112 research outputs found

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    A Structured Design Methodology for High Performance VLSI Arrays

    Get PDF
    abstract: The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.Dissertation/ThesisPh.D. Electrical Engineering 201

    Design and Analysis of Metastable-Hardened, High-Performance, Low-Power Flip-Flops

    Get PDF
    With rapid technology scaling, flip-flops are becoming more susceptible to metastability due to tighter timing budgets and the more prominent effects of process, temperature, and voltage variation that can result in frequent setup and hold time violations. This thesis presents a detailed methodology and analysis on the design of metastable-hardened, high-performance, and low-power flip-flops. The design of metastable-hardened flip-flops is focused on optimizing the value of τ mainly due to its exponential relationship with the metastability window δ and the mean-time-between-failure (MTBF). Through small-signal modeling, τ is determined to be a function of the load capacitance and the transconductance in the cross-coupled inverter pair for a given flip-flop architecture. In most cases, the reduction of τ comes at the expense of increased delay and power. Hence, two new design metrics, the metastability-delay-product (MDP) and the metastability-power-delay-product (MPDP), are proposed to analyze the tradeoffs between delay, power and τ. Post-layout simulation results have shown that the proposed optimum MPDP design can reduce the metastability window δ by at least an order of magnitude depending on the value of the settling time and the flip-flop architecture. In this work, we have proposed two new flip-flop designs: the pre-discharge flip-flop (PDFF) and the sense-amplifier-transmission-gate (SATG) based flip-flop. Both flip-flop architectures facilitate the usage in both single and dual-supply systems as reduced clock-swing flip-flop and level-converting flip-flop. With a cross-coupled inverter in the master-stage that increases the overall transconductance and a small load transistor associated with the critical node, the architecture of both the PDFF and the SATG is very attractive for the design of metastable-hardened, high-performance, and low-power flip-flops. The amount of overhead in delay, power, and area is all less than 10% under the optimum MPDP design scheme when compared to the traditional optimum PDP design. In designing for metastable-hardened and soft-error tolerant flip-flops, the main methodology is to improve the metastability performance in the master-stage while applying the soft-error tolerant cell in the slave-stage for protection against soft-error. The proposed flip-flops, PDFF-SE and SATG-SE, both utilize a cross-coupled inverter on the critical path in the master-stage and generate the required differential signals to facilitate the usage of the Quatro soft-error tolerant cell in the slave-stage

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    DLWUC: Distance and Load Weight Updated Clustering-Based Clock Distribution for SOC Architecture

    Get PDF
    High-clock skew variations and degradation of driving ability of buffers lead to an additional power dissipation in Clock Distribution Network (CDN) that increases the dimensionality of buffers and coordination among flip-flops. The manual threshold level to predict the Region of Interest (ROI) is not applicable in clustering process due to the complexities of excessive wire length and critical delay. This paper proposes the Distance and Load Weight Updated Clustering (DLWUC) to determine the suitable position of logical components. Initially, the DLWUC utilizes the Hybrid Weighted Distance (HWD) to estimate the distance and construct the distance matrix. The weight value extracted from the sorted distance matrix facilitates the projection of buffers. The updated weight value serves as the base for clustering with labeled outputs. The placement of buffer at the suitable place from load weight updated clustering provides the necessary trade-off between clock provision and load balance. The DLWUC discussed in this paper reduces the size of buffers, skew, power and latency compared to the existing topologies

    Approximate hardening techniques for digital signal processing circuits against radiation-induced faults

