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The role and the activities of the author of this thesis in the project are the following:
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from the defined MEC features and functions, and identify the new requirements. When necessary,
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services or interfaces, data models, application rules and application requirements. The work item
has the intent to recommend the necessary normative work to close these gaps.

The role and the activities of the author of this thesis in ETSI MEC are the following:
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Abstract Resumen

The architecture of current operator infra-
structures is being challenged by the non-stop
growing demand of data hungry services ap-
pearing every day. While currently deployed
operator networks have been able to cope
with traffic demands so far, the architectures
for the 5th generation of mobile networks
(5G) are expected to support unprecedented
traffic loads while decreasing costs associated
with the network deployment and operations.
Indeed, the forthcoming set of 5G standards
will bring programmability and flexibility to
levels never seen before. This has required
introducing changes in the architecture of
mobile networks, enabling different features
such as the split of control and data planes,
as required to support rapid programming of
heterogeneous data planes. Network softwar-
isation is hence seen as a key enabler to cope
with such network evolution, as it permits
controlling all networking functions through
(re)programming, thus providing higher flex-
ibility to meet heterogeneous requirements
while keeping deployment and operational
costs low. A great diversity in terms of traffic
patterns, multi-tenancy, heterogeneous and
stringent traffic requirements is therefore
expected in 5G networks.

Software Defined Networking (SDN) and
Network Function Virtualisation (NFV) have
emerged as a basic tool-set for operators to
manage their infrastructure with increased
flexibility and reduced costs. As a result,
new 5G services can now be envisioned
and quickly programmed and provisioned

La arquitectura de las infraestructuras actuales
de los operadores está siendo desafiada por la de-
manda creciente e incesante de servicios con un
elevado consumo de datos que aparecen todos los
días. Mientras que las redes de operadores imple-
mentadas actualmente han sido capaces de lidiar
con las demandas de tráfico hasta ahora, se espe-
ra que las arquitecturas de la quinta generación
de redes móviles (5G) soporten cargas de tráfico
sin precedentes a la vez que disminuyen los costes
asociados a la implementación y operaciones de
la red. De hecho, el próximo conjunto de están-
dares 5G traerá la programabilidad y flexibilidad
a niveles nunca antes vistos. Esto ha requerido
la introducción de cambios en la arquitectura de
las redes móviles, lo que permite diferentes funcio-
nes, como la división de los planos de control y
de datos, según sea necesario para soportar una
programación rápida de planos de datos heterogé-
neos. La softwarisación de red se considera una
herramienta clave para hacer frente a dicha evo-
lución de red, ya que proporciona la capacidad
de controlar todas las funciones de red mediante
(re)programación, proporcionando así una mayor
flexibilidad para cumplir requisitos heterogéneos
mientras se mantienen bajos los costes operativos
y de implementación. Por lo tanto, se espera una
gran diversidad en términos de patrones de tráfico,
multi-tenancy, requisitos de tráfico heterogéneos y
estrictos en las redes 5G.

Software Defined Networking (SDN) y Network
Function Virtualisation (NFV) se han convertido
en un conjunto de herramientas básicas para que
los operadores administren su infraestructura con
mayor flexibilidad y menores costes. Como resulta-
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in response to user and market necessities,
imposing a paradigm shift in the services
design. However, such flexibility requires
the 5G transport network to undergo a pro-
found transformation, evolving from a static
connectivity substrate into a service-oriented
infrastructure capable of accommodating the
various 5G services, including Ultra-Reliable
and Low Latency Communications (URLLC).
Moreover, to achieve the desired flexibility
and cost reduction, one promising approach
is to leverage virtualisation technologies to
dynamically host contents, services, and ap-
plications closer to the users so as to offload
the core network and reduce the commu-
nication delay. This thesis tackles the above
challenges which are detailed in the following.

A common characteristic of the 5G ser-
vices is the ubiquity and the almost permanent
connection that is required from the mobile
network. This really imposes a challenge in
the signalling procedures provided to get track
of the users and to guarantee session continu-
ity. The mobility management mechanisms
will hence play a central role in the 5G net-
works because of the always-on connectivity
demand. Distributed Mobility Management
(DMM) helps going towards this direction, by
flattening the network, hence improving its
scalability, and enabling local access to the In-
ternet and other communication services, like
mobile-edge clouds. Simultaneously, SDN
opens up the possibility of running a multi-
tude of intelligent and advanced applications
for network optimisation purposes in a cent-
ralised network controller. The combination
of DMM architectural principles with SDN
management appears as a powerful tool for
operators to cope with the management and
data burden expected in 5G networks.

To meet the future mobile user demand
at a reduced cost, operators are also look-
ing at solutions such as C-RAN and differ-
ent functional splits to decrease the cost of
deploying and maintaining cell sites. The in-
creasing stress on mobile radio access per-
formance in a context of declining revenues
for operators is hence requiring the evolu-
tion of backhaul and fronthaul transport net-
works, which currently work decoupled. The
heterogeneity of the nodes and transmission

do, los nuevos servicios 5G ahora pueden planifi-
carse, programarse y aprovisionarse rápidamente
en respuesta a las necesidades de los usuarios y
del mercado, imponiendo un cambio de paradigma
en el diseño de los servicios. Sin embargo, dicha
flexibilidad requiere que la red de transporte 5G
experimente una transformación profunda, que evo-
luciona de un sustrato de conectividad estática a
una infraestructura orientada a servicios capaz
de acomodar los diversos servicios 5G, incluso
Ultra-Reliable and Low Latency Communications
(URLLC). Además, para lograr la flexibilidad y la
reducción de costes deseadas, un enfoque promete-
dor es aprovechar las tecnologías de virtualización
para alojar dinámicamente los contenidos, servi-
cios y aplicaciones más cerca de los usuarios para
descargar la red central y reducir la latencia. Esta
tesis aborda los desafíos anteriores que se detallan
a continuación.

Una característica común de los servicios 5G
es la ubicuidad y la conexión casi permanente
que se requiere para la red móvil. Esto impone
un desafío en los procedimientos de señalización
proporcionados para hacer un seguimiento de los
usuarios y garantizar la continuidad de la sesión.
Por lo tanto, los mecanismos de gestión de la movi-
lidad desempeñarán un papel central en las redes
5G debido a la demanda de conectividad siempre
activa. Distributed Mobility Management (DMM)
ayuda a ir en esta dirección, al aplanar la red, lo
que mejora su escalabilidad y permite el acceso
local a Internet y a otros servicios de comunica-
ciones, como recursos en “nubes” situadas en el
borde de la red móvil. Al mismo tiempo, SDN abre
la posibilidad de ejecutar una multitud de aplica-
ciones inteligentes y avanzadas para optimizar la
red en un controlador de red centralizado. La com-
binación de los principios arquitectónicos DMM
con SDN aparece como una poderosa herramienta
para que los operadores puedan hacer frente a la
carga de administración y datos que se espera en
las redes 5G.

Para satisfacer la demanda futura de usuarios
móviles a un coste reducido, los operadores tam-
bién están buscando soluciones tales como C-RAN
y diferentes divisiones funcionales para disminuir
el coste de implementación y mantenimiento de
emplazamientos celulares. El creciente estrés en
el rendimiento del acceso a la radio móvil en un
contexto de menores ingresos para los operadores
requiere, por lo tanto, la evolución de las redes de
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technologies inter-connecting the fronthaul
and backhaul segments makes the network
quite complex, costly and inefficient to man-
age flexibly and dynamically. Indeed, the use
of heterogeneous technologies forces operat-
ors to manage two physically separated net-
works, one for backhaul and one for fronthaul.
In order to meet 5G requirements in a cost-
effective manner, a unified 5G transport net-
work that unifies the data, control, and man-
agement planes is hence required. Such an
integrated fronthaul/backhaul transport net-
work, denoted as crosshaul, will hence carry
both fronthaul and backhaul traffic operating
over heterogeneous data plane technologies,
which are software-controlled so as to adapt
to the fluctuating capacity demand of the 5G
air interfaces.

Moreover, 5G transport networks will
need to accommodate a wide spectrum of
services on top of the same physical infra-
structure. To that end, network slicing is
seen as a suitable candidate for providing the
necessary Quality of Service (QoS). Traffic
differentiation is usually enforced at the bor-
der of the network in order to ensure a proper
forwarding of the traffic according to its class
through the backbone. With network slicing,
the traffic may now traverse many slice edges
where the traffic policy needs to be enforced,
discriminated and ensured, according to the
service and tenants needs. However, the very
basic nature that makes this efficient manage-
ment and operation possible in a flexible way
– the logical centralisation – poses important
challenges due to the lack of proper monitor-
ing tools, suited for SDN-based architectures.
In order to take timely and right decisions
while operating a network, centralised in-
telligence applications need to be fed with
a continuous stream of up-to-date network
statistics. However, this is not feasible with
current SDN solutions due to scalability and
accuracy issues. Therefore, an adaptive tele-
metry system is required so as to support the
diversity of 5G services and their stringent
traffic requirements.

The path towards 5G wireless networks
also presents a clear trend of carrying out com-
putations close to end users. Indeed, pushing
contents, applications, and network functions

transporte de backhaul y fronthaul, que actualmen-
te funcionan disociadas. La heterogeneidad de los
nodos y las tecnologías de transmisión que inter-
conectan los segmentos de fronthaul y backhaul
hacen que la red sea bastante compleja, costosa e
ineficiente para gestionar de manera flexible y diná-
mica. De hecho, el uso de tecnologías heterogéneas
obliga a los operadores a gestionar dos redes sepa-
radas físicamente, una para la red de backhaul y
otra para el fronthaul. Para cumplir con los requi-
sitos de 5G de manera rentable, se requiere una red
de transporte única 5G que unifique los planos de
control, datos y de gestión. Dicha red de transporte
fronthaul/backhaul integrada, denominada “cross-
haul”, transportará tráfico de fronthaul y backhaul
operando sobre tecnologías heterogéneas de plano
de datos, que están controladas por software para
adaptarse a la demanda de capacidad fluctuante
de las interfaces radio 5G.

Además, las redes de transporte 5G necesita-
rán acomodar un amplio espectro de servicios so-
bre la misma infraestructura física y el network
slicing se considera un candidato adecuado para
proporcionar la calidad de servicio necesario. La
diferenciación del tráfico generalmente se aplica
en el borde de la red para garantizar un reenvío
adecuado del tráfico según su clase a través de la
red troncal. Con el network slicing, el tráfico ahora
puede atravesar muchos fronteras entre “network
slices” donde la política de tráfico debe aplicar-
se, discriminarse y garantizarse, de acuerdo con
las necesidades del servicio y de los usuarios. Sin
embargo, el principio básico que hace posible es-
ta gestión y operación eficientes de forma flexible
– la centralización lógica – plantea importantes
desafíos debido a la falta de herramientas de super-
visión necesarias para las arquitecturas basadas
en SDN. Para tomar decisiones oportunas y co-
rrectas mientras se opera una red, las aplicaciones
de inteligencia centralizada necesitan alimentarse
con un flujo continuo de estadísticas de red actua-
lizadas. Sin embargo, esto no es factible con las
soluciones SDN actuales debido a problemas de
escalabilidad y falta de precisión. Por lo tanto, se
requiere un sistema de telemetría adaptable para
respaldar la diversidad de los servicios 5G y sus
estrictos requisitos de tráfico.

El camino hacia las redes inalámbricas 5G
también presenta una tendencia clara de realizar
acciones cerca de los usuarios finales. De hecho,
acercar los contenidos, las aplicaciones y las fun-
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closer to end users is necessary to cope with
the huge data volume and low latency required
in future 5G networks. Edge and fog frame-
works have emerged recently to address this
challenge. Whilst the edge framework was
more infrastructure-focused and more mobile
operator-oriented, the fog was more pervas-
ive and included any node (stationary or mo-
bile), including terminal devices. By further
utilising pervasive computational resources
in proximity to users, edge and fog can be
merged to construct a computing platform,
which can also be used as a common stage for
multiple radio access technologies (RATs) to
share their information, hence opening a new
dimension of multi-RAT integration.

ciones de red a los usuarios finales es necesario
para hacer frente al enorme volumen de datos y
la baja latencia requerida en las futuras redes 5G.
Los paradigmas de “edge” y “fog” han surgido
recientemente para abordar este desafío. Mientras
que el edge está más centrado en la infraestruc-
tura y más orientado al operador móvil, el fog es
más ubicuo e incluye cualquier nodo (fijo o móvil),
incluidos los dispositivos finales. Al utilizar recur-
sos de computación de propósito general en las
proximidades de los usuarios, el edge y el fog pue-
den combinarse para construir una plataforma de
computación, que también se puede utilizar para
compartir información entre múltiples tecnologías
de acceso radio (RAT) y, por lo tanto, abre una
nueva dimensión de la integración multi-RAT.
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1. Mobile networks landscape

Packet-based mobile networks have experienced a huge success in the last years, with the number
of subscribers and traffic volume constantly growing. Several reports like1 [CIS16]2 show that
the mobile traffic growth will not decelerate, but increase 10-fold instead from 2015 by the end
of 2020. The envisioned scenario will not only assume a large increase in data volume, but also
a profound diversification of traffic and service demands, leading to a new environment for the
telecommunication industry which has been identified as the 5th generation of mobile networks.
On the one hand, 5G aims at improving the network infrastructure to meet users’ demands while
reducing the associated deployment and operational costs for network operators. On the other
hand, 5G enables a plethora of new services and business opportunities for solutions providers
as documented by the 3rd Generation Partnership Project (3GPP)’s New Services and Markets
Technology Enablers (SMARTER) [3GP16a]3. As a result, the 5G wireless networks are expected
to support the needs of an hyper-connected society which is continuously demanding very high data
rate access, requiring a wider coverage, and offering an increasing number of almost permanently
connected devices. In order to cope with this ever-increasing traffic demands, nowadays network
technologies are hence experiencing a shift towards softwarisation. The key idea is to bring the
flexibility and reduced cost of software development to network deployment.

1.1 Software-defined networking
This idea is materialised by the Software Defined Networking (SDN) paradigm [ONF12]4, which
moves the intelligence residing in the network elements to a central controller, which implements
the network functionality through software. In traditional approaches, the network’s control plane
is distributed throughout all network devices, while SDN logically centralises the control plane.
This removes the need of complex and costly changes in equipment or firmware updates in order
to introduce new characteristics in the network, as only a change in the software running at the
controller is required. The communication between the centralised controller entity and the merely

1 This thesis uses the following citation style: [ref.id] is used to identify the reference of the work being cited. The
complete list and the extended description of the cited works can be found in the References section at the end of this
document (pp. 197). Additionally, in order to help the reader, the full reference is reported as a footnote the first time
a work is cited.

2 CISCO. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020. White Paper. June
2016.

3 3GPP. Service requirements for next generation new services and markets. Technical Specification (TS) 22.261
v1.0.0. 3rd Generation Partnership Project (3GPP), December 2016.

4 ONF. Software-Defined Networking: The New Norm for Networks. White Paper. Open Networking Foundation,
March 2012.
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traffic forwarding devices could be supported by what is called southbound interface protocols. One
of the candidate protocols for it is OpenFlow, which is being standardised by the Open Networking
Foundation (ONF). The main advantage of this approach is that operators can benefit from an
increased flexibility to manage their networks and implement new services. Following this new
technology (SDN), the 3GPP’s architectural study for next generation mobile systems, published
in [3GP16b]5, focuses on enhancing the mobile network’s core part, considering the evolution of
the network towards a distributed and softwarised ecosystem.

Initial work on SDN focused on wired networks, though its advantages are even more important
for mobile wireless networks. Indeed, in mobile networks users may change their location over
time, and therefore the flexibility provided by SDN is not only beneficial for optimising the traffic
distribution inside the network, but it is also useful to adapt the way traffic is steered after users’
movement. In particular, some of the benefits of adopting SDN in mobile networks include the
following:

– Modification of traffic engineering policies: With SDN, an operator can easily change the
traffic engineering policies implemented in the network. This can be useful for many reasons,
such as for example: (i) to select a new gateway for outgoing traffic, (ii) route all traffic
through a given firewall, or (iii) route certain traffic differently.

– Online traffic optimisation: SDN does not only allow to flexibly change the traffic engineering
policies but it also allows to execute them a finer granularity in terms of (i) the timing involved
in taking routing decisions, and (ii) the traffic flows affected by such decisions. This allows
optimising the way traffic is distributed, adapting it as users move to new locations and load
changes.

– Creation of novel services: SDN also allows treating packets differently based on the user or
the application. This can be used to create novel services; for instance, the gateway providing
connectivity to a user can be selected (among a pool of available ones) based on the location
privacy preferences/requirements of the user. Mobile network services can thus be deployed
on the fly, allowing network operators to quickly adapt their network to new requirements.

Note that the above includes a fairly wide range of services which are enabled by SDN, like the
ones identified by 3GPP in [3GP16a].

1.2 Distributed mobility management
One service of paramount importance in mobile networks, which intrinsically differentiates them
from fixed networks, is the mobility management of the users. Indeed, mobile users are charac-
terised by the fact that they move within the network and may change point of attachment while
moving (e.g., antenna they are connected to). The control and data planes of these users are
converged at the same Packet Data Network Gateway (PGW) in today’s 4G systems, making the
4G architecture highly centralised and hierarchical. The PGW hence is in charge of terminating the
mobility signalling of the users as well as forwarding their traffic to and from the mobile network
enforcing any policy functions. By doing so, the gateway acts as mobility anchor following the
user movements by simply re-routing the packets over tunnels created with the access router where
the user terminal is currently connected. But this simplicity comes with some penalties [Cha+14]6:
the mobility anchor represents a single point of failure, it poses scalability issues overloading
the network core, and, in general, it leads to sub-optimal paths between the mobile users, also
known as Mobile Node (MN), and their communication peers, also known as Correspondent Node
(CN). Flattening the network architecture is regarded as one of the most promising approaches to
design the architecture of the next generation system, and the Distributed Mobility Management
(DMM) paradigm goes precisely in such direction. Both 3GPP and Internet Engineering Task Force

5 3GPP. Study on Architecture for Next Generation System. Technical Report (TR) 23.799 v14.0.0. 3rd Generation
Partnership Project (3GPP), December 2016.

6 H. Chan et al. Requirements for Distributed Mobility Management. Request for Comments (RFC) 7333. Internet
Engineering Task Force (IETF), August 2014.
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(IETF), which are the main standardisation bodies in this area, have looked and are still looking at
DMM-alike solutions.

As a matter of fact, signalling load is one of the most problematic aspects in existing mobile
core networks [Met+14]7, [Net12]8. On the one hand, the number of mobile devices supported by
the network (which is the final responsible for their reachability as they move) is ever increasing. On
the other hand, the need to increase both capacity and coverage is fuelling the deployment of smaller
cells that in turn produce more signalling because of more frequent handover events, regardless the
users are actually generating data traffic or not. The main limitation today resides in the control
part and not in the data plane, which has enough throughput capacity for traffic forwarding, then
driving to a constant upgrade of the mobile core network elements. Specifically, the Mobility
Management (MM) is a task that imposes serious constraints to the processing capacity of the
existing mobile core network elements. Even if a mobile terminal is not active in a communication,
the network should manage its mobility and provide the network resources for facilitating such
communication when it is set up. In this situation it is reasonable to look for decoupling the control
plane from the data plane in mobile core networks. In fact, mobile protocols already imply such
conceptual separation. However, the common incarnation of the mobile core nodes today is the
vertical integration of both control and data plane functions in special-purpose and monolithic
hardware. A Mobile Packet Core (MPC) architecture based on SDN has been already proposed
in [Sam+15]9 describing the evolution of the existing MPC architecture towards a new architecture
with the separation of control and user plane by using a programmable network infrastructure.

1.3 Fronthaul and backhaul
The network infrastructure for mobile networks traditionally envisages a backhaul segment for
assuring connectivity between the core network and access network. Such segment is typically
composed of several sub-systems including heterogeneous wired/wireless forwarding networks and
fibre-based aggregation/routing networks, thus including several packet nodes, such as switches,
routers, aggregators, etc. This heterogeneity leads to the use of various transport protocols for
transporting packets between these nodes such as carrier-grade Ethernet, Optical Transport Network
(OTN), Synchronous Digital Hierarchy (SDH), Multiprotocol Label Switching (MPLS), Internet
Protocol (IP), etc. The packets transmitted on the backhaul segment are also referred to as backhaul
traffic. Recently, a new network segment called fronthaul has emerged, as the result of more
centralised radio access network (C-RAN) architectures where the Evolved Node B (eNB) is split
into two elements, a Remote Radio Head (RRH) and a Baseband processing Unit (BBU). The
RRH simply keeps the RF functions necessary for the signal radiation at the cell site while the
BBU takes all the baseband heavy computational functions to a separate location. The simplicity
of the antenna sites would allow a more cost effective and flexible deployments of the 5G Radio
Access Network (RAN), which is also expected to be denser so as to increase the spectrum re-
utilisation and capillarity. To enable this functional split, new protocol interfaces have been designed,
such as Common Public Radio Interface (CPRI) [CPR15]10, enhanced CPRI (eCPRI) [CPR18]11,
Open Radio equipment Interface (ORI) [ETS14]12, and Next Generation Fronthaul Interface

7 F. Metzger et al. ‘Exploratory Analysis of a GGSN’s PDP Context Signaling Load’. In: Journal of Computer Networks
and Communications 2014 (2014). DOI: 10.1155/2014/526231.

8 Nokia Siemens Networks. Signaling is growing 50% faster than data traffic. White Paper. 2012.
9 M. R. Sama et al. ‘Software-defined control of the virtualized mobile packet core’. In: IEEE Communications

Magazine 53.2 (February 2015), pages 107–115. ISSN: 0163-6804. DOI: 10.1109/MCOM.2015.7045398.
10 CPRI. CPRI Specification. Interface Specification v7.0. Common Public Radio Interface (CPRI), October 2015.
11 CPRI. Common Public Radio Interface: eCPRI Interface Specification. Interface Specification v1.2. Common Public

Radio Interface (CPRI), June 2018.
12 ETSI. Requirements for Open Radio equipment Interface (ORI). Group Specification (GS) GS ORI 001 V4.1.1.

European Telecommunications Standards Institute (ETSI), October 2014.

https://doi.org/10.1155/2014/526231
https://doi.org/10.1109/MCOM.2015.7045398
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(NGFI) [IEE16b]13. The data generated by these interfaces and then transported on the fronthaul
segment is referred to as fronthaul traffic. While the location of the RRH is determined by the
physical environment and deployments, the physical location of the BBU is variable (e.g., fully at
the edge, in a local cloud, or fully central cloud). This can create situations where fronthaul and
backhaul traffic may eventually share the same physical segment of the transport network. Different
functional splits, and hence interfaces, impose different requirements (e.g., bandwidth, latency,
jitter, BER) on the fronthaul interface that must be guaranteed within the transport network, which
comprises heterogeneous transmission technologies.

The expected heterogeneity requires a compromise between a dedicated control for each type
of technology and a common abstraction layer so as to provision end-to-end services and monitor
their Quality of Service (QoS) transparently to the underlying technologies. With traditional
technologies, the plethora of nodes, their control elements, and the embedded technologies make
the fronthaul and backhaul networks quite complex, expensive and inefficient to manage flexibly
and dynamically. Moreover, the new considered functional splits further blur the borders between
fronthaul and backhaul. Indeed, both fronthaul and backhaul traffic will have to be carried across
the same transport infrastructure, even along with the traffic of fixed access networks. As a result, a
common fronthaul/backhaul transport network is required to integrate the heterogeneous media
and transport technologies, such as microwave, mmWave, dark fibre, leased lines, etc. To that
end, 5G transport networks need to evolve towards an adaptive, flexible and software-defined
architecture for integrating multi-technology fronthaul and backhaul segments. The resulting
integrated fronthaul and backhaul architecture, also referred to as crosshaul, aims to enable a
flexible and software-defined reconfiguration of all networking elements through unified data and
control planes interconnecting distributed 5G radio access and core network functions. To tackle the
above requirements from a network protocol perspective, Ethernet is considered a suitable candidate
in terms of performance, costs, and management for providing packet-based services in a transport
network [Oli+15]14. As a matter of fact, the IEEE is extending current Ethernet standards to (i)
support link speeds up to 200 Gbps [IEE17d]15, and to (ii) provide enhancements for time-sensitive
traffic (i.e., fronthaul) [CPR18] which are of particular relevance for 5G. Consequently, transport
networks will need to provide huge bandwidth, traffic differentiation, and tailored QoS.

1.4 5G services and network slices
In addition to the backhaul and fronthaul traffic, 5G transport networks will hence need to accom-
modate different kind of services with very distinct requirements [ITU15a]16 on top of the same
physical infrastructure. Specifically, these services span across a large variety of new use cases
which go beyond the natural evolution of voice and data delivery in 4G mobile networks [3GP16c]17,
such as multi-access network integration, even across operators and less trusted networks, Internet
of Things (IoT), localised real-time control, vehicular communication, etc. All of this poses signific-
ant challenges to the 4G monolithic and centralised network architecture, both in terms of flexibility
and scalability, making new services hard to introduce and scale. In addition, sharing the physical
network assets through multi-tenancy is seen as a viable path for reducing the ever-increasing costs

13 IEEE. Standard for Packet-based Fronthaul Transport Networks. NGFI - Next Generation Fronthaul Interface 1914.1.
Institute of Electrical and Electronics Engineers (IEEE), August 2016.

14 A. D. La Oliva et al. ‘Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks’. In: IEEE Wireless
Communications 22.5 (October 2015), pages 32–40. ISSN: 1536-1284. DOI: 10.1109/MWC.2015.7306535.

15 IEEE. Physical Layers and Management Parameters for 50 Gb/s, 100 Gb/s, and 200 Gb/s Operation. Standard for
Ethernet 802.3cd. Institute of Electrical and Electronics Engineers (IEEE), December 2017.

16 ITU-R. Framework and overall objectives of the future development of IMT for 2020 and beyond. M Series Mobile,
Radiodetermination, Amateur and Related Satellite Services M.2083. International Telecommunication Union -
Radiocommunication Sector (ITU-R), October 2015.

17 3GPP. Study on New Services and Markets Technology Enablers. Technical Report (TR) 22.891 v14.2.0. 3rd
Generation Partnership Project (3GPP), September 2016.

https://doi.org/10.1109/MWC.2015.7306535
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involved in the deployment and management of future networks [SCS16]18. The above is key to
understand the new QoS capabilities that are required to be supported in 5G transport networks so
as to simultaneously fulfil the disparate traffic and tenant requirements.

The 3GPP groups 5G services in three main categories [3GP18i]19, namely enhanced Mobile
Broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), and Massive
Internet of Things (MIoT). Each of them present different inherent characteristics spanning from
ultra-low latency to high bandwidth and high reliability. According to Next Generation Mobile
Networks (NGMN) [NGM16]20, these multiple services may be provided by customised network
slices, which provide the necessary traffic treatment over the same physical substrate. Traffic
differentiation is enforced at the access border of the network in order to ensure a proper forwarding
of the traffic according to its class through the backbone, where it is more feasible to have high
capacity. While existing networks can be considered as a continuum from the access to the
interconnections points forming an end-to-end path, network slicing breaks this situation since now
the end-to-end path becomes a composition of segmented paths within different slices that could
even pertain to distinct administrative organisations or providers. This means that the end-to-end
path traverses now many edges where the traffic should be enforced, discriminated and ensured,
according to the service and tenants needs. Thus, transport networks move from a single-edge
continuum towards a multiple-edges structure in 5G. Apart from the technical complexity added,
cost implications can be expected, since the specialised and more expensive hardware today used
only in the border for implementing fine-grained QoS should be generalised throughout the network.

To effectively and timely react to changes in the service needs (e.g., QoS) and/or in the
underlying infrastructure, operators need to put in place a set of constantly-active critical routines
in their networks. These procedures are traditionally referred to as Operations, Administration and
Maintenance (OAM). Specifically, operation activities are undertaken to keep the network and their
services up and running. Administration activities involve keeping track of resources in the network
and how they are used. Maintenance activities are focused on facilitating repairs and upgrades in
addition to corrective and preventive measures to make the managed network run more effectively.
In the last decade, considerable effort was devoted to enrich existing transport technologies, such
as MPLS by the IETF and Provider Backbone Bridges (PBB) by the Institute of Electrical and
Electronics Engineers (IEEE), with a comprehensive set of OAM tools with the ultimate goal
of providing a carrier grade packet-based network to operators. This effort eventually yielded
the release of two competing standards: MPLS Transport Profile (MPLS-TP) and PBB Traffic
Engineering (PBB-TE). However, those protocols do not offer the necessary adaptability required
in 5G networks because of the rigid implementation of the OAM functionalities. To overcome
such limitations, new levels of programmability and flexibility are hence required, triggering the
adoption of architectures based on the separation of control and data planes as well as virtualisation.

1.5 Edge and fog computing
In addition to the separation of control and data planes (i.e., SDN), the telecommunication industry
is embracing virtualisation technologies for evolving towards a cloud-based infrastructure (see for
instance the solution reported in [ATT16]21 ). This trend has led to the creation of the European
Telecommunications Standards Institute (ETSI) Network Function Virtualisation (NFV) Industry
Specification Group (ISG) who pioneered the idea of bringing virtualisation capabilities into mobile

18 K. Samdanis, X. Costa-Perez and V. Sciancalepore. ‘From network sharing to multi-tenancy: The 5G network
slice broker’. In: IEEE Communications Magazine 54.7 (July 2016), pages 32–39. ISSN: 0163-6804. DOI:
10.1109/MCOM.2016.7514161.

19 3GPP. Service requirements for next generation new services and markets. Technical Specification (TS) 22.261
v16.4.0. 3rd Generation Partnership Project (3GPP), June 2018.

20 NGMN. Description of Network Slicing Concept. White Paper v1.0. Next Generation Mobile Networks Alliance,
February 2016.

21 AT&T. ECOMP (Enhanced Control, Orchestration, Management & Policy) Architecture White Paper. White Paper.
AT&T Inc., September 2016.

https://doi.org/10.1109/MCOM.2016.7514161
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operator networks [ETS16b]22 to increase flexibility in service offerings and network management.
By decoupling the network functions from the underlying hardware platform, NFV allows operators
to dynamically deploy services in response to the needs of the traffic. In addition to NFV, ETSI
Mobile Edge Computing (MEC) ISG brings computing capabilities close to the end users to cope
with the ever-increasing amount of data (e.g., generated by IoT) and the low latency required by
some use cases (e.g., vehicular communication) [ETS16a]23. NFV and MEC jointly represent a
paradigm shift for mobile operator networks, which evolve from a centralised architecture based on
monolithic and hardware-integrated functions to a software-based distributed architecture. Such
evolution enables a common hosting environment, namely edge computing, at the network edge
characterised by low latency and high bandwidth as well as real-time access to radio network
information. Network functions and software applications can be hence deployed close to the
end users, thus alleviating congestion at the mobile network core and serving efficiently local
purposes, such as data aggregation for IoT, localised real-time control, and single aggregation point
for multi-access connectivity.

Recently, fog computing gained considerable traction in the industrial community as demon-
strated by the newborns OpenFog consortium [Con17]24 and IEEE working group on fog computing
and networking architecture framework [IEE18c]25. Fog computing distributes computing, storage,
control and networking functions closer to the users along a cloud-to-thing continuum which also
envisions the collaborative usage of a multitude of end user or near-user edge devices to carry
out a substantial amount of those tasks. It is noteworthy that non-stationary and volatile devices
are also considered in fog computing, for example when apparatus are hosted on moving devices
(e.g., car, train, mobile user) or are battery-powered (e.g., IoT). While edge computing focuses
on operator networks and related use cases, fog computing focuses more broadly on enterprise
use cases, which may not be necessarily related to mobile networks (e.g., smart cities, remote
surveillance, etc.). Nonetheless, edge and fog present a significant synergy: they both focus on
bringing networking and computing capabilities closer to the user. Nowadays, edge and fog com-
puting are stand-alone domains that require separate deployments eventually contending for the
same physical resources (e.g., spectrum). The lack of integration poses numerous challenges to the
effective usage of those resources in addition to the cost-effectiveness of having multiple separate
physical deployments. This is particularly true in today’s environments where most of the end user
devices are equipped with multiple independent Radio Access Technology (RAT) (e.g., LTE and
Wi-Fi) that may simultaneously operate over the same spectrum (e.g., LTE in unlicensed spectrum).
As a consequence, the lack of integration acts also as a limiting factor in the exploitation of such
multi-RAT diversity. Therefore, a proper harmonisation of edge and fog systems is potentially seen
as an enabler for a new degree of convergence in the access with the goal of amalgamating the
multiple RATs co-existing nowadays.

1.6 Thesis overview
The remainder of this thesis is organised as follows. Chapter 2 presents an in-depth description
of SDN technology, which is the pillar this thesis builds upon. Part one aims at experimentally
validating how SDN concepts can greatly simplify network operation in future 5G operator networks.
This simplification is achieved by allowing to very easily create and modify network services and
thus customise network operation subject to the operator’s requirements. To that end, an SDN

22 ETSI. Network Functions Virtualisation (NFV); Management and Orchestration; Report on Architectural Options.
Group Specification (GS) NFV-IFA 009 v1.1.1. European Telecommunications Standards Institute (ETSI), July 2016.

23 ETSI. Mobile Edge Computing (MEC); Framework and Reference Architecture. Group Specification (GS) 003 v1.1.1.
European Telecommunications Standards Institute (ETSI), March 2016.

24 OpenFog Consortium. OpenFog Reference Architecture for Fog Computing. OPFRA001.020817. Architecture
Working Group, February 2017.

25 IEEE. Standards for Adoption of OpenFog Reference Architecture for Fog Computing. FOG - Fog Computing and
Networking Architecture Framework 1934. Institute of Electrical and Electronics Engineers (IEEE), July 2018.
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framework for quick service provisioning is proposed in Chapter 3. Then, Chapter 4 first explores
the evolution of DMM towards SDN, including the identification of DMM design principles and
challenges. Next, it proposes and analyses a novel SDN-based DMM solution. Chapter 5 presents
a prototype of the SDN-based framework in a real-life test-bed, where the implementation cost
of novel complex services is evaluated through experimentation. Additionally, the feasibility of
the proposed SDN-based DMM solution is assessed experimentally and the various components
evaluated. Chapter 6 finally provides the conclusions of part one highlighting the main related
publications.

Part two addresses the design and challenges of future 5G transport networks. Specifically,
Chapter 7 discusses the candidate transport and multiplexing technologies for enabling a unified
data-plane capable of multiplexing fronthaul and backhaul traffic. Moreover, it proposes a multi-
layer switch architecture, with its corresponding abstraction of the forwarding behaviour, and a
common frame format that ultimately realise the integrated transport network, also referred to as
crosshaul. Furthermore, it analyses the impact of different QoS policies in the transport network in
case of having multiple network slices, namely eMBB, URLLC, and MIoT, dealing with fixed and
mobile traffic under the performance requirements defined in [3GP18i]. To that end, a simulation
framework, namely SimPype, has been developed to evaluate the different QoS policies (SimPype
details are reported in Appendix A). Next, Chapter 8 first analyses the mismatch between current
OAM tools and SDN solutions in mobile networks. Next, it proposes a telemetry solution for
software-defined mobile networks capable of adapting to the various service requirements expected
in 5G. It therefore presents an experimental validation which shows the benefits of the proposed
solution at alleviating the load on the control and data planes, improving the reactiveness to network
events, and providing a better accuracy for network measurements. Finally, Chapter 9 concludes
the second part of this thesis and reports the main related publications.

Part three widens the scope of network design by encompassing NFV in addition to SDN
and by integrating edge and fog computing in the overall 5G system. On the one hand, this
vision allows to extend 5G services from purely network-oriented services to a application/user-
centric services where computing capabilities are crucial to the effective service delivery. On the
other hand, this concept facilitates multi-access convergence by leveraging the pervasiveness of
virtualisation capabilities available in the edge and fog computing ecosystem. Chapter 10 first
analyses the opportunities and challenges to integrate, federate, and jointly orchestrate the edge
and fog ecosystems into a unified framework tailored to 5G service provisioning and multi-access
convergence. Next, Chapter 11 presents the conceptual and logical architecture of such integrated
edge and fog system where network operator’s and user’s virtual functions and applications coexist
in the same service area so as to provide enhanced Quality of Exprerience (QoE). To exemplify this
architecture an reference use case, namely fog-assisted robotics, is proposed. Chapter 12 finally
presents the conclusions of part three and highlights the main related publications.

Ultimately, Chapter 13 draws the thesis conclusions by pinpointing the main contributions
of this work with regards to advancements to the state of art. The main publications included in
this thesis, and the ones related to the addressed topics, are reported and highlighted. Chapter 14
conclusively identifies the gaps that this thesis leaves uncovered and delineates future lines of work.





2. Background on software-defined networking

A logical view of the Software Defined Networking (SDN) architecture is shown in Figure 2.1. The
intelligence and control of SDN switches is centralised in SDN controllers. By doing so, an SDN
controller has the global view of the network and is capable of controlling, in a vendor-independent
way, the network devices, namely SDN switches. These network devices are no longer required to
implement and understand many different network protocol standards; instead, they can provide
such functionality by accepting instructions from SDN controllers through the southbound interface.
This yields a significant saving in time and resources, as the network behaviour can be easily
controlled by programming it in the centralised controllers rather than using custom configurations
in many different devices scattered across the network. The SDN controller is responsible for the
maintenance of an abstract resource model of the underlying network which is then exposed to
applications via the northbound interface, which is commonly implemented through Rest APIs1.
Applications define the network behaviour and may belong either to the network operator or to
clients, the former usually having a broader scope and higher privileges than the latter.

The following as well as the rest of this thesis focuses on the Southbound Interface (SBI), which
provides communication and management between network’s SDN controller and physical or
virtual resources. There are two distinct types of southbound protocols depending on their purpose.
The Control protocols primarily control the forwarding/routing, which is the core functionality of
the switches and routers in the network. The Management protocols convey information regarding
the configuration and administration of the elements. In a complex SDN network both control
and management protocols are present. In some cases, there are control protocols that have their
partner management protocol but they are still distinct and decoupled, permitting a higher degree of
flexibility. Moreover, an SBI provides an abstraction of the switch’s hardware towards the network
controller to enable direct expression of network behaviour and requirements. Multiple abstraction
models can be adopted depending on the involved functionality, e.g., a forwarding model defines
the packet processing semantic on the switch, while a node model defines the device and peripherals
abstraction. The following reports the main southbound protocols for controlling and managing the
network elements (e.g., switches) and the main abstraction as defined in the main standardisation
bodies, namely Internet Engineering Task Force (IETF) and Open Networking Foundation (ONF).

2.1 Southbound interfaces for controlling the forwarding
This section reports the main southbound interfaces intended to control the forwarding tables on
the network elements (e.g., switches).

1 Note that there is no standard protocol defined for the northbound interface.
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Figure 2.1: Software-defined networking (SDN) architecture.

2.1.1 Forwarding and Control Element Separation Protocol
Forwarding and Control Element Separation (ForCES) defines an architectural framework, and the
protocols associated to it, to standardise the information exchange between the control plane and
the forwarding plane in a ForCES Network Element (NE). RFC 3654 [KA03]2 defines the ForCES
requirements, RFC 3746 [Yan+04]3 defines the ForCES framework, and RFC 5810 [Dor+10]4

specifies the protocol. The ForCES Forwarding Element (FE) is defined by RFC 5812 [HS10]5 and
is a logical entity that implements the ForCES protocol and uses the underlying hardware to provide
per packet processing and handling as directed by a Control Element (CE). A CE is a logical entity
that implements the ForCES Protocol and uses it to instruct one or more FEs on how to process
packets. CEs handle functionality such as the execution of control and signalling protocols. Logical
Functional Block (LFB) is the basic building block on which the ForCES protocol operates. The
LFB is a well-defined, logically separable functional block that resides in an FE and is controlled by
the CE via the ForCES protocol. The LFB may reside at the FE’s data path and process packets or
may be purely an FE control or configuration entity on which the CE operates. Note that the LFB is
a functionally accurate abstraction of the FE’s processing capabilities, but not a hardware-accurate
representation of the FE implementation. The RFC 3654 [KA03] defines requirements that must
be satisfied by a ForCES FE model. To summarise, an FE model must define:

– Logically separable and distinct packet forwarding operations in an FE data path (Logical
Functional Blocks or LFBs);

– The possible topological relationships (and hence the sequence of packet forwarding opera-
tions) between the various LFBs;

– The possible operational capabilities (e.g., capacity limits, constraints, optional features,
granularity of configuration) of each type of LFB;

2 H. Khosravi and T. Anderson. Requirements for Separation of IP Control and Forwarding. Request for Comments
(RFC) 3654. Internet Engineering Task Force (IETF), September 2003.

3 L. Yang et al. Forwarding and Control Element Separation (ForCES) Framework. Request for Comments (RFC)
3746. Internet Engineering Task Force (IETF), April 2004.

4 A. Doria et al. Forwarding and Control Element Separation (ForCES) Protocol Specification. Request for Comments
(RFC) 5810. Internet Engineering Task Force (IETF), March 2010.

5 J. Halpern and J. Hadi Salim. Forwarding and Control Element Separation (ForCES) Forwarding Element Model.
Request for Comments (RFC) 5812. Internet Engineering Task Force (IETF), March 2010.
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– The possible configurable parameters (e.g., components) of each type of LFB;
– Metadata that may be exchanged between LFBs.

Packets coming into the FE from ingress ports generally flow through one or more LFBs before
being transmitted on the egress ports. The result of LFB processing may have an impact on how the
packet is to be treated in downstream LFBs. Such differentiated treatment can be conceptualised as
having alternative data paths in the FE. For example, the result of a 6-tuple classification performed
by a classifier LFB could control which rate meter is applied to the packet by a rate meter LFB
in a later stage in the data path. LFB topology is a directed graph representation of the logical
data paths within an FE, with the nodes representing the LFB instances and the directed link
depicting the packet flow direction from one LFB to the next. In addition to FE model, ForCES
defines three execution modes that can be requested for a batch of operations: execute-all-or-none,
continue-execute-on-failure, and execute-until-failure. By use of the execute-all-or-none mode,
the protocol provides a mechanism for transactional operations within one stand-alone message
meeting the ACID requirements [HR83]6.

2.1.2 OpenFlow protocol
OpenFlow is a communications protocol standardised by ONF that gives access to the forwarding
plane of a network switch or router over the network. It is the main representative of the Control
protocols options for the SBI and it is supported by the main SDN controllers, such as OpenDaylight
(ODL)7, ONOS8, and Ryu9. OpenFlow has influenced the definition of SDN by describing three
fundamental paradigms of SDN. The most prominent one is the network architecture with a split
user plane and control plane. The second one is a model for rules definition based on packet
match and actions. The third one is the OpenFlow protocol itself. The SDN network implements
these three paradigms through a central network controller that interacts using OpenFlow with
networking devices that implement the match action model. In addition to network controller/switch
communication interface, OpenFlow protocol defines the internal architecture of an OpenFlow-
enabled Ethernet packet-based switch. The complete switch architecture is composed of several
components; among them the main ones are:

– One or more flow tables that contain one or more flow entries;
– A pipeline which defines how incoming packets interact with the flow tables.

The number of components, the behaviour of the switch, and the interaction with network controllers
may vary depending on the adopted OpenFlow protocol version. The first OpenFlow specification
limited the protocol to a very concrete scope. Ever since, each subsequent specification of OpenFlow
added additional features to the protocol. Table 2.1 summarises the main features supported by
each OpenFlow versions. Match fields and Actions table’s rows show clearly how OpenFlow has
been extended over time to support a greater number of headers, fields, and network protocols.
For instance, IPv6 support was first introduced in OpenFlow 1.2, Provider Backbone Bridges
(PBB) [IEE09c]10 support was introduced in OpenFlow 1.3.

2.2 Southbound interfaces for managing the network elements
This section reports on the southbound interfaces dedicated to the device configuration. The
parameters that can be configured through these interfaces are not related to the forwarding itself
but rather to the device.
6 T. Haerder and A. Reuter. ‘Principles of Transaction-oriented Database Recovery’. In: ACM Comput. Surv. 15.4

(December 1983), pages 287–317. ISSN: 0360-0300. DOI: 10.1145/289.291.
7 OpenDaylight: https://www.opendaylight.org/
8 ONOS: https://onosproject.org/
9 Ryu: https://osrg.github.io/ryu/
10 IEEE. Provider Backbone Bridges. Standards for Local and metropolitan area networks 802.1ah. Institute of Electrical

and Electronics Engineers (IEEE), March 2009.

https://doi.org/10.1145/289.291
https://www.opendaylight.org/
https://onosproject.org/
https://osrg.github.io/ryu/
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Table 2.1: OpenFlow versions comparison

PARAMETER DESCRIPTION
OpenFlow version support

1.0 1.1 1.2 1.3 1.4 1.5

Multiple controllers A switch could be controlled by multiple network
controllers

- - Y Y Y Y

Auxiliary connections A switch could have multiple active connections
towards the same network controller

- - - Y Y Y

Multiple flow tables OpenFlow pipeline could have more than one flow
table

- Y Y Y Y Y

Group table Contains group entries which affect group of flows - Y Y Y Y Y
Meter table A meter table consists of meter entries which

implement simple QoS operations, such as rate
limiting

- - - Y Y Y

Config. Table-miss Describes how to manage a packet with no match-
ing rules

- - - Y Y Y

Flow table synch The content is automatically updated by the switch
to reflect changes in the flow table it is synchron-
ised with

- - - - Y Y

Bundle message A bundle is a sequence of modification requests
that is applied as a single OpenFlow operation
meeting ACID requirements [HR83]

- - - - Y Y

Ingr/Egr pipelines Flow tables can be used for ingress or egress
processing

- - - - - Y

Match fields Packet match fields used for table lookups (e.g.,
Ethernet address, IPv4/IPv6 address)

12 22 35 39 41 44

Actions Actions executed on the packet (e.g., push/pop
VLAN, decrement TTL)

10 22 28 30 30 30

Counters Counters are maintained per table, per-flow, per-
port and per queue (e.g., rx/tx bytes, rx/tx error)

22 27 27 40 40 40

2.2.1 OF-Config protocol
The OF-Config protocol is a management protocol that addresses the following controller-switch
components:

– OpenFlow configuration point: it is in charge of issuing OF-Config commands;
– OpenFlow capable switch: a physical or a virtual switching device containing a number of

ports and queues;
– OpenFlow logical switch: a subset of the ports and queues of an OpenFlow-capable switch

which is seen from the outside as a separate OpenFlow-capable switch.
The OF-Config protocol enables configuration of essential artefacts of an OpenFlow logical switch
so that an OpenFlow controller can communicate and control the OpenFlow logical switch via the
OpenFlow protocol. An OpenFlow-capable switch is intended to be equivalent to an actual physical
or virtual network element (e.g. an Ethernet switch) which is hosting one or more OpenFlow data
paths by partitioning a set of OpenFlow related resources such as ports and queues among the hosted
OpenFlow data paths. The OF-Config protocol enables dynamic association of the OpenFlow
related resources of an OpenFlow-capable switch with specific OpenFlow logical switches which
are being hosted on the OpenFlow-capable switch. OF-Config does not specify or report how the
partitioning of resources in an OpenFlow-capable switch is achieved. OF-Config assumes that
resources such as ports and queues are partitioned amongst multiple OpenFlow logical switches
such that each OpenFlow logical switch can assume full control over the resources that are assigned
to it.
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2.2.2 Open vSwitch Database Management protocol
The Open vSwitch Database Management (OVSDB) is a Management protocol described in
IETF RFC 7047 [PD13]11. Open vSwitch is an open-source software switch designed to be
used as a vSwitch (virtual switch) in virtualised server environments. A vSwitch forwards traffic
between different Virtual Machine (VM) on the same physical host and also forwards traffic
between VMs and the physical network. Open vSwitch is open to programmatic extension and
control using OpenFlow and the OVSDB (Open vSwitch Database) management protocol which
provides an imperative programmatic access. The OVSDB management interface is used to perform
management and configuration operations on the OVS instance. Compared to OpenFlow, OVSDB
management operations occur on a relatively long time-scale. Examples of operations that are
supported by OVSDB include:

– Creation, modification, and deletion of OpenFlow datapaths (i.e., bridges). Multiple Open-
Flow datapaths may be available in a single OVS instance;

– Configuration of the set of controllers to which an OpenFlow datapath should connect;
– Configuration of the set of managers to which the OVSDB server should connect;
– Creation, modification, and deletion of ports on OpenFlow datapaths;
– Creation, modification, and deletion of tunnel interfaces on OpenFlow datapaths;
– Creation, modification, and deletion of queues;
– Configuration of Quality of Service (QoS) policies and attachment of those policies to queues;
– Collection of statistics.

Thus, OVSDB is a protocol focusing on the configuration data stored in the database of the switch.
Therefore, it is complementary to OpenFlow which operates instead on the flow information stored
in the forwarding tables of the vSwitch.

2.2.3 Simple Network Management Protocol
Simple Network Management Protocol (SNMP) is an "Internet-standard protocol for managing
devices on IP networks" and is described in RFC 1157 [Cas+90]12. SNMP exposes management
data in the form of variables on the managed systems, which describe the system configuration.
These variables can then be queried and set by managing applications. SNMP itself does not define
which information (i.e., variables) a managed system should offer. Rather, SNMP uses an extensible
design, where the available information is defined by a Management Information Base (MIB).
MIBs describe the structure of the management data of a device subsystem; they use a hierarchical
namespace containing one or more Object Identifier (OID). Each OID identifies a variable that can
be read or set via SNMP. The MIB hierarchy can be depicted as a tree with a nameless root, the
levels of which are assigned by different organisations. The top-level MIB OIDs belong to different
standard organisations, while lower-level object IDs are allocated by associated organisations. A
managed object is one of any number of specific characteristics of a managed device. Managed
objects are made up of one or more object instances (identified by their OIDs), which are essentially
variables. Two types of managed objects exist:

– Scalar objects define a single object instance;
– Tabular objects define multiple related object instances that are grouped in MIB tables.

There are several versions of SNMP. SNMP v1 is the initial implementation with the most funda-
mental operations, including Get, GetNext, Set, and Trap. SNMP v2 is a direct update of SNMP v1.
New protocols, such as GetBulk and Inform, are added to handle large amounts of data. SNMP
v2c, as a sub-protocol of SNMP v2, can be seen as a lighter version of SNMP v2. SNMP v3 adds
security and remote configuration capabilities to the previous versions. SNMP is still the most
widely used protocol for network equipment fault management and also widely used for perform-

11 B. Pfaff and B. Davie. The Open vSwitch Database Management Protocol. Request for Comments (RFC) 7047.
Internet Engineering Task Force (IETF), December 2013.

12 J. Case et al. A Simple Network Management Protocol (SNMP). Request for Comments (RFC) 1157. Internet
Engineering Task Force (IETF), May 1990.
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ance management and configuration management. SNMP has demonstrated some advantages over
time but it is also showing limitations. Particularly for performance and configuration management
it may not provide the same level of flexibility and capabilities as more modern protocols like
NETCONF.

2.2.4 Network Configuration Protocol
The Network Configuration Protocol (NETCONF) is a network management protocol developed
and standardised by the IETF. It was developed in the NETCONF working group and published
as RFC 4741 [Enn06]13 and later revised in RFC 6241 [Enn+11]14 and RFC 7803 [Lei16]15.
NETCONF provides mechanisms to install, manipulate and delete the configuration of network
devices and it operates on top of a simple Remote Procedure Call (RPC) layer. The NETCONF
protocol can be conceptually partitioned into four layers:

– The Content layer consists of configuration data and notification data;
– The Operations layer defines a set of base protocol operations to retrieve and edit the

configuration data;
– The Messages layer provides a mechanism for encoding RPCs and notifications.
– The Secure Transport layer provides a secure and reliable transport of messages between a

client and a server.
One particular strength of NETCONF is its support for robust configuration change transactions
involving a number of devices. NETCONF has support for a significant part of the networking
equipment manufacturers as a substitute of SNMP for configuration management and also for
performance management. One of the main advantages of using NETCONF is its support for
transactions and, combined with YANG [Bjo10]16, its generic applicability. Understanding SDN as
a broader concept than just user plane and control plane separation, NETCONF is very relevant
when considering the generic programmability and ability of forwarding devices to be remotely
configured and managed.

2.3 Southbound interfaces for interacting with legacy systems
Integrating existing protocols that have matured through industry-wide cooperation and standard-
isation can help speed up the transition to SDN systems. The following focuses on the analysis of
the two main node abstractions most noted in the literature: the Border Gateway Protocol and the
Extensible Messaging and Presence Protocol, both from IETF.

2.3.1 Border Gateway Protocol
Border Gateway Protocol (BGP) is a standardised exterior gateway protocol [RLH06]17 designed
to exchange routing and reachability information between autonomous systems (AS) on the Internet.
The BGP makes routing decisions based on paths, network policies, or rule-sets configured by a
network administrator and is involved in making core routing decisions. Currently, some vendors18

are claiming that the southbound protocol is less important than the operational agility and pro-
grammability that SDN architecture aims to offer. These vendors have identified BGP as a potential

13 R. Enns. NETCONF Configuration Protocol. Request for Comments (RFC) 4741. Internet Engineering Task Force
(IETF), December 2006.

