132,645 research outputs found

    Discordant transmission of bacteria and viruses from mothers to babies at birth

    Get PDF
    BACKGROUND: The earliest microbial colonizers of the human gut can have life-long consequences for their hosts. Precisely how the neonatal gut bacterial microbiome and virome are initially populated is not well understood. To better understand how the maternal gut microbiome influences acquisition of the infant gut microbiome, we studied the early life bacterial microbiomes and viromes of 28 infant twin pairs and their mothers. RESULTS: Infant bacterial and viral communities more closely resemble those of their related co-twin than unrelated infants. We found that 63% of an infant\u27s bacterial microbiome can be traced to their mother\u27s gut microbiota. In contrast, only 15% of their viral communities are acquired from their mother. Delivery route did not determine how much of the bacterial microbiome or virome was shared from mother to infant. However, bacteria-bacteriophage interactions were altered by delivery route. CONCLUSIONS: The maternal gut microbiome significantly influences infant gut microbiome acquisition. Vertical transmission of the bacterial microbiome is substantially higher compared to vertical transmission of the virome. However, the degree of similarity between the maternal and infant gut bacterial microbiome and virome did not vary by delivery route. The greater similarity of the bacterial microbiome and virome between twin pairs than unrelated twins may reflect a shared environmental exposure. Thus, differences of the inter-generation transmissibility at birth between the major kingdoms of microbes indicate that the foundation of these microbial communities are shaped by different rules. Video Abstract

    Systematic Analysis of Impact of Sampling Regions and Storage Methods on Fecal Gut Microbiome and Metabolome Profiles.

    Get PDF
    The contribution of human gastrointestinal (GI) microbiota and metabolites to host health has recently become much clearer. However, many confounding factors can influence the accuracy of gut microbiome and metabolome studies, resulting in inconsistencies in published results. In this study, we systematically investigated the effects of fecal sampling regions and storage and retrieval conditions on gut microbiome and metabolite profiles from three healthy children. Our analysis indicated that compared to homogenized and snap-frozen samples (standard control [SC]), different sampling regions did not affect microbial community alpha diversity, while a total of 22 of 176 identified metabolites varied significantly across different sampling regions. In contrast, storage conditions significantly influenced the microbiome and metabolome. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles. Sample storage in RNALater showed a significant level of variation in both microbiome and metabolome profiles, independent of the storage or retrieval conditions. The effect of RNALater on the metabolome was stronger than the effect on the microbiome, and individual variability between study participants outweighed the effect of RNALater on the microbiome. We conclude that homogenizing stool samples was critical for metabolomic analysis but not necessary for microbiome analysis. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles and is recommended for short-term fecal sample storage. In addition, our study indicates that the use of RNALater as a storage medium of stool samples for microbial and metabolomic analyses is not recommended.IMPORTANCE The gastrointestinal microbiome and metabolome can provide a new angle to understand the development of health and disease. Stool samples are most frequently used for large-scale cohort studies. Standardized procedures for stool sample handling and storage can be a determining factor for performing microbiome or metabolome studies. In this study, we focused on the effects of stool sampling regions and stool sample storage conditions on variations in the gut microbiome composition and metabolome profile

    Is the Oral Microbiome Important in HIV-Associated Inflammation?

    Get PDF
    Alterations in the gut microbiome during HIV infection have been implicated in chronic inflammation, but the role of the oral microbiome in this process is less clear. The article by M. K. Annavajhala, S. D. Khan, S. B. Sullivan, J. Shah, et al. (mSphere 5:e00798-19, 2020, https://doi.org/10.1128/mSphere.00798-19) investigated the relationship between oral and gut microbiome diversity and immune activation in patients with HIV on antiretroviral therapy. In this study, oral microbiome diversity was inversely associated with inflammatory markers such as soluble CD14 (sCD14), but surprisingly similar associations were not seen with gut microbiome diversity. Oral microbiome diversity was also associated with periodontitis in these patients. This study highlights the importance of continuing multisite examinations in studying the gastrointestinal tract microbiome and also stimulates important directions for future research defining the role of the oral-gut axis in HIV-associated inflammation

