3.01 3.36 2.96 3.62 2.60 3.84 2.47 4.19 3.09

ANA-y 3.44 3.71 5.07 4.63 4.55 4.40 5.15 5.03 6.74 6.28 7.01 6.49

ANA-q 3.39 3.61 5.28 2.83 3.85 3.91 4.08 4.06 5.08 3.70 7.16 5.47

ANA-m 3.37 2.90 4.48 2.50 4.67 2.89 4.32 2.77 6.22 4.09 7.30 3.53

HA-y 3.30 3.53 5.34 4.79 4.08 4.34 5.86 6.32 6.69 6.24 7.89 7.02

HA-q 3.22 3.34 5.42 3.65 4.74 4.63 3.95 4.41 5.09 3.69 4.93 5.13

HA-m 3.30 3.36 5.11 4.54 4.20 4.19 4.52 4.19 5.25 4.22 6.23 4.34

M4/M7 | speed | t = 15 | nRMSE

Adarules 7.07 6.90 9.12 8.09 8.31 5.81 7.05 6.91 7.68 5.78 8.38 7.36

ANA-y 7.68 8.46 10.60 9.01 13.25 12.87 12.84 12.58 16.55 13.55 14.50 18.89

ANA-q 8.00 8.74 10.98 7.61 10.01 9.89 8.10 8.46 14.06 6.61 11.94 12.02

ANA-m 8.48 7.56 11.87 7.32 11.09 6.51 9.37 6.02 9.61 6.70 17.53 7.82

HA-y 8.39 9.25 11.95 10.31 13.17 12.60 13.29 13.70 15.84 13.81 16.77 18.67

HA-q 8.67 9.13 11.40 7.92 12.05 11.83 8.08 9.06 13.90 7.67 16.79 20.76

HA-m 8.39 9.21 11.80 9.72 12.15 11.48 10.74 10.90 14.08 12.32 14.52 13.28

M4/M7 | speed | t = 60 | nRMSE

Adarules 8.85 8.34 10.11 8.64 9.57 6.63 7.97 7.25 9.21 7.27 12.27 9.83

ANA-y 8.56 9.47 10.74 9.95 14.48 13.40 15.67 15.31 17.94 14.57 18.05 18.50

ANA-q 8.90 10.13 11.87 7.84 11.40 12.04 8.87 8.97 14.32 7.96 15.98 17.30

ANA-m 9.22 8.31 11.65 7.20 12.02 7.39 8.69 6.20 9.96 8.27 22.34 8.52

HA-y 8.33 9.30 11.76 10.25 13.11 12.60 13.20 13.81 15.56 13.36 16.68 18.55

HA-q 8.62 9.15 11.42 7.78 11.91 11.39 8.10 8.98 14.05 7.46 16.99 21.01

HA-m 8.33 9.22 11.71 9.64 12.00 11.32 10.83 10.95 13.98 12.31 14.64 12.72

Santander | flow | t = 15 | nRMSE

Adarules 2.22 1.27 2.04 1.23 2.13 1.34 1.47 1.31 1.89 1.62 3.11 2.14

ANA-y 2.88 2.67 4.44 4.21 6.24 6.61 7.06 6.57 5.86 5.68 5.08 5.03

ANA-q 4.70 4.56 5.64 1.72 4.35 5.27 4.42 6.23 5.87 1.59 4.96 5.06

ANA-m 5.23 2.13 9.70 2.44 6.18 1.50 8.74 1.20 17.94 1.62 13.75 1.61

HA-y 5.21 3.47 6.31 4.90 13.69 9.33 15.51 16.04 16.38 16.78 9.08 10.01

HA-q 5.25 3.10 7.01 4.76 8.80 7.37 8.76 11.44 10.03 5.55 9.55 9.23

HA-m 5.21 3.38 5.99 4.82 8.75 6.87 12.50 11.41 13.64 13.26 9.80 8.12

Santander | flow | t = 60 | nRMSE

Adarules 5.32 2.91 5.14 2.96 4.89 3.62 3.73 2.62 4.99 3.09 7.10 5.12

ANA-y 5.06 4.90 9.30 8.79 11.85 13.22 23.26 18.09 15.63 16.23 14.21 13.96
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6 Validation of Adarules under different change scenarios

Table 6.10: Comparison of the forecasting performance measured by nRMSE between Adarules and
baselines in the abrupt change (IDs) scenario. The KPIs are aggregated over the results
during the last year in each of the datasets. (continued)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ANA-q 9.31 8.99 12.37 3.82 10.18 12.69 11.74 14.23 15.34 3.71 9.45 9.90

ANA-m 8.14 4.49 15.80 4.05 11.88 2.35 13.03 2.02 33.07 3.29 15.92 2.51

HA-y 5.12 3.52 6.68 5.10 13.91 9.44 15.72 16.22 16.63 16.39 9.23 10.06

HA-q 4.81 3.13 7.14 4.86 8.65 6.64 8.86 11.70 10.18 5.35 9.90 9.64

HA-m 5.12 3.42 6.31 4.96 8.87 6.95 12.66 11.55 13.89 13.24 10.00 8.22

Santander | occupancy | t = 15 | nRMSE

Adarules 2.35 1.80 3.60 2.47 4.32 3.08 3.13 2.70 3.96 3.44 5.11 3.86

ANA-y 2.93 2.35 4.36 3.81 7.37 5.62 5.27 5.67 5.97 6.04 6.89 7.19

ANA-q 3.38 2.76 4.88 2.78 6.47 6.46 5.28 5.20 5.61 4.00 9.07 10.26

ANA-m 4.60 2.01 6.71 3.10 7.67 3.31 6.08 3.70 9.35 3.82 9.93 4.63

HA-y 2.74 2.03 5.50 4.01 7.44 6.56 6.41 6.01 6.17 8.23 8.85 8.62

HA-q 2.67 2.12 5.09 3.81 8.21 7.35 5.89 6.35 5.78 4.99 7.49 7.98

HA-m 2.74 2.00 6.06 4.63 7.35 5.79 5.25 5.40 5.14 5.55 7.41 6.64

Santander | occupancy | t = 60 | nRMSE

Adarules 3.00 2.19 4.23 2.95 4.42 3.33 4.00 3.65 4.53 3.76 5.43 4.87

ANA-y 3.59 2.87 5.28 4.26 6.43 6.90 6.21 6.21 6.87 8.36 8.47 8.37

ANA-q 4.70 3.69 5.37 3.19 7.66 7.92 5.50 6.47 6.28 4.16 9.56 8.91

ANA-m 3.58 2.27 7.55 3.31 7.82 3.19 5.74 4.00 9.49 3.81 10.03 4.85

HA-y 2.77 2.05 5.57 4.55 7.60 6.62 6.45 5.94 6.20 8.34 9.11 9.05

HA-q 2.62 2.14 5.15 3.84 8.34 7.52 6.05 6.39 5.83 5.06 7.71 8.17

HA-m 2.77 2.02 6.07 4.70 7.21 5.87 5.24 5.31 5.20 5.62 7.64 6.74
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7 Probabilistic model for robust traffic state

identification

Efficient estimation of local traffic states at each detection site in urban and freeway networks is

crucial for many real-time traffic management applications. Usually, these traffic states are inferred

from the bivariate relationship between traffic flow and density —as stated in the fundamental

diagram— using a deterministic approach. However, due to traffic congestion and position of

detection sites especially in urban networks, this relation is highly scattered making these methods

not suitable to handle the associated uncertainty in the process.

For this reason, we propose a probabilistic model that allows the inclusion of prior knowledge on

traffic states and part of their relative parametrization according to the expert user’s judgment.

The model is formulated in a Bayesian framework where we also introduce several constraints as

per the fundamental diagram shape to solve the common problem of identifiability in this kind of

generative models used to estimate latent variables. The model has been published in the scientific

literature [180].

Latent variables are those that are not directly observed but rather inferred from the set of variables

which are directly measured. Distilling such latent variables during the data modelling process is

widely recognized to be crucial, as they imply dimensionality reduction. Furthermore, these latent

variables are generally more easily interpreted as they are usually tied to a more meaningful semantic

interpretation, and lead to a concise representation of the observed data. Therefore, the focus is

on finding such underlying latent variables present in the bivariate relationship between the traffic

volume, usually measured as the number of vehicles per hour or another specific time resolution,

and occupancy, i.e. the percentage of time that a vehicle occupied the detector. This research

direction is mainly motivated by the theoretical and empirical findings found on the fundamental

diagram of traffic flow [245] and Kerner’s three-phase traffic theory [145], which already defines

an existing correlation assuming that, on average, drivers exhibit same behavior under similar

stationary conditions.
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7 Probabilistic model for robust traffic state identification

Still, estimating the traffic state associated with current traffic conditions in an urban context

presents several difficulties because of non-homogeneous traffic conditions, flow perturbations —

e.g. traffic lights— and the existence of transient states. Moreover, the existence of changes in the

capacity —the foundation for the fundamental diagram— of a given link is much more frequent.

These changes have their origin in various causes such as changes in the speed limit, the lanes

distribution, etc. The model is built with the motivation to overcome these difficulties.

Although the model is not limited to it, we have so far used cross-sectional data captured by

stationary sensors being induction loops the most ubiquitous ones [247]. For this reason, we have

decided not to model the fundamental relationships where speed is used because of the inability

of single-loop detectors to directly measure vehicle speed, but being estimated instead. We have

used the time-aggregated traffic flow 𝑄 and the time-aggregated occupancy 𝑂 using a specific time

interval ∆𝑡.

The traffic flow 𝑄 is defined as the number of vehicles ∆𝑁 passing through specific location 𝑥
within a time interval ∆𝑡:

𝑄(𝑥, 𝑡) = ∆𝑁
∆𝑡

Occupancy is the fraction of the time interval ∆𝑡 during which the location 𝑥 is occupied by a

vehicle:

𝑂(𝑥, 𝑡) = 1
∆𝑡

𝛼0+∆𝑁−1
∑

𝛼=𝛼0

(𝑡1
𝛼 − 𝑡0

𝛼)

where 𝛼 represent each individual vehicle, 𝑡0
𝛼 the instant when the 𝛼th-vehicle’s front passes the

detector and 𝑡1
𝛼 the instant when the 𝛼th-vehicle’s rear end passes the detector.

Finally, the performance of the model has been evaluated in the two networks: M4/M7 Motorways

network in Sydney, and the urban city center of Santander. Results demonstrate the robustness of

our approach to infer traffic states even with low data availability in some parts of the fundamental

diagram.
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7.1 Methodology

7.1 Methodology

7.1.1 Capacity change detection

The capacity of a lane or a link in traffic is the maximum traffic flow (vehicles per hour) that can

be accommodated in it during a given time period under prevailing roadway, traffic and control

conditions. The fundamental diagram of traffic is built around the foundation of the capacity

concept in order to explain the non-linear behaviour of traffic flow. And so does the probabilistic

method proposed in this thesis.

However, the empirical or observed capacity of a given link or lane is subject to different influential

factors such as the speed limit, the distribution of lanes —when considering multi-lane links—, the

signalization or even the average driving mode. This possibility of structural change associated with

the maximum capacity is much more frequent in an urban context due to the frequency of changes

in signalization, roadworks, etc. Ideally, the method should be applied to individual lanes in order

to reduce the degree of heterogeneity, so the method could be applied as a multi-level modelling

approach from individual lane-detectors up to multi-lane stations. However, this is not always

possible as sometimes the provided data has been already processed and aggregated. Besides, some

kind of changes —e.g. signalization— should be informed by local authorities to traffic management

centres for proper modelling corrections.

Still, we propose here an algorithm for the automated change detection of the observed capacity

based solely on data, which is related to structural changes over time. In our case, we define the

maximum capacity as the capacity from which a link becomes congested thus allowing a lower flow

of vehicles while these spend more time —i.e. at a lower speed— crossing the link. This maximum

capacity pivot is defined as a two-dimensional point of flow and occupancy —used as an equivalence

for the unobserved traffic density— placed in the plane of traffic flow and occupancy. In Figure

7.1, it is shown the algorithmic details about how to detect multiple observed capacities on a given

lane or link. In essence, the algorithm jointly utilizes the time series of flow and occupancy to

identify the maximum observed capacities (flow, occupancy) over time. To this end, it is important

to deseasonalize the maximum observed flow. Then, the key is to identify different clusters —

modelled as bivariate Normal distributions— of pairs (flow, occupancy) that depict an observed

capacity. Lastly, the mean of every of these identified components performs as a prior capacity.

An example on the application of this algorithm can be seen in Figure 7.2 where two different

capacities have been identified by the algorithm which has classified every day according to the

observed capacity. The original flow-occupancy diagram for this station (1024) is shown in Figure

7.3 where two different capacities can be visually distinguished very clearly.
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Algorithm 15: Detecting changes in observed capacity over time
Input : 𝑄(𝑡): Time series of traffic flow for a given lane/link

𝑂(𝑡): Time series of occupancy for a given lane/link
𝑄𝜏 = 0.975: Preset quantile for getting daily maximum flows
𝜔𝐷 = 15: Sliding window days considered for getting seasonal daily maximum

flows
𝜏𝑄 = 0.05: Bandwith around daily maximum flows
ℳ𝑚𝑎𝑥: Maximum number of mixture components
ℬ𝜏 : Threshold used for the Bhattacharyya distance

Output: Ξ: List of distinct observed capacities within the time series
1 begin
2 𝑄∗(𝑑) ← daily maximum flows applying 𝑄𝜏 on every date in 𝑄(𝑡)

// Dissociate typical seasonality (e.g. weekends) from observed maximum
flow

3 𝑄∗(𝑑) ← Apply rolling mean in 𝑄∗ as defined by 𝜔𝐷
4 foreach date 𝑑 in 𝐷 do

// Estimate the corresponding occupancy for every daily max flow 𝑄∗(𝑑)
5 𝑄∗

𝜏(𝑑) ← 𝑄∗(𝑑) ⋅ 𝜏𝑄
6 𝑂∗(𝑑) ← median(𝑂(𝑡)) ∀𝑡 ∈ 𝑑 and whose 𝑄(𝑡) is within 𝑄∗(𝑑) ± 𝑄∗

𝜏(𝑑)
7 end

// Using the 𝐷 observations [𝑄∗(𝑑), 𝑂∗(𝑑)], perform the estimation of the
optimal (BIC) number of 2-D Gaussian mixture components up to ℳ𝑚𝑎𝑥

8 ℳ ← Gaussian.mixture.components(𝑄∗(𝑑), 𝑂∗(𝑑))
9 foreach pair ℳ𝑖, ℳ𝑗 in ℳ do

// Calculate Bhattacharyya distance between ℳ𝑖, ℳ𝑗
10 𝒟𝑖𝑗 ← Bhattacharyya.distance(ℳ𝑖, ℳ𝑗)
11 if 𝒟𝑖𝑗 ≤ ℬ𝜏 then
12 Merge components ℳ𝑖, ℳ𝑗 and proceed recursively with close enough neighbour

components from either ℳ𝑖 or ℳ𝑗
13 end
14 end
15 foreach component ℳ𝑖 in ℳ do

// Every (remaining) component's mean is a detected prior capacity for
the given link

16 return ℳ𝑖
17 end
18 end

Figure 7.1: Change detection of the observed capacity based on the capacity defined by traffic flow
and occupancy.
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Figure 7.2: Classification of the daily maximum observed capacities for a given link-station (1024) in
Santander. Every point correspond to the daily maximum observed capacity. The two
color reflects the two detected capacities during these two years and the classification
of the days.