    Get PDF
    RESUMEN NO TÉCNICO. Se llama radiación al proceso por el cual una partícula o una onda es capaz de transmitir energía a través del espacio o un medio material. Si la energía transmitida es suficientemente alta, la radiación puede provocar que algunos electrones se desplacen de su posición, en un proceso llamado ionización. La radiación ionizante puede provocar problemas a los seres vivos, pero también a los diversos materiales que componen los sistemas eléctricos y electrónicos utilizados en entornos sujetos a radiación. Existen en La Tierra varios procesos que emiten radiación ionizante, como la obtención de energía en centrales nucleares o ciertos procedimientos médicos. Sin embargo, las fuentes de radiación más importantes se sitúan más allá de nuestra atmósfera y afectan fundamentalmente a sistemas aeroespaciales y vuelos de gran altitud. Debido a la radiación, los sistemas electrónicos que se exponen a cualquiera de estas fuentes sufren degradación en sus propiedades a lo largo del tiempo y pueden sufrir fallos catastróficos que acorten su vida útil. El envejecimiento de los componentes se produce por acumulación de carga eléctrica en el material, lo que se conoce como Dosis Ionizante Total (TID por sus siglas en inglés), o por distorsiones en el silicio sobre el que se fabrican los circuitos, lo que se conoce como Daño por Desplazamiento (DD). Una única partícula ionizante puede, sin embargo, provocar también diversos tipos de fallos transitorios o permanentes en los componentes de un circuito, generalmente por un cambio de estado en un elemento de memoria o fallos destructivos en un transistor. Los diferentes tipos de fallos producidos en circuitos por la acción de una única partícula ionizante se engloban en la categoría de Efectos de Evento Único (SEE por sus siglas en inglés). Para proteger los sistemas electrónicos frente a los efectos de la radiación se suele recurrir a un conjunto de técnicas que llamamos endurecimiento frente a radiación. Los procedimientos tradicionales de endurecimiento han consistido en la fabricación de componentes electrónicos mediante procesos especiales que les confieran una resistencia inherente frente a la TID, el DD y los SEE. A este conjunto de técnicas de endurecimiento se lo conoce como Endurecimiento frente a la Radiación Por Proceso (RHBP por sus siglas en inglés). Estos procedimientos suelen aumentar el coste de los componentes y empeorar su rendimiento con respecto a los componentes que usamos en nuestros sistemas electrónicos cotidianos. En oposición a las técnicas RHBP encontramos las técnicas de Endurecimiento frente a la Radiación Por Diseño (RHBD por sus siglas en inglés). Estas técnicas permiten detectar y tratar de corregir fallos producidos por la radiación introduciendo modificaciones en los circuitos. Estas modificaciones suelen aumentar la complejidad de los circuitos que se quiere endurecer, haciendo que consuman más energía, ocupen más espacio o funcionen a menor frecuencia, pero estas desventajas se pueden compensar con la disminución de los costes de fabricación y la mejora en las prestaciones que aportan los sistemas modernos. En un intento por reducir el coste de las misiones espaciales y mejorar sus capacidades, en los últimos años se trata de introducir un mayor número de Componentes Comerciales (COTS por sus siglas en inglés), endurecidos mediante técnicas RHBD. Las técnicas RHBD habituales se basan en la adición de elementos redundantes idénticos al original, cuyos resultados se pueden comparar entre sí para obtener información acerca de la existencia de un error (si sólo se usa un circuito redundante, Duplicación Con Comparación [DWC]) o llegar incluso a corregir un error detectado de manera automática, si se emplean dos o más réplicas redundantes, siendo el caso más habitual la Redundancia Modular Triple (TMR) en todas sus variantes. El trabajo desarrollado en esta Tesis gira en torno a las técnicas de endurecimiento RHBD de sistemas electrónicos comerciales. En concreto, se trata de proponer y caracterizar nuevas técnicas de endurecimiento que permitan reducir el alto consumo de recursos de las utilizadas habitualmente. Para ello, se han desarrollado técnicas de endurecimiento que aprovechan cálculos aproximados para detectar y corregir fallos en circuitos electrónicos digitales para procesamiento de señal implementados en FPGA comerciales, dispositivos que permiten implementar circuitos electrónicos digitales a medida y reconfigurarlos tantas veces como se quiera. A lo largo de esta Tesis se han desarrollado diferentes circuitos de prueba endurecidos mediante TMR y se ha comparado su rendimiento con los de otras técnicas de Redundancia Aproximada, en concreto la Redundancia de Precisión Reducida (RPR), la Redundancia de Resolución Reducida (RRR) y la Redundancia Optimizada para Algoritmos Compuestos (ORCA): • La Redundancia de Precisión Reducida se basa en la utilización de dos réplicas redundantes que calculan resultados con un menor número de bits que el circuito original. De este modo se pueden disminuir los recursos necesitados por el circuito, aunque las correcciones en caso de fallo son menos precisas que en el TMR. En este trabajo exploramos también la RPR Escalada como un método de obtener un balance óptimo entre la precisión y el consumo de recursos. • La Redundancia de Resolución Reducida es una técnica