14 R. Enns et al. Network Configuration Protocol (NETCONF). Request for Comments (RFC) 6241. Internet Engineering
Task Force (IETF), June 2011.

15 B. Leiba. Changing the Registration Policy for the NETCONF Capability URNs Registry. Request for Comments
(RFC) 7803. Internet Engineering Task Force (IETF), February 2016.

16 M. Bjorklund. YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF). Request for
Comments (RFC) 6020. Internet Engineering Task Force (IETF), October 2010.

17 Y. Rekhter, T. Li and S. Hares. A Border Gateway Protocol 4 (BGP-4). Request for Comments (RFC) 4271. Internet
Engineering Task Force (IETF), January 2006.

18 https://searchsdn.techtarget.com/feature/Border-Gateway-Protocol-as-a-hybrid-SDN-protocol

https://searchsdn.techtarget.com/feature/Border-Gateway-Protocol-as-a-hybrid-SDN-protocol
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SDN protocol that can enable network programmability. The controller uses BGP as a Control
plane protocol and leverages NETCONF as a Management plane protocol to interact with physical
routers, switches and networking services like firewalls. This approach enables SDN to exist in a
multi-vendor environment without requiring infrastructure upgrades. The controller operates on
multiple levels of abstraction, from routing and bridging topologies to flow-based services. BGP
does not include program flows, but operates at a higher level of state like physical and virtual
topologies (L2 and L3), security policies, etc. BGP for SDN can offer capital expense savings by
allowing network operators to seamlessly integrate existing networks and deployed infrastructure
components. Also, the reuse of existing protocols prevents the need for lower-performance soft-
ware gateways to bridge the physical and virtual worlds, thus reducing network complexity and
integrating SDN systems with their existing business logic and processes built around years of
experience with BGP.

2.3.2 Extensible Messaging and Presence Protocol
Extensible Messaging and Presence Protocol (XMPP) is a communications protocol for message-
oriented middleware based on Extensible Markup Language (XML) and defined in RFC
6120 [Sai11]19. It enables the near-real-time exchange of structured yet extensible data between
any two or more network entities (like SDN controller and switches/routers). XMPP provides
a general framework for messaging across a network and was originally developed for instant
messaging and on-line presence detection. Not surprisingly, it has a multitude of applications
beyond traditional Instant Messaging (IM) and the distribution of Presence data. Indeed, XMPP
is emerging as an alternative software-defined networking (SDN) protocol. XMPP can be used
by the controller to distribute both control plane and management plane information to the server
endpoints and to manage information at all levels of abstraction down to the flow. Traditional
protocols are considered necessary for interoperability with legacy networks and systems.

2.4 Southbound interfaces models for node abstraction
In the last years, there have been several initiatives to abstract the forwarding behaviour, abstract
the node concept and model them in such a way that it enables programmability of the network.
The following focuses on the analysis of the two main node abstractions in literature: the IETF
approach to SDN, ForCES; and the standard SDN approach pushed by ONF, OpenFlow.

2.4.1 Forwarding and Control Element Separation
The ForCES model includes capability and state abstraction, the FE and LFB model construction
and the unique addressing of the different model structures. The FE/LFB capability model describes
the capabilities and capacities of an FE/LFB by specifying the variation in functions supported and
any limitations. The state model describes the current state of the FE/LFB, that is, the instantaneous
values or operational behaviour of the FE/LFB. The ForCES model includes the constructions for
defining the class of LFBs that an FE may support. The definition of such a class provides the
information content for monitoring and controlling instances of the LFB class for ForCES purposes.
Each LFB model class formally defines the operational LFB components, LFB capabilities and
LFB events. The FE model also provides the construction necessary to monitor and control the FE
as a whole. For consistency of operation and simplicity, this information is represented as an LFB.

The FE Object LFB class defines the required components to provide coarse grain information
at the FE level, i.e., not all possible capabilities or all details about the capabilities of the FE.
Part of the FE-level information is the LFB topology, which expresses the logical interconnection
between the LFB instances along the data path(s) within the FE. The FE Object also includes
information about what LFB classes the FE can support. The ForCES model allows for unique

19 P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. Request for Comments (RFC) 6120.
Internet Engineering Task Force (IETF), March 2011.
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identification of the different constructs it defines. This includes identification of the LFB classes,
and of LFB instances within those classes, as well as identification of components within those
instances. Conceptually, the FE capability model tells the CE which states are allowed on an FE,
with capacity information indicating certain quantitative limits or constraints. Thus, the CE has
general knowledge about configurations that are applicable to a particular FE. The FE capability
model may be used to describe an FE at a coarse level. For example, an FE might be defined as
follows:

– FE can handle IPv4 and IPv6 forwarding;
– FE can perform classification based on the following fields: source IP address, destination IP

address, source port number, destination port number, etc.;
– FE can perform metering;
– FE can handle up to N queues (capacity); and the FE can add and remove encapsulating

headers of types including IPsec, GRE, and L2TP.
While one could try to build an object model to fully represent the FE capabilities, other efforts
found this approach to be a significant undertaking. The main difficulty arises in describing detailed
limits, such as the maximum number of classifiers, queues, buffer pools, and meters that the FE can
provide. A good balance between simplicity and flexibility can be achieved for the FE model by
combining coarse-level-capability reporting with an error reporting mechanism. That is, if the CE
attempts to instruct the FE to set up some specific behaviour it cannot support, the FE will return an
error indicating the problem. Examples of similar approaches include Diffserv [Cha+03]20, which
is used for QoS, and a framework for defining policies [Sah+03]21. The FE state model presents the
snapshot view of the FE to the CE. Both LFB capability and state information are defined formally
using the LFB modelling XML schema. Capability information at the LFB level is an integral
part of the LFB model and provides for powerful semantics. For example, when certain features
of an LFB class are optional, the CE needs to be able to determine if those optional features are
supported by a given LFB instance. The schema for the definition of LFB classes provides a means
for identifying such components.

2.4.2 OpenFlow
OpenFlow uses a completely different approach for node abstraction. An OpenFlow logical switch
consists of one or more flow tables and a group table, which perform packet lookups and forwarding,
and one or more OpenFlow channels to an external controller. The switch communicates with the
controller and the controller manages the switch via the OpenFlow switch protocol. Using the
OpenFlow switch protocol, the controller can add, update, and delete flow entries in flow tables,
both reactively (in response to packets) and pro-actively. Each flow table in the switch contains
a set of flow entries; each flow entry consists of match fields, counters, and a set of instructions

20 K. Chan et al. Differentiated Services Quality of Service Policy Information Base. Request for Comments (RFC) 3317.
Internet Engineering Task Force (IETF), March 2003.

21 R. Sahita et al. Framework Policy Information Base. Request for Comments (RFC) 3318. Internet Engineering Task
Force (IETF), March 2003.
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to apply to matching packets. Flow entries may forward to a port. This is usually a physical
port, but it may also be a logical port defined by the switch or a reserved port defined by the
OpenFlow specification [ONF15a]22. Reserved ports may specify generic forwarding actions, such
as sending to the controller, flooding, or forwarding using non-OpenFlow methods (e.g., normal
switch processing). Moreover, switch-defined logical ports may specify link aggregation groups,
tunnels or loopback interfaces. OpenFlow ports are the network interfaces for passing packets
between OpenFlow processing and the rest of the network.

OpenFlow switches connect logically to each other via their OpenFlow ports, and a packet
can be forwarded from one OpenFlow switch to another OpenFlow switch only via an output
OpenFlow port on the first switch and an ingress OpenFlow port on the second switch. Hence, the
abstraction of a switch promoted by OpenFlow relies on the concept of port. In fact this is one of
the main limitations of OpenFlow since for each new technology that is added to OpenFlow, the
definition of a new type of port is needed. Currently only Ethernet and Optical ports are defined. It
is important to note that this abstraction also has a strong limitation when used for technologies
that do not follow the traditional concept of IEEE 802.1 port such as IEEE 802.11. This technology
connects a complete IEEE 802.11 network, which may contain multiple access points and stations
in any possible configuration, through a portal or integration service which is seen as a single port
by switches. This means that the complexity of the topology within the IEEE 802.11 network is
completely hidden from OpenFlow, reducing the set of possible actions that can be applied to nodes
within the IEEE 802.11 network.

2.5 Southbound interfaces models for forwarding abstraction
Along the same line of the previous section, this section focuses on the analysis of the two main
forwarding abstractions most noted in the literature: the IETF approach to SDN, ForCES; and the
standard SDN approach pushed by ONF, OpenFlow.

2.5.1 Forwarding and Control Element Separation
ForCES aims to define a framework and associated protocols to standardise information exchange
between the control and forwarding plane. Network elements usually expose their functionality
to external entities as a single and monolithic instance with a set of defined inputs and expected
outputs. In reality, this is not the case and each network element can be dissected in numerous
logically separated entities or functionalities that cooperate to provide a given functionality. In
the ForCES concept, network elements can be divided into two broad sets of components: (i)
Control Elements (CEs) in control plane, and (ii) Forwarding Elements (FEs) in forwarding plane
(or data plane). By defining the communication mechanisms between CEs and FEs, ForCES
enables them to be physically separated. This physical separation accrues several benefits to the
ForCES architecture. Separate components would allow component vendors to specialise in one
component without having to become experts in all components. The ForCES standard protocol
also allows the CEs and FEs from different component vendors to interoperate with each other
and hence it becomes possible for system vendors to integrate together the CEs and FEs from
different component suppliers. This interoperability translates into increased design choices and
flexibility for the system vendors. Overall, ForCES enables rapid innovation in both the control
and forwarding planes while maintaining interoperability. Scalability is also easily provided by
this architecture in that additional forwarding or control capacity can be added to existing network
elements without the need for forklift upgrades.

The FE model proposed in ForCES is based on an abstraction using distinct LFBs that are
interconnected in a directed graph, and receive, process, modify, and transmit packets along with
metadata. The FE and LFB models are designed so that different implementations of the forwarding

22 ONF. OpenFlow switch specification: Version 1.5.1. Technical Specification (TS) 025. Open Networking Foundation,
March 2015.
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data path can be logically mapped onto the model with the functionality and sequence of operations
correctly captured. The LFB topology model for a particular data path implementation must
correctly capture the sequence of operations on the packet. The FE model is designed to model
the logical processing functions of an FE. The FE model proposed in ForCES includes three
components; the modelling of individual LFB (LFB model), the logical interconnection between
LFBs (LFB topology), and the FE level attributes, including FE capabilities. The most important
block of the ForCES forwarding model is the LFB Class (or type). The LFB is a template that
represents a fine-grained, logically separable aspect of FE processing. Most LFBs relate to packet
processing in the data path. LFB classes are the basic building blocks of the FE model, which
basically interconnects them to obtain a complex behaviour. Complex forwarding functionalities
require the CE to be aware of the limitations and capabilities of each NE, since each NE needs to
tell the CE which LFBs can be implemented on its hardware. In addition, with all the information
of the different LFBs per NE and their desired interconnection, the CE needs to decide which LFBs
are implemented on each NE and how to connect everything together so the desired forwarding
behaviour is created. This complex procedure may lead to the need of new algorithmic approaches.

2.5.2 OpenFlow
OpenFlow defines two kinds of switches: (i) OpenFlow-only which can only process packets
following the OpenFlow pipeline, and (ii) OpenFlow-hybrid which support OpenFlow and normal
switch operations in parallel. These switches should provide an external (i.e., not OF-based)
classification mechanism that routes traffic to either the OpenFlow pipeline or the normal pipeline.
For example, a switch may use the Virtual LAN (VLAN) tag or input port of the packet to decide
whether to process the packet using one pipeline or the other; or it may direct all packets to the
OpenFlow pipeline. The OpenFlow pipeline, shown in Figure 2.2, is composed of a set of ingress
and egress flow tables, each of them consisting of multiple flow entries. An OpenFlow switch must
include at least one ingress flow table. How a packet travels through the OpenFlow pipeline and the
set of actions applied to it, while traversing them, defines the packet operation of the OpenFlow
switch and the different forwarding behaviours applied to the different flows. The flow tables of
an OpenFlow switch are sequentially numbered, starting at 0. Pipeline processing happens in two
stages: ingress processing and egress processing. The separation of the two stages is indicated by
the first egress table.

Pipeline processing always starts with ingress processing at the first flow table: the packet must
be first matched against flow entries of flow table 0. Based on the matching result the packet may
be forwarded to an output port or to a different ingress flow table. In case the packet is forwarded
to an output port, it may be processed by the first egress flow table assigned to the output port. The
use of multiple ingress and egress flow tables allows to implement complex behaviours in a simpler
way than having only one single flow table. Each flow table is a collection of flow entries and each
flow entry contains the following elements:

– Match fields: used to match against packet headers and optionally metadata provided by a
previous flow table processing result;

– Priority: matching precedence of the flow entry;
– Counters: updated when packets are matched;
– Instructions: to modify the action set or pipeline processing;
– Timeouts: maximum lifetime of the flow entry.

A flow table entry is identified by its match fields and priority: the match fields and priority taken
together identify a unique flow entry in a specific flow table. A flow entry instruction may contain
actions to be performed on the packet at some point of the pipeline.

2.6 Southbound Interface selection
As it can be evinced from the previous sections, multiple southbound protocols have been designed
in literature in order to cover different aspects of the SBI like the forwarding control, network
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element management, node abstraction, and forwarding abstraction. Two main standardisation
bodies, namely IETF and ONF, have been actively working on the definition of these southbound
protocols resulting in ForCES and OpenFlow, respectively. While both protocols present similar
characteristics from documentation perspective [Wan+12]23, they differ in one key aspect for what
concerns this thesis: the availability of implementations, both open source and hardware-based.
Given the experimental approach followed in this document (and related publications), it is therefore
important to select an SBI that offers reference implementations suitable for experimentation and
validation. To that end, OpenFlow offers many open source implementations and products available
on the market, becoming the de-facto standard for the SBI. Unfortunately, this is not true for
ForCES. Indeed, no products are available on the market implementing the ForCES protocol at the
time of writing of this thesis. The reason can be identified in the different design methodologies and
considerations adopted by ForCES and OpenFlow. While the former follows a clean-state design of
the control and data planes, the latter departs from existing Ethernet switch hardware architectures.
Specifically, OpenFlow exploits the fact that most modern Ethernet switches and routers contain
flow-tables (typically built from TCAMs) that run at line-rate to implement applications like
firewalls, NAT, QoS, and to collect statistics. While each vendor’s flow-table is different, OpenFlow
identifies and exploits a common set of functions that run in many switches and routers [McK+08]24.
This design approach allowed the industry and open source community to quickly release OpenFlow
products and reference implementations (i.e., Open vSwitch25) to the public. For this reason, this
thesis focuses on OpenFlow as the main SBI for experimentation and analysis.

23 Z. Wang et al. Analysis of Comparisons between OpenFlow and ForCES. Draft draft-wang-forces-compare-openflow-
forces-01. Internet Engineering Task Force (IETF), March 2012.

24 N. McKeown et al. ‘OpenFlow: Enabling Innovation in Campus Networks’. In: SIGCOMM Comput. Commun. Rev.
38.2 (March 2008), pages 69–74. ISSN: 0146-4833. DOI: 10.1145/1355734.1355746.

25 Open vSwitch: https://www.openvswitch.org/

https://doi.org/10.1145/1355734.1355746
https://www.openvswitch.org/
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3. A framework for SDN development

This chapter delves into the design of a framework for Software Defined Networking (SDN)
development tailored to quick service provisioning. The implementation and evaluation of such
framework is then reported in Chapter 5.

3.1 Exemplary use cases for SDN
In order to understand what are the requirements of such framework, a set of representative use
cases and services for mobile networks is selected. These use cases cover a wide spectrum of
examples, spanning from functionality-oriented to more complex and service-oriented ones. These
exemplary use cases will be later used to evaluate the benefits, in terms of service creation time, of
properly applying SDN concepts to mobile network architectures. It is worth noticing that the list
of identified use cases is not meant to be exhaustive but representative of the SDN context where
enhanced flexibility is needed [Agy+14]1.

3.1.1 Location privacy
Tracking the users’ location has become very common in recent years as a way to provide customised
services. However, this poses several privacy issues [Wer+14]2 which led to the proposal of many
counter-measures to preserve the user location [BZO15]3, [KLN15]4. Notwithstanding, latest
distributed mobility management proposals,5 which envision a flat network architecture with
multiple distributed gateways, could unveil more information about the user location than desired.
Indeed, such mechanisms route the traffic of a mobile user through the geographically-closest
gateway for traffic optimisation reason. One of the security issues raised by such solutions is that
they allow tracking the (approximate) location of a mobile user, by monitoring the source IP address
of her packets (which reveals the user’s gateway), or the service consumed in case it is provided

1 P. K. Agyapong et al. ‘Design considerations for a 5G network architecture’. In: IEEE Communications Magazine
52.11 (November 2014), pages 65–75. ISSN: 0163-6804. DOI: 10.1109/MCOM.2014.6957145.

2 M. Wernke et al. ‘A classification of location privacy attacks and approaches’. In: Personal and Ubiquitous Computing
18.1 (January 2014), pages 163–175. ISSN: 1617-4917. DOI: 10.1007/s00779-012-0633-z.

3 C. J. Bernardos, J. C. Zúńiga and P. O’Hanlon. ‘Wi-Fi internet connectivity and privacy: Hiding your tracks on the
wireless Internet’. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN). October
2015, pages 193–198. DOI: 10.1109/CSCN.2015.7390443.

4 V. A. Kachore, J. Lakshmi and S. K. Nandy. ‘Location Obfuscation for Location Data Privacy’. In: 2015 IEEE World
Congress on Services. August 2015, pages 213–220. DOI: 10.1109/SERVICES.2015.39.

5 Examples of these approaches are the ones being developed by the IETF Distributed Mobility Management (DMM)
WG: https://datatracker.ietf.org/wg/dmm/

https://doi.org/10.1109/MCOM.2014.6957145
https://doi.org/10.1007/s00779-012-0633-z
https://doi.org/10.1109/CSCN.2015.7390443
https://doi.org/10.1109/SERVICES.2015.39
https://datatracker.ietf.org/wg/dmm/
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close to the gateway [He+17]6. An obvious way of preserving users’ location privacy is to always
use the same gateway for a given user, independently of her location; however, this has a very high
cost for the operator as traffic would be frequently routed through non-optimal paths.

To address the above problem, one could think of a new privacy service that works as follows:
(i) for those users that want to preserve their privacy, and contract the corresponding service, a
fixed gateway could be used, and (ii) for the other users, the best gateway could be used from a
traffic engineering perspective. Note that this approach is in line with the recent developments at
the Internet Engineering Task Force (IETF), where solutions are being discussed to allow taking
into consideration application/user needs when selecting the right anchor/IP address [Yeg+18]7.
Such a solution has a number of advantages: (i) it preserves privacy of those users that require it,
(ii) it has a low cost for the operator in terms of traffic engineering, as efficient routes are used for
most traffic, and (iii) it provides the means to the operator to receive a revenue from those users
willing to contract this service. This is a good example of a new service provided by using modified
traffic engineering policies.

3.1.2 Dynamic Service Composition with Network Function Virtualisation
Network Function Virtualisation (NFV) is a new trend that aims at transforming the way telecom-
munications operators build, manage and exploit their networks, relying on software virtualisation
techniques. NFV involves the implementation of network functions in software and its execution
on non-specialised and shared hardware. Thus, CAPEX and OPEX are reduced [HIP15]8, as
maintenance and updating-related tasks are simplified, and new functions can be introduced via
software. SDN is typically seen as complementary with NFV as: (i) NFV can support SDN by
providing the infrastructure upon which the SDN software can be run, and (ii) SDN capacity to
create network abstractions can help NFV achieve its goals by enhancing performance. More
recently, both the NFV and SDN communities have analysed in more detail how they can co-exist
and mutually benefit [ETS15]9, [ONF15b]10. In an NFV context, SDN is often viewed as a tool to
(i) enable a flexible and fast interconnection of resources at the NFV Infrastructure (NFVI) level,
and (ii) facilitate fast configuration of connectivity of a Virtual Network Function (VNF) at service
level.

A key feature of NFV is that it enables faster innovation by supporting dynamic, adaptive
and quick service deployment. Since network functions can be run on general purpose hardware
hosted on data centres, the operator can dynamically react to network and user demand changes
by launching services as required and where required. This usually requires the chaining of
simpler, independent network functions to compose a more complex service. In order to chain
these (virtual) network functions, routing needs to be dynamically adjusted in order to forward
traffic to the location where the corresponding function is being executed. At this end, SDN can
enable a much easier service function chaining/composition by automatically creating the required
forwarding paths. Both Open Networking Foundation (ONF) and European Telecommunications
Standards Institute (ETSI) NFV have acknowledged this in their latest architecture framework

6 T. He et al. ‘Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach’. In: IEEE Journal on Selected
Areas in Communications 35.11 (November 2017), pages 2625–2636. ISSN: 0733-8716. DOI: 10.1109/JSAC.2017.
2760179.

7 A. Yegin et al. On Demand Mobility Management. Draft draft-ietf-dmm-ondemand-mobility-15. Internet Engineering
Task Force (IETF), June 2018.

8 E. Hernandez-Valencia, S. Izzo and B. Polonsky. ‘How will NFV/SDN transform service provider opex?’ In: IEEE
Network 29.3 (May 2015), pages 60–67. ISSN: 0890-8044. DOI: 10.1109/MNET.2015.7113227.

9 ETSI. Network Functions Virtualisation (NFV); Ecosystem; Report on SDN Usage in NFV Architectural Framework.
Group Specification (GS) NFV-EVE 005 v1.1.1. European Telecommunications Standards Institute (ETSI), December
2015.

10 ONF. Relationship of SDN and NFV: Issue 1. Technical Report (TR) 518. Open Networking Foundation, October
2015.

https://doi.org/10.1109/JSAC.2017.2760179
https://doi.org/10.1109/JSAC.2017.2760179
https://doi.org/10.1109/MNET.2015.7113227
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updates [ETS15]11, [ONF15b]12.

3.1.3 Multi-tenancy
In order to meet the growing demands of users, network deployments are increasing their density
of access points/base stations. At the same time, the cost of deploying and maintaining these new
dense deployments is also increasing, reaching a point where operators are looking for innovative
ways of reducing their costs. An analysis of how the adoption of NFV and SDN will impact on the
reduction of operators’ costs is provided in [HIP15], where authors analyse if the intuitive statement
often made about the cost reduction originated from the flexibility and simplification enabled by
SDN/NFV actually holds. Authors provide a view into the operational costs of a typical service
provider and then discuss how the NFV/SDN attributes can be expected to influence the business
equation. One of the possible mechanisms identified to reduce costs is the sharing of the network
infrastructure, moving into a world where network deployments are multi-tenant by default. In this
way, several operators use the resources of a network simultaneously. This requires of complex
interactions between the operators and network controllers ensuring the correct utilisation, isolation
and sharing of resources.

On-line traffic optimisation mechanisms may be used to ensure the correct isolation and sharing
of network resources, so enforcing multi-tenancy in next generation networks. These mechanisms
require an up-to-date view of the status of the network. Such requirement can be fulfilled by SDN
which enables the continual monitoring of the network. Moreover, SDN allows the abstraction
of different virtual network infrastructures, which control can be delegated to each tenant. Each
operator sharing the infrastructure can operate and manage their virtual view of the network.
This concept has been already explored by the Open Network Foundation in [ONF16]13. In this
document, initial thoughts on how SDN, and OpenFlow in particular, can be used to provide
recursion of controllers, enabling the sharing of the infrastructure. Complementary virtualisation
technologies (i.e., cloud sharing) are envisioned to support multi-tenancy in NFV along with SDN.
Indeed, for a full multi-tenancy environment all the components in the network (switches, data
centres, etc.) must support multi-tenancy. Architectures and Proof-of concept demonstrations in the
literature, such as [May+16]14, [Vil+15]15, further explore the integration of SDN and NFV in a
multi-tenant scenario.

3.1.4 Smart and flexible mobility management
Future mobility management solutions will require increased flexibility and shall be capable of
adapting to the particular characteristics of the different traffic flows as well as to the heterogeneous
nature of the future Radio Access Network (RAN). Indeed, both the IETF and the 3rd Generation
Partnership Project (3GPP) are currently working on enhanced mobility architectures and mech-
anisms providing this additional flexibility, e.g., enabling selective offload of selected traffic to

11 ETSI. Network Functions Virtualisation (NFV); Ecosystem; Report on SDN Usage in NFV Architectural Framework.
Group Specification (GS) NFV-EVE 005 v1.1.1. European Telecommunications Standards Institute (ETSI), December
2015.

12 ONF. Relationship of SDN and NFV: Issue 1. Technical Report (TR) 518. Open Networking Foundation, October
2015.

13 ONF. SDN architecture: Issue 1.1. Technical Report (TR) 521. Open Networking Foundation, January 2016.
14 A. Mayoral et al. ‘Multi-tenant 5G Network Slicing Architecture with Dynamic Deployment of Virtualized Tenant

Management and Orchestration (MANO) Instances’. In: ECOC 2016; 42nd European Conference on Optical
Communication. September 2016, pages 1–3.

15 R. Vilalta et al. ‘Network virtualization controller for abstraction and control of OpenFlow-enabled multi-tenant
multi-technology transport networks’. In: 2015 Optical Fiber Communications Conference and Exhibition (OFC).
March 2015, pages 1–3. DOI: 10.1364/OFC.2015.Th3J.6.

https://doi.org/10.1364/OFC.2015.Th3J.6
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local breakout points when possible [3GP11]16, [Che+15]17. This is a clear example of the need for
mechanisms enabling powerful and dynamic traffic engineering policies.

Therefore, the mobility solutions should be capable of (i) choosing the right access techno-
logy(ies) used by the connected terminals, (ii) selecting the gateways and IP addresses assigned to
each flow, based on its characteristics and requirements, and, (iii) computing the forwarding paths
between the radio access points and the used gateways. To achieve this goal, mobility mechanisms
require an up-to-date and enriched information regarding the status of the network (e.g., gateway
load). SDN is a key technology for gathering, combining, and enriching the information regarding
the status of the underlying network.

To that end, [YKS14]18 leverages SDN to offer connectivity management as a service (CMaaS)
to application developers and over-the-top service providers to support different types of user
mobility at different price levels. On another end, [NBH16]19 introduces an SDN-based mobility
management for integrating heterogeneous network technologies and optimising the data trans-
mission costs. Similarly, [Ahm+16]20 increases network flexibility and efficiency by integrating
through SDN resource, traffic, and mobility management methods of mobile network services.
[Sam+15] summarises the approach developed by the Mobile Packet Core project within the ONF
to integrate an SDN architecture into the mobile packet core of an operator, assuming the existence
of an NFV context and proposing a unified control architecture considering both SDN and NFV.
Finally, 3GPP considers SDN and cloud-based architectures since Release 14 to improve network
management [3GP18b]21.

3.2 A functional ONF-based architecture for quick service provisioning
This section first presents the architecture framework defined by the ONF. Then, it proposes an
ONF-based architecture of the SDN control plane with the goal of significantly improve flexible
and fast service creation in mobile networks.

3.2.1 ONF-based architecture framework
The ONF architecture specifies, at a high level, the reference points and open interfaces that enable
the development of software that can control the connectivity provided by a set of network resources
and the flow of network traffic though them, along with possible modification of traffic that may
be performed in the network. The architecture only describes basic functions that are required,
but does not preclude additional functions, allowing a wide range of scenarios and compliant
implementations. Consequently, the architecture envisions particular services or applications to
interrogate and manipulate the resources in the network [ONF16].

Figure 3.1 illustrates the ONF-based architecture, which is composed of four planes: Data,
Controller, Application, and Management, which is transversal to the first three [ONF16]. The Data
plane comprehends several network resources and is in charge of handling the traffic in the data

16 3GPP. Local IP Access and Selected IP Traffic Offload (LIPA-SIPTO). Technical Specification (TS) 23.829 v10.0.1.
3rd Generation Partnership Project (3GPP), October 2011.

17 G. Chen et al. Analysis of Failure Cases in IPv6 Roaming Scenarios. Request for Comments (RFC) 7445. Internet
Engineering Task Force (IETF), March 2015.

18 V. Yazıcı, U. C. Kozat and M. O. Sunay. ‘A new control plane for 5G network architecture with a case study on
unified handoff, mobility, and routing management’. In: IEEE Communications Magazine 52.11 (November 2014),
pages 76–85. ISSN: 0163-6804. DOI: 10.1109/MCOM.2014.6957146.

19 T. T. Nguyen, C. Bonnet and J. Harri. ‘SDN-based distributed mobility management for 5G networks’. In: 2016
IEEE Wireless Communications and Networking Conference. April 2016, pages 1–7. DOI: 10.1109/WCNC.2016.
7565106.

20 I. Ahmad et al. ‘New concepts for traffic, resource and mobility management in software-defined mobile networks’.
In: 2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS). January 2016,
pages 1–8.

21 3GPP. Architecture enhancements for control and user plane separation of EPC nodes. Technical Specification (TS)
23.214 v15.3.0. 3rd Generation Partnership Project (3GPP), June 2018.

https://doi.org/10.1109/MCOM.2014.6957146
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Figure 3.1: Implemented SDN architecture.

path according to the instructions received from the control plane. Examples of operations in this
plane are switching, routing, packet encapsulation, etc. Network resources expose their capabilities
and receive instructions on how to handle the traffic via the D-CPI interface which connects the
Data plane with the control plane. The OpenFlow protocol [ONF15a] is the most widely spread
protocol for this interface.

The Controller plane is in charge of configuring the appropriate rules on the network resources
as to enforce a specific network behaviour. To accomplish this task, the control plane includes
several cooperating modules devoted to the creation and maintenance of an abstract resource model
of the underlying network which is then exposed to the Application plane via the A-CPI interface.
Although there is no standard protocol for the A-CPI interface, it is commonly implemented through
Rest Application Programming Interface (API).

The Application plane comprises several applications/services whose main goal is to define
the network behaviour and may have exclusive control of a set of exposed resources (e.g., network
gateway). Applications may belong either to the network operator or to clients with the former
usually having a broader scope and higher privileges than the latter. It is worth noticing that
applications that primarily support the operation of the data plane (e.g., network topology discovery)
are not considered part of the Application plane.

The Management plane spans its functionality across all planes and is in charge of monit-
oring, configuring, and maintaining the network. These functionalities are largely the same as
in the control plane, therefore the two planes (Management and Controller) are often seen as a
continuum [ONF16]. However, a clear distinction between the two planes resides in the entities
interacting with them: a human operator in the Management plane and applications in the control
plane. An extensive discussion on the differences between Management and control planes can be
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Table 3.1: Control plane implementation details.

MOD DATA REQUIRED EVENTS REQUIRED EVENTS PROVIDED API

(1) Connected network
nodes

Network node enter/
leave/update; Link ap-
pear/disappear/update

Network node enter/
leave/update

Get network node; Get
link

(2) Connected network
nodes; Available links

Network node enter/
leave/update; Link ap-
pear/disappear/update

Network node enter/
leave/update; Link ap-
pear/disappear/update

Set network view;
Delete network view;
Get network view; Get
network node; Get link

(3) Network view Network node enter/
leave/update; Link ap-
pear/disappear/update

Paths computed Set traffic class con-
straint; Set path; Delete
path

(4) Available paths Paths computed - Set path for flow; De-
lete path for flow

(1) Topology Discovery; (2) Topology View; (3) Path Computation; (4) Path Management;

found at [Hal+15]22. Subsequently, the two planes differ in terms of (i) time-scale and reactiveness,
whereas the Management plane works at longer time-scale than the control plane, and (ii) scope,
with the Management having having greater scope and privilege. Indeed, it is in the scope of the
Management plane to perform via the D-MPI interface the initial configuration of the network
resources in the Data plane, such as the assignment of the SDN controller(s) they need to connect to
and the configuration of queues and ports. This configuration is commonly done via the OF-Config
protocol [ONF14]23 in case of OpenFlow-capable switches. In the control plane, the Management
uses the C-MPI interface to configure the policies defining the scope of the control given to the SDN
applications, to monitor the performance of the system, and to configure the parameters required by
the SDN controller modules. In the Application plane, Management configures through the A-MPI
the parameters of the applications and the service level agreements. In addition to these interfaces,
the Management plane provides a dashboard to network operators for configuring and tuning the
network at each layer.

3.2.2 Control plane: design and implementation
ONF provides an architecture framework and some design guidelines, which can then be taken as
starting point when specifying a functional and operational system. This section undertakes the
challenge of identifying and designing those modules required for a comprehensive, implementable
and operating architecture tailored to quick service provisioning. For that reason, a service-oriented
architecture is adopted whereas services can be activated by triggers fired upon incoming events.
Notably, the principles of service-orientation are independent of any vendor, product, technology,
or implementation. In addition, an event-driven communication paradigm is also adopted so as
to complement the proposed service-oriented architecture. This paradigm enables the creation
of loosely coupled software components and services while increasing responsiveness compared
to asynchronous communication, being this aspect fundamental in an environment like a mobile
network.

Based on the guidelines set by the general ONF framework, the following reports on the design
of the control plane modules marked in blue in Figure 3.1. These modules form the Network
Engine, which supports multi-tenancy and implements the following functions: (i) discovery of the
network topology and building of the resource model for the different tenants, and (ii) computation

22 E. Haleplidis et al. Software-Defined Networking (SDN): Layers and Architecture Terminology. Request for Comments
(RFC) 7426. Internet Research Task Force (IRTF), January 2015.

23 ONF. OpenFlow Management and Configuration Protocol: Version 1.2. Technical Specification (TS) 016. Open
Networking Foundation, 2014.
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of the paths within the network and exposure of a management interface for the paths tailored to the
different tenants. The Topology Discovery module is in charge of discovering the network topology,
while the Topology View builds one or more abstract resource models of the network depending
on the multi-tenancy configuration received from the Management plane. The Path Computation
module uses these abstract resource models to compute the optimal paths for the different tenants,
traffic classes, and requirements, such as latency and bandwidth. The Path Management ensures
that each path set-up request received by applications can be accomplished (i.e., Quality of Service
(QoS) requirements) and does not violate any constraint (i.e., maximum capacity of the links) or
policy (e.g., Service Level Agreement (SLA) of the tenant). Table 3.1 reports the implementation
details of each module in terms of data and events required, and the API provided to external
modules.

The Topology Discovery module implements the Link Layer Discovery Protocol (LLDP)
[IEE09d]24 in order to discover the network topology. The Topology Discovery module raises an
event whenever a network node enters or leaves the network, or any change occurs on the network
node ports. Similarly, an event is raised whenever a link appears or disappears in the network or
suffers any changes (i.e., available bandwidth).

The Topology View requires the knowledge of the connected network nodes and the available
links in order to build an adjacency list graph representation of the network. Such representation is
enriched with additional information about network nodes’ capabilities (e.g., power profiles, load
of the CPU and performance statistics, traffic isolation, etc.). Next, the Topology View module
creates an ad-hoc network view for each tenant configured by either the Management plane or
the Multi-tenancy application (see Chapter 3.2.3). Such view may be partial and only include a
subset of the physical resources or capabilities. With the purpose of maintaining an up-to-date
view of the network, the Topology View module subscribes to the events provided by the Topology
Discovery module. In turn, the Topology View broadcasts for each tenant (according with their
current configuration) an abstracted and enriched version of the events offered by the Topology
Discovery. For instance, if a link is not part of a given tenant’s view, any event related to that link
will not trigger a view update for that tenant. In addition, the module maintains an up-to-date vision
of the network by periodically querying the status of each link and network node.

Whenever the Topology View announces a change (or update) in the network for a given tenant,
the Path Computation module updates the network view for that tenant and (re)computes the paths
within the network. The computation occurs for different traffic classes and constraints. MAC
bridges [IEE07]25, M2M communications [ETS13a]26, D2D signalling [3GP14]27, and fronthaul
traffic [IEE16b] are examples of traffic classes subject to different constraints. Once the module
has computed the paths, it raises a path-update event for that tenant. The module is kept as simple
as possible implementing a standard Dijkstra’s algorithm without any further functionality. If any
advanced feature is required, the module’s behaviour can be overridden by an external application
through the exposed API (i.e., Traffic Engineering).

The Path Management module works on the paths provided by Path Computation (which are
specific to each tenant and updated periodically) and exposes a Rest interface toward applications.
This API is used to request the set-up of paths within the network in the scope of a single tenant.
Applications ask Path Management to set-up (or remove) a path for a given flow. A flow may have
several requirements such as bandwidth, latency, packet loss and nodes to traverse. At this point,
the module ensures that the path can be configured by checking whether the requirements can be

24 IEEE. Station and Media Access Control Connectivity Discovery. Standards for Local and metropolitan area networks
802.1ab-rev. Institute of Electrical and Electronics Engineers (IEEE), January 2009.

25 IEEE. IEEE 802.1D - MAC bridges. IEEE Standards for Local and metropolitan area networks 802.1D. Institute of
Electrical and Electronics Engineers (IEEE), August 2007.

26 ETSI. Machine-to-Machine communications (M2M); M2M service requirements. Technical Specification (TS) 102
689 v2.1.1. European Telecommunications Standards Institute (ETSI), July 2013.

27 3GPP. Study on enhancements for infrastructure-based data communication between devices. Technical Specification
(TS) 22.807 v13.0.0. 3rd Generation Partnership Project (3GPP), September 2014.
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fulfilled and acknowledges accordingly the requesting application. Besides, the module can be
configured by external applications to apply constraints to specific requests. Finally, the module
uses a combination of MPLS Transport Profile (MPLS-TP) [Boc+10]28, which is a widely used
transport network protocol, and OpenFlow meters to enforce traffic privacy and isolation in the
Data plane. It is worth noticing that the choice of using MPLS-TP is mainly driven by the limitation
of the OpenFlow switch implementation used for the experimental evaluation in Chapter 5.2. An
alternative defined in OpenFlow [ONF15a] is PBB Traffic Engineering (PBB-TE) [IEE09b]29,
which however is not supported in the reference OpenFlow switch implementation. More details on
how to implement MPLS-TP with OpenFlow switches can be found in [MM18]30. See [Vai+09]31

for a comparison between MPLS-TP and PBB-TE.

3.2.3 Application Plane: Design and Implementation
The modules implemented in the Application Plane provide the functionality required by the use
cases described above in Chapter 3.1. These modules are designed as stand-alone pieces of software
which subscribe to the events offered by the control plane and make use of the exposed APIs to
trigger changes in the network. These modules are reported as green boxes in Figure 3.1.

The IPv6 module provides basic IPv6 connectivity to the User Equipment (UE)s. This module is
enabled per-tenant basis and is a client application, thus working with limited scope and privileges.
The module implements the IPv6 Neighbour Discovery Protocol [Nar+07]32 which is responsible
for features such as address auto-configuration, duplicate address detection, and maintaining
reachability information. Similarly, an IPv4 module may be implemented providing Dynamic Host
Configuration Protocol (DHCP) [Dro97]33 and Address Resolution Protocol (ARP) [Plu82]34

functions.
Mobility Management is responsible of choosing the IP gateways for the UEs in the network.

Similarly to IPv6, this module is also a client application and works on per-tenant basis with limited
scope and privileges. Whenever a UE connects to the tenant’s network (or performs a handover),
the module may select different gateways for the UE depending on her profile. For example, one
gateway may be selected for real-time traffic while another for best-effort traffic. The selection is
also influenced by the proximity of the gateways to the UEs. Doing so, the module offers a two-fold
benefit: UEs are always served by optimal gateways and the network core is offloaded. Once the
gateways have been selected, Mobility Management asks Path Management to configure the paths
for the UE between the selected gateway(s) and the access point(s) the UE is attached to.

The Privacy module is a client application and implements the location privacy service. The aim
of the service is to maintain the same gateway for those UEs that want to hide their location changes
from external nodes. This can be easily achieved by overriding the default gateway selection
policy of Mobility Management. Privacy assigns a fixed gateway to the privacy-enabled UEs and
communicates the assignment to Mobility Management which will always select that gateway for
those UEs.
28 M. Bocci et al. A Framework for MPLS in Transport Networks. Request for Comments (RFC) 5921. Internet

Engineering Task Force (IETF), July 2010.
29 IEEE. Provider Backbone Bridge Traffic Engineering. IEEE Standards for Local and metropolitan area networks

802.1Q. Institute of Electrical and Electronics Engineers (IEEE), August 2009.
30 J. Medved and D. Meyer. MPLS-TP Pseudowire Configuration using OpenFlow 1.3. Draft draft-medved-pwe3-of-

config-01. Internet Engineering Task Force (IETF), June 2018.
31 R. Vaishampayan et al. ‘Application Driven Comparison of T-MPLS/MPLS-TP and PBB-TE - Driver Choices for

Carrier Ethernet’. In: IEEE INFOCOM Workshops 2009 (2009), pages 1–6. DOI: 10.1109/INFCOMW.2009.
5072112.

32 T. Narten et al. Neighbor Discovery for IP version 6 (IPv6). Request for Comments (RFC) 4861. Internet Engineering
Task Force (IETF), September 2007.

33 R. Droms. Dynamic Host Configuration Protocol. Request for Comments (RFC) 2131. Internet Engineering Task
Force (IETF), March 1997.

34 David C. Plummer. An Ethernet Address Resolution Protocol. Request for Comments (RFC) 826. Internet Engineering
Task Force (IETF), November 1982.
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Table 3.2: Application plane implementation details.

APP DATA REQUIRED EVENTS REQUIRED EVENTS PROVIDED API

(1) Connected switches Switch enter/leave/
update

Neighbour appear/
disappear

Enable IPv6 Ndisc on
switch; Disable IPv6
Ndisc on switch

(2) Available gateways;
Nodes distance; UE
profiles

Switch enters/leaves/
update; Paths computed;
UE connection

UE anchors selected Configure gateway
selection

(3) UE profiles UE profile update - -

(4) Network view Switch enter/leave/
update; Link appear/
disappear/update

- Define path; Delete path

(5) Network view; Paths
computed

Switch enters/leaves/
update

- -

(6) Network topology Switch enters/leaves/
update; Link appear/
disappear/update

- Define network view;
Delete network view

(1) IPv6; (2) Mobility Management; (3) Privacy; (4) Traffic Engineering;
(5) Service Function Chaining; (6) Multi Tenancy;

The Traffic Engineering module is an operator application and decides how to route different
traffic classes within the network. This module works with higher privileges and scopes than client
applications and operates either on physical or tenants network. First, the module defines the path for
a given traffic class or constraint between two points in the network. Next, the Traffic Engineering
module contacts the Path Computation one, and overrides the decision made by the latter. In
addition, the network operator can define manually the paths using the module’s API. Finally,
while many traffic engineering optimisation problems have been proposed in literature [Men+17]35,
this module implements the linear programming formulation for Multiprotocol Label Switching
(MPLS) networks as proposed in [DMS12]36 to reduce the congestion level of the network.

The Service Function Chaining module is an operator application and facilitates the deployment
of new services in the network. This module receives the configuration over the Management
plane and contacts Path Management for configuring the constraints regarding the requested
service. The Service Function Chaining module has access to the up-to-date view of available
resources and connectivity from the Topology View module. This view is used to compute a
logical overlay connection among the (physical and virtual) network functions composing a given
service (chain). This logical overlay is then passed to the Path Management module to compute
and implement the required links. The Path Management module does not only consider the logical
path imposed by the service needs (e.g., order and location of the network functions that need to be
interconnected), but also the requirements on the connectivity itself, e.g., in terms of bandwidth,
latency, isolation, geographical/topology constraints, affinity considerations, etc. For example, if a
firewall is implemented as virtualised function on a gateway, the Service Function Chaining module
interacts with the Path Management module, overriding its default behaviour in such a way that all
the UEs traffic associated to that gateway will pass through the firewall location.

The Multi-tenancy functionalities of the network are provided by different complementary
components. On the one hand, the architecture and internal modules of the controller are multi-

35 A. Mendiola et al. ‘A Survey on the Contributions of Software-Defined Networking to Traffic Engineering’. In: IEEE
Communications Surveys Tutorials 19.2 (April 2017), pages 918–953. ISSN: 1553-877X. DOI: 10.1109/COMST.
2016.2633579.

36 E. Danna, S. Mandal and A. Singh. ‘A practical algorithm for balancing the max-min fairness and throughput
objectives in traffic engineering’. In: 2012 Proceedings IEEE INFOCOM. March 2012, pages 846–854. DOI:
10.1109/INFCOM.2012.6195833.

https://doi.org/10.1109/COMST.2016.2633579
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https://doi.org/10.1109/INFCOM.2012.6195833
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tenancy oriented since inception. One example of this design, can be found on the Topology
View module which, by default, maintains a real or physical view of the network, while keeping
multiple abstract "views" used by the different tenants. In addition, the allocation of resources to
the data plane is done through a combination of an encapsulation supporting resource isolation (e.g.,
MPLS-TP) and traffic shaping (provided by the OpenFlow meter primitive and software queues
configured at the resource level). On the other hand, this functionality is used in combination
with the Multi-tenancy module. This module is responsible of managing the creation of different
virtualised network views and to slice the resources in the network. The multi-tenancy module
retrieves the physical network view from the Topology View module and it builds different views of
the network according to the configuration received over the Management plane and to the switches
capabilities (i.e., traffic isolation, resource reservation, etc.). Each view is a subset of the network
resources and the module ensures that the sum of the network views’ resources does not exceed
the ones of the physical network by implementing a simplified version of the admission control
mechanism for new tenant requests as proposed in [Sci+17]37.38 Once the module assures that
the view is consistent, it contacts Topology View and creates the network view for a given tenant.
From this moment onwards, all the other modules (i.e., Path Computation and Path Management)
will maintain multiple network views, each for tenant. Whenever a tenant contacts one of those
modules, the module firstly identifies the corresponding view associated with the tenant, and
secondly runs the required procedures as described in the previous section. Similar approaches
to this implementation of multi-tenancy in two components, one integrated in the architecture
(providing supporting functions) and a second module implemented as an application (providing
the bookkeeping of resources) can be found in the literature [Li+17].

37 V. Sciancalepore et al. ‘Mobile traffic forecasting for maximizing 5G network slicing resource utilization’. In: IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications. May 2017, pages 1–9. DOI: 10.1109/INFOCOM.
2017.8057230.

38 For the sake of evaluation simplicity, the network capacity constraint is the only constraint considered.

https://doi.org/10.1109/INFOCOM.2017.8057230
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4. An SDN-based Distributed Mobility Management

End-users require maintaining their data connectivity while changing the point of attachment to
the network. This feature is enabled by the Mobility Management (MM) protocols that ensure the
reachability of the mobile terminal. In-depth surveys of MM protocols can be found in [BR14]1,
[AOA12]2. Mobility Management protocols can be categorised as host-based and network-based
MM protocols. In the former case the IP-capable mobile terminals are aware of their IP layer
mobility and have to do operations in order to maintain their ongoing communication sessions. In
contrast, in the latter case, the functionality to detect and manage the terminal movement resides in
the network, and the terminals only perform the standard IP operations. From an operator point of
view, this kind of mobility management approach is advantageous because it permits to support
mobility without relying on functionality and specific configurations in the mobile node. This
thesis focuses on the network-based mobility management protocols. It is worth highlighting that
the work presented in the following focuses on Long Term Evolution (LTE) networks since it
was performed before the publication of 3rd Generation Partnership Project (3GPP) release 15,
which formally defines the 5G system. Nonetheless, the proposed mechanisms are aligned with
the ones being currently considered for 5G systems and forthcoming 3GPP release 16 [3GP17]3,
[3GP18a]4. Moreover, the LTE terminology and components for mobility management employed
in the following can be mapped 5G systems as described in [3GP17]5, [3GP18j]6.

The mobile operator’s core network is in charge of providing IP connectivity and session
continuity to the mobile terminal or User Equipment (UE) as moves around. In LTE networks this
is provided by the Evolved Packet Core (EPC) [3GP18d]7 while in 5G networks this is provided

1 R. Bolla and M. Repetto. ‘A Comprehensive Tutorial for Mobility Management in Data Networks’. In: IEEE
Communications Surveys Tutorials 16.2 (February 2014), pages 812–833. ISSN: 1553-877X. DOI: 10.1109/SURV.
2013.071913.00140.

2 I. Al-Surmi, M. Othman and B. Mohd Ali. ‘Mobility management for IP-based next generation mobile networks:
Review, challenge and perspective’. In: Journal of Network and Computer Applications 35.1 (2012), pages 295–315.
ISSN: 1084-8045. DOI: 10.1016/j.jnca.2011.09.001.

3 3GPP. 5G System - Phase 1; CT WG4 Aspects. Technical Report (TR) 28.891 v15.0.0. 3rd Generation Partnership
Project (3GPP), December 2017.

4 3GPP. 5G System; Access and Mobility Management Services; Stage 3. Technical Specification (TS) 29.518 v15.1.0.
3rd Generation Partnership Project (3GPP), September 2018.

5 3GPP. 5G System - Phase 1; CT WG4 Aspects. Technical Report (TR) 28.891 v15.0.0. 3rd Generation Partnership
Project (3GPP), December 2017.

6 3GPP. System Architecture for the 5G System. Technical Specification (TS) 23.501 v15.3.0. 3rd Generation
Partnership Project (3GPP), September 2018.

7 3GPP. General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network
(E-UTRAN) access. Technical Specification (TS) 23.401 v14.9.0. 3rd Generation Partnership Project (3GPP),
September 2018.

https://doi.org/10.1109/SURV.2013.071913.00140
https://doi.org/10.1109/SURV.2013.071913.00140
https://doi.org/10.1016/j.jnca.2011.09.001
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by the 5G core [3GP18j]8. To provide such IP connectivity, the core network (i.e., EPC or 5G
core) extends an overlay tunnel from the Evolved Node B (eNB)/Next Generation NodeB (gNB)
in the access to the Packet Data Network Gateway (PGW)/User Plane Function (UPF) deep in
the core, to establish connectivity between a mobile terminal to the target external network (e.g.,
Internet). Those tunnels can be based on different transport protocols along the different EPC/5G
core interfaces. In legacy mobile systems, the GPRS Tunnelling Protocol (GTP) [3GP18e]9 has
been deployed to provide IP data connectivity from the core network up to the mobile terminal,
thus enabling the overlay tunnelling for traversing the core network entities.

The final objective of managing the mobility of the terminal is to guarantee that the IP con-
nectivity is maintained independently of the access point of the user. As a consequence of that,
the overlay tunnel has to be re-built to follow the terminal movement as the end user moves. The
overlay tunnel which transports the terminal connection from the access to the core is known as
bearer. One of the responsibilities of the PGW is to assign each incoming flow to the correct
Evolved Packet System (EPS) bearer. To achieve this, each EPS bearer contains a Traffic Flow
Template (TFT). Each template contains a set of filters. The filters matches with flows assigned to
the bearer. The PGW then looks up the corresponding GTP tunnel, adds certain headers, looks up
the IP address of the Serving Gateway (SGW) of user device, and then forwards the packet to the
SGW. When the packet arrives at the SGW, the SGW opens the GTP header and reads its Tunnel
End-Point Identifier (TEID). Using this information, it identifies the corresponding EPS bearer, and
looks up the destination eNB and the TEID. It then establishes another tunnel to forward the packet
to the correct eNB.

Another possibility to provide mobility support is the usage of Proxy Mobile IPv6 (PMIPv6).
In PMIPv6 [Gun+08]10, mobility support is provided by some specific network entities, namely
Mobile Access Gateway (MAG) and Local Mobility Anchor (LMA). The MAG takes care of the
mobility signalling on behalf of the Mobile Node (MN)s attached to its links, tracking the mobile
nodes as they move, while the LMA stores all the routing information needed to reach the MNs in
the PMIPv6 domain by associating each mobile node with the MAG that the MN is using. A tunnel
between the LMA and the MAG allows the transfer of traffic from and to the MN. Using PMIPv6,
the MN can move across a PMIPv6 domain changing its access link, while keeping its IP address.
In EPC architecture the SGW incorporates the MAG functionality and the PGW plays the role of
LMA [3GP18g]11.

In centralised mobility management schemes the address of the UE is anchored at home
network, so traffic is required to always traverse the central anchor. This indicated that paths
between the UEs and its communicating peers would be unnecessarily prolonged. In addition,
centralised mobility management imposes scalability challenges because the centralised anchor
requires having enough processing capabilities to be able to handle all UEs’ traffic. The Internet
Engineering Task Force (IETF) is working on mobility management protocols that can benefit
from the introduction of Software Defined Networking (SDN) in these environments. Apart from
the previously referred PMIPv6 protocol, the Distributed Mobility Management (DMM) group is
modifying existing approaches to support a distributed anchoring model. In network-based mobility
management, there are two kinds of solutions: one is fully distributed and the other is partially
distributed. In the fully distributed approach, each access router acts as both a Mobile Access
Gateway (MAG) and a Local Mobility Anchor (LMA). In the partially distributed approach, the
data and control planes are separated. But only data plane is distributed. The partially distributed

8 3GPP. System Architecture for the 5G System. Technical Specification (TS) 23.501 v15.3.0. 3rd Generation
Partnership Project (3GPP), September 2018.