Figure 7.3: Flow-occupancy diagram for a given link-station (1024) in Santander. Two different
capacities can be visually distinguished.
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7.1.2 Traffic state identification

The proposed modelling method follows a probabilistic approach for finding the a-posteriori max-

imum probability model to explain the observed data while imposing certain constraints derived

from prior domain knowledge. In this sense, we impose the number of underlying traffic states.

This makes the model more interpretable by definition, and able to infer even in the regions with

less observed data. Furthermore, the proposed model can classify the different traffic states asso-

ciated with regions in the plane, and also fit the lines associated with the fundamental relation.

In addition, the parametric nature of the problem formulation makes the approach more robust

avoiding the overfitting.

7.1.2.1 Bivariate relationship of a single traffic state by means of a geometric interpretation

A single traffic state component is described by a bivariate Gaussian distribution. Intuitively it is

located somewhere on the plane of the fundamental diagram as it will be shown later, and it is pulled

by the degree of correlation between both variables, flow and occupancy, in that specific region of the

fundamental diagram. The decision to use a bivariate Gaussian distribution is motivated because

the perfect fit would be given by the line from the fundamental diagram itself, and thus, it is

reasonable to assume that the existing area of uncertainty around such line (the scatter of points)

could be modelled by the elliptic form of a bivariate Gaussian distribution. This distribution

may be, indeed, normally distributed around such line, but the main reason of such decision is to

facilitate computations that could be improved upon.

Such multivariate normal distribution is fully explained by its mean vector 𝜇 and its symmetric

positive semi-definite covariance matrix Σ, being the following in the bivariate case:

Σ = ⎡⎢
⎣

𝜎(𝑄, 𝑄) 𝜎(𝑄, 𝑂)
𝜎(𝑂, 𝑄) 𝜎(𝑂, 𝑂)

⎤⎥
⎦

= diag(Σ) Ω diag(Σ),

where Ω is the correlation matrix for traffic flow 𝑄 and traffic occupancy 𝑂, and diag(Σ) repre-

sent the vector of their standard deviations. The covariance matrix Σ defines both the spread

(variance) and the orientation (covariance) of the data. Still, in order to gain a more geometrical

interpretation and for the ease of modelling, we can uniquely decompose such symmetric positive

semi-definite matrix into a pair of vectors and magnitudes, i.e. the eigenvectors {𝑣1, 𝑣2} and the

eigenvalues {𝜆1, 𝜆2}. We recall that these define the shape of the data pointing into the direction

of the largest spread of the data, and whose magnitude equals the spread in this direction. The

eigendecomposition expresses matrix Σ in terms of its eigenvectors and eigenvalues Σ = 𝑉 Λ𝑉 𝑇 ,
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where 𝑉 is the matrix containing the eigenvectors and Λ is the matrix containing the correspond-

ing eigenvalues along the diagonal, and zeros elsewhere. The largest eigenvector ⃗𝑣1 points into the

direction of the largest spread of the data, whereas ⃗𝑣2 is always orthogonal to ⃗𝑣1 and points into

the direction of the second largest variance of the data. Furthermore, these eigenvectors ⃗𝑣, which

are unit vectors, can be easily reparameterized into a single value ⃗𝑣 = [cos 𝜃 sin 𝜃]𝑇 , where 𝜃 is the

plane angle. Once dealt with the orientation of the data shape, it is still necessary to reparameter-

ize to deal with the magnitudes, related to the eigenvalues Λ, for each orientation in order to have

the error ellipse representing the covariance matrix ( 𝑄
𝜎𝑄

)2 + ( 𝑂
𝜎𝑂

)2 = 𝑠, where 𝑠 defines the scale of

the ellipse. The left-hand side of this ellipse equation represents the sum of squares of independent

normally distributed data samples, and such sum of squared Gaussian data points is known that

follows a Chi-Square distribution with two degrees of freedom in this case. Thus, to use a 95%
confidence level for instance, we use the 95th quantile of a 𝜒2

2 distribution which is equivalent to

𝑠 ≈ 5.991. Now, using this scalar 𝑠 we can make a direct conversion between the eigenvalues Λ and

the ellipse’s axis lengths by 2
√

𝑠𝜆.

We perform eigendecomposition to seek the orthonormal vectors of the covariance matrix 𝑋𝑋𝑇 of

flow and occupancy for each traffic state component. A more general approach is to use Singular

Value Decomposition (SVD) on the original data matrix 𝑋. SVD is more general in that it applies

to non-square matrices, but we do not need this generality and thus we do not need to pay its

higher computational cost.

7.1.2.2 Extending the nomenclature for different traffic states

The aforementioned methodology is valid for describing a specific traffic state, but it can be easily

extended for 𝐾 states through a probabilistic graphical model (PGM) notation, as shown in Figure

7.5. This PGM reflects the set of 𝐾 traffic states where each one is described as a bivariate Gaus-

sian distribution. These are shown in the right of the figure but taking into account that they are

depicted without the reparameterization described in the last section only for a matter of ease of

comprehension. Each of this 𝐾 Gaussian components is described by its mean 𝜇𝑘 and its covariance

Σ𝑘, both having their corresponding prior hyperparameters 𝜇0
𝑘 and Σ0

𝑘 respectively. On the left

side of the figure, there is the set of 𝑁 points where each of this 𝑥𝑛 data observations, composed

of traffic flow and occupancy, is associated with one of the aforementioned 𝐾 components. This

association of the 𝑛𝑡ℎ datapoint and 𝑘𝑡ℎ traffic state is depicted through the 𝑧𝑛 node which corre-

sponds to a categorical multinomial distribution of size 𝐾. Finally, this multinomial distribution is

associated with a symmetric Dirichlet distribution 𝜋. The core of the proposed model is to adjust

its parameters represented as Ψ which best explain the observed data 𝑥, i.e. maximizing the model
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probability:

𝑃 (Ψ|𝑥) += 𝑃 (𝜋𝑘) + 𝑃 (𝑥𝑛|𝜇𝑘, Σ𝑘) ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁

Rather than the model probability, we actually maximize the log-probability (i.e. log 𝑃 (Ψ|𝑥)) be-

cause of its nicer mathematical properties when dealing with derivatives. However, the semantics

of the problem definition stays the same.

We have assumed 𝐾 = 5 traffic states in our model which are related to the underlying correlation

found on the fundamental diagram:

1. 𝐾1: (Almost) no traffic,

2. 𝐾2: Free-flow conditions,

3. 𝐾3: Maximum capacity,

4. 𝐾4: Traffic congestion conditions,

5. 𝐾5: Total congestion.

The motivation of defining such traffic states conditions are motivated by the theoretical statements

and empirical findings related to the shape of the fundamental diagram of traffic flow, and mainly

because for their reasonable and very interpretable semantics. It is important to clarify that no

automatic discovery of clusters is involved during the process that could be tagged afterward with

the corresponding traffic state as in a typical clustering application. The Gaussian components are

already explicitly labeled from the beginning taking advantage of the a priori knowledge derived

from the fundamental diagram. In this way, the observed data is then used to calibrate geometrically

these components that are not going to mix or overlap with each other because of the geometric

constraints included in the formulation of the model. A diagram showing the layout of these 𝐾 = 5
components in the flow-occupancy plane can be seen in the Figure 7.4.

Nomenclature of the PGM for each of the 𝐾 = 5 traffic states is shown in Table 7.1, including all

the parameters used in the model. The first column reflects the target component and its geometric

interpretation: location, orientation or shape which refer to the mean and variance in a Normal

distribution, respectively. The second and third columns show the parameter nomenclature and

the corresponding reparameterization used in the model. The term reparameterization is defined

to express a set of variables —such as the covariance of a multinormal distribution— in terms of

others such as e.g. the eigenvalues and eigenvectors obtained from the eigendecomposition of the

matrix. The fourth column tells whether the parameter is an input value given to the model, a

constant value, a sampled parameter to be calibrated from observed data or a derived parameter

170



7.1 Methodology

Occupancy

Fl
ow

100

𝜃1

𝜇1

𝜆11

𝜆12

0

𝜃2𝜇2

𝜆21

𝜆22

0

𝜃3
𝜇3

𝜆31

𝜆32

𝜃5

𝜇5𝜆51

𝜆52

𝜃4

𝜇4
𝜆41

𝜆42

K1

K2

K3

K4

K5

Figure 7.4: Block diagram showing the layout of the 𝐾 = 5 traffic states components placed in the
flow-occupancy diagram. Red parameters are fixed or constant, blue parameters are
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the imposed geometrical constraints. Parameters 𝜇 depict the mean of the components’
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Figure 7.5: Probabilistic graphical model for traffic state identification.
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Table 7.1: Nomenclature of the traffic states PGM.
Name Reparameterization Type Value
𝐾 proportions 𝜋𝐾 Sampled 𝐷𝑖𝑟(𝛼𝜋)
𝐾1 occ ratio 𝜏11 Input 0.05
𝐾1 flow ratio 𝜏12 Input 0.15
𝐾1 location 𝜇1 Constant [0 0]
𝐾1 orientation 𝑣11, 𝑣12 𝜃1 Derived 𝜃2
𝐾1 shape Σ1 𝜆11 Derived 𝜏11
𝐾1 shape Σ1 𝜆12 Derived 𝜏12

𝐾2 location 𝜇2 Derived 𝜇1, 𝜆12, 𝜃2, 𝜆22
𝐾2 orientation 𝑣21, 𝑣22 𝜃2 Sampled 𝒩(𝜇𝜃2

, 𝜎𝜃2
)

𝐾2 shape Σ2 𝜆21 Sampled 𝒩(𝜇𝜆21
, 𝜎𝜆21

)
𝐾2 shape Σ2 𝜆22 Sampled 𝒩(𝜇𝜆22

, 𝜎𝜆22
)

𝐾3 flow ratio 𝜏31 Input 0.20
𝐾3 location 𝜇3 Derived 𝜇2, 𝜆22, 𝜆31
𝐾3 orientation 𝑣31, 𝑣32 𝜃3 Constant 0
𝐾3 shape Σ3 𝜆31 Derived 𝜏31
𝐾3 shape Σ3 𝜆32 Sampled 𝒩(𝜇𝜆32

, 𝜎𝜆32
)

𝐾4 location 𝜇4 Derived 𝜇5, 𝜃4, 𝜆52, 𝜆42
𝐾4 orientation 𝑣41, 𝑣42 𝜃4 Derived 𝜇5, 𝜇3
𝐾4 shape Σ4 𝜆41 Sampled 𝒩(𝜇𝜆41

, 𝜎𝜆41
)

𝐾4 shape Σ4 𝜆42 Derived 𝜇5, 𝜃4, 𝜆52

𝐾5 flow ratio 𝜏51 Input 0.15
𝐾5 location 𝜇5 Constant [1 0]
𝐾5 orientation 𝑣51, 𝑣52 𝜃5 Derived 𝜃4
𝐾5 shape Σ5 𝜆51 Derived 𝜆41
𝐾5 shape Σ5 𝜆52 Derived 𝜏51

which is calculated from others. Therefore, the fifth column shows a default value, the distribution

to be sampled or the parameters which are used to derive the corresponding parameter. Input

refers to those parameters which are fixed as they represent relative ratios for some traffic states.

This means they can be set according to the traffic engineer’s criteria, or they can be left to the

reasonable defaults. Sampled refers to those parameters which are calibrated using the observed

traffic volume and occupancy data. More specifically, traffic states proportions 𝜋 has a symmetric

Dirichlet prior distribution, while the others five parameters are sampled from a prior normal

distribution whose hyperparameters are derived from what we call the maximum capacity pivot.

Finally, derived parameters are automatically calculated during the fitting by satisfying certain

constraints and basic geometric manipulation.

Table 7.2 shows the set of constraints defined in the model formulation as described in the algorithm

on Figure 7.6 to solve the probability maximization problem. These parameters are, thus, calibrated

by the sampling or optimization method in order to maximize the resulting model probability given
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Table 7.2: Parameter constraints during the sampling process.
Parameter Constraint

𝜃2 Support in [𝜋/6, 𝜋/2] rad
𝜆21 Support in [0, 0.15]
𝜆22 Support in [0, 𝑑𝑖𝑠𝑡([0, 0], [1, 1])]
𝜆32 Support in [0, 𝑑𝑖𝑠𝑡([0, 0], [1, 1])]
𝜆41 Support in [0, 𝑑𝑖𝑠𝑡(𝜇4, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝐾𝑥+

2 , 𝑦 = 𝜇42))]

the observed data, while at the same time complying with the imposed constraints. The model has

been implemented in the probabilistic programming language Stan [51] which provides full Bayesian

inference for continuous-variable models through Markov chain Monte Carlo using very efficient

samplers —such as the No-U-Turn sampler or Hamiltonian Monte Carlo—, but also gradient-based

variational Bayesian methods for approximate Bayesian inference. Its computational efficiency

along with the flexibility to specify the model have been the reasons for its choice. For example,

the model of a given detector with one-year data can be fit using variational Bayes in the order

of 5 to 10 minutes, using a single CPU core —therefore the fit of the entire network can be easily

parallelized at detector level—.

The resulting model is a 𝐾-dimensional vector 𝜋 with the data proportions for each traffic state and

a set of (𝐾) 𝐷−dimensional 𝜇 vectors with the means of the traffic states in the plane, together with

the corresponding 𝐷x𝐷−dimensional covariance matrices Σ, where 𝐷 = 2 because we are using two

variables: traffic flow and occupancy. This means that we have 𝐾 bivariate Gaussian distributions

whose probability density functions can be used to classify new instances very efficiently in real

time, given their good analytical and computational properties. Furthermore, if we are required

to update the model online using incoming mini-batches of data, well-established and efficient

frameworks such as Expectation-Maximization (EM) or streaming variational Bayes [46] could be

applied in a straightforward way.

