
On Formalizing UML and OCL Features and
Their Employment to Runtime Verification

Lars Hamann, M. Sc.

27.02.2015

Kumulative Dissertation
zur Erlangung des Grades eines Doktors der

Ingenieurswissenschaften
– Dr.-Ing. –

Vorgelegt im Fachbereich 3 (Mathematik und Informatik)
Universität Bremen

Gutachter
Prof. Dr. Martin Gogolla (Universität Bremen)
Prof. Dr. Hans-Jörg Kreowski (Universität Bremen)
Prof. Antonio Vallecillo Moreno (Universidad de Malaga)

Datum des Promotionskolloquiums: 25. Februar 2015

In Memorial of
Wilfried Nübel

� 15. Mai 1927
� 6. August 2013

Hans-Jürgen Hamann
� 20. Februar 1953

� 23. März 1996

Abstract

Model-driven development (MDD) has been identified as a promising approach for de-
veloping software. By using abstract models of a system and by generating parts of the
system out of these models, one tries to improve the efficiency of the overall development
process and the quality of the resulting software. In the context of MDD the Unified
Modeling Language (UML) and its related textual Object Constraint Language (OCL)
have gained a high recognition. To be able to generate systems of high quality and
to allow for interoperability between modeling tools, a well-defined semantics for these
languages is required.

This thesis summarizes published work in this context that employs an endogenous
metamodeling approach to define the semantics of newer elements of the UML. While
the covered elements are exhaustively used to define relations between elements of the
metamodel of the UML, the UML specification leaves out a precise definition of their
semantics. Our proposed approach uses models, not only to define the abstract syntax,
but also to define the semantics of UML. By using UML and OCL for this, existing
modeling tools can be used to validate the definition.

The second part of this thesis covers work on the usage of UML and OCL models
for runtime verification. It is shown how models can still be used at the end of a
software development process, i. e., after an implementation has manually been added
to generated parts, even though they are not used as central parts of the development
process. This work also influenced the integration of protocol state machines into a
modeling tool, which lead to publications about the runtime semantics of state machines
and the capabilities to declaratively specify behavior using state machines.

v

Zusammenfassung

Die modellgetriebene Entwicklung wird als ein vielversprechender Ansatz für die Soft-
wareentwicklung angesehen. Durch die Verwendung von abstrakten Modellen als Grund-
lage für die Codegenerierung wird versucht die Produktivität des Entwicklungsprozesses
und die Qualität der erzeugten Produkte zu steigern. Im Kontext der modellgetriebenen
Entwicklung haben sich die Unified Modeling Language (UML) als grafische Model-
lierungssprache und die dazugehörige textuelle Object Constraint Language (OCL) als
de-facto Standard etabliert. Damit qualitativ hochwertige Systeme aus Modellen dieser
Sprachen erzeugt werden können und um die Interoperabilität von Modellierungswerkzeu-
gen zu erhöhen ist eine wohldefinierte Semantik dieser Sprachen notwendig.

Im ersten Teil dieser Arbeit werden Veröffentlichungen zusammmengefasst, die sich
mit der modellbasierten Definition der Semantik von neueren UML Sprachelementen
beschäftigen. Dieses semantische Modell der UML wird dabei mit Hilfe der UML selbst
und zusätzlichen Regeln in OCL beschrieben. Ein Vorteil dieses endogenen Ansatzes
ist, dass keine zusätzlichen Sprachen benötigt werden. Weiterhin können vorhandene
UML und OCL Werkzeuge verwendet werden, um das erstellte semantische Modell zu
validieren.

Der zweite Teil dieser Arbeit beschreibt einen UML und OCL basierten Ansatz zur
Laufzeitverifikation von Systemen. Die als UML und OCL Modell festgelegte Spezi-
fikation eines Systems wird dabei während der Ausführung verifiziert. Dieses Vorgehen
erhöht den Wert von Modellen innerhalb des Entwicklungsprozesses, da diese auch dann
noch Verwendung finden, sollte das System nicht komplett aus dem Modell generiert wer-
den. Die Entwicklung dieses Ansatzes führte darüber hinaus zu einer Integration von
Protokollzustandsautomaten in ein Modellierungswerkzeug, da diese die Verifikations-
möglichkeiten erhöhen. Dieses führte zu weiteren, in dieser Arbeit zusammengefassten
Beiträgen über die Laufzeitsemantik dieser Automaten und über die zusätzlichen Mo-
dellierungsmöglichkeiten.

vii

Acknowledgments

I am very grateful to my supervisor Prof. Dr. Martin Gogolla for giving me the oppor-
tunity to work in his research group. Not only the fruitful discussions about our work,
but also his support in areas not covering our research made him a special person in
my life. I also would like to thank Prof. Dr. Hans-Jörg Kreowski for taking the task as
my co-supervisor and for examining this theses. Additional thanks go to Prof. Antonio
Vallecillo for examining this theses as the third referee. I really enjoyed working in the
database systems group where I met many people who influenced this work in several
directions. I would like to thank my colleagues (in order of appearance) Dr. Fabian Bütt-
ner, Mirco Kuhlmann, Oliver Hofrichter, Frank Hilken and Matthias Sedlmeier for their
support and inspiring working atmosphere. A special thanks goes to Frank and Matthias
for taking the burden of reviewing this thesis and giving me constructive feedback on
how to improve it. I am glad that I had the possibility to discuss my research with people
around several conferences, especially the vital community at the MODELS conferences.
Finally, I would like to thank my mother Dagmar for supporting me in so many ways
during my life, the Loosers for deepening my understanding about rules of games, and
last but not least Inger who stayed with me even though she had the burden of getting
into my life while I was finishing this thesis.

ix

Contents

1 Introduction 1

2 Background 5
2.1 The Unified Modeling Language (UML) 5

2.1.1 Language Description . 6
2.1.2 The UML Metamodel . 10

2.2 The Object Constraint Language (OCL) 12
2.2.1 Language Description . 13

2.3 The UML-based Specification Environment (USE) 14
2.3.1 The USE Approach to Validation 14

2.4 Runtime Verification . 20
2.4.1 Specifying Properties . 21
2.4.2 Classification of Runtime Verification Techniques 23

3 Formalizing and Applying UML and OCL 25
3.1 Endogenous Metamodeling Semantics 25
3.2 Static Structure Modeling . 28

3.2.1 Subsetting and Derived Unions 28
3.2.2 Derived Properties . 34

3.3 Behavior Modeling with Protocol State Machines 38
3.3.1 Design Time . 38
3.3.2 Runtime . 41
3.3.3 State Determination . 45

3.4 Related Work . 47

4 Runtime Verification using UML and OCL 49
4.1 Platform Aligned Model . 49
4.2 Runtime Snapshots . 50

4.2.1 Snapshot Generation . 50
4.2.2 Snapshot Synchronization . 53

4.3 Runtime Monitoring in USE . 54
4.3.1 Example System . 55
4.3.2 Validating Operation Contracts 55
4.3.3 Validating Protocol Usage . 62

xi

Contents

4.3.4 Target Platforms . 66
4.4 Abstraction Concepts . 68

4.4.1 Abstracted Superclass . 68
4.4.2 Connected Instances . 70
4.4.3 Excluding Sub-Calls . 71

4.5 Limitations and Possible Solutions . 72
4.5.1 Link Retrieval . 72
4.5.2 Monitoring of Interfaces . 73

4.6 Related Work . 74

5 Summary of Additional Contributions 77
5.1 OCL Community . 77
5.2 Model Validation and Model Finding . 77
5.3 USE Applications and Extensions . 78
5.4 Model-Driven Engineering in the Context of eGovernment 79

6 Conclusion and Future Work 81
6.1 Conclusion . 81
6.2 Future Work . 82

Bibliography of the Author 83

Bibliography 87

Attached Publications of the Author 97
A15C Endogenous Metamodeling Semantics for Structural UML 2 Concepts 97
A19W OCL-Based Runtime Monitoring of JVM Hosted Applications 117
A21C OCL-Based Runtime Monitoring of Applications with Protocol State

Machines . 139
A22C On Integrating Structure and Behavior Modeling with OCL 157
A24C Abstract Runtime Monitoring with USE 177

xii

List of Figures

2.1 Example Use Case Diagram . 6
2.2 Use Case Described Using Natural Language 7
2.3 Class Diagram of the Running Example 8
2.4 Sequence Diagram for a Borrow Scenario 9
2.5 Communication Diagram of a Borrow Scenario 10
2.6 UML Four-Level Metamodel Hierarchy 11
2.7 Use Case Diagram of the USE Approach to Validation 16
2.8 Overview of Tasks and Artifacts for Model Checking 22
2.9 Overview of Tasks and Artifacts for Runtime Verification 22

3.1 Combined View of UML Metamodel Elements 27
3.2 Class Diagram Using subsets and union on Attributes 28
3.3 Valid Object Diagram Using subsets and union on Attributes 29
3.4 Class Diagram Using subsets and union on Association Ends 31
3.5 Object Diagram Using subsets and union on Association Ends 31
3.6 Class and Object Diagram as a Metamodel Instance 32
3.7 Querying Runtime Values Using getConnectedObjects() 33
3.8 Class Diagram Including Derived Properties and Their Definitions . . . 35
3.9 Object Diagram Including Derived Properties 35
3.10 Using a Derived Ternary Association to Express Further Rules 37
3.11 Requirements for the Behavior of the Class Copy 39
3.12 Requirements for the Behavior of the Class User 40
3.13 Example Scenario for Structure and Behavior (Runtime) 43
3.14 Sequence Diagram of the Example Scenario 44
3.15 Example for the Usage of the State Determination Option 46