9 3GPP. General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface.
Technical Specification (TS) 29.060 v15.2.0. 3rd Generation Partnership Project (3GPP), March 2018.

10 S. Gundavelli et al. Proxy Mobile IPv6. Request for Comments (RFC) 5213. Internet Engineering Task Force (IETF),
August 2008.

11 3GPP. Proxy Mobile IPv6 (PMIPv6) based Mobility and Tunnelling protocols; Stage 3. Technical Specification (TS)
29.275 v15.0.0. 3rd Generation Partnership Project (3GPP), June 2018.
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approach is similar to the mobility management scheme used in 3GPP.
Initial proposals have been based on extending existing IP mobility protocols to comply with

the requirements of future networks, which include, among others, higher flexibility. To that end,
the generic application of the SDN paradigm to wireless and mobile networks has been described
in [Ber+14]12, [CH13]13, [LMR12]14. Specifically, the usage of SDN in this area is expected to
simplify the mobility management procedures at both control and data plane. Some of the present
challenges of mobile networks in general [CH13]15, and mobility management protocols [AOA12]16

in particular, can be benefited by the logically centralised control approach provided by SDN. By
decoupling the control plane from the forwarding element the signalling workload can be offloaded
from the forwarding devices as implemented today by consolidating the control in a (logically
centralised) single entity. Regarding the data plane, the SDN approach can improve the operation
of the network by simplifying the traffic delivery in the network nodes by receiving instructions
from the SDN controller, which maintains a complete view of the communication end-to-end, from
the terminal to the gateway, and even beyond.

This chapter first presents a Distributed Mobility Management (DMM) solution based on a well
known existing IP mobility protocol PMIPv6, which could be referred to as legacy solution. This
legacy solution, which was first proposed in [GBO14]17 and then contributed to IETF [BOG18]18,
is hence used as a baseline to identify the design principles and challenges of a DMM solution
embracing the SDN paradigm, which could be in turn considered as evolutionary solution. Based
on this analysis, a new SDN-based DMM solution is proposed for addressing the identified design
principles and specific challenges. A unified methodology, which takes into account protocol
specific operations (e.g., number and type of control messages, and mobility model), is proposed to
analytically evaluate and compare both DMM solutions in terms of handover cost, scalability, and
state space size. The experimental evaluation of the mobility solutions under considerations is then
presented in Chapter 5.

4.1 Evolution from IP mobility towards SDN
The main proposition of DMM is simple: distributing mobility anchors by placing multiple ones
closer to the location of the user. A considerably large amount of research has been conducted in this
area, producing different kinds of solutions. The Distributed Mobility Management Working Group
(WG) at the IETF is one of the first and main venues where solutions for distributed IP mobility
management are discussed. The group started exploring the DMM problem space by first looking
at existing IP mobility protocols, like Mobile IPv6 (MIPv6) [PJA11]19 and PMIPv6 [Gun+08].

12 C. J. Bernardos et al. ‘An architecture for software defined wireless networking’. In: IEEE Wireless Communications
21.3 (June 2014), pages 52–61. ISSN: 1536-1284. DOI: 10.1109/MWC.2014.6845049.

13 C. Chaudet and Y. Haddad. ‘Wireless Software Defined Networks: Challenges and opportunities’. In: 2013 IEEE
International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013).
October 2013, pages 1–5. DOI: 10.1109/COMCAS.2013.6685237.

14 L. E. Li, Z. M. Mao and J. Rexford. ‘Toward Software-Defined Cellular Networks’. In: Proceedings of the 2012
European Workshop on Software Defined Networking. EWSDN ’12. IEEE Computer Society, 2012, pages 7–12.
ISBN: 978-0-7695-4870-8. DOI: 10.1109/EWSDN.2012.28.

15 C. Chaudet and Y. Haddad. ‘Wireless Software Defined Networks: Challenges and opportunities’. In: 2013 IEEE
International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013).
October 2013, pages 1–5. DOI: 10.1109/COMCAS.2013.6685237.

16 I. Al-Surmi, M. Othman and B. Mohd Ali. ‘Mobility management for IP-based next generation mobile networks:
Review, challenge and perspective’. In: Journal of Network and Computer Applications 35.1 (2012), pages 295–315.
ISSN: 1084-8045. DOI: 10.1016/j.jnca.2011.09.001.

17 F. Giust, C. J. Bernardos and A. de la Oliva. ‘Analytic Evaluation and Experimental Validation of a Network-Based
IPv6 Distributed Mobility Management Solution’. In: IEEE Transactions on Mobile Computing 13.11 (November
2014), pages 2484–2497. ISSN: 1536-1233. DOI: 10.1109/TMC.2014.2307304.

18 C. J. Bernardos, A. de la Oliva and F. Giust. Proxy Mobile IPv6 extensions for Distributed Mobility Management.
Draft draft-ietf-dmm-pmipv6-dlif-03. Internet Engineering Task Force (IETF), October 2018.

19 C. Perkins, D. Johnson and J. Arkko. Mobility Support in IPv6. Request for Comments (RFC) 6275. Internet
Engineering Task Force (IETF), July 2011.
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The intention was to investigate possible extensions and adaptations to accepted standard protocols,
in order to limit the impact on legacy implementations and equipment. Beyond IETF DMM and
the already mentioned 3GPP’s activity in [3GP16b], also the Open Networking Foundation (ONF)
Wireless and Mobile working group has taken its part, by proposing the adoption of SDN for the
design of mobile networks.

As briefly introduced above, most of the first proposals of the DMM WG considered PMIPv6
as the baseline of the solution, as documented in [BOG18], [CP14]20, [SBL14]21. PMIPv6 is one
of the mobility protocols adopted by the 3GPP EPC and provides network-based mobility whose
main characteristic is to not require any active participation of the MN to support mobility. It is
worth noticing that the MN might be completely unaware of the Layer-3 mobility in place by the
network. Other mobility protocols like MIPv6, or its DMM extension proposed in [LBL12]22,
provide instead a client-based mobility solution which requires the active involvement of the MN
during attachment or handover procedures.

The following section provide a detailed explanation of the PMIPv6-based DMM solution that
has been contributed to the IETF [BOG18]. This solution is then taken as basis for comparison
since (i) it is under standardisation in IETF, (ii) it is comparable to many similar solutions which
extend existing mobility protocols, and (iii) an analytic and experimental evaluation of the solution
is available in [GBO14].

4.1.1 IP mobility (PMIPv6) based DMM solution
The key entity in this solution is the DMM Gateway (DMM-GW). The DMM-GW extends the
PMIPv6 MAG functions incorporating most of the functionality of the PMIPv6 LMA. Hence, a
DMM-GW provides connectivity to IP based services, e.g., Internet, and has the capability of
assigning and anchoring IPv6 prefixes. A unique IPv6 prefix pool belongs to each DMM-GW, from
which a prefix is assigned to every MN attached to the DMM-GW’s access links. In this way, a
DMM-GW acts as a plain access router to forward packets to and from the Internet. Moreover, it is
provided with mobility anchoring functions, i.e., a DMM-GW is able to maintain the uplink and
downlink forwarding for the IP flows that an MN started while attached to that DMM-GW, even
after the MN has moved to a new DMM-GW. An external node, referred to as Control Mobility
Database (CMD), is used to store the location of the MNs in the domain (i.e., the bindings).

In order to better understand the solution, its main operations are illustrated in Figure 4.1 and
are referred to with a number (#). First, a DMM-GW detects an MN attachment by using IPv6
Neighbour Discovery [Nar+07] signalling (1) (typically, an IPv6 host sends a Router Solicitation
(RS) message upon joining a link) or by a dedicated link layer detection mechanism. Then, the
DMM-GW notifies the CMD about the MN attachment by means of a Proxy Binding Update (PBU)
message containing an IPv6 prefix reserved for the MN (2). In case of initial registration, there is
no entry available in the CMD’s cache for that particular MN, so the CMD registers for the first
time the MN, by storing the IPv6 prefix assigned to the MN associated to the MN’s location, i.e.,
the DMM-GW’s address. The CMD then acknowledges the operation to the DMM-GW with a
Proxy Binding Acknowledgment (PBA) message (3), and the DMM-GW finally delegates the IPv6
prefix to the MN with a Router Advertisement (RA) message (4). Upon a handover, the messages
(5,6) are sent, reflecting steps (1,2), but now the CMD receives a new IPv6 prefix in the PBU from
the new DMM-GW (6), so the CMD associates the MN with the new prefix and the new location.
The old location and prefix are included in a list of anchoring DMM-GWs and these parameters are
conveyed to the new DMM-GW in the PBA message (7). In parallel, the CMD sends a PBU (8) to

20 H. Chan and K. Pentikousis. Enhanced mobility anchoring. Draft draft-chan-dmm-enhanced-mobility-anchoring-00.
Internet Engineering Task Force (IETF), July 2014.

21 P. Seite, P. Bertin and JH. Lee. Dynamic Mobility Anchoring. Draft draft-seite-dmm-dma-07. Internet Engineering
Task Force (IETF), August 2014.

22 J. H. Lee, J. M. Bonnin and X. Lagrange. ‘Host-based distributed mobility management support protocol for IPv6
mobile networks’. In: 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob) (October 2012), pages 61–68. ISSN: 2160-4886. DOI: 10.1109/WiMOB.2012.6379140.
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Figure 4.1: PMIPv6-based DMM solution.

the anchoring DMM-GW including the parameters from the new DMM-GW, and then receives
the PBA from the old DMM-GW (9). By doing so, both the new and old DMM-GWs have the
necessary information to set up a tunnel between them to recover the ongoing IP flows. The tunnel
is used for those flows started before the MN handed over from the previous DMM-GW, whereas
new communications are handled by the new DMM-GW as a plain router, i.e., without using any
tunnels. This dynamic behaviour is achieved by the MN obtaining a new IPv6 prefix from each
DMM-GW it connects to (10). Consequently, an MN configures several IPv6 addresses, one per
each visited DMM-GW, and its flows might be anchored at different DMM-GWs. One of the
main advantages of this approach is that new flows started when the node is attached to the new
DMM-GW are not tunnelled, hence they do not suffer from any overhead or non optimal routing,
improving the overall performance of the network.

The above solution extends PMIPv6 to provide a flatter mobility architecture, and therefore,
it is based on the same principles. Its main advantage is that it is an evolved solution based on
existing mechanisms, that could be easily deployed on currently rolled-out networks. However,
operators are already moving towards software networks, which are more flexible and allow for
faster and richer service deployments.

4.1.2 DMM design principles, SDN challenges and opportunities
This section highlights the main components of a DMM solution and the challenges introduced by
shifting the architecture paradigm from pure IP to SDN. The SDN concept separates the control
and the data forwarding planes. Such separation allows for quicker provisioning and configuration
of network connections. This approach decouples the system making decisions about routing (i.e.,
control plane) from the underlying system that forwards traffic to the selected destination (i.e., data
plane). In an SDN environment, the entity in charge of implementing the control logic for the
network is called Network Controller (NC) and it is responsible of configuring the nodes in the
network (data plane) via a common Application Programming Interface (API). A well-known SDN
framework is the OpenFlow protocol and switch specification [ONF15a], which can be used by
an external software application to program the data plane of network devices. SDN enables the
partitioning of the control system into modular parts that can be dynamically composed according
to the network needs. Nonetheless, the choice of component partitioning can have a profound
influence on the types of services ultimately delivered to the end user [ONF16]. With this in mind,
the following questions are formulated by departing from the DMM solution presented in the
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previous section:

What are the tasks to be accomplished by a generic DMM solution to efficiently provide MNs
with mobility support?

What are the challenges and opportunities in accomplishing these tasks following the SDN
paradigm?

Generally speaking, each task can be seen as a stand-alone module that interacts with other
modules in order to achieve MN’s mobility. As a consequence, a generic DMM solution can be
seen as a set of cooperating modules thus facilitating the evolution of such mobility solutions from
IP architecture to SDN paradigm. These modules can be implemented and deployed in different
ways. However, in order to provide a full-fledged mobility support to the MNs, they need to keep
the same semantic interface towards the other modules. The following paragraphs describe the
modules that a DMM solution should implement based on an analysis of the PMIPv6-based DMM
solution.

Attachment detection
As shown in Figure 4.1, the whole PMIPv6-based DMM mobility procedure is triggered by a RS
upon MN attachment (1) or handover (5). By generalising this concept, it can be argued that a
DMM solution requires a specific module capable of detecting the MN’s attachment or handover.
Moreover, such a module should be provisioned with the following information to effectively
trigger the mobility procedure: (i) the MN identity and, (ii) the DMM-GW the MN is attached to.
Moving towards SDN, such information can be also retrieved by other means that do not strictly
belong to the IP solution space. For example, in addition to Layer-3 mechanisms, the attachment
(or handover) can be also detected at Layer-2 or via a dedicated interface. For instance, Logical
Link Control (LLC) Subnetwork Access Protocol (SNAP) messages can be used for detecting new
hosts in IEEE 802.1Q bridged networks [IEE03]23 while S1-MME dedicated interface can be
used in 3GPP networks [3GP18h]24. The possibility of employing different mechanisms, even
simultaneously, however poses a significant challenge in the design of a SDN-based DMM solution:
the MNs must be uniquely identified despite of the connectivity technology being used. In case
of achieving such unique identification, a SDN-based DMM solution can potentially be extended
across different technology domains thus providing an inter-technology mobility.

Binding
Upon successful attachment detection in PMIPv6, the DMM-GW notifies the CMD about the
IPv6 prefix reserved for the MN through PBU messages (2,6). In practical terms, this operation
can postulated as a stand-alone module providing a binding procedure that assigns one or more
IPv6 prefixes to the MN. Moreover, the module keeps track of the assigned prefixes during the
connection lifetime of the MNs. Therefore, two main tasks are accomplished by this module: (i)
MN tracking and, (ii) prefixes selection. The tracking function keeps record of the whereabouts of
the MN along with the IPv6 prefixes assigned by the prefix selection function. While in IP based
solutions the tracking function usually stores only the visited DMM-GW, additional flexibility
can be envisioned in SDN-based solution where supplementary localisation services, e.g. Global
Positioning System (GPS), could be leveraged. Such information can be potentially taken into
consideration next by the selection function which can select better anchor points for the MNs in
combination with some network policies. From a deployment point of view,this function can be
deployed in a centralised or distributed fashion. A centralised approach co-locates the selection
and tracking functions, while a distributed approach separates them.

23 IEEE. Virtual Bridged Local Area Networks. IEEE Standards for Local and metropolitan area networks 802.1Q.
Institute of Electrical and Electronics Engineers (IEEE), May 2003.

24 3GPP. S1 Application Protocol (S1AP). Technical Specification (TS) 36.413 v15.2.0. 3rd Generation Partnership
Project (3GPP), June 2018.
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Prefix advertisement
After the Binding function selects the prefix(es) to be assigned to the MN, the solution commu-
nicates them to the MN. For example, the PMIPv6-based DMM solution advertises such prefixes
through RA messages (4,10) [Nar+07]. Alternatively, such communication may also occur via
Dynamic Host Configuration Protocol (DHCP) Offer/DHCP Acknowledgement [Dro+03]25. Upon
RA reception, the MN configures its IP addresses starting from the assigned IP prefixes. It is
worth highlighting that this chapter addresses network-based DMM solutions, therefore no direct
interaction is envisioned between the mobility protocol and the MN, which in turn can also be
unaware of any mobility support. As a consequence, a DMM network-based SDN solution can
only leverage Layer-3 mechanisms for advertising the prefix. This function can be deployed in a
centralised or in a distributed fashion, based on the entity in charge of communicating the prefix
to the MN. In case of a centralised function, a single module (e.g., the network controller) takes
care of retrieving all the MN’s assigned prefixes and to communicate them to the MN via a unique
message. On the contrary, a different implementation may rely on standard mechanisms to provide
the assigned prefixes to the MN, for example allowing each assigned router to advertise its own
prefix to the MN in a distributed way.

Traffic steering
This module takes care of re-steering the MNs’ traffic, thus effectively providing mobility. Upon
an MN’s attachment, the ongoing traffic must be re-routed to the new MN’s location. This traffic
path modification can be achieved in several ways, for instance, the PMIPv6-based DMM solution
leverages on Layer-3 tunnels, i.e., IP-in-IP and/or the GTP [3GP18f]26. An SDN-based solution can
also envision the usage of other traffic steering techniques, such as path reconfiguration, or Virtual
LAN (VLAN) [IEE03] /Multiprotocol Label Switching (MPLS) [RVC01]27 tagging. This module
may implement the whole function taking care of physically implementing it, or, it may interact
with an external module or entity that is in charge of the configuration, e.g., a Path Computation
Element (PCE) or a dedicated module on the NC. In the latter case, the traffic steering module
communicates the paths that must be configured to the external module (i.e., a path from the MN to
the DMM-GWs and vice-versa). Subsequently, the external module will configure the underlying
network accordingly. It is worth highlighting that the SDN architecture defined in [ONF16] enables
SDN modules, like the ones described above, to interact with the NC and request the configuration
of some network paths. The NC has hence the responsibility to enforce the request in the underlying
network, which may involve a combination of traffic steering techniques depending on the network
deployment. For example, MN traffic steering can be a combination of Layer-3 tunnels and VLAN
tagging across different network segments. Despite of the added complexity in the SDN approach,
a careful combination of steering techniques can lead to a better usage of the resources due to a
increased path optimality that can be potentially achieved in the network.

From the perspective of an SDN architecture, the modules described above can be implemented
as applications running on top of one or multiple SDN controllers. The choice of using one or
multiple SDN controller depends on the design adopted for the solution. So far, we have only
described the functionality required for a correct operation of a DMM solution. Nevertheless, the
modules must cooperate and interact with each other. In order to do so, the specific control and
data planes used for the mobility solution28 need to be defined.

25 R. Droms et al. Dynamic Host Configuration Protocol for IPv6 (DHCPv6). Request for Comments (RFC) 3315.
Internet Engineering Task Force (IETF), July 2003.

26 3GPP. General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U). Technical Specification
(TS) 29.281 v15.3.0. 3rd Generation Partnership Project (3GPP), June 2018.

27 E. Rosen, A. Viswanathan and R. Callon. Multiprotocol Label Switching Architecture. Request for Comments (RFC)
3031. Internet Engineering Task Force (IETF), January 2001.

28 Note that these control and data planes refer only to mobility specific functionality and are different from the traditional
control and data split considered in SDN approaches.
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Mobility control plane
It is the control plane adopted by the mobility solution and it can be dedicated or compliant. In
case of a dedicated control plane, the mobility solution employs a different control plane for the
signalling with respect to the one used by the SDN controller (e.g., based on PMIPv6 or GTP-
C [3GP18c]29 ). On the contrary, in case of a compliant control plane, the mobility solution uses
the same southbound signalling used by the SDN controller (i.e., OpenFlow). A mobility solution
may use a mixed control plane. For example, the attachment detection may employ the OpenFlow
PacketIn event, while the communication between different modules leverages PBU/PBA messages.

Mobility data plane
It can be dedicated or shared. A dedicated data plane implies that the packets exchanged between
the MN and the DMM-GW (i.e., Address Resolution Protocol (ARP), DHCP or IPv6 Neighbour
Discovery) may follow a different path with regard to the packets belonging to the MN’s data plane.
In case of shared data plane, the two data planes are not separated.

4.2 An SDN-based DMM solution
This section describes in details the proposed SDN-based DMM solution, which will be later
evaluated and compared to the PMIPv6-based one introduced before. As previously commented,
designing an SDN-based DMM solution requires additional efforts with respect to a classic IP
mobility solution where it is safe to assume that every node in the network speaks IP. However, this
cannot be assumed in an SDN environment as introduced in the previous section. If we consider the
more generic SDN concept – that is the decoupling of control and data planes – several boxes are
controlled remotely by a NC in order to accomplish a complex task in the network. In such scenario,
the NC controls and instructs the data plane nodes via a southbound interface which defines the
instruction set understandable by both the NC and the data plane nodes. Although there are multiple
possibilities for the choice of Southbound interface, we have decided to use the OpenFlow protocol,
which enables the NC to write forwarding rules directly on the nodes. Given the nature of this paper,
which evaluates the proposed DMM solutions from analytic and experimental viewpoints, our
SDN-based mobility focuses on standard OpenFlow v1.5 capabilities, leaving potential extensions
and non-standard Southbound interfaces out of the scope of this work. Undeniably, various
Southbound-API may accomplish the same task in different ways but there are cases where one
task cannot be accomplished by a specific Southbound-API. For example, let’s analyse the classical
IP mobility mechanisms and OpenFlow. Classical IP mobility solutions (i.e., [Gun+08], [Per02]30,
[PJA11] ) exploit IP tunnels for re-routing the traffic. Unfortunately, even the latest OpenFlow
specification [ONF15a] does not include any instruction for managing IP tunnels31. Hence, in
OpenFlow networks, mobility can be only supported by changing the forwarding rules in the data
plane. According to the Traffic steering module described in Chapter 4.1.2, and to OpenFlow
specifications, traffic steering can be only done via path reconfiguration or VLAN in an OpenFlow
network.

In the proposed solution, the modules introduced during the discussion on the DMM design
principles can be mapped to an SDN paradigm as different applications running on top of one or
more NCs. Therefore, the DMM-GWs are designed as plain forwarding nodes (switches), bearing
no mobility functionality, thence delegating the whole intelligence to the NC. The applications
adopt an event-driven communication paradigm in order to be as modular and reactive as possible,
being this aspect fundamental in mobility solutions. Indeed, an event-driven communication can

29 3GPP. Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C). Technical
Specification (TS) 29.274 v15.4.0. 3rd Generation Partnership Project (3GPP), June 2018.

30 C. Perkins. IP Mobility Support for IPv4. Request for Comments (RFC) 3344. Internet Engineering Task Force
(IETF), August 2002.

31 Note there are some vendor specific extensions able to control some kinds of tunnelling, e.g., GRE tunnels.
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Figure 4.2: SDN-based DMM solution.

Table 4.1: SDN-based DMM solution modules details.

DEPLOYMENT DATA REQUIRED EVENT REQUIRED EVENT PROVIDED

(1) Layer 3 Router Solicitation OF PacketIn MN attachment
(2) Centralised MN IDs MN attachment Binding update
(3) Centralised Binding cache Binding update -
(4) VLAN Binding cache Binding update -

(1) Attachment; (2) Binding; (3) Prefix Advertisement; (4) Traffic Steering;

be used to fire triggers upon certain events, like the mobility support being activated by an MN
handover.

As shown in Figure 4.2, upon the attachment of an Mobile Node (MN) to an access point,
the DMM-GW informs the Network Controller (NC), which assigns a network prefix (or a set
of prefixes, in case differentiated treatment is required for fine-grained services) to the MN. The
network prefix(es) is guaranteed to be unique by using a binding cache where the controller stores
information about the MNs active in the network (and the prefixes they use). The detection of the
attachment and the network prefix assignment in the proposed solution, is based on IPv6 Neighbour
Discovery as in the PMIPv6-based solution: the MN sends a Router Solicitation (RS) when attaches
to the network (1,5), that serves as trigger, and the NC generates a Router Advertisement (RA)
to communicate the network prefix(es) (4,10). These prefixes are anchored at a pool of k Egress
Router (ER). After the selection and assignment of IP prefixes (and associated ERs), the NC
configures the OpenFlow rules in the MN’s target DMM-GW (2,7) and in the ERs assigned to it
(3,8). In case of handover, the NC also deletes the OpenFlow rules previously installed on the old
DMM-GW (6). Packet forwarding within the network is based on VLANs, which are statically
pre-configured. Such VLAN paths connect Egress Routers with DMM-GWs. Note that these
VLAN paths could also be dynamically configured by the NC using OpenFlow, but this procedure
works in a different time scale with respect to mobility management and is ruled out of the scope
of this work. As a matter of fact, packet re-routing could be also based on path reconfiguration.
However, re-configuring the whole path leads to a higher and non-deterministic signalling load
due to the variable length of the paths in the network. Mobility support is achieved by installing
OpenFlow rules at the Egress Routers and DMM-GWs, so packets destined or originated from an
MN are tagged with the correct VLAN (see Figure 4.2). Upon the attachment of an MN to the
network, the NC configures Egress Routers to tag MN’s packets with the VLAN connecting the
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Table 4.2: Distributed Mobility Management notation.

SYMBOL DESCRIPTION SYMBOL DESCRIPTION

MN Mobile Node GA ⊆ G Set of active DMM-GWs at each handover
DMM-GW DMM Gateway gA

i ∈ GA Element of set GA

ER Egress Router c
(
gA

i
)

Signalling cost associated to node gA
i

CMD Control Mobility Database Ch Total handover signalling cost
NC Network Controller E Set of Egress Routers
RS An IPv6 Router Solicitation message em ∈ E Element of set E
RA An IPv6 Router Advertisement message SX Entity X’s forwarding table size (#rules)
RTT Round Trip Time U Set of MNs connected to the domain
G Set of DMM-GWs Ugi⊆U Set of MNs associated to DMM-GW gi
g j ∈ G Element of set G Uem ⊆U Set of MNs associated to ER em

Egress Router with the DMM-GW the MN is attached to. In case of handover, the NC simply
needs to rewrite this rule at the Egress Router and the DMM-GW, selecting the correct VLAN that
connects the new DMM-GW and the ERs assigned to the MN.

Summarising, the proposed solution envisions a shared data plane and a compliant control plane,
exploiting OpenFlow as signalling protocol. In addition, Table 4.1 reports the deployment, the data
and events required by each module to properly work and interact. For example, the attachment
detection occurs at Layer-3 by intercepting the Router Solicitation message and sending it to the
NC as the payload of an OpenFlow PacketIn message. Such module broadcasts an MN attachment
event to the other modules which contains the MN’s ID and point of attachment. This event is
received by the centrally-deployed Binding module which selects the MN’s network prefixes and
update accordingly the binding cache. Once the binding cache is correctly updated, the module
broadcasts a Binding up message which includes the MN’s prefixes and associated DMM-GWs.
Such event is exploited by (i) the centralised prefix advertisement module to send a RA to the MN,
and by (ii) the traffic steering module to update the VLANs tag in the DMM-GWs and ERs.

4.3 Analytic evaluation
In this section, the PMIPv6 and SDN-based solutions are analysed considering the signalling
overhead and the overall handover latency. We further analyse the scalability of the proposed
solutions in terms of size of the forwarding tables which has an impact on the state that network
nodes need to keep to properly operate. Table 4.2 summarises the notation used throughout this
section.

4.3.1 Signalling cost
The signalling cost is formulated as the overhead in bytes associated to the control messages
transmitted when an MN performs a handover. The purpose of this study is to provide a statistical
estimation of the signalling rate in B/s, based on mobility and traffic models available in the scientific
literature, such as the analytical framework proposed in [GBO14], which properly captures the
peculiarities of DMM protocols. The formal definition of the cost model is expressed in the
following.

Proposition 4.1: Let G be the set of DMM-GWs deployed in a given area, and gi ∈ G its elements.

When a mobile node hands off, only few DMM-GWs are involved in the signalling process,
therefore:

Proposition 4.2: Let GA = {gA
1 , . . . ,g

A
N} be the set of active DMM-GWs participating in a handover

control sequence.

Clearly, GA ⊆ G, and N =
⏐⏐GA

⏐⏐. The set GA changes at each handover, and its elements gA
i

are reverse-ordered from the latest to the first active DMM-GW visited by the MN. Thence, a1
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Table 4.3: DMM signalling messages cost.

PACKET BYTES DESCRIPTION

πPBA 128 PBA with mandatory options only
π

option
anchor 56 Previous DMM-GW mobility option

π
option
serving 24 Current DMM-GW mobility option

σRS 178 Router Solicitation sent to the NC
σRA 218 Router Advertisement sent by the NC
σwrite 264 OpenFlow message for writing a rule
σdelete 232 OpenFlow message for deleting a rule

is the hand-off target DMM-GW and a2 is the source DMM-GW. It should be noted that, in the
PMIPv6-based solution, the size N varies at each handover, whereas for the SDN solution we have
N = 2 for each handover. We now characterise the handover cost in terms of signalling load.

Proposition 4.3: Let c
(
gA

i
)

: GA ↦→ N be the cost in bytes of each information exchange for any
given gA

i ∈ GA that involves gA
i , including the IPv6 and transport-layer headers, but excluding the

data link and MAC layer headers.

Therefore, the handover cost is modelled as follows:
Definition 4.1: Handover cost.

Ch = ∑
gA

i ∈GA

c
(
gA

i
)
, (4.1)

whereas the function c
(
gA

i
)

is solution-dependent.

The characterisation of c
(
gA

i
)

is addressed in the following paragraphs.

PMIPv6-based
To properly formalise c

(
gA

i
)
, some handover operations are detailed. The target DMM transmits a

PBU message with the PMIPv6 mandatory options only (denoted as πPBU) to the CMD to notify
the MN’s new attachment. The CMD replies with a PBA including the mandatory options (πPBA)
plus an instance of the anchor option (πoption

anchor) for every old DMM-GW that is still anchoring active
IP flows. Similarly, the source DMM-GW, and all the other DMM-GWs that are still anchoring IP
flows, receive from the CMD a PBU message with the mandatory options plus an instance of the
serving option (πoption

serving), indicating the new serving DMM-GW. These DMM-GWs then reply to
the CMD with a PBA containing the same options to conclude the operation.

Proposition 4.4: Let the signalling cost for the PMIPv6-based DMM solution be:

c
(
gA

i
)
=

{
πPBU +πPBA +(N −1)πoption

anchor if i = 1
πPBU +π

option
serving +πPBA +π

option
serving if i ≥ 2

(4.2)

Therefore, the Equation 4.1 turns into Equation 4.3 for the PMIPv6-based case:

Definition 4.2: Handover cost of the PMIPv6-based DMM.

CPMIPv6-based
h = N (πPBU +πPBA)+(N −1)

(
π

option
anchor +2π

option
serving

)
(4.3)

In conclusion, this solution’s cost depends linearly on the number N =
⏐⏐GA

⏐⏐ of active DMM-
GWs. The value of N depends on both the MN mobility (i.e., handover frequency) and traffic
patterns. It is intuitive that the more often the MN changes attachment point, the larger is the
number of active DMM-GWs. However, a DMM-GW is eventually de-activated when there are
no more MN’s IP flows traversing it. So, the longer the IP flows started by the MN are, the longer
is the DMM-GW’s activity interval. Knowing the statistical distribution of the handover rate and
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Figure 4.3: Handover signalling cost for the two DMM solutions.

how long an IP flow is maintained by the DMM-GW anchoring that flow permits to compute the
statistical distribution of the number of active DMM-GWs at any time [GBO14], and thus the size
of the set GA. In this chapter we simplify the problem assuming that an MN spends an exponential
time with mean value µ attached to a DMM-GW before handing over to a different one. Besides,
we assume that after a handover, an old DMM-GW remains active for an exponential interval of
mean λ . Using the results reported in [GBO14], we obtain N = E [N], as:

Definition 4.3: Average number of active DMM-GWs.

N = 2+
λ

µ
(4.4)

SDN-based
In the SDN-based solution, the only DMM-GWs involved during a handover are the source and
target DMM-GWs, thus GA = {GA

1 ,G
A
2} for every handover. From the protocol description in

Chapter 4.2, upon a handover, the NC writes on the target DMM-GW two downlink rules and as
many uplink rules as the number of active ERs for the mobile node. Moreover, the NC writes two
downlink rules on each ER, and removes the uplink and downlink rules on the source DMM-GW.
The reason of having two downlink rules is given by the need of properly identifying the mobile
node’s IPv6 local and global addresses32. Thus, for the general case of having k ERs, and using the
message notation shown in Table 4.3, the cost function is defined as follows:

Proposition 4.5: Let the signalling cost for the SDN-based DMM solution be:

c
(
gA

i
)
=

{
σRS +σRA +(3k+2)σwrite if i = 1
(k+2)σdelete if i = 2

(4.5)

Therefore, Equation 4.1 turns into Equation 4.6 for the SDN-based case:

Definition 4.4: Handover cost of the SDN-based DMM.

CSDN-based
h = σRS +σRA +(3k+2)σwrite +(k+2)σdelete (4.6)

As it can be observed in Equation 4.6, the SDN solution’s cost depends linearly on k.

Signalling cost considerations
The average signalling cost for a single MN is analyzed in the following for the two solutions. The
average residence time µ is the one defined previously for the PMIPv6-based solution, and Ch/µ

32 IPv6 uses unicast and multicast addresses to reach the mobile node. Even if the identification would be based on
MAC addresses, it would still require two rules.
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is the corresponding solution’s cost in bytes per second. The size of each message involved in
Equations 4.2,4.5 has been measured experimentally (and its value is reported in Table 4.3). The
description of the experiments is reported later in Chapter 5.

The signalling cost is reported, for different values of λ and k, in Figure 4.3(a) for the PMIPv6-
based solution and in Figure 4.3(b) for the SDN-based. A performance degradation is observed
on the PMIPv6-based solution for large values of the ratio λ/µ values, and hence large N. This
is a scenario with high mobility and long lived IP flows. In order to cope with this limitation, the
deployment of such solution should jointly consider the coverage area and the level of mobility
of MNs. That is, the DMM-GW’s coverage area should not be too small in order to reduce the
number of active DMM-GWs. Such information is usually available to operators. Nevertheless,
this solution is more suitable when handling scenarios with low mobility, i.e., for high values of µ ,
or short lived flows, i.e., for low λ . The SDN-based solution behaves in a more predictable way, as
it only depends on the value k and it is independent of the traffic pattern of MNs. Operators have
the profiles of each MN, therefore the value k can be also adapted on an MN basis. As a result, the
network can be managed in a smarter way and a higher network’s efficiency can be achieved by
spreading the MNs on multiple ERs.

4.3.2 Forwarding table size
The following characterises the parameter S as the size, i.e., the number of rules, of the forwarding
table of the involved network nodes. The number of forwarding entries represents the state that
each node needs to keep in the network to properly forward the traffic to the MNs. To that end:

Proposition 4.6: Let U be the set of MNs in the domain and Ugi ⊆U be the set of MNs connected
to a generic DMM-GW gi.

Proposition 4.7: Let the MNs be uniformly distributed among the DMM-GWs.

Therefore, the number of MNs connected to a given DMM-GW is given by:

Definition 4.5: Average number of MNs connected to a DMM-GW.

|Ugi |= |U |/ |G| (4.7)

where G is the set of DMM-GWs in the domain.

PMIPv6-based
As described in 4.3.1 and according with the statistical framework defined in [GBO14] an MN has
on average N −1 act an MN has N −1 active prefixes advertised by old DMM-GWs, for which
three routing rules are necessary: one at the anchor DMM-GW for downlink forwarding, and two
at the current DMM-GW, respectively for uplink and downlink. In addition, the MN configures an
IPv6 prefix from the current DMM-GW’s pool, implying one downlink routing rule at the current
DMM-GW. By dividing the total number of routing rules for the number of DMM-GWs, we obtain
that, on average, the number of routing entries in a DMM-GW is given by:

Definition 4.6: DMM-GW forwarding table size for PMIPv6-based DMM.

SPMIPv6-based
gi

=
(
3N −2

)
|Ugi | (4.8)

SDN-based
For the SDN-based solution, the study applies to the DMM-GWs and ERs, as they are the only
involved nodes.

Proposition 4.8: Let E be the set of egress routers deployed in a domain and em ∈ E its elements.

While a DMM-GW manages no more than the Ugi MNs directly attached to it, an ER manages
the traffic of MNs that might be connected to multiple DMM-GWs. As described in Chapter 4.3.1,
on each ER the NC writes two OpenFlow rules for each MN. Therefore, the forwarding table’s size
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on the m-th ER, em, is independent of k and depends only on the number of MNs managed by that
ER. We denoted this set as Uem ⊆U . As a result, the size of the forwarding table turns into:

Definition 4.7: ER forwarding table size for SDN-based DMM.

SSDN-based
em

= 2 |Uem | (4.9)

It is worth highlighting that this is the best achievable result. In fact, the smallest number of rules
necessary to properly identify a single MN is two rules as explained in the previous section. On the
contrary, the forwarding table on a DMM-GW depends on k and on Ugi . Indeed, the NC writes
k+2 rules on the target DMM-GW for each associated MN, leading to:

Definition 4.8: DMM-GW forwarding table size for SDN-based DMM.

SSDN-based
gi

= (k+2) |Ugi | (4.10)

Proposition 4.9: Regarding Uem and Ugi , we can safely assume:

|U | ≥ |Uem | ≫ |Ugi | ∀i,m (4.11)

That is the number of MNs managed by an ER is much larger than the number of MNs managed
by a single DMM-GW (up to all the MNs in the domain). Therefore, k does not present a major
scalability problem for the DMM-GW’s forwarding table size.

4.3.3 Handover latency
This section analyses how the protocol operations affect the handover latency for each of the two
studied DMM solutions. The handover delay analysis can be split into three sub-problems:(i) the
Layer-2 handover, including the time elapsed since the old radio link is torn down until the new one
is established, (ii) the Layer-3 configuration, considering the time required by the MN to obtain
network layer connectivity (including the Layer-2 handover), and (iii) the IP flow recovery, i.e., the
interval during which an IP flow is interrupted due to the handover (including both the Layer-2, the
Layer-3 configuration, plus then the remaining actions performed within the network to ensure IP
session continuity). In the protocols under consideration, the Layer-2 handover does not depend on
the specific solution and it is the same for all of them, thus we omit it in the equations. Nevertheless,
in Chapter 5 Layer-2 results obtained in our experiments are presented.

PMIPv6-based
The MN establishes the Layer-3 connectivity by requesting an IPv6 prefix with a RS message. The
DMM-GW, before sending to the mobile node the IPv6 prefix information in a RA, performs a
two-way message exchange with the CMD to register the MN presence and the assigned prefix.
The message from the CMD contains the necessary parameters to set up the tunnels and the routing
towards the old DMM-GWs that are anchoring the MN’s active prefixes. As a result, the time
required by the MN for the Layer-3 configuration is due to the Round Trip Time (RTT) between
the MN and the DMM-GW for the RS/RA exchange, plus the RTT between the DMM-GW and the
CMD for PBU/PBA signalling and, finally, a processing time T PMIPv6-based

P for each of the N active
DMM-GWs. This Layer-3 latency can then be expressed as:

Definition 4.9: Handover latency of the PMIPv6-based DMM.

T PMIPv6-based
L3 = RTTMN-DMMGW +RTTDMMGW-CMD +NT PMIPv6-based

P (4.12)

In order to recover the IP flows started with the IPv6 prefixes assigned by previous DMM-GWs,
the CMD instructs all the previous active DMM-GWs with parallel PBU/PBA signalling after the
attachment notification from the new DMM-GW is received. For the model, it can be assumed that
RTTDMMGW-CMD is constant for all the DMM-GWs, so that the new DMM-GW and all the old ones
receive the update message from the CMD simultaneously. Next, an old DMM-GW re-builds the
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data path with a tunnel to the current MN’s DMM-GW in a time T PMIPv6-based
P , and then packets

flow to the serving DMM-GW in a time (1/2)RTTDMMGW-DMMGW . Therefore, the flow recovery
time is:

Definition 4.10: Flow recovery time of the PMIPv6-based DMM.

T PMIPv6-based
flow-recovery = TL2-ho +RTTMN-DMMGW +RTTDMMGW-CMD +

+T PMIPv6-based
P + 1

2 RTTDMMGW-DMMGW (4.13)

SDN-based
In this case, RS sent by the mobile node upon attachment is intercepted by the target DMM-GW
and forwarded to the NC. At this point, the NC configures the forwarding path in the network by:
(i) writing the rules on the new DMM-GW and on the ERs, and, (ii) deleting the rules on the old
DMM-GW. In this solution, the order plays an important role, indeed, after the configuration of
the target DMM-GW and of the ERs, the path in the network is updated and the traffic is finally
able to reach the MN. Consequently, to compute the IP flow-recovery time, we can get rid of the
time necessary to delete the rules on the last visited DMM-GW. After the configuration phase, the
NC generates an RA which is sent back to the DMM-GW and finally forwarded by the latter to the
MN. This RS/RA exchange lasts an RTT between the MN and the DMM-GW plus another RTT
between the DMM-GW and the NC. In the new DMM-GW, the NC writes k+2 rules through k+2
parallel messages, where k is the number of ERs. As a result, the NC takes (1/2)RTTDMMGW-NC

to configure the new DMM-GW. For the ERs, the NC writes two rules on each ER in parallel,
taking (1/2)RTTER-NC to update the rules, where RTTER-NC is the distance between the ER and the
NC. For simplicity, we consider RTTER-NC as constant for each ER. Albeit the NC configures the
rules in parallel, the generation of those messages is performed sequentially. T SDN-based

P denotes
the processing time required by the NC to forge the OpenFlow messages for each of the k ERs.
Therefore, the Layer-3 configuration latency is:

Definition 4.11: Handover latency of the SDN-based DMM.

T SDN-based
L3 = RTTMN-DMMGW + 3

2 RTTDMMGW-NC +

+1
2 RTTER-NC + k T SDN-based

P (4.14)

After the configuration phase and the reception of the RA message by the MN, the packets can
finally reach the MN, taking a time Ttransport. Hence, the flow-recovery time is:

Definition 4.12: Flow recovery time of the SDN-based DMM.

T SDN-based
flow-recovery = TL2-ho +T SDN-based

L3 +Ttransport (4.15)

In addition to the analytic evaluation of the handover latency presented in this chapter, an
experimental evaluation of both DMM solutions (i.e., PMIPv6 and SDN) is presented in Chapter 5.





5. Experimental assessment of the SDN framework

The main goal of this chapter is to provide evidence in a real-life environment of the benefits of
applying Software Defined Networking (SDN) concepts to mobile networks in terms of easiness,
flexibility and agility when deploying new services. To do so, an SDN test-bed has been developed
based on off-the-shelf hardware running GNU/Linux.

5.1 Evaluation of service creation effort
The following analyses the implementation of the proposed SDN framework (see Chapter 3) to
quantify the actual effort required for creating SDN controller modules and applications. Even
though it is generally claimed that reducing service creation time is one of the key advantages of
SDN, to the best of the author’s knowledge, this is the first attempt to quantify such benefit. The
effort required to implement a new service depends on the complexity of the task that the service
aims to accomplish, and the ease with which the platform that implements it can be used. While the
complexity of the task is determined by the use case, the implementation effort is highly influenced
by the tools offered to the developers. The goal of this section is therefore to evaluate the developer-
friendliness of the proposed framework. In particular, this section quantifies the implementation
effort associated to the exemplary use cases reported in Chapter 2. The network controller runs Ryu1

as component-based SDN framework. Ryu APIs natively support the event-driven communication
paradigm allowing a simpler prototyping of the proposed architecture. Moreover, the Topology
Discovery module is already provided by Ryu. All the other modules of the architecture have been
implemented using Python. The next paragraphs evaluate the Controller and Application Plane
implementations efforts.

Table 5.1 reports the Implementation effort, both in terms of lines of code and the development
time spent. Those figures are of course specific to the implementation choices that have been made
(e.g., the use of the Ryu controller and the Python language) and to the developer, whose skills are
reported in Table 5.2 in the form of a programmer competency matrix2 which is commonly used for
assessing a specialist’s competences [Lyt+16]3. These provide a valuable insight on the complexity
of the proposed architecture and an good estimation of the required effort, although there might be
differences across developers. The architecture components are divided in two groups: the core
Controller modules, which provide the basic functionality of the architecture, and the New services

1 Ryu: http://osrg.github.io/ryu/
2 Competency matrix: http://sijinjoseph.com/programmer-competency-matrix/
3 V. Lytvyn et al. ‘A method for constructing recruitment rules based on the analysis of a specialist’s competences’. In:

Eastern-European Journal of Enterprise Technologies 6.2 (December 2016), pages 4–14. DOI: 10.15587/1729-
4061.2016.85454.

http://osrg.github.io/ryu/
http://sijinjoseph.com/programmer-competency-matrix/
https://doi.org/10.15587/1729-4061.2016.85454
https://doi.org/10.15587/1729-4061.2016.85454
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Table 5.1: Evaluation of implementation effort.

MODULE LINES OF CODE TIME SPENT

Controller Modules 3218 95 hours

New Services 1589 20 hours 40 minutes

Mobility Management 356 4 hours
Privacy 153 40 minutes
Traffic Engineering 192 1 hour
Service Function Chaining 216 1 hour
Multi Tenancy 672 14 hours

Table 5.2: Programmer competency matrix.

FIELD SKILL LEVEL 0 1 2 3

Data structures X
Computer Science Algorithms X

System programming X

Software Engineering Build automation X
Automated testing X

Problem decomposition X
System decomposition X
Code readability X

Programming Defensive code X
Error handling X
API design X
Framework design X
Requirements definition X

Languages experience X
Experience Platforms experience X

Domain experience X

Knowledge Tools knowledge X
Upcoming technologies X

modules, which build on the former to implement the advanced functionality of the network. As it
can be seen in the table, the core modules require a relatively large implementation cost (almost
100 hours); however, this cost is incurred only once. In contrast, the application involve a much
lower cost (approx. one fifth of the core modules for all the considered functionality). In general
terms, this shows that the proposed Open Networking Foundation (ONF)-based architecture enables
network operators to provision new services with a very low service creation time. The following
summarises the implementation challenges of these modules.

The implementation of the New Services modules required relatively little time. The Multi
Tenancy module was the most challenging application to implement (more than two thirds of the
overall effort): while the implementation of its interface was straightforward and its engine to
ensure consistency is relatively simple, significant time was devoted to its testing and validation
to proper handling concurrent requests. The implementation of the other services required much
less time: Mobility Management4 and Privacy modules required less than 5 hours and basically
consist of a smart algorithm for gateway selection, while Traffic Engineering module, which is
based on a solver for the linear programming formulation,5 required one hour (i.e., one twentieth of
the total effort implementing new services). The implementation of the Service Function Chaining
is another key feature of the implementation, as it provides the network operator with an interface
for defining and modifying paths between network elements, requiring a similar implementation

4 This module has been published as open-source and it is available for download at: http://odmm.net/openflow/
5 SciPy.org, Linear Programming Solver: https://docs.scipy.org/

http://odmm.net/openflow/
https://docs.scipy.org/
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effort.
To support the development of the above modules, continuous integration (CI) tools were used

for streamlining the code testing and debugging. For automatic testing a local installation based on
Docker6 of Travis CI was used,7 providing a customizable service for building and testing software
projects. A series of unit tests are hence executed to (i) verify the correctness of the modules
implementation against the expected behaviour of the events and API, as defined in Table 3.1
and 3.2, and to (ii) attest the robustness of the implementation against unexpected inputs or events.
Moreover, Codecov8 was used for assessing the coverage of the unit tests on the implemented
code as to ensure that any line being developed is properly tested. While those tools provided the
necessary testing functionalities in the context of this evaluation, the use of a more complete suite,
like the one proposed in [Gut+16]9, is advisable to better automatise the development process and
thoroughly detect undesirable bugs, as highlighted in [JM16]10. For the sake of clarity, all the
controller modules evaluated in this article have been implemented on a single controller. However,
regardless the implementation of each controller module, the interface toward the Application plane
remains the same and does not require any change on the applications thanks to the adoption of a
service-oriented architecture. Indeed, one of the key benefits of such architecture is that interactions
occur between loosely coupled software components that operate independently. Moreover, this
architecture allows for service reuse, making it unnecessary to rewrite all the components when
upgrades/modifications are needed only affect a subset of the modules. As a result, the evaluation
of the effort required to implement the applications is still accurate although being developed on a
proof-of-concept.

Notwithstanding, it is worth noticing that the implemented prototype faces the same challenges
of centralised systems, in terms of reliability, resiliency and scalability. Because of these issues, a
deployment of the controller in a realistic scenario might be distributed across a number of separate
servers. Therefore, each controller module could be implemented in a distributed fashion relying
on well-known high performance distributed computing (HPDC) techniques. For example, the
Topology Discovery and Topology View modules can be implemented using a divide and conquer
approach where the whole network domain is split in sub-domains and the global network view
is created by combining all the partial views. Path Computation might follow the same approach
whereas the computed paths are exposed via a distributed hash table (DHT). In this way, the module
can scale to large number of paths and to handle continuous updates and requests. Furthermore,
additional applications can be implemented in order to support and inter-operate with legacy
modules (e.g., ANDSF, HSS, AAA, IMS) following the same approach of this implementation.

5.2 Evaluation of DMM solutions
Complementing the analytical evaluation conducted in Chapter 4, this section describes the exper-
imental evaluation of the PMIPv6-based and the SDN-based Distributed Mobility Management
(DMM) solution, aiming at providing a Proof of Concept (PoC) to assess the solutions’ feasibility
and performance. In order to evaluate the two solutions, two separate test-beds are developed, one
for each solution. Each test-bed is based on GNU/Linux machines connected through an Ethernet
network and comprises a set DMM Gateway (DMM-GW)s providing Institute of Electrical and
Electronics Engineers (IEEE) 802.11b/g wireless access to the Mobile Node (MN)s. The systems
are tested for three different configurations, employing 2, 3 or 5 DMM-GWs. As none of the

6 Docker: https://www.docker.com/
7 Tracis CI: https://travis-ci.org/
8 Codecov: https://codecov.io/
9 P. A. A. Gutiérrez et al. ‘NetIDE: All-in-one framework for next generation, composed SDN applications’. In: 2016

IEEE NetSoft Conference and Workshops (NetSoft). June 2016, pages 355–356. DOI: 10.1109/NETSOFT.2016.
7502408.

10 L. J. Jagadeesan and V. Mendiratta. ‘Programming the Network: Application Software Faults in Software-Defined
Networks’. In: 2016 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW).
October 2016, pages 125–131. DOI: 10.1109/ISSREW.2016.23.

https://www.docker.com/
https://travis-ci.org/
https://codecov.io/
https://doi.org/10.1109/NETSOFT.2016.7502408
https://doi.org/10.1109/NETSOFT.2016.7502408
https://doi.org/10.1109/ISSREW.2016.23
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Figure 5.1: Test-beds used in the experimental evaluation.

mobility solutions devises any intervention on the MN, the hardware and software requirements for
the MNs are loose, being simply an IEEE 802.11b/g wireless card, and a standard IPv6 stack imple-
menting Neighbour Discovery [Nar+07]. The following paragraphs delve into the solution-specific
test-beds description.

The PMIPv6-based test-bed is depicted in Figure 5.1(a). In order to make the scenario more
realistic, a transport IPv6 network composed by several IPv6 routers was added to the test-bed.
These routers connect the DMM-GWs to the Control Mobility Database (CMD) and to the Corres-
pondent Node (CN). The dashed blue lines in Figure 5.1(a) represent the logical interaction between
the CMD and the DMM-GWs (these lines do not represent a dedicated path between the CMD and
the DMM-GWs). The DMM-GWs and the CMD are the only nodes that run the implementation
of the PMIPv6-based solution, which is publicly available as open source11. Such implement-
ation replicates the signalling and operations specified in [BOG18] and briefly summarised in
Chapter 4.1.1.

In the SDN-based test-bed, in addition to the DMM-GWs, 5 Egress Routers ER were added
as illustrated in Figure 5.1(b). As it can be observed from the picture, the DMM-GWs and the
Egress Router (ER)s are connected each other through two separate networks, one for the control
plane (drawn with blue lines) and one for the data plane (the black solid lines). In the control
plane network, a switch realises the interconnection among all the nodes and also with the Network
Controller (NC) (see the CP Switch node in Figure 5.1(b)). For the data plane, the packet forwarding
within the network is based on Virtual LAN (VLAN)s and statically configured. Thus, an 802.1Q-
capable switch is deployed and configured in the data plane so as to interconnect all the DMM-GWs
and ERs. Moreover, the ERs have a third link used to connect the test-bed to the CN.

Since the SDN-based solution uses OpenFlow as Southbound API, all the DMM-GWs and ERs
run the version 3.10 of Linux kernel. This version of the kernel includes Open vSwitch12 which
provides an OpenFlow 1.3 interface. The NC runs Ryu13 as OpenFlow controller and implements
the framework proposed in Chapter 3. The SDN-based solution is therefore implemented as Ryu
application (i.e., based on the API running on the NC). The connection between Open vSwitch
and Ryu is performed out-of-band involving TCP for the OpenFlow messages delivery. The

11 MAD-PMIPv6: https://github.com/ODMM/MAD-PMIPv6
12 Open vSwitch: http://openvswitch.org/
13 Ryu: http://osrg.github.io/ryu/

https://github.com/ODMM/MAD-PMIPv6
http://openvswitch.org/
http://osrg.github.io/ryu/
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Table 5.3: Handover latency experimental results in milliseconds.

TYPE OF SOLUTION
LAYER-2 HO. LAYER-3 CONF. IP FLOW REC.

Mean Std. dev. Mean Std. dev, Mean Std. dev.