7.1.2.3 Geometrical constraints

Besides the constraining of the sampling space for those parameters shown in Table 7.2, there are

additional geometrical constraints. These are more easily understood in conjuction with Figure 7.4.

The imposed geometrical constraints within the model formulation include:

• Location —i.e. centers— of 𝐾1 and 𝐾5 are constrained to a specific location: 𝑚𝑢1 = [0, 0]
and 𝑚𝑢5 = [100, 0].

• Certain parameter are directly derived from their immediate component as shown in the

nomenclature in Table 7.1. For instance, orientation in components 𝐾1 and 𝐾5 is the same
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Algorithm 16: Probabilistic model for traffic states
Input : 𝑋: Data with traffic flow and occupancy for a given capacity component ℳ𝑖

𝜏11: 𝐾1 occ ratio
𝜏12: 𝐾1 flow ratio
𝜏31: 𝐾3 flow ratio
𝜏51: 𝐾5 flow ratio

Output: 𝜇𝑘: Vectors of means for the 𝐾 = 5 Gaussian components
Σ𝑘: Matrices of covariances for the 𝐾 = 5 Gaussian components
𝜋𝑘: Vector of proportions among the 𝐾 = 5 Gaussian components

1 begin
2 Normalize 𝑋 = [𝑂, 𝑄] to be in range [0, 1]
3 Set 𝜇1 = [0 0]
4 Set 𝜇5 = [1 0]
5 Set 𝜃3 = 0
6 Sample 𝜋 ∼ 𝐷𝑖𝑟(𝛼𝜋)
7 Sample 𝜃2 ∼ 𝒩(𝜇𝜃2

, 𝜎𝜃2
)

8 Sample 𝜃5 ∼ 𝒩(𝜇𝜃5
, 𝜎𝜃5

)
9 Sample 𝜆21 ∼ 𝒩(𝜇𝜆21

, 𝜎𝜆21
)

10 Sample 𝜆32 ∼ 𝒩(𝜇𝜆32
, 𝜎𝜆32

)
11 Sample 𝜆51 ∼ 𝒩(𝜇𝜆51

, 𝜎𝜆51
)

12 Derive Σ𝑘 foreach [𝜆𝑘1𝜆𝑘2]
13 Derive [𝜇2, 𝜇3, 𝜇4] using constraints
14 for 𝑛 ∶= 1 to 𝑁 do Data loop
15 for 𝑘 ∶= 1 to 𝐾 do Traffic states loop
16 𝑃 (Ψ|𝑥) += 𝑃(𝜋𝑘) + 𝑃 (𝑥𝑛|𝜇𝑘, Σ𝑘)
17 end
18 end
19 end

Figure 7.6: Pseudocode for the traffic states PGM.
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as that of 𝐾2 and 𝐾4, respectively.

• The location 𝜇2 from 𝐾2 is set according to the projection of vectors and lengths using: 𝜇1,

𝜃2, 𝜆12 and 𝜆22.

• The orientation 𝜃4 from 𝐾4 is set according to the angle formed between 𝜇5 and 𝜇3 through

the arctan using both points.

• Let 𝛾𝑘𝑦−
3

be the point in the plane defined by the point 𝜇3 projecting the distance from the

minor eigenvector 𝜆31 towards the orthogonal direction of 𝜃3 —i.e. 𝜃3 + 3 𝜋/2—.

• Let 𝛾𝑘𝑦+
5

be the point in the plane defined by the point 𝜇5 projecting the distance from the

major eigenvector 𝜆52 towards the direction of 𝜃5.

• The major eigenvector 𝜆42 from 𝐾4 is set according to the distance from 𝛾𝑘𝑦+
5

to the point

defined by the intersection of 𝛾𝑘𝑦−
3

and the line which is defined by the projection from the

major eigevector 𝜆42 of 𝐾4 towards the direction defined by 𝜃4.

• The location 𝜇4 from 𝐾4 is set according to 𝛾𝑘𝑦+
5

, 𝜃4, 𝜆52 and 𝜆42.

• Let 𝛾𝑘𝑦+
2

be the point in the plane defined by the point 𝜇2 projecting the distance from the

major eigenvector 𝜆22 towards the direction of 𝜃2.

• The center 𝜇3 of 𝐾3 is set by projecting the major eigenvector 𝜆22 of 𝐾2, from the point 𝛾𝑘𝑦+
2

until the distance dictated by the vector [𝜆31 cos 𝜃2, 𝜆31 sin 𝜃2].
• Let 𝛾𝑘𝑥+

2
be the point in the plane defined by the tangent to 𝐾2 which is parallel to its major

eigenvector 𝜆22.

• Sampling space for parameter 𝜆41 —i.e. the width of component 𝐾4— is constrained to avoid

overlapping with the free-flow component 𝐾2. This is carried out by constraining 𝜆41 upper

bound to the distance between the center of 𝐾4 and the point 𝛾𝑘𝑥+
2

: distance(𝜇4, 𝛾𝑘𝑥+
2

).

7.2 Experiments

The proposed model is evaluated in the selected highway —M4/M7— and urban —Santander—

contexts with both datasets consisting of traffic flows and occupancy aggregated at different tem-

poral granularity.

Firstly, a station —defined as an aggregation of loop detectors in consecutive lanes— from the

M4/M7 Western Motorway has been modelled. In Figure 7.7, the two subfigures show segmen-

tation of the flow-occupancy plane in the different traffic states by proposed model. The upper

subfigure shows 𝐾 = 5 traffic states identified by the model, with the corresponding latent variable

proportions: 𝜋 = [0.184, 0.758, 0.02, 0.03, 0.003] ordered as described in the previous subsection.

That is, data density for the first traffic state corresponding to “almost no traffic” is 18.4% of the
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Figure 7.7: Traffic state identification results for a 3-lane station in the M4 Western Motorway
(Sydney). Upper figure correspond to the original result from the model with 𝜋 =
[0.184, 0.758, 0.02, 0.03, 0.003], whereas the figure in the bottom corresponds to a finer
classification in 7 states using a post-classification algorithm.
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overall data, 75.8% of the data reflects the second state for free-flow conditions, and less than 6%
for the remaining traffic states. Furthermore, two additional substates were derived by splitting

the free-flow state and the congested state into two using their nearest traffic states as points of

attraction during the classification of each incoming observation. As a result, the lower subfigure,

shows 7 traffic states identified by the model after applying a classification algorithm to identify

traffic states even more precisely. This approach may be appropriate when a finer classification is

required. In addition, independently of the number of traffic states, the proposed model is robust

to identify observations associated with traffic hysteresis phenomena in the congested traffic state

(by red and orange clusters respectively), which are just at the right hand side of the free-flow

traffic state (presented in green cluster).

Figure 7.8: Traffic state identification results for a 2-lane station in an urban arterial in the city of
Santander. Traffic states proportion is 𝜋 = [0.167, 0.565, 0.196, 0.072, 0].

Whereas in the case of the urban network dataset, Figure 7.8 shows the identified traffic states,

where the state proportions are 𝜋 = [0.167, 0.565, 0.196, 0.072, 0], in an urban expressway in San-

tander city. In addition, Figure 7.9, demonstrates a model performance in a more complicated

scenario corresponding to a station covering three lanes, located in an urban road of the city cen-

ter. Resulting state proportions, 𝜋 = [0.284, 0.645, 0.071, 0, 0], demonstrate that this road section

has never experienced congested traffic state. Figure 7.10 shows an interesting case where two

different observed capacities were detected and thus leading to two different traffic states model

estimations.
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7 Probabilistic model for robust traffic state identification

Figure 7.9: Traffic state identification results for a 3-lane station in an urban road in the city center
of Santander. Traffic states proportion is 𝜋 = [0.284, 0.645, 0.071, 0, 0].

Figure 7.10: Traffic state identification results for a 2-lane station in an urban road in the city center
of Santander, after two different observed capacities were detected in the dataset.
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7.3 Discussion

The proposed probabilistic graphical model for the identification of different local traffic states

is based on the bivariate relation from the fundamental diagram which correlates traffic flow and

density. The model uses data collected from stationary loop detectors which are the most ubiquitous

traffic data source, and thus we have used traffic flow and occupancy instead of density or speed

to avoid making more assumptions than needed.

A majority of methods in the literature that rely on the fundamental relationship to determine traffic

states are deterministic, neglecting the stochastic nature of such relation which is observed in the

form of wide scattering, especially in the congested traffic state. This uncertainty is modeled here

by using a more probabilistic approach. Furthermore, although the relation from the fundamental

diagram applies for traffic in equilibrium conditions, we have been able to apply it to an urban

scenario. The results are in line with the observations made in [163], where traffic is analyzed in

spite of such a wide scattering that data seems like a cloud of points at a glance, yet there are still

underlying patterns with data regions more dense than others. Nevertheless, it is recommended

the application of a filtering function to smooth the high frequencies and get rid of many transient

states, thus achieving a more robust estimation. This is especially important in urban data where

data resolution is high and there are important flow disturbances such as traffic lights, pedestrian

crossings, etc.

The proposed model [180] differs from others in the literature in that it uses a Bayesian perspective

that allows to include the prior information from the domain expert. In cases where such expert

knowledge is not available, we have proposed an algorithm to detect changes in the observed capacity

related to structural changes from historical data. These structural changes may include permanent

lane closures, new lanes, or permanent changes in the speed limit. This algorithm also serves to

provide the prior capacity pivot in the plane. This prior information and imposing constraints solve

the common problem of identifiability in this kind of generative models. It also solves the problem

when observed data is not available in some regions of the fundamental diagram, as was one of the

cases studied in this paper, where the model still correctly associates the identified traffic states.

The resulting model is very efficient in storage terms and to be applied in real-time operations.

Online updates can also be performed very efficiently.
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the traffic state dynamics

This chapter relies on the output generated by the traffic state model described in the previous

Chapter 7. More specifically, a Bayesian network is placed upon the traffic states in order to exploit

the spatiotemporal propagation of these in a probabilistic manner. The main motivation behind

this model is to exploit the principle of locality in traffic, where a specific location is directly

influenced only by its immediate surroundings. This is in contrast with the modelled effects in

Chapter 5 where the problem was treated in a high-dimensional setting. Obviously, the motivation

was different as the goal was to perform prediction at multiple time steps ahead —usually from

15 to 60 minutes—. In this case, the study is centered on modelling the local transition of traffic

states considering both the spatial and temporal influence, with the aim of performing inference

for the next time step. This is modelled using graph notation as shown in Figure 8.1 for a series

of nodes 𝑣1, … , 𝑣𝑛 —i.e. the complete network— or, more compactly, in Figure 8.2 showing the

influential variables on a given node 𝑣𝑖. These variables are determined by the corresponding rule

pattern at that moment, the upstream and downstream nodes of 𝑣𝑖 at the previous time interval as

well as the node 𝑣𝑖 itself at the previous time interval. This notation serves as the basis to build a

probabilistic graphical model such as a dynamic Bayesian network that relates the spatiotemporal

interaction of the traffic states in the network by means of the joint probabilities and taking benefit

of the existing conditional independence by the principle of locality.

Similarities can be found between the proposed modelling perspective and the work in [123]. They

proposed a dynamic Bayesian network approach using traffic conditions of past time instances in

the chosen link and its neighbours to estimate traffic conditions as a binary state variable (congested

or not congested) along a small network of arterial roads using probe vehicle data. However, the

approach is limited to classifying the traffic conditions into broad categories such as congested and

not-congested. The proposed method here is generalized to different network types, and it is built

on top of the traffic states information identified by the model from Chapter 7. Additionally, the

method here also benefits from the rule pattern provided by Adarules in Chapter 5 in order to

differentiate different network dynamics. Certain similarity can also be found with [261], although
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8 Spatiotemporal probabilistic model for learning the traffic state dynamics

their proposal is not aimed to incident detection nor learning the dynamics of the traffic states.

Actually, they propose a framework which relies on third-party incident reports —i.e. labelled

data— to classify as recurrent or non-recurrent those reported incidents. This classification is

done by means of a Bayesian network to assess when certain congestion propagation pattern is

anomalous enough using the joint probability. This joint probability is based on the congested or

non-congested states at every site along the road. Our approach is built on top of a more rich

and meaningful set of traffic states as described in the previous Chapter 7 and, furthermore, it is

aimed for automatic incident detection —i.e. non-recurrent congestion— through the learning of

the spatiotemporal traffic dynamics using the traffic states.

v1(t) v2(t) v3(t) vn-2(t) vn-1(t) vn(t)

v1(t-1) v2(t-1) v3(t-1) vn-2(t-1) vn-1(t-1) vn(t-1)

Rule 
pattern

Figure 8.1: Spatiotemporal Bayesian network involving the traffic states to exploit the principle of
locality in traffic: unfolded version for the complete network.

vi(t)

 

vi(t-1)
 

vi(t-1)

Rule 
pattern

vi(t-1)

DownstreamsUpstreams

Figure 8.2: Spatiotemporal Bayesian network involving the traffic states to exploit the principle of
locality in traffic: folded version for a given node 𝑣𝑖.

The reason of including both upstream and downstream traffic for every site is to consider the

incoming traffic flow but also to capture and take into account the derived effects from abrupt or

unexpected flow disruptions such as traffic incidents. These effects may be traffic shockwaves or

queue spillovers [104].
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There exist multiple potential applications for such general probabilistic spatiotemporal model.

These applications are based simply on the different type of queries that can be answered by the

spatiotemporal probabilistic model presented in the Figures 8.1 and 8.2. Namely:

General anomaly detection based on the current traffic states and optionally given the cor-

responding rule pattern. It implies performing a probabilistic query of how anomalous is the

observation of a given traffic state in a certain local area. This is carried out using the conditional

probability distribution of the selected local node according to the state of its surroundings and

optionally conditioning on a given rule pattern selected by Adarules. The algorithmic procedure

for this task is shown in Figure 8.3.

Filling in of missing data. This operation is equivalent to estimating the most probable network

traffic state using the available observed data so far. This means calculating the most probable

state of every node conditioning on those influential nodes with observed information as well as

the current rule pattern selected by Adarules. The algorithmic procedure for this task is shown in

Figure 8.4.

Incident detection. Because a traffic incident can be seen as a special case of anomaly, the

spatiotemporal probabilistic model can be used to detect anomalous, or with a low probability,

congestion spots also called non-recurrent congestion in order to raise an alarm and to evaluate the

spatiotemporal propagation and its severity. The algorithmic procedure for this task is shown in

Figures 8.5 and 8.6.

