137 research outputs found

    Migration dynamique d'applications réparties virtualisées dans les fédérations d'infrastructures distribuées

    Get PDF
    Dynamic Migration of virtualized distributed applications in a federation of distributed infrastructure

    IPv6-Message-Passing mit Open MPI

    Get PDF
    Zur Lösung komplexer wissenschaftlicher Simulationsprobleme kommen heutzutage ob ihres Rechenbedarfs verst¨arkt Cluster zum Einsatz, die mit Hilfe von Message-Passing-Frameworks programmiert werden. Stehen mehrere Cluster zur Verfügung, kann durch Cluster-Cluster-Kopplung oftmals eine höhere Gesamtrechenleistung erzielt werden. IPv6 bietet für den Aufbau und den Betrieb dieser Clusterverbünde konzeptionelle Vorteile, die sich für den Anwendungsprogrammierer jedoch nur mit IPv6-fähigen Message-Passing-Frameworks erschließen. Gegenstand dieser Diplomarbeit ist die Erweiterung des Message-Passing-Frameworks Open MPI um IPv6-Unterstützung. Es wird gezeigt, daß durch eine geeignete Implementierung sowohl administrationsarme als auch leistungsfähige Cluster-Cluster-Kopplung realisiert werden kann

    Does CloudSim Accurately Model Micro Datacenters?

    Get PDF
    Novel cloud computing algorithms and techniques are initially evaluated via testbeds, simulators and mathematical models of datacenter infrastructure. However, it can be difficult to perform cross validation of these platforms against realistic scale infrastructures due to the prohibitive costs involved. This paper describes an approach to evaluating a cloud simulator through an empirical study involving a micro datacenter of commodity Raspberry Pi devices. To demonstrate the methodology, we compare performance of real-world workloads on this physical infrastructure against corresponding models of the workloads and infrastructure on the CloudSim simulator. After modelling a Raspberry Pi micro datacenter in CloudSim, we claim that the simulator lacks sufficient accuracy for cloud infrastructure experiments