N = 2 12.9 4.4 25.8 8.6 40.3 9.3
PMIPv6-based N = 3 12.9 4.4 27.8 8.7 42.5 9.4

N = 5 12.9 4.4 32.6 8.9 47.4 9.7

k = 2 12.9 4.4 26.8 2.3 33.0 2.8
SDN-based k = 3 12.9 4.4 29.2 2.4 35.6 3.0

k = 5 12.9 4.4 33.7 4.4 40.2 4.8
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Figure 5.2: Flow-recovery time eCDF.

application is in charge of all the tasks described in Chapter 4.2. Finally, the implementation the
SDN framework, including the SDN-based DMM solution, has been published as open source by
the author of this thesis.14

5.2.1 Experimental results of PMIPv6- and SDN-based DMM solutions
For both implementations, the three handover events introduced in Chapter 4.3.3 have been meas-
ured. Wireshark15 was used as packet sniffer, installed in the MN to measure the intervals detailed
in the following:

1. Layer-2 handover. It is measured as the interval between two IEEE 802.11 control messages:
Deauthentication, sent by the MN to the old DMM-GW, and Association response received
by the MN from the new DMM-GW.

2. Layer-3 configuration. It is the time spent since the Deauthentication message, to the instant
when an Router Advertisement (RA) message is received by the MN16.

3. IP flow recovery. It is measured as the time required to recover ping traffic generated by a
correspondent node to the MN every 2 ms, which is below the average the MN-CN Round
Trip Time (RTT). This corresponds to the interval between the last ping packet received
or sent by the MN before the handover and the first ping packet received or sent after the
handover.

Figure 5.2 depicts the empirical Cumulative Distribution Function (eCDF) of the above com-
ponents from the values obtained from few hundreds handovers when N = 3,5 in the PMIPv6-based
case, and k = 3,5 in the SDN-based case. Table 5.3 summarises the experimental results reporting
the mean and the standard deviation values also in the cases N = 2 and k = 2.

As expected, the Layer-2 handover does not depend on the mobility protocol. The table reports

14 The SDN-based DMM solution is available at: https://github.com/ODMM/openflow-dmm
15 http://www.wireshark.org/
16 The IPv6 Duplicate Address Detection is disabled since the prefix is uniquely assigned to the MN.

https://github.com/ODMM/openflow-dmm
http:// www.wireshark.org/
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the same value for all the configurations because the measured difference was negligible in the
testing system. For what concerns the Layer-3 configuration, i.e., how long it takes for the MN to
gain IP connectivity with the DMM-GW, it can be observed that the two protocols behave similarly
on average, showing a lower variance in the SDN case due to some system-level optimisation
applied to the node acting as network controller. The IP flow recovery (i.e., ping) time exhibits the
largest gain in favour of the SDN approach. This is due to the use of tunnelling by the PMIPv6-
based solution, which was observed to introduce, on average, around 15 ms of additional delay with
respect to the Layer-3 configuration, for all values of N. On the contrary, the SDN-based solution
accomplishes the ping recovery with less than 7 ms of additional delay.

In order to better understand how the two solutions scale, Figure 5.3 explores in detail the
components of the Layer-3 configuration time for varying values of the number of active DMM-
GWs, N = 2,3,5 in the PMIPv6-based case, and the number of egress routers, k = 2,3,5 in the
SDN-based case. As it can be noticed from the results, the Layer-2 switch time is the major
contributing term in all set-ups More, 5 ms gap was observed, denoted as “MN gap”, between the
instant the MN receives the Association response message, and the time it sends the RS message to
the DMM-GW. This gap could be removed by employing a dedicated detection mechanism for
the Layer-2 link activation and de-activation. After the link-up phase, the following components
were separated: (i) the component due to message transmission, which depends on the sum of the
RTT in the radio link between the MN and the DMM-GW, and (ii) the RTT in the wire between the
DMM-GW and the CMD or NC, respectively for the PMIPv6-based or the SDN-based solution. In
the laboratory tests, all the nodes are close to each other, and such RTT sum is less than 5 ms. In a
real deployment, with larger RTT values, the Layer-3 configuration time would tend to approximate
the air time plus the distance from the central node to the farthest router involved in the signalling.
The above components do not significantly vary with the increasing number of N and k, whereas
such parameters impact the processing at the network nodes, confirming the intuition that TP tends
to grow with the number of entities involved in the handover operations. In the PMIPv6-based case,
the heaviest burden is on the DMM-GW, because of the tunnels and routes set up, so, the larger is
the number of previous DMM-GW, the longer is the latency. The CMD is mainly answering to a
query, so its task is accomplished much quicker in approximately constant time. In the SDN based
case, the NC has to compute and send the rules to the Egress Routers. In addition it has to process
the Router Solicitation (RS) from the MN and prepare the RA message. From Figure 5.3, it can be
observed that the variable components approximately grow linearly in both solutions.
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The results reported in this Chapter show that the SDN-based DMM approach has similar or
better performance figures than previous DMM protocols based on PMIPv6. This is an encouraging
outcome to foster further optimisation for future deployments of such kind of solutions. For
example, further evaluation is required to analyse scenarios where multiple MNs simultaneously
attach to the network or perform a handover, thus producing various requests overlapping in time at
the NC side. For instance, in these cases the NC is expected to be backlogged because of all the
concurrent MN requests. Similarly, multiple flow rules are expected to be configured at the same
time on the same SDN switch, e.g., when several MNs simultaneously perform an handover to the
same target DMM-GW. These would eventually lead to an increase of processing and configuration
time, thence to a higher overall handover latency experienced by the MNs. Evidently, a SDN-based
DMM solution should consider also the distribution of the control plane in addition to the data
plane. This implies having multiple replicas of the DMM solution modules in the network which
still need to provide a harmonised mobility support to the MNs whilst providing a bound to the
handover latency. Therefore, an analogous methodology as the one used in this Chapter can be
then used in such scenarios to analyse the breakdown of the handover latency and to derive some
deployment options for the SDN-based DMM solution, e.g. the number of replicas and where to
deploy them to support a higher volume of MNs and different mobility patterns. These topics are
left for future work by the authors.

The evaluation focuses on the handover latency produced by this solution, using NS-3 simula-
tions whose results are aligned with the ones experimentally obtained in this thesis. Similar to the
experimental validation conducted in this thesis, another test-bed-based validation using commodity
hardware and Wi-Fi access is available in [SOM16]17. The solution therein proposes a hierarchy of
SDN controllers in order to handle intra-district handovers, i.e., within an access network handled
by the same DMM-GW), and inter-district handovers, i.e., including DMM-GW relocation. Due
to the scenario discussed by the solution and additional complexity required in the signalling, the
results reported in [SOM16] for the handover latency appear slightly larger than those presented
in the present research. Yet another SDN-based DMM architecture is validated experimentally
through a set-up employing a Ryu controller and a mininet-created test network in [NBH16]. The
SDN solution therein handles packet redirection after handover in two different ways, both different
from the proposed solution. The first method is the tunnel mode, i.e., establishing a tunnel between
the source and target access gateways in order to convey re-directed packets; the second method
is based on route optimisation, that is a full path computation and the subsequent population of
the forwarding rules onto the in-path switches. The numeric results show similar values for the
handover latency as those obtained in this thesis, but they are not directly comparable as there is no
wireless access employed in the test-bed described in [NBH16]. In addition, it is argued that the
redirection methods do not scale as well as the one proposed in the present solution, especially the
method employing a full path reconfiguration.

5.2.2 Comparison with existing SDN deployments with mobility support
One of the most remarkable SDN deployments applied to wireless networking is OpenRoads [Yap+09]18

(also known as OpenFlow Wireless) developed at Stanford University, open to researchers for
running their algorithms concurrently by means of virtualisation. OpenRoads incorporates different
wireless technologies, namely Wi-Fi and WiMAX, and one of its early proofs of concept was based
on providing mobility across multiple technologies [Yap+10a]19. In addition, the performance of

17 M. I. Sanchez, A. de la Oliva and V. Mancuso. ‘Experimental Evaluation of an SDN-based Distributed Mobility
Management Solution’. In: Proceedings of the Workshop on Mobility in the Evolving Internet Architecture. MobiArch
’16. New York City, New York: ACM, 2016, pages 31–36. ISBN: 978-1-4503-4257-5. DOI: 10.1145/2980137.
2980138.

18 K.-K. Yap et al. ‘The Stanford OpenRoads Deployment’. In: WINTECH ’09. Beijing, China: ACM, 2009, pages 59–
66. ISBN: 978-1-60558-740-0. DOI: 10.1145/1614293.1614304.

19 K.-K. Yap et al. ‘Blueprint for Introducing Innovation into Wireless Mobile Networks’. In: Proceedings of the Second
ACM SIGCOMM Workshop on virtualized Infrastructure Systems and Architectures. VISA ’10. New Delhi, India:

https://doi.org/10.1145/2980137.2980138
https://doi.org/10.1145/2980137.2980138
https://doi.org/10.1145/1614293.1614304
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OpenRoads has been demonstrated by means of an n-casting transmission solution [Yap+10b]20.
All these approaches are based on the same principle as the proposed mobility approach, re-
configuring the data-path, although they do not consider IP mobility or the design of a scalable
architecture as we do. All the tools used by OpenRoads are open source, so as to make the
infrastructure reproducible by other research groups in their own networks. Likewise, the presented
implementation shows the flexibility of current SDN software tools available as open source and is
built upon commercial-off-the-shelf devices.

A full-fledged software-defined mobile network (SDMN) is defined in MobileFlow [PWH13]21

and its authors provide a comparison to the current Evolved Packet Core (EPC) architecture.
Although no numeric results are reported, a prototype implementation is also proposed in [PWH13].
The purpose is to show a proof of concept of the MobileFlow Forwarding Engine (MFFE), which
encompasses all the user plane protocols and functions, and the MobileFlow Controller (MFC),
which is a logically centralised entity that configures dynamically the MFFEs (i.e., the data
plane). Despite MobileFlow is OpenFlow-based, MFFEs must also support operations that are not
carried out at the switch-level, as layer-3 tunnelling, for instance. Mobility management can be
supported as the controller can update forwarding rules according to the tunnel encapsulation or
de-capsulation requirements. This approach is also followed in the implementation, where we can
set the tunnelling and forwarding rules above link layer and the controller updates the forwarding
rules in the OpenFlow domain. A different approach presented in [Kem+12]22 proposes to move
the EPC to the cloud by means of virtualisation and implementing GPRS Tunnelling Protocol
(GTP) extensions for OpenFlow for mobility management. The mobility solutions proposed by
these works are not really inspired by the DMM paradigm, but are rather based on the same mobility
concepts currently used in cellular networks, hence inheriting the scalability issues of traditional
mobility approaches such as PMIP or GTP-based mobility management.

Regarding mobility management solutions relaying on the SDN paradigm for session continuity
management, in [WB14]23 the authors propose a solution based on IP translation across the
mobility domain. This solution differs mainly with ours on the mobile terminal support. While
the proposed mobility solution is completely transparent for the mobile terminal, the solution
presented in [WB14] requires the terminal to bind its current location to its identifier, using Mobile
IP signalling. The solution is supported by a mininet24-based proof of concept, whose authors use
to observe the behaviour of TCP flows during handovers handled by their solution, compared to
plain PMIPv6. A similar approach can also be found in [Li+13]25. This work uses a SDN-based
approach for path modification, but it also provides of extensions to OpenFlow to update the
Domain Name System (DNS) of the network with the new location of the user. The use of this
extensions highly impact on the handover performance which is heavily increased with respect
to the solution proposed in this thesis. Similar approaches as the one defined in this thesis above
can also be found in the literature. For example, authors in [KVK14]26 propose a system using

ACM, 2010, pages 25–32. ISBN: 978-1-4503-0199-2. DOI: 10.1145/1851399.1851404.
20 K.-K. Yap et al. ‘OpenRoads: Empowering Research in Mobile Networks’. In: SIGCOMM Comput. Commun. Rev.

40.1 (January 2010), pages 125–126. ISSN: 0146-4833. DOI: 10.1145/1672308.1672331.
21 K. Pentikousis, Y. Wang and W. Hu. ‘Mobileflow: Toward software-defined mobile networks’. In: IEEE Communica-

tions Magazine 51.7 (July 2013), pages 44–53. ISSN: 0163-6804.
22 J. Kempf et al. ‘Moving the mobile Evolved Packet Core to the cloud’. In: 2012 IEEE 8th International Conference

on Wireless and Mobile Computing, Networking and Communications (WiMob). October 2012, pages 784–791. DOI:
10.1109/WiMOB.2012.6379165.

23 Y. Wang and J. Bi. ‘A solution for IP mobility support in software defined networks’. In: 2014 23rd International
Conference on Computer Communication and Networks (ICCCN). August 2014, pages 1–8. DOI: 10.1109/ICCCN.
2014.6911783.

24 http://mininet.org
25 Y. Li et al. ‘Software defined networking for distributed mobility management’. In: 2013 IEEE Globecom Workshops

(GC Wkshps). December 2013, pages 885–889. DOI: 10.1109/GLOCOMW.2013.6825101.
26 M. Karimzadeh, L. Valtulina and G. Karagiannis. ‘Applying SDN/OpenFlow in Virtualized LTE to support Distributed

Mobility Management (DMM)’. in: Proceedings of the 4th International Conference on Cloud Computing and
Services Science (CLOSER 2014). SCITEPRESS, April 2014, pages 639–644. ISBN: 978-989-758-019-2. DOI:

https://doi.org/10.1145/1851399.1851404
https://doi.org/10.1145/1672308.1672331
https://doi.org/10.1109/WiMOB.2012.6379165
https://doi.org/10.1109/ICCCN.2014.6911783
https://doi.org/10.1109/ICCCN.2014.6911783
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https://doi.org/10.1109/GLOCOMW.2013.6825101
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Figure 5.4: Test-bed topology.

Table 5.4: UE handover time results (in milliseconds) for different handover rate λ at the net-
work controller.

λ = 6 λ = 12 λ = 30 λ = 60

L2 L3 Ping L2 L3 Ping L2 L3 Ping L2 L3 Ping

Mean 45 104 113 45 104 113 045 110 120 45 136 151
Standard deviation 29 32 32 29 32 32 29 54 54 29 75 94
95th percentile 125 184 193 125 186 193 125 206 215 125 264 336

OpenFlow to manage the mobility of users in 3rd Generation Partnership Project (3GPP) networks.
Differing from the proposed SDN-based DMM solution, this work is a conceptual analysis on
how SDN can be applied to 3GPP networks and does not include any implementation or empirical
evaluation. Nevertheless, the same authors further elaborated their solution, leading to [Val+14]27.
The article proposes an SDN-based DMM approach for virtualised Long Term Evolution (LTE)
systems which leverages on an interface between the SDN controller and the MME, in order to
detect an IP anchor change (i.e., a Packet Data Network Gateway (PGW) relocation). When such a
relocation occurs, the SDN controller re-routes ongoing traffic to the new PGW.

5.3 Evaluation of SDN controller scalability
With the purpose of evaluating the performance of the NC implementation, the network topology
shown in Figure 5.4 has been configured on the SDN test-bed. The test-bed comprehends 14
switches and a network controller interconnected through Ethernet (IEEE 802.3). Moreover, 3
switches expose IP gateway capabilities and 6 switches offer IEEE 802.11b/g connectivity to the
MNs. As the SDN architecture does not devise any intervention on the MN, its hardware and
software requirements are simply an IEEE 802.11b/g interface, and a standard IP stack. The network
topology is based on the results and trends reported in [Ber+14]28 and it is composed of three

10.5220/0004946106390644.
27 L. Valtulina et al. ‘Performance evaluation of a SDN/OpenFlow-based Distributed Mobility Management (DMM)

approach in virtualized LTE systems’. In: 2014 IEEE Globecom Workshops (GC Wkshps). December 2014, pages 18–
23. DOI: 10.1109/GLOCOMW.2014.7063379.

28 C. J. Bernardos et al. ‘An architecture for software defined wireless networking’. In: IEEE Wireless Communications
21.3 (June 2014), pages 52–61. ISSN: 1536-1284. DOI: 10.1109/MWC.2014.6845049.

https://doi.org/10.5220/0004946106390644
https://doi.org/10.1109/GLOCOMW.2014.7063379
https://doi.org/10.1109/MWC.2014.6845049
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Figure 5.5: Flow-recovery time eCDF with different λ values.

layers: (i) Radio Access Network (RAN), (ii) aggregation network, and (iii) core transport network.
The whole network is managed by a single controller but in a wider scenario multiple controllers
might be employed (i.e., one per each network layer). In the same way, in this implementation
all the MNs are managed by the same controller. Clearly, a single controller cannot process all
the handover/attachment requests in a real scenario where millions of MNs are simultaneously
connected to the network. Therefore, multiple controllers will be employed and each controller
will be in charge of a separate set of MNs, e.g., a controller is in charge of all the MNs in a specific
geographical area. Nonetheless, it’s still unclear how many MN requests can be effectively managed
by a single controller. Clearly, the absolute numbers reported in the following are related to this
implementation and more requests could be supported by employing a more powerful server for
the network controller. Nevertheless, every software component running in the NC is evaluated
and dissected in order to provide a complete insight of signalling management. Particularly, the
handover delay (i.e., the time an MN does not have connectivity as a result of a change of point of
attachment) is analysed by identifying the components that affect more the overall latency. For this
analysis, a node external to the test-bed generates ping traffic destined to the MN every 1 ms. The
handover delay analysis can be analysed looking at three different aspects: (i) the Layer 2 handover:
time elapsed since the old radio link is torn down until the new one is established; (ii) the Layer 3
configuration: time required by the MN to obtain network layer connectivity (including the Layer 2
handover); and (iii) the IP flow recovery: time interval during which an IP flow is interrupted due
to the handover (including both the Link 2 and the Layer 3 configuration). The main component of
Layer 3 configuration time is given by the processing at the network controller.

With the goal to evaluate the scalability of the network controller, 100 simultaneously attached
users perform a handover following a Poisson process with different rate λ . Specifically, one
physical MN performs an handover while other 100 MNs are emulated. From a NC perspective,
the emulated MNs are treated in the same way of the physical way, involving all the mobility
procedures and data plane configuration. The results reported in the following are for the physical
MN, which are affected at controller side by the 100 emulated MNs. Therefore, the Layer 2
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Figure 5.6: Processing time for different handover rates λ at the network controller.

handover time of the physical MN is not affected by any other MN contending the same radio
channel. Figure 5.5 depicts the eCDF of the handover time for different λ as experienced by the MN,
while Table 5.4 reports the numerical values of obtained results with the most significant statistical
properties. As it can be noticed, the Layer 2 is independent of λ , on the contrary the time required
to obtain Layer 3 configuration increases for higher λ values. This is due to the higher number of
operations run in the network controller because of greater handover rate. Additional tests were
performed with the purpose of identifying the main components of the increased processed time as
explained in the following. The network controller relies on a multi-thread implementation in order
to take advantage of modern multi-core CPUs whereas each thread accomplishes a specific task. In
particular, one thread manages the connection with the MME, a second thread is in charge to select
the best PGW for the MN upon an handover, while a third thread takes care of communicating the
IP parameters to the MN (i.e., sending a RA for IPv6 connections). Two additional threads are in
charge of computing and configuring the paths within the network.

Figure 5.6 depicts the processing and synchronisation time for each thread for different λ . As
it can be noticed, the processing time is independent of the rate λ . This is due to the fact that,
according to this implementation, the operations required for managing a single handover do not
depend on the numbers of handovers occurring simultaneously. On the contrary, the synchronisation
time increases with λ . A higher synchronisation time means that the message queue system is
getting more and more congested. Two potential causes of such behaviour are the following: (i)
the message queue system does not scale adequately or, (ii) the processing time is greater than the
handover rate. Our tests showed a CPU occupation growth according to λ , in particular, the CPU
was 100% busy for λ = 60. This means that the network controller is always backlogged and it
is not able to serve all the handover requests in time. Indeed, this occurs when the processing is
not fast enough compared to the arrival rate leading to an increase in the overall handover time
experienced by the MNs. In order to overcome the problem, distribution of the network controller
functionality could be proposed for scaling up, following some of the existing techniques for
high-performance distributed systems [Cou+11]29.

29 G. Coulouris et al. Distributed Systems: Concepts and Design. 5th. Addison-Wesley Publishing Company, 2011.
ISBN: 978-0132143011.





6. Conclusions of Part One

Software Defined Networking (SDN) is seen as one of the key tool to provide enhanced flexibility in
future network architectures. To that end, the first part of this thesis departed from the general SDN
framework defined by the Open Networking Foundation (ONF) and fully designed a compatible
architecture suitable for future network operators. Among the plethora of use cases and foreseen
services, Distributed Mobility Management (DMM) is considered a necessity in future mobile
network deployments in order to offload the network core from traffic that can be locally routed
close to the access. Different actors have been working on this area, being the Internet Engineering
Task Force (IETF) a major venue where most of the solutions have been discussed so far, while
3rd Generation Partnership Project (3GPP) has more recently started to work on distributed
mobility architectures. Although there have been many different proposals, most of them share a
characteristic: they are an evolved version of current IP mobility based solutions. While these are
enough to offload the network core, and pose no significant deployment concerns, operators are
already looking into SDN-based DMM solutions since they can potentially reduce the complexity
and costs incurred by service creation and network operation.

Publications covering the design of the SDN framework for quick service provisioning, including
related concepts, are [L C+18b], [Wan+15a].

To that end, this part analysed how an SDN-based solution might look like when providing
DMM support. Specifically, it presented the analytic and experimental evaluation of two key DMM
protocol families: IP mobility and SDN-based. While the Proxy Mobile IPv6 (PMIPv6)-based
solution is available in literature, this part thoroughly designed, modelled, and implemented the
SDN-based solution. Additionally, this part walked the path of decomposing the functions that
a DMM solution should have and identify how these can be implemented in an DMM-based
solution. Moreover, existing state-of-the-art solutions are not generally studied both analytically
and experimentally as it is done in this part, thus providing solid insights on how to apply DMM
concepts in future mobile networks. By implementing the proposed SDN architecture and testing it
on a medium size test-bed, this part demonstrated how easy and quick would be for an operator to
create and put into operation new services, like the proposed SDN-based DMM. The results obtained
from analysis and experiments show that the performance of the analysed solutions depends on
the scenario being considered, but also indicate that SDN approaches have a big potential: (i)
achievable performance is good and even better than the one of the PMIPv6-based solution, (ii)
the solution can be easily implemented, and (iii) provides additional flexibility in regards of how it
behaves and provides service differentiation.
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Publications covering the design of the design and the experimental assessment of the SDN-based
DMM contributions, including related concepts, are [Con+16], [GLB15], [L C+17a].

An open source SDN-based DMM implementation called OpenFlow-DMM is available at
http://odmm.net/openflow/.

While this part focused on the SDN control plane (and the flexibility achievable via program-
ming the Network Controller (NC)), a fundamental next step is to analyse the SDN data plane so as
to ensure that it provides the necessary primitives for a full programmability of the network. To that
end, and in order to unleash the full potential of SDN, the underlying network needs to undergo a
profound transformation, evolving from a static connectivity substrate towards a service-oriented
infrastructure capable of accommodating the various 5G services, including high-bandwidth and
latency-sensitive scenarios. The next part of this thesis therefore focuses on this data plane aspect
of the SDN paradigm.

http://odmm.net/openflow/
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7. Designing a SDN-based 5G transport network

The backhaul is a network segment that comprises the links between the core network and access
network. It provides the connection of the local cell site through the core network (e.g., gateways)
to the application servers (e.g., Internet). A backhaul network is composed of several sub-systems
including (i) heterogeneous wired/wireless forwarding networks typically with tree and chain
topologies towards the access (cell sites), and (ii) fibre-based aggregation and routing networks
typically in ring and mesh topologies towards the core network (e.g., controllers/gateways). The
backhaul network infrastructure includes several network nodes, such as switches, bridges, routers,
aggregators, etc., and it uses various transport protocols to communicate between these nodes
such as Ethernet, carrier-grade Ethernet, Optical Transport Network (OTN), Synchronous Digital
Hierarchy (SDH), Multiprotocol Label Switching (MPLS), IP, etc. The heterogeneity of the
backhaul network infrastructure, both in terms of the various physical and logical connections,
makes it quite complex to control and manage flexibly. Recently, a new network segment called
fronthaul has emerged, as the result of more Centralised RAN (C-RAN) architectures aimed mainly
at driving down the operators total cost of ownership whilst enabling better performance for new
schemes, such as Coordinated Multipoint (CoMP) through joint processing across multiple base
stations (e.g., Evolved Node B (eNB) in 4G, Next Generation NodeB (gNB) in 5G). In C-RAN
architectures, the base station is split into two elements, a Radio Unit (RU) and a Digital Unit
(DU). In 4G, the RU is also referred to as Remote Radio Head (RRH) because it simply keeps the
RF functions necessary for the signal radiation at the cell site, while the DU is also referred to as
Baseband processing Unit (BBU) because it takes all the baseband heavy computational functions
to a central location (e.g., central office or cloud). In 5G, the static split of functionality evolves
towards multiple functional splits in order to enable the dynamic configuration and separation of
the gNB functionalities between the RU and the DU.

Nowadays, the fronthaul and backhaul segments are two physically separated networks en-
compassing several levels of interconnection and transport technologies. In order to meet the 5G
requirements in a cost-effective manner, a unified 5G transport network that unifies the data, control,
and management planes is hence required. Such an integrated fronthaul/backhaul transport network,
denoted as crosshaul, needs to carry both fronthaul and backhaul traffic operating over heterogen-
eous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity
demand of the 5G air interfaces. To make the 5G transport network as independent as possible on
the specific radio implementation, the crosshaul transport network should also support any kind
of splitting option of the 5G radio protocols between remote and processing sites. Similarly, the
crosshaul transport network should also support any type of 5G services.
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7.1 Analysis of crosshaul requirements and transport technologies
A necessary step for the definition of the crosshaul network is hence the identification of the traffic
requirements, especially in terms of latency and bandwidth, as well as a reference architecture and
the most suitable transport technologies and multiplexing strategies.

7.1.1 Fronthaul and backhaul traffic requirements
Fronthaul interfaces pose tight requirements in terms of required bandwidth and admissible latency
and jitter. Specifically, the closer the functional split to the RF layer, the tighter the requirements
become. That is why the requirements for the 4G Common Public Radio Interface (CPRI) interface
are quite tight, which makes this interface quite rigid (static) and costly. For example, a single-
sector Long Term Evolution (LTE) 2x2 MIMO base station with a 20 MHz bandwidth channel
requires a maximum backhaul throughput of 150 Mbps, with an average of 21 Mbps, while the
CPRI fronthaul requires a constant capacity of 2.457 Gbps for an end-user maximum data rate
of 150 Mbps, according to the NGMN Alliance [NGM15b]1. In addition to this, CPRI demands
about 100 µs of maximum end-to-end latency for up to 10 kms of distance between RRH and
BBU [IEE15a]2 with a strict link delay accuracy of ±8 ns difference between master clock and
slave ports, and 2 ppb frequency deviation from the CPRI link to the BBU. Therefore, a packet-
switched network requires a jitter compensation buffer and a careful Quality of Service (QoS)
engineering design in order to match the CPRI delay accuracy requirements. For instance, 50 µs
of latency budget are spent on propagation over 10 kms of fibre and the remainder 50 µs are the
margin for switching [Oli+16]3.

Compared to LTE/LTE-A, 5G should achieve a hundredfold data rate growth (10 Gbps) for
each sector. Such data rate requires an ultra-high fronthaul capacity with a very low latency. In such
context, the best transmission medium to meet LTE and 5G requirements is fibre. However, a fibre
deployment may not be cost-effective in some cases. This is why different functional splits have
been defined on the attempt to relax the requirements of today’s fronthaul and reach a more scalable
interface for the future, so that lower cost and flexible means to transport the fronthaul traffic can
be used. In addition, 5G Infrastructure Public Private Partnership (5G-PPP) defines a broader set of
Key Performance Indicator (KPI) for future 5G networks [5GP14]4. 1000 times higher wireless
area capacity and more varied service capabilities shall be provided with respect to that offered in
2010. Very dense deployments of wireless communication links to connect over 7 trillion wireless
devices serving over 7 billion people shall be facilitated. Similarly, the next-generation wireless
technologies shall allow ubiquitous connectivity also in low density areas, a necessary requirement
for Internet of Things (IoT) and smart cities scenarios.

To tackle the wide variety of scenarios foreseen in 5G, the 3rd Generation Partnership Project
(3GPP) has defined a set of services with the corresponding requirements in [3GP18i], [3GP18j].
Those services are grouped in three categories, namely network slices: (i) enhanced Mobile Broad-
band (eMBB), (ii) Ultra-Reliable and Low Latency Communications (URLLC), and (iii) Massive
Internet of Things (MIoT). eMBB services are characterised by high bandwidth requirements,
spanning from few Mbps to 1 Gbps per user, and by moderate-latency requirements, with the most
stringent one being 2-4 ms for virtual meetings. Instead, URLLC services are characterised by
low latency and high-reliability requirements. Tactile interaction and remote motion control for

1 NGMN. Backhaul and Fronthaul evolution. White Paper v1.01. Next Generation Mobile Networks Alliance, March
2015.

2 IEEE. CPRI requirements for Ethernet Fronthaul. Working Group discussion 802.1CM. Institute of Electrical and
Electronics Engineers (IEEE), November 2015. URL: http://www.ieee802.org/1/files/public/docs2015/
cm-CPRI-requirements-1115-v01.pdf (Retrieved: 10th January 2019).

3 A. de la Oliva et al. ‘An overview of the CPRI specification and its application to C-RAN-based LTE scenarios’. In:
IEEE Communications Magazine 54.2 (February 2016), pages 152–159. ISSN: 0163-6804. DOI: 10.1109/MCOM.
2016.7402275.

4 5G-PPP. 5G PPP Key Performance Indicators. 5G Infrastructure Public Private Partnership, 2014. URL: https:
//5g-ppp.eu/kpis/ (Retrieved: 10th January 2019).

http://www.ieee802.org/1/files/public/docs2015/cm-CPRI-requirements-1115-v01.pdf
http://www.ieee802.org/1/files/public/docs2015/cm-CPRI-requirements-1115-v01.pdf
https://doi.org/10.1109/MCOM.2016.7402275
https://doi.org/10.1109/MCOM.2016.7402275
https://5g-ppp.eu/kpis/
https://5g-ppp.eu/kpis/


7.1 Analysis of crosshaul requirements and transport technologies 101

M1

AAU

~6x AAU per 
M1 node

~6x M1 nodes 

M2

~4x access rings 
per M2 node M3

~6x M2 nodes

2x aggregation 
rings per M3 node

M4

Core (~80+ Km)Access (~10-20 Km) Aggregation (~40-80 Km)

Internet

2x M4 nodes per 
core ring

M4

Access ring Aggregation ring
Core ring and mesh

Figure 7.1: Reference 5G crosshaul network architecture based on [ITU18b].

robots require a maximum end-to-end delay of 0.5-1 ms with a jitter of 100 µs. Moreover, URLLC
defines a survival time5 for the services, ranging from 10 to 100 ms, with a service availability up
to 99.9999%. Finally, MIoT metrics relate more to the capability of the network system to handle
millions of active connections generating sporadic traffic.

7.1.2 Reference crosshaul network architecture
In order to fulfil the fronthaul and backhaul traffic requirements, the transport network architecture
has to also go through some transformations as compared to current deployments. Figure 7.1
illustrates the 5G transport network reference architecture as recently proposed by the ITU Tele-
communication Standardization Sector (ITU-T) in [ITU18b]6. The transport architecture comprises
three segments: (i) access, (ii) aggregation, and (iii) core. The access comprises on average 6
Active Antenna Unit (AAU)7 for each node M1 connected via a point-to-point link, and ∼6 M1
nodes connected in a ring topology. Thus, each access ring connects a total of 36 AAU on average.
Next, each aggregation ring comprises ∼6 M2 nodes, each of which serves as gateway to 4 access
rings on average. Each aggregation ring is served by two M3 nodes for redundancy reasons, while
each M3 node provides gateway capabilities to 2 aggregation rings. It is worth noticing that the M1
and M2 nodes are configured in a ring topology (i.e., access and aggregation rings, respectively)
only at electrical level while at logical level are considered to be connected point-to-point to their
corresponding gateways (i.e., M2 and M3, respectively). This means that packets are enqueued
only at gateway level and not every time they traverse a node in the ring. Next, the mobile packet
core network comprises two M4 nodes for each core ring and a variable number of other M4 nodes
connected in a mesh fashion. The amount of M4 nodes highly depends on the physical deployment
of the mobile network at country level. For the sake of example, [Nau+]8 reports 12 nodes M4 in
the case of Germany.

7.1.3 Transport technologies for a crosshaul network
Given the wide variety of deployment scenarios envisioned in 5G, it is unthinkable to adopt a
one-fits-for-all approach for designing the crosshaul transport. Therefore, the design of the 5G data
plane requires a holistic view, encompassing radio protocols, optical and wireless transmission,
packet switching, and integrated and intelligent management. To that end, a crosshaul network for
5G scenarios is expected to combine different transport technologies in order to create a unified
data plane for crosshaul traffic. Specifically, the crosshaul data plane architecture envisages an

5 The survival time is the time that an application consuming a communication service may continue to operate without
receiving any messages.

6 ITU-T. Consideration on 5G transport network reference architecture and bandwidth requirements. Study Group 15
Contribution 0462. International Telecommunication Union - Telecommunication Standardization Sector (ITU-T),
February 2018.

7 The term Active Antenna Unit (AAU) in ITU-T corresponds to the term Radio Unit (RU) in 3GPP.
8 B. Naudts et al. ‘How can a mobile service provider reduce costs with software-defined networking?’ In: International

Journal of Network Management 26.1 (), pages 56–72. DOI: 10.1002/nem.1919.

https://doi.org/10.1002/nem.1919
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inter-connected packet-circuit switched transport network so as to combine bandwidth efficiency
with deterministic latency. The packet switched network is the primary path for the transport of
most delay-tolerant fronthaul and backhaul traffic, whereas the circuit switched network (mainly
optical) complements the packet switched path for those particular traffic profiles that are not suited
for packet-based transport (e.g., legacy CPRI or traffic with extremely low delay tolerance).

Wireless networks
Wireless links are a suitable solution at the edge of the mobile transport network, to increase capil-
larity, when optical fibre or copper connections are not available or economically viable. However,
traditional frequencies below 50 GHz are already very crowded and fragmented. The current focus
of industry is moving towards higher frequency bands, from 50 to 90 GHz (i.e., mmWave), where
large contiguous spectrum chunks exist. Regarding backhaul networks, a reconfigurable mesh
mmWave point-to-multipoint (PtMP) backhaul network would enable the deployment and cost
advantages of current sub-6 GHz PtMP non-line-of-sight (NLoS) systems while offering higher
capacity (e.g., tens of Mbps per user). In the case of fronthaul, novel spectrally efficient modula-
tion techniques [Bla+12]9, [Dat+14]10 are proposed to solve the limitations observed in current
microwave and mmWave fronthaul systems in terms of rates and distance. Finally, optical wireless
technology is also considered, either LED or laser-based, as an attractive alternative technology due
to its unlicensed spectrum band, immunity to electromagnetic interference and performance. The
LED backhaul link is able to transmit up to 500 Mbps over 100 m [Sch+16]11, while laser based
devices provide bit rates up to 10 Gbps over a few kilometres. In addition, optical wireless can be
used in conjunction with the above wireless technologies, for improving the link availability, or as
gap filler in fibre links.

Fixed access networks
The reuse of current installed fibre and copper infrastructure are an appealing alternative for
fronthaul or backhaul applications with respect to new deployments. A Passive Optical Network
(PON) deployed in a point-to-multipoint fashion is a popular architecture for supporting fibre-based
broadband access to a set of customers [ITU08]12. PONs have several advantages, as they are very
simple, easily scalable and do not need excessive maintenance, providing a cost-effective way for
the overlay of mobile traffic in the context of crosshaul networks. Such a converged architecture is
challenging since it has to fulfil the aforementioned requirements for the new fronthaul/backhaul
services. Although Gigabit-capable PON networks offered bandwidth (2.5/1.25 Gbit/s DL/UL) may
be sufficient for backhauling residential users, it is clearly insufficient for the transport of fronthaul
traffic in C-RAN scenarios according to the CPRI specification [CPR15]. The advent of 10 Gbps
line rate and Time and Wavelength Division Multiplexing (TWDM) [ITU15b]13 opens the door to
support current and future fixed and mobile operation on the same optical infrastructure. Copper
infrastructure is also abundant: the interest for crosshaul networks is mostly on Ethernet-based

9 S. Blanc et al. High Capacity Wireless Communications Systems and Methods. Patent application US20130294541.
E-Blink, May 2012. URL: https://patents.google.com/patent/US20130294541 (Retrieved: 10th January
2019).

10 P. T. Dat et al. ‘High-Capacity Wireless Backhaul Network Using Seamless Convergence of Radio-over-Fiber and
90-GHz Millimeter-Wave’. In: Journal of Lightwave Technology 32.20 (October 2014), pages 3910–3923. ISSN:
0733-8724. DOI: 10.1109/JLT.2014.2315800.

11 D. Schulz et al. ‘Robust Optical Wireless Link for the Backhaul and Fronthaul of Small Radio Cells’. In: Journal of
Lightwave Technology 34.6 (March 2016), pages 1523–1532. ISSN: 0733-8724. DOI: 10.1109/JLT.2016.2523801.

12 ITU-T. Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) Layer Specification.
Series G: Transmission Systems and Media, Digital Systems and Networks G.984.2. International Telecommunication
Union - Telecommunication Standardization Sector (ITU-T), March 2008.

13 ITU-T. 40-Gigabit-capable passive optical networks (NG-PON2): Definitions, abbreviations and acronyms. Series G:
Transmission Systems and Media, Digital Systems and Networks G.989.1. International Telecommunication Union -
Telecommunication Standardization Sector (ITU-T), October 2015.

https://patents.google.com/patent/US20130294541
https://doi.org/10.1109/JLT.2014.2315800
https://doi.org/10.1109/JLT.2016.2523801
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transmission over copper cables, since they provide high bandwidth (e.g., 40 Gbps [IEE16a]14 ) and
allows power savings during periods with low traffic, especially interesting for backhaul purposes.

Optical networks
In absence of legacy infrastructure, optical transmission technologies are very suitable due to high
achievable capacity and transmission distance. Coarse WDM (CWDM) and Dense WDM (DWDM)
are examples of optical transport technologies [ITU09]15, [NW13]16. In some particular case, like
extending base station coverage inside train tunnels, analogue Radio over Fiber (RoF) is an inter-
esting alternative to digital transmission to reduce bandwidth and latency in fronthaul links while
increasing their energy efficiency. Analogue RoF just requires electrical-to-optical conversion and
RF circuits, which may lead to cost saving compared to digital transmission. The work [Ye+15]17

shows and experimental C-RAN deployment with a fibre link of 20 kms using analogue RoF
and PtMP PON in combination with DWDM to achieve high aggregate capacity. DWDM metro
networks support multi-channel transmission over optical fibre with bit rates spanning from 1 to
100 Gbps per optical channel, but higher rate transmission interfaces are available: 400 Gbps units
started to be installed in 2018, followed by 1 Tbps channels expected in 2020. Further increases will
be possible with the introduction of 1 Tbps channels by means of advanced spectral compression
techniques, such as Time-Frequency Packing [Sec+15]18, overcoming the Nyquist bandwidth limit
that holds for digital transmission systems with orthogonal signalling. In the extreme case of Tbps
transmission over both C (1530-15665 nm) and L (1565-1625 nm) bands, the aggregate capacity
can be as high as 67.2 Tbps over a single optical fibre. The high aggregate capacity makes DWDM
especially suitable to support broadband services and the densely populated scenarios that 5G has
to support.

7.1.4 Multiplexing strategies for a crosshaul network
Multiplexing is a method by which multiple data streams are combined into one signal over a shared
medium. This allows reducing the costs of deploying and operating a network. The following three
multiplexing strategies are considered for a unified fronthaul and backhaul transport.

Physical layer multiplexing
The most trivial solution for C-RAN is to provide point-to-point (PtP) fibre links from the RRH to
the BBU: typically, fibre access cables include from 12 to 144 fibres, making possible to upgrade
an existing backhaul network to C-RAN exploiting unused fibres. Coarse and dense wavelength
division multiplexing (CWDM/DWDM) are multiplexing strategies for fibre optic networks, where
different types of traffic (e.g., fronthaul and backhaul) are segregated to different wavelengths.
Passive CWDM provides up to 18 channels with a channel bit rate up to 10 Gbps and it is the most
cost-effective deployment option since it requires neither active components nor synchronisation
features. Sub-channel CWDM allows increasing channels up to 54 based on technology approaching
DWDM. When the number of wavelengths increases, a colourless approach is required to simplify

14 IEEE. Physical Layer and Management Parameters for 25 Gb/s and 40 Gb/s Operation, Types 25GBASE-T and
40GBASE-T. Standard for Ethernet 802.3bq. Institute of Electrical and Electronics Engineers (IEEE), June 2016.

15 ITU-T. Multichannel DWDM applications with single-channel optical interfaces. Series G: Transmission Systems
and Media, Digital Systems and Networks G.698.1. International Telecommunication Union - Telecommunication
Standardization Sector (ITU-T), November 2009.

16 D. Novak and R. Waterhouse. ‘Advanced radio over fiber network technologies’. In: Opt. Express 21.19 (September
2013), pages 23001–23006. DOI: 10.1364/OE.21.023001.

17 C. Ye et al. ‘A First Demonstration of a PON-based Analog Fronthaul Solution Supporting 120 20MHz LTE-A
Signals for Future Het-Net Radio Access’. In: Asia Communications and Photonics Conference 2015. Optical Society
of America, 2015, ASu3E.2. DOI: 10.1364/ACPC.2015.ASu3E.2.

18 M. Secondini et al. ‘Optical Time–Frequency Packing: Principles, Design, Implementation, and Experimental
Demonstration’. In: Journal of Lightwave Technology 33.17 (September 2015), pages 3558–3570. ISSN: 0733-8724.
DOI: 10.1109/JLT.2015.2443876.

https://doi.org/10.1364/OE.21.023001
https://doi.org/10.1364/ACPC.2015.ASu3E.2
https://doi.org/10.1109/JLT.2015.2443876
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operation. PtP DWDM PON [ITU15b] and G.metro [ITU16b]19 propose this approach based on a
pilot tone channel to control the wavelength and allowing a transparent fronthaul transmission (i.e.,
with no framing). Research and industry are active in studying new cost effective solutions based
on integrated photonics, for instance, silicon photonics.

Time division multiplexing
A further multiplexing level can be realised mixing fronthaul and backhaul traffic on the same
wavelength channel. ITU G.709 [ITU16a]20, also known as OTN, and G.989/NG-PON2 [ITU15b]
are optical transport network standards that define a common framing for transporting data payloads
widely adopted in Wavelength Division Multiplexing (WDM) and access networks. As of today,
the practical use of CPRI over OTN and TWDM appears to be limited to the case of synchronous
mapping of CPRI signals belonging to a single synchronisation island, which is in contrast with
the crosshaul concept of fronthaul and backhaul integration. To overcome this issue, the crosshaul
network should offer a less time-sensitive circuit multiplexing, where the multiplexed frame is
synchronous to the fronthaul client signal in order to avoid degradation of synchronisation accuracy
from client to line. The clock signal extracted from the fronthaul link is used by the transmitter
to perform several tasks: serial to parallel conversion, removal of redundant bits, multiplexing of
backhaul and fronthaul, buffering for the compensation of the difference between upstream and
downstream delays, and scrambling.

Packet-based multiplexing
Packet-based multiplexing especially makes sense in the presence of multiple sources with load-
dependent data rate, since this enables statistical multiplexing gain. Such load dependency is
inherent for backhaul, but traditional fronthaul (e.g., CPRI) has fixed bit rate independent of traffic
load. In order to multiplex backhaul and fronthaul on the same physical link, new link-level
features and enhancements are needed to the Ethernet standard to support a more deterministic
timing. The Time-Sensitive Networking (TSN) Task Group in Institute of Electrical and Electronics
Engineers (IEEE) 802.1 [IEE]21 is developing a set of standards addressing transmission of
time-sensitive data over Ethernet, with very low latency and high availability. Particularly, the
IEEE 802.1CM [IEE18e]22 is defining a standard network profile for fronthaul traffic. IEEE
1914.3 addresses instead Radio over Ethernet (RoE) encapsulation enabling the transfer of In-
phase and Quadrature (IQ) user-plane data [IEE18b]23, vendor-specific data and control and
management information channels across an Ethernet-based packet-switched network. The IEEE
1914.1 [IEE16b] group has gone one step beyond the 1914.3 standard by addressing new functional
splits compared to conventional CPRI.

7.2 Delineating the main components of a crosshaul network
This section presents the design of the two main components that enable the realisation of a
crosshaul network: (i) the Crosshaul Forwarding Element (XFE), and (ii) the Crosshaul Common
Frame (XCF).

19 ITU-T. Multichannel bi-directional DWDM applications with port agnostic single-channel optical interfaces. Draft
new Recommendation ITU-T G.metro SG 15 v0.5. International Telecommunication Union - Telecommunication
Standardization Sector (ITU-T), January 2016.

20 ITU-T. Interfaces for the optical transport network. Series G: Transmission Systems and Media, Digital Systems and
Networks G.709. International Telecommunication Union - Telecommunication Standardization Sector (ITU-T), June
2016.

21 IEEE. Time-Sensitive Networking Task Group. IEEE 802.1 Working Group. Institute of Electrical and Electronics
Engineers (IEEE).

22 IEEE. Time-Sensitive Networking for Fronthaul. Standards for Local and metropolitan area networks 802.1CM.
Institute of Electrical and Electronics Engineers (IEEE), March 2018.

23 IEEE. Draft Standard for Radio Over Ethernet Encapsulations and Mappings. NGFI - Next Generation Fronthaul
Interface 1914.3. Institute of Electrical and Electronics Engineers (IEEE), June 2018.
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Figure 7.2: Crosshaul Packet Forwarding Element.

7.2.1 Crosshaul multi-layer switch
The Crosshaul Forwarding Element (XFE) is a multi-layer switch for enabling an integrated,
flexible, and software-defined reconfigurable data plane for a crosshaul transport network. An
XFE may play the role of M1, M2, M3, and M4 nodes in the reference crosshaul architecture
illustrated in Figure 7.1. In its generic implementation, the XFE encompasses two macro switching
units: the Crosshaul Packet Forwarding Element (XPFE), which deals with packet forwarding,
and the Crosshaul Circuit Switching Element (XCSE), which deals with circuit switching. The
rationale of the proposed design resides in the fact that a packet-based switch alone may not be
suitable for 5G services and interfaces with demanding timing constraints, like CPRI [CPR15].
Similarly, a circuit-based switch alone would not be able to bring the cost efficiency benefits
enabled by the statistical multiplexing of packet-based technologies. Therefore, the crosshaul
transport network will consist of the interconnection of XFEs integrating heterogeneous physical
transmission technologies, either wired or wireless, through a common data frame and forwarding
behaviour.

In the case of XCSE, the circuit layer may be further split in two sub-layers having different
granularity. In optical networks, the sub-layers correspond to wavelengths and time slots in a
wavelength, as in current reconfigurable add drop multiplexers (ROADMs) and according to
Time-division Multiplexing (TDM) techniques described in Chapter 7.1.4, respectively. It is not
necessary that all the layers always coexist but one or two of them could be skipped depending on
the type of deployed network. For example, a mesh network of packet switches connected by dark
fibres, i.e., where only the packet layer is exploited; 5G RRHs, based on new radio protocol split
and packetised fronthaul interface, connected to a DWDM network, i.e., where both wavelength
and packet switches are present; the same network where also CPRI tributaries are carried and
multiplexed over time-slots in a wavelength, so that a TDM switch needs to be added. Figure 7.2
depicts the functional architecture for the XPFE, which includes several internal components
such as the common device agent, the common switching layer, and the common control-plane
agent, which is in charge of the communication with the SDN controller. The device agent is
common to all peripherals and exposes to the SDN controller all the device-related information
and available operations on the device. For example, the device agent might support several power
states, resource slicing, and statistics collection, like CPU usage, RAM occupancy, battery status,
Global Positioning System (GPS) position, etc. In order to provide a harmonised view of the
device capabilities, an adaptation layer (noted as AL-PhX, AL-PhY, etc.) is introduced between
the common device agent and the peripherals (noted as vPhX, vPhY, etc.) as shown in Figure 7.2.
Such layer adapts the peripheral-specific parameters to the common peripheral model used by the
common device agent.

A key part of the XFE envisioned solution is a common switching layer for enabling a unified
and harmonised traffic management. In particular, the switching engine is technology-agnostic
and relies on (i) an abstract resource model (e.g., bandwidth, latency, BER, jitter, latency, etc.)
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of the underlying interfaces (e.g., mmWave, optical, etc.), and on (ii) traffic requirements (e.g.,
fronthaul, backhaul, jitter tolerance, packet loss, etc.). As a result, the common switching layer
enables forwarding in the network between heterogeneous protocols (e.g., fronthaul, backhaul),
interfaces and physical technologies by leveraging a XCF format. Mappers for each physical
interface reside under the common switching layer and are in charge of enforcing the control-plane
policies by mapping the commands to protocol and technology-specific interfaces/peripherals. XCF
can be mapped on any physical interface as long as the XCF traffic requirements are satisfied. For
example, Next Generation Fronthaul Interface (NGFI) digital samples could be carried by XCF
and transmitted over a copper interface only if a low-bandwidth-demanding functional split is
adopted. If a more demanding functional split is adopted, a different physical interface (e.g., optical,
mmWave) is required. This means that multiple physical interfaces can coexist in the unit including
different technologies (i.e., fibre optic, mmWave, µWave, copper, etc.). Therefore, the XCF is the
transport frame format used within the crosshaul transport network, and it is worth highlighting that
it does not impose any constraint on the payload protocol carried within. For the sake of example,
let’s consider an XPFE with mmWave and fibre optic interfaces under the control of the same
common switching layer. The forwarding of XCF frames over multi-technology links is as follows:
the XPFE receives a frame over a mmWave link, which employs IEEE 802.11ad [IEE12]24 as MAC
layer. Next, the XPFE maps the mmWave frame to XCF and passes it to the common switching
layer which, based on the information contained in the XCF, decides how and where to forward the
packet. Finally, the XCF is mapped onto a fibre optic frame (e.g., IEEE 802.3av [IEE17a]25 ) and
sent on the optical link.

7.2.2 Crosshaul common frame
The packet-switching part of the crosshaul data plane needs to support heterogeneous links. To
that end, the Crosshaul Common Frame (XCF) should be able to carry both fronthaul and backhaul
traffic over such miscellaneous set of links. This section first enumerates the main requirements,
both qualitative and quantitative, for the XCF packet technology. Then, it presents the XCF design.

XCF qualitative requirements
The main functional and qualitative requirements for the XCF are:

– Support of multiple functional splits. This includes also the support of backhaul traffic and
CPRI-like fronthaul.

– Multi-tenancy. Traffic isolation (e.g., guaranteed QoS), traffic separation (e.g., tenant privacy),
differentiation of forwarding behaviour, multiplexing gain, and tenant identification (e.g.,
identification of tenant’s traffic) are features required to enable multi-tenancy;

– Coexistence and compatibility. This includes Ethernet technology, security support, and
synchronisation, e.g., IEEE 1588 [IEE08]26, IEEE 802.1AS [IEE10]27;

– Transport efficiency, including short overhead, multi-path support, flow differentiation, and
Class of Service (CoS) differentiation;

– Management, including in-band control traffic (e.g., Operations, Administration and Main-
tenance (OAM));

24 IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3:
Enhancements for Very High Throughput in the 60 GHz Band. Wireless LAN Working Group 802.11ad. Institute of
Electrical and Electronics Engineers (IEEE), November 2012.

25 IEEE. 10Gb/s Ethernet Passive Optical Network. Standards for Local and metropolitan area networks 802.11av.
Institute of Electrical and Electronics Engineers (IEEE), September 2017.

26 IEEE. Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems.
PNCS - Precise Networked Clock Synchronization Working Group 1588. Institute of Electrical and Electronics
Engineers (IEEE), 2008.

27 IEEE. Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks. Standards for
Local and metropolitan area networks 802.1AS. Institute of Electrical and Electronics Engineers (IEEE), November
2010.
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Figure 7.3: Crosshaul Common Frame and its mapping on 802.11 frames.

– Energy efficiency, including energy usage proportional to handled traffic (e.g., sleep mode,
reduced rate);

– Support of multiple data link technologies, including Ethernet, IEEE 802.3, IEEE 802.11
(e.g., mmWave), etc.;

– No vendor lock-in.

XCF quantitative requirements
In addition to the qualitative requirements, there are performance and quantitative requirements for
the XCF:

– Latency: the maximum end-to-end latency for IQ data between Radio Equipment (REC) and
RE Control (REC) must be 100 µs, including the propagation delay of the links between the
devices, internal delays of the devices such as bridges. For Control and Managmenet (C&M)
there is no latency requirement.