8.1 Quantifying the outlierness

The first step taken before the evaluation of the incident detection method is to perform a sanity

check showing how the proposed spatiotemporal probabilistic model evaluates the outlierness. To

this end, it has been taken a snapshot of Adarules at a specific time such as at the beginning of

the second year for each dataset —M4/M7 and Santander networks—. This means that Adarules

has observed and learned using data from the first year in each dataset, then being frozen so

that it is not going to be updated with new data but only to evaluate the outlierness using the

knowledge gathered until that moment. Then, starting from the second year in each network, data

has been altered in order to include a fake drift where AM and PM time period have been swapped

out, i.e. usual traffic during the day is moved to the night and vice versa. This artificial drift is

maintained for two months —i.e. until the end of the data used for this case study—.

Two algorithms for anomaly detection have been developed in this thesis and applied to this case
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Algorithm 17: Measure outlierness using the probabilistic traffic states approach
Input : 𝒯𝒮: Traffic states for every node 𝑣

𝑅𝐼𝐷: Name or identifier for the corresponding graph patterns / rules
Output: 𝒪(𝑣): Outlierness degree in every node 𝑣 of the graph

1 begin
2 foreach local node 𝑣 in 𝑉 do
3 𝑣𝑢 ← upstreams(𝑣)
4 𝑣𝑑 ← downstreams(𝑣)
5 𝑣𝐿

𝑢 ← lags(upstreams(𝑣))
6 𝑣𝐿

𝑑 ← lags(downstreams(𝑣))
7 𝑣𝐿 ← lags(𝑣)

// Which is the probability of observing the current traffic state in 𝑣
given the evidence 𝐸?

// Evidence 𝐸 is composed of the current graph pattern (rule) 𝑅 and
the past observation in its spatial surroundings 𝑣𝐿, 𝑣𝐿

𝑢 , 𝑣𝐿
𝑑

8 𝐸 ← 𝒯𝒮(𝑣𝐿
𝑢 ) ∪ 𝒯𝒮(𝑣𝐿

𝑑 ) ∪ 𝒯𝒮(𝑣𝐿) ∪ 𝑅𝐼𝐷
// Probability of observing the current state ̃𝑣 given the evidence in

𝐸
9 𝒪𝑣(𝑣) ← P(𝒯𝒮(𝑣) = ̃𝑣 | 𝐸)

10 end
11 return 𝒪(𝑣)
12 end

Figure 8.3: Measure outlierness using the probabilistic traffic states approach.

study. The first algorithm, described in Chapter 5, measures the outlierness for a given node 𝑣 in

the context of a rule 𝑅 (Figure 5.19) relying on the identified pattern for the flow propagation in

the network. For this reason, we call it ‘anomaly detection using graph features’ or ‘graph outlier’

as it makes use of the different distributions of flow propagation between nodes in the network

graph. The second algorithm is described in this chapter, Figure 8.3, and it relies on detecting

anomalous —or with low probability— spatiotemporal transitions of the underlying identified traffic

state among nodes 𝑣 in the network using a given rule 𝑅 as support to further discriminate certain

transitions. In essence, both methods are to detect anomalies but the type of anomaly, as well as

the message they tell, is different.

As shown in Figure 8.7 for both datasets, the timeline depicts the aggregated network outlierness

based on the graph pattern using the mean over all the individual anomaly scores from every node

𝑣 in the graph. As described in Chapter 5, this anomaly score relies on the estimation of Z-scores

and, thus, any value outside the range [−3, 3] is suspicious to be anomalous. The first thing to

note is how the outlierness score during the first year before the drift is wider in the Santander

dataset. This is to be expected, as an urban network has more variability in the propagation of

the flows through its links compared to a motorway network. The second fact to note is how this

network-aggregated anomaly score starts to oscillate strongly in the second year reaching levels
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Algorithm 18: Filling in of missing data using the probabilistic traffic states approach
Input : 𝑋: Input data matrix [𝑁 × 𝑝]

𝒯𝒮: Traffic states for every node 𝑣
𝑅𝐼𝐷: Name or identifier for the corresponding graph patterns / rules

Output: 𝑋Clean: 𝑋 data with filled missing data
1 begin
2 foreach local node 𝑣 in 𝑉 do
3 𝑣𝑢 ← upstreams(𝑣)
4 𝑣𝐿

𝑢 ← lags(upstreams(𝑣))
5 𝑣𝑑 ← downstreams(𝑣)
6 𝑣𝐿

𝑑 ← lags(downstreams(𝑣))
7 𝑣𝐿 ← lags(𝑣)

// Which is the most probable traffic state for 𝑣 given the evidence
𝐸?

// Evidence 𝐸 is composed of the observed values coming from spatial
neighbouring (upstream and downstreams) around 𝑣 coupled with their
temporal information (temporal lags), and optionally the current
graph pattern (rule 𝑅)

8 𝐸 ← ( 𝒯𝒮(𝑣𝑢) ∪ 𝒯𝒮(𝑣𝐿
𝑢 ) ) ∪ ( 𝒯𝒮(𝑣𝑑) ∪ 𝒯𝒮(𝑣𝐿

𝑑 ) ) ∪ 𝒯𝒮(𝑣𝐿) ∪ 𝑅𝐼𝐷
// Most probable joint state within the joint distribution

9 𝒯𝒮(𝑣) ← max P(𝒯𝒮(𝑣) | 𝐸)
10 Derive associated features (flow, occupancy, speed) associated with the traffic state

𝒯𝒮(𝑣) and fill in 𝑋
11 end
12 return 𝑋Clean
13 end

Figure 8.4: Filling in of missing data using the probabilistic traffic states approach.
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8 Spatiotemporal probabilistic model for learning the traffic state dynamics

Algorithm 19: Incident detection using the probabilistic traffic states approach
Input : 𝒯𝒮: Traffic states for every node 𝑣

𝑅𝐼𝐷: Name or identifier for the corresponding graph patterns / rules
Output: 𝐼𝐷(𝑣): Severity of incidents in every spot of the network graph

1 begin
// The first stage consists of assigning a raw score based on the

identification of anomalous congestion spots (congestions which are
non-recurrent in terms of probability) through the network graph

2 foreach local node 𝑣 in 𝑉 do
3 𝑣𝑢 ← upstreams(𝑣)
4 𝑣𝑑 ← downstreams(𝑣)
5 𝑣𝐿 ← lags(𝑣)

// Find suspicious observations 𝑛 ∈ 𝑁 where 𝑣 spot is congested and
any of its neighbour spots 𝑣𝑥 are not

6 𝒮𝑖𝑑𝑥 ← 𝒯𝒮(𝑣) is congested
∧ ∃ 𝑣𝑥 ∶ (𝒯𝒮(𝑣𝑢1

) ∨ … ∨ 𝒯𝒮(𝑣𝑢𝑛
) ∨ 𝒯𝒮(𝑣𝑑1

) ∨ … ∨ 𝒯𝒮(𝑣𝑑𝑛
) is not congested)

7 foreach observation 𝑛 in 𝒮𝑖𝑑𝑥 do
8 Get the set of non-congested neighbour spots 𝑣𝑁𝐶 ⊆ {𝑣𝑢, 𝑣𝑑} of 𝑣
9 𝑣𝐿

𝑁𝐶 ← lags(𝑣𝑁𝐶)
// Which is the joint probability for the current traffic state and

its lags in 𝑣, 𝑣𝐿 given the evidence 𝐸?
// Evidence 𝐸 is composed of those traffic states from

non-congested neighbours 𝑣𝑁𝐶, 𝑣𝐿
𝑁𝐶 and the current graph pattern

(rule) 𝑅
10 𝐸 ← ( 𝒯𝒮(𝑣𝑁𝐶) ∪ 𝒯𝒮(𝑣𝐿

𝑁𝐶) ) ∪ 𝑅𝐼𝐷
// Joint probability distribution 𝐽𝑣 of 𝑣 ∩ 𝑣𝐿 given the evidence in

𝐸
11 𝒥𝑣 ← P(𝒯𝒮(𝑣) ∩ 𝒯𝒮(𝑣𝐿) | 𝐸)

// Calculate outlierness raw score 𝑂𝑟𝑎𝑤𝑣,𝑛 using the joint
probability distribution 𝒥𝑣

12 𝑂̂𝑟𝑎𝑤𝑣,𝑛 ← (max 𝒥𝑣)−(𝒥𝑣(𝒯𝒮(𝑣)= ̃𝑣 ∩ 𝒯𝒮(𝑣𝐿)= ̃𝑣𝐿))
max 𝒥𝑣

13 end
14 end

Figure 8.5: Incident detection using the probabilistic traffic states approach. Part I.
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(15)

// The second stage consists of assigning a final score for those enough
raw anomalous spots

(16) 𝑂̂𝜏𝑟𝑎𝑤 ← 0.50
(17) foreach observation 𝑛 in 𝒮𝑖𝑑𝑥(𝑣) do
(18) For those enough anomalous spots 𝑂̂𝑟𝑎𝑤 > 𝑂̂𝜏𝑟𝑎𝑤

// The final score is composed of three different contributions:
(𝑂̂1 ∈ [0, 1]) a relative severity of the existing congestion (50%),
(𝑂̂2 ∈ [0, 1]) the temporal recurrence of the existing non-recurrent
congestion (25%), and (𝑂̂3 ∈ [0, 1]) the spatial propagation of the
incident through the network graph (25%)

(19) 𝑂̂1 ← 𝒯𝒮(𝑣) − 𝐻(𝒯𝒮(𝑣𝑁𝐶))
// Here 𝐻(𝑥) is the harmonic mean of vector 𝑥

(20) 𝑡𝑚𝑎𝑥 ← 30 minutes
(21) 𝑂̂2 ← min(𝑂̂2 + ∆𝑡/𝑡𝑚𝑎𝑥, 1)
(22) Find recursively congested neighbours of 𝑣 in order to assess the spatial propagation

of the incident
(23) 𝑂̂3 ← number of nodes linked to 𝑣 in a congested state through the graph up to a

given maximum
(24) 𝐼𝐷(𝑣) ← 0.50 ⋅ 𝑂̂1 + 0.25 ⋅ 𝑂̂2 + 0.25 ⋅ 𝑂̂3
(25) end
(26) return 𝐼𝐷(𝑣)
(27) end

Figure 8.6: Incident detection using the probabilistic traffic states approach. Part II.

that indicate a severe anomaly. This occurs for both datasets, and the level of anomaly never

decreases along the two months because Adarules state is frozen and thus there is no adaptation

involved. This is intended to show the anomaly detection with a new situation —swapping out the

traffic in the AM and PM periods— using the rules and knowledge gathered from the first year in

each dataset. In a real scenario where Adarules would adapt itself automatically after detecting

these changes, the level of anomaly would decrease over time. Nevertheless, the key fact is that

this method of anomaly detection based on the graph rule relies heavily on the historical traffic

conditions and the distribution of flow propagation which has been seen in the scope of every rule

pattern independently from the rest of the current network traffic state even if it is consistent. It

is also interesting to check how Adarules would progressively adapt to this new data distribution

considering it less anomalous over time. This happens in a real scenario where Adarules would

receive this data and being adapted to it, as shown in Figure 8.9.

On the other hand, the outlierness scores shown in Figure 8.8 based on the use of the traffic states

within the probabilistic spatiotemporal model show a different story. Again, the timeline depicts

the aggregated network outlierness using the mean over all the local anomaly scores from every
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8 Spatiotemporal probabilistic model for learning the traffic state dynamics

node 𝑣 in the graph. In this case, there is no significant difference in the level of anomaly —whose

maximum allowable range is in [0, 1] as it is a probabilistic measure— between the real data as

part of the first year and the artificial data with the swap AM-PM. This is because even that the

method —described in Figure 8.3— makes use of the selected rule pattern, it also makes use of the

current network conditions to assess how anomalous is the traffic seen at spot 𝑣. Therefore, if the

network traffic flow is consistent even if it is not the usual one within the current rule 𝑅, it is not

seen as an anomaly for this spatiotemporal network model as it is aimed to detect inconsistencies

in the traffic flow.

These two outlier detection methods complement each other, as they provide different but valuable

output information in the target application for traffic engineers and managers, as more information

supports and ease the decision making.

Because a traffic incident can be seen as a special case of anomaly or inconsistency in the traffic flow

due to the disruption effect, the spatiotemporal probabilistic model can be used to detect anomalous

—i.e. with an expected low probability— congestion spots also called non-recurrent congestion in

order to raise an alarm and to evaluate the spatiotemporal propagation and its severity. This

incident detection will be evaluated in the next subsection.

8.2 Incident detection

As aforementioned, a traffic incident can be seen as a special case of anomaly. This anomaly or

inconsistency is presented as a disruption of the traffic flow at a specific point in the network.

Therefore, the spatiotemporal probabilistic model can be used to detect such anomalous spot —

i.e. with an expected low probability—. However, a traffic incident is characterized by being

anomalous —i.e. non-recurrent— but it also must fulfill other requirements as the anomalous spot

must be in a congested state —non-recurrent congestion—. Once detected such anomalous spot

with the form of an incident, an alarm is raised and the traffic states are kept under observation in

order to measure the incident severity through the assessment of the temporal recurrence and the

spatial propagation of the incident.

The algorithmic details of the procedure for incident detection using the probabilistic spatiotempo-

ral model are shown in Figures 8.5 and 8.6. More specifically, the first step is to detect those spots

in the network which are in a congested state and then evaluate if this congestion is anomalous

—non-recurrent— given its surroundings and the current graph pattern. If it is enough anomalous,

the incident is scored according to three factors:
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Figure 8.7: Timeline of the outlierness based on the graph anomaly detection —in this case shown
as the mean of the anomaly score from all the nodes in the graph at a given time
(HH:MM)— for both datasets using Adarules in a frozen state after performing the
learning of the first year, then facing an artificial drift in the traffic from AM and PM
periods.
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Figure 8.8: Timeline of the outlierness based on traffic states —in this case shown as the mean of
the anomaly score from all the nodes in the graph at a given time (HH:MM)— for both
datasets using Adarules in a frozen state after performing the learning of the first year,
then facing an artificial drift in the traffic from AM and PM periods.
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Figure 8.9: Timeline of the outlierness based on the graph anomaly detection —in this case shown
as the mean of the anomaly score from all the nodes in the graph at a given time
(HH:MM)— for both datasets. In this case, Adarules is receiving and processing streams
of this new data with AM-PM drift, and that is the reason why they are progressively
considered less anomalous over time.
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1. Severity of the congestion: This means the level of the measured traffic congestion ac-

cording to its traffic state at the anomalous spot, as well as the difference with respect to the

traffic conditions in its adjacent nodes. This factor represents a 50% of the final score.