4.1 Artifacts of the Monitoring Approach 50
4.2 Metamodel for Virtual Machines . 52
4.3 Screenshot of Example ’Open Source Game’ 56
4.4 Class Diagram of Example ’Open Source Game’ 56
4.5 Snapshot of an Exemplary Game Situation 60
4.6 Sequence Diagram of a Monitored Execution 61
4.7 An Exemplary Game Transition in FreeCol 63
4.8 Protocol State Machine for the Class Unit 63

xiii

List of Figures

4.9 Parts of a Snapshot Taken at Runtime 65
4.10 Extended PSM for the Class Unit . 66
4.11 Monitoring Events and their Location on the Bytecode Level 67
4.12 Example of an Abstracted Superclass . 69
4.13 Relevant Parts of the Metamodel for Abstracted Superclasses 70
4.14 Instance of the Monitor Metamodel with an Abstracted Superclass . . . 71
4.15 Sequence Diagram of a Detailed Execution Trace 73

5.1 Visualization of the Evolution of USE 79

xiv

1 Introduction

Developing software has always been a complex and expensive task. Different shifts of
paradigm in the area of software engineering improved the productivity of the develop-
ment process and the quality of the resulting products. Most of these shifts raised the
level of abstraction a developer can use to build systems, e. g., by using more powerful
3rd generation programing languages and their compilers instead of using assembler,
which allows a developer to focus on a problem while hiding details of the concrete
hardware. However, in [38] the author argues that using a more and more elaborated
high-level language will at some point become a burden that increases the intellectual
task of programming instead of reducing it, since such a language would include many
constructs that are rarely used. In the same essay, the author is very skeptical about
the use of visual representations of programs to increase productivity or quality. This
was put into perspective in [39]. In particular, he agrees that using multiple types of
diagrams, each providing a different view on a system, can support the design of systems,
but for some elements, like for instance algorithms, a textual representation is still the
most suitable one.

The Unified Modeling Language (UML) [78, 67] maintained by the Object Manage-
ment Group (OMG) follows this view by providing a rich set of different kinds of dia-
grams. Moreover, the idea of Model Driven Architecture (MDA) [26, 43, 65], as pro-
posed by the OMG, puts models into the heart of the development process. In MDA,
a model can be specified using any well-defined language. The requirements for such a
well-defined language are [42], that it has a well-defined form (syntax) and meaning (se-
mantics). Further, it must be suitable for automated interpretation by a computer. This
definition allows the usage of many kinds of languages, e. g., very specific ones like Java
or more abstract ones like the UML. To gain benefits of applying MDA, one starts
by using an abstract language to define a so-called platform independent model (PIM).
During the phases of development, this PIM is transformed into more platform specific
models (PSM). Consequently applied, this leads to a higher productivity, since differ-
ent PSMs can be generated from a single PIM. An improvement of the quality can be
achieved by the fact that transformations can be reused for different PIMs. In the lit-
erature, many different terms, like for instance, model-driven development (MDD) and
model-driven engineering (MDE) are used to refer to a development process that uses
models as central parts [85].

To what extend the usage of models improve aspects of a development process has
been studied in [85]. In a survey among 155 Italian software professionals taken in 2011,

1

1 Introduction

the authors conclude that “modelling [can be classified] as a highly relevant technique
in the Italian industrial context while MD*1 can be considered as relevant” [85]. The
authors separate between modeling as a supporting technique and a model-driven pro-
cess. The former uses some simple models that are not used exhaustively during the
complete development process, whereas the latter implies that models play an important
role during the whole development process. The survey also revealed that benefits like
“Support in design definition, Improved documentation, easier Maintenance, and higher
Quality seem to be obtained when simple models are used and no further improvement is
observed with MD* adoption” [85]. However, “MD* plays a significant role for Produc-
tivity, Platform independence and Standardization” [85]. One main problem in practice
identified in this survey is the lack of supporting tools, i. e., tools cannot be easily replaced
by alternatives and building heterogeneous tool-chains is hard.

The work presented in this thesis addresses two of these issues. First, the problem of
tool interchangeability is addressed by strengthening the semantics of modeling concepts
used in the de-facto standard modeling language UML. Providing a clear semantics
reduces incompatibilities between different modeling tools used in a tool chain or when
replacing tools. For this, work on less well-defined concepts in the UML has been
published in [A18C, A22C, A16C]. Further, it has been shown in [A15C], how to define a
runtime semantics for UML constructs using an endogenous metamodeling approach like
the one presented in [42] for the Object Constraint Language (OCL) [92, 63]. Second,
an approach is presented, where models can still be useful at the end of a non complete
model-driven development process [A19W, A24C, A21C, A17W]. This approach allows
a developer to verify assumptions made in a model against concrete implementations.
Therefore, models designed in an early phase can still improve the quality of the product
even without applying code generation or model-based testing.

Thesis Structure
The foundations for this work are presented in Chap. 2. First, the UML and its history
is described. OCL, which is widely used in combination with UML models is presented
afterward. Based on these two languages, the modeling tool USE, which is based on both
languages is introduced, since much of the work presented in this thesis is validated by
an implementation in this tool. Next, the concept of runtime verification is explained.
In Chap. 3, contributions to formalize and strengthen the specification of UML and OCL
are presented. This work improves the usability of the work presented in the following
Chap. 4, which explains a runtime verification approach using UML and OCL and its
implementation in the USE tool. The chapter ends with example applications of the
approach. Chapter 5 summarized additional publications of the author that were not
covered before. The thesis ends with a conclusion and an outlook to future work.

1The authors use the notion of MD* to cover all model-driven approaches like MDE, MDD or MDA.

2

Citations
All references prefixed with an A are publications the author was involved in, either as
author or co-author. These publications are further categorized by a suffix to distinguish
between articles in proceedings of conferences (C) or workshops (W) and journal articles
or chapters in edited volumes (J).

The chapters 3 and 4 include parts of published papers that were reworked to fit into
the overall structure of this thesis. For readability reasons, these included parts are not
highlighted as citations. However, each chapter refers to the used publications.

3

2 Background

This chapter introduces concepts and artifacts important to this thesis. First of all, the
modeling languages used in this thesis: the Unified Modeling Language (UML) and the
related textual Object Constraint Language (OCL) are introduced. Next, the modeling
tool USE and its approach to validate and verify UML and OCL models is explained.
The last section provides an overview about the concept of runtime verification.

2.1 The Unified Modeling Language (UML)
With the paradigm shift from procedural to object-oriented programming in the 1980s,
several scientists and practitioners recognized a need for visualizing object-oriented de-
signs. This graphical representation was at first used to ease the communication between
software developers. Three different methods, out of many others, each using its own no-
tation to represent object-oriented concepts gained a high recognition and were invented
nearly at the same time in the 1990s ([78, p. 5], [21, p. 52]): the Object-Oriented Anal-
ysis and Design method (OOAD) by Grady Booch [10], the Object-Oriented Software
Engineering method (OOSE) by Ivar Jacobsen [35], and the Object Modeling Tech-
nique (OMT) by James Rumbaugh [77]. Following [78, p. 4ff.], these three amigos,
as they were called later, joined the same company between the years 1994 and 1995.
They merged their work, which they called the Unified Modeling Language (UML). This
unified language was later standardized by the Object Management Group (OMG) in
1997. After some years of development, UML 2 was released in the year 20051. UML 2
addressed issues that arose during the application of UML 1.X. Further, the UML meta-
model that defines the abstract syntax of the language using the same notation as UML
was unified with the Meta-Object Facility (MOF) [78, p. 7].

While UML started as a language to represent object-oriented structures in an abstract
way using graphical elements, at least two other application areas arose for it: the idea of
model-driven development, which tries to improve the efficiency of software development
processes by generating most of the parts of a software system out of a model [65] and
the definition of abstract syntax descriptions for languages as it is done for the UML
itself.

UML defines diagrams for different aspects of a system. For example, an abstract
view to the different tasks that can be done with a system is provided by means of

1All release dates of the various UML versions can be found on the OMG website [67].

5

2 Background

Figure 2.1: Example Use Case Diagram

use case diagrams, or the structure of a system can be defined and revealed using class
diagrams. Modeling the dynamics of a system is supported by behavioral diagrams, like
for example sequence and activity diagrams.

2.1.1 Language Description
In this section, we informally introduce UML diagrams required for this thesis using a
small but adequate example. A formal description of most of the described language
elements can be found in [73]. Our example model shall represent a simplified library.
Following the idea of use case driven development, we start to introduce our example by
such use cases.

Use Case Diagram

Use case diagrams provide a graphically overview about the actors of a system and the
tasks, i. e., use cases, they can perform. In such a diagram, the system boundary is
depicted by a rectangle. Actors are outside of this boundary and are linked to the use
cases they participate in by solid lines. The actor User in Fig. 2.1, for example, is related
to the use cases Borrow Copy and Return Copy.