– Frame Loss Ratio (FLR): can be caused by bit error, network congestion, failures, etc. Late
delivery can also imply frame loss for CPRI data. It must be less than 10−7. For C&M, the
FLR must be less than 10−6.

– Synchronisation. Depending on the type of radio access technology the requirements are
different. The maximum absolute time error should be less than 10 ns for intra-band contigu-
ous carrier aggregation radio access technologies. The maximum absolute time error must
be less than 45 ns for Multiple-Input and Multiple-Output (MIMO) and transmit diversity
radio access technologies. The maximum absolute time error must be less than 110 ns for
intra-band non-contiguous and inter-band carrier aggregation radio access technologies. The
maximum absolute time error must be less than 110 ns for time division duplex radio access
technologies.

The XCF is based on Ethernet frames, therefore relevant standards for packetised fronthaul are
summarised before the XCF is presented.

XCF design
Several IEEE working groups have been extending Ethernet to handle time sensitive and fronthaul
traffic. Some of the working groups have just started and the proposals are still subject to change.
Time Sensitive Networking (TSN) [IEE] is a collection of features in IEEE 802.1, which targets
providing extremely low packet loss rates, finite, low and stable end-to-end latency and synchron-
isation among bridges and end-stations: time synchronisation to an accuracy of better than 1 µs
is achieved by IEEE 802.1AS [IEE10]. In such a system, all bridges and end stations have to be
time aware. Besides Ethernet (i.e., IEEE 802.3), 802.1AS can also be used, e.g., for Wi-Fi or
Ethernet PON. QoS with low latency and high probability of packet delivery is defined in IEEE
802.1CB [IEE17b]28. It provides redundancy by duplicating packets and sending them on different

28 IEEE. Frame Replication and Elimination for Reliability. Standards for Local and metropolitan area networks
802.1CB. Institute of Electrical and Electronics Engineers (IEEE), September 2017.
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paths to a destination. IEEE 802.1Qcc [IEE18d]29 improves the stream reservation protocol, by
which end stations can reserve bandwidth for traffic stream. IEEE 802.1Qbv [IEE15b]30 extends
the credit-based shaper by operations to open or close the gate for a traffic class. High priority traffic
can be sent as soon as its gate opens, i.e., it can be sent with less jitter. IEEE 802.1Qci [IEE17c]31

provides protection against systems that could disrupt QoS or time synchronisation by filter mechan-
isms based on packet rate and packet size at the boundary of a domain. This prevents misbehaving
nodes to flood a network with too many or too large packets which in turn would break guarantees
on latency and jitter. IEEE 802.1Qbu [IEE15c]32 allows express frames to preempt other frames.
This reduces jitter for the express traffic. IEEE 802.1CM [IEE18e] defines a profile to exploit
these features to satisfy the latency requirements for fronthaul traffic, especially those of CPRI data.
IEEE 1914.3 [IEE18b] defines how CPRI data is mapped to Ethernet frames. Ethernet frames with
CPRI data are indicated by a dedicated EtherType. The header of CPRI over Ethernet is part of
the Ethernet payload. Two different mappings for CPRI data are defined: the structure agnostic
mapping does not interpret the CPRI data in any way, it just puts the CPRI data to the Ethernet
frame. The structure aware mapping differentiates between actual antenna data and, e.g., control
data and sends them in different Ethernet frames, which potentially may have different priority
markings. Frame preemption (i.e., 802.1Qbu) is considered beneficial, where possible for the
specific data link, also frame filtering (i.e., 802.1Qci) to guard the network against malfunctioning
nodes is considered beneficial.

Circuit and packet switching may be simultaneously deployed in a crosshaul network. Even
for packet switching alone, heterogeneous technologies may be deployed, such as Ethernet (IEEE
802.3), mmWave radio, Wi-Fi (IEEE 802.11), etc. The XCF is used to transport data across such
heterogeneous links. The XCF is required to support multiple functional splits of the radio protocol
stacks, i.e., traffic streams with diverse characteristics have to be transported in such frames. The
XCF has to support prioritisation as well as to prevent that these diverse traffic streams influence
each other. The traffic streams may belong to different operators. Therefore, the XCF has to support
multi-tenancy, keeping the streams of different tenants separate and allowing different forwarding
behaviour per tenant. The XCF has to be efficient, it should have low protocol overhead, allow
the use of multiple paths towards one destination, and allow for multiplexing gains. Finally, the
XCF needs to be compatible with legacy technology and it is required to carry synchronisation
information. Considering all the above requirements, a frame based on Ethernet has been considered
as the best option for the XCF, more specifically on Provider Backbone Bridges (PBB) frames, also
known as MAC-in-MAC [IEE09c]. Basing the XCF on Ethernet allows using all the forthcoming
extensions as described before. PBB frames provide multi-tenancy support: the infrastructure
provider can deploy multiple virtual networks and a tenant can provide additional separation within
its network. The priority code points allow encoding different priorities, relevant to separate the
types of traffic classes from each other. Eventually, a flow id can be used to direct different flows
with same destination to different paths, while keeping each individual flow on the same path. The
XCF can be used as well on Wi-Fi based transport links, using the proposed standard amendment
IEEE 802.11ak [IEE17e]33.

29 IEEE. Stream Reservation Protocol (SRP) Enhancements and Performance Improvements. Standards for Local and
metropolitan area networks 802.1Qcc. Institute of Electrical and Electronics Engineers (IEEE), June 2018.

30 IEEE. Enhancements for Scheduled Traffic. Standards for Local and metropolitan area networks 802.1Qbv. Institute
of Electrical and Electronics Engineers (IEEE), October 2015.

31 IEEE. Per-Stream Filtering and Policing. Standards for Local and metropolitan area networks 802.1Qci. Institute of
Electrical and Electronics Engineers (IEEE), September 2017.

32 IEEE. Frame Preemption. Standards for Local and metropolitan area networks 802.1Qbu. Institute of Electrical and
Electronics Engineers (IEEE), October 2015.

33 IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4:
Enhancements for Transit Links Within Bridged Networks. Wireless LAN Working Group 802.11ak. Institute of
Electrical and Electronics Engineers (IEEE), September 2017.
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Table 7.1: Traffic flow composition per network slice, activity factor, and service area dimen-
sion.

SLICE TRAFFIC FLOW
C (GBPS/KM2 )

α
D

Downlink Uplink Urban Industrial Rural

Urban macro 100 50 0.200 1.000 1.000 0.000
Rural macro 1 0.5 0.200 0.000 0.000 1.000

eMBB Indoor hotspot 15000 2000 1.000 0.030 0.000 0.000
Dense urban 750 125 0.100 0.040 0.000 0.000
Broadcast services 20 0 1.000 1.000 0.000 0.000
High-speed vehicle 700 50 0.500 0.020 0.000 0.016

Motion control 1000 1000 1.000 0.000 0.010 0.000
Discrete automation 1000 1000 1.000 0.000 0.010 0.000
Remote control 100 100 1.000 0.000 0.090 0.000

URLLC Process monitoring 10 10 1.000 0.000 0.090 0.000
Elec. distr.: Med. V 10 10 1.000 0.020 0.010 0.001
Elec. distr.: High V 100 100 1.000 0.010 0.010 0.001
Intel. transport system 10 10 1.000 0.032 0.032 0.032

MIoT Massive MTC 0 200 0.100 1.000 0.090 0.010

α : Activity Factor; C : Area Traffic Capacity per Area Unit; D : Service Area Dimension Factor;

7.3 Simulating a crosshaul network for understanding QoS applicability
The goal of this section is to better understand how packet-based multiplexing can be applied in the
crosshaul network in order to satisfy the 5G network slices traffic requirements, namely eMBB,
URLLC, and MIoT. Specifically, the analysis focuses on how different queueing policies (e.g.,
FIFO, Strict Priority, etc.) and configurations (e.g., traffic marking) help at fulfilling the target
service requirements.

7.3.1 Deriving the network slices requirements for the reference architecture
The reference architecture illustrated in Figure 7.1 identifies the number of hops and multiplexing
points in the network. In order to perform the desired simulation, it is necessary to identify and
define first the proper traffic flow mixture and network slices the crosshaul network needs to
transport. To that end, a series of flows with the corresponding traffic requirements for the eMBB
and URLLC slices is defined by 3GPP in [3GP18j]. A set of traffic requirements for the MIoT slice
is defined instead by NGMN in [NGM15a]34.

Table 7.1 presents an integrated version of the original separated tables[3GP18j], [NGM15a]. It
is worth highlighting that this table does not include those flows that are expected to have a limited or
ad-hoc deployment, such as broadband access in a crowded event (e.g., limited to stadium/venues),
high-speed train (e.g., only along the railway), airplanes connectivity (e.g., sporadic terrestrial base
stations), and those flows whose requirements are not fully defined yet, such as tactile interaction
and remote control. Each traffic flow is provided with an Area Traffic Capacity, both in Uplink and
Downlink, which identifies the expected traffic density expressed in Gbps/km2. Next, an Activity
Factor indicates the percentage of time the devices generating that type of traffic are expected to be
alive. Finally, a Service Area Dimension specifies as scaling factor the percentage of space a given
flow is considered to be present. Therefore, the total amount of bandwidth (Gbps) required per area
unit (km2) is given by Equation 7.1.

Definition 7.1: Total traffic per area unit.

Σ = α ×C×D (7.1)

34 NGMN. 5G White Paper. White Paper v1.0. Next Generation Mobile Networks Alliance, February 2015.
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Σ : total traffic per area unit (Gbps/km2); α : activity factor;
C : area traffic capacity per area unit (Gbps/km2); D : service area dimension factor;

Given the considerably large distance traversed by the transport network (up to 100 Km), a
wide variety of scenarios is expected to be present in terms of traffic characterisation. To reflect this
aspect, three scenarios are defined: urban, industrial, and rural. An urban scenario is exemplified by
a city environment where dense connectivity, intelligent transportation system, high-speed vehicle,
and indoor hot-spots are present. In turn, an industrial scenario is characterised by the presence
of URLLC traffic related to discrete automation. Finally, the rural scenario considers an open
environment with a trafficked 4-lane road. For the sake of clarity, a given scenario considers a
specific traffic flow only when the Service Area Dimension is non-zero in Table 7.1. The next step is
to calculate the number of AAUs required to cover an area unit (1 km2). Additional considerations
are required in this case given to the different physical deployments. For instance, a service
dimension area for the indoor hotspot is 0.040. This result is obtained by considering a tall building
with 15 floors with a base of 0.2×0.2 km2. The total bandwidth to provide would be 600 Gbps
spread over the 15 floors, thus 40 Gbps on each floor. As a result, 4 AAUs per floor are required,
considering a peak data rate of 10 Gbps for the AAU. A total of 72 AAUs are hence required to
cover 1 km2 in an urban scenario. A similar consideration is made for the industrial scenario where
the service area dimension is considered of either 0.01 km2 or 0.09 km2 depending on the type of
traffic. A total of 12 AAUs is hence required to satisfy the traffic demand of 1 km2 in an industrial
scenario. Finally, for the rural scenario, a 4-lane road 16 meters wide is considered resulting in a
surface of 0.016 km2. Subsequently, 1 AAU provides enough capacity to cover 1 km2 in a rural
scenario.

Table 7.2: Traffic load per AAU per scenario.

SCENARIO
Σ (GBPS/KM2 )

#AAU/KM2 TRAFFIC LOAD/AAU (GBPS)

Downlink Uplink Downlink Uplink

Urban 501.52 92.52 72 6.97 1.25
Industrial 51.32 43.12 12 4.27 3.59
Rural 6.23 1.13 1 6.23 1.13

Σ : Total traffic per area unit;

Table 7.3: Traffic flow load per AAU for the different scenarios and slices.

SLICE TRAFFIC FLOW
URBAN (MBPS) INDUSTRIAL (MBPS) RURAL (MBPS)

Downlink Uplink Downlink Uplink Downlink Uplink

Urban macro 277.78 138.89 1666.67 833.33 0.00 0.00
Rural macro 0.00 0.00 0.00 0.00 200.00 100.00

eMBB Indoor hotspot 6250.00 833.33 0.00 0.00 0.00 0.00
Dense urban 41.67 6.94 0.00 0.00 0.00 0.00
Broadcast services 277.78 0.00 0.00 0.00 0.00 0.00
High-speed vehicle 97.22 6.94 0.00 0.00 5600.00 400.00

Motion control 0.00 0.00 833.33 833.33 0.00 0.00
Discrete automation 0.00 0.00 833.33 833.33 0.00 0.00
Remote control 0.00 0.00 750.00 750.00 0.00 0.00

URLLC Process monitoring 0.00 0.00 175.00 175.00 0.00 0.00
Elec. distr.: Med. V 2.78 2.78 8.33 8.33 10.00 10.00
Elec. distr.: High V 13.89 13.89 83.33 83.33 100.00 100.00
Intel. transport system 4.44 4.44 26.67 26.67 320.00 320.00

MIoT Massive MTC 0.00 277.78 0.00 150.00 0.00 200.00

Table 7.2 reports those results in addition to the average load experienced by each AAU in each
scenario. In turn, Table 7.3 reports the bandwidth breakdown for a single AAU for each traffic flow
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Table 7.4: Packet size for each traffic flow.

SLICE TRAFFIC FLOW DOWNLINK UPLINK

Urban macro See Figure 7.4 (Mobile) See Figure 7.4 (Mobile)
Rural macro See Figure 7.4 (Mobile) See Figure 7.4 (Mobile)

eMBB Indoor hotspot See Figure 7.4 (Fixed) See Figure 7.4 (Fixed)
Dense urban See Figure 7.4 (Mobile) See Figure 7.4 (Mobile)
Broadcast services 1374 bytes [Fow+14] No uplink traffic
High-speed vehicle See Figure 7.4 (Mobile) See Figure 7.4 (Mobile)

Motion control 255 bytes [3GP18j] 255 bytes [3GP18j]
Discrete automation 1358 bytes [3GP18j] 1358 bytes [3GP18j]
Remote control 160 bytes [3GP18j] 160 bytes [3GP18j]

URLLC Process monitoring 640 bytes [3GP18j] 640 bytes [3GP18j]
Elec. distr.: Med. V 128, 256, 512, 1024 bytes [WD14] 128, 256, 512, 1024 bytes [WD14]
Elec. distr.: High V 128, 256, 512, 1024 bytes [WD14] 128, 256, 512, 1024 bytes [WD14]
Intel. transport system 320 bytes [3GP18j] 320 bytes [3GP18j]

MIoT Massive MTC No downlink traffic 94, 144, 234, 327, 699 bytes [Siv+17]

and scenario. One additional consideration is required for understating how the AAUs for each
scenario are deployed in the network. Given the expected physical deployment of the AAUs, as
well as the expected traffic mix, the access rings are considered to be separated for each scenario.
That is, the traffic mix present on any AAU on the same access ring is the same (e.g., urban, rural,
industrial). Furthermore, the composition of access rings connecting to a M2 node is the following:
2 urban, 1 industrial, 1 rural. Summarising, at M1 level the traffic multiplexed is separated per
scenario (e.g., there is no urban and industrial traffic multiplexing), while at M2 and M3 level traffic
belonging to different scenarios is instead multiplexed. The last traffic characterisation relevant
for the QoS analysis is the packet size distribution of each traffic flow. Indeed, the length of each
packet influences the transmission delay and the jitter as result of the interaction between packets
in the queue.

Table 7.4 reports the packet size distribution for each traffic flow, which is derived from both
experimental observation of a real operator network35 and reference values. Specifically, the packet
size distributions obtained from real traffic captures in a mobile and a fixed network are shown
in Figure 7.4. The data measured in a mobile scenario is used to characterise the urban macro,
rural macro, dense urban, and high-speed vehicle traffic flows. It is worth highlighting that traffic
generated by high-speed vehicles in this case belong to the eMBB slice, which identifies the
multimedia traffic (e.g., generated by people in the car or car infotainment). In the case of downlink,
the packet size distribution presents a minor peak at 64 bytes while the most prominent peak is
present at 1450 bytes. The uplink shows the main peak at 64 bytes. The data measured in a fixed
network is used instead for characterising the indoor hotspot traffic flow which is considered to
have a similar traffic pattern to fixed access due to the stationary nature of the users. The downlink
presents a minor peak at 64 bytes with the highest peak at 1480 bytes. On the other hand, the uplink
presents a minor peak at 1450 bytes whilst the main peak is at 64 bytes. Regarding the broadcast
services traffic flow, the reference value is available in [Fow+14]36. Moreover, the packet size
for the motion control, discrete automation, remote control, process monitoring, and intelligent
transport system traffic flows are specified by 3GPP [3GP18j]. Compared to the high-speed vehicle
traffic flow, intelligent transport systems belongs to the URLLC slice and encompasses the Vehicle-
to-Infrastructure (V2I) traffic. Reference values for the electricity distribution traffic flows are

35 Aggregated and anonymised data for the packet size distribution has been kindly provided by Telefonica. The data
report the national fixed and mobile traffic generated in May 2017.

36 S. Fowler et al. ‘Evaluation and prospects from a measurement campaign on real multimedia traffic in LTE vs. UMTS’.
in: 2014 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and
Aerospace Electronic Systems (VITAE). May 2014, pages 1–5. DOI: 10.1109/VITAE.2014.6934475.

https://doi.org/10.1109/VITAE.2014.6934475
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Figure 7.4: Packet size distribution for fixed and mobile scenarios.

available in [WD14]37, while for the massive Machine Type Communication (MTC) are available
in [Siv+17]38.

7.3.2 Simulation scenario, framework, and results
Based on the reference architecture (see Chapter 7.1.2), the various Ethernet-based transport tech-
nologies (see Chapter 7.1.3), and the expected mixture of network slices traffic (see Chapter 7.3.1),
the simulation scenario illustrated in Figure 7.5 is derived. It is worth highlighting that the the link
speeds reported in Figure 7.5 are the result of traffic requirement calculations and are not provided
in the reference document [ITU18b]. To analyse the impact of different queueing disciplines
in the crosshaul network, a simulation framework based on SimPy, namely SimPype, has been
developed and published as open-source39. SimPype40 relies on the concepts of resource and pipe,
and decouples the resource from its queue (pipe) in such a way that multiple queueing techniques
can be used with the same resource. For this reason, SimPype is well-suited to simulate scenarios
where the queueing disciplines and the resources occupation are key parts of the system (e.g.,
packet-based network). SimPype also allows to create both custom resource and pipe models
that can be reused in multiple simulations. In particular, in our QoS analysis we considered the
following queueing policies: First-In, First-Out (FIFO), Strict Priority, and Strict Priority with
Preemption. A FIFO queue is the simplest type of queue where all the packets have the same
priority and the decision of which packet needs to be transmitted next is only based on the time
of arrival of the packet. For this reason, a FIFO queue is also known as First-Come, First-Served
(FCFS). In turn, a Strict Priority policy assigns a priority to each packet to be transmitted, meaning
that the selection of the packet is based on the priority rather than on the time of arrival. As a result,
packets with higher priority are always transmitted first. Lastly, the Strict Priority with Preemption

37 T. J. Wong and N. Das. ‘Modelling and analysis of IEC 61850 for end-to-end delay characteristics with various
packet sizes in modern power substation systems’. In: 5th Brunei International Conference on Engineering and
Technology (BICET 2014). November 2014, pages 1–6. DOI: 10.1049/cp.2014.1073.

38 A. Sivanathan et al. ‘Characterizing and classifying IoT traffic in smart cities and campuses’. In: 2017 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). May 2017, pages 559–564. DOI:
10.1109/INFCOMW.2017.8116438.

39 SimPype: http://simpype.readthedocs.io/en/latest/
40 An in-depth description of SimPype concepts and some examples can be found in Appendix A.

https://doi.org/10.1049/cp.2014.1073
https://doi.org/10.1109/INFCOMW.2017.8116438
http://simpype.readthedocs.io/en/latest/
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Figure 7.5: Scenario under simulation for understanding packet multiplexing in a crosshaul network
transporting eMBB, URLLC, and MIoT network slices.

policy works in an analogous way to Strict Priority with the exception that a packet with highest
priority can preempt an ongoing transmission of a packet with lower priority. That means that the
transmission of a low priority packet is suspended in favour of the transmission of a higher priority
packet. The transmission of the low priority packet is then resumed only when the higher priority
packet is successfully transmitted. Packet preemption in Ethernet networks is defined in [IEE15c].

The simulation implements the network scenarios and the traffic flow reported in Chapter 7.3.1
while considering a failure-free environment where the protection rings are not activated. We
preformed 100 simulations of a 10 ms time frame across all the transport network including
the generation and transmission of ∼6 million packets. For the access and aggregation seg-
ments we considered a distance of 15 km and 60 km, respectively, with a transmission delay
of 5 µs/km [Com17]41. Regarding the priority and preemption policies, packets are prioritised
according to their slice with the URLLC having the highest priority and MIoT the lowest. Moreover,
preemption is allowed only for URLLC packets against eMBB and MIoT packets whilst eMBB
packets do not preempt MIoT ones. Finally, packet generation follows an exponential arrival time.
Figure 7.6 reports the simulation results for the considered scenarios, traffic flows, and queueing
disciplines both in uplink and downlink. The depicted box plots report the 5th, 25th, 50th, 75th, and
95th percentile of the end-to-end delay, that is from AAU to M3 for uplink and from M3 to AAU
in downlink. As it can be noticed, the largest delay component is the transmission delay (75 km
× 5 µs/km = 375 µs). The queueing contributes with an additional delay between 0.05 µs and
4.91 µs depending on the traffic flow. For sake of simplicity, we did not consider any additional
delay introduced by any processing time at switch level. The traffic flow with the minimum delay
is intelligent transport systems in urban scenario with the strict priority with preemption queueing
policy. In turn, the traffic flow with maximum value is MIoT in industrial scenario with the strict
priority with preemption queueing policy. Comparing the results with the traffic requirements
defined in [3GP18i], all the traffic flows fulfil the requirements in terms of delay and jitter except
the motion control in industrial scenario. Specifically, 3GPP defines a maximum jitter of 1 µs for
the remote control of actuators in industrial robots which is not satisfied in the scenario under test.

Table 7.5 reports the jitter values in µs for the motion control traffic flow for different configur-
ations. The first configuration, namely M3 URLLC Unified, considers URLLC traffic traversing all
the network from the AAU to M3 nodes (and vice versa) and all URLLC packets have the same
priority regardless the traffic flow they belong to. This configuration is labelled as M3 URLLC
Unified in Table 7.5. As it can be noticed, the minimum jitter in downlink (1.949 µs) and uplink
(2.575 µs) is achieved with the strict priority with preemption queueing discipline. However,
such value exceeds the maximum admissible value of 1 µs. Therefore, we performed additional
simulations as to find a configuration capable of fulfilling the traffic requirements. The following

41 CommScope. Latency in optical fiber systems. White Paper. 2017.
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Figure 7.6: End-to-end transmission and queueing delay for different traffic flows being terminated
at M3 nodes.

Table 7.5: Jitter for motion control traffic flow terminated at M1, M2, and M3 nodes under differ-
ent URLLC multiplexing configurations.

CONFIGURATION POLICY
JITTER (µS)

Downlink Uplink

FIFO 1.957 3.152
M3 URLLC Unified Strict Priority 1.957 2.575

Strict Priority with Preemeption 1.949 2.575

FIFO 2.250 4.125
M2 URLLC Unified Strict Priority 2.250 2.704

Strict Priority with Preemeption 2.250 2.661

FIFO 2.250 4.125
M2 URLLC Separated Strict Priority 1.582 1.447

Strict Priority with Preemeption 0.510 1.117

FIFO 2.364 2.375
M1 URLLC Unified Strict Priority 2.120 1.951

Strict Priority with Preemeption 2.120 1.951

FIFO 2.670 2.556
M1 URLLC Separated Strict Priority 1.370 1.304

Strict Priority with Preemeption 0.549 0.446

scenario under test terminates all the URLLC traffic at M2 level meaning that URLLC traffic does
not traverse M3 nodes neither in downlink or uplink. In the first configuration of this new scenario
(labelled as M2 URLLC Unified in Table 7.5), traffic flows belonging to the URLLC slice have
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the same priority. As it can be noticed, even terminating the motion control at M2 level does not
allow to comply with the traffic requirements. Indeed, the minimum jitter in downlink (2.250 µs)
and uplink (2.661 µs) is achieved with the strict priority with preemption queueing discipline.
It is worth highlighting that downlink jitter in this configuration is higher compared to the one
obtained by terminating the traffic at M3 level. This is because packets in downlink are enqueued
and transmitted at higher speed at M3 level and arrive already sorted at M2 nodes which do not
need to perform additional prioritisation at lower speed.

As a next step, the motion control traffic flow is treated differently in the URLLC slice. That is,
a higher priority is given to the motion control traffic flow with regards to the other URLLC traffic
flows (labelled as M2 URLLC Separated in Table 7.5). By doing so, such flow gains the highest
priority in the whole network. As a result, the 1 µs jitter is satisfied only in downlink(0.510 µs)
when the strict priority with preemption queueing discipline is used. However, the 1 µs jitter
requirement is not fulfilled in uplink (1.117 µs). Consequently, an additional simulation scenario
is considered where all the URLLC traffic at M1 level meaning that URLLC traffic does not
traverse M2 and M3 nodes neither in downlink or uplink. In the first configuration of this new
scenario (labelled as M1 URLLC Unified in Table 7.5), traffic flows belonging to the same slice
(i.e., URLLC) have the same priority. As it can be noticed, even terminating the motion control
at M1 level does not allow to comply with the traffic requirements. Indeed, the minimum jitter
in downlink (2.120 µs) and uplink (1.951 µs) is achieved with the strict priority with preemption
queueing discipline. Similarly to the M2 case, the downlink jitter in this configuration is higher
compared to the one obtained by terminating the traffic at M3 level. The last configuration considers
assigning a higher priority to the motion control compared to the other URLLC flows (labelled
as M1 URLLC Separated in Table 7.5). Results show that the target jitter is fulfilled only when
the strict priority with preemption queueing discipline is used and results in a jitter of 0.549 µs in
downlink and 0.446 µs in uplink. Therefore, it is advisable in case of a 5G transport network to
terminate the URLLC motion control traffic flow at most at M1 nodes to fulfil the corresponding
traffic requirements.





8. Monitoring a SDN-based 5G transport network

Software Defined Networking (SDN)-based architectures potentially enable an optimal management
of the network. This is true as long as the applications operating the SDN network, which are
running on a logically-centralised Network Controller (NC), are timely provided with a rich set
of statistics collected from the underlying infrastructure. The predominant SDN standard for the
Southbound Interface (SBI), which enables the communication between the infrastructure and the
controller, is OpenFlow. However, OpenFlow was originally conceived for campus and data centre
networks, therefore it was designed with a different set of requirements in mind compared to mobile
networks. Although the initial limited set of functionalities has been gradually extended to cover new
protocols (e.g., Multiprotocol Label Switching (MPLS), Provider Backbone Bridges (PBB)) and
more sophisticated forwarding behaviours typical of mobile networks (e.g., packet encapsulation),
monitoring support in OpenFlow is still limited compared to what is required [IEE09a]1, [ITU15c]2.
Considering the applicability to mobile networks, one of the areas where OpenFlow lags behind is
monitoring and fault-detection [Ber+14].

OpenFlow, as currently defined, does not really support rapid and scalable monitoring of
resources. As a matter of fact, OpenFlow only permits the network controller to poll the switches
for gathering simple statistics (e.g., number of packets, transmitted/received bytes, etc.) and
requires any additional measurement to be directly implemented on top of the network controller.
This is because of the contrasting design principles adopted by Operations, Administration and
Maintenance (OAM) and SDN:

– OAM defines stateful mechanisms that must be executed on the switch.
– OpenFlow defines a stateless forwarding model for the switch and delegates stateful logic to

the controller.
As a consequence, realising an SDN-based monitoring presents significant challenges both in terms
of scalability and accuracy in mobile networks. Indeed, the network controller needs to directly
perform the necessary measurements on each of the numerous (up to tens of thousands) and distant
(up to hundreds of kms) network nodes and links with the required precision and granularity (up to
microseconds) in order to provide the necessary reliability (up to 99.9999%) to the very distinct
services in 5G [3GP18i]. To overcome those issues, the current SDN-based monitoring needs to be
augmented with an automated communication process, namely telemetry, by which measurements

1 IEEE. Connectivity Fault Management. Standards for Local and metropolitan area networks 802.1ag. Institute of
Electrical and Electronics Engineers (IEEE), November 2009.

2 ITU-T. Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet based networks.
Series G: Transmission Systems and Media, Digital Systems and Networks, Series Y: Global Information Infrastruc-
ture, Internet Protocol Aspects and Next-Generation Networks G.8013/Y.1731. International Telecommunication
Union - Telecommunication Standardization Sector (ITU-T), August 2015.
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and other data are: (i) generated and collected locally at network nodes subject to different service
requirements, and (ii) transmitted to the controller for enabling an optimal network management.

Many works in literature have shown the benefits of applying the SDN paradigm to network
management, resulting in a better Quality of Service (QoS) for various applications and services.
Particular attention has been given to the routing algorithms capable of selecting the best path
for different types of traffic. For instance, Tomovic et al. [TPR14]3 consider two classes of
traffic: priority traffic, with strict bandwidth requirements, and best-effort traffic. The proposed
frameworks calculates the optimal route as the shortest route having sufficient bandwidth available
while minimising degradation of best-effort traffic. Egilmez et al. [ECT13]4 propose instead an
analytical framework for optimising the forwarding of QoS-enabled streaming of scalable encoded
videos. The optimal routes are calculated by solving a constrained shortest path problem where
the jitter of the available paths is provided as input. Moreover, a variant of the proposed algorithm
is proposed for interactive multimedia applications where the total delay is considered instead
of the jitter. Tomovic et al. [TRP15]5 analyse the suitability of different routing algorithms for
performance-guaranteed traffic tunnels in backbone SDN networks subject to two constraints:
bandwidth and path delay. The analysis considered both the computational time on the SDN
controller and the bandwidth rejection ratio, which is commonly used as performance indicator for
QoS routing algorithms. Similarly, Guck et al. [Guc+18]6 provide a comprehensive evaluation
framework and quantitative comparison of centralised QoS routing algorithms in SDN networks
subject to bandwidth, delay, and jitter constraints. Finally, Bari et al. [Bar+13]7 propose PolicyCop,
a vendor-agnostic QoS policy management framework for OpenFlow-based SDN. The framework
provides an interface for specifying QoS-based Service Level Agreement (SLA) for bandwidth,
latency, and reliability guarantees, and enforces them using OpenFlow capabilities.

8.1 Current OAM protocols in a glimpse
The most widely-employed transport protocols nowadays are MPLS Transport Profile (MPLS-
TP) [Boc+10] and PBB Traffic Engineering (PBB-TE) [IEE09b]. The OAM tool-sets of those
protocols are based on ITU-T Y.1731 [ITU15c]8 and IEEE 802.1ag [IEE09a]9 standards, re-
spectively, and they present largely identical characteristics, being the former a superset of the
latter. Both protocols define Connectivity Fault Management (CFM) mechanisms for path discov-
ery, fault detection, fault notification, fault recovery, fault verification and isolation. In addition,
Y.1731 defines OAM functions for performance monitoring, such as frame loss, frame delay, and
throughput measurements. These functions are typically implemented through the set of protocols

3 S. Tomovic, N. Prasad and I. Radusinovic. ‘SDN control framework for QoS provisioning’. In: 2014 22nd
Telecommunications Forum Telfor (TELFOR). November 2014, pages 111–114. DOI: 10.1109/TELFOR.2014.
7034369.

4 H. E. Egilmez, S. Civanlar and A. M. Tekalp. ‘An Optimization Framework for QoS-Enabled Adaptive Video
Streaming Over OpenFlow Networks’. In: IEEE Transactions on Multimedia 15.3 (April 2013), pages 710–715.
ISSN: 1520-9210. DOI: 10.1109/TMM.2012.2232645.

5 S. Tomovic, I. Radusinovic and N. Prasad. ‘Performance comparison of QoS routing algorithms applicable to large-
scale SDN networks’. In: IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON).
September 2015, pages 1–6. DOI: 10.1109/EUROCON.2015.7313698.

6 J. W. Guck et al. ‘Unicast QoS Routing Algorithms for SDN: A Comprehensive Survey and Performance Evaluation’.
In: IEEE Communications Surveys Tutorials 20.1 (April 2018), pages 388–415. ISSN: 1553-877X. DOI: 10.1109/
COMST.2017.2749760.

7 M. F. Bari et al. ‘PolicyCop: An Autonomic QoS Policy Enforcement Framework for Software Defined Networks’.
In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS). November 2013, pages 1–7. DOI: 10.1109/
SDN4FNS.2013.6702548.

8 ITU-T. Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet based networks.
Series G: Transmission Systems and Media, Digital Systems and Networks, Series Y: Global Information Infrastruc-
ture, Internet Protocol Aspects and Next-Generation Networks G.8013/Y.1731. International Telecommunication
Union - Telecommunication Standardization Sector (ITU-T), August 2015.

9 IEEE. Connectivity Fault Management. Standards for Local and metropolitan area networks 802.1ag. Institute of
Electrical and Electronics Engineers (IEEE), November 2009.

https://doi.org/10.1109/TELFOR.2014.7034369
https://doi.org/10.1109/TELFOR.2014.7034369
https://doi.org/10.1109/TMM.2012.2232645
https://doi.org/10.1109/EUROCON.2015.7313698
https://doi.org/10.1109/COMST.2017.2749760
https://doi.org/10.1109/COMST.2017.2749760
https://doi.org/10.1109/SDN4FNS.2013.6702548
https://doi.org/10.1109/SDN4FNS.2013.6702548
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described in the following.

8.1.1 Continuity Check
This protocol comprises the periodical transmission of heartbeat messages, namely Continuity
Check Message (CCM), to detect connectivity failures. These messages do not solicit a response
and their transmission rate can be configured according to 7 standard values, spanning from 300
messages per second to 6 messages per hour10. A sequence number can be optionally used to count
CCM losses and detect any eventual link degradation. A burst of Continuity Check messages can be
used for measuring one-way bandwidth, i.e., on asymmetric links. When the clock of the switches
is synchronised, CCM messages can be timestamped and used for measuring the one-way delay.

8.1.2 Loopback
This protocol is used for fault verification and isolation. Loopback messages comprise Loopback
Message (LBM) and Loopback Reply (LBR), which are similar in concept to the request/reply of the
ping tool. By sending Loopback messages to successive network nodes, an operator can determine
the location of a fault as well as a measurement of the two-way frame delay and jitter in a given
network segment. Measuring the two-way delay with Loopback messages does not require the
clocks of the switches to be synchronised. A burst of Loopback messages can be used for measuring
two-way bandwidth on symmetric links.

8.1.3 Link Trace
This protocol is used for on-demand path discovery and verification between a pair of network
nodes. A Linktrace Message (LTM) traverses hop-by-hop every node along the path between a
source and a target node, the Time to Live (TTL) of each message is increased until it reaches the
destination node (this is similar in concept to the traceroute tool). Each hop responds the request
messages with a Linktrace Reply (LTR) back to the originating node thus allowing the operator to
track the path followed by the initial message.

8.2 Analysis of monitoring techniques in current SDN solutions
Monitoring support is very limited in OpenFlow. Current network controllers perform network
monitoring by keeping track of the status of the OpenFlow ports by periodically collecting port
statistics from the switches [ECT13], [Guc+18], [TPR14], [TRP15]. These statistics provide
information regarding the number of packets sent/received or dropped by the port, and whether the
port is alive or not. Collecting those statistics involves a message exchange between the network
controller and the switch that weights ∼600 bytes for a single port. According to the reference
architecture shown in Figure 7.1 (see Chapter 7), there are ∼200 000 ports for the network segment
spanning from the antenna sites to the core ring. This results in a ∼1 Gbps of monitoring traffic in
case of polling the port statistics every second in that network segments. In the example cited in
Chapter 7 for Germany [Nau+], there are 12 of those segments, resulting in a total of ∼12 Gbps.
Nonetheless, this is only the bandwidth required to collect the port statistics which do not include
any information related to the traffic flows configured in the network. To retrieve these statistics, the
network controller needs to periodically poll the switches with a message exchange of ∼500 bytes
for each flow and switch. In case of having various flows configured in the network, the bandwidth
required for monitoring can easily grow up to tenths of Gbps.

The periodic polling of statistics presents three main drawbacks in mobile networks: (i) a huge
amount of bandwidth is required in the control infrastructure, (ii) the network controller should be
able to process this huge amount of monitoring information in time, and (iii) the granularity offered
to applications is bound to the polling interval, therefore an application would not be able to react

10 This analysis focuses on the 3 highest transmission rates, which result in a inter-message interval of 3.3 ms, 10 ms,
and 100 ms, respectively.
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Figure 8.1: SDN-based operation of current OAM protocols.

quicker than the configured polling time. Additionally, current OpenFlow statistics do not provide
the network controller with sufficient information for knowing the current status of the ports and
links (e.g., delay, jitter, available vs advertised bandwidth, congestion level, etc.). For instance, a
port may be considered alive but may not have link layer connectivity because of misconfiguration
(e.g., wrong VLAN). Indeed, an OpenFlow port is considered alive if the carrier at physical level is
detected while no additional information is available on the status of the link itself. To overcome
such limitations, a set of active measurements is required to enable fine grain knowledge of the
network status.

8.2.1 Active monitoring with OpenFlow switches
Active monitoring rely on the capability to inject test packets into the network, following them,
measuring the relevant metrics, and store the results for future network optimisation or data
analytics. A key feature of being active is hence the capability of controlling the nature of the
traffic generation, such as the timing, frequency, scheduling, packet sizes and types (e.g., to emulate
various services), location, etc. This enables the emulation of distinct scenarios to check if Quality
of Service (QoS) or Service Level Agreement (SLA) are met. As a result, active monitoring permits
to measure target metrics only when and where they are needed.

Because of the stateless forwarding performed by OpenFlow switches, as well as their incapab-
ility of generating and injecting any packets in the network, active measurements need to be entirely
initiated and performed by the network controller. To that end, the logic of these measurements
needs to be implemented as an application running on top of the controller. The following analyses
the challenges of implementing current OAM procedures as applications on the network controller.
Particularly attention is devoted to the Connectivity Check, Loopback, and Link Trace protocols as
reference procedures because of their large deployment in today’s operator networks.

Connectivity Check
This protocol requires the switch to generate, timestamp, and send specific messages over the data
plane to measure the unidirectional bandwidth and delay of a link (see Figure 8.1(a)). However,
OpenFlow does not provide any support for packet generation and injection. Therefore, the network
controller needs to overcome such shortcoming and implement the CCM mechanisms as shown in
Figure 8.1(a). Please note that the numbers (#) appearing in the following text refer to the distinct
messages illustrated in Figure 8.1. The controller first generates and timestamps a CCM message
for each CCM-enabled switch port and then forwards it to the switch over the control plane (A.1).
Next, the switch forwards the CCM message over the data plane (A.2). The receiving switch finally
notifies the network controller of the successful CCM reception by forwarding on the control plane
the frame received over the data plane (A.3).
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In this way, the network controller supervises the connectivity status by keeping track of the
CCM messages being sent and received. However, the measurement of the one-way delay is
inaccurate because (i) the timestamping occurs before the packets are actually transmitted over
the data plane, and (ii) the comparison between the transmission and reception time is done in the
controller and not on the target switch. Moreover, the measurement of the one-way bandwidth
is inaccurate because the control plane bandwidth becomes a limiting factor for the data plane
bandwidth. Clearly, such approach unnecessarily overloads the controller and the control plane.
Indeed, adopting the most stringent connectivity checking configuration, that is to transmit a CCM
message every 3.3 ms [ITU15c] on every port, generates a total of ∼340 Gbps over the control
plane from the antenna sites to M4 nodes (see Figure 7.1), and several Tbps when considering 12
of those segments.

Loopback
This protocol requires the switch to generate, timestamp, and send specific messages over the
data plane to measure the bidirectional bandwidth and delay of a link (see Figure 8.1(b)). The
network controller needs to create the Loopback Message (LBM), timestamp it, and to send it
over the control plane to the switch (A.1), which in turn forwards the message on the data plane
(A.2). This is then intercepted and sent back to the controller (A.3), thus triggering a timestamped
Loopback Reply (LBR). This is sent to the switch (B.1) and then forwarded on the data plane (B.2).
The switch originating the initial message receives the Reply frame and forwards it back to the
network controller (B.3). SDN-based implementation of Loopback message suffers from the same
limitations as the Connectivity Check, both in terms of accuracy and overload of the control plane.

Link Trace
enables the hop-by-hop tracking of a certain path by sending a series of Linktrace Message (LTM)
with incremental Time to Live (TTL) values11 as shown in Figure 8.1(c). The network controller
generates a LTM message (T T L = 2) and sends it over the control plane to the switch (A.1). Such
message is then forwarded over the data plane (A.2) and back to the controller (A.3). Next, the
controller generates a Linktrace Reply (LTR) with a TTL value equal to T T L(LT M)−1 as response
(B.1). Simultaneously, the controller decreases the TTL of the LTM message12 and sends it back to
the data plane (C.1). LTM and LTR messages are then forwarded on the data plane (B.2, C.2) and
to the controller (B.3, C.3). Upon (C.3) reception, the controller generates an LTR (D.1) which is
then transmitted on the data plane (D.2, D.3) and finally back to the controller (D.4). Link Trace
potentially presents the same scalability issues13 of Connectivity Check and Loopback. However,
Link Trace is used for verifying the correct configuration of network paths and it is activated
on-demand, presenting different scales of operation compared to CCM and LBM.

8.2.2 Towards a stateful OpenFlow?
The several issues of OpenFlow in performing active monitoring can be traced down to two
factors: (i) the incapability of OpenFlow to keep information on the forwarded traffic, and (ii)
the impossibility of generating and injecting packets. In the recent years several works have
been proposed, fostering the debate on stateless vs stateful OpenFlow. Bianchi et al. [Bia+14]14

propose OpenState, an OpenFlow-compatible abstraction to formally describe stateful processing
of flows inside the switch itself. Such abstraction relies on eXtended Finite State Machines and
an Application Programming Interface (API) which can be implemented on the switch by largely

11 An LTM with a TTL equal to 0 is discarded by the network. A LTM message with T T L = n serves at determining the
nth hop.

12 OpenFlow does not support CFM headers, thus the TTL cannot be decreased by the switch itself as e.g. in the IP
protocol.

13 Accuracy issues are not present because packets are not timestamped.
14 G. Bianchi et al. ‘OpenState: Programming Platform-independent Stateful Openflow Applications Inside the Switch’.

In: SIGCOMM Comput. Commun. Rev. 44.2 (April 2014), pages 44–51. ISSN: 0146-4833. DOI: 10.1145/2602204.
2602211.

https://doi.org/10.1145/2602204.2602211
https://doi.org/10.1145/2602204.2602211
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reusing existing OpenFlow features. OpenState allows implementing reactive applications on the
switches, such as port knocking which is commonly used for opening a port on a firewall. While
this capability would be enough to keep track of incoming CCM messages for connectivity check,
OpenState does not provide any support for packet generation on the switch.

Moshref et al. [Mos+14]15 propose FAST, which enables the controller to pre-install a state
machine on the switch, thus allowing the switch to automatically record flow state transitions by
matching incoming packets to installed filters. FAST defines an abstraction for state machines, a
compiler for translating the state machines to the data plane API, and a data plane that includes a
pipeline to support state machines with commodity switch components. Similarly to OpenState,
FAST does not provide any support for packet generation.

Bifulco et al. [Bif+16]16 address such shortcoming by proposing an API that enables program-
mers to define in-switch packet generation operations, which include the specification of triggering
conditions, packet’s content and forwarding actions. The authors provide application examples for
the delegation and implementation of Address Resolution Protocol (ARP) and Internet Control
Messagge Protocol (ICMP) handling from the controller to the switch. However, the proposed API
can trigger the packet generation only in reaction to the reception of a packet at the switch and
not as reaction of some timed events. As a result, the proposed approach would be sufficient to
generate Loopback Reply messages but not for the periodical generation of CCM messages.

Cascone et al. [Cas+]17 propose SPIDER, a packet processing pipeline design for stateful SDN
data plane that allows the implementation of failure recovery policies with fully programmable
detection and rerouteing mechanisms directly in the switches’ fast-path. While SPIDER provides
an OpenFlow-compatible way for fast-rerouteing based on heartbeat messages (like CCM), other
monitoring features are not considered. For instance, link degradation and delay can not be
measured in SPIDER, thus limiting the rerouteing to hard-connectivity failures only, that is no
messages are received. Therefore, rerouteing based on the link delay or degradation is not possible.
Moreover, SPIDER does not support the periodical reporting of the links status of (e.g., quality) to
the controller.

Summarising, the works available in the literature propose different solutions for enabling
stateful processing in the data plane mainly tailored to user traffic. However, active monitoring
only requires a stateful processing of the packets involved in some measurements (e.g., CCM). The
amount of such traffic is expected to be negligible compared to the user traffic. As a result, only a
little portion of the traffic needs to be actively processed by the switch for telemetry purposes. For
that reason, we advocate that extending OpenFlow processing from stateless to stateful processing
for active monitoring purposes is not ideal. Indeed, such approach would bring considerably
large complexity in the switch fabric compared to the small amount of monitoring traffic that
requires stateful processing. Therefore, a lighter solution is required in terms of switch complexity.
Nowadays OpenFlow switches are commonly equipped with general-purpose processors18 which
mainly interact with the switch fabric only for configuration and management purposes. In our
view, such processors could be leveraged as well to implement the stateful processing required for
the telemetry procedures. In this way, OpenFlow performs the stateless processing of user traffic as
usual while monitoring traffic is processed locally on the CPU switch. This would allow to stay
compatible with the current OpenFlow solution as detailed in the next section.

15 M. Moshref et al. ‘Flow-level State Transition As a New Switch Primitive for SDN’. in: SIGCOMM Comput. Commun.
Rev. 44.4 (August 2014), pages 377–378. ISSN: 0146-4833. DOI: 10.1145/2740070.2631439.

16 R. Bifulco et al. ‘Improving SDN with InSPired Switches’. In: Proceedings of the Symposium on SDN Research. SOSR
’16. Santa Clara, CA, USA: ACM, 2016, 11:1–11:12. ISBN: 978-1-4503-4211-7. DOI: 10.1145/2890955.2890962.

17 C. Cascone et al. ‘Fast failure detection and recovery in SDN with stateful data plane’. In: International Journal of
Network Management 27.2 (), e1957. DOI: 10.1002/nem.1957.

18 For instance, the NoviSwitch 21100 is equipped with an Intel Core i7 and the Advantech ESP-9230 with an Intel
Xeon.

https://doi.org/10.1145/2740070.2631439
https://doi.org/10.1145/2890955.2890962
https://doi.org/10.1002/nem.1957
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Figure 8.2: Adaptive Telemetry System components and exemplary scenario with message flow.

Table 8.1: Adaptive Telemetry System RESTful API.

URI METHOD DESCRIPTION

ATS plug-in on the network controller

/ats/ GET Information about the ATS plug-in

/ats/report/ GET Reports available on the network controller

/ats/report/id GET, POST, PUT, DELETE Read, create, update, delete a report on the network controller

ATS agent on the switch

/ats/ GET Information about the ATS agent

/ats/fsm/ GET ATS procedures available on the switch

/ats/fsm/id GET, POST,PUT, DELETE Read, create, update, delete an ATS procedure on the switch

/ats/fsm/id/event POST Send events to the ATS procedure

8.3 Design of an Adaptive Telemetry System
This section presents the design of our Adaptive Telemetry System (ATS) for enabling stateful data
plane processing tailored to active monitoring. Specifically, Adaptive Telemetry System (ATS) aims
at providing operators with a set of SDN-compliant tools for defining and configuring telemetry
procedures on the switches. While the state-of-the-art solutions add extra features directly into
OpenFlow protocol, we adopt an hybrid approach where the telemetry system interacts with the
legacy OpenFlow pipeline, i.e., no extension is proposed to the current OpenFlow specifications.
Therefore, such hybrid approach does not envision any change on the switch backplane, which
is the part internal to a switch implementing the OpenFlow pipeline and in charge of forwarding
packets between ports. Figure 8.2 shows the ATS design which envisages three main components:
(i) an ATS application, (ii) an ATS plug-in, and (iii) an ATS agent.

8.3.1 ATS application
The ATS application runs on the controller and it is in charge of taking the decision of what, when,
and where to measure. Since it runs on the controller, the application has a global view on the
status of the network, and based on the active traffic flows, path configuration requests, and offered
network services, the application decides what the parameters to be monitored in the underlying
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network are (e.g., delay, link quality, etc.), either periodically or on-demand. The active execution
of those measurements is then delegated to the switches which follow the instructions received by
the controller.

8.3.2 ATS plug-in
The ATS plug-in runs on the controller and it is in charge of implementing the communication with
the switches via a southbound interface. This interface exposes a RESTful API which provides a
uniform and predefined set of operations to allow the network controller to dynamically configure
the telemetry procedures on the switches and to receive notifications and alarms. Table 8.1 reports
the Uniform Resource Identifier (URI) exposed by (i) the network controller via the ATS plug-in
and by (ii) the switch via the ATS agent (see next paragraph). Specifically, the configuration of the
telemetry procedures is based on a Finite State Machine (FSM), which is then executed locally on
the switch. The FSM representation is further detailed in Chapter 8.4.1.

8.3.3 ATS agent
The ATS agent runs on the switches and it is in charge of (i) locally executing the FSMs configured
by the network controller and (ii) sending the appropriate notifications and alarms via the common
API. As described in Chapter 2, in addition to physical ports, OpenFlow defines logical and reserved
ports internal to the switch that can be used by external applications/components to interact with
the OpenFlow pipeline. For instance, the reserved port CONTROLLER is used to send a packet
from the switch to the network controller and vice versa. Similarly, the reserved port LOCAL
enables components running on the switch to directly interact with the OpenFlow network. As
a result, the ATS agent uses the LOCAL port to send/receive packets over/from the data plane
through the standard OpenFlow pipeline.

8.4 Exemplary scenario
This section provides an example of ATS operation, i.e., measuring the one-way delay between two
switches directly connected in an access ring19. The exemplary scenario, including the network
topology based on Figure 7.1 and the high-level message flow, is reported in Figure 8.2. Please
note that the numbers (#) appearing in the following text refer to the distinct steps illustrated in the
right-hand side of Figure 8.2.

At some point in time, an ATS application running on the network controller decides that it needs
to measure the one-way delay between the switch M1 and the switch M2. For instance, such decision
could be made in response to a path configuration request received by the network controller for time
sensitive traffic. Next, the ATS application selects the most appropriate measurement procedure
(e.g., CCM with timestamp) and asks the network controller to perform such measurement via the
northbound interface (1). In turn, the network controller configures the necessary OpenFlow rules
for forwarding the traffic to and from the ATS agent (2),(3) for such type of traffic. Let’s assume
that the port 0 of M1 switch is directly connected to the port 1 of M2 switch. In this case, the
OpenFlow pipeline of M1 switch is instructed to forward the CCM messages generated by the ATS
agent over the port LOCAL to the port 0. Similarly, the M2 switch is configured to forward the
CCM messages received over the port 1 to the port LOCAL for being processed by the ATS agent.
Steps (2),(3) are standard OpenFlow operations.

Then, the network controller configures on the switches via the ATS plug-in the measurement
procedures in form of finite state machines (see Chapter 8.4.1 for further details). Specifically, the
CCM reception and delay calculation is configured on the M2 switch (4) and the CCM generation
on the M1 switch (5). For instance, the M1 switch is configured to generate a total of 100 CCM
messages with an interval of 10 ms between subsequent packets (6). After having transmitted all

19 The clocks of two switches are assumed to be synchronised. See Chapter 8.6 for additional considerations on clock
synchronisation.
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the CCM messages, the ATS agent is configured to report a trace of the generated messages (7).
Similarly, the M2 switch is configured to compute the delay of each CCM message received and to
report the trace of all computed values to the network controller once the last CCM is received (8).
Additionally, a time-out is configured for dealing with the case of the last CCM going lost. Finally,
the network controller informs the ATS application via the northbound interface on the measured
delay (9).

8.4.1 ATS procedures modelling
The previous paragraphs briefly introduced that the telemetry procedures are specified via finite
state machines. This decision is based on the analysis of the standard OAM operations as defined in
ITU-T Y.1341 [ITU18a]20 (ITU-T Y.1371 corollary standard), which is reported in the following.

ITU-T Y.1341 formally describes the OAM procedures as finite state machines by using the
Specification and Description Language (SDL) [ITU16c]21. SDL is a language targeted at the
unambiguous description of the behaviour of reactive and distributed systems. While SDL provides
a rich set of functional blocks for behaviour description, only a limited set is required for fully
describing the behaviour of the OAM procedures under consideration. Specifically, they can be
described by exclusively using the following five SDL blocks:

1. State: describes the status of the FSM that is currently waiting to execute a transition. Two
special states define the entry and exit points of the FSM respectively.