2. Temporal persistence: It corresponds to the duration in time of the incident and represents

a 25% of the final score.

3. Spatial propagation: The traffic states of those nodes connected to the incident are recur-

sively analyzed to assess how far the incident has propagated. This represents a 25% of the

final score.

In this way, with the joint use of the spatiotemporal information, it is taken into account the

propagation effects in space and time of the incident in order to score its severity. It also mitigates

the noise effects by taking into account the persistence effect of the traffic incident, potentially

reducing the ratio of false positives. The combination of these factors gives a score for the incident

severity in the range [0, 1]. This score has been scaled to [0, 5] in the different results’ charts simply

for a matter of ease of viewing.

The evaluation of a traffic incident detection algorithm is always challenging because of the anoma-

lous nature of such events. It is usually difficult to have data with labelled incidents, i.e. knowing

exactly when the incidents have occurred, as well as their length, etc. Even more, when this data

is labelled —e.g. using reports from local authorities—, the labelling information data is usually

noisy and unreliable, as they are usually shifted in time or space, or simply not all incidents are

reported. Therefore, this makes difficult to develop and train an incident detection model and that

is the reason why an unsupervised and probabilistic approach has been taken to this end in this

thesis. This way, the proposed model does not require incident labelled data which makes it more

robust and easier to transfer to new areas with unlabelled incident data or even with no incidents

observed yet. The potential interpretability of the model by an end-user —such as a traffic engineer

or manager— as for example the reasons behind every decision is another strong point.

In addition to the training of the model, the lack of labelled and reliable incident data makes

difficult to test the model and even more to evaluate it in a rigorous way as typically happens with

classification algorithms relying on the measurement of the ratio of true positives, false positives

—e.g. precision and recall are two common model evaluation metrics in classification—.

For this reason, the incident detection algorithm has been evaluated on a set of cases in two road

traffic networks. One is the previously described M4/M7 motorways network. To this end, it has

been selected a specific time period from January, 2016 – April, 2016, and also a specific network

area —the M4 Western Motorway heading east direction. The reason for such focus on a time

period and a spatial area is because of the manual work on finding relevant incidents on data while
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assuring that they represent a true incident. This work has been carried out in cooperation with

Aimsun traffic engineers in order to leverage their expert knowledge and perform the verification

of the incidents. The second network corresponds to the city of Bristol (England) in order to

also perform the evaluation in an urban network. In this latter case, the data is synthetic as it

comes from the output of several simulations using the Aimsun software. The reason for this is the

difficulty to find true incidents in the noisy urban data of Santander, as well as to be sure of the

time at which such incidents have occurred.

For the aim of showing the incident detection in the following figures, the traffic state —as presented

in Chapter 7— is used instead of, for instance, using both the traffic flow and occupancy or the

speed because the traffic state already shows a compacted vision of the combination of these former.

Moreover, the traffic state is an easy-to-understand latent variable that can be interpreted as an

analog to the level-of-service:

1. (Almost) no traffic,

2. Free-flow conditions with low flow,

3. Free-flow conditions with high flow,

4. Maximum capacity,

5. Light traffic congestion,

6. Heavy traffic congestion,

7. Total congestion.

In every figure, there is an orange horizontal line that marks the limit between congested traffic

(traffic states 5, 6 and 7) when exceeding the maximum link’s capacity and non-congested traffic

(traffic states 1, 2, 3 and 4). In addition, there is a shaded area in red for those time periods with a

detected incident score for every detector. This incident score is the result of the calculation of three

factors —severity of the non-recurrent congestion, temporal persistence, and spatial propagation—

as described in the previous section. The incident score ranges originally from 0 to 1 but it is scaled

to [0, 5] in order to make easier its visualization within the figures. All this visualization related to

the traffic states and the incident scoring is summarized in the legend shown in Figure 8.10.

8.2.1 M4 Western Motorway

The dataset corresponds to the period January, 2016 – April, 2016, and the study area is focused

along the M4 Western Motorway heading the east direction. The loop detection identifiers are

named MS0040xxA where ‘xx’ correspond to two digits, so the flow direction moves as the digits

increases —i.e. MS004001A → MS004099A—.
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The first incident in Figure 8.11 displays an incident occurring between detection sites MS004028A

and MS004029A around 15:15. Actually, it can be observed how the incident originates between

MS004029A and MS004030A, as can be seen by the congested state (5) at 15:15 in MS004029A while

MS004030A remains in the free-flow state (3). The spatiotemporal model identifies as anomalous

this transition of traffic states in the time-space. After the incident arises, it is rapidly spread

backward to the position of MS004028A. It is in this position where the flow disruption persists

longer in time as shown by the congested state as well as the incident score. There are other shorter

incident alarms spread in time-space around the main incident site (MS004028A) because of the

effect of the traffic flow disruption as the incident propagates. It can be also observed that the

severity of the incident is not that high if measured solely by the severity of the congestion (level

5 in MS004028A) compared to the escaping traffic flow level downstream (level 3 in MS004029A

and MS004030A). However, the fact that the incident persists in time, and that it is propagating

upstream (MS004025A and beyond) is the reason why the incident detection model assigns the

incident a higher alarm score.

The incident shown in Figure 8.12 occurs around 17:30 and it has a similar effect to the previous in-

cident. In this case, the incident occurs between the detection site MS004026A and the MS004027A,

while the congestion propagates upstream towards the MS004025A. The incident detection model

assigns a moderate severity to the incident (about 2 out of 5). Another thing to note is that after

18:15 there is missing data in these detectors so then the level of alarm is gradually decreased.

Figure 8.13 shows a small incident occurring at 12:30 between MS004030A and MS004031A. The

incident vanishes rapidly without any effect of congestion propagation.

The incident observed in Figure 8.14 takes place first between detection sites MS004039A and

MS004040A at 15:00, but these sites become uncongested and the incident is then observed at the

MS004038A site. the congestion severity is not that high, but it lasts around 30 minutes and it is

propagated upstream (MS0040436A).

In Figure 8.15, it can be observed many small incidents occurring in the M4 Western Motorway

nearby MS004034A and MS004041A at around 17:15. This seems more like a situation where a

phantom jam occurs because of the small duration of such incidents and how these incident alarms

propagate in the upstream direction. This hypothesis is also supported by the fact that traffic

sites were in a maximum capacity state (4) before the incidents occur. Therefore, any small abrupt

disruption caused by individual drivers —e.g. abruptly braking— could cause such instabilities in

the traffic flow.

Figure 8.16 shows an important incident occurring at 19:15 in the M4 Western Motorway between
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the detection sites MS004030A and MS004031A. It can be observed how the traffic flow was in a

free-flow state with low traffic volume (state 2) and then suddenly it turns out into a heavy traffic

congestion (state 6) for about 45 minutes and propagating the congestion upstream (MS004026A

and beyond), and thus the incident detection model assigns a high incident score. The incident

alarm then moves to an upstream detector (MS004029A) as the incident is vanishing.
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7 Incident score [0, 5]  

Figure 8.10: Color legend for traffic states [1 - 7] and the incident score range [0, 5].
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Figure 8.11: An incident occurring in the M4 motorway between MS004028A and MS004029A at
15:15 (6th January 2016). Traffic states [1 - 7] and incident score [0, 5] are shown.

8.2.2 Bristol urban network

For the second set of experiments, a network from the city of Bristol has been used in order to

perform several simulations with traffic incidents. The simulations have been performed using the

traffic simulation software Aimsun with the support from expert traffic engineers. The geometry

195



8 Spatiotemporal probabilistic model for learning the traffic state dynamics

M
S

004025A
M

S
004026A

M
S

004027A

17:30 18:00 18:30

0

5

0

5

0

5

Figure 8.12: An incident occurring in the M4 motorway between MS004026A and MS004027A at
17:30 (13th January 2016). Traffic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.13: An incident occurring in the M4 motorway between MS004030A and MS004031A at
12:30 (12th March 2016). Traffic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.14: An incident occurring in the M4 motorway between MS004040A and MS004041A at
15:00 (29th March 2016). Traffic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.15: An incident occurring in the M4 motorway between MS004040A and MS004041A at
17:15 (28th January 2016). Traffic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.16: An incident occurring in the M4 motorway between MS004030A and MS004031A at
19:15 (31th March 2016). Traffic states [1 - 7] and incident score [0, 5] are shown.

of such road network can be seen in Figures 8.17 and 8.18 focused on those areas where the groups

of detector used in the experiments are located.

The first thing to take into consideration is that as the incident detection model is based on a

spatiotemporal model that relates the transition of the traffic states in the time-space, it is is

possible that some of these traffic state transition could be detected as anomalous. This may

be because of the small sample size of the data in spite of the aimed efforts to perform several

simulations. More specifically, 4 simulations with normal traffic conditions have been performed,

and then 5 different simulations with traffic incidents. Two of these simulations have been run twice

in order to change the random seed. Then, the traffic state models from Chapter 7 is trained with

this data, and so the spatiotemporal probabilistic model presented in the current Chapter. Data

resolution is ∆𝑡 = 1 minute per sample.

The first simulation is run from 8:00 to 9:30, performing a full lane closure between 8:30 and 8:40.

The affected detector is Semaforo_0. The result is shown in Figures 8.20 and 8.21. There are

two figures because the same simulation was run twice changing the random seed, but the result

is almost identical. It can be observed the level of maximum congestion (state 7) in the original

affected detector Semaforo_0 as well as its upstreams (Semaforo_50, Semaforo_100, N01151O1).

Thus the incident score assigned by the incident detection model is high despite the challenging
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situation as the detectors are pretty close to a traffic light with the associated noise and the existence

of transient traffic states. There are some anomalous detections with a low score out of the incident

time that may be due to the small sample size and thus are considered as anomalous transitions of

traffic states which have involved a disruption in the flow.

The second simulation is also run from 8:00 to 9:30 with the traffic incident —a full lane closure—

occurring between 8:30 and 8:40. This simulation is also carried out with two random seeds. In

this case, the studied group of detectors is different and the main affected detector is Exp2_m50.

In this case as shown in Figures 8.22 and 8.23, the incident is completely detected at the moment

it arises (8:30). The severity assigned to the incident is high and increasing over time because

of the spatial propagation of the congestion, the persistence of the incident in time, and also the

level of existing congestion (state 7) compared to the level of traffic in the downstream detectors

(Exp2_Left, Exp2_50, Exp2_100) which are in the traffic state of no traffic (state 1). After the

simulated incident has finished, there is still some effects of the remaining non-recurrent congestion

as detected by the model at some spots (Exp2_m50, Exp2_m100).

The third simulation is run from 7:00 to 11:00, with the incident taking place between 8:00 and

8:30. The affected detector is Semaforo_0, performing a full lane closure. The incident is clearly

detected as shown in Figure 8.24 with a high severity which is increasing over time. However, the

main effects of such incident are detected in the detector N01151O1 instead of the Semaforo_0.

The fourth simulation is also run from 7:00 to 11:00 and the incident occurs between 10:30 and

11:00. The fifth simulation is similar and it is run from 15:00 to 19:00 with the incident taking

place between 18:30 and 19:00. In both cases the main affected detector is Semaforo_0, performing

a full lane closure. There is an interesting fact here, as shown in Figures 8.25 and 8.26, and it is

that even though the incident is timely detected when it arises, there are some moments where the

incident score decreases. This is because of the great representation of such transition of traffic

states in a small sample size. Because of this, the alarm mainly rises when there are traffic flow

disruptions when detectors D01152 or D01155 change from no traffic (state 1) to observe a certain

flow level (state 2).
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8 Spatiotemporal probabilistic model for learning the traffic state dynamics

Figure 8.17: Bristol network focused on the area where the detectors Semaforo_100, Semaforo_50,
Semaforo_0, N01151O1, D01155, D01152 are located.

Figure 8.18: Bristol network focused on the area where the detectors Exp2_m100, Exp2_m50,
Exp2_50, Exp2_100, Exp2_Left, N01331Q1, N01331Q2 are located.
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Figure 8.19: Color legend for traffic states [1 - 7] and the incident score range [0, 5].
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Figure 8.20: An incident occurring in the Bristol urban network nearby Semaforo_0 at 8:30. Ran-
dom seed A. Traffic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.21: An incident occurring in the Bristol urban network nearby Semaforo_0 at 8:30. Ran-
dom seed B. Traffic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.22: An incident occurring in the Bristol urban network nearby Exp2_m50 at 8:30. Ran-
dom seed A. Traffic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.23: An incident occurring in the Bristol urban network nearby Exp2_m50 at 8:30. Ran-
dom seed B. Traffic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.24: An incident occurring in the Bristol urban network nearby Semaforo_0 at 8:00. Traffic
states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.25: An incident occurring in the Bristol urban network nearby Semaforo_0 at 10:30. Traf-
fic states [1 - 7] and incident score [0, 5] are shown.
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Figure 8.26: An incident occurring in the Bristol urban network nearby Semaforo_0 at 18:30. Traf-
fic states [1 - 7] and incident score [0, 5] are shown.

204



9 Conclusions and future research

The aim of this thesis has been the design and development of an integrated system for real-

time traffic forecasting based on machine learning methods. Nevertheless, despite the fact that

traffic prediction has been the driving motivation for the thesis development, the proposed ideas

and scientific contributions in this thesis are generic enough to be applied in any other problem

where, ideally, their definition is that of the flow of information in a graph-like structure with special

interest in environments susceptible to changes in the underlying data generation process. Moreover,

the modular architecture of the proposed solution facilitates the adoption of small changes to the

components that allow it to be adapted to a broader range of problems.

The focus in this thesis, thus, has been put on a macroscopic perspective of the traffic flow where

the individual road traffic flows are correlated to the underlying traffic demand. These short-term

forecasts include the road network characterization in terms of the corresponding traffic measure-

ments —traffic flow, density and/or speed—, the traffic state —whether a road is congested or

not, and its severity—, and anomalous road conditions —incidents or other non-recurrent events—.

The main traffic data used in this thesis is aggregated data coming from inductive-loop detectors

installed along the road networks. In spite of their pitfalls, the main reason is that they have

become the most widely used sensor in traffic management systems since their introduction in the

early 1960s and such the large source of available data. Nevertheless, other kinds of traffic data

sources could be equally suitable with the appropriate data preprocessing.

Furthermore, the proposed data-driven forecasting system is planned to be linked to a simulation-

based traffic model in a mutually beneficial relationship where they cooperate and assist each other.