propuesta originalmente en esta tesis. Está pensada para algoritmos que trabajan con información en forma de paquetes cuyos datos individuales guardan alguna relación entre sí. Las réplicas redundantes calculan los resultados con una fracción de los datos de entrada originales, lo que reduce su tamaño y permite correcciones aproximadas en caso de fallo. • La Redundancia Optimizada para Algoritmos Compuestos es también una aportación original de esta tesis. Está indicada para algoritmos cuyo resultado final puede expresarse como la composición de resultados intermedios calculados en etapas anteriores. Las réplicas redundantes se forman como bloques que calculan resultados intermedios y el resultado de su composición se puede comparar con el resultado original. Este método permite reducir recursos y proporciona resultados de corrección exactos en la mayor parte de los casos, lo que supone una mejora importante con respecto a las correcciones de los métodos anteriores. La eficacia de las técnicas de endurecimiento desarrolladas se ha probado mediante experimentos de inyección de fallos y mediante ensayos en instalaciones de aceleradores de partículas preparadas para la irradiación de dispositivos electrónicos. En concreto, se han realizado ensayos de radiación con protones en el Centro Nacional de Aceleradores (CNA España), el Paul Scherrer Institut (PSI, Suiza) y ensayos de radiación con neutrones en el laboratorio ISIS Neutron and Muon Source (ChipIR, Reino Unido).RESUMEN TÉCNICO. Se llama radiación al proceso por el cual una partícula o una onda es capaz de transmitir energía a través del espacio o un medio material. Si la energía transmitida es suficientemente alta, la radiación puede provocar que algunos electrones se desplacen de su posición, en un proceso llamado ionización. La radiación ionizante puede provocar problemas a los seres vivos, pero también a los diversos materiales que componen los sistemas eléctricos y electrónicos utilizados en entornos sujetos a radiación. Existen en La Tierra varios procesos que emiten radiación ionizante, como la obtención de energía en centrales nucleares o ciertos procedimientos médicos. Sin embargo, las fuentes de radiación más importantes se sitúan más allá de nuestra atmósfera y afectan fundamentalmente a sistemas aeroespaciales y vuelos de gran altitud. Debido a la radiación, los sistemas electrónicos que se exponen a cualquiera de estas fuentes sufren degradación en sus propiedades a lo largo del tiempo y pueden sufrir fallos catastróficos que acorten su vida útil. El envejecimiento de los componentes se produce por acumulación de carga eléctrica en el material, lo que se conoce como Dosis Ionizante Total (TID, Total Ionizing Dose), o por distorsiones acumuladas en la matriz cristalina del silicio en el que se fabrican los circuitos, lo que se conoce como Daño por Desplazamiento (DD, Displacement Damage). Una única partícula ionizante puede, sin embargo, provocar también diversos tipos de fallos transitorios o permanentes en los componentes de un circuito, generalmente por un cambio de estado en un elemento de memoria o la activación de circuitos parasitarios en un transistor. Los diferentes tipos de fallos producidos en circuitos por la acción de una única partícula ionizante se engloban en la categoría de Efectos de Evento Único (SEE, Single Event Effects). Para proteger los sistemas electrónicos frente a los efectos de la radiación se suele recurrir a un conjunto de técnicas que llamamos endurecimiento frente a radiación. Los procedimientos tradicionales de endurecimiento han consistido en la fabricación de componentes electrónicos mediante procesos especiales que les confieran una resistencia inherente frente a la TID, el DD y los SEE. A este conjunto de técnicas de endurecimiento se lo conoce como Endurecimiento frente a la Radiación Por Proceso (RHBP, por sus siglas en inglés). Estos procedimientos suelen aumentar el coste de los componentes y empeorar su rendimiento con respecto a los componentes que usamos en nuestros sistemas electrónicos cotidianos. En oposición a las técnicas RHBP encontramos las técnicas de Endurecimiento frente a la Radiación Por Diseño (RHBD, por sus siglas en inglés). Estas técnicas permiten detectar y tratar de corregir fallos producidos por la radiación introduciendo modificaciones en los circuitos. Estas modificaciones suelen aumentar la complejidad de los circuitos que se quiere endurecer, haciendo que consuman más energía, ocupen más espacio o funcionen a menor frecuencia, pero estas desventajas se pueden compensar con la disminución de los costes de fabricación y la mejora en las prestaciones que aportan los sistemas modernos. En un intento por reducir el coste de las misiones espaciales y mejorar sus capacidades, en los últimos años se trata de introducir un mayor número de Componentes Comerciales (COTS, por sus siglas en inglés), endurecidos mediante técnicas RHBD. Las técnicas RHBD habituales se basan en la adición de elementos redundantes idénticos al original, cuyos resultados se pueden comparar entre sí para obtener información acerca de la existencia de un error (si sólo se usa un circuito redundante, Duplicación Con Comparación [DWC, Duplication With Comparison]) o llegar incluso a corregir un error detectado de manera automática, si se emplean dos o más réplicas redundantes, siendo el caso más habitual