2. Task: defines a series of internal steps to be executed by the switch. Variable declaration and
assignment, packet forging, and timer configuration are common tasks.

3. Decision: is equivalent to an if-then-else statement. Local variables, header fields of the
incoming packets, and timestamps are the usual comparison terms.

20 ITU-T. Characteristics of Ethernet transport network equipment functional blocks. Series G: Transmission Systems
and Media, Digital Systems and Networks, Series Y: Global Information Infrastructure, Internet Protocol Aspects
and Next-Generation Networks G.8021/Y.1341. International Telecommunication Union - Telecommunication
Standardization Sector (ITU-T), June 2018.

21 ITU-T. Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet based net-
works. Series Z: Languages and General Software Aspects for Telecommunication Systems Z.102. International
Telecommunication Union - Telecommunication Standardization Sector (ITU-T), April 2016.
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4. Input: is the actual trigger of the transition and an event is its common representation. The
events leveraged in the OAM operations are: (i) incoming packet, (ii) external signal, and
(iii) timer expiration.

5. Output: specifies a set of actions to be executed upon condition fulfilment or event reception.
Packet transmission and signal firing are common outputs.

Figure 8.3 shows the SDL finite state machine for describing the CCM generation procedure at
the switch [ITU18a]. While SDL can comprehensively describe the OAM protocols behaviour, it
only provides a basic model for describing the supported data types (e.g., integer, real, char, etc.).
A more comprehensive data model is hence required by the network controller to unequivocally
instruct the switch. Therefore, we propose a comprehensive data model for telemetry procedures
based on the combination of IETF RFC 7223, IEEE 802.1Qcp [IEE18a]22, and Metro Ethernet
Forum (MEF) documents [MEF12a]23, [MEF12b]24. By combining and extending them, our
proposal takes the form of a YANG model specifying the telemetry procedures and the port and
packet data types for enabling the generation, transmission and reception of packets, which are of
paramount importance for the telemetry procedures.

With this data model, the next step is to design a generic FSM representation for telemetry
procedures that can be exchanged between the controller and the switches. To that end, we define
the following basic concepts for ATS FSM representation: state, transition, event, and datamodel.
Each state contains a set of transitions that define how the FSM reacts to events, which can be
generated by the state machine itself or by external entities (e.g., packet reception). The data
model defines how the data internal to the state machine is stored, read, and modified as well as
its interpretation in conditional expressions. In the following we report the main ATS elements
expressed as Extensible Markup Language (XML) elements:

– <state>: this element holds the representation of a state and it can be used to express the
SDL State block.

– <data>, <assign>: the <data> element is used to declare and populate portions of the data
model whilst the <assign> element is used to modify the data entries. These ATS elements
combined can represent the SDL Task block.

– <if>, <elseif>, <else>: allow to describe conditional code execution and consequently the
SDL Decision block. Conditional expressions are supported on local variables as well as on
header fields and timestamps.

– <transition>: defines the available transitions between states and the events that trigger them.
The <onexit> and <onenter> elements are used to define whether the instructions need to
be executed when leaving or entering a given state. Additionally, Event I/O Processor is used
for emitting input and output events that result in state transition. To that end, a dedicated
I/O processor is required to notify about incoming packets and trigger the transitions. This,
along with port and packet data types, can be jointly used with the <transition> element to
express the SDL Input block.

– <send>: this element is used to send events and data to external systems (e.g., to the network
controller or to the data plane) and to raise events in the current system (e.g., raise a timer).
This element can be used to express the SDL Output block and be leveraged, e.g., to fire an
alarm from the switch to the network controller. Moreover, in conjunction with the port and
packet data types, <send> can be used to transmit packets.

Code 8.1 and Code 8.2 show the ATS state machines implementing the one-way delay measure-
ment described in Chapter 8.4. Particularly, Code 8.1 depicts the ATS state machine configured
by the network controller on the M1 switch for generating CCM messages. This is the FSM sent
by the network controller to the M1 switch in step (5) of Figure 8.2. Similarly, Code 8.2 presents

22 IEEE. Bridges and Bridged Networks Amendment: YANG Data Model. Standards for Local and metropolitan area
networks 802.1Qcp. Institute of Electrical and Electronics Engineers (IEEE), May 2018.

23 MEF. Service OAM Fault Management YANG Module. Specification MEF 38. Metro Ethernet Forum, April 2012.
24 MEF. Service OAM Performance Monitoring YANG Module. Specification MEF 39. Metro Ethernet Forum, April

2012.
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the ATS state machine for computing the one delay based on received CCM messages on the M2
switch. This is the FSM sent by the network controller to the M2 switch in step (4) of Figure 8.2.
As it can be noticed, the <data> element in the data model allows to define custom packets by
concatenating multiple <expr> elements which represent the header and the payload structure.
This is useful to create and manipulate packets to be transmitted (e.g., incrementing the sequence
number) and to decode the received packets according to a defined structure. These packets can be
then transmitted or received over the LOCAL port defined in the data model. Additionally, the
reserved port ctrl is provided by the ATS agent to allow communication to and from the network
controller (e.g., to send the delay report). Moreover, the ATS agent provides the data type time to
access the clock on the switch (i.e., current time available via time.now). Finally, the Event I/O
Process provides the event pkt_in to trigger a state transition when a packet is received.

1 <xml v e r s i o n =" a t s ">
2 < da tamode l >
3 < d a t a i d =" p o r t " t y p e =" p o r t " exp r =" l o c a l " / >
4 < d a t a i d =" ccm " t y p e =" p a c k e t ">
5 < expr i d =" e t h e r _ d s t ">00 : 1 1 : 2 2 : 0 0 : 0 0 : 2 2 < / exp r >
6 < expr i d =" e t h e r _ s r c ">00 : 1 1 : 2 2 : 0 0 : 0 0 : 1 1 < / exp r >
7 < expr i d =" e t h e r _ t y p e ">89 : 0 2 < / exp r >
8 . . . a d d i t i o n a l h e a d e r f i e l d s . . .
9 < expr i d =" sn ">00 : 0 0 : 0 0 : 0 0 < / exp r >

10 < expr i d =" t imes t amp ">00 : 0 0 : 0 0 : 0 0 < / exp r >
11 < / d a t a >
12 < d a t a i d =" r e p o r t " t y p e =" l i s t " exp r =" [ ] " / >
13 < / da t amode l >
14 < s t a t e i d =" d i s a b l e d ">
15 < o n e x i t >
16 <send e v e n t =" t i m e r " d e l a y =" 0 . 0 1 s " / >
17 < / o n e x i t >
18 < t r a n s i t i o n e v e n t =" e n a b l e " t a r g e t =" e n a b l e d " / >
19 < / s t a t e >
20 < s t a t e i d =" e n a b l e d ">
21 < o n e x i t e v e n t =" t i m e r ">
22 < a s s i g n t a r g e t =" ccm . sn " exp r =" ccm . sn + 1 " / >
23 < a s s i g n t a r g e t =" ccm . t imes t amp " exp r =" t ime . now" / >
24 < a s s i g n t a r g e t =" r e p o r t " exp r =" r e p o r t + [ ccm . t imes t amp ] " / >
25 <send t a r g e t =" p o r t " t y p e =" p a c k e t " d a t a =" ccm " / >
26 < i f exp r =" ccm . sn < 100 ">
27 <send e v e n t =" t i m e r " d e l a y =" 0 . 0 1 s " / >
28 < / i f >< e l s e >
29 <send t a r g e t =" c t r l " t y p e =" l i s t " d a t a =" r e p o r t " / >
30 <send e v e n t =" d i s a b l e " / >
31 < / e l s e >
32 < / o n e x i t >
33 < t r a n s i t i o n e v e n t =" t i m e r " t a r g e t =" e n a b l e d " / >
34 < t r a n s i t i o n e v e n t =" d i s a b l e " t a r g e t =" d i s a b l e d " / >
35 < / s t a t e >
36 < / xml>

Code 8.1: ATS state machine for CCM generation.

1 <xml v e r s i o n =" a t s ">
2 < da tamode l >
3 < d a t a i d =" p o r t " t y p e =" p o r t " exp r =" l o c a l " / >
4 < d a t a i d =" ccm " t y p e =" p a c k e t ">
5 < expr i d =" e t h e r _ d s t ">00 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 < / exp r >
6 < expr i d =" e t h e r _ s r c ">00 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 < / exp r >
7 < expr i d =" e t h e r _ t y p e ">00 : 0 0 < / exp r >
8 . . . a d d i t i o n a l h e a d e r f i e l d s . . .
9 < expr i d =" sn ">0< / exp r >
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10 < expr i d =" t imes t amp ">0< / exp r >
11 < / d a t a >
12 < d a t a i d =" r e p o r t " t y p e =" l i s t " exp r =" [ ] " / >
13 < / da t amode l >
14 < s t a t e i d =" d i s a b l e d ">
15 < o n e x i t >
16 <send e v e n t =" t i m e o u t " d e l a y =" 1 s " / >
17 < / o n e x i t >
18 < t r a n s i t i o n e v e n t =" e n a b l e " t a r g e t =" e n a b l e d " / >
19 < / s t a t e >
20 < s t a t e i d =" e n a b l e d ">
21 < o n e n t e r e v e n t =" p k t _ i n " t y p e =" p a c k e t " d a t a =" ccm ">
22 < i f exp r =" ccm . e t h e r _ s r c == 00 : 1 1 : 2 2 : 0 0 : 0 0 : 1 1 &&
23 ccm . e t h e r _ d s t == 00 : 1 1 : 2 2 : 0 0 : 0 0 : 2 2 ">
24 < a s s i g n t a r g e t =" r e p o r t " exp r =" r e p o r t + [ t ime . now − ccm . t imes t amp ] " / >
25 <send t a r g e t =" p o r t " t y p e =" p a c k e t " d a t a =" ccm " / >
26 < i f exp r =" ccm . sn == 100 ">
27 <send t a r g e t =" c t r l " t y p e =" l i s t " d a t a =" r e p o r t " / >
28 < / i f >
29 < / i f >
30 < / o n e n t e r >
31 < o n e x i t e v e n t =" t i m e o u t ">
32 <send t a r g e t =" c t r l " t y p e =" l i s t " d a t a =" r e p o r t " / >
33 <send e v e n t =" d i s a b l e " / >
34 < / o n e x i t >
35 < t r a n s i t i o n e v e n t =" p k t _ i n " t a r g e t =" e n a b l e d " / >
36 < t r a n s i t i o n e v e n t =" d i s a b l e " t a r g e t =" d i s a b l e d " / >
37 < t r a n s i t i o n e v e n t =" t i m e o u t " t a r g e t =" d i s a b l e d " / >
38 < / s t a t e >
39 < / xml>

Code 8.2: ATS state machine for CCM reception.

8.5 Experimental evaluation
This section presents the experimental evaluation of ATS performance against legacy OpenFlow-
based implementations. Figure 8.4 shows an overview of the test-bed used, comprising two
machines equipped with an Intel Xeon E5-2620 processor, 128GB of RAM, and running Ubuntu
18.04 Server. One machine is used as network controller while the other is used to emulate the
topology of one access ring (see Figure 7.1), which comprises one M2 node, six M1 nodes, and
thirty-six antenna sites. The M1 nodes are assumed to be configured in a ring topology only at
optical level. At logical level instead, they are connected point-to-point to their corresponding
gateway (M2 node). This means that packets are enqueued only at gateway level, thus forming a
logical tree topology (see Figure 8.4), which comprises a total of 43 nodes and 84 ports. Each node
is then implemented as a LXD25 container, which runs inside the ATS agent and Open vSwitch26

as OpenFlow switch implementation.
The legacy-SDN implementation of the OAM protocols (see Chapter 8.2.1) is based on the

OpenFlow controller Ryu27. Regarding the ATS implementation, the ATS agent translates the
XML-based finite state machine into a JavaScript representation. We then used SCION-CORE28

as interpreter for these procedures, which are executed on nodejs29, a lightweight event-driven

25 LXD: https://linuxcontainers.org/lxd/introduction/
26 Open vSwitch: https://www.openvswitch.org/
27 Ryu: https://osrg.github.io/ryu/
28 Scion-core: https://github.com/jbeard4/SCION-CORE
29 Nodejs: https://nodejs.org/

https://linuxcontainers.org/lxd/introduction/
https://www.openvswitch.org/
https://osrg.github.io/ryu/
https://github.com/jbeard4/SCION-CORE
https://nodejs.org/
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Figure 8.4: Test-bed overview and components.

environment. PCAP30 and nanotimer31 nodejs modules are used as packet-event I/O processor and
high-precision timer, respectively. The results reported in the following are obtained by averaging
100 runs of each experiment.

8.5.1 Delay measurement
The first objective is to evaluate the legacy-SDN and ATS accuracy in measuring the one-way
and two-way link delay. To that end, we implemented the CCM and LBM mechanisms on both
systems and compared them against the baseline measurement obtained with the ping tool. It is
worth highlighting that the ping is a network layer mechanism (i.e., IP) that is not usually available
on the traditional switches operating at data-link layer (e.g., Ethernet). Nevertheless, such tool is
available on our test-bed because the networks nodes are implemented on LXD, which provides a
full-fledged operating system environment. Moreover, we used tc32, which is a traffic control tool
for Linux systems, to configure a fixed delay of 1 ms on the virtual links connecting the various
switch instances.

The delay was then measured for an increasing number of simultaneously active ports and
message generation interval. While the number of ports provides an estimation of how well the
network controller scales with respect to the number of switches under its management, the message
generation interval provides an estimation of how well the network controller scales with respect
to the freshness of the measurements (e.g., the values are updated every 100 ms). To assess the
first scalability aspect, we gradually activated a growing number of ports, starting from 1, with an
incremental step of 4 ports until reaching 84 ports being simultaneously active. That is, we tested
the systems under the scenarios of 1 active port, 4 ports, 8 ports, etc., until 84 ports. Regarding
the second scalability aspect, we selected the three highest transmission rates defined in [ITU15c],
which result in a generation intervals of 3.3 ms, 10 ms, 100 ms, respectively (see Chapter 8.2.1).
Finally, we performed 100 runs for each of the scenarios obtained by combining the number of
active ports and the message interval.

Figure 8.5(a) and Figure 8.5(b) show the results for the one-way and two-way delay measure-
ment, respectively. Noticeably, Figure 8.5(b) shows that the round-trip delays measured via ATS
and ping are comparable and they do not depend on the number of active ports nor on the message
interval. This is also highlighted in Table 8.2 which reports the statistical characteristics of the delay
measurements. More precisely, ping reports an average two-way delay of 2.10 ms which matches
the value reported by our LBM implementation on ATS. For what concerns the one-way delay, we
consider ping/2 as baseline since our test-bed is characterised by symmetric links. Moreover, since
all the switches are running on the same physical machine, we can safely compute the one-way
delay with CCM messages because all the containers share the same CPU clock (see Chapter 8.6
for additional considerations). According to these considerations, the one-way delay obtained with
ping/2 is 1.05 ms. As expected, the CCM implementation on ATS reports an average one-way delay

30 Node-pcap: https://github.com/node-pcap/node_pcap
31 Nanotimer: https://github.com/Krb686/nanotimer
32 Tc: http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

https://github.com/node-pcap/node_pcap
https://github.com/Krb686/nanotimer
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
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Table 8.2: Statistical characteristics of the delay in milliseconds measured with ping, legacy-
SDN controller, and ATS.

SOLUTION #PORTS INTVL MEAN 5TH 95TH MODE MED STD

(1) Ping/2 any any 1.05 1.02 1.08 1.05 1.05 0.02
ATS any any 1.05 1.01 1.10 1.05 1.05 0.03
SDN 1 10 2.96 2.66 3.46 2.81 2.90 0.37
SDN 84 10 313.77 260.98 531.49 298.43 295.40 88.23

(2) Ping any any 2.10 2.04 2.16 2.10 2.10 0.04
ATS any any 2.10 2.06 2.14 2.06 2.10 0.03
SDN 1 10 5.74 5.10 6.36 5.44 5.48 0.43
SDN 84 3.3 4679.80 667.61 8852.62 622.69 4806.67 2640.45

(1) One-way delay (CCM); (2) Two-way delay (LBM);
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Figure 8.5: Scalability of one-way and two-way delay measurement with ping, legacy-SDN
controller, and ATS.

of 1.05 ms, matching the ping/2 value. Therefore, ping and our ATS implementation provide similar
accuracy in measuring the one-way and two-way delay. It is worth highlighting that Figure 8.5(a)
and Figure 8.5(b) do not show the confidence intervals for the ping and ATS data because they are
not graphically appreciable.

Regarding the legacy-SDN solution, the measured delay depends on the number of active ports
and on the configured message interval. More precisely, the delay measurement closest to ping
and ATS occurs in case of 1 active port and a message interval of 10 ms for both CCM and LBM
messages. In case of CCM, the network controller reports an average of one-way delay of 2.96 ms.
In case of LBM instead, the network controller reports an average of two-way delay of 5.74 ms.
In both cases, the reported value is ∼ 300% higher than the delay measured by ATS and ping
because every message sent over the data plane requires two additional messages on the control
plane. As it can be evinced in Figure 8.5(a) and Figure 8.5(b), the delay measured by the network
controller significantly increases with the number of ports and with smaller message generation
intervals. The highest values for the one-way delay is obtained in case of 84 ports and a message
interval of 10 ms (similar results are obtained in case of 3.3 ms). The average delay with CCM is
313.77 ms. Similarly, the highest values for the two-way delay is obtained in case of 84 ports and a
message interval of 3.3 ms with an average measured delay of 4679.80 ms. It is clear that the delay
measured by the network controller is far from the reality being several orders of magnitude larger
than the reference value.

By comparing the above results with the performance requirements for low-latency and high-
reliability scenarios defined by 3GPP [3GP18i], we can see that measuring the delay with legacy-
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Table 8.3: Statistical characteristics of the message generation interval in milliseconds with
legacy-SDN controller and ATS.

SOLUTION #PORTS INTVL MEAN 5TH 95TH MODE MED STD

ATS CCM/LBM any 3.3 3.30 3.27 3.33 3.30 3.30 0.16
CCM/LBM any 10 10.00 9.97 10.03 10.00 10.00 0.12
CCM/LBM any 100 100.00 99.96 100.04 100.00 100.00 0.24

SDN CCM/LBM 1 3.3 3.52 3.13 3.96 3.47 3.50 0.88
CCM/LBM 1 10 10.24 9.73 10.80 10.24 10.23 0.44
CCM/LBM 1 100 100.33 99.70 101.01 100.46 100.31 2.14
CCM 84 3.3 73.85 54.79 85.79 72.59 69.47 58.17
LBM 84 3.3 440.20 48.94 976.95 449.40 395.59 341.98
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Figure 8.6: Scalability of message generation for legacy-SDN controller and ATS.

SDN does not provide the necessary accuracy for critical services. For instance, 3GPP defines that
discrete automation traffic requires a maximum end-to-end latency of 10 ms and a jitter of 100 µs.
Electricity distribution instead requires an end-to-end latency of 5 ms and a jitter of 1 ms. Even
in the most favourable case in legacy-SDN of measuring the one-way delay on 1 port at a time,
the jitter on a single link is reported as 0.37 ms, which is above the maximum admissible value
for discrete automation. Similarly, with 4 simultaneously active ports in legacy-SDN, the one-way
measured delay is 4.61 ms with a jitter of 0.77 ms. This makes difficult to assess, i.e., whether the
5 ms end-to-end requirement is met for the electricity distribution service. On the contrary, with
our implementation of ATS we can safely measure the delay with a very limited jitter (e.g., 30 µs
in case of CCM over one link). By reporting the measurements obtained by ATS, the network
controller can hence safely decide whether a link is suitable for a given set of services, even the
most stringent ones requiring a maximum jitter of 100 µs.

8.5.2 Connectivity status
The second objective is to evaluate how effectively the CCM and LBM messages can be used to
detect the link status. Also in this case the evaluation was performed for an increasing number of
simultaneously active ports (i.e., from 4 to 84 with a step of 4) and message generation interval
(i.e., 3.3 ms, 10 ms, 100 ms). As it can be evinced from the previous evaluation, the overload
suffered by the legacy-SDN controller produces an over-estimation of the link delay as a side
effect. Since the network controller is not capable of generating and processing the CCM and
LBM messages in time for all the ports, the network controller starts queuing the messages. This
produces a gradual increment of the time gap between two subsequent messages, thus deviating
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from the configured interval. Figure 8.6(a) and Figure 8.6(b) highlight the diverging trend for CCM
and LBM, respectively, by depicting the time difference measured between subsequent messages
for an increasing number of ports and different message generation intervals. The results show that
ATS is capable of generating the messages in compliance with the configured interval regardless
the protocol and the number of active ports as reported in Table 8.3.

Regarding the legacy-SDN solution, in case of 1 active port, the network controller generates
CCM and LBM messages with an interval quite close to the target one as shown in Table 8.3. In
case of 84 ports instead, the average message interval significantly diverges from the target one.
For instance, CCM messages are generated with an average interval of 73.85 ms for the 3.3 ms
case, 71.13 ms for the 10 ms case, and 101.62 ms for the 100 ms case. LBM messages instead are
generated with an average interval of 440.20 ms for the 3.3 ms case, 426.76 ms for the 10 ms case,
and 124.54 ms for the 100 ms case. Additional statistical characteristics are reported in Table 8.3
for the extreme cases of CCM and LBM generated every 3.3 ms on 84 ports.

By comparing the above results with [3GP18i], we can see that supervising the connectivity
status with legacy-SDN does not provide the necessary responsiveness for critical services. For
instance, the electricity distribution the process automation services are characterised by a survival
time of 10 ms and 100 ms, respectively. The survival time indicates the admissible maximum
time for restoring the connectivity in case of a link failure or in case the delay requirement is no
longer met (see Chapter 8.5.1). According to the CCM protocol [ITU15c], a connectivity failure
is detected if no heartbeat messages are received within 3.5 times the configured interval (e.g.,
11.55 ms in 3.3 ms case). Given the precision of ATS in periodically generating the messages, it is
easy to detect whether no heartbeat messages are received before the time-out expiration. However,
this is not the case for legacy-SDN since the increasing gap between two subsequent messages
yields to a considerable amount of false-positive failure detections. For instance, in the extreme
case of 84 ports and 3.3 ms target interval, CCM messages are generated every 73.85 ms, which
is considerable higher than the time-out of 11.55 ms for detecting a link failure. In our set-up,
such issue is not present for the 100 ms case, thus allowing legacy-SDN to detect a connectivity
failure within 350 ms. Nonetheless, this provides a measurement granularity of 100 ms which is
not sufficient to comply with the above survival time requirements.

As it can be noticed, the survival time for the electricity distribution flow is 10 ms, which is
smaller than the time-out of 11.55 ms when generating messages every 3.3 ms. Therefore, a smaller
message interval is required to comply with that requirement. While this is easily achievable with
ATS by simply updating the ATS state machine, it is undeniably harder in the legacy-SDN solution
because of the scalability issues already appreciable with higher intervals. Moreover, the control
plane delay may be taken into account to select the most appropriate message interval for the data
plane. For example, in case of a control plane delay of 2 ms, a message interval of 1 ms would
allow the network controller to receive a notification (e.g., link failure, maximum delay exceeded,
etc.) within 5.5 ms, thus leaving 4.5 ms to restore the connectivity in case of a survival time of
10 ms. Finally, with this notification mechanism, ATS allows to offload the control plane by only
transmitting information when certain conditions occur in the data plane.

8.5.3 Bandwidth measurement
The last objective is to evaluate the legacy-SDN and ATS accuracy in measuring the bandwidth
available on a link. Similar to the previous cases, the evaluation was performed for an increasing
number of simultaneously active ports (i.e., from 4 to 84 with a step of 4). In this case, messages
are generated as fast as possible in order to saturate the available bandwidth. Figure 8.7(a) shows
the control plane load and the bandwidth measured on the data plane by the network controller
in case of legacy-SDN solution. Notably, the control plane load remains constant regardless the
protocol (i.e., CCM or LBM) and the number of active ports. This is because the network controller
is capable of generating only a fixed amount of packets per seconds. Particularly, the network
controller generates an average of 708 packets per second, which result in an average control plane
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Table 8.4: Statistical characteristics of the bandwidth in Mbps measured with Iperf, legacy-SDN
controller, and ATS with 1 active port.

SOLUTION #CPU MEAN 5TH 95TH MODE MED STD

Iperf UDP 1 1543 1487 1595 1526 1544 33

ATS CCM 1 677 587 758 622 682 59
CCM 2 1186 1032 1347 1210 1178 99
CCM 4 2186 1946 2434 2168 2167 156
CCM 8 3970 3614 4334 3955 3499 234

SDN CCM 1 8.25 4.72 12.33 8.45 7.69 2.87
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Figure 8.7: Bandwidth measurement with legacy-SDN controller, ATS, and Iperf.

load of 12.21 Mbps.
Because of the overhead introduced by the encapsulation of CCM and LBM messages in

OpenFlow messages between the network controller and the switches, only an average of 8.25 Mbps
is then forwarded on the data plane. Since the number of generated packets is constant, these are
spread over all the active ports resulting in a measured bandwidth inversely proportional to the
number of ports as shown in Figure 8.7(a). In the case of 84 ports, the average bandwidth measured
per port is 0.146 Mbps with CCM, while it is 0.022 Mbps with LBM. As it can be noticed, the
bandwidth values provided by CCM are higher than LBM because CCM involves the generation of
fewer packets compared to LBM (see Figure 8.1(a) and Figure 8.1(b)). This is further highlighted
in case of LBM by the network controller saturation starting with 64 ports.

Moreover, we compare the obtained measurements with the maximum theoretical bandwidth
measurable on the data plane by carrying the CCM and LBM messages as a payload over the
TCP-based OpenFlow control channel. The achievable throughput for data transmitted over TCP is
∼ 75% of the available link bandwidth33. In our scenario, the control plane bandwidth is shared
among all the connected switches. Figure 8.7(a)) shows that the experimental results follow the
same trend as the theoretical value (grey line). This implies that even if the network controller were
capable of generating messages at the desired rate, the bandwidth measurement would always be
distorted by the TCP connection used in the OpenFlow control channel. Figure 8.7(b) shows the
one-way bandwidth measurement over one link performed with legacy-SDN, ATS, and iperf34,
which is our reference tool for active measurements of the available bandwidth on a link. We
configured iperf to generate UDP packets to be comparable with CCM where messages are not

33 TCP/IP performance factors: https://www.netcraftsmen.com/tcpip-performance-factors/
34 Iperf: https://iperf.fr/

https://www.netcraftsmen.com/tcpip-performance-factors/
https://iperf.fr/
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acknowledged. On our platform, iperf is capable of generating an average of 1.543 Gbps, while ATS
running on a single CPU core is capable of generating an average of 0.677 Gbps. By increasing the
number of CPU cores simultaneously generating the messages, ATS linearly increases the measured
bandwidth. This is because each CPU core is capable of generating an average of ∼ 50 000 packets
per second on our system.

By comparing the above results with the performance requirements for high data rate and
traffic density scenarios defined by 3GPP [3GP18i], we can see that legacy-SDN is not capable of
measuring whether there is enough bandwidth even for the least demanding service (15 Mbps of
experienced data rate). On the contrary, ATS is capable of generating more than 1 Gbps with 2 CPU
cores, which is the expected data rate experienced per user in indoor scenarios. Such measurements
are expected to be performed on-demand upon a path configuration request to verify the fulfilment
of the bandwidth SLA. Finally, it is worth highlighting that our ATS implementation is based on
JavaScript for prototyping reasons, while iperf is written in C, a language that provides considerably
higher performance. Even though we matched and surpassed the performance of iperf in generating
traffic, this came at the cost of using more CPU cores.

8.6 Implementation and deployment considerations
In addition to the comparative tests previously described, we performed some experiments to obtain
a deeper insight on ATS, especially in the CCM case. Special attention was paid to the CPU
load and to the scalability with regard to the total number of ports. Particularly, we addressed the
periodic generation of messages over multiple ports which was causing a computational outage on
the legacy-SDN controller. To avoid such issue in ATS, we opted for using a packet template stored
in a template buffer associated to each port. Such approach allows to pre-load a template of the
message on each port and to trigger its transmission every interval. Each transmission only requires
the modification of few bytes in the buffer (e.g., sequence number) thus reducing the total number
of instructions to be executed. We tested our ATS implementation with a CCM interval of 3.3 ms
on an emulated switch comprising 256 ports and we observed that the CPU load was (i) mainly due
to the interrupts generated by the high-precision timer, and (ii) almost independent of the number
of active ports. As a result, our implementation was able to transmit a CCM message every 3.5 ms
on each of the 256 ports whilst running on a single core.

Finally, time synchronisation between the switches is required to measure i.e. the one-way delay
and to have a common reference time for monitoring. In carrier grade networks there are two widely-
adopted options for distributing the clock (a.k.a. frequency synchronisation): IEEE 1588 [IEE08]
and Synchronous Ethernet [ITU15d]35. The former defines a cost-effective packet-based clock
distribution mechanism capable of providing a timestamp resolution of 8 ns with an accuracy 25 ns.
The latter, instead, incorporates in the clock signal in the Ethernet physical layer, that is no ad-hoc
messages for synchronisation are sent, and it is capable of providing sub-nanosecond accuracy.
While the former option still provides a good accuracy for monitoring whilst being cheaper than the
latter, it may occur that the clock distribution messages interfere with the network measurements
and vice-versa. Therefore, it is important to configure appropriate QoS policies on the switches so
as to avoid the disruption of the clock distribution eventually caused by the network measurements.

35 ITU-T. Timing characteristics of a synchronous Ethernet equipment slave clock. Series G: Transmission Systems
and Media, Digital Systems and Networks, Series Y: Global Information Infrastructure, Internet Protocol Aspects
and Next-Generation Networks G.8262/Y.1362. International Telecommunication Union - Telecommunication
Standardization Sector (ITU-T), January 2015.
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The second part of this thesis has analysed and designed a Software Defined Networking (SDN)-
based unified data plane architecture for 5G, namely crosshaul, based on two main components:
(i) the Crosshaul Forwarding Element (XFE) and (ii) the Crosshaul Common Frame (XCF). The
XFE is a multi-layer switch based on packet – Crosshaul Packet Forwarding Element (XPFE)
– and circuit – Crosshaul Circuit Switching Element (XCSE) – switching elements. Unified
forwarding is enabled by the XCF format that is common across the various types of traffic and
the various link technologies in the network. As a consequence, the unified data plane enables a
common management of the integrated network in a SDN fashion. Therefore, traffic requirements,
and hence services, could be easily enforced onto the network by leveraging the integrated and
harmonised view provided by the unified data plane. As a result, the network operational costs can
be significantly reduced.

Publications covering the design of the crosshaul network and related concepts are [Cav+17],
[Dei+17], [Dei+16], [L C+16], [L C+18e], [Li+17].

Patents covering the design of the crosshaul network and related concepts are [LMK18], [L
C+17b], [L C+17c].

The standard contribution [Ber+16] covers the crosshaul network requirements and related
concepts.

Moreover, this part presented a characterisation of a 5G transport network and the expected
traffic mixture of network slices. Several simulations have been performed to understand the role
of queueing disciplines in different scenarios, such as urban, industrial, and rural. The results have
been compared with the constraints of the traffic flows defined in 3rd Generation Partnership Project
(3GPP) and criticality has been identified for the motion control traffic part of the Ultra-Reliable
and Low Latency Communications (URLLC) slice. Jitter requirements for such flow are only
satisfied when the traffic is terminated in the access ring and a strict priority with preemption
queueing discipline is used. Regarding the other flows and slices, traffic requirements are fulfilled
in a failure-free scenario where the protection ring in the access and aggregation is not activated.

Publications covering the characterisation of a crosshaul network and related concepts are [L
C+18e], [Mar+18].

The open source simulator developed for characterising the crosshaul network has been published
with the name of SimPype and it is available at: https://simpype.readthedocs.io/en/
latest/.

https://simpype.readthedocs.io/en/latest/
https://simpype.readthedocs.io/en/latest/
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Furthermore, this part has identified a gap between current SDN solutions and carrier grade
network requirements under Operations, Administration and Maintenance (OAM) point of view. An
analysis of widely-deployed OAM and SDN technologies has been hence performed showing that
the stateless nature of OpenFlow poses significant scalability and accuracy problems in monitoring
and managing the network. To overcome these issues, this part proposed an Adaptive Telemetry
System (ATS) to enable locally on the switches active measurements (e.g., delay, bandwidth,
etc.) and their reporting (e.g., alarms). The design approach chosen for ATS showed to provide
compatibility with standard OpenFlow switches and controllers. An Application Programming
Interface (API) has been defined for enabling the remote configuration of telemetry procedures,
which adopt a Finite State Machine (FSM) implementation. This enables the switches to locally
execute the stateful procedures required for active monitoring. Finally, an experimental evaluation
has been presented, showing the benefits of ATS compared to legacy-SDN solutions. Particularly,
ATS proved to bring significant benefits in terms of offloading the control plane, and the Network
Controller (NC), as well as higher accuracy in the performed measurements, which comply with
the performance requirements defined by 3GPP for 5G networks.

The publication [L C+18a] covers the design of an Adaptive Telemetry System (ATS) for 5G
SDN-based transport networks.

The patent [Per+17b] covers OAM functionalities in SDN-based networks employing the
OpenFlow Southbound Interface (SBI).

While the first and second part of this thesis have analysed the SDN control and data planes
with the goal of increasing network flexibility and reducing costs, a second promising approach
exist aiming at the same goal: Network Function Virtualisation (NFV). Similarly to SDN, which
aims at decoupling the control from the data plane, NFV decouples the network functionalities
from the underlying hardware, thus enabling the virtualisation of the network. As a result, SDN
and NFV are orthogonal paradigms whose combination and integration is acknowledged as the true
enabler for network flexibility and cost reduction. By leveraging the virtualisation technologies,
contents, services, and applications can be dynamically hosted closer to the users so as to offload
the core network and reduce the communication delay, which is a critical aspect for URLLC. The
next part of this thesis therefore focuses on the virtualisation and computing aspects which can be
beneficial to network flexibility.
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10. A novel approach for multi-access convergence

Apart from achieving higher data rate than its predecessor, 5G also aims to satisfy several other
technical requirements in a bid to cope with various emerging applications [3GP16b]. Specific
applications such as Augmented Reality (AR), connected vehicles, and robotics require reliable
communications with very low end-to-end latency to deliver high quality services [Mon+17]1.
Fulfilling such requirements is extremely challenging for a centralised network architecture and
requires the gradual shifting of networking, computing, and storage capabilities closer to the end
users to eliminate the delay caused by data transfer to distant cloud servers. This approach integrates
and extends the edge and fog computing approaches as explained in the following.

Nowadays, most end user devices may operate multiple independent Radio Access Technology
(RAT) in parallel (e.g., Long Term Evolution (LTE) and Wi-Fi). Such diversity can be exploited for
example for traffic offloading purposes. However, this requires harmonisation and/or integration of
communication protocol stacks from different RATs [Pen+16]2, selection of the best RAT for a
given user/service at a given time [Lag14]3, or interference minimisation of different RATs sharing
the same spectrum [Wan+15b]4. With the intelligent hand-off, a paradigm shift of multi-RAT
convergence can be envisioned, wherein context information of different RATs could be leveraged
jointly to enhance network performance, cost-effectiveness, and user Quality of Exprerience
(QoE). Motivated by these needs, the European Telecommunications Standards Institute (ETSI)
has been the first to address this need by providing the framework of Mobile Edge Computing
(MEC) [ETS16a], which is supported by the concept of Network Function Virtualisation (NFV)
that was also pioneered by ETSI [ETS16b]. ETSI has further re-branded MEC as Multi-Access
Edge Computing to remark its goal of achieving multi-RAT coordination via the edge.

Recently, the concept of fog computing has emerged driven by the Internet of Things (IoT) due
to the need of handling the data generated from the end-user devices close to the edge [CZ16]5. The
term fog is referred to as computational resources such as the network nodes (e.g., other devices and
access points etc.) surrounding and including the end user devices and is regarded as an effective

1 R. S. Montero et al. ‘Extending the Cloud to the Network Edge’. In: Computer 50.4 (April 2017), pages 91–95. ISSN:
0018-9162. DOI: 10.1109/MC.2017.118.

2 M. Peng et al. ‘Fog-computing-based radio access networks: issues and challenges’. In: IEEE Network 30.4 (July
2016), pages 46–53. ISSN: 0890-8044. DOI: 10.1109/MNET.2016.7513863.

3 X. Lagrange. ‘Very tight coupling between LTE and Wi-Fi for advanced offloading procedures’. In: 2014 IEEE
Wireless Communications and Networking Conference Workshops (WCNCW). April 2014, pages 82–86. DOI:
10.1109/WCNCW.2014.6934865.

4 H. Wang et al. ‘SoftNet: A software defined decentralized mobile network architecture toward 5G’. in: IEEE Network
29.2 (March 2015), pages 16–22. ISSN: 0890-8044.

5 M. Chiang and T. Zhang. ‘Fog and IoT: An Overview of Research Opportunities’. In: IEEE Internet of Things
Journal 3.6 (December 2016), pages 854–864. ISSN: 2327-4662. DOI: 10.1109/JIOT.2016.2584538.

https://doi.org/10.1109/MC.2017.118
https://doi.org/10.1109/MNET.2016.7513863
https://doi.org/10.1109/WCNCW.2014.6934865
https://doi.org/10.1109/JIOT.2016.2584538
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Figure 10.1: Edge and fog resources and characteristics.

approach for meeting requirements on latency, bandwidth, and computational resources [CZ16]. To
that end, the industry-led OpenFog consortium was recently established with the aim of realising a
cloud-to-thing continuum that distributes applications anywhere between cloud and things [Con17].
As a consequence, the edge is extended by amalgamating fog components. While the ETSI MEC
approach provides computation capabilities near the end users via static substrates (e.g., data
centres or servers) deployed at the edge, the harmonised edge and fog domain also encompasses and
integrates the computational substrates on the move. For instance, computing, storage and network
connectivity can be provided by any in-vehicle nodes or devices close to end users. Figure 10.1
shows the edge and fog resources (in blue) which may interact with centralised core and cloud
domains (in grey) for offering a real cloud-to-thing continuum. By concentrating and sharing
information extracted from multiple different RATs at this unified edge/fog logical platform, tight
coordination among different RATs can be carried out using flexible and scalable computational
resources depending on the context.

10.1 Towards a multi-domain environment
In addition to be physically distributed, the edge and fog resources may also belong to multiple
stakeholders that cooperate with each other to achieve a capillary coverage of their services. Integ-
rating resources belonging to distinct administrative domains is a challenge that goes beyond the
pure technological dimension and involves trust relationships between parties. To that end, federa-
tion provides the means for integrating multiple administrative domains at different granularity into
a unified platform where the federated resources can trust each other at a certain degree, whereas
the federation trust is the embodiment of a service/business-level agreement or partnership between
two organisations [Sim+16]6. This trend is being embraced by today’s cloud service providers in
order to reach their sparse customers and fulfil their needs and concerns, such as customer’s privacy
and data ownership. A cloud federation can hence integrate a pool of diverse services from multiple
service providers that self-govern each other by using well-defined interfaces and agreements
between them [ABT14]7. As a result, federation is a key enabling technology for cooperative
service deployment in cloud environments. In a dynamic fashion, it allows heterogeneous and

6 C. Simon et al. ‘5G exchange for inter-domain resource sharing’. In: 2016 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN). June 2016, pages 1–6. DOI: 10.1109/LANMAN.2016.7548842.

7 M. R. M. Assis, L. F. Bittencourt and R. Tolosana-Calasanz. ‘Cloud Federation: Characterisation and Conceptual
Model’. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. UCC
’14. IEEE Computer Society, 2014, pages 585–590. ISBN: 978-1-4799-7881-6. DOI: 10.1109/UCC.2014.90.
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independently administrated clouds to interact and share resources with each other. Federated
clouds offer an integrated cloud service by federating infrastructures provided by different cloud
service providers. The ability of cloud federation to share cloud resources among participating
service providers improves resource utilisation and enhances elasticity and reliability of cloud
service. Federated clouds also enable new business opportunities. Virtualisation technologies and
its orchestration, including the use of virtual machines and containers, play a major role in the
provisioning of elastic mobile services in federated clouds. In this case, the federation mechan-
isms should include functionalities such as deployment, runtime management and monitoring,
termination, authentication, access control and live migration of services in remote clouds [ABT14].

Many existing works in the literature develop frameworks and architectures to enable provi-
sioning and management of services in federated clouds. Depending on the cooperation model
of participants, cloud federation can be classified into several types. The first one is a horizontal
federation, where participants cooperate on a peer-to-peer basis. This type of federation well applies
to the case of federated mobile edge systems. The second type is a vertical federation, where
participants are entities in a hierarchy, like hybrid cloud [Li+15]8, [LXX14]9 which combines the
services provided by a private cloud and a third-party public cloud. This type of federated edge
and fog architecture refers to the federation between edge and fog systems, between central cloud
and edge system, or between central cloud and fog system. Finally, the third type of federation
comprises both horizontal and vertical federations. Most existing federated clouds fall into the
category of the vertical federation. For instance, Follow-Me Cloud (FMC) [TKF18]10 proposes
an architecture for federated cloud and distributed mobile network environment which allows the
services delivery through an optimal service anchor and the possibility of following mobile users
as they roam through federated cloud environments. FMC utilises Markov-Decision-Process to
make cost-effective and performance optimised migration decisions. Furthermore, challenges
which cloud providers may face when participating in a federated cloud environment include the
heterogeneity of cloud management systems and models describing the services. To resolve this
issue, [Pan+17]11 proposes a coordinated application deployment system (CADS) to enable the
description of the desired service deployment in form of a topology model. In this way, CADS
provides interoperability in the deployment of services in federated clouds.

The NFV Industry Specification Group (ISG) defines a Management and Orchestration (MANO)
framework [ETS16b] for deploying network services on an NFV environment. Nowadays, NFV
MANO scope is limited to a single mobile operator network. To overcome such limitation, an NFV
Work Item has been recently approved with the aim of enabling the management and orchestration
across multiple operators [ETS18]12. Although logical inter-connection between different mobile
operators is being defined, integration with third-party domains (e.g., fog or cloud) is still not
considered. Like NFV, ETSI MEC framework [ETS16a] only considers a single network operator
domain and does not consider integration with third-party domains like fog. Finally, although ETSI
MEC and NFV enable mobility of applications and services, it is only within the boundaries of the
stationary edge resources of the mobile operator and volatile resources are not considered.

8 J. Li et al. ‘A Hybrid Cloud Approach for Secure Authorized Deduplication’. In: IEEE Transactions on Parallel and
Distributed Systems 26.5 (May 2015), pages 1206–1216. ISSN: 1045-9219. DOI: 10.1109/TPDS.2014.2318320.

9 Y. Lu, X. Xu and J. Xu. ‘Development of a Hybrid Manufacturing Cloud’. In: Journal of Manufacturing Systems
33.4 (2014), pages 551–566. ISSN: 0278-6125. DOI: 10.1016/j.jmsy.2014.05.003.

10 T. Taleb, A. Ksentini and P. Frangoudis. ‘Follow-Me Cloud: When Cloud Services Follow Mobile Users’. In: IEEE
Transactions on Cloud Computing (2018), pages 1–1. ISSN: 2168-7161. DOI: 10.1109/TCC.2016.2525987.

11 A. Panarello et al. ‘Automating the Deployment of Multi-Cloud Applications in Federated Cloud Environments’. In:
Proceedings of the 10th EAI International Conference on Performance Evaluation Methodologies and Tools on 10th
EAI International Conference on Performance Evaluation Methodologies and Tools. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2017, pages 194–201. ISBN: 978-1-63190-141-6.
DOI: 10.4108/eai.25-10-2016.2266363.

12 ETSI. Network Functions Virtualisation (NFV); Management and Orchestration; Report on Architectural Options to
Support Multiple Administrative Domains. Group Report (GR) NFV-IFA 028 v3.1.1. European Telecommunications
Standards Institute (ETSI), January 2018.
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Figure 10.2: Edge and fog joint orchestration opportunities.

10.2 Opportunities of integrating edge and fog computing
By bringing fog computational resources into the vision of networking in 5G and beyond, sev-
eral opportunities can be anticipated to enhance the system efficiency and performance. This
section walks through a few potential benefits of joint edge and fog orchestration as illustrated in
Figure 10.2.

10.2.1 Context-Aware Communications and Computations
Context-aware communications and computations open a new degree of freedom in optimising the
network performance based on context information extracted from the underlying infrastructure
of computing, storage and networking resources. This raises the opportunity of developing new
algorithms to optimise the network performance based on the learning and intelligence derived from
the context information of the edge and fog system. For example, where the edge and fog system
is likely to have multiple co-existing RATs, one can envision efficient multi-RAT management
and coordination algorithms by leveraging on the radio information extracted from each RAT.
Artificial intelligence and machine learning based optimisation are examples of tools that can also
be deployed in here.

10.2.2 Resource Utilisation Enhancement
Instead of solely relying on the computing substrates in the edge data centres, edge and fog
orchestration allows the distribution of the various computing and networking tasks across both
edge and fog resources, including any type of devices that possess networking and computing
capabilities. This creates a larger pool of resources distributed near the end users enabling higher
multiplexing gains, greater utilisation efficiency of the resources, and a larger pool of cooperating
resources for executing certain functions or tasks tailored to the needs of the applications and
end users. Such paradigm may create new business models wherein terminal devices can also
participate in the pool of edge and fog resources in return of incentives (e.g., service subscription
reduction), which helps infrastructure providers decrease the deployment and maintenance cost of
their edge data centres.

10.2.3 Efficient Operation for Resource-Constrained Devices
In 5G, various categories of devices are envisioned. These range from vehicles and drones, to
smartphones, tablets, and laptop computers, to IoT devices such as sensors or actuators. Clearly,
some of these devices will have limited computational capability and battery (the so-called resource-
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constrained devices) due to their low-cost nature. With an integrated edge and fog orchestration,
these resource-constrained devices can now rely on the edge and fog resources to execute some
of their computationally and power demanding tasks. This presents an opportunity for low-cost
devices to remain intelligent and run advanced applications despite their limited capabilities.

10.2.4 Flexible and Scalable Functionalities
The edge and fog’s NFV-inspired architecture and technologies aspire to become a viable pro-
position to enable flexibility and scalability of the envisioned 5G system. The foreseen joint
orchestration would allow traffic engineering between nodes, thus setting roots to flexible beha-
viour and scalability of the system. Indeed, dynamic allocation of the computing and networking
resources can be used for example to prioritise edge and fog resources in an area of higher de-
mand which may lead to more optimised resource utilisation. A concentrated traffic or computing
request can be directed to a limited number of edge and fog resources while others will shift
to idle mode or be switched off, thus improving the overall energy conservation of the system.
Furthermore, software migration and placement capability of the orchestration process allows for a
seamless transfer of intelligence between geographically disparate nodes. This tackles the variable
application delay constraints. Software components can be placed in the user vicinity fulfilling its
latency requirements. Together with the ability to create interrelation (i.e., chain) of functions and
applications and then map it into an underlying substrate of computing and networking resources,
such ecosystem will be able to handle any 3rd party driven dependency between functions and
applications whilst preserving the scalability of the solution at the same time.

10.3 Challenges of integrating edge and fog computing
The integration of edge and fog computing is still a new concept and it does not have yet a
corresponding framework defined. Such framework will need to satisfy requirements of real-time
communication utilising edge nodes, federation among multiple stakeholders, and dynamic resource
discovery of volatile and non-volatile resources. Deployment strategies are also needed such as
where to place the workload, connection policies, and when to use edge or fog nodes accounting
for their heterogeneity. To define this framework, the following seven research challenges are
identified.

10.3.1 Federation mechanisms
Federation is a process where different entities negotiate terms and conditions with a goal to form an
alliance of trust and start sharing resources between each other. The result, the federation, should be
beneficiary for all included entities. The key elements are the trust between entities and maintenance
of negotiated conditions for long-term federation. Enabling trust between different entities is a
challenge that can be solved using centralised or decentralised solution. The centralised solution is
through single dedicated entity (server, repository) managed by the trusted organisation. It demands
high level of maintenance and strict security policies. Additional resources may be needed to
ensure scalability of the system. The decentralised solution is through a peer-to-peer network of
trusted entities that maintain highly distributed repository. Although it considers a complex set-up
operation and high-security risks, recent advances in trust-enabling technologies (e.g., Blockchain,
Bitcoin, Ethereum) prove the contrary [MMM17]13, [Swa15]14. The distributed repository can be
deployed fast using current infrastructure as well as secure set-up of the peer-to-peer network of
entities. The distributed repository is in line with the edge and fog architecture where the risks can

13 E. Münsing, J. Mather and S. Moura. ‘Blockchains for decentralized optimization of energy resources in microgrid
networks’. In: 2017 IEEE Conference on Control Technology and Applications (CCTA). August 2017, pages 2164–
2171. DOI: 10.1109/CCTA.2017.8062773.

14 T. Swanson. Consensus-as-a-service: a brief report on the emergence of permissioned, distributed ledger systems.
White Paper. R3 CEV, April 2015.

https://doi.org/10.1109/CCTA.2017.8062773
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be addressed through the scalability, storage and speed of the peer-to-peer solution (i.e., Blockchain)
or through a combination of smart contracts, REST APIs and web applications (i.e., Ethereum).

Federation mechanisms are fundamental for the dynamic integration of multiple administrative
domains into a unified platform using different granularity in either centralised or decentralised
fashion. Different stakeholders expose different capabilities depending on their physical constraints
(computing, storage, bandwidth) using different policies. It determines the stakeholders’ degree of
trust and conditions in which they are willing to join in the federation. The centralised solution
holds the trust in a single entity. The terms and conditions are negotiated at a single point, exposing
security threat (i.e., of a single point of failure) which by default demands maintenance and
redundancy (e.g., similar to the Domain Name System (DNS) architecture). The decentralised
solution distributes the trust burden to all entities. In this case, overlay peer-to-peer networks
can be established between different stakeholders. A stakeholder can maintain several federation
networks based on the degree of trust it exposes to each federation (e.g., gold federation, silver
federation, etc.) as proposed in [Sim+16]. Using one or both approaches, the challenge is to rapidly
and efficiently enable the edge and fog systems to dynamically scale up into unique virtualisation
environment using the heterogeneous and exposed resources thus satisfying user and network
demand in highly secure and trusted manner.

10.3.2 Dynamic discovery of resources
As aforementioned, the edge and fog computing system can be constructed by federating resources
via joint orchestration. However, in contrast to edge or cloud computing where the tasks are
basically performed by dedicated and static data centres or servers, fog computing could be carried
out by mobile and battery-constrained devices that are volatile (i.e. may become available or
unavailable spontaneously). Thus, it is key for the orchestration and management system to localise
and monitor the available computing and networking resources, the pool of which may consist of
both volatile and non-volatile substrates. In particular, the system should be able to identify the
resources that have become available for federation, and such identification process is dubbed as
discovery in this context. As the resources to be discovered may be physical devices that belong to
different owners and/or administrative domains, there are two foreseeable challenges. First, how
can devices discover or be discovered by the orchestration and management system?

Devices and associated resources may belong to different owners, have stationary or mobile
nature, may have different availability or simply communicate by different protocols. The monitor-
ing entity needs means to reach to those heterogeneous devices but also to estimate their stability
and trust level in order to support stability of the overall system. Resource discovery in multi-RAT
environments may require the use of distinct mechanisms depending on the connectivity availability.
For instance, Link Layer Discovery Protocol (LLDP) works well in Ethernet networks while is
not applicable to mobile networks (e.g., LTE). Similarly, IP-based mechanisms may not work in
environments where Layer 2 security mechanisms are in place (e.g., 802.11 wireless networks).
Second, how can resources be discovered across different (often overlapping) administrative do-
mains? Different management systems of separate administrative domains need to have means
to discover each other’s resources in order to provide services which require enhanced pool of
computing resources as well as to achieve better overall utilisation of overall pool of resources (e.g.,
reduce the energy usage during the idle periods in the network). To establish mutual resource usage,
two control planes of two administrative domains must discover each other first. This process is a
precondition for further federation process between different systems.

10.3.3 Multi-tenancy
Multi-tenancy refers to the support of co-existing applications requested by different tenants
within the same infrastructure. All tenants perceive their resources as dedicated without mutual
interference. Multi-tenancy enhances resource utilisation and enable business opportunities, which
may find its application in edge or fog system alone. It is of greater need in federated edge and
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fog systems for several reasons. First, there may be multiple over-the-top service (e.g., video,
voice, social applications, etc.) providers who operate solely on top of the federated edge and
fog systems. Second, there may be multiple industry vertical market players (electricity utility,
automotive, e-health, etc.) who exploit federated edge and fog system to enhance system reliability
and robustness. However, enabling multi-tenancy demands mechanisms to ensure security, isolation,
and privacy among tenants. For network infrastructure, this is known as network slicing. For the
edge and fog infrastructure, similar schemes are required to provide an isolated amount of cloud
capacity customised to best suit specific application needs. More specifically, we need the following
functions in federated fog and edge systems: (i) a function that performs admission control based
on tenant’s need (i.e., Service Level Agreement (SLA)) and current status of the infrastructure;
(ii) a function that securely exposes selected service capabilities and management policies with a
standard resource descriptor to the tenants for SLA negotiation and matching; and (iii) a function
that provides performance monitoring information to the tenants.