The simulation-based platform —where multiple traffic models are implemented— is Aimsun Next

and the corresponding real-time version for traffic management is Aimsun Live [5]. In this sense, an

example is when an incident or non-recurrent event is detected with the proposed methods in this

thesis, then the simulation-based forecasting module can simulate different strategies to measure

their impact.

Part of this thesis has been also developed in the context of the EU research project “SETA” (H2020-

ICT-2015) [61] which is creating a ubiquitous data and service ecosystem for a better metropolitan
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mobility and the analysis of how short-term prediction can be improved through the use of multiple,

highly diverse sources.

The whole result of this thesis, as shown in Figure 4.1, is an integrated system —Adarules described

in the Chapter 5— for real-time forecasting which has the ability to make the best of the available

historical data, while at the same time it also leverages the theoretical unbounded size of data in a

continuously streaming scenario. This is achieved through the online learning and change detection

features of the system along with the automatic finding and maintenance of patterns in the network

graph. In addition to the Adarules system, another result is the probabilistic model described in

the Chapter 7 that characterizes a set of interpretable latent variables related to the traffic state

based on the traffic data provided by the sensors along with optional prior knowledge provided by

the traffic expert. On top of this traffic state model, it is built the probabilistic spatiotemporal

model described in the Chapter 8 that learns the dynamics of the transition of traffic states in the

network.

More specifically, as described in Chapter 5, a non-parametric modelling approach has been adopted.

This means that patterns related to the existing traffic dynamics in the network are found auto-

matically from the observed data, but the key aspect is that this process of pattern mining is not

limited to the collected historical data but it is continuously running in order to unveil patterns on

new data, detect abnormalities in the context of such patterns, and also to detect when these be-

come outdated. Therefore, as shown in Figure 4.1, there is no hard requirement in having collected

large amounts of data —e.g. a full year to have observed all the seasonality effects as in typical

time-series modelling approach— before the beginning of a project. This is of great importance as

it is not rare at all to start a new project in a city where the available collected traffic data only

extends to three months for example. Obviously, the more collected historical traffic data to use

the better, as it can be used to perform a more accurate pattern identification before starting to

execute the forecasting system in real-time. Moreover, the system performs an efficient use of that

historical data as outdated data would be automatically discarded when appropiate. The historical

collected traffic data can also be used to train the traffic states models as well as their interactions

in the probabilistic spatiotemporal model.

Another input to the system usually in the offline stage, but that could be carried out in real-time

too, is the consideration of the prior knowledge or assumptions in the form of qualitative variables

—such as the day of the week, time of the day, public holidays and/or events calendar, weather,

etc.—. These priors are the form that the expert user —i.e. a traffic engineer or traffic manager—

may express their knowledge or beliefs about the specific road network. Otherwise, there exist

some reasonable defaults like using the basic calendar data —time of the day, day of the week and
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public holidays calendar—.

Finally, among the inputs, it is important to use the graph of the road network in order to perform

an accurate pattern mining —i.e. the rules— as well as building the probabilistic spatiotemporal

model. It is not necessary to include a lot of detail about the geometry nor traffic signal control

plans. The only required information is the graph describing roads’ connections in a topological

sense.

Once the system is running in real-time, it is fed with incoming traffic data streams. This streaming

data is used in two processes: the Adarules framework and the local traffic state identification.

Within the Adarules system, the data is first used to update and check the validity of the identified

graph patterns —rules— and perform proper restructuring changes if necessary when a global

change is detected on them within the graph global change detection. Then, data is also used

to unveil new patterns as more evidence is collected in the context of every rule using the graph

pattern mining component. These graph patterns or rules are the main components within Adarules,

as every part of the observed data belongs to a certain rule. This makes the system prone to

parallelization and scalable. Besides updating rules and their statistics with new data, detecting if

a rule is outdated —i.e. a global change is detected— or discovering new patterns, the streaming

data is also used to measure the outlierness of the traffic observations in the context of a given rule

using the graph flow anomaly detection. Missing observations can be replaced with the statistics

collected in every rule, which is called as basic imputation for missing data. Furthermore, the

data is also used in the local context of every node in the graph for the forecasting models. This

includes using the models for prediction, updating them with new data and using their outputs in

the process of local change detection.

On the other hand, the streaming traffic data is also fed to perform the local traffic state identifi-

cation using the model presented in Chapter 7. These traffic states are the input for the spatiotem-

poral probabilistic model presented in Chapter 8, along with the graph of the road network as well

as optionally the current rule pattern. The outputs from this spatiotemporal model include the

measurement of the outlierness using the traffic states’ anomaly detection, as well as performing

automatic incident detection and the quantification of their severity. The spatiotemporal model

may also be used to estimate the most probable network traffic state using the current traffic obser-

vations so far and optionally the current rule pattern too, and this network traffic state can be used

to perform an informed imputation for missing data that can be used in the context of Adarules

for feeding the forecasting models.

Finally, the output generated by Adarules —i.e. the traffic forecasts— and the observed forecasting

error is also used to improve the system’s overall performance by detecting changes and updating
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the forecasting models to adapt them with new data. Another kind of provided output such as

the outlierness scores and incident detection is used to raise internal alarms that can be managed

to select another rule pattern which fits better the current traffic conditions, and also to raise

external alarms, i.e. to the end-user such as the traffic management centre, in order to perform

proper actions such as activating the simulation forecasting module or inform the local authorities

and/or drivers.

All this has led to the achievement of the proposed goals stated in Chapter 1 and Chapter 2.

Namely:

The lack of autonomy was a critical point because, for every new Aimsun Live project, the trans-

port modellers and data scientists had to decide —based on data analysis or expert knowledge—

the amount of data to be used in order to build the traffic forecasting models for example. This

was happening not only at the beginning of every project, but also during their lifetime such as the

maintenance timings to update the models with new data. This was limiting very much the ability

to scale with an increasing number of projects. In this sense, designing an autonomous system has

been a motivation that has guided the development of this thesis. The only prior requirement is

to have the graph of the road network at hand which can be retrieved from the geometry of the

Aimsun model or, otherwise, fetching it from open collaborative projects such as OpenStreetMap.

From this, the Adarules system is completely autonomous to unveil patterns of flow propagation

in the network as well as discard outdated historical based on the data itself. Therefore, it is an

intelligent analysis that pursues to make the best of the available historical data so far not simply

discarding data older than a specific date but relying on an automatic data analysis to perform

the decisions. This data analysis aims to unveil the underlying traffic dynamics in the transport

network, conversely to the previous situation at Aimsun where the design criteria for such fore-

casting models was only time-dependent and did not consider the effects of the traffic dynamics

from the specific transport network. However, it is clear that the spatiotemporal correlations in

a network are dynamic as they are not just time-dependent, but they are also conditioned on the

different movement patterns underlying the transportation system which responds to the existing

traffic demand. These mobility patterns —that we associate with graph patterns or rules— are

sought by exploiting the graph structure of the road network following an evidence-based decision

making procedure, a process which is carried out by Adarules within the graph mining module.

Furthermore, the autonomous feature of the proposed system is not only aimed during the offline

stage for the system preparation but also maintained during the Aimsun Live project’s lifetime.

Without a doubt, historical patterns are far from being stationary and they must evolve in the

same manner traffic demand do because of changes in the needs or behaviour from the users of the
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transportation system. In fact, this is equivalent to the level of adaptation the system has in order

to achieve an automatic operational level in the real-time traffic forecasting task. This feature has

been considered of great importance during the development of this thesis, as it is essential for a

real-time forecasting system to be able to self-calibrate with new streaming data. This includes

correcting the system when the performance is downgrading or a change is detected, and updating

the system to incorporate new knowledge. This has been achieved through the different modules

in Adarules for change detection both at a local or a global scope within the road network. In the

end, this let the system to be more reactive and efficient about the usage of data as it frees the

end users from deciding which data size is more appropiate and how often a maintenance must be

scheduled to build again the models with new data. Besides, this adaptation in an online learning

scenario is performed to both gradual and sudden changes.

Part of the aforementioned autonomy is derived from the non-parametric nature that Adarules

has been designed with. The non-parametric approach involves placing as minimum assumptions

as possible on the data modelling and, instead, finding and monitoring these data relationships

within the graph pattern mining module using evidence-based criteria in an online manner for an

accurate adaptation to changes in the traffic demand or supply. On one hand, this makes the

Adarules system not dependent on the prior definition of e.g. trend or seasonality components

during the modelling stage as occurs in other kinds of data modelling approaches, thus relaxing the

requirement to have long data records in order to identify such components. On the other hand, it

also makes the proposed system more robust to changes in these assumptions as the found patterns

are continuously monitored with new data to verify their validity.

Another important objective achieved is the system’s ability to be aware in order to quantify the

amount of outlierness present in the transport network in order to being informative about such

anomalous traffic conditions and react accordingly. This is of great importance as the only measure

before this thesis was to rely solely on the forecasting error. Although it is a good indicator of

the outlierness, it was only possible to check it after observing the actual values associated with

the forecasts. Now, it is possible to measure such outlierness in real-time to react accordingly. For

example, when an anomalous network state is observed that do not match the expected pattern

behavior but it is recurrent in the context of another identified rule. On the other hand, an

anomalous network state whose identification is associated with a non-recurrent event —e.g. an

incident— may be better handled by a causal and simulation-based forecasting approach in order

to simulate different strategies and response plans. In the end, more information also supports

decision making as drivers or autonomous vehicles may take different decisions about routing, and

traffic managers and planners can better coordinate emergency responses as well as implement
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controls to minimize the traffic flow disruption to other areas of the network.

In the Chapter 6, the forecasting accuracy has been demonstrated to be improved with respect

to the previous existing methodology (ANA) and with regards to a baseline based on a historical

seasonal average. The level of accuracy obtained is appropriate and useful for traffic management

purposes.

The robustness of the system when facing outliers and missing data has been considerably im-

proved which is of great value because noisy and faulty traffic data is rather common in real-time.

The system, as described in Chapter 5, has specific modules to deal with such missing data and to

penalize those unreliable data sources such as malfunctioning data devices during real-time. The

main motivation behind this design has been to develop a robust solution which makes the most

of the observable data.

Interpretability has been another pursued objective during the development of this thesis. And so

it is demonstrated by the choices made in performing the different models’ selection. For instance,

rules identified in Adarules (Chapter 5) are expressed using qualitative variables as it can ease

the interpretation for end-users —e.g. traffic engineers or managers— as well as it would allow an

easier diagnostic, unlike other black-box modelling techniques in the statistical and machine learning

fields. An analysis of the most relevant factors may also be performed. In addition, the forecasting

models within Adarules have the form of a sparse model for spatiotemporal correlations, thus

seeking only the strongest and most relevant correlations within the network for the sake of better

interpretability and robustness. The probabilistic model for traffic states presented in Chapter 7

has also interpretability in mind as its output is a set of latent variables related to the underlying

traffic states whose semantic interpretation is very natural. Finally, the modelling performed in

Chapter 8 was also aimed to boost the interpretability of both the model itself by using a graphical

model as well as the outputs and the intuition behind the results as a consequence of the approach

based on probabilities and the interpretable traffic states.

In statistical modelling, the assumptions placed by the analyst during the modelling stage determine

which type of conclusions may be extracted and how significant are they. On the other hand, within

the machine learning culture, this point is not so crucial as the performance of the forecasting task.

Often, this is seen as two different cultures within the statistical modelling field [43, 175]. In

this sense, as aforementioned, we have decided not to place very strong assumptions in the data

model and thus, approaching the problem from a machine learning perspective. However, although

treating the problem with a black-box model is common in many machine learning techniques, we

have endeavoured to not sacrifice the human interpretability of the model, especially regarding

end-users such as traffic engineers or managers. This end-user of the system has not to be an
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expert data analyst to be able to interpret the output as well as have a high-level interpretation

of how the system works and what is the reasoning behind it. This is what has motivated our

modelling decisions instead of selecting other popular techniques within the machine learning field

as the interpretation of their internal workings is more black box.

Finally, the scalability has been another objective in mind. For this reason, the proposed solution

is prone to be scalable by the design of a modular architecture with emphasis on a parallelizable

exploitation of large amounts of data.

All these reasons have motivated the design and development of a self-adapting method which, in

addition, has the ability to be interpretable to the end-user —a traffic engineer or manager— about

the inference results.

9.1 Future work

A number of ideas for future work are:

The first point concerns the parameterization of the amount of data used in the split evaluation

of rules. Currently, rules are updated with new data, but yet they need full historical data —

under their scope— when being evaluated to be expanded. This point would make Adarules more

computationally efficient in the long-term, ideally with a tiny cost to pay in the accuracy.

Related to this point it is the use of data compression —or summarization— methods such as

exponential windows in order to perform compression of old data thus saving costs in storage.

Despite the model is constantly evolving to match the current traffic demand, we are using the iden-

tification of recurrent traffic conditions —i.e. patterns— coupled with real-time traffic information

to predict the future within a data-driven approach. This means that it can happen at some point

that the rule that matches the current qualitative conditions is not actually the best fit in terms

of traffic pattern but still, there would be another rule which fits better such traffic conditions. At

first, this situation may be handled through graph matching for a better rule selection but in the

end, the system should reorganize itself to better accommodate such traffic patterns and it will

depend on how fast demand changes occur and the system’s ability to detect them and adapt itself.

On the other hand, there could also happen that current rule does not match properly the current

traffic conditions because there are non-recurrent events in the network —e.g. an incident, traffic

rerouting by authorities…— that modify the usual drivers’ route choices. This latter case would be

an example of non-recurrent traffic conditions which are hard to handle by a predictive data-driven

approach —beyond the ability to properly identify them— because of its implicit unpredictability
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and is best suited for a simulation-based solution with different case scenarios which works paired

with the proposed approach. However, for the former case —i.e. detecting unexpected but recurrent

traffic conditions— it is planned to implement a rule pattern matcher that recognizes previously

seen situations for faster adaptation.

It is also planned to evaluate the entire proposal of this thesis with new datasets, in order to perform

more experimentation. Although the results from the most critical parts have been validated by

traffic engineers, the validation of the entire system results to validate their consistence would be

very useful.

It would be interesting the use of new data sources —with the corresponding data preprocessing—

beyond the induction loop detectors used in this thesis, as for example floating car data or mobile

data. Furthermore, it would be very interesting to perform data fusion of these multiple data

sources in order to increase the observability of the transport network.

Finally, it would be interesting to study different new split metrics in order to perform the graph

pattern mining, as well as test different forecasting models in the context of every rule beyond the

proposed sparse model for spatiotemporal correlations.
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Taxonomy of the types of traffic simulation in transportation may be done according to how time,

space and state are represented, namely in a continuous or discrete form.