la Redundancia Modular Triple (TMR, Triple Modular Redundancy) en todas sus variantes. El trabajo desarrollado en esta Tesis gira en torno a las técnicas de endurecimiento RHBD de sistemas electrónicos comerciales. En concreto, se trata de proponer y caracterizar nuevas técnicas de endurecimiento que permitan reducir el alto consumo de recursos de las técnicas utilizadas habitualmente. Para ello, se han desarrollado técnicas de endurecimiento que aprovechan cálculos aproximados para detectar y corregir fallos en circuitos electrónicos digitales para procesamiento de señal implementados en FPGA (Field Programmable Gate Array) comerciales. Las FPGA son dispositivos que permiten implementar circuitos electrónicos digitales diseñados a medida y reconfigurarlos tantas veces como se quiera. Su capacidad de reconfiguración y sus altas prestaciones las convierten en dispositivos muy interesantes para aplicaciones espaciales, donde realizar cambios en los diseños no suele ser posible una vez comenzada la misión. La reconfigurabilidad de las FPGA permite corregir en remoto posibles problemas en el diseño, pero también añadir o modificar funcionalidades a los circuitos implementados en el sistema. La eficacia de las técnicas de endurecimiento desarrolladas e implementadas en FPGAs se ha probado mediante experimentos de inyección de fallos y mediante ensayos en instalaciones de aceleradores de partículas preparadas para la irradiación de dispositivos electrónicos. Los ensayos de radiación son el estándar industrial para probar el comportamiento de todos los sistemas electrónicos que se envían a una misión espacial. Con estos ensayos se trata de emular de manera acelerada las condiciones de radiación a las que se verán sometidos los sistemas una vez hayan sido lanzados y determinar su resistencia a TID, DD y/o SEEs. Dependiendo del efecto que se quiera observar, las partículas elegidas para la radiación varían, pudiendo elegirse entre electrones, neutrones, protones, iones pesados, fotones... Particularmente, los ensayos de radiación realizados en este trabajo, tratándose de un estudio de técnicas de endurecimiento para sistemas electrónicos digitales, están destinados a establecer la sensibilidad de los circuitos estudiados frente a un tipo de SEE conocido como Single Event Upset (SEU), en el que la radiación modifica el valor lógico de un elemento de memoria. Para ello, hemos recurrido a experimentos de radiación con protones en el Centro Nacional de Aceleradores (CNA, España), el Paul Scherrer Institut (PSI, Suiza) y experimentos de radiación con neutrones en el laboratorio ISIS Neutron and Muon Source (ChipIR, Reino Unido). La sensibilidad de un circuito suele medirse en términos de su sección eficaz (cross section) con respecto a una partícula determinada, calculada como el cociente entre el número de fallos encontrados y el número de partículas ionizantes por unidad de área utilizadas en la campaña de radiación. Esta métrica sirve para estimar el número de fallos que provocará la radiación a lo largo de la vida útil del sistema, pero también para establecer comparaciones que permitan conocer la eficacia de los sistemas de endurecimiento implementados y ayudar a mejorarlos. El método de inyección de fallos utilizado en esta Tesis como complemento a la radiación se basa en modificar el valor lógico de los datos almacenados en la memoria de configuración de la FPGA. En esta memoria se guarda la descripción del funcionamiento del circuito implementado en la FPGA, por lo que modificar sus valores equivale a modificar el circuito. En FPGAs que utilizan la tecnología SRAM en sus memorias de configuración, como las utilizadas en esta Tesis, este es el componente más sensible a la radiación, por lo que es posible comparar los resultados de la inyección de fallos y de las campañas de radiación. Análogamente a la sección eficaz, en experimentos de inyección de fallos podemos hablar de la tasa de error, calculada como el cociente entre el número de fallos encontrados y la cantidad de bits de memoria inyectados. A lo largo de esta Tesis se han desarrollado diferentes circuitos endurecidos mediante Redundancia Modular Triple y se ha comparado su rendimiento con los de otras técnicas de Redundancia Aproximada, en concreto la Redundancia de Precisión Reducida (RPR), la Redundancia de Resolución Reducida (RRR) y la Redundancia Optimizada para Algoritmos Compuestos (ORCA). Estas dos últimas son contribuciones originales presentadas en esta Tesis. • La Redundancia de Precisión Reducida se basa en la utilización de dos réplicas redundantes que calculan resultados con un menor número de bits que el circuito original. Para cada dato de salida se comparan el resultado del circuito original y los dos resultados de precisión reducida. Si los dos resultados de precisión reducida son idénticos y su diferencia con el resultado de precisión completa es mayor que un determinado valor umbral, se considera que existe un fallo en el circuito original y se utiliza el resultado de precisión reducida para corregirlo. En cualquier otro caso, el resultado original se considera correcto, aunque pueda contener errores tolerables por debajo del umbral de comparación. En comparación con un circuito endurecido con TMR, los diseños RPR utilizan menos recursos, debido a la reducción en la precisión de los cálculos de los circuitos redundantes. No