10.3.4 Multi-virtualisation technology coexistence
Virtualisation refers to the different approaches for creating a virtual version of networking or
computing hardware. There are multiple virtualisation techniques whose difference primarily
resides in the location of the virtualisation layer and the way resources are used. Full-virtualisation
provides a complete abstraction of the physical hardware. This allows software to run on distinct
types of hardware without requiring any modification. This is the case of virtual machines.
Hybrid-virtualisation provides an incomplete abstraction of the hardware. This imposes targeted
modification to the software to run on different systems. This is the case of virtual machines
using specific I/O hardware acceleration extensions. Para-virtualisation allows software to be
executed in isolated domains but does not provide any hardware abstraction (e.g., software is
explicitly written for a given operating system). This is the case of containers. A mix of those
virtualisation techniques could be present at the same time in the edge and fog domains, especially
if the overall ecosystem is the result of federation among multiple organisations. This poses a
considerable challenge to the possibility of deploying any application on any node. Indeed, the
orchestration system can instantiate applications only if the virtualisation substrate is compatible
with the application packaging, thus reducing the possibilities of resource optimisation. Therefore,
developers should package their applications for any possible target system. Such requirement
could be relaxed by the usage of automated tools which take care of packaging the same application
for multiple target systems. Tools like Vagrant15 and the foreseen evolution could be hence extended
to support multiple virtualisation substrates.

10.3.5 Functions and applications placement
Servers used to host applications/functions have a finite amount of compute capacity, notably in
the case of fog, where resources are on the move and with limited compute capacity. In principle,
services can be composed by placing functions and applications into the appropriate edge and
fog Point of Presence (PoP). This requires provisioning of the computing resources. There will
be cases where the functions and applications will be hosted in different domains (i.e., in the
case of federation) and therefore it is necessary to decide which node to be used as edge or fog
PoP. Typically, each request will have SLA requirements of latency, throughput and availability
targets. The fundamental challenge is to deploy the functions and applications on integrated edge
and fog resources while meeting the necessary SLAs. Several issues complicate the optimisation
of functions and applications placement. First, volatility of the resource in terms of availability,
for how long the resource will be available to be part of a service. Second, the workload varies
dynamically and with the limited and finite compute capacity, it also becomes difficult to scale the
resources up and down depending on the load. Third, there are performance issues that appear by
co-locating the virtualisation functions and applications onto the same server or node. Fourth is
15 Vagrant: https://www.vagrantup.com/

https://www.vagrantup.com/
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the complexity of optimal placement in a federated environment. Also in dynamic environments,
resources may get fragmented which makes it more difficult to place optimally functions and
applications. Integer Linear Programming (ILP) is often used for finding the optimal placement
of functions and applications in static environments. However, those algorithms require a long
process time before reaching to the solutions. To this end, heuristic algorithms are more suitable in
dynamic environments where the solution, even if suboptimal, needs to be provided in a short time
frame. Machine learning could be employed to enhance the accuracy of the placement based on
historical data.

10.3.6 Dynamic service placement and migration
Service placement and migration is the process of transitioning an individual or organisational data
across multiple cloud providers. With the advent of edge and fog computing, edge and fog nodes
become places that users use to have seamless connection to the services with low communication
latency. However, edge and fog computing brings in yet another challenge of dynamic service
placement and migration. As a user moves to different geographical areas, should its service
be migrated from one edge or fog node to another? The main challenge introduced here is to
maintain relatively low service downtime and overall migration time without impacting the Quality
of Service (QoS). It is challenging to find the optimal decision also because of the uncertainty of
the user’s mobility along with the transmission cost. In addition, the placement of the selected
services needs to consider potential mobility patterns, to provide the desired performance to the
associated user always.

10.3.7 Dynamic Resource Management
Dynamic resource management is the ability to manage dynamically the resources (i.e., compute,
network, storage) by means of automation and self-allocation mechanisms. In a multi-RAT
environment, one could always think about routing the traffic dynamically from one RAT to another
depending on the user’s/network’s demand. In addition, probabilistic assumption on the mean
workload needs to be derived at different time resolutions to provide the optimal compute/network
resources to the users. One important challenge here is how to manage the fog and edge resources
dynamically. This is especially challenging due the heterogeneity and volatility of the edge and fog
resources.

10.3.8 Security
Any entity involved in the edge and fog computing can be possibly malicious, so security issues
of the orchestration may mainly come from three aspects involving different entities’ interactions:
integrating heterogeneous platforms, sharing resources among devices, and hosting third-party
applications. They require the authentication between different entities, dynamic resource au-
thorisation, and the protection against malicious applications, respectively. In addition, those
solutions designed to interwork with the cellular network require to be compliant with the 3rd
Generation Partnership Project (3GPP) standard security requirements. It can be challenging to
fulfil the requirements while keeping the edge and fog computing transparent to the 3GPP network
architecture [Kek+18]16. To prevent security threats of the edge and fog computing platforms from
propagating towards the existing cellular network, the orchestration shall also provide a firewall-like
security middleware between them. Though the software/hardware entities involved in the edge and
fog computing solutions can be diverse, the orchestration shall introduce a set of general security
requirements and mechanisms to establish a baseline security level.

16 S. Kekki et al. MEC in 5G networks. White Paper 28. European Telecommunications Standards Institute (ETSI), June
2018.



11. An integrated edge and fog architecture

Based on the identified opportunities and challenges (see Chapter 10.2 and Chapter 10.3), a suitable
approach for integrating edge and fog computing is based on a hierarchical infrastructure spanning
across multiple tiers as illustrated in Figure 11.1. Such architecture comprises clouds and central
data centres (Cloud/Central DCs) on top, edge data centres (Edge DCs) in the middle, and fog
computing devices (Fog CDs) that are available locally in the access area. Central DCs are large
scale public/operator-owned data centres while Edge DCs are small scale computing infrastructure
deployed at the edge (e.g., fewer servers). Finally, Fog CDs comprise a variegated set of resources
with limited computing capabilities like network nodes, end user devices, etc. The scope of the
proposed architecture is on the edge/Fog tiers of the distributed computing infrastructure, along
with their interaction with the distant tiers (e.g., cloud data centres).

The edge and fog tiers are therefore merged into a single computation platform, dubbed as
Edge and Fog computing System (EFS), which serves as the environment for hosting virtualised
functions, services, and applications. On the other hand, to manage, control, and federate resources
for the EFS and its interaction with any other tiers, the architecture envisions an Orchestration
and Control System (OCS) as another pillar component. These two logical entities, namely EFS
and OCS, as well as their correspondent physical infrastructures (i.e., networking and computing
substrates), are illustrated in Figure 11.1. The logical architecture of the EFS and OCS components
is further detailed in Figure 11.2 which shows the various building blocks composing the overall
architecture. The EFS and OCS references points are the results of an harmonisation of the several
concepts proposed in European Telecommunications Standards Institute (ETSI) Network Function
Virtualisation (NFV), ETSI Mobile Edge Computing (MEC), and OpenFog and are detailed later in
Chapter 11.4. The following gives an overview of these different building blocks of the system and
the architecture and explains how it offers enabling mechanisms of multi-Radio Access Technology
(RAT) convergence. Finally, it identifies the similarities and differences between the proposed
reference points and the ones defined in ETSI NFV and ETSI MEC.

11.1 The Edge and Fog computing System
The EFS is a logical system subsuming edge and fog resources in the edge and fog domains, and the
networking substrate which may span from end user devices and things, to access nodes belonging
to different RATs, further up to transport (i.e., fronthaul and backhaul) switches at the edge. The
computing substrate of the EFS, on the other hand, is distributed across Fog CDs (e.g., stationary
or mobile) and Edge DCs. The networking and computing resources composing the EFS may be
owned by a plurality of different parties. These resources may not be directly interconnected, and
may have different capabilities depending on their physical constraints (e.g., bandwidth, computing)
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Figure 11.1: Integrated edge and fog concept including physical network and computing infrastruc-
ture.

or on the owners’ policies (e.g., trust relationships). As shown in Figure 11.1, the EFS mainly hosts
three types of components, namely EFS services, EFS applications, and EFS functions. This is
akin to the ETSI MEC architecture and its components are described in the following.

11.1.1 EFS services
The EFS services are presented as context information that can be obtained from the EFS resources,
but also from non-EFS domains such as the transport and core networks, as well as distant clouds
and data centres. Context information from the EFS domain can be collected from both RAN
elements and computing resources. Such information is abstracted and exposed through services
running in the EFS for EFS applications (which will be discussed later) to consume. In order
to enable the production and consumption of such information, an EFS service platform (see
Figure 11.2) is envisioned with the goal of providing a publish/subscribe mechanism for service
advertisement and registration via the reference point E2. For example, an enhanced localisation
service could be offered out of context information consolidated across multiple RATs. Finally,
the services available in distinct EFS may be federated together via the reference point F1 so as to
increase the service footprint in multiple locations and administrative domains.

11.1.2 EFS applications
The EFS applications can subscribe to one or more EFS services through the E2 reference point.
These applications can be either user or third-party applications. User applications refer to applica-
tions directly consumed by the user (e.g., Augmented Reality, User-Targeted Advertisements). A
third-party application, on the other hand, is employed by certain vertical industries or products
for various types of purposes. For example, a car safety application may be launched to give
pre-crash warnings and collision avoidance signalling in a timely manner, by fetching precise
information relating to the location of nearby vehicles with sufficiently low latency. Another
example for third-party application is an Internet of Things (IoT) gateway application to facilitate
the coordination and management of IoT devices and enhance the overall security, as well as using
context information collected from IoT sensors to optimise the performance of other EFS functions
and applications.

11.1.3 EFS functions
The EFS functions are mainly networking functions (e.g., for the access, transport, and core
domains) that are beneficial to run in the EFS to optimise the network connectivity service Key
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Figure 11.2: Integrated edge and fog computing architecture detailing EFS and OCS components.

Performance Indicator (KPI) and expose target context information via the E2 reference point.
In the Radio Access Network (RAN), including 3rd Generation Partnership Project (3GPP) and
non-3GPP RANs, Virtualised RAN (V-RAN) functions (e.g., an access node implementing a
protocol functional split) could find it beneficial in terms of latency to execute in the EFS instead of
a distant data centre. However, not all V-RAN functions are suitable to run in the EFS as there are
clearly trade-offs to be made: latency and bandwidth gains at the edge vs pooling, multiplexing,
and coordination gains at central locations. Given the EFS pervasiveness, the principle of RAN
functional split may now be applied to the end user devices and things when densely interconnected,
and no longer an exclusivity to the access nodes as it is today. This also suggests an evolved form
of Device-to-Device (D2D) networking for discovery and establishment of direct connections to
nearby devices or nodes (e.g., Fog CDs) that offer virtualisation capabilities and context information
services.

A finer granularity of the RAN functional split could be also envisaged, where instead of
splitting between stack layers or functions in the same layer as today, the splitting could be
done inside the same function into elementary virtualised functions executing in tailored EFS
resources. For example, this could be the case of authentication functions whose decomposition
and virtualisation could be advantageous to facilitate seamless session continuity between different
RATs. In addition to the RAN, Virtual Network Function (VNF) from the transport and core could
also find hosting in the EFS so as to give the local access all what is needed to keep its traffic locally.
For example, some core network functions (e.g., Mobility Management Entity (MME) and Packet
Data Network Gateway (PGW) in 4G networks) virtualised closer to the users can facilitate data
offloading and mitigate heavy-signalling caused by frequent handovers in the local access.

11.2 The Orchestration and Control System
The OCS is a logical system in charge of composing, controlling, managing, orchestrating, and
federating one or more Edge and Fog computing Systems. Therefore, it has the mission to deliver a
flexible management and control capable of coping with the dynamicity and heterogeneity of the
EFS (e.g., as user conditions change, network conditions vary, and part of the involved resources
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might become unavailable or even move). Therefore, it shall guarantee scalability and seamless
interoperability with other domains (e.g., transport, core, distant clouds, etc.). Moreover, an OCS
may interact with other OCS domains. As shown in Figure 11.1, three main logical entities compose
the OCS, namely (i) the Virtualised Infrastructure Manager (VIM), (ii) the EFS manager, and (iii)
the EFS orchestrator.

11.2.1 Virtualisation Infrastructure Manager
The VIM comprises the functionalities that are used to control and manage the interaction of the
EFS service platforms, EFS functions, and EFS applications with the edge and fog resources under
its authority, as well as their virtualisation. Multiple VIMs may be deployed to control and manage
distinct virtualisation substrates or administrative domains so as to offer a unified virtualised
execution environment view. Distinct execution environment are expected to coexist, such as
hypervisors for virtual machines, containers, as well as native applications on resource-constrained
devices. The OCS also takes care of controlling the inter-connectivity of the EFS resources, which
might not be co-located within the same connectivity domain and could be connected by different
types of networks. The VIM exposes and makes use of the O1, O2, and O4 reference points as well
as the E2 reference point.

11.2.2 EFS manager
The EFS manager is responsible for the life cycle management (e.g., instantiation, update, query,
scaling and termination) of the service platforms, functions, and applications in the EFS. Multiple
EFS Managers may be deployed to manage distinct components of the EFS (e.g., service platforms,
functions, and applications) whereas each EFS manager may manage a single service platform,
function, application or a pool of them. Given the inter-dependency of applications/functions and
the publish-subscribe model adopted by the service platform, two EFS managers are defined at
architectural level: one dedicated to the management of the service platform and one dedicated to
the management of the applications and functions. The EFS managers expose and make use of the
O2, O3, O5, O6 and, Om1 reference points, as well as the E2 reference point.

11.2.3 EFS orchestrator
The EFS orchestrator is in charge of the orchestration and management of edge and fog resources
and composing the EFS. An EFS orchestrator comprises an EFS resource orchestrator and an EFS
stack orchestrator as detailed in Figure 11.2. An EFS resource orchestrator supports accessing the
edge and fog resources in an abstracted manner independently of any VIM, as well as governance
of EFS service platform, EFS function, and EFS application instances sharing resources in the EFS.
An EFS stack orchestrator is responsible for the EFS stack life cycle management operations such
as on-boarding, instantiating, and terminating a stack. The EFS orchestrator expose and make use
of the O3, O4, Oo1, T2, F2, and T5 reference points, as well as the E2 reference point. Specifically,
the reference point F2 (see Figure 11.2) can be used to dynamically federate resource thus allowing
the EFS to scale so as to satisfy the network and user demands.

An EFS stack can be viewed architecturally as a forwarding graph of functions and/or ap-
plication interconnected by supporting edge and fog resources and/or EFS service platforms. An
EFS stack extends the ETSI NFV network services by also considering interconnections with
applications and service platforms and not only between network functions. In order to enable that,
the EFS stack descriptor extends the ETSI NFV network service descriptor by also considering
applications and service platforms in addition to network functions. It describes the requirements
and interconnections of one or more EFS functions and EFS applications between them or with
the EFS service platform. Finally, the EFS entity descriptor extends and combines the ETSI NFV
VNF and ETSI MEC App descriptors so as to uniformly describe the various characteristics of EFS
functions, EFS applications, and EFS service platform. EFS entity descriptors are referenced and
included into an EFS stack descriptor so as to allow the EFS orchestrator to properly deploy all the
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entities and interconnect them.

11.3 Application to multi-access convergence
As it can be evinced from the above, a flexible EFS governed by OCS is positioned as a perfect
platform for multi-RAT convergence. To be specific, EFS functions may embrace network optimisa-
tion algorithms that can subscribe to EFS services (e.g., context information from multiple RATs)
to optimise the network performance in accordance with the specific context of the given local
access area. For example, a multi-RAT convergence function could be envisioned in the EFS to
optimise the traffic delivery across multiple RATs based on the context information of end users
and access nodes (e.g., location, load, mobility, etc.). Offloading from one RAT to another, adapting
a RAT configuration based on context information from another RAT, aggregation across RATs,
assistance between RATs, sharing between RATs (e.g., License Shared Access), tight coordination
between nodes and devices from multiple RATs, are all examples of options that can be considered
in such a function. For example, consider licensed-assisted access (LAA) mechanisms in Long
Term Evolution (LTE), a network node (i.e., base station and UE) needs to follow a listen before
talk (LBT) procedure to ensure the unlicensed band is clear before accessing such resource. By
allowing both licensed-band (LTE) and unlicensed-band (Wi-Fi) RATs to share the information
with each other in the same platform, it may potentially reduce the interference level and improve
the utilisation of the unlicensed bands by certain coordination and optimisation.

11.4 Reference points: similarities, differences, and extensions
This section provides an overview of the reference points of the integrated edge and fog architecture
illustrated in Figure 11.2. Specifically, the following identifies the relationship of the proposed
reference points with ETSI NFV [ETS13b]1 and ETSI MEC [ETS16a] specifications, along with
their functionalities, similarities, differences, and the envisioned extensions. Please note that an
exemplification of some of the reference point is provided in the following Chapter 11.5.

E1 — ETSI NFV: Nf-Vn
This reference point represents the execution environment provided by the EFS virtualisation
infrastructure, and supports the following:

– Virtual machine-based hypervisors;
– Container-based hypervisors;
– Native application environments (e.g., Linux, Windows, etc.) .
Compared to the ETSI NFV environment, such reference point also supports native applications

for resource-constrained devices.

E2 — ETSI MEC: Mp1
This reference point is used for exchange between the OCS and the EFS service platform and
supports the following:

– Forwarding of configuration information, failure events, measurement results, and usage
records regarding edge and fog resources for monitoring purposes.

Compared to the ETSI NFV environment, such reference point is added to support the pub-
lication and consumption of data from and to the EFS service platform. This is similar to what
is done in ETSI MEC for service registration, service discovery, and communication support for
services. Nevertheless, this reference point also supports services to be published and/or consumed
by physical/virtual resources, functions, and OCS components in addition to the sole ETSI MEC
applications.

1 ETSI. Network Functions Virtualisation (NFV); Architectural Framework. Group Specification (GS) NFV 002 v1.1.1.
European Telecommunications Standards Institute (ETSI), October 2013.
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E3 — ETSI MEC: Mm5
This reference point is used for configuring the EFS service platform configuration, and supports
the following:

– Configuration of the EFS applications/functions rules, including authorisation and require-
ments, for EFS service publication and consumption.

Compared to the ETSI MEC environment, such reference points does not support EFS applica-
tion/function relocation and life cycle procedures which are instead delegated to the OCS.

E4 — Not specified
This reference point is an internal reference point between the EFS applications/functions and
their corresponding entity managers. While this reference point is relevant at architectural level, it
is usually a proprietary reference points since it is tightly coupled to EFS applications/functions
implementation and functionalities. E3 is a realisation of the E4 reference point where a set of
functionalities has been defined for the EFS service platform.

This reference points is also reported but not specified in the ETSI NFV environment.

F1 — ETSI MEC: Mp3
This reference point is used for exchange between different EFS service platforms when federation
at EFS level is in place. Such reference point supports the functionalities defined for E2 and E3
reference points. Federation agreements may limit the functionalities over this reference point,
either in availability or scope.

Compared to the ETSI MEC environment, such reference point also supports the exchange of
EFS services in addition to the control communication between ETSI MEC platforms.

F2 — ETSI NFV: Or-Or, Vi-Vi
This reference point is used for exchange between different OCSs when federation at OCS level
is in place. Such reference point supports the functionalities defined for O2, O3, O4, Om1, and
Oo1 reference points. Federation agreements may limit the functionalities over this reference point,
either in availability or scope.

Compared to the ETSI NFV environment, such reference point also supports the interaction
between EFS managers in the scope of EFS service platform.

O1 — ETSI NFV: Nf-Vi
This reference point is used for exchanges between the VIM and the edge and fog resources
composing the EFS and supports the following:

– Allocation of functions and applications with indication of compute/storage resource;
– Update, migration, and termination of functions and applications including their resource

allocation;
– Creation, configuration, and termination of connection between functions, applications, and

service platform.
Compared to the ETSI NFV environment, such reference point also needs to support intermittent

connectivity on volatile low-end devices with heterogeneous virtualisation support.

O2 — ETSI NFV: Vi-Vnfm
This reference point is used for exchanges between the VIM and the EFS managers and supports
the following:

– Edge and fog resources information retrieval;
– Edge and fog resource allocation and release;
– Notification from the VIM to the EFS manager of events, measurement results, and usage

records regarding edge and fog resources used by a specific application or function.
Compared to the ETSI NFV environment, such reference point also needs to support information

regarding mobility and battery-level of resources in addition to information regarding privacy
constraints and negotiated Service Level Agreement (SLA)s.
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O3 — ETSI NFV: Or-Vnfm
This reference point is used for exchange between the EFS orchestrator and the EFS manager, and
supports the following:

– Edge and fog resources authorisation, validation, reservation, and release for a function or
application;

– Edge and fog resources allocation/release request for an application or function;
– Application and function instantiation, update, termination, scaling in/out and up/down;
– Application and function instance query to retrieve any run-time information.
Compared to ETSI NFV environment, such reference point also needs to support information

regarding federation and privacy constraints of underlying resources.

O4 — ETSI NFV: Or-Vi
This reference point is used for exchange between the VIM and the EFS orchestrators and supports
the following:

– Edge and fog resources information retrieval;
– Edge and fog resource allocation and release;
– Function and application addition, deletion, update;
– Notification from the VIM and the EFS orchestrator of events, measurement results, and

usage records regarding edge and fog resources.
Compared to the ETSI NFV environment, such reference point also needs to support information

regarding mobility and battery-level of resources in addition to information regarding privacy
constraints and negotiated SLAs.

O5 — ETSI NFV: Ve-Vnfm-Vnfm
This reference point is used for exchange between functions or applications and the corresponding
EFS application/function manager, or between the EFS service platform and the corresponding
EFS service platform manager, and supports the following:

– Notification from the application/function/service platform to the corresponding EFS man-
ager of events, measurements, and usage records regarding the application/function/service
platform itself;

– Verification that the application or function is still alive/functional.
This reference points does not requires any change compared to the ETSI NFV environment.

O6 — ETSI NFV: Ve-Vnfm-em
This reference point is used for exchange between the entity managers of functions or applications
and the corresponding EFS application/function manager, or between the EFS service platform
entity manager and the corresponding EFS service platform manager, and supports the following:

– Application/function/service platform instantiation, update, termination, scaling in/out and
up/down;

– Application/function/service platform instance query to retrieve any run-time information;
– Configuration of events and measurements regarding the application/function/service plat-

form itself;
This reference points does not requires any change compared to the ETSI NFV environment.

Om1 — New
This reference point is used for exchange between EFS application/function manager and EFS
service platform manager, and supports the following:

– Notification of functions and applications information regarding instantiation, update, ter-
mination, migration, and scaling in/out and up/down with regards to their publication and
subscription of services on the EFS service platform;

– Notification of information regarding the availability of services at given locations.
Compared to the ETSI NFV environment, such reference point is added to support the inter-

dependency between functions, applications, and the service platform. The life cycle management
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of functions and applications requires coordination with the EFS service platform so as to satisfy
the agreed SLAs.

Oo1 — New
This reference point is used for exchange between the EFS resource orchestrator and the EFS stack
orchestrator, and supports the following:

– Notification of events, measurement results, and usage records regarding edge/fog resources
and EFS stacks.

Compared to the ETSI NFV environment, such reference point is added to support the dynamic
environment where the mobility and volatility of resources are parameters that need to be considered
for the life cycle management of EFS stacks.

T1 — ETSI MEC: Mm2
This reference point is used for exchange between the OSS/BSS and the EFS service platform
entity manager, and supports the following:

– Configuration of the EFS service platform regarding OSS/BSS relevant aspects (e.g., charging
for consumption of EFS services);

– Notification of events, measurement results, and usage records regarding EFS services
published and/or consumed by EFS applications/functions.

Compared to the ETSI MEC environment, such reference point does not support the fault and
performance management of the EFS service platform which are instead delegated to the OCS.

T2 — ETSI NFV: Os-Ma-nfvo
This reference point is used for exchange between the OSS/BSS and the EFS orchestrator, and
supports the following:

– EFS stack descriptor and EFS stack life cycle management, including EFS stack instantiation,
update, scaling, migration, termination, and query (e.g., retrieving summarised information
about edge and fog resources associated to the EFS stack instance);

– Policy management and or enforcement for EFS stack instances, function and application
instances, and edge and fog resources (e.g., authorisation, access control, resource reservation,
placement, allocation, etc.);

– Forwarding of events, accounting and usage records and performance measurement results
regarding EFS stack instances, application and function instances, and edge/fog resources to
OSS/BSS, as well as and information about the associations between those instances and
edge/fog resources;

– Integrating and releasing of resources into/from the target EFS including third-party informa-
tion and SLAs.

Compared to the ETSI NFV environment, such reference point also needs to support federation
and privacy of multiple administrative domains coexisting in the same environment.

T3 — Not specified
This reference point is an reference point between the EFS virtualisation infrastructure and its
corresponding OSS/BSS. While this reference point is relevant at architectural level, it is usually a
proprietary reference points since it is tightly coupled to the operational and business decisions of
the stakeholder operating the EFS virtualisation infrastructure.

This reference points is also reported but not specified in the ETSI NFV environment.

T4 — ETSI MEC: Mm8
This reference point is used for exchange between the Third-party(ies) Proxy and the OSS/BSS and
supports the following:

– Requesting the deployment of third-party applications/functions on the target EFS;
– Integrating and releasing of resources into/from the target EFS including third-party informa-

tion and SLAs.
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Compared to the ETSI NFV environment, such reference point is added to support interaction
with third parties (instead of OSS/BSS) similar as done in the ETSI MEC for the MEC application
deployment.

T5 — ETSI MEC: Mm9
This reference point is used for exchange between the Third-party(ies) Proxy and the EFS orches-
trator and supports the same operations as T2. The difference resides in the two different endpoints:
OSS/BSS in case of T2, Third-party(ies) Proxy in case of T5.

Compared to the ETSI NFV environment, such reference point is added to support interaction
with third parties (instead of OSS/BSS) similar as done in ETSI MEC for the life cycle management
of third-party applications.

T6 — ETSI MEC: Mx1/Mx2
This reference point is used for exchange between the OSS/BBS and the customer-facing service
portal, and supports the following:

– Requesting the deployment of third-party applications/functions on the target EFS;
– Requesting the integrating and release of resources into/from the target EFS including

third-party information and SLAs.
Compared to the ETSI NFV environment, such reference point is added to support the de-

ployment of third-party functions similar as done in the ETSI MEC for third-party application.
Moreover, this reference points also supports the integration and release of third-party resources
which was not considered in ETSI MEC.

T7 — New
This reference point is used for exchange between the EFS service platforms and applications/
functions/resources not belonging to the EFS domain. Such reference point supports the function-
alities defined for the E2 reference point. A limited level of trust may be applied to the non-EFS
applications/functions/resources, thus limiting the functionalities over this reference point, either in
availability or scope.

Compared to the ETSI MEC environment, such reference point is added to support different
level os trustiness of the applications/functions/resources.

11.5 An exemplary use case: from cloud robotics to fog-assisted robotics
This section first presents an exemplary use case benefiting from an edge and fog integrated system,
namely fog-assisted robotics. Next, it applies the architecture illustrated in Figure 11.2 to the use
case by exemplifying the environment, including the physical infrastructure, and the EFS functions,
EFS applications, and EFS services. Finally, it presents an example of the interaction between
EFS and OCS, including the use of context information, tailored to the dynamic migration of EFS
applications.

11.5.1 Limitations of cloud robotics
Cloud robotics is a field of robotics that leverages and integrates cloud computing, cloud storage, and
other Internet technologies, into industrial and commercial applications. Cloud technologies enable
robot systems to be endowed with powerful capability by leveraging the powerful computation,
storage, and communication resources available in the cloud. Consequently, it is possible to build
lightweight, low cost, and smarter robots by placing an intelligent brain in the cloud which offers a
converged infrastructure that can be also used to share services and information from various robots
or agents. To that end, a cloud for robots shall support [Keh+15]2 the sharing of object data between
various robots and agents connected to the cloud, such as images, maps, robot outcomes, trajectories,

2 B. Kehoe et al. ‘A Survey of Research on Cloud Robotics and Automation’. In: IEEE Transactions on Automation
Science and Engineering 12.2 (April 2015), pages 398–409. ISSN: 1545-5955. DOI: 10.1109/TASE.2014.2376492.

https://doi.org/10.1109/TASE.2014.2376492
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and control policies. Moreover, on-demand provisioning of parallel computing resources is needed
for motion planning, task planning, multi-robot collaboration, scheduling and coordination of
the robotic system. Finally, on-demand human guidance and assistance, via also augmented
human-robot interaction, is required for evaluation and error recovery.

Though robots can benefit from various advantages of cloud computing, this presents several
limitations when applied to the cloud robotics field. cloud facilities traditionally reside far away
from the robots and while the cloud providers can enforce SLA in their infrastructure, very little can
be ensured in the network between the robots and the cloud. As a result, cloud-based applications
can suffer from high-latency or unpredictable jitter in the network. For instance, controlling a
robot’s motion which relies heavily on sensors and feedback of controller is extremely challenging
without assured network performance, especially when the traffic traverses many Internet Service
Provider (ISP). Indeed, a fault in the network could leave the robot brainless and out of control. For
that reason, tasks involving real-time execution require nowadays either on-board processing or a
dedicated infrastructure close to the robots. The former solution is usually adopted when few robots
are deployed in a given area and the cost of installing a dedicated cloud-like infrastructure on-site
is prohibitive compared to the on-board processing. In this case, robot capabilities are typically
more limited compared to a cloud-based solution. The latter solution instead is usually adopted
when many cooperative robots are deployed in the same area and the benefits of cloud computing
in terms of coordination overcome the costs of deploying a dedicated computing and networking
infrastructure. This is the case of automatised warehouses where hundreds of mobile platforms are
employed to move pallets. Notwithstanding, the two solutions are a palliative for today’s cloud
robotics and none of them can provide all the cloud computing benefits, including the usage of a
converged infrastructure for sharing services and information. As result, a paradigm shift from
cloud robotics towards fog-assisted robotics is needed.

11.5.2 The need of shifting towards the edge and fog for robotics systems
Computing and networking resources sprout in any location reaching a pervasive presence in
today’s environments. Devices like computers, laptops, APs, routers, base stations, smartphone, etc.
are all around us, however their usage is limited (and restricted) to the sole and unique purpose
they have been built for. This leads to a huge amount of independent and not integrated resources.
Robots operating in a certain area could potentially make use of those resources to accomplish
distinct tasks, especially the ones with stringent latency requirements, and take advantage of the
services and information available locally. To exemplify such concept, let’s consider a Shopping
Mall environment which also serves as fog-assisted robotics reference scenario. A Shopping Mall
traditionally comprises a variegate set of computing and networking resources, spanning from
wireless and wired infrastructure (e.g., 802.11 APs, femto-cell, Ethernet backbone, etc.) to sensors
(e.g., fire alarm, temperature, security cameras, etc.) and computing facilities (e.g., server room).
Such heterogeneity presents a great chance for enhancing robot capabilities without the need of
deploying an ad-hoc infrastructure. By hosting the brain close to the robot, proper performance can
be ensured on the network and local context information as well as multiple connectivity options
available on-site can be leveraged to accomplish complex tasks. However, to keep the benefits
provided by the consolidated infrastructure at cloud level, fog-assisted robotics also require a
converged platform in the edge and fog tiers. For the fog-assisted robotics use case, two exemplary
scenarios are envisioned in the Shopping Mall:

1. In the first scenario, the robots are in charge of keeping clean the floors in common areas of
the Shopping Mall, thus providing a cleaning service;

2. In the second scenario, the robots provide synchronised delivery of goods within the Shopping
Mall building to restock the supplies of the several shops.

These scenarios require the real-time feeding of the robots with multiple inputs and data about
the environment. For instance, to detect the dirty areas to clean as well as the various spills that
regularly occur within the Shopping Mall, the robotic application needs to process the video streams
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Figure 11.3: Exemplary fog-assisted robotics logical system in a Shopping Mall environment.

from multiple cameras distributed across the Shopping Mall building. Since multiple cameras
are already available in the Shopping Mall for security reasons, there is no need to deploy ad-hoc
cameras for the robot which in turn may process the raw video data available in the infrastructure at
the edge and fog. Raw video is hence collected at the edge and fog computing platform and made
available to the robotics application which can further process it via video analytics techniques to
identify the areas to clean in a timely manner. Once a dirty area/spill has been positively identified,
the robotic application necessitates an indoor navigation system to guide the cleaning robot to the
precise location of the point of interest. In addition, the cleaning application may also leverage
context information data available locally to estimate the number of people present along the path
to be followed by the robot. This allows the brain to decide whether performing the cleaning
operation can be risky (or not convenient) if some areas are particularly crowded and may hamper
robot’s movements. Finally, the brain residing in the EFS guides and instructs the robot to execute
the cleaning task. The second scenario builds on top of the first one and contemplates multiple
cooperating robots for resupplying the different shops. Data related to the stock level of each shop
is collected and analysed at the EFS and is used to determine which good needs to be delivered to
which shop. Some items may be too large for one robot alone and would require the synchronised
operation of two or more robots to carry it. Thanks to the vicinity of the brain to the robots, it is
hence possible to achieve tight coordination between the robots. Remarkably, the same navigation
system and localisation service can be used to guide the robots to the shops without the need of
deploying them twice.
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Figure 11.4: Potential physical mapping of integrated edge and fog system for the exemplary
fog-assisted robotics use case.

11.5.3 Exemplifying the fog-assisted robotics edge and fog system
As it can be evinced from the description in Chapter 11.5.1 and 11.5.2, multiple computing and
networking technologies are involved in these scenarios, as depicted in Figure 11.3:

– Cameras across the Shopping Mall could be either connected to the EFS via Ethernet or
Wi-Fi. These cameras are usually special-purpose devices with enough capability to record
and stream data to the EFS;

– The localisation service could be based on presence sensors which communicate over ZigBee,
Bluetooth, or also via Wi-Fi. Data is sent periodically to the EFS which performs a local
analysis;

– Robots connect to the EFS via Wi-Fi and/or LTE. In addition, robots may have Bluetooth
chipsets for local connectivity;

– Video processing requires powerful computing platforms with video accelerators (i.e., GPU)
to perform the necessary analytics;

– Localisation and navigation services instead require parallel computing depending on the
amount of data (i.e., x86 servers);

– Robots and access points may offer limited computing capabilities (e.g., ARM boards) that
can be used e.g. to instantiate networking functions (e.g., Wi-Fi APs, D2D).

The potential physical mapping of the integrated edge and fog system is illustrated in Figure 11.4,
which highlights the distributed nature of both the EFS and the OCS.

All the physical resources need to be integrated into the same EFS platform. For the cleaning
task, each component (cameras, sensors, robots) communicates via different RATs which are
blended together for accomplishing a more complex task. A clear example of such multi-RAT
cooperation is the localisation service which can leverage multiple connectivity technologies to
determine the position of the robots. This is of particular relevance given the well-known shortcom-
ings of Global Positioning System (GPS) when applied in indoor environments and the impossibility
for the robots to rely on GPS signal for the navigation in the Shopping Mall. Furthermore, the robot
requires multiple RATs simultaneously active to achieve the desired synchronisation level for jointly
delivering large items. For instance, Bluetooth connectivity can be used for the feedback control
loop between the different spatially-close robots. Low latency and jitter are critical requirements
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to keep the robots aligned and synchronised when moving. Therefore, a direct communication
(no hops) between the robots is desirable. A network-assisted D2D mechanism is hence required
to be able to perform the Bluetooth pairing between the different robots, especially considering
that different robot formations may occur at various times (e.g., a formation of two, three, or more
robots require different pairing combinations). To achieve that, the Bluetooth pairing may use the
primary Wi-Fi/LTE channel to initiate and configure the D2D communication.

The following reports the various EFS applications, EFS functions, and EFS services envisioned
in the fog-assisted robotics use case.

Robot intelligence – EFS application
This EFS application is placed within the EFS and remotely controls the robots by implementing
all the robotics intelligence. This includes:

– Receiving data from the sensors on the robots (e.g., motor encoders, bumpers, lidar, etc.) to
implement a close-loop control mechanism;

– Computing the best route for the robots to reach a given area based on the task (e.g., cleaning
service vs synchronised delivery);

– Consuming the localisation and Wi-Fi monitoring services to enhance the robotics operations
(e.g., adapting the speed of the robots depending on the signal level);

– Communicating to the robots the set of instructions to execute;
This application does not require any access to the hardware, therefore it can be provided in form
of Virtual Machine (VM) or container.

Robot agent – EFS application
This EFS application is placed on the robots, which are part of the EFS. The tasks of this application
include:

– Reading the data from the sensors equipped on the robots (e.g., motor encoders, bumpers,
lidar, etc.);

– Communicating the sensor data to the robot intelligence application;
– Receiving and executing the instruction computed by the robot intelligence application.

Given the requirement of this application to directly access the hardware (i.e., sensors and motors),
this application is deployed in the form of container or native application. Please note that container
platforms, if properly configured, can provide direct access to a subset of hardware devices.

Virtual Wi-Fi access point – EFS function
This EFS function implements a 802.11 wireless access point so as to enable the infrastructure-to-
robot communication, which is essential for robot navigation. Commands to control the robot are
sent over Wi-Fi connections managed by virtual APs, which allows seamless Wi-Fi connectivity
for a roaming Wi-Fi client and avoid connection disruptions. This function is also employed to
help robots establish Bluetooth D2D communication in case accurate movement synchronisation
is required. Given the requirement of this application to directly access the hardware (i.e., Wi-Fi
card), this function is deployed in form of container or native application.

Gateway – EFS function
This EFS function implements IP gateway capabilities so as to enable the robots to access the
Internet and eventually communicate with the robotics company Operation Support System
(OSS)/Business Support System (BSS). This also includes:

– Network Address Translation (NAT), Virtual Private Network (VPN), and firewall capabilit-
ies;

– Domain Name System (DNS) and Dynamic Host Configuration Protocol (DHCP) support
for the robots applications and functions.

This function does not require any access to the hardware, therefore it can be provided in form of
VM or container.
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Figure 11.5: Interaction between EFS and OCS for a follow-me migration.

Wi-Fi monitoring – EFS function and EFS service
This EFS function implements Wi-Fi monitoring capabilities via the EFS service platform. This
function runs on the resources equipped with Wi-Fi card and monitors the following parameters of
Wi-Fi surrounding traffic and Wi-Fi stations:

– Station Wi-Fi channel;
– Station wireless signal level;
– Transmission and reception data rates at data link level;
– Number of retransmission and packet losses at data link level;
– Number of successfully transmitted/received bytes and packets.

The above information is hence published as EFS service and consumed by the robot intelligence
application for determining (i) the status os the wireless link, and (ii) the coarse localisation of the
robots with respect to the access points.

11.5.4 Interaction between EFS and OCS implementing a follow-me migration
In the considered fog-assisted use case, robots are connected via Wi-Fi and move in the Shopping
Mall to accomplish different tasks (i.e., cleaning service and synchronised delivery). To that end, the
robots require constant Wi-Fi coverage wherever they go. In the following example, the interaction
between EFS and OCS is aimed at implementing a follow-me migration functionality, that is the
virtual access point EFS function is migrated following the robots movement. To this purpose,
an EFS function manager is deployed and dedicated to the virtual access point in order to detect
the movement of the robots and trigger the migration of the EFS function so as to provide full
connectivity coverage in the Shopping Mall. Figure 11.5 shows the procedure which relies on
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Table 11.1: Information exchanged between the EFS and OCS for implementing a follow-me
migration procedure.

Ref. Point Source Destination Information Action Step

E2 EFS service plat-
form

EFS function man-
ager

Resource ID, Wi-Fi
station IDs, Wi-Fi
signal level

Consume EFS Ser-
vices related to the
Wi-Fi information
of surrounding Wi-
Fi stations

CR.0

O3 EFS function man-
ager

EFS stack orches-
trator

Function instance
ID, Dst resource ID

Request the migra-
tion of the function
ID to the target
resource ID

CR.3

EFS stack orches-
trator

EFS function man-
ager

Migration status Feedback on the
requested migration

CR.6

Oo1 EFS stack orches-
trator

EFS resource or-
chestrator

Function instance
ID, Src resource ID,
Dst resource ID

Request the migra-
tion of the function
ID from Src re-
source ID to Dst
resource ID

CR.4

EFS resource or-
chestrator

EFS stack orches-
trator

Migration status Feedback on the
requested migration

CR.6

O4 EFS resource or-
chestrator

VIM Function instance
ID, Src resource ID,
Dst resource ID

Request the migra-
tion of the function
ID from Src re-
source ID to Dst
resource ID

CR.5

VIM EFS Resource Or-
chestrator

Function instance
ID, Src resource ID,
Dst resource ID

Feedback on the
requested migration

CR.6

an EFS service providing measurements and information regarding the signal level as seen by all
the Wi-Fi-capable EFS resources. Such EFS service is capable of providing the signal level of
individual Wi-Fi stations as received at the virtual access point. The procedure of the measurement
is the following, as also illustrated in Figure 11.5 and summarised in Table 11.1:

– (A.1) A dedicated EFS application (i.e., Wi-Fi mon in Figure 11.5) runs on every Wi-Fi-
capable EFS resource and perform the corresponding measurements on the signal level.

– (A.2) The Wi-Fi monitoring application publishes the signal level measurements via an EFS
service through the EFS service platform. The involved reference point is E2.

The OCS procedure for the migration of the virtual AP based on Wi-Fi signal level is the following
as also illustrated in Figure 11.5:

– (CR.0) The EFS function manager associated to the virtual access point periodically con-
sumes the EFS service providing the Wi-Fi signal level as seen from the EFS resources. The
involved reference point is E2.

– (CR.1) Based on this information, the EFS function manager monitors the coarse location of
the robots. This is a step internal to theEFS function manager.

– (CR.2) Based on the coarse location of the robot, the EFS function manager decides when
a migration of the virtual access point is needed (e.g., the robots are closer to a given EFS
resource than the one they are currently connected to). This is a step internal to the EFS
function manager.

– (CR.3) TheEFS function manager contacts the EFS stack orchestrator to request the migration
of the EFS function. The involved reference point is O3.

– (CR.4) The EFS stack orchestrator then contacts the EFS resource orchestrator for allocating
the required resources (e.g., CPU, RAM, storage) on the target EFS Resource. The involved
reference point is Oo1.
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– (CR.5) If the migration request can be satisfied, the EFS resource orchestrator instructs the
VIM to migrate the virtual access point to the target EFS resource. The involved reference
point is O4.

– (CR.6) Feedback is provided to all the OCS components on the result of the procedure (e.g.,
successful or not). The involved reference points are O4, Oo1, and O3.

Finally, Table 11.1 reports the details on the information exchanged via the various reference
points in the different migration steps. For each reference point, the source and destination
components are identified as well as the information and the associated action. While the reported
information allows to implement a generic migration, it is worth highlighting that from an OCS
point of view it is the consumption of context information (i.e., via the Wi-Fi monitoring EFS
service) the makes the virtual access point following the robots movement. As a result, the context
information serves as a trigger to the general-purpose migration procedure implemented by the
OCS components.



12. Conclusions of Part Three

The third part of this thesis has identified the edge and fog as key pillars of future networks where
intelligence and innovations will be increasingly applied. There is however not yet a common
unified platform that integrates and federates these two pillars together. Whilst the edge is more
infrastructure-oriented and hence easier to integrate, the fog tends to be more volatile with resources
appearing and disappearing on the go, and belonging to different owners. The opportunities for
such unified framework are clearly acknowledged, but there remains to be several challenges that
need to be addressed first before such a common framework could emerge. These include:

1. The dynamic discovery of volatile and non-volatile resources;
2. The federation of these resources when they belong to different domains and owners;
3. The support of multi-tenancy in particular for the volatile fog resources;
4. The customisation and interworking of different virtualisation technologies suitable to each

type of resources (i.e., edge and fog);
5. The dynamic placement of functions and applications across the continuum of fog and edge;
6. The automation and dynamic allocation and management of the resources;
7. The security, trust and privacy considerations.
The overcoming of these challenges would hence enable a convergent 5G multi-RAT access

through the integrated virtualised edge and fog solution, which envisages two main components:
the EFS and the OCS. The former provides a low latency integrated virtualised environment
distributed across the fog and edge to support multi-RAT convergence. The latter instead leverages
on extended Software Defined Networking (SDN), NFV, and MEC tools to build and maintain the
EFS, by enabling the automatic integration and federation of EFS resources into a unified hosting
environment, despite their heterogeneity, ownership, and volatility.

Publications covering the design of an integrated edge and fog system for multi-access conver-
gence and related concepts are [Kim+18], [L C+18d], [Rap+18], [Rez+17].

Finally, an exemplary use case, namely fog-assisted robotics, has been presented with the goal
of showing the benefits of the proposed EFS and OCS architecture. To that end, this part has first
enumerated the limitations of today’s cloud robotics, that is cloud facilities traditionally reside far
away from the robots and while the cloud providers can enforce SLA in their infrastructure, very
little can be ensured in the network between the robots and the cloud. Therefore, it has presented
the need to shift towards the edge and fog for robotics applications and services so as to offer the
same advantages of the cloud but without its limitations. To that end, a set of EFS applications,
functions, and services has been identified tailored to the offering of a robotics cleaning service
and synchronised delivery in a shopping mall environment. At the end, an exemplary interaction
between the EFS and OCS components has been presented showing how a follow-me migration
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mechanisms can be implemented via the usage of context information.

The publication [Ant+18] covers the design and experimental assessment of a fog-assisted
robotics application showing the benefits of using context information.
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13. Conclusions

5G networks will carry more traffic than their predecessor, and this traffic will exhibit disparate
characteristics, imposing very different requirements and constraints on the network design. Current
network architectures are very rigid and inflexible in terms of the way they manage users’ traffic,
and are not capable either of quickly deploying new services on demand to cope with the dynamic
needs from the customers. Therefore, future network architectures should be characterised by an
enhanced flexibility. Software Defined Networking (SDN) is seen as one of the key tool to provide
this required flexibility. To that end, this thesis departed from the general SDN framework defined
by the Open Networking Foundation (ONF) and fully designed a compatible architecture suitable
for future network operators. Among the plethoras of use cases and foreseen services, Distributed
Mobility Management (DMM) is considered a necessity in future mobile network deployments in
order to offload the network core from traffic that can be locally routed close to the access. Different
actors have been working on this area, being the Internet Engineering Task Force (IETF) a major
venue where most of the solutions have been discussed so far, while 3rd Generation Partnership
Project (3GPP) has more recently started to work on distributed mobility architectures. Although
there have been many different proposals, most of them share a characteristic: they are an evolved
version of current IP mobility based solutions. While these are enough to offload the network core,
and pose no significant deployment concerns, operators are already looking into SDN-based DMM
solutions since they can potentially reduce the complexity and costs incurred by service creation
and network operation. Therefore, it is important to understand how an SDN-based solution might
look like when providing DMM support.

One of the main contributions of this thesis is the analytic and experimental evaluation of
two key DMM protocol families: IP mobility and SDN-based. While the Proxy Mobile IPv6
(PMIPv6)-based solution is available in literature, this thesis thoroughly designed, modelled, and
implemented the SDN-based solution. Additionally, this thesis walked the path of decomposing
the functions that a DMM solution should have and identify how these can be implemented in an
DMM-based solution. Moreover, existing state-of-the-art solutions are not generally studied both
analytically and experimentally as it is done in this thesis, thus providing solid insights on how to
apply DMM concepts in future mobile networks. By implementing the proposed SDN architecture
and testing it on a medium size test-bed, this thesis demonstrated how easy and quick would be
for an operator to create and put into operation new services, like the proposed SDN-based DMM.
The results obtained from analysis and experiments show that the performance of the analysed
solutions depends on the scenario being considered, but also indicate that SDN approaches have a
big potential: (i) achievable performance is good and even better than the one of the PMIPv6-based
solution, (ii) the solution can be easily implemented, and (iii) provides additional flexibility in
regards of how it behaves and provides service differentiation.
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Publications covering the SDN framework and the SDN-based DMM contributions, including
related concepts, are [Con+16], [GLB15], [L C+17a], [L C+18b], [Wan+15a].

An open source SDN-based DMM implementation called OpenFlow-DMM is available at
http://odmm.net/openflow/.

Another major contribution of this thesis is the analysis and design of a SDN-based unified
data plane architecture for 5G, namely crosshaul, based on two main components: (i) the Crosshaul
Forwarding Element (XFE) and (ii) the Crosshaul Common Frame (XCF). The XFE is a multi-
layer switch based on packet – Crosshaul Packet Forwarding Element (XPFE) – and circuit –
Crosshaul Circuit Switching Element (XCSE) – switching elements. While backhaul traffic is
usually transmitted over the packet switch network, Common Public Radio Interface (CPRI)
and diverse fronthaul traffic with stringent timing constraints are transmitted over the circuit
switch network due the tight bandwidth and latency requirements the interface imposes to the
network, which makes this interface quite rigid and costly. Aligned with new radio functional splits
under study, Next Generation Fronthaul Interface (NGFI) and enhanced CPRI (eCPRI) relax the
requirements of today’s fronthaul in order to reach a more scalable interface so cheaper transport
technologies can be used. At this purpose, packet switching enables statistical multiplexing when
the peak to average radio access traffic load in 5G is high enough. Unified forwarding is enabled by
the XCF format that is common across the various types of traffic and the various link technologies
in the network. As a consequence, the unified data plane enables a common management of
the integrated network in a SDN fashion. Therefore, traffic requirements, and hence services,
could be easily enforced onto the network by leveraging the integrated and harmonised view
provided by the unified data plane. As a result, the network operational costs can be significantly
reduced.

Publications covering the design of the crosshaul network and related concepts are [Cav+17],
[Dei+17], [Dei+16], [L C+16], [L C+18e], [Li+17].

Patents covering the design of the crosshaul network and related concepts are [LMK18], [L
C+17b], [L C+17c].

The standard contribution [Ber+16] covers the crosshaul network requirements and related
concepts.

This thesis has also presented a characterisation of a 5G transport network and the expected
traffic mixture of network slices. Several simulations have been performed to understand the role of
queueing disciplines in different scenarios, such as urban, industrial, and rural. This characterisation
is key for properly engineering operator’s networks to support next 5G services and satisfy the
very stringent and diverse needs intrinsic to each of them. It indeed provides powerful insight
on the candidate nodes in the network where a given service should be provided in order to
fulfil its traffic requirements. The results have been compared with the constraints of the traffic
flows defined in 3GPP and criticality has been identified for the motion control traffic part of the
Ultra-Reliable and Low Latency Communications (URLLC) slice. Jitter requirements for such
flow are only satisfied when the traffic is terminated in the access ring and a strict priority with
preemption queueing discipline is used. Regarding the other flows and slices, traffic requirements
are fulfilled in a failure-free scenario where the protection ring in the access and aggregation is not
activated.

Publications covering the characterisation of a crosshaul network and related concepts are [L
C+18e], [Mar+18].

The open source simulator developed for characterising the crosshaul network has been published
with the name of SimPype and it is available at: https://simpype.readthedocs.io/en/
latest/.

http://odmm.net/openflow/
https://simpype.readthedocs.io/en/latest/
https://simpype.readthedocs.io/en/latest/
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Furthermore, this thesis has identified a gap between current SDN solutions and carrier grade
network requirements under Operations, Administration and Maintenance (OAM) point of view. An
analysis of widely-deployed OAM and SDN technologies has been hence performed showing that
the stateless nature of OpenFlow poses significant scalability and accuracy problems in monitoring
and managing the network. To overcome these issues, this thesis proposes an Adaptive Telemetry
System (ATS) to enable locally on the switches active measurements (e.g., delay, bandwidth,
etc.) and their reporting (e.g., alarms). The design approach chosen for ATS showed to provide
compatibility with standard OpenFlow switches and controllers. An Application Programming
Interface (API) has been defined for enabling the remote configuration of telemetry procedures,
which adopt a Finite State Machine (FSM) implementation. This enables the switches to locally
execute the stateful procedures required for active monitoring. Finally, an experimental evaluation
has been presented, showing the benefits of ATS compared to legacy-SDN solutions. Particularly,
ATS proved to bring significant benefits in terms of offloading the control plane, and the Network
Controller (NC), as well as higher accuracy in the performed measurements, which comply with the
performance requirements defined by 3GPP for 5G networks. To that end, the delay and bandwidth
measurements obtained with ATS have proven to match the ones obtained with reference non-SDN
tools, while providing higher flexibility in the type of measurements that could be performed.
Moreover, ATS proved to be able to manage the periodical generation of messages over a large
number of ports (up to 256) while running on a single CPU core. Finally, this thesis provided
some implementation insights on ATS and some deployment considerations regarding the clock
distribution in the network.