However, a more common criteria to differentiate between different fields of traffic science is the

time scale used and its associated level of detail. As shown in Table 9.1, longer time scales ranging

from hours to years refer to the realm of transportation planning where the influence of demo-

graphic change over the traffic demand variations is taken into account. These two fields, traffic

flow dynamics and transportation planning, complement each other as the output from the trans-

portation planning model —which could be the classical four-step scheme (trip generation, trip

distribution, mode choice, and route assignment) or another modern dynamical variant— is the

traffic demand (vehicles per hour) on each link of the considered network. On the other side, these

variables are externally given for traffic flow simulations typically in the form of boundary condi-

tions. Furthermore, in the last few years there has been a growing overlap between these fields.

Some examples are:

• Models for agent-based dynamic traffic assignment combine the route assignment step of

classical transportation planning with traffic flow models.

• The new generation of connected navigation systems inside cars couple the dynamics of traffic

flow (jam formation) with that of traffic demand (traffic-dependent routing).

• When modelling the effects of driver-assistance systems on traffic flow, it is needed to simul-

taneously model aspects of vehicular and traffic dynamics.

Travel demand modelling

Transportation planning models operate at a high level, merging land-use models with the socio-

economical behaviour of people to link the traffic demand —e.g. the travellers aggregated into

spatial zones or centroids— with the traffic supply —i.e. the transportation network infrastructure—

. Land-use models seek to explain the growth and layout of urban areas through the mapping of the
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Table 9.1: Scales of traffic flow dynamics from vehicular dynamics and transportation planning.
Source: Traffic Flow Dynamics.

Models Time slice Aspect of traffic (examples)
Vehicle dynamics

Sub-microscopic < 0.1 s Control of engine and brakes

Traffic flow dynamics
1 s Reaction time, time gap

Car-following models 10 s Acceleration and deceleration
1 min Cycle period of traffic lights

Macroscopic models 10 min Stop-and-go waves

Transportation planning
1 hour Peak hour
1 day Daily demand patternRoute assignment traffic

demand 1 year Building/changing infrastructure
5 years Socioeconomic structure

Demography 50 years Demographic change

activity map —social, economical or cultural activities— with the spatial separations according to

where they take place in the road network under study. One of the oldest known models of this type

which relates economic markets and spatial distances was published —in a pre-industrial context—-

by von Thünen in 1826 [241]. Around 100 years later, other classic land-use models appeared such

as the concentric zone model developed by Burguess [50], the sector model by Hoyt [127] or the

multiple nuclei model by Harris and Ullman [115]. However, recently the approach has changed as

the urban behaviour evolves towards the segregation where activities occur at substantially different

spatial locations and the growth of a city is represented as the evolution of a multi-agent system

through simulation and coupled with geographical information systems and computer aided design.

An schematic view of such transportation planning model can be seen in the Figure 9.1.

Following subsections are dedicated to further explain the two main approaches in the field of

transportation planning for modelling the travel demand:

• those based on the handling of the amount of trips and their distribution,

• and those which are individuals’ activity-based.

Trip-based approach

The first findings in the relation between activity patterns and the transportation system were

published in 1954 [184] providing the basis in transportation analysis which later evolved in a
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Figure 9.1: Components of the transportation system and their interrelationships. Source: [28] and
adapted from [198].

methodology based on four consecutive steps called the four step model whose basis element are

the trips [70, 179, 220]. In this way, individual travellers are aggregated into bundles of trips

going from one point in the transportation network to another, these aggregated spatial zones are

typically represented by their centrally located points called centroids.

The four step model is comprised of the following consecutive steps:

1. Trip generation.

2. Trip distribution.

3. Mode choice.

4. Route choice.

The first three steps forms the methodology to set up the travel demand which is expressed as

origin-destination (OD) pairs and that relates the amount of trips originating at each centroid

—seen as OD matrix rows— and their respective desired centroid destination —seen as OD matrix

columns—. The last step aims to load this travel demand into the network supply whereby the trips

are assigned to routes. An important note is that these aggregated trips are only considered for a

specific time period, so the whole four step process is applied for different time periods although

sometimes an iteration is done between the four steps, e.g, using the traffic assignment procedure

to calculate link travel times that are fed back as input to traffic distribution and mode choice

steps. Currently, this is the most used approach for modelling the traffic demand.
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Trip generation

More specifically, the trip generation step takes care of the amount of trips that are originated in

certain zones and those that arrive in these zones, i.e. a production and attraction process. This

process is based on land use and other socio-economical activities and it is implemented using

techniques such as regression analysis, category analysis, or logit models, among others.

Trip distribution

The second step, trip distribution, connects trip originations to their destinations and resulting in

the generation of the previously mentioned OD matrix in such a way that a cell 𝑂𝑖𝐷𝑗 at row 𝑖
and column 𝑗 represents the total number of trips departing from the centroid 𝑂𝑖 and reaching

the destination centroid 𝐷𝑗 and with diagonal elements denoting intra-zonal trips without any

route assignment. Given that the four step process applies to different time periods, the resulting

OD matrix should be called time-dependent or dynamic OD matrix. This OD matrix estimation

is an under-determined system of equations considering that there are lot of unknown variables

and, thus, additional constraints are introduced. Despite this fact, there exists a vast literature of

methods to estimate the OD matrices which includes growth factor models when a prior demand

model is known, gravity or entropy models [119], methods of least squares [32], Kalman filtering

[17, 138], dimensionality reduction approach followed by Kalman filtering [71], also including data

fusion from additional sources to the first step [27], among much others [194, 54, 165].

Mode choice

Once the OD matrix has been estimated for the specific network and time period, the next step is

to split it among the different modes of transportation. A common tool to solve this problem is

discrete choice theory [33].

Route assignment

The last step of route assignment —also known as route choice or traffic assignment— pursues

to find out which routes the travellers follow when going from their origins to their destinations,

i.e. the sequence of links followed through the transportation network. In this scenario, the logic

says that travellers will use the shortest route between their origin and destination, thereby a

suitable measure of distance based on shortest path algorithms —such as Dijkstra’s algorithm—

can provide the possible routes. This procedure is governed by some basic principles published by
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Wardrop in 1952 [260] based in Nash equilibrium from game theory, where the concepts of user

equilibrium and system optimum appear. The user equilibrium states:

The journey times on all the routes actually used are equal, and less than those which

would be experienced by a single vehicle on any unused route.

While the system optimum states:

The average journey time is a minimum.

This user equilibrium has several assumptions:

• All individuals’ decisions have a negligible effect on the performance of others.

• There is no cooperation between individuals assumed.

• All individuals make their decisions in an egoistic and rational way.

Ideally, it is expected that everybody follows the user equilibrium criteria in such a way that

the whole system remains in equilibrium where no one can reach a better state by choosing an

alternative route. Nevertheless, this idealistic mathematical scenario is often transgressed, inasmuch

as for instance there are situations, mostly in urban centres, where users’ travel motivation is to

look for parking space and thus incurring in an unexpected congestion; other scenario it is when

travellers use their usual route based merely in a routine criteria independently of the quickest or

cheapest according to the equilibrium criteria.

There exists two different methodologies in dealing the traffic assignment problem: a static and

a dynamic approach. In the static traffic assignment (STA), the time varying congestion effects

are neglected, thus assuming constant link flows and travel times where (1) users will choose

the same cheapest route between a pair of origins and destinations because users have perfect

information about the links’ assessments, and (2) these link’s assessment values are considered to

be constant —i.e. the relation between link’s traffic load and its capacity is not considered— thereby

congestion generation is not taken into account. According to these assumptions, this implies an

all-or-nothing assignment. A refinement to this methodology consists on not assuming that all users

would behave in the same manner given that actually they have not perfect information. Thus, a

stochastic assignment may be performed where each link route choice is drawn from a probability

distribution. Capacity constraints can be introduced in order to modify the link’s cost according

to the relationship between current load and its capacity instead of keeping them constant. This

procedure to evaluate the link’s assessment value according to its current load is known in different

ways: travel time (loss) functions, congestion functions, volume delay functions, link impedance

functions, or link performance functions —e.g. the Bureau of Public Roads (BPR) power function
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[49]—. Thus the consideration of this uncertainty related to the travelers’ complete knowledge of the

routes and if they all behave in the same rational way or not, is what makes the difference between

performing a stochastic user equilibrium (SUE) assignment [66] or a deterministic user equilibrium

(DUE). Once flows on the network links are in equilibrium, it remains to solve the assignment

as an optimization problem —e.g. using Frank-Wolfe algorithm [89] or another approach as the

method of successive averages (MSA)—. Thereby, the STA, in spite of its lack of consideration

about time varying congestion effects, can produce a good result with these improvements, mostly

for the long-term transportation planning.

The main problem is that STA relies on simple travel time functions to determine the link’s assess-

ment value and, therefore, it is difficult to recognize the link’s capacities because the congestion

is a dynamic event where its build-up and dissolution play an important role. In this regard, dy-

namic traffic assignment (DTA) [206] deals with a DUE or SUE assignment in the same manner

that STA but, in addition, DTA can deal with another feature in the route choice regarding the

travellers choice of departure time; while in the STA approach all the travel demand is simulta-

neously assigned to the network, a DTA with departure time choice can spread the departures in

time. Another difference respect to the static approach is that, instead of using simple travel time

functions, DTA features a dynamic network loading that, through the use of analytical models or

detailed simulation, describe the propagation of individual vehicles in the transportation network.

Furthermore, in the case of simulation-based traffic assignment, the route choice and dynamic net-

work loading components can be iteratively executed. However, it is important to note that in

these cases a good description of the network’s links is necessary and that using simulation-based

traffic assignment with very large road networks is not always computationally feasible. In addition,

there is no unified framework that deals with the convergence and stability issues [205] in contrast

to STA.

Activity-based approach

This approach to model the travel demand probably originated in 1970 [113]. The idea is the same

as in the trip-based approach, in such a way that travel decisions are originated from a need to

participate in social, economical, and cultural activities. But as opposed to the more aggregated

trip-based view, the basis unit in this approach are individual activity patterns commonly referred

to as household activity patterns [22], which allows transportation demand to be modelled in more

detail.

There is no explicit general framework that encapsulates the activity-based modelling scheme, as

opposed to the four-step model in trip-based modelling approach. Some common steps can be
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identified:

• The generation of activities which is similar to the first step in trip-based modelling (produc-

tion and attraction).

• The modelling of household choices, including starting time and duration of the activity, its

location and modal choice.

• The scheduling of activities and the way that a household performs the tasks.

An interesting technique is the methodology of multi-agent simulations [25], where individual house-

holds are represented as agents and the models then allow these agents to make independent deci-

sions about their actions whose time-scale ranges from short-term decisions as in driving behaviour

to mid-term of daily activities or long-term decisions.

Traffic flow dynamics

The field of traffic flow dynamics considers traffic flow models that explicitly describe the physical

propagation of traffic flows through the network. Research on the subject of traffic flow modelling

started in the 1950s when Lighthill and Whitham [167] described a model for the traffic flow of

vehicles analogous to particles in a fluid. Since then, mathematical description of traffic flow has

been an active research field which has brought a wide diversity of models describing different

aspects of traffic flow operations. The field can be classified according to several criteria:

• Model evolution in time: Depending on whether the simulation model evolves synchronously

or asynchronously. The former is the most common approach in which the model is advanced

at a chosen simulation time step, while the asynchronous or event-based simulations are those

in which time advances in variable amounts that correspond to the instants in time at which

an event changes the model state.

• Representation of the processes: Whether they are purely deterministic or stochastic.

• Level of detail: Could be macroscopic —highest level of aggregation and lowest level of detail,

based on continuum mechanics typically entailing fluid-dynamic models—, mesoscopic (high

level of aggregation with low level of detail, typically based on a gas-kinetic analogy in which

driver behaviour is explicitly considered), microscopic (low level of aggregation and high level

of detail, typically based on models that describe the detailed interactions between vehicles

in a traffic stream) or submicroscopic (lowest level of aggregation and highest level of detail,

near to microscopic level but with detailed descriptions of vehicles’ inner workings).
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The most usual classification criteria of traffic simulation models is by the level of detail and, thus, it

will be the chosen criteria to describe them thoroughly. A comprehensive tour through the history

and state of the art of traffic flow theory can be found in [28, 100, 125, 174, 247].

Macroscopic detail

In the macroscopic level of detail the traffic is described at a high level of aggregation using char-

acteristics as flow-rate, density, and velocity, and individual vehicle dynamics are not explicitly

represented. The macroscopic modelling aims at complying with the fundamental diagram [65]

and relies on the continuum traffic flow theory for describing the time-space evolution of the vari-

ables characterizing the macroscopic traffic flows: volume, speed, and density, which are defined at

every instant in time and every point in space. The main equation formally representing this the-

ory is the conservation equation also known as the continuity equation [103, 159]; these equations

are supported by the fundamental relation involving flow, density and speed, which determines the

equilibrium conditions. The common approach to reach a solution is by numerically integrating the

equations once that each traffic model of the road section —in the space dimension— is discretized

in time and space, as for instance the Cell Transmission Model, published by Daganzo [64], does.

Macroscopic models —also known as continuum models or fluid-dynamic models in analogy as

being based on fluid-dynamic theory and kinematic waves— have its beginning in the work by

Lighthill and Whitham [167] which brought the classic first-order LWR model. Since then, several

extensions have been introduced [144, 143] including the use of higher-order models [203]. Therefore,

macroscopic flow models can be classified according to the number of partial differential equations

(PDE) that frequently underlie the model on the one hand, and the order of these PDE on the

other hand. However as stated in [63], despite the significant efforts and progress in the field of

higher-order macroscopic models, the Berkeley school firmly holds its faith in first-order models

and their extensions. The main reason for this it is because of the numerical solution schemes that

are well developed and understood which is not the case for higher-order models, as these contain

other characteristics that complicate the finite difference schemes and additionally, no analytical

solutions exist for the higher-order models. Moreover, they sustain that first-order models are

enough to describe the macroscopic traffic flow dynamics.

