361 research outputs found

    Inducing metaassociations and induced relationships

    Get PDF
    In the last years, UML has been tailored to be used as a domainspecific modelling notation in several contexts. Extending UML with this purpose entails several advantages: the integration of the domain in a standard framework; its potential usage by the software engineering community; and the existence of supporting tools. In previous work, we explored one particular issue of heavyweight extensions, namely, the definition of inducing metaassociations in metamodels as a way to induce the presence of specific relationships in their instances. Those relationships were intended by the metamodel specifier but not forced by the metamodel itself. However, our work was restricted to the case of induced associations. This paper proposes an extension to the general case in which inducing metaassociations may force the existence of arbitrary relationships at M1. To attain this goal, we provide a general definition of inducing metaassociation that covers all the possible cases. After revisiting induced associations, we show the inducement of the other relationship types defined in UML: association classes, generalization and dependencies.Peer ReviewedPostprint (author’s final draft

    Inducing Metaassociations and Induced Relationships

    Full text link

    Supporting Automatic Interoperability in Model-Driven Development Processes

    Full text link
    By analyzing the last years of software development evolution, it is possible to observe that the involved technologies are increasingly focused on the definition of models for the specification of the intended software products. This model-centric development schema is the main ingredient for the Model-Driven Development (MDD) paradigm. In general terms, the MDD approaches propose the automatic generation of software products by means of the transformation of the defined models into the final program code. This transformation process is also known as model compilation process. Thus, MDD is oriented to reduce (or even eliminate) the hand-made programming, which is an error-prone and time-consuming task. Hence, models become the main actors of the MDD processes: the models are the new programming code. In this context, the interoperability can be considered a natural trend for the future of model-driven technologies, where different modeling approaches, tools, and standards can be integrated and coordinated to reduce the implementation and learning time of MDD solutions as well as to improve the quality of the final software products. However, there is a lack of approaches that provide a suitable solution to support the interoperability in MDD processes. Moreover, the proposals that define an interoperability framework for MDD processes are still in a theoretical space and are not aligned with current standards, interoperability approaches, and technologies. Thus, the main objective of this doctoral thesis is to develop an approach to achieve the interoperability in MDD processes. This interoperability approach is based on current metamodeling standards, modeling language customization mechanisms, and model-to-model transformation technologies. To achieve this objective, novel approaches have been defined to improve the integration of modeling languages, to obtain a suitable interchange of modeling information, and to perform automatic interoperability verification.Giachetti Herrera, GA. (2011). Supporting Automatic Interoperability in Model-Driven Development Processes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11108Palanci

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements

    On a Graph-Based Semantics for UML Class and Object Diagrams

    Get PDF
    In this paper we propose a formal extension of type graphs with notions that are commonplace in the UML and have long proven their worth in that context: namely, inheritance, multiplicity, containment and the like. We believe the absence of a comprehensive and commonly agreed upon formalisation of these notions to be an important and, unfortunately, often ignored omission. Since our eventual aim (shared by many researchers) is to give unambiguous, formal semantics to the UML using the theory of graphs and graph transformation, in this paper we propose a set of definitions to repair this omission. With respect to previous work in this direction, our aim is to arrive at more comprehensive and at the same time simpler definitions.\u

    Formal specification and modeling of complex systems: towards a physics of information via networks

    Get PDF

    Software system architecture for corporate user support

    Get PDF
    In this article, several existing ready-to-use solutions for the HelpDesk are reviewed. Advantages and disadvantages of these systems are identified. Architecture of software solution for a corporate user support system is presented in a form of the use case, state, and component diagrams described by using a unified modeling language (UML)