The term use case is often defined as an interaction, i. e., the exchange of messages, an
actor can perform with a system to gain some benefit. It describes the usage of a system
from an external view ignoring internals [78, p. 78]. A use case itself can be defined
using different notations. In an early stage of a system design this might be natural
language [21, p. 73ff.]. Afterwards, while the model of the system evolves, the informally
defined use cases can be specified more precisely by using other UML notations, like
activity diagrams. In Fig. 2.2 on the next page an informal description of the use case
Borrow Copy is given. It describes the normal behavior of the system together with

6

2.1 The Unified Modeling Language (UML)

Use case#: UC001 Name: Borrow Copy Version: 1.0
Author: Lars Hamann Created: 18.08.2014 Modified: -
Participants: User
Short Desc.: A user borrows an existing copy
Preconditions: The user is registered

 The copy is available
 The user has not exceeded the maximum number of currently borrowed

copies
Postconditions: The copy is marked as borrowed by the user
Included UC: none
Extended UC: none
Activity: The user grasps a copy she wants to borrow

 She scans her identity card
 She scans the signature of the copy
 She gets an receipt that includes information about the return date

Figure 2.2: Use Case Described Using Natural Language

conditions that need to hold before and afterward. Using the provided example, one can
infer that the entities User and Copy are central parts of the system. The entity User
is required to be able to identify a user by its identity card. Whereas, Copy is required
to store information about available books in the library. Since a library can have more
than one copy of the same book, the use case description talks about copies instead of
books. It is further implicitly stated that the system needs to keep track of the currently
borrowed copies by a user, since there is a maximum number of copies a user can borrow
at the same time.

Beside the shown relation of actors and use cases, the UML allows further information
inside a use case diagram to model more complex situations. For example, use cases
can inherit from others to reuse and specialize generic activities. If a use case includes
another one, this can be expressed by adding the stereotype «includes» to the relation
between the including and the included use case. An extension of a use case can be
defined in the same manner except that the stereotype «extends» is used. A possible
extension of the example use case could be to allow a user to borrow multiple copies
after she identified herself.

Class Diagram

Class diagrams define the static structure of a system. They show how the different
classifiers2 relate to each other. Classes are drawn as rectangles that have different

2Classifier is a more general concept in UML that covers, for example, associations, enumerations, and
classes. During this introduction we do not distinguish between those kinds.

7

2 Background

User
name : String
address : String
borrowU(aCopy : Copy)
returnU(aCopy : Copy)

Copy
signature : String
numReturns : Integer
borrowC(aUser : User)
returnC()

Book
title : String
authSeq : Sequence(String)
year : Integer

book

1

BelongsTocopy

*

copy

*

Borrowsuser

0..1

Figure 2.3: Class Diagram of the Running Example [A22C]

compartments. The first compartment is used for the name of the class and possibly
applied stereotypes. The second one lists the attributes a class owns. The last one
lists the operation signatures of a class. Classes can participate in different relations to
each other. One relation type is generalization that defines a general class (the parent)
and a specialization (the child). In object-oriented programming languages, these are
sometimes called super- and subclass. A subclass can add new features or can redefine
existing ones. In a class diagram a generalization is depicted as an edge between the
related classes that has a large hollow triangle directing to the more general class.

Another important relation between classes are associations. A simple distinction
between generalization and association is commonly explained by the phrases “is a” for
generalizations and “has a” for associations. For example, a user is a person, meaning
the entity user is a specialization of the entity person. Whereas, a user has a copy
borrowed, which means a user can be related to at least one copy. Associations are
drawn as a solid line between classes. One end can be marked as an aggregation using
an empty diamond or as a composition using a solid diamond. Both kinds mark an
association as a whole-part relationship, with the class at the diamond end acting as the
whole. A composition strengthens this relation by stating that the instances of the class
acting as the whole is responsible for creating and destroying its parts.

Figure 2.3 shows a class diagram, which covers most of the requirements that were
previously defined by the use case in Fig. 2.2 on the previous page. The library system
keeps care of copies of books. A Book has a title, an ordered collection of authors and
a publishing year. Copies are related to their corresponding book by an association
BelongsTo. A Copy itself has a unique signature and an attribute numReturns that
counts how often a copy was borrowed and returned. Copies can be borrowed and
returned by users. A copy is borrowed, if a copy instance is linked to a User instance.
Operations to borrow or return a copy are defined on the class User and on the class
Copy. To easily distinguish the operations they are suffixed with a C for the copy class
and a U for the user class.

Object Diagram

An object diagram exemplifies the structure of a system by containing concrete instances
of classes, also called objects, and of associations, called links. Objects are drawn like

8

2.1 The Unified Modeling Language (UML)

Figure 2.4: Sequence Diagram for a Borrow Scenario

classes but differ in small details. First, object rectangles do not have a compartment for
operations, since they are specific to classes. Second, they can be named to give a more
precise meaning to the provided example state. To differentiate objects from classes,
the name of the object and the name of its class are printed underlined inside the name
compartment separated by a colon. The attributes of an object are pictured together
with their concrete values in the second compartment. Links are shown like associations
inside a class diagram.

Sequence Diagram

While object diagrams show a concrete system state at a single point in time, sequence
diagrams highlight the order of messages sent between instances, as it can be seen in
Fig. 2.4. The order in time is given by the vertical position of a message in a diagram.
Where time is proceeding down the page. While the UML also allows to include control
structures like loops and conditional branches inside a sequence diagram, we focus on
concrete execution scenarios, which do not include such constructs. Each participating
instance in a sequence diagram is represented by an object rectangle showing the name
and the class of the instance (like for example the object ada in the sequence diagram
in Fig. 2.4). Each object rectangle is shown directly before it is created. Since both
participating objects shown in the example diagram are already alive, they are shown at
the very top of diagram. Connected to the rectangles are the lifelines of their instances.

9

2 Background

:Borrows { new }

ada:User { new }

lotr_1:Copy { new }

Actor

1 : create
3 : borrowU(lotr_1)

2 : create

3.1 : borrowC(ada)

3.1.1 : insert(@ada,@lotr_1)

Figure 2.5: Communication Diagram of a Borrow Scenario

If an object is destroyed, a cross at the end of the lifeline is shown. The vertical rectangles
on the lifelines highlight the time an execution specification of a procedure on an object
is active [78].

Communication Diagram

The focus of communication diagrams is to identify instances communicating with each
other. In contrast to sequence diagrams the occurrence of messages is not ordered by
their vertical appearance. Instead messages are numbered labels of the links between
communicating instances. Figure 2.5 shows the same execution trace as the sequence
diagram in Fig. 2.4 on the previous page including some more details. As it can be
seen, both messages (borrowU(lotr_1) sent to the object ada and borrowC(ada) sent
to the object lotr_1) are also present in the communication diagram. The order of
their execution is determined by the numbers 3 and 3.1. Instances participating in a
communication diagram can be labeled with additional information about their lifetime
as it is done in the example diagram by labeling all instances with {new}, which states
that these instances are created during the communication and are still alive after it has
finished. Other labels are {transient} for instances that are created and destroyed dur-
ing the shown communication, {destroyed} for instances that were created before and
deleted during the communication, and {persistent} for instances that were created
before the shown scenario and are not deleted during it.

2.1.2 The UML Metamodel
The valid structures of UML models are defined by the UML metamodel, which itself
is modeled using MOF (Meta Object Facility) [62]. In general, the number of these
metamodel levels is not restricted, but for the UML the term four-level metamodel hi-

10

2.1 The Unified Modeling Language (UML)

Class

Attribute Class

Video

+title: String

«instanceOf»«instanceOf»

: Video

title = "2001: A Space Odyssey"

«instanceOf»«instanceOf»

M3 (MOF)

M2 (UML)

M1 (User model)

Instance

«instanceOf»

«instanceOf»

classifier

«instanceOf»

M0 (Run-time instances) aVideo

«instanceOf»

«snapshot»

Figure 2.6: UML Four-Level Metamodel Hierarchy [68, p. 20]

erarchy [68, p. 19] is often used. In Fig. 2.6 this hierarchy is shown. Starting with level
M0 that represents runtime instances of elements defined by a UML model, each model
element of the following levels is an instantiation of its metamodel element.

For example, the attribute title of the class Video defined in level M1 (User model),
i. e., the UML model, is an instantiation of the UML-metaclass Attribute3. This meta-
class has an attribute name to be able to define the name title for the modeled attribute.
The metaclass Attribute is an instance of the meta-metaclass Class of the level M3
(MOF). Important for this work is the metaclass Instance. Strictly spoken, instances
of these metaclass are examples of possible snapshots of the model defined in level M1
and do also reside in this level. However, in this work we are going to use them on the
level M0 by means of object diagrams.

3Note, that the metaclass Attribute was replaced by the metaclass Property in newer versions of the
metamodel of UML, as we will see later.

11

2 Background

2.2 The Object Constraint Language (OCL)
Representing the design of a software system using UML diagrams can improve the
understanding of a system. When used as a specification language one soon gets to
the point that not all relevant details of a system or business process can be expressed
using the provided modeling elements of a graphical language. For instance, a simple
business rule for the library example could be that a user is not allowed to borrow two
copies of the same book for fairness reasons. This rule cannot be expressed by only
using a class diagram and its syntactic elements. This is one example, why a need for
additional specification possibilities was discovered in the very beginning of UML. The
Object Constraint Language (OCL) was designed to overcome this lack of specification
possibilities and is now the de-facto standard for defining constraints in the context of
UML. Three kinds of constraints are very common in the context of OCL and are also
well known from Design by Contract (DbC) [56] as it is supported, e. g., by Eiffel:

Preconditions Preconditions define the client part of a contract between an operation,
i. e., the provider of a functionality, and its user, i. e., the calling client. The client
needs to ensure the preconditions to expect the correct execution of the provider.
The provider itself does not need to recheck its defined preconditions. In [56] it
is argued, that a defensive programming style, that rechecks preconditions that
could already be validated by a client, leads to more complex software systems
and therefore introduces more faults.