Within the macroscopic scale, it is worth noting the concept of the fundamental diagram of traffic

flow as shown in Figure 9.2 given that its characterization describe the traffic state. A large volume

of literature exists on the description of the traffic state [41, 246, 143]. The typical situation is free-

flowing conditions when the demand flows are below the capacity of the road network. Here, speeds

tend to be near the speed limit, the occupancies are low, and vehicle headways are comfortable. In
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Figure 9.2: Traditional fundamental diagram of traffic: Flow-density and speed-concentration
curves. Source: [164].

congested conditions, the actual flows reduce, but the demand flows remain high; the vehicles slow

down, the occupancies increase, and vehicles pack more closely together. During congestion the road

system is operating in an inefficient manner, with increased vehicle delays, driver frustration, and

greater potential for accidents. In addition to these two states, there exist two distinct transition

states, where the traffic state changes from free-flowing to congested and from congested to free-

flow conditions. These two states may be different from each other in their characteristics. Some

properties of the traditional fundamental diagram are the following:

• The variables of flow, density, and space mean speed are related by the definition: 𝑞 = 𝑘 ̄𝑣𝑠.

• When density on the highway is zero, the flow is also zero because there are no vehicles on

the highway.

• As density increases, flow increases.

• When the density reaches a maximum jam density (𝑘𝑗), flow must be zero because vehicles

will line up end to end.

• Flow will also increase to a maximum value (𝑞𝑚), increases in density beyond that point result

in reductions of flow.

• When density is zero, speed is freeflow (𝑣𝑓). The upper half of the flow curve is uncongested

and the lower half is congested.

• The slope of the flow density curve gives speed.

Mesoscopic detail

Mesoscopic modelling usually consists of a simplification that is less demanding of data and more

computationally efficient than microscopic models as they operate at the same aggregation scale

as the macroscopic models; in this way individuals vehicles are not distinguished nor traced, but

its behaviour is specified, e.g. in probabilistic terms.
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There are two main approaches for this traffic modelling: those in which individual vehicles are

not taken into account because they are grouped in clusters or cells that move along the links,

and those in which the modelling is based on simplified dynamics of individual vehicles. In this

sense, traffic is represented by small groups of traffic entities, while the activities and interactions

of which are described at a low detail level; e.g. a lane-change manoeuvre might be represented as

an event, where the decision to perform the action could be based on e.g. relative lane densities,

and speed differentials. Other mesoscopic approaches are derived in analogy to gas-kinetic theory

[239]. These gas-kinetic models describe the dynamics of velocity distributions.

Another main difference between the mesoscopic approaches lays in the way they deal with time.

While the most common approach is based on synchronous timing with a chosen simulation step,

other approaches are asynchronous or event based.

Microscopic detail

Microscopic modelling describes both the space-time behaviour of vehicles and drivers as well as

their interactions at a high level of detail. The models makes use of characteristics such as vehicle

lengths, speeds, accelerations, time and space headways, vehicle and engine capabilities, as well as

—occasionally rudimentary— human characteristics that describe the driving behaviour.

The microscopic modelling includes car-following and lane-changing behaviours [103, 42, 211] mod-

elled with optimal velocity models, human behaviourally psychophysiological spacing models, traffic

cellular automata models or queueing theory, among other possibilities. All car-following models

depend on a number of parameters aimed at mimicking as closely as possible the way in which

drivers of follower vehicles adjust their driving to that of leader vehicles. While the increasing

number of model parameters could in theory replicate better what is a complex phenomenon that

combines components based strictly on the dynamics of the process along with behavioural compo-

nents, on the other hand, it makes harder to find the right values of these parameters. Thus, the

microscopic computational complexity is often a significant disadvantage when compared to meso-

or macroscopic models —although there may be some exceptions, e.g. the traffic cellular automata

models—. From the point of view of model calibration and validation, this poses an interesting

challenge, as in many cases not all parameters are equally influential on the results, requiring, thus,

some sensitivity analyses.

As in [28] concludes, car-following models provide reasonable results in uncongested conditions and

in some cases in congested conditions as well. But in accordance with the mentioned studies, they

fail to provide results of a similar quality in the transitions from uncongested to congested, that is,
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when the steady-state hypothesis no longer holds. Maybe one of the reasons could be the lack of

empirical evidence of enough quality for these conditions.

There exists two main approaches to feed the traffic demand as input to the simulation:

• The traffic demand input is defined in terms of input flows and turning proportions at in-

tersection and exit sections. In this case there is no intervention of the dynamic traffic

assignment (DTA) which was described in the travel demand modelling section. In this case,

vehicles travel stochastically in the network, leaving the network occasionally, according to

the turning and exit proportions.

• The traffic demand input is defined in terms of OD matrices. Vehicles travel across the

network from origins to destinations along the available paths that join them, which has been

calculated in the DTA step.

Finally, the most common implementation approach for microscopic models is synchronous timing.

In this way at each simulation step, the state of all the network’s entities is updated.

Submicroscopic detail

Submicroscopic models describe the characteristics of individual vehicles in the traffic stream, sim-

ilar to microscopic modelling. However, beyond a detailed description of traveller behaviour, the

vehicle control behaviour —e.g. changing gears, engine performance, etc.— in correspondence to

prevailing surrounding conditions is modelled in detail. Complementary to the functioning of a

vehicle’s physical components, submicroscopic models can also describe a human driver’s decision

taking process in much more detail.

223





Appendix II: Detailed results for the validation of

Adarules under different change scenarios

Adarules: pattern mining using a single-task or a multi-task approach

Figure 9.1 shows the comparison in the flow forecasting performance of both pattern mining

approches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector

(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.2 shows the comparison in the occupancy forecasting performance of both pattern mining

approches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector

(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.3 shows the comparison in the speed forecasting performance of both pattern mining

approches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector

(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per group.

Adarules: forecasting model learning using a single-task or a multi-task

approach

Figure 9.4 shows the comparison in the flow forecasting performance of both forecasting learning

approches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector

(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.5 shows the comparison in the occupancy forecasting performance of both forecasting

learning approches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per

detector (𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per

group.
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Appendix II: Detailed results for the validation of Adarules under different change scenarios
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Figure 9.1: Comparison in the flow forecasting performance of both pattern mining approches
using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector
(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per
group.
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Figure 9.2: Comparison in the occupancy forecasting performance of both pattern mining ap-
proches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per
detector (𝑁 = 20) is shown in every time slot of 1 month, along with the median as
the line per group.
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Appendix II: Detailed results for the validation of Adarules under different change scenarios
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Figure 9.3: Comparison in the speed forecasting performance of both pattern mining approches
using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector
(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per
group.
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Figure 9.6 shows the comparison in the speed forecasting performance of both forecasting learning

approches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector

(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per group.

Adarules vs baselines: Real data scenario

Figure 9.7 shows the comparison in the flow forecasting performance between Adarules and base-

lines in the real-data scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown in

every time slot of 1 month, along with the median as the line per group.

Figure 9.8 shows the comparison in the occupancy forecasting performance between Adarules and

baselines in the real-data scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown in

every time slot of 1 month, along with the median as the line per group.

Figure 9.9 shows the comparison in the speed forecasting performance between Adarules and

baselines in the real-data scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown in

every time slot of 1 month, along with the median as the line per group.

Adarules vs baselines: Zero drift scenario

Figure 9.10 shows the comparison in the flow forecasting performance between Adarules and base-

lines in the zero drift scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown in

every time slot of 1 month, along with the median as the line per group.

Figure 9.11 shows the comparison in the occupancy forecasting performance between Adarules

and baselines in the zero drift scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is

shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.12 shows the comparison in the speed forecasting performance between Adarules and

baselines in the zero drift scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown

in every time slot of 1 month, along with the median as the line per group.

Adarules vs baselines: Gradual change scenario

Figure 9.13 shows the comparison in the flow forecasting performance between Adarules and base-

lines in the gradual change scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown

in every time slot of 1 month, along with the median as the line per group.
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Appendix II: Detailed results for the validation of Adarules under different change scenarios
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Figure 9.4: Comparison in the flow forecasting performance of both forecasting learning approches
using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector
(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per
group.
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Forecasting learning Multi−task learning Single−task learning

M4M7: t = 15 min [occupancy]

0.000

0.025

0.050

0.075

M4M7: t = 60 min [occupancy]

2015/01 2015/04 2015/07 2015/10 2016/01 2016/04 2016/07 2016/10

0.00

0.05

0.10

Santander: t = 15 min [occupancy]

0.00

0.05

0.10

0.15

Santander: t = 60 min [occupancy]

2016/01 2016/04 2016/07 2016/10 2017/01 2017/04 2017/07 2017/10
0.00

0.05

0.10

0.15

0.20

Year / Month

nR
M

S
E

Figure 9.5: Comparison in the occupancy forecasting performance of both forecasting learning
approches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per
detector (𝑁 = 20) is shown in every time slot of 1 month, along with the median as the
line per group.
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Appendix II: Detailed results for the validation of Adarules under different change scenarios

Forecasting learning Multi−task learning Single−task learning

M4M7: t = 15 min [speed]

0.00

0.05

0.10

0.15

M4M7: t = 60 min [speed]

2015/01 2015/04 2015/07 2015/10 2016/01 2016/04 2016/07 2016/10
0.00

0.05

0.10

0.15

0.20

nR
M

S
E

Figure 9.6: Comparison in the speed forecasting performance of both forecasting learning ap-
proches using Adarules: single-task and multi-task. The distribution of 𝑛𝑅𝑀𝑆𝐸 per
detector (𝑁 = 20) is shown in every time slot of 1 month, along with the median as
the line per group.
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Adarules vs baselines
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Figure 9.7: Comparison in the flow forecasting performance between Adarules and baselines in the
real-data scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown in
every time slot of 1 month, along with the median as the line per group.
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Figure 9.8: Comparison in the occupancy forecasting performance between Adarules and baselines
in the real-data scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown
in every time slot of 1 month, along with the median as the line per group.
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Adarules vs baselines
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Figure 9.9: Comparison in the speed forecasting performance between Adarules and baselines in
the real-data scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown in
every time slot of 1 month, along with the median as the line per group.
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Figure 9.10: Comparison in the flow forecasting performance between Adarules and baselines in
the zero drift scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown
in every time slot of 1 month, along with the median as the line per group.
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Adarules vs baselines
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Figure 9.11: Comparison in the occupancy forecasting performance between Adarules and base-
lines in the zero drift scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is
shown in every time slot of 1 month, along with the median as the line per group.
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Adarules vs baselines
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Figure 9.12: Comparison in the speed forecasting performance between Adarules and baselines in
the zero drift scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is shown
in every time slot of 1 month, along with the median as the line per group.

238



Figure 9.14 shows the comparison in the occupancy forecasting performance between Adarules

and baselines in the gradual change scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20)

is shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.15 shows the comparison in the speed forecasting performance between Adarules and

baselines in the gradual change scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is

shown in every time slot of 1 month, along with the median as the line per group.

Adarules vs baselines: Abrupt change (AM-PM) scenario

Figure 9.16 shows the comparison in the flow forecasting performance between Adarules and base-

lines in the abrupt change (AM-PM) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20)

is shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.17 shwos the comparison in the occupancy forecasting performance between Adarules

and baselines in the abrupt change (AM-PM) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector

(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.18 shows the comparison in the speed forecasting performance between Adarules and

baselines in the abrupt change (AM-PM) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector

(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line per group.

Adarules vs baselines: Abrupt change (IDs) scenario

Figure 9.19 shows the comparison in the flow forecasting performance between Adarules and base-

lines in the abrupt change (IDs) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is

shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.20 shows the comparison in the occupancy forecasting performance between Adarules and

baselines in the abrupt change (IDs) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20)

is shown in every time slot of 1 month, along with the median as the line per group.

Figure 9.21 shows the comparison in the speed forecasting performance between Adarules and

baselines in the abrupt change (IDs) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20)

is shown in every time slot of 1 month, along with the median as the line per group.
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Figure 9.13: Comparison in the flow forecasting performance between Adarules and baselines in
the gradual change scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is
shown in every time slot of 1 month, along with the median as the line per group.
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Adarules vs baselines
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Figure 9.14: Comparison in the occupancy forecasting performance between Adarules and base-
lines in the gradual change scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector
(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the
line per group.
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Adarules vs baselines
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Figure 9.15: Comparison in the speed forecasting performance between Adarules and baselines in
the gradual change scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20) is
shown in every time slot of 1 month, along with the median as the line per group.
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Adarules

ANA−year

ANA−quarter

ANA−month

HA−year

HA−quarter

HA−month

M4M7: t = 15 min [flow]

0.0

0.2

0.4

0.6

0.8

M4M7: t = 60 min [flow]

2016/01 2016/04 2016/07 2016/10

0.00

0.25

0.50

0.75

Santander: t = 15 min [flow]

0.00

0.25

0.50

0.75

1.00

Santander: t = 60 min [flow]

2017/01 2017/04 2017/07 2017/10
0.00

0.25

0.50

0.75

1.00

Year / Month

nR
M

S
E

Figure 9.16: Comparison in the flow forecasting performance between Adarules and baselines in the
abrupt change (AM-PM) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20)
is shown in every time slot of 1 month, along with the median as the line per group.
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Adarules vs baselines
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Figure 9.17: Comparison in the occupancy forecasting performance between Adarules and base-
lines in the abrupt change (AM-PM) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detec-
tor (𝑁 = 20) is shown in every time slot of 1 month, along with the median as the
line per group.

244



Adarules vs baselines
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Figure 9.18: Comparison in the speed forecasting performance between Adarules and baselines
in the abrupt change (AM-PM) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector
(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line
per group.
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Adarules vs baselines
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Figure 9.19: Comparison in the flow forecasting performance between Adarules and baselines in
the abrupt change (IDs) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20)
is shown in every time slot of 1 month, along with the median as the line per group.

246



Adarules vs baselines
Adarules

ANA−year

ANA−quarter

ANA−month

HA−year

HA−quarter

HA−month

M4M7: t = 15 min [occupancy]

0.00

0.05

0.10

0.15

0.20

M4M7: t = 60 min [occupancy]

2016/01 2016/04 2016/07 2016/10

0.00

0.05

0.10

0.15

0.20

0.25

Santander: t = 15 min [occupancy]

0.0

0.1

0.2

0.3

0.4

Santander: t = 60 min [occupancy]

2017/01 2017/04 2017/07 2017/10
0.0

0.2

0.4

Year / Month

nR
M

S
E

Figure 9.20: Comparison in the occupancy forecasting performance between Adarules and base-
lines in the abrupt change (IDs) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector
(𝑁 = 20) is shown in every time slot of 1 month, along with the median as the line
per group.
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Adarules vs baselines
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Figure 9.21: Comparison in the speed forecasting performance between Adarules and baselines in
the abrupt change (IDs) scenario. The distribution of 𝑛𝑅𝑀𝑆𝐸 per detector (𝑁 = 20)
is shown in every time slot of 1 month, along with the median as the line per group.
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