    On Formalizing UML and OCL Features and Their Employment to Runtime Verification

    Get PDF
    Model-driven development (MDD) has been identified as a promising approach for developing software. By using abstract models of a system and by generating parts of the system out of these models, one tries to improve the efficiency of the overall development process and the quality of the resulting software. In the context of MDD the Unified Modeling Language (UML) and its related textual Object Constraint Language (OCL) have gained a high recognition. To be able to generate systems of high quality and to allow for interoperability between modeling tools, a well-defined semantics for these languages is required. This thesis summarizes published work in this context that employs an endogenous metamodeling approach to define the semantics of newer elements of the UML. While the covered elements are exhaustively used to define relations between elements of the metamodel of the UML, the UML specification leaves out a precise definition of their semantics. Our proposed approach uses models, not only to define the abstract syntax, but also to define the semantics of UML. By using UML and OCL for this, existing modeling tools can be used to validate the definition. The second part of this thesis covers work on the usage of UML and OCL models for runtime verification. It is shown how models can still be used at the end of a software development process, i. e., after an implementation has manually been added to generated parts, even though they are not used as central parts of the development process. This work also influenced the integration of protocol state machines into a modeling tool, which lead to publications about the runtime semantics of state machines and the capabilities to declaratively specify behavior using state machines

    SDK development for bridging heterogeneous data sources through connect bridge platform

    Get PDF
    Nesta dissertação apresentou-se um SDK para a criação de conectores a integrar com o CB Server, que pretende: acelerar o desenvolvimento, garantir melhores práticas e simplificar as diversas atividades e tarefas no processo de desenvolvimento. O SDK fornece uma API pública e simples, suportada por um conjunto de ferramentas, que facilitam o processo de desenvolvimento, explorando as facilidades disponibilizadas através da API. Para analisar a exatidão, viabilidade, integridade e acessibilidade da solução apresentam-se dois exemplos e casos de estudo. Através dos casos de estudo foi possível identificar uma lista de problemas, de pontos sensíveis e melhorias na solução proposta. Para avaliar a usabilidade da API, uma metodologia baseada em vários métodos de avaliação de usabilidade foi estabelecida. O múltiplo caso de estudo funciona como o principal método de avaliação, combinando vários métodos de pesquisa. O caso de estudo consiste em três fases de avaliação: um workshop, uma avaliação heurística e uma análise subjetiva. O caso de estudo envolveu três engenheiros de software (incluindo programadores e avaliadores). A metodologia aplicada gerou resultados com base num método de inspeção, testes de utilizador e entrevistas. Identificou-se não só pontos sensíveis e falhas no código-fonte, mas também problemas estruturais, de documentação e em tempo de execução, bem como problemas relacionados com a experiência do utilizador. O contexto do estudo é apresentado de modo a tirar conclusões acerca dos resultados obtidos. O trabalho futuro incluirá o desenvolvimento de novas funcionalidades. Adicionalmente, pretende-se resolver problemas encontrados na metodologia aplicada para avaliar a usabilidade da API, nomeadamente problemas e falhas no código fonte (por exemplo, validações) e problemas estruturais.In this dissertation, we present an SDK for the creation of connectors to integrate with CB Server which accelerates deployment, ensures best practices and simplifies the various activities and tasks in the development process. The SDK provides a public and simple API leveraged by a set of tools around the API developed which facilitate the development process by exploiting the API facilities. To analyse the correctness, feasibility, completeness, and accessibility of our solution, we presented two examples and case studies. From the case studies, we derived a list of issues found in our solution and a set of proposals for improvement. To evaluate the usability of the API, a methodology based on several usability evaluation methods has been established. Multiple case study works as the main evaluation method, combining several research methods. The case study consists of three evaluation phases – a hands-on workshop, a heuristic evaluation and subjective analysis. The case study involved three computer science engineers (including novice and expert developers and evaluators). The applied methodology generated insights based on an inspection method, a user test, and interviews. We identify not only problems and flaws in the source code, but also runtime, structural and documentation problems, as well as problems related to user experience. To help us draw conclusion from the results, we point out the context of the study. Future work will include the development of new functionalities. Additionally, we aim to solve problems found in the applied methodology to evaluate the usability of the API, namely problems and flaws in the source code (e.g. validations) and structural problems
    corecore