Postconditions A provider of a functionality defines its part of the contract by providing
postconditions. If a caller provides valid input – or in other words the precondi-
tions were satisfied – the caller can expect the postconditions to hold. Special to
postconditons is the possibility to access the system state before an operation was
called. In OCL this is done by the keyword @pre. This allows to define changes
that are made by an operation. For example, the following postcondition ensures,
that the attribute numReturns of the context class Copy is incremented by one,
during the execution of the operation borrowC:

1 context Copy : : borrowC (aUser : User)
2 post : s e l f . numReturns = s e l f . numReturns@pre + 1

Invariants While pre- and postconditions define a specific contract between a client and
a provider, like it is done by contracts in business, invariants can be seen like
laws that must always be respected [56]. In other words, a contract between a
client and a provider is not allowed to violate existing law. The same holds for
operation calls. However, invariants inside of an object-oriented system need some
special treatment, because while executing a method it is sometimes necessary to
temporary violate an invariant.

12

2.2 The Object Constraint Language (OCL)

While the OCL specification makes no assumptions about when an invariant must
be satisfied, in [56] it is described, how it is done in Eiffel:

• An invariant mus be satisfied after the creation of an instance of the class for
which the invariant is defined.

• An invariant must be preserved by every public routine of the class. By
preserved, the author means that a routine must guarantee that the invariant
is satisfied on exit if it was satisfied on entry.

In addition to the above usages for DbC, OCL is now used in a much broader context [92,
p. 13]. For example, the Query/View/Transformation (QVT) approach of the OMG [61]
uses it as a query language for model transformations. QVT further uses a derivative
language of OCL called Imperative OCL4.

2.2.1 Language Description

This section briefly introduces the concepts of OCL needed in this thesis. Readers who
are familiar with OCL might skip this section. A more detailed work on OCL and in
particular about the semantics of OCL can be found in [73], which laid a profound basis
for the definition of OCL.

OCL itself is based on first order predicate logic and set theory. Further, it is a strongly
typed language. Each valid expression in OCL has a type, that can be computed during
the static analysis of the expression. This allows an OCL tool to report type errors
before evaluating an expression. Because of this, type errors, except casting errors,
cannot happen during the evaluation of an expression. Consider the following OCL
expression that iterates over a set of values and checks if each value is greater than 5:

1 Set {1 , ’ a ’}−>f o r A l l (e | e > 5)

During type-checking, an OCL tool should report a type error, since the set to iterate
over is of type Set(OclAny) and the operator > is undefined for the iterated type OclAny.
Without starting a discussion about the benefits and drawbacks of strongly typed, typed,
and untyped languages, this helps to discover erroneous expressions before instantiating
a model.

Since OCL is primarily a constraint language, all OCL expressions are side-effect
free, i. e., their evaluation does not change the current system state. For example, an
expression cannot create new links or objects. An important requirement for defining
expressions on models is the possibility to navigate over associations to be able to access
connected objects and its attributes. Therefore, navigation is one of the most important
features in OCL. Since association ends having an upper bound greater than one are

4For a detailed discussion about the integration of OCL into Imperative OCL and resulting issues,
see [13].

13

2 Background

very common and a navigation to such ends results in a collection of connected objects
the OCL standard library provides powerful operations on collections, e. g., operations
for projection, selection, and quantification. A complete list of predefined operations
can be found in the OCL specification documents published by the OMG [63].

While an invariant is defined for all instances of a classifier, access to all instances
inside an expression is sometimes needed, too. For this, OCL provides another powerful
feature to access all instances of a classifier using the operation allInstances() on a
given classifier, which evaluates to a set of values of the given classifier. For example,
a constraint defining uniqueness of an attribute must access all other instances of the
same classifier to be able to validate the value of the attribute of the context instance
against all other values:

1 context User inv nameIsUnique :
2 User . a l l I n s t a n c e s ()−> f o r A l l (u : User |
3 s e l f <> u implies s e l f . name <> u . name)

2.3 The UML-based Specification Environment (USE)
The modeling tool USE (UML-based Specification Environment) allows to specify, vali-
date, and to a certain degree verify software models based on UML and OCL. Started
as a project to formalize OCL [73] in the late 90s, the first public version of USE was
available in 1998. Since that, USE was continuously extended and improved. By taking
a look at the number of times USE was downloaded, we can state, that USE is widely
known in the area of UML/OCL tools. In 2011 USE was downloaded some 1,500 times.
The number of downloads increased to around 3,100 times in 2012 and to some 4,700
times in 2013.

After the first version of USE, several improvements and extensions have been inte-
grated. Some of them were developed by students for their diploma theses other were
integrated by members of the database systems working group. Some notable extensions
that are not discussed in this thesis, are the integration of an imperative programming
language based on OCL [13], the development of a plug-in architecture, to support easy
extensions to USE without the need to change the USE source code [4], the extension
of object diagrams with complex selection features in [36], and adding support for com-
munication diagrams [58]. In the next section, the workflow to validate models as it is
supported by USE is explained.

2.3.1 The USE Approach to Validation
In [73] the USE approach to validate models was introduced. Later, [13] extended this
approach by adding use cases related to the integrated action language. In Fig. 2.7
on page 16 an extended use case diagram based on the one presented in [13, p. 127] is

14

2.3 The UML-based Specification Environment (USE)

depicted. The diagram provides an overview of the different tasks a modeler can perform
with USE. Bold use cases highlight tasks that are going to be extended or introduced
in this thesis. Next, the different tasks of the USE validation approach are described.
These descriptions are only slightly different from the ones presented in [73, 13].

Specification

The preceding step for every other use case of USE is to specify a model. This is done
by applying a textual USE-specific syntax, which is similar to the UML Human-Usable
Textual Notation [60] published by the OMG. The top-level elements in each model are
classes, associations and enumerations. Together with attributes and OCL-invariants,
these elements allow to specify the structure of a model. To be able to specify behavior
in a declarative way, like it is done in Design by Contract, pre- and postconditions
can be defined for operations. As we will see in Chap. 3, the recently added protocol
state machines can be used to specify behavior in a declarative way, too. With the
integration of SOIL [13] in USE 3.0, an imperative way to specify behavior was added as
an alternative for simulating models. USE can validate the static soundness of a given
model. For this, basic validation of the structure is done. For example, the correct
definition of classes, including attribute types and cycle-free inheritance can be checked.
Further, the syntactical and type correctness of OCL-expressions can be validated.

Instantiation

After a valid model was loaded in USE, one can start to instantiate concrete system
states. In USE a system state consists of

• instances of classes, i. e., objects,

• instances of associations, i. e., links, and

• values assigned to attributes of instances.

Depending on the users needs, a system state in USE can be created in different ways:

Shell USE always provides a shell to invoke commands. These include commands for
creating and deleting objects and links and for setting attribute values. One benefit
of using the shell is the possibility to use command files to restore a given system
state.

GUI The easiest way to create system states is to invoke given commands by using the
graphical user interface (GUI) of USE. The complete instantiation task can be
done either using views or context menus. Especially, while using large models
the GUI can help a user to get a more profound understanding of the model. For
example, after selecting two objects, USE automatically shows up the possible
associations these objects can participate in.

15

2 Background

Figure 2.7: Use Case Diagram of the USE Approach to Validation

16

2.3 The UML-based Specification Environment (USE)

Validator The USE model validator (see for example [A27C] and [45]) is a black box ap-
proach of model finding. A modeler specifies certain properties of a model instance
to search for, like the number of instances for each class or the number of links
for each association. Using such a configuration, the model validator automati-
cally searches for a valid model instance w. r. t. the supported model constraints.
The validator itself is based on relational logic provided by the constraint solver
Kodkod5 [86].

Generator A white box approach of model finding is also present in USE. For this, a lan-
guage called ASSL (A Snapshot Sequence Language, c. f. [28]) is applied to guide
the search for a valid model instance. Although the model validator uses more ad-
vanced and faster search algorithms than the generator, ASSL and the generator
still have their value. First, because the model validator does not support all fea-
tures provided by USE. For instance, the possibility to define recursive operations,
which cannot be expressed in relational logic used by the model validator. Further,
since ASSL delegates the validation of model instances during the traversal of the
search space completely to the USE core system, newly added OCL features are
automatically available. In contrast to this, the model validator needs to be aligned
to new USE versions, because it needs to translate new features into concepts of
relational logic. For example, constrains defining relations between associations,
as discussed in Sec. 3.2.1 starting on page 28, are automatically supported by the
generator whereas the model validator needs to be extended to support them.

Animation

Two approaches of animating models exist in USE: simulation and execution. The
former can be used to validate given scenarios, i. e., test cases, using concrete values
and sequences of operation calls. The latter is based on imperative implementations of
operations and can be used to test a concrete method implementation.

During simulation, a sequence of commands with given values is executed6. These
commands represent a single trace of execution. Therefore, only atomic commands like
create to create instances of classes or set to set attribute values can be used. Opera-
tion calls are simulated by the commands openter and opexit. Imperative constructs
like loops or conditional checks are not supported during simulation. Listing 2.1 on
the following page exemplifies this. Lines 1–7 define the class User with a single op-
eration borrowU(aCopy:Copy). Here, only the operation signature is defined. During
the simulation of a borrow process (lines 9–16), this operation is entered by the com-
mand openter including concrete values for the arguments (here: ada borrows the copy
lotr_1). The simulation continues by calling the operation borrowC of the class Book.

5http://alloy.mit.edu/kodkod/
6In fact, given values is not quite right in a formal way, since values can be computed by OCL expression.