obstante, esto también afecta a la calidad de los resultados obtenidos cuando se corrige un error. En este trabajo exploramos también la RPR Escalada como un método de obtener un balance óptimo entre la precisión y el consumo de recursos. En esta variante de la técnica RPR, los resultados de cada etapa de cálculo en los circuitos redundantes tienen una precisión diferente, incrementándose hacia las últimas etapas, en las que el resultado tiene la misma precisión que el circuito original. Con este método se logra incrementar la calidad de los datos corregidos a la vez que se reducen los recursos utilizados por el endurecimiento. Los resultados de las campañas de radiación y de inyección de fallos realizadas sobre los diseños endurecidos con RPR sugieren que la reducción de recursos no sólo es beneficiosa por sí misma en términos de recursos y energía utilizados por el sistema, sino que también conlleva una reducción de la sensibilidad de los circuitos, medida tanto en cross section como en tasa de error. • La Redundancia de Resolución Reducida es una técnica propuesta originalmente en esta tesis. Está indicada para algoritmos que trabajan con información en forma de paquetes cuyos datos individuales guardan alguna relación entre sí, como puede ser un algoritmo de procesamiento de imágenes. En la técnica RRR, se añaden dos circuitos redundantes que calculan los resultados con una fracción de los datos de entrada originales. Tras el cálculo, los resultados diezmados pueden interpolarse para obtener un resultado aproximado del mismo tamaño que el resultado del circuito original. Una vez interpolados, los resultados de los tres circuitos pueden ser comparados para detectar y corregir fallos de una manera similar a la que se utiliza en la técnica RPR. Aprovechando las características del diseño hardware, la disminución de la cantidad de datos que procesan los circuitos de Resolución Reducida puede traducirse en una disminución de recursos, en lugar de una disminución de tiempo de cálculo. De esta manera, la técnica RRR es capaz de reducir el consumo de recursos en comparación a los que se necesitarían si se utilizase un endurecimiento TMR. Los resultados de los experimentos realizados en diseños endurecidos mediante Redundancia de Resolución Reducida sugieren que la técnica es eficaz en reducir los recursos utilizados y, al igual que pasaba en el caso de la Redundancia de Precisión Reducida, también su sensibilidad se ve reducida, comparada con la sensibilidad del mismo circuito endurecido con Redundancia Modular Triple. Además, se observa una reducción notable de la sensibilidad de los circuitos frente a errores no corregibles, comparado con el mismo resultado en TMR y RPR. Este tipo de error engloba aquellos producidos por fallos en la lógica de comparación y votación o aquellos en los que un único SEU produce fallos en los resultados de dos o más de los circuitos redundantes al mismo tiempo, lo que se conoce como Fallo en Modo Común (CMF). No obstante, también se observa que la calidad de las correcciones realizadas utilizando este método empeora ligeramente. • La Redundancia Optimizada para Algoritmos Compuestos es también una aportación original de esta tesis. Está indicada para algoritmos cuyo resultado final puede expresarse como la composición de resultados intermedios calculados en etapas anteriores. Para endurecer un circuito usando esta técnica, se añaden dos circuitos redundantes diferentes entre sí y que procesan cada uno una parte diferente del conjunto de datos de entrada. Cada uno de estos circuitos aproximados calcula un resultado intermedio. La composición de los dos resultados intermedios da un resultado idéntico al del circuito original en ausencia de fallos. La detección de fallos se realiza comparando el resultado del circuito original con el de la composición de los circuitos aproximados. En caso de ser diferentes, se puede determinar el origen del fallo comparando los resultados aproximados intermedios frente a un umbral. Si la diferencia entre los resultados intermedios supera el umbral, significa que el fallo se ha producido en uno de los circuitos aproximados y que el resultado de la composición no debe ser utilizado en la salida. Al igual que ocurre en la Redundancia de Precisión Reducida y la Redundancia de Resolución Reducida, utilizar un umbral de comparación implica la existencia de errores tolerables. No obstante, esta técnica de endurecimiento permite realizar correcciones exactas, en lugar de aproximadas, en la mayor parte de los casos, lo que mejora la calidad de los resultados con respecto a otras técnicas de endurecimiento aproximadas, al tiempo que reduce los recursos utilizados por el sistema endurecido en comparación con las técnicas tradicionales. Los resultados de los experimentos realizados con diseños endurecidos mediante Redundancia Optimizada para Algoritmos Compuestos confirman que esta técnica de endurecimiento es capaz de producir correcciones exactas en un alto porcentaje de los eventos. Su sensibilidad frente a todo tipo de errores y frente a errores no corregibles también se ve disminuida, comparada con la obtenida con Redundancia Modular Triple. Los resultados presentados en esta Tesis respaldan la idea de que las técnicas de Redundancia Aproximada son alternativas viables a las técnicas de endurecimiento frente a la radiación habituales, siempre que