    Enhanced connectivity in wireless mobile programmable networks

    Get PDF
    Mención Interancional en el título de doctorThe architecture of current operator infrastructures is being challenged by the non-stop growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated with the network deployment and operations. Indeed, the forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support rapid programming of heterogeneous data planes. Network softwarisation is hence seen as a key enabler to cope with such network evolution, as it permits controlling all networking functions through (re)programming, thus providing higher flexibility to meet heterogeneous requirements while keeping deployment and operational costs low. A great diversity in terms of traffic patterns, multi-tenancy, heterogeneous and stringent traffic requirements is therefore expected in 5G networks. Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have emerged as a basic tool-set for operators to manage their infrastructure with increased flexibility and reduced costs. As a result, new 5G services can now be envisioned and quickly programmed and provisioned in response to user and market necessities, imposing a paradigm shift in the services design. However, such flexibility requires the 5G transport network to undergo a profound transformation, evolving from a static connectivity substrate into a service-oriented infrastructure capable of accommodating the various 5G services, including Ultra-Reliable and Low Latency Communications (URLLC). Moreover, to achieve the desired flexibility and cost reduction, one promising approach is to leverage virtualisation technologies to dynamically host contents, services, and applications closer to the users so as to offload the core network and reduce the communication delay. This thesis tackles the above challengeswhicharedetailedinthefollowing. A common characteristic of the 5G servicesistheubiquityandthealmostpermanent connection that is required from the mobile network. This really imposes a challenge in thesignallingproceduresprovidedtogettrack of the users and to guarantee session continuity. The mobility management mechanisms will hence play a central role in the 5G networks because of the always-on connectivity demand. Distributed Mobility Management (DMM) helps going towards this direction, by flattening the network, hence improving its scalability,andenablinglocalaccesstotheInternet and other communication services, like mobile-edge clouds. Simultaneously, SDN opens up the possibility of running a multitude of intelligent and advanced applications for network optimisation purposes in a centralised network controller. The combination of DMM architectural principles with SDN management appears as a powerful tool for operators to cope with the management and data burden expected in 5G networks. To meet the future mobile user demand at a reduced cost, operators are also looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The increasing stress on mobile radio access performance in a context of declining revenues for operators is hence requiring the evolution of backhaul and fronthaul transport networks, which currently work decoupled. The heterogeneity of the nodes and transmisión technologies inter-connecting the fronthaul and backhaul segments makes the network quite complex, costly and inefficient to manage flexibly and dynamically. Indeed, the use of heterogeneous technologies forces operators to manage two physically separated networks, one for backhaul and one forfronthaul. In order to meet 5G requirements in a costeffective manner, a unified 5G transport network that unifies the data, control, and management planes is hence required. Such an integrated fronthaul/backhaul transport network, denoted as crosshaul, will hence carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity demand of the 5G air interfaces. Moreover, 5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure. To that end, network slicing is seen as a suitable candidate for providing the necessary Quality of Service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. However, the very basic nature that makes this efficient management and operation possible in a flexible way – the logical centralisation – poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operating a network, centralised intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. Therefore, an adaptive telemetry system is required so as to support the diversity of 5G services and their stringent traffic requirements. The path towards 5G wireless networks alsopresentsacleartrendofcarryingoutcomputations close to end users. Indeed, pushing contents, applications, and network functios closer to end users is necessary to cope with thehugedatavolumeandlowlatencyrequired in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure-focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. By further utilising pervasive computational resources in proximity to users, edge and fog can be merged to construct a computing platform, which can also be used as a common stage for multiple radio access technologies (RATs) to share their information, hence opening a new dimension of multi-RAT integration.La arquitectura de las infraestructuras actuales de los operadores está siendo desafiada por la demanda creciente e incesante de servicios con un elevado consumo de datos que aparecen todos los días. Mientras que las redes de operadores implementadas actualmente han sido capaces de lidiar con las demandas de tráfico hasta ahora, se espera que las arquitecturas de la quinta generación de redes móviles (5G) soporten cargas de tráfico sin precedentes a la vez que disminuyen los costes asociados a la implementación y operaciones de la red. De hecho, el próximo conjunto de estándares 5G traerá la programabilidad y flexibilidad a niveles nunca antes vistos. Esto ha requerido la introducción de cambios en la arquitectura de las redes móviles, lo que permite diferentes funciones, como la división de los planos de control y de datos, según sea necesario para soportar una programación rápida de planos de datos heterogéneos. La softwarisación de red se considera una herramienta clave para hacer frente a dicha evolución de red, ya que proporciona la capacidad de controlar todas las funciones de red mediante (re)programación, proporcionando así una mayor flexibilidad para cumplir requisitos heterogéneos mientras se mantienen bajos los costes operativos y de implementación. Por lo tanto, se espera una gran diversidad en términos de patrones de tráfico, multi-tenancy, requisitos de tráfico heterogéneos y estrictos en las redes 5G. Software Defined Networking (SDN) y Network Function Virtualisation (NFV) se han convertido en un conjunto de herramientas básicas para que los operadores administren su infraestructura con mayor flexibilidad y menores costes. Como resultado, los nuevos servicios 5G ahora pueden planificarse, programarse y aprovisionarse rápidamente en respuesta a las necesidades de los usuarios y del mercado, imponiendo un cambio de paradigma en el diseño de los servicios. Sin embargo, dicha flexibilidad requiere que la red de transporte 5G experimente una transformación profunda, que evoluciona de un sustrato de conectividad estática a una infraestructura orientada a servicios capaz de acomodar los diversos servicios 5G, incluso Ultra-Reliable and Low Latency Communications (URLLC). Además, para lograr la flexibilidad y la reducción de costes deseadas, un enfoque prometedores aprovechar las tecnologías de virtualización para alojar dinámicamente los contenidos, servicios y aplicaciones más cerca de los usuarios para descargar la red central y reducir la latencia. Esta tesis aborda los desafíos anteriores que se detallan a continuación. Una característica común de los servicios 5G es la ubicuidad y la conexión casi permanente que se requiere para la red móvil. Esto impone un desafío en los procedimientos de señalización proporcionados para hacer un seguimiento de los usuarios y garantizar la continuidad de la sesión. Por lo tanto, los mecanismos de gestión de la movilidad desempeñarán un papel central en las redes 5G debido a la demanda de conectividad siempre activa. Distributed Mobility Management (DMM) ayuda a ir en esta dirección, al aplanar la red, lo que mejora su escalabilidad y permite el acceso local a Internet y a otros servicios de comunicaciones, como recursos en “nubes” situadas en el borde de la red móvil. Al mismo tiempo, SDN abre la posibilidad de ejecutar una multitud de aplicaciones inteligentes y avanzadas para optimizar la red en un controlador de red centralizado. La combinación de los principios arquitectónicos DMM con SDN aparece como una poderosa herramienta para que los operadores puedan hacer frente a la carga de administración y datos que se espera en las redes 5G. Para satisfacer la demanda futura de usuarios móviles a un coste reducido, los operadores también están buscando soluciones tales como C-RAN y diferentes divisiones funcionales para disminuir el coste de implementación y mantenimiento de emplazamientos celulares. El creciente estrés en el rendimiento del acceso a la radio móvil en un contexto de menores ingresos para los operadores requiere, por lo tanto, la evolución de las redes de transporte de backhaul y fronthaul, que actualmente funcionan disociadas. La heterogeneidad de los nodos y las tecnologías de transmisión que interconectan los segmentos de fronthaul y backhaul hacen que la red sea bastante compleja, costosa e ineficiente para gestionar de manera flexible y dinámica. De hecho, el uso de tecnologías heterogéneas obliga a los operadores a gestionar dos redes separadas físicamente, una para la red de backhaul y otra para el fronthaul. Para cumplir con los requisitos de 5G de manera rentable, se requiere una red de transporte única 5G que unifique los planos de control, datos y de gestión. Dicha red de transporte fronthaul/backhaul integrada, denominada “crosshaul”, transportará tráfico de fronthaul y backhaul operando sobre tecnologías heterogéneas de plano de datos, que están controladas por software para adaptarse a la demanda de capacidad fluctuante de las interfaces radio 5G. Además, las redes de transporte 5G necesitarán acomodar un amplio espectro de servicios sobre la misma infraestructura física y el network slicing se considera un candidato adecuado para proporcionar la calidad de servicio necesario. La diferenciación del tráfico generalmente se aplica en el borde de la red para garantizar un reenvío adecuado del tráfico según su clase a través de la red troncal. Con el networkslicing, el tráfico ahora puede atravesar muchos fronteras entre “network slices” donde la política de tráfico debe aplicarse, discriminarse y garantizarse, de acuerdo con las necesidades del servicio y de los usuarios. Sin embargo, el principio básico que hace posible esta gestión y operación eficientes de forma flexible – la centralización lógica – plantea importantes desafíos debido a la falta de herramientas de supervisión necesarias para las arquitecturas basadas en SDN. Para tomar decisiones oportunas y correctas mientras se opera una red, las aplicaciones de inteligencia centralizada necesitan alimentarse con un flujo continuo de estadísticas de red actualizadas. Sin embargo, esto no es factible con las soluciones SDN actuales debido a problemas de escalabilidad y falta de precisión. Por lo tanto, se requiere un sistema de telemetría adaptable para respaldar la diversidad de los servicios 5G y sus estrictos requisitos de tráfico. El camino hacia las redes inalámbricas 5G también presenta una tendencia clara de realizar acciones cerca de los usuarios finales. De hecho, acercar los contenidos, las aplicaciones y las funciones de red a los usuarios finales es necesario para hacer frente al enorme volumen de datos y la baja latencia requerida en las futuras redes 5G. Los paradigmas de “edge” y “fog” han surgido recientemente para abordar este desafío. Mientras que el edge está más centrado en la infraestructura y más orientado al operador móvil, el fog es más ubicuo e incluye cualquier nodo (fijo o móvil), incluidos los dispositivos finales. Al utilizar recursos de computación de propósito general en las proximidades de los usuarios, el edge y el fog pueden combinarse para construir una plataforma de computación, que también se puede utilizar para compartir información entre múltiples tecnologías de acceso radio (RAT) y, por lo tanto, abre una nueva dimensión de la integración multi-RAT.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Carla Fabiana Chiasserini.- Secretario: Vincenzo Mancuso.- Vocal: Diego Rafael López Garcí