17

2 Background

Listing 2.1: USE Simulation Example
1 model LibrarySim
2

3 class User
4 . . .
5 operations
6 borrowU (aCopy : Copy)
7 end
8

9 ! c r e a t e ada : User
10 ! c r e a t e l o t r : Book
11 ! c r e a t e lotr_1 : Copy
12 ! openter ada borrowU (lotr_1)
13 ! openter lotr_1 borrowC (ada)
14 ! insert (ada , lotr_1) into Borrows
15 ! opex i t
16 ! opex i t

Listing 2.2: USE Execution Example
1 model LibraryExec
2

3 class User
4 . . .
5 operations
6 borrowU (aCopy : Copy)
7 begin
8 aCopy . borrowC (s e l f)
9 end

10 end
11

12

13 ! aUser := new User (’ ada ’)
14 ! aBook := new Book (’ l o t r ’)
15 ! aCopy := new Copy(’ lotr_1 ’)
16 ! aUser . borrowU (lotr_1)

This operation is not shown, but is defined in a similar way as the operation of the class
User. By using the command opexit to simulate the return of an operation, the shown
command sequence of operation calls leads to the sequence diagram shown in Fig. 2.4
on page 9. Another possible visualization of the executed commands in USE is provided
by means of a communication diagram as shown in Fig. 2.5 on page 10. While atomic
commands like create are hidden in the sequence diagram (this is an optional behavior),
they are shown in the communication diagram.

For execution, in contrast to the previously described simulation approach, the opera-
tions are enriched with an implementation in the USE specific action language SOIL [13].
All of the previously described statements, like object creation, are also supported by
SOIL. Furthermore, imperative control structures like conditional execution (if) and
loops (while and for) can be used. An imperative implementation of the previously de-
scribed borrow scenario is shown in Listing 2.2. After executing the command sequence
(lines 13–16), the same execution trace as shown in the sequence diagram in Fig. 2.4 on
page 9 and in the communication diagram in Fig. 2.5 on page 10 is recorded by USE.

Validation

The main task of USE is to validate model constraints. First, structural constraints, like
multiplicities of association ends, can be checked. For this, no simulation or execution is
necessary. One can create a system state and validate the structure of it. If multiplicities
are violated, USE reports the violating association and the connected objects to guide
the designer to the erroneous part of the system state. In addition, invariants can
also be validated without animating a model. Again, USE reports violations to the

18

2.3 The UML-based Specification Environment (USE)

Listing 2.3: Violation of a Precondition in USE
1 use> ! create ada : User
2 use> ! create l o t r : Book
3 use> ! create lotr_1 : Copy
4 use> ! insert (ada , lotr_1) into Borrows
5 use> ! ada . borrowU (lotr_1)
6 [Error] 1 p r e cond i t i on in operat i on c a l l
7 ‘ User : : borrowU (s e l f : ada , aCopy : lotr_1) ’ does not hold :
8 copyNotBorrowed : aCopy . user . i sUnde f ined
9 aCopy : Copy = lotr_1

10 aCopy . user : User = ada
11 aCopy . user . i sUnde f ined : Boolean = f a l s e
12 c a l l s tack at the time o f eva lua t i on :
13 1 . User : : borrowU (s e l f : ada , aCopy : lotr_1)
14 [c a l l e r : ada . borrowU (lotr_1)@<input > : 1 : 0]
15

16 +−−+
17 | Evaluat ion i s paused . You may inspect , but not modify the s t a t e . |
18 +−−+
19

20 Current ly only commands s t a r t i n g with ‘ ? ’ , ‘ : ’ , ‘ help ’ or ‘ in fo ’
21 are a l lowed .
22 ‘ c ’ cont inues the eva lua t i on (i . e . unwinds the s tack) .
23 > ?aCopy . user
24 −> ada : User

user and provides features to investigate violating instances. For invariants, a powerful
evaluation browser can be used, which allows for a detailed evaluation of the values of
sub-expressions. A more extensive description of the evaluation browser can be found
in [A1C].

During animation of a model, USE evaluates pre- and postconditions defined for op-
erations. If such a condition fails during the execution of a model (see Sec. 2.3.1 on
page 17), USE stops the execution an provides a special shell to examine the given situ-
ation. Listing 2.3 shows an example violation of a precondition for the library example
extended with the following precondition copyNotBorrowed:

1 context User : : borrowU (aCopy : Copy) pre copyNotBorrowed :
2 aCopy . user . o c l I sUnde f ined ()

The precondition ensures that a given copy is not already borrowed by a user. The
Listing 2.3 shows a scenario which violates the precondition copyNotBorrowed. The
copy lotr_1 is already borrowed by the user ada. When trying to borrow it again (line
5), USE detects the violation of the precondition and opens the evaluation shell. A user
can now examine the current state, as it is done in line 23 to query the current user that

19

2 Background

borrowed the copy. The same feature is used, if a postcondition is violated. Therefore,
we do not provide an example for this situation.

Query

While modeling a system, during animation, or validation, one often needs to be able
to evaluate ad-hoc queries. For example, to identify invalid instances or just to test
an OCL expression. For this, USE allows a modeler to enter OCL queries at any time
using the query command on the shell or the evaluation view. A detailed evaluation
command is also provided. It prints the complete evaluation tree of an expression.
Using the graphical user interface, the already mentioned evaluation browser can be
used to examine the sub-expressions. In contrast to the shell command, the evaluation
browser provides additional interactive features to highlight and suppress different sub-
expressions. This allows a modeler to identify relevant parts of an examined expression
more easily. As an example for such ad-hoc queries consider line 23 in Listing 2.3 on
the previous page, where the system state is queried for the current user who already
borrowed the copy.

2.4 Runtime Verification
In this section, we show the overall goal of runtime verification and examine different
approaches in this research area. Verifying a systems means to show that it conforms
to its specification (Do we build the product right?) [7, p. 101f.]. This is in contrast
to validation where it is checked that a system provides the intended functionality (Do
we build the right product?) [7, p. 101f.]. In general, the latter question needs to be
answered by experts of the domain the system is intended for together with software
engineers. Verification relies on the, ideally validated, requirements defined for the
product (its specification). The verification itself can be done in many different ways,
e. g., by code reviews or using tests (c. f. [91]). Of high interest for practical usage are
approaches that can be automated. On a first sight, the verification of a system by
proving its correctness would lead to the highest certainty of correctness. However,
such a verification is generally hard to achieve, because of its complexity [72, p. 901].
To reduce the complexity, several possibilities exist. For example, the system can be
abstracted by using models of it that focus on the properties to verify. These models
can then be analyzed by a verification tool either statically or dynamically.

Static verification techniques, like model checking [18, 31], try to verify requirements
off-line by analyzing the execution paths of a program. An overview of the complete
model checking process is shown in Fig. 2.8 on page 22. First, the design to be verified is
modeled in an appropriate modeling language. The requirements, i. e., the specification,
is formalized using temporal properties. A (bounded) model checker tries to traverse the
reachable states and verifies the given temporal properties. If a property is not fulfilled,

20

2.4 Runtime Verification

a counterexample in form of a sequence of states is generated [8]. A lot of research in
this area tries to reduce the state space that has to be examined, to overcome the so
called “state space explosion” [40, p. 15][72, p. 902].

In contrast to model checking, the goal of runtime verification (also called runtime
monitoring) is not to verify all possible execution paths, but to verify requirements
while the program is executed [19], thus providing more rigor in testing [16]. A detailed
comparison of model checking and runtime verification can be found in [50]. Using
runtime verification as an integral part in the development process combines the spe-
cification and the implementation to together form the complete system. In [16] this is
called Monitor Oriented Programming (MOP). By combining the specification and the
implementation, see Fig. 2.9 on the next page, it is obvious, that a runtime verification
approach is more coupled to the end product, since the more abstract specification
must be aligned to the executed system in order to monitor it (see the directed edge
between the system node and the Runtime Verification node in Fig. 2.9 on the following
page). If the abstract specification would be inconsistent with the monitored part of
the system, this would lead to an error during execution. This is in contrast to model
checking, where the abstract model of the verified system is more decoupled from the
concrete implementation, requiring complementary techniques to verify the correctness
of an implementation [40, p. 15]. If a model checker finds a counter example, i. e., the
specification does not hold, an additional simulation step is required to locate the error
inside of the system, whereas during runtime verification the application can stop at the
location where the error occurred. The main drawback of runtime verification, compared
to model checking, is that the properties to verify must be executed either manually or
by using specialized test drivers, whereas a model checker automatically evaluates all
possible execution paths, leading to a higher degree of automation.

2.4.1 Specifying Properties

Essential to runtime verification are the properties to verify, since they define the spec-
ification of a system. To be able to evaluate these properties, a formal specification
language that can be computed must be used. Most of these languages include elements
to express temporal properties, i. e., relations between different (sequential) states of
a program. This is in contrast to an invariant, which only needs access to a single
state [70]. Examples of such formalisms, which are described next, are Linear Temporal
Logic (LTL) [70] and Extended Regular Expressions (ERE) [46]. LTL introduces oper-
ators to express temporal relations between program states. For example, the operator
X applied to a formula φ is used to express the fact that φ must hold in the neXt
sate. Similar to invariants is the operator G, which requires a property φ to be valid
Globally, i. e., in all states. Some authors further separate between future time linear
logic (FTLTL) and past time linear temporal logic (PTLTL). The former states proper-
ties about the future execution of a system, whereas the latter goes back in time. In [53]

21

2 Background

Figure 2.8: Overview of Tasks and Artifacts for Model Checking (taken from [40])

Figure 2.9: Overview of Tasks and Artifacts for Runtime Verification (based on [40])

22

2.4 Runtime Verification

it has been shown that PTLTL has the same expressiveness as FTLTL.
The high popularity of regular expressions inside the developer community, lead to

the usage of Extended Regular Expressions for runtime verification. Since a program
execution trace can be seen as a string of states, regular expressions fit well for defining
properties on them. EREs extend regular expressions by adding operators for com-
plement (¬) and intersection (∧) to the three regular expression operators union (∨),
concatenation (·), and repetition (∗) [46]. These two additional operators, especially
the complement operator, ease the specification of patterns for traces that are not al-
lowed [80]. As an example consider the safety property “it should not be the case that
in any trace of a traffic light we see green and then immediately red at any point” [80].
Following [80] this can be expressed in “the natural and intuitive way” by the ERE
“¬((¬∅) · green · red · (¬∅)), where ∅ is the empty ERE (no words), so ¬∅ means “any-
thing””.