The publication [L C+18a] covers the design of an Adaptive Telemetry System (ATS) for 5G
SDN-based transport networks.

The patent [Per+17b] covers OAM functionalities in SDN-based networks employing the
OpenFlow Southbound Interface (SBI).

Next, this thesis has identified the edge and fog as key pillars of future networks where
intelligence and innovations will be increasingly applied. There is however not yet a common
unified platform that integrates and federates these two pillars together. Whilst the edge is more
infrastructure-oriented and hence easier to integrate, the fog tends to be more volatile with resources
appearing and disappearing on the go, and belonging to different owners. The opportunities for
such unified framework are clearly acknowledged, but there remains to be several challenges that
need to be addressed first before such a common framework could emerge. These include: (i) the
dynamic discovery of volatile and non-volatile resources, (ii) the federation of these resources
when they belong to different domains and owners, (iii) the support of multi-tenancy in particular
for the volatile fog resources, (iv) the customisation and interworking of different virtualisation
technologies suitable to each type of resources (i.e., edge and fog), (v) the dynamic placement
of functions and applications across the continuum of fog and edge, (vi) the automation and
dynamic allocation and management of the resources, and finally (vii) the security, trust and
privacy considerations. The overcoming of these challenges would hence enable a convergent
5G multi-Radio Access Technology (RAT) access through the integrated virtualised edge and fog
solution, which envisages two main components: the Edge and Fog computing System (EFS)
and the Orchestration and Control System (OCS). The former provides a low latency integrated
virtualised environment distributed across the fog and edge to support multi-RAT convergence. The
latter instead leverages on extended SDN, Network Function Virtualisation (NFV), and Mobile
Edge Computing (MEC) tools to build and maintain the EFS, by enabling the automatic integration
and federation of EFS resources into a unified hosting environment, despite their heterogeneity,
ownership, and volatility.

Publications covering the design of an integrated edge and fog system for multi-access conver-
gence and related concepts are [Kim+18], [L C+18d], [Rap+18], [Rez+17].
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Finally, this thesis has presented an exemplary use case, namely fog-assisted robotics, with the
goal of showing the benefits of the proposed EFS and OCS architecture. To that end, this part has
first enumerated the limitations of today’s cloud robotics and then presented the need to shift towards
the edge and fog for robotics applications and services. To that end, a set of EFS applications,
functions, and services has been identified tailored to the offering of a robotics cleaning service
and synchronised delivery in a shopping mall environment. At the end, an exemplary interaction
between the EFS and OCS components has been presented showing how a follow-me migration
mechanisms can be implemented via the usage of context information.

The publication [Ant+18] covers the design and experimental assessment of a fog-assisted
robotics application showing the benefits of using context information.



14. Future work

Classical mobility approaches only focus on the User Equipment (UE) mobility while considering
the network to be rigid and static. However, the edge and fog system exhibits a more fluid network
scenario wherein the nodes providing connectivity and services to the UE are also moving. This
requires the analysis and the design of new network-based mobility mechanisms that consider both
parts (i.e., the UE and the network) as mobile.

New network-based mobility protocols with fluid anchoring for supporting dynamic network
environments.

Moreover, given the ever-increasing densification of the mobile networks, the UE is expected to
experience a larger number of handovers than today. This aspect poses critical challenges in the
design of mobility protocols and their corresponding management. Indeed, these protocols not only
will need to support an increasing number of handover in the whole network, but they will also
need to provide the necessary session continuity to those very-demanding 5G services, such as
Ultra-Reliable and Low Latency Communications (URLLC).

New handover mechanisms to achieve zero-downtime and session continuity for Ultra-Reliable
and Low Latency Communications (URLLC).

Finally, the capability of today’s devices to be simultaneously connected to multiple networks (e.g.,
Wi-Fi, 3G, LTE, 5G, etc.) thanks to the multiple radio interfaces, opens up a new degree of freedom
for mobility mechanisms where distinct protocol stacks might be considered at once for achieving
the desired mobility and session continuity.

New cross-protocol mechanisms to achieve mobility and session continuity across multiple Radio
Access Technology (RAT) at once or using one RAT to support the mobility of a second interface.

While this thesis has already presented simulation-based results on the capability of a crosshaul
network to fulfil 5G services, those results relate to a static reference architecture and a failure-free
scenario. As a natural next step, more extensive simulations are expected to consider distinct
network topologies (e.g., rings, mesh, etc.) and switching techniques. This aspect gains con-
siderable importance when considering an integrated edge and fog system where the network
boundaries go beyond the Next Generation NodeB (gNB) encompassing the UE as integral part of
the infrastructure.

Analysis of the role of queueing disciplines and congestion avoidance mechanisms with respect
to distinct network topologies as well as the UE being part of the network infrastructure.

Furthermore, extensive analysis on the impact of volatile links on traffic delay and jitter is expected
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for the different network slices.
Analysis of the impact of wireless transport links on the target packet-error rate for URLLC
services.

This includes the design and analysis of path restoration mechanisms where part of the network
is composed of both wireless transport and access links and various network segments (e.g., L2
connectivity vs IP connectivity).

New congestion-aware path restoration mechanisms for heterogeneous traffic including delay-
and jitter-sensitive services.

Future work may include the analysis and experimental assessment of the proposed edge and
fog integrated architecture spanning both networking and computing domains. Within the scope of
the networking domain, the presented Software Defined Networking (SDN) framework has already
been assessed in a mid-size test-bed considering powerful Commercial Off-The-Shelf (COTS)
devices. Nonetheless, the edge and the fog also consider resource-constrained devices characterised
by mobility and volatility. The impact of current SDN technologies (e.g., OpenFlow) on this new
category of devices is still to be investigated, notably on the control and data planes.

Experimental assessment of the impact of the OpenFlow protocol on the performance of resource-
constrained and battery-powered devices (e.g., battery lifetime).

It is expected that only a limited set of data plane functionalities can be provided with constrained
resources, thus requiring a re-design of the SDN applications so as to encompass these devices as
part of the networking infrastructure.

Analysis and experimental assessment of SDN data plane functionalities on resource-constrained
devices (e.g., supported protocols, required hardware/computational capabilities, power consump-
tion, etc.).

For what concerns the control plane instead, the analysis may involve the communication mechan-
isms of the control plane which, in case of OpenFlow, is nowadays based on TCP and eventually
Transport Layer Security (TLS). These transport protocols have already proved to be too demanding
for very resource-constrained devices.

Analysis and experimental assessment of SDN control plane functionalities on resource-
constrained devices (e.g., security, connection-oriented vs connectionless, availability, etc.)

Within the scope of the computing domain, a future line of work is the analysis of the impact
of different hypervisors and virtualisation technologies on the 5G services when provided in
software.

Analysis and experimental assessment of virtualisation technologies on mobile and resource-
constrained devices (e.g., footprint, power consumption, performance impact, etc.).

Similar to the network-based mobility, the computing domain needs to evolve in order to encompass
dynamic scenarios where the computing device moves and it is not statically placed in a data centre.
This includes new mechanisms for the on-the-fly migration of virtual functions and applications
and the corresponding optimisations to meet the target session continuity.

New migration mechanisms for virtual functions and applications migration to achieve zero-
downtime and session continuity for Ultra-Reliable and Low Latency Communications (URLLC)
and different virtualisation technologies.

While the hypervisor supports the migration of the virtualised applications and functions, the
underlying network need to be reconfigured accordingly to reroute the traffic. This concept extends
the classical mobility approach where the UE is the only entity moving and the application is
statically placed. Indeed, in an edge and fog system the applications are distributed on the physical
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infrastructure which, compared to cloud, is not static but rather dynamic.

Integration of migration mechanisms with network-mobility mechanisms in dynamic and volatile
environments.

Moreover, new software paradigms may be needed so as to develop the software in an edge
and fog-native way, which requires more flexibility and agility compared to today’s cloud environ-
ments.

New software-design paradigms based on micro-services which consider the distributed and
unreliable nature of the environment as core assumption.

The distributed nature of the fog-native applications also requires a rethinking of the communication
bus that interconnects the different software components. Indeed, nowadays message bus have
been designed for cloud environments characterised by powerful resources and big reliable pipes
interconnecting them.

New message bus suitable to run on resource-constrained devices aimed at interconnecting the
distinct components of a fog-native application as well as distributing and replicating its internal
state.

Finally, a set of new techniques and tools are required to enable continuous integration, and
more broadly DevOps, in edge and fog systems in addition to what is done nowadays in the
cloud. This would require the possibility of testing the software over federated environments which
needs to be properly defined first. Indeed, one of the biggest challenges to develop applications
in a fog-native fashion, it is the capability of performing all the testing necessary to ensure the
quality of the software. While the homogeneity of the cloud makes this task relatively easy, the
heterogeneity of the edge and fog makes it significantly hard. Testing the application under any
possible conditions and combination of events typical of real environments is therefore a challenge
that needs to be addressed in order to deliver a carrier-grade edge and fog system.

A testing environment and set of common procedures for providing a fog-native certification need
to be defined. This may include the definition of distinct fog-native levels where the environment
might be more or less dynamic and volatile.

To that end, the definition and design of federation mechanisms for heterogeneous edge and fog
systems presents a large number of research challenges which have not been yet addressed nor
solved.

Analysis and design of federation mechanisms for edge and fog systems including technical (e.g.,
coexistence of virtualisation domains, federated monitoring, security, etc.), business (e.g., Service
Level Agreement (SLA), pricing, smart contracts, automatic negotiations, etc.), and regulatory
aspects (e.g., liability, responsibility, privacy, etc.).

Once the above challenges are tackled, the materialisation of the edge and fog system will enable
the evolution of today’s ad-hoc and monolithic robotics systems towards an infrastructure-less and
on-demand robotics service offering.

Analysis and design of robotics systems leveraging the on-demand computing and networking
infrastructure available at the edge end fog, including the consumption of third-party context
information.

Although the research on 5G seeded many futuristic ideas and concepts, like the ones presented
in the last part of this thesis, it is already clear that many of them will not materialise in real 5G
deployments. Indeed, while 5G standardisation is finalising, recent advances in machine learning,
distributed ledger mechanisms, artificial intelligence, and Terahertz communications are paving
the road for the coming of 6G. To that end, research community and industries are already looking
to bring forward those ideas beyond 5G towards another next generation of mobile networks.
Moreover, a paradigm shift towards truly intelligent societies and more dynamic value chains might
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arise with the advent of 6G where not only vertical industries can benefit from the mobile network
advancements but also the end users at large.
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A. SimPype: a simulation framework

SimPype
Figure A.1: SimPype logo

SimPype is a simulation framework based on SimPy1 that relies on the concepts ofresource and
pipe. SimPype decouples the resource from its queue (i.e., pipe) in such a way multiple queueing
techniques can be used with the same resource. SimPype also allows to create both custom resource
and pipe models that can be reused in multiple simulations. SimPype supports only Python >= 3.3.
Previous versions of Python are not supported. The quickest way to install SimPype is via pip3:

1 $ p ip3 i n s t a l l s impype

SimPype automatically installs SimPy as dependency. SimPype documentation can be found on
ReadTheDocs2 while the source code repository is available on GitHub3.

Scope
SimPype is tailored to scenarios where the queueing disciplines and the resources occupation are
key parts of the system under simulation. Telecommunication networks, people queueing at a post
office, supermarket, car wash, cafeteria, etc. are examples of such scenarios.

Concept
A SimPype simulation environment comprises at least one generator and one resource which are
connected via a pipeline. The generator generates messages with a given arrival time. Those
messages are first enqueued in the resource pipe and next processed by the resources according
with a service time. The simulation steps can be summarised as follows:

1. The generator waits a random arrival time and generates a message;
2. The generator sends the message to the resource;
3. The message is enqueued in the resource’s pipe;

1 Simpy: https://simpy.readthedocs.io/en/latest/
2 SimPype documentation: http://simpype.readthedocs.io/en/latest/
3 SimPype source code: https://github.com/Mallets/SimPype

https://simpy.readthedocs.io/en/latest/
http://simpype.readthedocs.io/en/latest/
https://github.com/Mallets/SimPype
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4. When the resource becomes available, the message is dequeued from the pipe;
5. The message is served by the resource;
6. The message leaves the resource after a random service time and is sent to the next resource

(if any) - Go to step 3.
Any simulation step can be customised as desired. SimPype also provides a built-in logging
system for your simulation that automatically logs the simulation steps 3, 4, and 5. Please refer to
Chapter A.2 for more information on the logging system.

A.1 A simple simulation
To build a SimPype simulation, you simply need a console environment and a text editor. Write the
following block of code into a text file, e.g., simple.py.

1 # [ Mandatory ] Imp or t SimPype module
2 import s impype
3 import random
4 # [ Mandatory ] Cre a t e a SimPype s i m u l a t i o n o b j e c t
5 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
6 # [ Mandatory ] Add a t l e a s t one g e n e r a t o r t o t h e s i m u l a t i o n
7 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
8 gen0 . random [ ’ a r r i v a l ’ ] = {
9 0 : lambda : random . e x p o v a r i a t e ( 2 . 0 )

10 }
11 # [ Mandatory ] Add a t l e a s t one r e s o u r c e t o t h e s i m u l a t i o n
12 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
13 # [ Mandatory ] A s s i g n a s e r v i c e t i m e
14 r e s 0 . random [ ’ s e r v i c e ’ ] = {
15 0 : lambda : random . e x p o v a r i a t e ( 3 . 0 )
16 }
17 # [ Mandatory ] Add a p i p e l i n e c o n n e c t i n g t h e g e n e r a t o r t o t h e
18 # r e s o u r c e
19 p0 = sim . a d d _ p i p e l i n e ( gen0 , r e s 0 )
20 # [ Mandatory ] Run t h e s i m u l a t i o n , e . g . , u n t i l t =5
21 # sim . run c a l l s Simpy ’ s env . run
22 # Any args pas se d t o sim . run i s t h e n pa s se d t o env . run
23 sim . run ( u n t i l = 5 )

Now run the simulation by typing the following command in the console:

1 $ python3 s i m p l e . py

SimPype automatically logs the simulation results and its format is described in Chapter A.2. Please
note that SimPype does not provide any tools for parsing and visualising the log data. Nevertheless,
this data format is well-suited for being directly processed by data manipulation tools like pandas4

for python or tidyverse5 for R.

A.2 Logging system
SimPype automatically logs the simulation results in a log directory having the following structure
in case of the simulation presented in Chapter A.1:

1 <working d i r e c t o r y >
2 |−− s i m p l e . py
3 |−− l o g
4 |−− s i m p l e

4 Pandas: https://pandas.pydata.org/
5 Tidyverse: https://www.tidyverse.org/

https://pandas.pydata.org/
https://www.tidyverse.org/
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5 |−− < s i m u l a t i o n d a t e i . e . ’2017−06−05 10 :31 :30 .512772 ’ >
6 |−− sim . c f g
7 ‘−− sim . l o g

sim.cfg contains information about the simulation environment and has the following format:

1 S i m u l a t i o n Seed : 1369068917606710528
2 S i m u l a t i o n Time : 5 .000000000
3 E x e c u t i o n Time : 0 .003524998

The built-in system produces the logs in a tidy format where each variable is saved in its own
column and each observation is saved in its own row. Therefore, sim.log contains the log of the
simulation events and looks like:

1 t imes tamp , message , seq_num , r e s o u r c e , e v e n t
2 0 .000000000 , gen0 , 0 , r e s0 , p i p e . i n
3 0 .000000000 , gen0 , 0 , r e s0 , p i p e . o u t
4 0 .252555552 , gen0 , 0 , r e s0 , r e s o u r c e . s e r v e
5 0 .722431377 , gen0 , 1 , r e s0 , p i p e . i n
6 0 .722431377 , gen0 , 1 , r e s0 , p i p e . o u t
7 0 .869881996 , gen0 , 1 , r e s0 , r e s o u r c e . s e r v e
8 1 .413266674 , gen0 , 2 , r e s0 , p i p e . i n
9 1 .413266674 , gen0 , 2 , r e s0 , p i p e . o u t

10 1 .478382544 , gen0 , 2 , r e s0 , r e s o u r c e . s e r v e
11 2 .833221707 , gen0 , 3 , r e s0 , p i p e . i n
12 2 .833221707 , gen0 , 3 , r e s0 , p i p e . o u t
13 3 .117096444 , gen0 , 3 , r e s0 , r e s o u r c e . s e r v e
14 3 .455033536 , gen0 , 4 , r e s0 , p i p e . i n
15 3 .455033536 , gen0 , 4 , r e s0 , p i p e . o u t
16 4 .174690658 , gen0 , 5 , r e s0 , p i p e . i n
17 4 .301555284 , gen0 , 6 , r e s0 , p i p e . i n
18 4 .587560103 , gen0 , 4 , r e s0 , r e s o u r c e . s e r v e
19 4 .587560103 , gen0 , 5 , r e s0 , p i p e . o u t
20 4 .898210753 , gen0 , 5 , r e s0 , r e s o u r c e . s e r v e
21 4 .898210753 , gen0 , 6 , r e s0 , p i p e . o u t
22 4 .975600594 , gen0 , 6 , r e s0 , r e s o u r c e . s e r v e

Let’s analyse the first three log entries:

1 t imes tamp , message , seq_num , r e s o u r c e , e v e n t
2 0 .000000000 , gen0 , 0 , r e s0 , p i p e . i n

A message with id gen0 and sequence number 0 has been enqueued to the pipe of resource res0 in
the queue default at simulation time 0.000000000.

1 t imes tamp , message , seq_num , r e s o u r c e , e v e n t
2 0 .000000000 , gen0 , 0 , r e s0 , p i p e . o u t

The message with id gen0 and sequence number 0 has been dequeued from the pipe of resource
res0 and queue default at simulation time 0.000000000. This means that the resource was available
as soon as the message reached the resource. Therefore, the time spent waiting in the pipe was 0.

1 t imes tamp , message , seq_num , r e s o u r c e , e v e n t
2 0 .252555552 , gen0 , 0 , r e s0 , r e s o u r c e . s e r v e

The resource res0 served the message with id gen0 and sequence number 0 at simulation time
0.252555552.
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Change log directory
You can change the default log directory by setting the following variable in the simulation
environment:

1 import s impype
2 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
3 sim . l o g . d i r = ’<your p r e f e r r e d d i r > ’

Please make sure you have writing permissions to <your preferred dir>.

Log custom message properties
You can configure SimPype’s logger to log any additional message properties as you wish by calling
the following function in the simulation environment:

1 import s impype
2 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
3 sim . l o g . property ( ’ t e s t ’ )
4 gen0 . message . property [ ’ t e s t ’ ] = { 0 : lambda : 1}

sim.log file now has a column containing the value of test message property:

1 t imes tamp , message , seq_num , r e s o u r c e , even t , t e s t
2 0 .000000000 , gen0 , 0 , r e s0 , p i p e . in , 1

If a message does not have the custom property, SimPype logs NA instead.

Print the logs
If you prefer to print the logs instead of storing them in a file, you can do it by setting the following
variables in the simulation environment:

1 import s impype
2 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
3 sim . l o g . f i l e = F a l s e
4 sim . l o g . p r i n t = True

A.3 Pipeline
Pipelines allow to arbitrarily interconnect generators and resources by chaining them. Messages
belonging to a pipeline automatically flow from a resource to another without the need of explicitly
defining the hops. Please note that a generator (and their messages) belong only to a single pipeline.
If multiple pipelines are needed simultaneously, they need to be merged first. See Branching
pipeline in the following for more details.

Single pipeline
Let’s start with a simulation where messages are generated by Generator#0 and are served by
Resource #0 and Resource #1.

1 | G e n e r a t o r # 0 | −> | Resource # 0 | −> | Resource # 1 |

The SimPype code would hence be:

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i n g l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . random [ ’ a r r i v a l ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 1 . 0 ) }
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6 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
7 r e s 0 . random [ ’ s e r v i c e ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 2 . 0 ) }
8 r e s 1 = sim . a d d _ r e s o u r c e ( id = ’ r e s 1 ’ )
9 r e s 1 . random [ ’ s e r v i c e ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 2 . 0 ) }

10 p0 = sim . a d d _ p i p e l i n e ( gen0 , r e s0 , r e s 1 )
11 sim . run ( u n t i l = 5 )

Overlapping pipelines
Now let’s continue with a simulation scenarios like the following:

1 | G e n e r a t o r # 0 | −\ /−> | Resource # 1 |
2 )−> | Resource # 0 | −(
3 | G e n e r a t o r # 1 | −/ \−> | Resource # 2 |

In this scenario we want to reproduce the following interconnection:

1 | G e n e r a t o r # 0 | −> | Resource # 0 | −> | Resource # 1 |
2
3 | G e n e r a t o r # 1 | −> | Resource # 0 | −> | Resource # 2 |

As it can be noticed, there are two distinct paths/pipelines that overlap at Resource#0. However, any
messages generated by Generator #0 should end to Resource #1. Similarly, any messages generated
by Generator #1 should end to Resource #2. In this scenario, Resource#0 is hence shared between
the two pipelines. The SimPype code would hence be:

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ o v e r l a p ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . random [ ’ a r r i v a l ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 1 . 0 ) }
6 gen1 = sim . a d d _ g e n e r a t o r ( id = ’ gen1 ’ )
7 gen1 . random [ ’ a r r i v a l ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 1 . 0 ) }
8 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
9 r e s 0 . random [ ’ s e r v i c e ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 4 . 0 ) }

10 r e s 1 = sim . a d d _ r e s o u r c e ( id = ’ r e s 1 ’ )
11 r e s 1 . random [ ’ s e r v i c e ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 2 . 0 ) }
12 r e s 2 = sim . a d d _ r e s o u r c e ( id = ’ r e s 2 ’ )
13 r e s 2 . random [ ’ s e r v i c e ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 2 . 0 ) }
14 p0 = sim . a d d _ p i p e l i n e ( gen0 , r e s0 , r e s 1 )
15 p1 = sim . a d d _ p i p e l i n e ( gen1 , r e s0 , r e s 2 )
16 sim . run ( u n t i l = 2 . 5 )

Branching pipeline
Now let’s continue with a pipeline having a branching point with one generator and three resources:

1 /−> | Resource \ # 1 |
2 | G e n e r a t o r \ # 0 | −> | Resource \ # 0 | −(
3 \−> | Resource \ # 2 |

There are two possible options at this stage:
1. Serve a copy of the same message to both Resource #1 and Resource #2;
2. Either serve a message to Resource#1 or to Resource #2. Please refer to Chapter A.5 to

understand how the next hop of the messages can be dynamically changed.
In case of serving a copy of the same message to both Resource #1 and Resource #2, the

SimPype code would hence be:
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1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i n g l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . random [ ’ a r r i v a l ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 1 . 0 ) }
6 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
7 r e s 0 . random [ ’ s e r v i c e ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 2 . 0 ) }
8 r e s 1 = sim . a d d _ r e s o u r c e ( id = ’ r e s 1 ’ )
9 r e s 1 . random [ ’ s e r v i c e ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 2 . 0 ) }

10 r e s 2 = sim . a d d _ r e s o u r c e ( id = ’ r e s 2 ’ )
11 r e s 2 . random [ ’ s e r v i c e ’ ] = { 0 : lambda : random . e x p o v a r i a t e ( 2 . 0 ) }
12 p0 = sim . a d d _ p i p e l i n e ( gen0 , r e s0 , r e s 1 )
13 p1 = sim . a d d _ p i p e l i n e ( gen0 , r e s0 , r e s 2 )
14 pM = sim . m e r g e _ p i p e l i n e ( p0 , p1 )
15 sim . run ( u n t i l = 5 )

Please note the use of merge_pipeline(). This function merges multiple pipelines into a single one,
thus creating the branching point. Without calling the merge_pipeline() function, the only active
pipeline would have been p1.

A.4 Random variables
SimPype comes with a custom random variable generation system that allows you to generate
random values according to different random distributions depending on the current simulation
time.

1 i m p o r t s impype
2 sim = simpype . S i m u l a t i o n ( i d = ’ t e s t ’ )
3 myrand = simpype . Random ( sim , {
4 i n i t i a l _ t i m e : l a m b d a _ f u n c t i o n
5 . . .
6 } )

Where each dictionary element is so defined:
– initial_time is the element key and must be of int or float type. It represents the initial

simulation time at which the lambda_function is invoked;
– lambda_function is the element value. It is mandatory that for the value to be a lambda

function. Such function must return a value, usually a int or a float;
An example of random variable initialisation is the following:

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ t e s t ’ )
4 myrand = simpype . Random ( sim , {
5 # From t =0 t o t =10 , t h e random v a r i a b l e r e t u r n s
6 # t h e c o n s t a n t v a l u e o f 3 . 0
7 0 : lambda : 3 . 0 ,
8 # From t =10 t o t =20 , t h e random v a r i a b l e r e t u r n s
9 # v a l u e u n i f o r m l y d i s t r i b u t e d be tween 2 . 5 and 3 . 5

10 1 0 : lambda : random . un i fo rm ( 2 . 5 , 3 . 5 ) ,
11 # From t =20 t o t=i n f , t h e random v a r i a b l e r e t u r n s
12 # a v a l u e e x p o n e n t i a l l y d i s t r i b u t e d w i t h lambda 0 . 2 0
13 2 0 : lambda : random . e x p o v a r i a t e ( 0 . 2 0 )
14 } )

To generate a random value:

1 # S i m u l a t i o n t i m e = 5 . 0
2 random_value = myrand . v a l u e # random_value = 3 . 0
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3 . . .
4 # S i m u l a t i o n t i m e = 1 5 . 0
5 random_value = myrand . v a l u e # random_value = 3.2476115513945767
6 . . .
7 # S i m u l a t i o n t i m e = 2 5 . 0
8 random_value = myrand . v a l u e # random_value = 7.374759019459148

As it can be noticed, depending on the current simulation myrand.value returns a random value
according to a different random distribution.

Generator arrival time
The arrival time of a generator is described with a Random variable.

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 # S t a r t g e n e r a t i n g e v e n t s a t a random s i m u l a t i o n t i m e
6 gen0 . random [ ’ a r r i v a l ’ ] = {
7 # From t =0 t o t =10 , t h e a r r i v a l t i m e i s c o n s t a n t t o 3 . 0
8 0 : lambda : 3 . 0 ,
9 # From t =10 t o t =20 , t h e a r r i v a l t i m e i s u n i f o r m l y d i s t r i b u t e d

10 # be tween 2 . 5 and 3 . 5
11 1 0 : lambda : random . un i fo rm ( 2 . 5 , 3 . 5 ) ,
12 # From t =20 t o t=i n f , t h e a r r i v a l t i m e i s e x p o n e n t i a l l y
13 # d i s t r i b u t e d w i t h lambda 0 . 2 0
14 2 0 : lambda : random . e x p o v a r i a t e ( 0 . 2 0 )
15 }

Please note that in this case there is no need of calling the simpype.Random constructor. The
generator object automatically converts the dictionary into a Random object.

Resource service time
The service time of a resource is described with a Random variable.

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
5 r e s 0 . random [ ’ a r r i v a l ’ ] = {
6 # From t =0 t o t =10 , t h e s e r v i c e t i m e i s c o n s t a n t t o 3 . 0
7 0 : lambda : 3 . 0 ,
8 # From t =10 t o t =20 , t h e s e r v i c e t i m e i s u n i f o r m l y d i s t r i b u t e d
9 # be tween 2 . 5 and 3 . 5

10 1 0 : lambda : random . un i fo rm ( 2 . 5 , 3 . 5 ) ,
11 # From t =20 t o t=i n f , t h e s e r v i c e t i m e i s e x p o n e n t i a l l y
12 # d i s t r i b u t e d w i t h lambda 0 . 2 0
13 2 0 : lambda : random . e x p o v a r i a t e ( 0 . 2 0 )
14 }

Please note that in this case there is no need of calling the simpype.Random constructor. The
resource object automatically converts the dictionary into a Random object.

Message property
A message property can be described with a a Random variable.

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
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5 gen0 . message . property [ ’ t e s t ’ ] = {
6 # Every message g e n e r a t e d be tween t =0 and t =10 w i l l have t h e
7 # ’ t e s t ’ p r o p e r t y v a l u e e q u a l t o 3 . 0
8 0 : lambda : 3 . 0 ,
9 # Every message g e n e r a t e d be tween t =10 and t =20 w i l l have t h e

10 # ’ t e s t ’ p r o p e r t y u n i f o r m l y d i s t r i b u t e d be tween 2 . 5 and 3 . 5
11 1 0 : lambda : random . un i fo rm ( 2 . 5 , 3 . 5 ) ,
12 # Every message g e n e r a t e d be tween t =20 and t= i n f w i l l have t h e
13 # ’ t e s t ’ p r o p e r t y e x p o n e n t i a l l y d i s t r i b u t e d w i t h lambda 0 . 2 0
14 2 0 : lambda : random . e x p o v a r i a t e ( 0 . 2 0 )
15 }

Please note that in this case there is no need of calling the simpype.Random constructor. The
message object automatically converts the dictionary into a Random object. Please also note that
property values can be randomly generated. Nevertheless, once they are generated, they will always
return the same value unless an explicit refresh is called:

1 message . property [ ’ t e s t ’ ] . r e f r e s h ( )

A.5 Message
Messages are the units processed by the resources and can store arbitrary information, called
properties in SimPype. Message properties can be of any values, including Random objects (see
Chapter A.4).

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . message . property [ ’ r a n d _ p r o p ’ ] = {
6 # Every message g e n e r a t e d be tween t =0 and t =10 w i l l have
7 # t h e ’ t e s t ’ p r o p e r t y v a l u e e q u a l t o 3 . 0
8 0 : lambda : 3 . 0 ,
9 # Every message g e n e r a t e d be tween t =10 and t =20 w i l l have

10 # t h e ’ t e s t ’ p r o p e r t y u n i f o r m l y d i s t r i b u t e d be tween 2 . 5 and 3 . 5
11 1 0 : lambda : random . un i fo rm ( 2 . 5 , 3 . 5 ) ,
12 # Every message g e n e r a t e d be tween t =20 and t= i n f w i l l have
13 # t h e ’ t e s t ’ p r o p e r t y e x p o n e n t i a l l y d i s t r i b u t e d w i t h lambda 0 . 2 0
14 2 0 : lambda : random . e x p o v a r i a t e ( 0 . 2 0 )
15 }
16 # S t o r e t h e p r o p e r t y as normal d i c t i o n a r y i f
17 # no lambda f u n c t i o n i s p r e s e n t
18 gen0 . message . property [ ’ d i c t _ p r o p ’ ] = {
19 ’ a ’ : ’ a v a l u e ’ ,
20 ’ b ’ : ’ b v a l u e ’ ,
21 }
22 gen0 . message . property [ ’ s t r _ p r o p ’ ] = ’ mys t r ’
23 gen0 . message . property [ ’ i n t _ p r o p ’ ] = 3
24 gen0 . message . property [ ’ f l o a t _ p r o p ’ ] = 3 . 0
25 # You can a l s o s t o r e o b j e c t s
26 e = sim . env . e v e n t ( )
27 gen0 . message . property [ ’ e v e n t _ p r o p ’ ] = e

Please note that in this case there is no need of calling the simpype.Random constructor. The
message object automatically converts the dictionary into a Random object. Please also note that
property values can be randomly generated, nevertheless once they are generated they will always
return the same value unless an explicit refresh is called:
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1 message . property [ ’ t e s t ’ ] . r e f r e s h ( )

Drop
A message can be suddenly dropped by calling the function drop():

1 message . drop ( id = ’ bad l u c k ’ )

In addition, a message can be dropped upon the occurence of a given event:

1 # C re a t e a SimPy e v e n t
2 e = sim . env . e v e n t ( )
3 # S u b s c r i b e t h e d r o p p in g o f t h e message t o t h e e v e n t e
4 message . drop ( id = ’ e v e n t bad l u c k ’ , e v e n t = e )
5 # T r i g g e r t h e e v e n t
6 e . s u c c e e d ( )
7 # The message has now been dropped

The message is dropped only when the event e is triggered, that is succeed in SimPy notation.

Lifetime
A lifetime can be assigned to generated messages in the following way:

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . message . property [ ’ l i f e t i m e ’ ] = {
6 0 : lambda : random . e x p o v a r i a t e ( 0 . 2 0 )
7 }

The message is dropped when the lifetime expires. To remove any lifetime from the message, use
the following function:

1 message . u n s u b s c r i b e ( id = ’ l i f e t i m e ’ )

Event subscription
A message can be subscribed to a given event and a custom function can be executed upong event
triggering, e.g.:

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
6 r e s 1 = sim . a d d _ r e s o u r c e ( id = ’ r e s 1 ’ )
7
8 e = sim . env . e v e n t ( )
9 def c ( message , v a l u e ) :

10 # Value o f t h e e v e n t , e . g . ’OK’
11 message . property [ ’ myevent ’ ] = v a l u e
12
13 @simpype . r e s o u r c e . s e r v i c e ( r e s 0 )
14 def s e r v i c e ( s e l f , message ) :
15 g l o b a l e
16 # T r i g g e r t h e e v e n t
17 e . s u c c e e d ( v a l u e = ’OK’ )
18 e = sim . env . e v e n t ( )
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19
20 @simpype . r e s o u r c e . s e r v i c e ( r e s 1 )
21 def s e r v i c e ( s e l f , message ) :
22 # U n s u b s c r i b e from t h e e v e n t
23 message . u n s u b s c r i b e ( id = ’ mysub ’ )
24
25 gen0 . message . s u b s c r i b e ( e v e n t = e , c a l l b a c k = c , id = ’ mysub ’ )

The callback function must be defined according to the following format:

1 def c a l l b a c k ( message , v a l u e ) :
2 . . . your code h e r e . . .

Next hop
Let’s assume we have a simulation scenario like the following:

1 /−> | Resource # 0 |
2 | G e n e r a t o r # 0 | −> | S p l i t t e r | −(
3 \−> | Resource # 1 | −> | Resource # 2 |

Messages can be either go to Resource #0 or to Resource #1 depending on Splitter decision. In this
example, messages with even sequence number are sent to Resource #0 while messages with odd
sequence number are sent to Resource #1 and next to Resource #2. To achieve this, the next hop
of a message can be dynamically changed by setting the message next variable. text admits both
Resource and Pipeline objects as values.

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ n e x t ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen ’ )
5 gen0 . random [ ’ a r r i v a l ’ ] = { 0 : lambda : 1 . 0 }
6 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
7 r e s 1 = sim . a d d _ r e s o u r c e ( id = ’ r e s 1 ’ )
8 r e s 2 = sim . a d d _ r e s o u r c e ( id = ’ r e s 2 ’ )
9 s p l i t t e r = sim . a d d _ r e s o u r c e ( id = ’ s p l i t t e r ’ )

10 p0 = sim . a d d _ p i p e l i n e ( gen0 , s p l i t t e r )
11 p1a = sim . a d d _ p i p e l i n e ( s p l i t t e r , r e s 0 )
12 p1b = sim . a d d _ p i p e l i n e ( r e s1 , r e s 2 )
13 p2 = sim . a d d _ p i p e l i n e ( s p l i t t e r , p1b )
14 pM = sim . m e r g e _ p i p e l i n e ( p0 , p1a , p1b , p2 )
15
16 # Change n e x t
17 @simpype . r e s o u r c e . s e r v i c e ( s p l i t t e r )
18 def s e r v i c e ( s e l f , message ) :
19 y i e l d s e l f . env . t i m e o u t ( 1 . 0 )
20 i f message . seq_num % 2 == 0 :
21 message . next = r e s 0
22 e l s e :
23 message . next = p1b
24
25 sim . run ( u n t i l = 10)

A.6 Resource
The resource behaviour can be customised in case of more complex operations are needed in addition
to the simple random generated service time. To that end, the decorator @simpype.resource.service
can be used. There are two ways of customising the behaviour of your resource:
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Work directly on the simulation scenario and perform an in-line customisation; Create a resource
model to be included in the simulation scenario. Either approaches are valid, however in-line
customisation is more suited for small customisations while resource model is more suited for
larger customisations and code re-usability (the same model can be imported multiple times in
different simulations).

In-line customisation
In this example, the service time of the resource also depends on the message property value wait.

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . message . property [ ’ w a i t ’ ] = {
6 0 : lambda : random . un i fo rm ( 0 , 1 )
7 }
8 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
9 r e s 0 . random [ ’ s e r v i c e ’ ] = {

10 0 : lambda : 2 . 0
11 }
12
13 @simpype . r e s o u r c e . s e r v i c e ( r e s 0 )
14 def s e r v i c e ( s e l f , message ) :
15 # Wait f o r a random t i m e
16 y i e l d s e l f . env . t i m e o u t ( s e l f . random [ ’ s e r v i c e ’ ] )
17 # Wait f o r a t i m e as r e p o r t e d i n t h e message p r o p e r t y
18 y i e l d s e l f . env . t i m e o u t ( message . property [ ’ w a i t ’ ] . v a l u e )
19
20 sim . run ( u n t i l = 10)

Custom model
Alternatively, a separate resource model can be created to implement the same resource behaviour:
Edit myresource.py with a text editor and create a resource model as follows:

1 import s impype
2
3 c l a s s MyResource ( s impype . Resource ) :
4 def _ _ i n i t _ _ ( s e l f , sim , id , c a p a c i t y = 1 , p i p e = None ) :
5 super ( ) . _ _ i n i t _ _ ( sim , id , c a p a c i t y , p i p e )
6
7 @simpype . r e s o u r c e . s e r v i c e
8 def s e r v i c e ( s e l f , message ) :
9 # Wait f o r a random t i m e

10 y i e l d s e l f . env . t i m e o u t ( s e l f . random [ ’ s e r v i c e ’ ] )
11 # Wait f o r a t i m e as r e p o r t e d i n t h e message p r o p e r t y
12 y i e l d s e l f . env . t i m e o u t ( message . property [ ’ w a i t ’ ] . v a l u e )
13
14 # Do NOT remove . T h i s i s r e q u i r e d f o r SimPype t o b u i l d your model .
15 r e s o u r c e = lambda ∗ a r g s : MyResource (∗ a r g s )

Create your simulation scenario including the new model:

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . message . property [ ’ w a i t ’ ] = {
6 0 : lambda : random . un i fo rm ( 0 , 1 )
7 }
8 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ , model = ’ myresource ’ )
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9 r e s 0 . random [ ’ s e r v i c e ’ ] = {
10 0 : lambda : 2 . 0
11 }
12 sim . run ( u n t i l = 10)

Make sure that the file and directory structure is the following:

1 <working d i r e c t o r y >
2 |−− s i m p l e . py
3 |−− myresource . py

If you want to change the directory where SimPype looks for custom models, set the following
variable in the simulation environment:

1 i m p o r t s impype
2 sim = simpype . S i m u l a t i o n ( i d = ’ s imple ’ )
3 sim . model . d i r = ’< your model d i r > ’

Please make sure you have reading permissions for <your model dir>. In this case, the file and
directory structure would look like:

1 <working d i r e c t o r y >
2 |−− s i m p l e . py
3 <your model d i r >
4 |−− myresource . py

A.7 Pipe
The pipe behaviour of a given resource can be customised in case of more complex queueing
operations are needed in addition to the simple FIFO discipline. To that end, multiple queues can
be added to the pipe and two decorators can be used to determine the enqueueing and dequeueing
behaviour of the pipe. The two decorators are @simpype.pipe.enqueue and @simpype.pipe.dequeue.
There are two ways of customising the behaviour of a pipe:

– Work directly on the simulation scenario and perform an in-line customisation;
– Create a pipe model to be included in the simulation scenario.

Either approaches are valid, however in-line customisation is more suited for small customisations
while pipe model is more suited for larger customisations and code re-usability (the same model
can be imported multiple times in different simulations).

In-line customisation
In this example, a priority queue with two service classes is implemented.

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . message . property [ ’ p r i o r i t y ’ ] = {
6 0 : lambda : random . r a n d i n t ( 0 , 1 )
7 }
8 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
9 r e s 0 . p i p e . add_queue ( ’ s low ’ )

10 r e s 0 . p i p e . add_queue ( ’ f a s t ’ )
11 r e s 0 . random [ ’ s e r v i c e ’ ] = {
12 0 : lambda : 2 . 0
13 }
14
15 @simpype . p i p e . enqueue ( r e s 0 . p i p e )
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16 def enqueue ( s e l f , message ) :
17 i f message . property [ ’ p r i o r i t y ’ ] == 0 :
18 re turn s e l f . queue [ ’ s low ’ ] . push ( message )
19 e l i f message . property [ ’ p r i o r i t y ’ ] == 1 :
20 re turn s e l f . queue [ ’ f a s t ’ ] . push ( message )
21 e l s e :
22 re turn message . drop ( ’ u n s u p p o r t e d p r i o r i t y ’ )
23
24 @simpype . p i p e . dequeue ( r e s 0 . p i p e )
25 def dequeue ( s e l f ) :
26 i f l e n ( s e l f . queue [ ’ f a s t ’ ] ) > 0 :
27 re turn s e l f . queue [ ’ f a s t ’ ] . pop ( )
28 e l i f l e n ( s e l f . queue [ ’ s low ’ ] ) > 0 :
29 re turn s e l f . queue [ ’ s low ’ ] . pop ( )
30 e l s e
31 re turn None
32
33 sim . run ( u n t i l = 10)

Custom model
Alternatively, a separate pipe model can be created to implement the same pipe behaviour. Edit
mypipe.py with a text editor and create a pipe model as follows:

1 import s impype
2
3 c l a s s MyPipe ( s impype . P ipe ) :
4 def _ _ i n i t _ _ ( s e l f , sim , r e s o u r c e , id ) :
5 super ( ) . _ _ i n i t _ _ ( sim , r e s o u r c e , id )
6 s e l f . add_queue ( id = ’ slow ’ )
7 s e l f . add_queue ( id = ’ f a s t ’ )
8
9 @simpype . p i p e . enqueue

10 def enqueue ( s e l f , message ) :
11 i f message . property [ ’ p r i o r i t y ’ ] == 0 :
12 re turn s e l f . queue [ ’ s low ’ ] . push ( message )
13 e l i f message . property [ ’ p r i o r i t y ’ ] == 1 :
14 re turn s e l f . queue [ ’ f a s t ’ ] . push ( message )
15 e l s e :
16 re turn message . drop ( ’ u n s u p p o r t e d p r i o r i t y ’ )
17
18 @simpype . p i p e . dequeue
19 def dequeue ( s e l f ) :
20 i f l e n ( s e l f . queue [ ’ f a s t ’ ] ) > 0 :
21 re turn s e l f . queue [ ’ f a s t ’ ] . pop ( )
22 e l i f l e n ( s e l f . queue [ ’ s low ’ ] ) > 0 :
23 re turn s e l f . queue [ ’ s low ’ ] . pop ( )
24 e l s e
25 re turn None
26
27 # Do NOT remove . T h i s i s r e q u i r e d f o r SimPype t o b u i l d your model .
28 p i p e = lambda ∗ a r g s : MyPipe (∗ a r g s )

Create the simulation scenario including the new model:

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . message . property [ ’ p r i o r i t y ’ ] = {
6 0 : lambda : random . r a n d i n t ( 0 , 1 )
7 }
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8 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ , p i p e = ’ mypipe ’ )
9 r e s 0 . random [ ’ s e r v i c e ’ ] = {

10 0 : lambda : 2 . 0
11 }
12 sim . run ( u n t i l = 10)

Make sure that the file and directory structure is the following:

1 <working d i r e c t o r y >
2 |−− s i m p l e . py
3 |−− mypipe . py

If you want to change the directory where SimPype looks for custom models, set the following
variable in the simulation environment:

1 import s impype
2 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
3 sim . model . d i r = ’<your model d i r > ’

Please make sure you have reading permissions for <your model dir>. In this case, the file and
directory structure would look like:

1 <working d i r e c t o r y >
2 |−− s i m p l e . py
3 <your model d i r >
4 |−− mypipe . py

A.8 Queue
The queue behaviour of a given pipe can be customised in case of more complex queueing operations
are needed in addition to the simple FIFO buffer. To that end, two decorators can be used to
determine the push and pop behaviour of the queue. The two decorators are @simpype.queue.push
and @simpype.queue.pop. There are two ways of customising the behaviour of a queue:

– Work directly on the simulation scenario and perform an in-line customisation;
– Create a queue model to be included in the simulation scenario through a custom pipe model.

Either approaches are valid, however in-line customisation is more suited for small customisations
while queue model is more suited for larger customisation and code re-usability (the same model
can be imported multiple times in different simulations).

In-line customisation
In this example, a LIFO discipline is implemented.

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . message . property [ ’ p r i o r i t y ’ ] = {
6 0 : lambda : random . r a n d i n t ( 0 , 1 )
7 }
8 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ )
9 r e s 0 . p i p e . add_queue ( id = ’ l i f o ’ )

10 r e s 0 . random [ ’ s e r v i c e ’ ] = {
11 0 : lambda : 2 . 0
12 }
13
14 @simpype . p i p e . enqueue ( r e s 0 . p i p e )
15 def enqueue ( s e l f , message ) :
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16 re turn s e l f . queue [ ’ l i f o ’ ] . push ( message )
17
18 @simpype . p i p e . dequeue ( r e s 0 . p i p e )
19 def dequeue ( s e l f ) :
20 re turn s e l f . queue [ ’ l i f o ’ ] . pop ( )
21
22 @simpype . queue . push ( r e s 0 . p i p e . queue [ ’ l i f o ’ ] )
23 def push ( s e l f , message ) :
24 re turn s e l f . b u f f e r . append ( message )
25
26 @simpype . queue . pop ( r e s 0 . p i p e . queue [ ’ l i f o ’ ] )
27 def pop ( s e l f ) :
28 re turn s e l f . b u f f e r . pop (−1)
29
30 sim . run ( u n t i l = 10)

Custom model
Alternatively, a separate pipe model and queue model can be created to implement the same
discipline. Edit mylifo.py with a text editor and create a pipe model as follows:

1 import s impype
2
3 c l a s s MyQueue ( s impype . Queue ) :
4 def _ _ i n i t _ _ ( s e l f , sim , p ipe , id ) :
5 super ( ) . _ _ i n i t _ _ ( sim , p ipe , id )
6
7 @simpype . queue . push
8 def push ( s e l f , message ) :
9 re turn s e l f . b u f f e r . append ( message )

10
11 @simpype . queue . pop
12 def pop ( s e l f ) :
13 re turn s e l f . b u f f e r . pop (−1)
14
15 c l a s s MyPipe ( s impype . P ipe ) :
16 def _ _ i n i t _ _ ( s e l f , sim , r e s o u r c e , id ) :
17 super ( ) . _ _ i n i t _ _ ( sim , r e s o u r c e , id )
18 s e l f . add_queue ( id = ’ l i f o ’ , model = ’ m y l i f o ’ )
19
20 @simpype . p i p e . enqueue
21 def enqueue ( s e l f , message ) :
22 re turn s e l f . queue [ ’ l i f o ’ ] . push ( message )
23
24 @simpype . p i p e . dequeue
25 def dequeue ( s e l f ) :
26 re turn s e l f . queue [ ’ l i f o ’ ] . pop ( )
27
28 # Do NOT remove . T h i s i s r e q u i r e d f o r SimPype t o b u i l d your model .
29 queue = lambda ∗ a r g s : MyQueue (∗ a r g s )
30 p i p e = lambda ∗ a r g s : MyPipe (∗ a r g s )

Create your simulation scenario including the new model:

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
4 gen0 = sim . a d d _ g e n e r a t o r ( id = ’ gen0 ’ )
5 gen0 . message . property [ ’ p r i o r i t y ’ ] = {
6 0 : lambda : random . r a n d i n t ( 0 , 1 )
7 }
8 r e s 0 = sim . a d d _ r e s o u r c e ( id = ’ r e s 0 ’ , p i p e = ’ m y l i f o ’ )
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9 r e s 0 . random [ ’ s e r v i c e ’ ] = {
10 0 : lambda : 2 . 0
11 }
12 sim . run ( u n t i l = 10)

Make sure that the file and directory structure is the following:

1 <working d i r e c t o r y >
2 |−− s i m p l e . py
3 |−− m y l i f o . py

If you want to change the directory where SimPype looks for custom models, set the following
variable in the simulation environment:

1 import s impype
2 sim = simpype . S i m u l a t i o n ( id = ’ s i m p l e ’ )
3 sim . model . d i r = ’<your model d i r > ’

Please make sure you have reading permissions for <your model dir>. In this case, the file and
directory structure would look like:

1 <working d i r e c t o r y >
2 |−− s i m p l e . py
3 <your model d i r >
4 |−− m y l i f o . py

A.9 A simulation with priority queues
This simulation models a boarding gate for a flight with three separate classes: first, business, and
economy:

1 | F i r s t c l a s s |−−−−−\
2 | B u s i n e s s c l a s s |−−−+−> | Board ing g a t e |
3 | Economy c l a s s |−−−/

Boarding priority is given to the different classes according to the following order:
1. first class
2. business class
3. economy class

With first class having the highest priority and economy class having the lowest.

1 import s impype
2 import random
3 sim = simpype . S i m u l a t i o n ( id = ’ b o a r d i n g ’ )
4 # C re a t e a g e n e r a t o r
5 f i r s t = sim . a d d _ g e n e r a t o r ( id = ’ f i r s t ’ )
6 f i r s t . t o _ s e n d = 12
7 # A s s i g n an a r r i v a l t i m e
8 f i r s t . random [ ’ a r r i v a l ’ ] = {
9 0 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 9 0 0 ) ,

10 1800 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 30)
11 }
12 # C re a t e a g e n e r a t o r
13 b u s i n e s s = sim . a d d _ g e n e r a t o r ( id = ’ b u s i n e s s ’ )
14 b u s i n e s s . t o _ s e n d = 24
15 # A s s i g n an a r r i v a l t i m e
16 b u s i n e s s . random [ ’ a r r i v a l ’ ] = {
17 0 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 4 5 0 ) ,
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18 900 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 6 0 ) ,
19 1800 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 3 0 ) ,
20 }
21 # C re a t e a g e n e r a t o r
22 economy = sim . a d d _ g e n e r a t o r ( id = ’ economy ’ )
23 economy . t o _ s e n d = 160
24 # A s s i g n an a r r i v a l t i m e
25 economy . random [ ’ a r r i v a l ’ ] = {
26 0 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 6 0 ) ,
27 600 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 3 0 ) ,
28 1200 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 1 0 ) ,
29 }
30 # Add a r e s o u r c e
31 g a t e = sim . a d d _ r e s o u r c e ( id = ’ g a t e ’ , p i p e = ’ p _ p r i o r i t y ’ )
32 g a t e . random [ ’ s e r v i c e ’ ] = {
33 # The g a t e opens 30 mins from t h e s i m u l a t i o n s t a r t
34 # Check b o a r d i n g pas s and p a s s p o r t t a k e s ~10 s
35 1800 : lambda : random . e x p o v a r i a t e ( 1 . 0 / 10)
36 }
37 # Add a p i p e l i n e c o n n e c t i n g t h e g e n e r a t o r t o t h e r e s o u r c e
38 p0 = sim . a d d _ p i p e l i n e ( f i r s t , g a t e )
39 p1 = sim . a d d _ p i p e l i n e ( b u s i n e s s , g a t e )
40 p2 = sim . a d d _ p i p e l i n e ( economy , g a t e )
41 # Run t h e s i m u l a t i o n
42 sim . run ( )

Where the pipe model p_priority is so implemented:

1 import s impype
2
3 c l a s s P r i o r i t y ( s impype . p i p e . P ipe ) :
4 def _ _ i n i t _ _ ( s e l f , sim , r e s o u r c e , id ) :
5 super ( ) . _ _ i n i t _ _ ( sim , r e s o u r c e , id )
6 s e l f . add_queue ( id = ’ e x p r e s s ’ )
7 s e l f . add_queue ( id = ’ f a s t ’ )
8 s e l f . add_queue ( id = ’ slow ’ )
9

10 @simpype . p i p e . dequeue
11 def dequeue ( s e l f ) :
12 i f l e n ( s e l f . queue [ ’ e x p r e s s ’ ] ) > 0 :
13 m = s e l f . queue [ ’ e x p r e s s ’ ] . pop ( )
14 e l i f l e n ( s e l f . queue [ ’ f a s t ’ ] ) > 0 :
15 m = s e l f . queue [ ’ f a s t ’ ] . pop ( )
16 e l s e :
17 m = s e l f . queue [ ’ s low ’ ] . pop ( )
18 re turn m
19
20 @simpype . p i p e . enqueue
21 def enqueue ( s e l f , message ) :
22 i f message . id == ’ f i r s t ’ :
23 m = s e l f . queue [ ’ e x p r e s s ’ ] . push ( message )
24 e l i f message . id == ’ b u s i n e s s ’ :
25 m = s e l f . queue [ ’ f a s t ’ ] . push ( message )
26 e l i f message . id == ’ economy ’ :
27 m = s e l f . queue [ ’ s low ’ ] . push ( message )
28 e l s e :
29 m = s e l f . queue [ ’ s low ’ ] . push ( message )
30 re turn m
31
32 # Do NOT remove
33 p i p e = lambda ∗ a r g s : P r i o r i t y (∗ a r g s )
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