    Impact of network interconnection in cloud computing environments for high-performance computing applications

    Get PDF
    The availability of computational resources has changed significantly due to the use of the cloud computing paradigm. Aiming at potential advantages, such as cost savings through the pay-per-use method and scalable/elastic resource allocation, we have witnessed ef forts to execute high-performance computing (HPC) applications in the cloud. Due to the distributed nature of these environments, performance is highly dependent on two primary components of the system: processing power and network interconnection. If allocating more powerful hardware theoretically increases performance, it increases the allocation cost on the other hand. Allocation exclusivity guarantees space for memory, storage, and CPU. This is not the case for the network interconnection since several si multaneous instances (multi-tenants) share the same communication channel, making the network a bottleneck. Therefore, this dissertation aims to analyze the impact of network interconnection on the execution of workloads from the HPC domain. We carried out two different assessments. The first concentrates on different network interconnections (GbE and InfiniBand) in the Microsoft Azure public cloud and costs related to their use. The second focuses on different network configurations using NIC aggregation methodolo gies in a private cloud-controlled environment. The results obtained showed that network interconnection is a crucial aspect and can significantly impact the performance of HPC applications executed in the cloud. In the Azure public cloud, the accelerated networking approach, which allows the instance to have a high-performance interconnection without additional charges, allows significant performance improvements for HPC applications with better cost efficiency. Finally, in the private cloud environment, the NIC aggre gation approach outperformed the baseline up to ≈98% of the executions with applica tions that make intensive use of the network. Also, Balance Round-Robin aggregation mode performed better than 802.3ad aggregation mode in the majority of the executions.A disponibilidade de recursos computacionais mudou significativamente devido ao uso do paradigma de computação em nuvem. Visando vantagens potenciais, como economia de custos por meio do método de pagamento por uso e alocação de recursos escalável/e lástica, testemunhamos esforços para executar aplicações de computação de alto desem penho (HPC) na nuvem. Devido à natureza distribuída desses ambientes, o desempenho é altamente dependente de dois componentes principais do sistema: potência de processa mento e interconexão de rede. Se a alocação de um hardware mais poderoso teoricamente aumenta o desempenho, ele aumenta o custo de alocação, por outro lado. A exclusividade de alocação garante espaço para memória, armazenamento e CPU. Este não é o caso da interconexão de rede, pois várias instâncias simultâneas (multilocatários) compartilham o mesmo canal de comunicação, tornando a rede um gargalo. Portanto, esta dissertação tem como objetivo analisar o impacto da interconexão de redes na execução de cargas de tra balho do domínio HPC. Realizamos duas avaliações diferentes. O primeiro concentra-se em diferentes interconexões de rede (GbE e InfiniBand) na nuvem pública da Microsoft Azure e nos custos relacionados ao seu uso. O segundo se concentra em diferentes confi gurações de rede usando metodologias de agregação de NICs em um ambiente controlado por nuvem privada. Os resultados obtidos mostraram que a interconexão de rede é um aspecto crucial e pode impactar significativamente no desempenho das aplicações HPC executados na nuvem. Na nuvem pública do Azure, a abordagem de rede acelerada, que permite que a instância tenha uma interconexão de alto desempenho sem encargos adici onais, permite melhorias significativas de desempenho para aplicações HPC com melhor custo-benefício. Finalmente, no ambiente de nuvem privada, a abordagem de agrega ção NIC superou a linha de base em até 98% das execuções com aplicações que fazem uso intensivo da rede. Além disso, o modo de agregação Balance Round-Robin teve um desempenho melhor do que o modo de agregação 802.3ad na maioria das execuções

    13 Propositions on an {I}nternet for a ``{Burning World}''

    Get PDF

    Sectors and Strategies of Global Communications Regulation

    Get PDF
    As the global communication network matures, the systems and procedures for regulating the growing network and its use are being challenged. The general proliferation of services or the specific demand for electronic transactions require guidance and control which the market alone cannot supply. Meanwhile, traditional regulatory regimes remain far from global or coherent. This article distinguishes between coordination and regulation to clarify areas where government intervention is unnecessary and where indispensable. It explores the current patchwork of regulatory approaches, reviews different regulatory areas and strategies, identifies trends, and highlights problem areas particular to electronic commerce and third party protection
    corecore