2.4.2 Classification of Runtime Verification Techniques

Runtime verification can be done using different techniques. For example, it can be
done by directly reacting on changes inside the running system or it can be done “post
mortem” by analyzing recorded execution traces. In the following, we provide an excerpt
of the relevant categories for our work, as they are described in [76] and [16]. Common
to all techniques is that they need to inject some kind of monitoring code inside the
running application. Though, they have different consequences for the runtime behavior
of the monitored application, e. g., the introduced overhead, and differ in the possibilities
to react on encountered violations of the specification.

On-line and Off-line

On-line runtime verification approaches verify properties while the system that is verified
is executed, whereas off-line approaches analyze the recorded traces “post mortem” after
the system has finished execution.

If runtime verification is done on-line, the user gets the benefit of immediate feed-
back. The monitor can force the executed system to pause and can provide detailed
information about the current state. The major drawback of on-line verification is the
introduced overhead, since at relevant points during execution, the verification engine
needs to evaluate the properties to validate. Depending on the size of the system and
the specification, this can introduce noticeable delays.

To overcome possible delays in the execution of a system under test, off-line approaches
minimize the introduced overhead by recording traces of the execution. Using an ad-
equate logging technique, this leads to much shorter delays. These recorded execution
traces are used after the system under test has executed to rebuild the program exe-
cution and to verify the specified properties. If a property is violated, only the trace

23

2 Background

information is present to the user, which makes the reconstruction of the failing situation
more complicated than using an on-line approach where the system under test stops in
the failing state.

Note that sometimes, e. g., in [76] on-line approaches are called synchronous (the vali-
dation engine reacts on a received event and returns control to the monitored application
after validation) and off-line ones asynchronous (the monitored system sends events and
immediately continues execution afterwards).

Trace-Storing vs. non Storing

Obviously, two possibilities to work on execution traces exist. First, the complete trace
can be stored to allow for a verification algorithm to compute on it. And second, a
monitor can change the snapshot of the running system if it receives an event and
discard this event after an incremental update of snapshot and required validation tasks
have been done. The former approach is useful, if a validation algorithm has a reduced
complexity when it has access to the complete trace. One example are algorithms to
efficiently evaluate extended regular expressions [76]. The latter approach, which is
not storing the complete trace but keeps a synchronized snapshot, reduces the overall
consumption of memory and further allows to compute values without the need to loop
through the trace.

Predictive vs. Exact Analysis

While the exact analysis of recorded traces can only detect concrete violations of prop-
erties, algorithms that try to predict possible anomalies by analyzing valid execution
traces exist also. Use cases for them are, e. g., the prediction of possible deadlock or
datarace situations [76]. In this thesis, we focus on exact algorithms, therefore we leave
out a more detailed discussion.

24

3 Formalizing and Applying UML and OCL

In this chapter, work in the context of formally defining newer UML modeling constructs
and its application inside of the USE tool is summarized. The main contributions are
related to the runtime semantics of UML in combination with OCL, since little is stated
about this semantics in the UML specification.

The first part of this chapter deals with structure modeling, e. g., constraints and
extended modeling concepts in class diagrams. In [A18C], [A15C], and [A16C] we pub-
lished work on how to define a more precise semantics for property relations defined in
class diagrams. Instead of using a translation to another language with a well-defined
semantics, the presented approach uses UML and OCL itself to define the semantics,
i. e., the approach stays inside of the same technology space, which makes it unnecessary
to introduce further languages. In addition, existing UML and OCL validation tools can
be used to validate the semantics developed this way. While [A18C] discusses possible
realizations in USE, [A15C] applies an approach based on [42] to define the runtime
semantics of these constraints using UML and OCL. The work in [A12W] applies the
property relations to connect multiple metamodels inside a single model, which allows
for a uniform handling of all metamodel levels.

In the second part, work on UML Protocol State Machines (PSM1) as published
in [A22C] is presented. It is shown, how this kind of state machines can strengthen
the design of the behavior of a system. Further, the runtime behavior of PSMs is
discussed. The main motivation of this work was to increase the possibilities of the
runtime verification approach explained in Chap. 4.

3.1 Endogenous Metamodeling Semantics

This section introduces the basic concepts of our approach, which is described in the
forthcoming sections. The overall idea of metamodeling semantics is to define the seman-
tics of languages by using models. Endogenous metamodeling semantics further stays
inside of the same technology space, i. e., the semantics of a language are defined by
using itself instead of using another formalism, like it is done, e. g., in [74] for OCL. In
[42], which is the base for our work, metamodeling semantics is defined as follows:

1Please note that PSM is also used as an acronym for Platform Specific Model as stated earlier. In the
following we always use PSM as an acronym for Protocol State Machine.

25

3 Formalizing and Applying UML and OCL

“Metamodeling semantics is a way to describe semantics that is similar to
the way in which popular languages like UML are defined. In metamodeling
semantics, not only the abstract syntax of the language, but also the semantic
domain, is specified using a model.” [42]

Metamodeling a language by defining the abstract syntax using a graphical modeling
language combined with a formal textual language to express well-formedness rules is
a well-known technique. The UML specification, for example, uses UML (or MOF,
which itself uses UML) in combination with OCL to define its abstract syntax. In [42]
this is called the Abstract Syntax Model (ASM), which defines the valid structures in
a model. The same technique is rarely used to define the semantics of a language,
i. e., to specify a Semantic Domain Model (SDM) of a modeling language. A semantic
domain defines the meaning of a particular language feature, whereas a semantic domain
model describes this meaning by modeling the runtime behavior of a (syntactically) valid
model using its runtime values and applying meaning to them. For example, later we
will see that in the UML there is the class Class in the abstract syntax part, and
there is the class InstancesSpecification in the semantic domain part which together
can describe (through an appropriate association) that a class (introduced at design
time) is interpreted (at runtime) by a set of objects, formally captured as instance
specifications. Another publicly available example for metamodeling semantics can be
found in Section 10 of the OCL specification [63]. It defines constraints on values, i. e.,
runtime instances, which are part of the SDM. For example, the runtime value of a set
is constrained as follows [63, p. 113]:

1 context SetTypeValue inv : s e l f . element−>isUnique (e : Element | e . va lue)

The central idea behind the approach in [63] is to describe the runtime behavior of
OCL using OCL, which is similar to the UML metamodel described by UML models.
While this is done in the UML to constrain the metamodel level M1, i. e., the valid
structure of models, very little formal information is given for the level M0. Nearly only
the structure for the runtime snapshots is specified, but little use is made of defining
runtime constraints in a formal language like OCL. An excerpt of the UML metamodel
which shows important elements for our work is shown in Fig. 3.1 on the next page. The
diagram combines elements from roughly six syntax diagrams of the UML metamodel.
On the left side, the ASM (syntax) of the UML is shown. On the right, the SDM
(semantics) elements are given as they are present in the current specification. In the
next sections we define runtime constraints on the semantic domain model for several
modeling constructs which are frequently used in the definition of the UML metamodel,
but are only defined in an informal way using verbal descriptions.

26

3.1 Endogenous Metamodeling Semantics

E
le

m
en

t

ow
ne

dE
le

m
en

t {
un

io
n}

ow
ne

r {
un

io
n}

Figure 3.1: Combined View of UML Metamodel Elements[A15C]

27

3 Formalizing and Applying UML and OCL

Figure 3.2: Class Diagram Using subsets and union on Attributes [A15C]

3.2 Static Structure Modeling
In the next sections we show, how the previously explained approach can be used to
define a precise meaning of informally defined elements of the UML specification and
how this definition can be automatically validated by using instances of the specified
ASM and SDM in the USE tool. In particular, we are going to define the runtime
semantics of property relations by using UML and OCL. For this, we first introduce
these relations by an example. Afterwards, we use this example to demonstrate our
approach.

Like classes, associations in the UML can be related by specifying an inheritance
relation between them. This is expressed in the UML metamodel by the class Genera-
lization connecting classifiers. Since the metaclass Association is derived from the
metaclass Classifier, generalizations can be defined for them. Another kind of relation
for association ends and also for properties not linked to an association, i. e., attributes,
are so-called property relations. The UML metamodel defines two kinds of property
relations [69, p. 37]:

1. subsets and union (extensional semantics)

2. redefines (intentional semantics)

In the area of database systems, the distinction between intentional and extensional
semantics is sometimes made by defining the schema of a database as the intentional
layer and the state of a database as the extensional layer [41]. In the following, we
concentrate on the definition of subsets and union. The usage of redefines was
discussed in [A18C].