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Low Power CMOS Design : Exploring Radiation Tolerance in a 90 nm Low Power Commercial Process

    Get PDF
    This thesis aims to examine radiation tolerance of low power digital CMOS circuits in a commercial 90 nm low power triple-well process from TSMC. By combining supply voltage scaling and Radiation-Hardened By Design (RHBD) design techniques, the goal is to achieve low supply voltage, radiation tolerant, circuit behavior. The target circuit architecture for comparison between different radiation hardening techniques is a Successive Approximation Register (SAR) architecture comprising both combinational and sequential logic. The purpose of the SAR architecture is to emulate a larger system, since larger systems are usually composed of combinational and sequential building blocks. The method used for achieving low power operation is primarily voltage scaling, with the ultimate goal of reaching subthreshold operation, while maintaining radiation tolerant circuit behavior. Radiation hardening is performed on circuit-level by applying RHBD circuit topologies, as well as architectural-level mitigation techniques. This thesis includes three papers within the field of robust low power CMOS design. Two of the papers cover low power level shifter designs in 90 nm and 65 nm process from STMicroelectronics. The third paper examines memory element design using minority-3 gates and inverters for robust low voltage operation. Prototyping has been conducted on low power CMOS building blocks including level shifter and memory design, for potential use in future radiation tolerant designs. Prototyping has been conducted on two chips from two different 90 nm processes from STMicroelectronics and TSMC. A test setup for radiation induced errors has been developed. Experimental radiation tests of the SAR architectures were conducted at SAFE, revealing no radiation induced errors