    Evaluation of the cutaneous microbiome in psoriasis

    Get PDF
    Psoriasis, a highly prevalent disease of humans of unknown cause, is a chronic inflammatory disorder primarily involving skin, with distinctive clinical characteristics. With the newly developed tools that facilitate microbiome research, it now is possible to assess whether the cutaneous microbiome plays a role in the pathogenesis of this disorder. Preliminary data from our studies suggest that the cutaneous microbiome in psoriasis is complex and possibly different from normal. To deal with this complexity, we propose to examine the cutaneous microbiome in relation to psoriasis with explorations at several taxonomic and informatic levels. Our overall objective is to examine how changes in the normal cutaneous microbiome contributes to the pathogenesis of psoriasis. Since causality is complex and often difficult to prove, our overall hypothesis is that there are alterations in the cutaneous microbiome in areas of skin affected by psoriasis in comparison with the range observed in clinically unaffected areas, or in healthy persons. We also hypothesize that the characteristics of the microbiome may affect clinical responses to the immunomodulatory agents used to treat psoriasis. An alternative hypothesis is that effective treatment of psoriasis with systemic immunomodulatory agents will not substantially affect the disordered microbial ecosystem. Such observations would provide evidence for the roles of the microbiota in this disorder. Since an important consideration in microbiome research is the optimal level (e.g. phylum, genus, species, strain, gene) at which to examine a scientific question, and we are not yet certain what are the optimal levels for psoriasis, this also will be examined. Our studies of psoriasis should allow development of both approaches and tools that will have general utility for microbiome research. To test our hypothesis, we propose the following specific aims: 1. To understand the cutaneous microbiome species composition overlaying psoriatic lesions; 2. To investigate differences in metagenome content for psoriatic lesions compared to normal skin; 3. To identify differences in the transcriptional profiles of the microbiome and the host between normal skin and psoriatic lesions using high-throughput sequencing; and 4. To estimate the effects of systemic immunomodulatory therapy for psoriasis on microbiome composition. In total, these studies should help us understand the role of the microbiome in psoriasis pathogenesis

    Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions.

    Get PDF
    On December 17, 2018, the North American branch of the International Life Sciences Institute (ILSI North America) convened a workshop "Can We Begin to Define a Healthy Gut Microbiome Through Quantifiable Characteristics?" with >40 invited academic, government, and industry experts in Washington, DC. The workshop objectives were to 1) develop a collective expert assessment of the state of the evidence on the human gut microbiome and associated human health benefits, 2) see if there was sufficient evidence to establish measurable gut microbiome characteristics that could serve as indicators of "health," 3) identify short- and long-term research needs to fully characterize healthy gut microbiome-host relationships, and 4) publish the findings. Conclusions were as follows: 1) mechanistic links of specific changes in gut microbiome structure with function or markers of human health are not yet established; 2) it is not established if dysbiosis is a cause, consequence, or both of changes in human gut epithelial function and disease; 3) microbiome communities are highly individualized, show a high degree of interindividual variation to perturbation, and tend to be stable over years; 4) the complexity of microbiome-host interactions requires a comprehensive, multidisciplinary research agenda to elucidate relationships between gut microbiome and host health; 5) biomarkers and/or surrogate indicators of host function and pathogenic processes based on the microbiome need to be determined and validated, along with normal ranges, using approaches similar to those used to establish biomarkers and/or surrogate indicators based on host metabolic phenotypes; 6) future studies measuring responses to an exposure or intervention need to combine validated microbiome-related biomarkers and/or surrogate indicators with multiomics characterization of the microbiome; and 7) because static genetic sampling misses important short- and long-term microbiome-related dynamic changes to host health, future studies must be powered to account for inter- and intraindividual variation and should use repeated measures within individuals
    • …
    corecore