3.2.1 Subsetting and Derived Unions
We explain our proposal by starting with a basic class diagram, which uses subsetting
and union constraints on attributes of classes. Later on, we extend this diagram by using

28

3.2 Static Structure Modeling

wheel3:Wheel

wheel2:Wheel
aCar:Car

part=Set{@wheel1,@wheel2,@wheel3,@wheel4}
front=Set{@wheel1,@wheel2}
back=Set{@wheel3,@wheel4}

wheel1:Wheel

wheel4:Wheel

Figure 3.3: Valid Object Diagram Using subsets and union on Attributes [A15C]

Listing 3.1: Property Constraints Translated to Invariants
1 context Vehic l e inv partIsUnion :
2 let s e l f C a r = s e l f . oclAsType (Car) in
3 s e l f C a r <> n u l l implies
4 s e l f . part = s e l f C a r . f ront −>union (s e l f C a r . back)
5

6 context Car inv f r o n t I s S u b s e t :
7 s e l f . part−>i n c l u d e s A l l (s e l f . f r o n t)
8

9 context Car inv backIsSubset :
10 s e l f . part−>i n c l u d e s A l l (s e l f . back)

subsetting and union on associations. Subsetting and union constraints on properties
(a property can take the role of an attribute or an association end) define a relation
between two or more properties. The values of a subsetting property must be a subset
of the values for the subsetted property. Union can be used on a single property. Its
usage defines that the values of a property are the union of all its subsetting properties.

Figure 3.2 on the facing page shows a simple model of vehicles (c. f. [A15C] and
[9]). A vehicle consists of vehicle parts. For a car, information about the front and
back wheels is added to the class Car. Because these wheels are part of the overall
vehicle, the properties front and back are marked as subsets of the general property
part. The property part itself is marked as a derived union of all of its subsets.
Furthermore, the subsetting properties restrict the lower and upper bounds of the wheels
to the common number of wheels for a car (2 is equivalent to 2..2). A valid object diagram
w. r. t. the given class diagram is shown in Fig. 3.3. For this simple diagram, one can
see directly that the intended constraints are fulfilled. However, for more complicated
models, an automatic validation is required. If the used modeling language would not
provide subsets and union constraints, a modeler could still specify invariants on the
classes Vehicle and Car as shown in Listing 3.1. However, these constraints would
strongly couple the abstract class Vehicle and its subclass Car, because Vehicle needs
information about its subclasses to validate the union constraint. This would break
well-known design guidelines, e. g., [21, p. 94], because it leads to reduced reusability of

29

3 Formalizing and Applying UML and OCL

Listing 3.2: Invariant For the Runtime Semantics of Subsets
1 context S lo t inv s u b s e t t i n g I s V a l i d :
2 let prop = s e l f . d e f i n ingFea tu r e . oclAsType (Property) in
3 (prop <> n u l l and prop . owner . oc l I sKindOf (Class)) implies
4 prop . subsettedProperty −>f o r A l l (subsettedProp |
5 let subset tedValues = s e l f . owningInstance . s l o t −>
6 any (de f i n ingFea tu r e=subsettedProp) . value . getValue()−>asSet () in
7 let currentValues = s e l f . va lue . getValue()−>asSet () in
8 subsettedValues −>i n c l u d e s A l l (currentValues))

the abstract class Vehicle.
To allow a generic usage of these constraints the UML provides the ability to specify

subset relations between properties using a reflexive association on Property and to
mark a property as a derived union (see Fig. 3.1 on page 27). Further, several well-
formedness OCL rules are given, to ensure the syntactical correctness of the usage. For
example, the type of the subsetting property must conform to the type of the subsetted
end [69, p. 126]. However, information about the semantics of the UML language element
subsets is only provided textually, not in a formal way. We propose to add (what we
call) runtime semantics by means of OCL constraints to the already present elements
describing runtime elements. For the previously explained example, which uses property
constraints on attributes, the constraint shown in Listing 3.2 specified on the UML
metaclass Slot (a slot allows, for example, to assign an attribute value to an attribute)
describes the runtime semantics of subsets. The constraint checks for each slot that
defines a value or values for an attribute of a class, if it is a subset of the values defined
by the slots of the subsetted properties. Because this constraint only considers attributes
of classes, the navigation to the slots of the owning instance of the context slot is enough.
For associations, and especially for associations with more than two ends, the calculation
of the values to be considered is more complicated.

A class diagram which makes use of subsets and union on association ends is given
in Fig. 3.4 on the next page. The previously specified attributes part and front are
changed to association ends, while the attribute back is left out in order to keep the
following examples at a moderate size. Figure 3.5 on the facing page shows an example
instantiation of the class diagram. The links shown as a solid line are inserted by the
user, while the dashed links are automatically calculated by USE, because they are part
of a derived union. In USE, all derived links (either established through a derived union
or through an explicit derived association end) are shown as dashed links to be able to
separate them from concrete, i. e., non calculated, links.

The object diagram in Fig. 3.6 on page 32 shows an instantiation of the UML meta-
model representing the class diagram of Fig. 3.4 on the facing page at the top and the
object diagram shown in Fig. 3.5 on the next page at the bottom. This figure inten-

30

3.2 Static Structure Modeling

Class diagram

WheelCar

Vehicle VehiclePartpart {union}
1..*inVehicle {union}

1

front {subsets part}
2inCarAsFront {subsets inVehicle}

1

Figure 3.4: Class Diagram Using subsets and union on Association Ends [A15C]

Object diagram

wheel2:Wheel

wheel1:Wheel

aCar:Car

part {union}

front {subsets part}
front {subsets part}

part {union}

Figure 3.5: Object Diagram Using subsets and union on Association Ends [A15C]

tionally includes so many dashed lines and compositions, in order to show the inherent
complexity of the UML metamodel. This complexity can automatically be revealed by
using our tool. In Sect. 3.2.2 on page 34 we are going to explain these so-called virtual
links in more detail. On the other side, these virtual links allow us to suppress certain
elements in the object diagram to make it easier to be read. For example, the general-
ization relationships are only shown as derived links between the classes leaving out the
generalization instance. To be more concrete, in the left upper part of Fig. 3.6 on the
next page the dashed link between Class3 (Vehicle) and Class4 (Car) corresponds to
the left generalization arrow in Fig. 3.4. We use this diagram in the following to explain
an extended runtime semantics which also covers associations.

A runtime semantics for subsetting that covers attributes and association ends must
consider all tuples of instances which are linked to a subsetted property and the set of
instances linked to this tuple at the subsetting end. For the previously shown example on
attributes, this tuple contains only one element, namely the defining instance, whereas
for association ends of an association with n ends, this tuple contains n − 1 elements.
We accomplish this by using a query operation called getConnectedObjects() which is
similar to the operation Extent::linkedObjects(...) defined in the MOF specifica-
tion [62], but also covers n-ary associations, properties, and derived unions. The query

31

3 Formalizing and Applying UML and OCL

O
bj

ec
t d

ia
gr

am

IS
5:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'w
he

el
2'

S
lo

t9
:S

lo
t

IS
1:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'a
C

ar
'

IS
7:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

U
nd

ef
in

ed

C
la

ss
4:

C
la

ss
na

m
e=

'C
ar

'
is

A
bs

tra
ct

=f
al

se

P
ro

pe
rty

4:
P

ro
pe

rty
na

m
e=

'fr
on

t'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=2

/ u
pp

er
=2

is
R

ea
dO

nl
y=

fa
ls

e
is

D
er

iv
ed

=f
al

se
is

D
er

iv
ed

U
ni

on
=f

al
se

S
lo

t1
0:

S
lo

t

S
lo

t3
:S

lo
t

IS
3:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

U
nd

ef
in

ed

C
la

ss
1:

C
la

ss
na

m
e=

'V
eh

ic
le

P
ar

t'
is

A
bs

tra
ct

=t
ru

e
P

ro
pe

rty
3:

P
ro

pe
rty

na
m

e=
'in

V
eh

ic
le

'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=1

/ u
pp

er
=1

is
R

ea
dO

nl
y=

tru
e

is
D

er
iv

ed
=t

ru
e

is
D

er
iv

ed
U

ni
on

=t
ru

e

P
ro

pe
rty

2:
P

ro
pe

rty
na

m
e=

'p
ar

t'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=1

/ u
pp

er
=*

is
R

ea
dO

nl
y=

tru
e

is
D

er
iv

ed
=t

ru
e

is
D

er
iv

ed
U

ni
on

=t
ru

e

IV
8:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

A
ss

oc
ia

tio
n1

:A
ss

oc
ia

tio
n

na
m

e=
'C

_I
nV

eh
ic

le
_P

ar
t'

is
A

bs
tra

ct
=f

al
se

is
D

er
iv

ed
=U

nd
ef

in
ed

C
la

ss
3:

C
la

ss
na

m
e=

'V
eh

ic
le

'
is

A
bs

tra
ct

=t
ru

e

IV
7:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

S
lo

t4
:S

lo
t

A
ss

oc
ia

tio
n2

:A
ss

oc
ia

tio
n

na
m

e=
'C

_I
nC

ar
A

sF
ro

nt
_W

he
el

'
is

A
bs

tra
ct

=f
al

se
is

D
er

iv
ed

=U
nd

ef
in

ed

P
ro

pe
rty

5:
P

ro
pe

rty
na

m
e=

'in
C

ar
A

sF
ro

nt
'

is
O

rd
er

ed
=f

al
se

is
U

ni
qu

e=
tru

e
/ l

ow
er

=1
/ u

pp
er

=1
is

R
ea

dO
nl

y=
fa

ls
e

is
D

er
iv

ed
=f

al
se

is
D

er
iv

ed
U

ni
on

=f
al

se

IV
2:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

IS
2:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'w
he

el
1'