    Techniques d'abstraction pour l'analyse et la mitigation des effets dus à la radiation

    Get PDF
    The main objective of this thesis is to develop techniques that can beused to analyze and mitigate the effects of radiation-induced soft errors in industrialscale integrated circuits. To achieve this goal, several methods have been developedbased on analyzing the design at higher levels of abstraction. These techniquesaddress both sequential and combinatorial SER.Fault-injection simulations remain the primary method for analyzing the effectsof soft errors. In this thesis, techniques which significantly speed-up fault-injectionsimulations are presented. Soft errors in flip-flops are typically mitigated by selectivelyreplacing the most critical flip-flops with hardened implementations. Selectingan optimal set to harden is a compute intensive problem and the second contributionconsists of a clustering technique which significantly reduces the number offault-injections required to perform selective mitigation.In terrestrial applications, the effect of soft errors in combinatorial logic hasbeen fairly small. It is known that this effect is growing, yet there exist few techniqueswhich can quickly estimate the extent of combinatorial SER for an entireintegrated circuit. The third contribution of this thesis is a hierarchical approachto combinatorial soft error analysis.Systems-on-chip are often developed by re-using design-blocks that come frommultiple sources. In this context, there is a need to develop and exchange reliabilitymodels. The final contribution of this thesis consists of an application specificmodeling language called RIIF (Reliability Information Interchange Format). Thislanguage is able to model how faults at the gate-level propagate up to the block andchip-level. Work is underway to standardize the RIIF modeling language as well asto extend it beyond modeling of radiation-induced failures.In addition to the main axis of research, some tangential topics were studied incollaboration with other teams. One of these consisted in the development of a novelapproach for protecting ternary content addressable memories (TCAMs), a specialtype of memory important in networking applications. The second supplementalproject resulted in an algorithm for quickly generating approximate redundant logicwhich can protect combinatorial networks against permanent faults. Finally anapproach for reducing the detection time for errors in the configuration RAM forField-Programmable Gate-Arrays (FPGAs) was outlined.Les effets dus à la radiation peuvent provoquer des pannes dans des circuits intégrés. Lorsqu'une particule subatomique, fait se déposer une charge dans les régions sensibles d'un transistor cela provoque une impulsion de courant. Cette impulsion peut alors engendrer l'inversion d'un bit ou se propager dans un réseau de logique combinatoire avant d'être échantillonnée par une bascule en aval.Selon l'état du circuit au moment de la frappe de la particule et selon l'application, cela provoquera une panne observable ou non. Parmi les événements induits par la radiation, seule une petite portion génère des pannes. Il est donc essentiel de déterminer cette fraction afin de prédire la fiabilité du système. En effet, les raisons pour lesquelles une perturbation pourrait être masquée sont multiples, et il est de plus parfois difficile de préciser ce qui constitue une erreur. A cela s'ajoute le fait que les circuits intégrés comportent des milliards de transistors. Comme souvent dans le contexte de la conception assisté par ordinateur, les approches hiérarchiques et les techniques d'abstraction permettent de trouver des solutions.Cette thèse propose donc plusieurs nouvelles techniques pour analyser les effets dus à la radiation. La première technique permet d'accélérer des simulations d'injections de fautes en détectant lorsqu'une faute a été supprimée du système, permettant ainsi d'arrêter la simulation. La deuxième technique permet de regrouper en ensembles les éléments d'un circuit ayant une fonction similaire. Ensuite, une analyse au niveau des ensemble peut être faite, identifiant ainsi ceux qui sont les plus critiques et qui nécessitent donc d'être durcis. Le temps de calcul est ainsi grandement réduit.La troisième technique permet d'analyser les effets des fautes transitoires dans les circuits combinatoires. Il est en effet possible de calculer à l'avance la sensibilité à des fautes transitoires de cellules ainsi que les effets de masquage dans des blocs fréquemment utilisés. Ces modèles peuvent alors être combinés afin d'analyser la sensibilité de grands circuits. La contribution finale de cette thèse consiste en la définition d'un nouveau langage de modélisation appelé RIIF (Reliability Information Ineterchange Format). Ce langage permet de décrire le taux des fautes dans des composants simples en fonction de leur environnement de fonctionnement. Ces composants simples peuvent ensuite être combinés permettant ainsi de modéliser la propagation de leur fautes vers des pannes au niveau système. En outre, l'utilisation d'un langage standard facilite l'échange de données de fiabilité entre les partenaires industriels.Au-delà des contributions principales, cette thèse aborde aussi des techniques permettant de protéger des mémoires associatives ternaires (TCAMs). Les approches classiques de protection (codes correcteurs) ne s'appliquent pas directement. Une des nouvelles techniques proposées consiste à utiliser une structure de données qui peut détecter, d'une manière statistique, quand le résultat n'est pas correct. La probabilité de détection peut être contrôlée par le nombre de bits alloués à cette structure. Une autre technique consiste à utiliser un détecteur de courant embarqué (BICS) afin de diriger un processus de fond directement vers le région touchée par une erreur. La contribution finale consiste en un algorithme qui permet de synthétiser de la logique combinatoire afin de protéger des circuits combinatoires contre les fautes transitoires.Dans leur ensemble, ces techniques facilitent l'analyse des erreurs provoquées par les effets dus à la radiation dans les circuits intégrés, en particulier pour les très grands circuits composés de blocs provenant de divers fournisseurs. Des techniques pour mieux sélectionner les bascules/flip-flops à durcir et des approches pour protéger des TCAMs ont étés étudiées

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design
    corecore