C
la

ss
5:

C
la

ss
na

m
e=

'W
he

el
'

is
A

bs
tra

ct
=f

al
se

IV
1:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

/g
en

er
al

in
st

an
cety

pe

ow
ni

ng
In

st
an

ce
 {s

ub
se

ts
 o

w
ne

r}

de
fin

in
gF

ea
tu

re

fe
at

ur
e

{u
ni

on
}

su
bs

et
te

dP
ro

pe
rty

ty
pe

cl
as

si
fie

r

/e
nd

Ty
pe

 {o
rd

er
ed

, s
ub

se
ts

 re
la

te
dE

le
m

en
t}

va
lu

e
{o

rd
er

ed
, s

ub
se

ts
 o

w
ne

dE
le

m
en

t}

de
fin

in
gF

ea
tu

re

in
st

an
ce

cl
as

si
fie

r

/g
en

er
al

in
st

an
ce

/e
nd

Ty
pe

 {o
rd

er
ed

, s
ub

se
ts

 re
la

te
dE

le
m

en
t}

su
bs

et
te

dP
ro

pe
rty

cl
as

si
fie

r

fe
at

ur
e

{u
ni

on
}

Figure 3.6: Class and Object Diagram as a Metamodel Instance [A15C]

32

3.2 Static Structure Modeling

Figure 3.7: Querying Runtime Values Using getConnectedObjects() [A15C]

operation uses the metaclasses of the semantic domain model to obtain all connections
specified for a property. For this, it navigates to all instance specifications to consider
and their owned slots. If a property is defined as a derived union, this operation is
recursively invoked on all properties subsetting the derived union property and collects
all connected values in a single set, i. e., it builds the union of the values. To give a more
detailed view of the usage of this central operation, Fig. 3.7 shows the result of invoking
it on the property part using the state shown in Fig. 3.6 on the facing page.

The result is a set of tuples with two parts:

1. source: The sequence of source objects in the same order as the association ends,
if the property is owned by an association. If it is used as an attribute, a sequence
including the context object, only.

2. conn: The objects connected to the source objects at the property.

The result of the evaluation is the calculated union of the property values for all possible
source objects. Because only one vehicle (named aCar), is present in the given state,
the set contains a single tuple. This tuple consists of the sequence containing the in-
stance specification representing the object aCar and a set of values which are linked to
this instance via subsetting properties of part. Given the previously described opera-
tion getConnectedObjects(), we can define a constraint which ensures the subsetting
semantics:

1 context Property inv s u b s e t t i n g I s V a l i d :
2 let subsetL inks = s e l f . getConnectedObjects () in
3 s e l f . subsettedProperty −>f o r A l l (super se tProper ty |
4 let supe r s e tL inks = super se tProper ty . getConnectedObjects () in
5 subsetLinks −>f o r A l l (t1 |
6 superse tL inks −>one (t2 | t1 . source=t2 . source and
7 t2 . conn . getValue()−>asSet ()−> i n c l u d e s A l l (
8 t1 . conn . getValue()−>asSet ()))))

33

3 Formalizing and Applying UML and OCL

The central part of the given invariant can be seen on line 7 where the operation
includesAll is used, which is the OCL way to validate whether a collection is a su-
perset of another one. Some things need to be explained in more detail. First, the
usage of the operation getValue():OclAny, which is an extension to the UML meta-
class ValueSpecification, is required to be able to get the concrete value of a value
specification. The UML metamodel defines several operations on this class for retrieving
basic types like stringValue():String but excludes a generic definition. Second, the
collected values need to be converted to a set using asSet() (see lines 7 and 8) because
values can map to the same specifications. It should be mentioned that, if evaluated
at runtime, the invariant only validates the union calculation if subsets is used in the
context of a derived union. If subsets is used on a property which is not a derived union,
the constraint validates the user defined structure.

Including the described invariant and similar invariants for other runtime elements
adds a precise definition of its semantics to the modeling language. Further, our ap-
proach allows for an automatic validation of the defined semantics by using existing
tools, because no new UML and OCL features are required for the invariant. For ex-
ample, instantiations of the metamodel inside the USE tool can be checked or the USE
model validator can be applied to verify the semantics.

3.2.2 Derived Properties

As already shown, properties can be marked as derived. First of all, this expresses that
these properties are a combination of data already present in a model. If information
about how to extract the derived information is present, the name of the derived property
further assigns meaning to this combination. By providing a derive expression that can
be automatically computed at runtime, derived properties can help to examine runtime
phenomena, since they can visualize the relations of the model elements combined by the
derive expression. Besides the easier retrieval of information, derived properties can also
be used to leave out too detailed information by shortening the navigation to connected
objects. In the following we are going to explain the integration and the usage of derived
expressions for the two common types of properties in USE: attributes and association
ends.

Derived Attributes

Derived attributes are visualized using nearly the same syntax as normal attributes,
except that a leading slash (/) before the attribute name indicates that this attribute
is derived. For an attribute, a derive expression can be defined using OCL. The type
of such an expression must conform to the defined type of the attribute. Its evaluation
context is given by the instance the attribute value is calculated for and can be accessed
by the keyword self. Figure 3.8 on the next page shows an example of a derived

34

3.2 Static Structure Modeling

Product

InvoiceLineItem

amount : Integer

price : Real

Invoice

/ total : Real

/highValuedProducts
*InvoiceProduct

invoice *

product
1

lineItem*

lineItem {ordered}
1..*

invoice
1

1 context I n v o i c e : : t o t a l : Real derive :
2 s e l f . l ine I tem −>c o l l e c t (amount ∗ p r i c e)−>sum ()
3

4 context I n v o i c e : : highValuedProducts derive :
5 s e l f . l ine I tem −>s e l e c t (item | item . p r i c e > 2 0 0) . product−>asSet ()

Figure 3.8: Class Diagram Including Derived Properties and Their Definitions

attribute named total which is owned by the class Invoice. The derive expression,
that computes the total of an invoice by summing up the products of the amounts and
the price, is shown below the figure. This attribute can be used like any other attribute
inside of an OCL expression, but moreover, the total amount of an invoice can directly
be seen in an object diagram as shown in Fig. 3.9. This is different to the usage of query
operations, which cannot be directly displayed in an object diagram, since operations,
in contrast to derived attributes, can define parameters and there is no possibility inside
an object diagram to provide arguments for these parameters.

item2:InvoiceLineItem
amount=1
price=10

monitor:Product

keyboard:Product

item1:InvoiceLineItem
amount=1
price=310

i:Invoice
/ total=320

/highValuedProducts

product

lineItem {ordered}

product

lineItem {ordered}

Figure 3.9: Object Diagram Including Derived Properties

35

3 Formalizing and Applying UML and OCL

Derived Association Ends

The usage of derived association ends can also help to improve views on a system state.
Like normal links, derived links are a natural way to show connections between objects.
A user can easily identify connected objects without the need to look up object identifiers
or to enter a query.

To make these associations visible, they need to be evaluated. In the UML specifica-
tion, derived associations, as with derived attributes, are defined by means of constraints,
i. e., boolean expressions, which define them in a declarative way. This approach pre-
cisely describes the content (the links) of a derived association, but cannot be easily
computed if a model is evaluated, because the information about the derived part of the
boolean expression would need to be extracted. To provide a usable way, our approach
requires the use of expressions that directly evaluate to the expected result. For example,
the derive expression for the association end /highValuedProducts shown in Fig. 3.8
on the previous page on the lines 4 and 5 evaluates to a set of Products, because the
association end has a multiplicity of more than one. To be able to evaluate a derive
expression an evaluation context is needed. As previously described, the context of a
derive expression for an attribute is the instance on which it is evaluated. This also
holds for binary associations if the result of a navigation to a derived end needs to be
calculated, since the instance from which the navigation starts is the context for it (an
instance of type Invoice in the previously used example).

However, there are situations for which such a context instance is not given. If the
result of a navigation expression starting at a derived association end must be computed,
there is no implicit context instance available. Instead, the derive expression must be
evaluated for all instances which could be connected to the starting instance, i. e., for
all instances of the opposite association end. If the result of the evaluation contains the
starting instance, the instance for which the expression was evaluated is linked to the
starting instance.

As an example, consider Fig. 3.8 on the preceding page and the navigation from a
Product to an Invoice using the association InvoiceProduct that starts at the de-
rived association end /highValuedProducts. To get all connected invoices, the derive
expression needs to be evaluated for all instances of Invoice. If the result contains the
source product, the invoice is part of the resulting set of the navigation expression. This
informal description can be defined using OCL as follows:

1 context Product : : i n v o i c e derive :
2 I n v o i c e . a l l I n s t a n c e s ()−> s e l e c t (i | i . highValuedProduct−>conta in s (s e l f))

Since a navigation, if started from a derived association end, always follows the pattern
shown in the previous example, it can be integrated into an evaluator. Another situation,
where no implicit context is available, occurs when using derived associations with more
than two association ends. To be able to calculate the result, even if evaluated on a given

36

3.2 Static Structure Modeling

Figure 3.10: Using a Derived Ternary Association to Express Further Rules [A15C]

context instance, all n-tuple (pairs for ternary associations) of possible combinations
must be evaluated. In [A15C] we have shown, how n-ary derived associations can be
used to visually express additional model constraints. An example using an extended
model of the library system introduced earlier is shown in Fig. 3.10. The additional
derived association between the three classes together with the defined multiplicity 0..1
for the association end dCopy are used to express the constraint, that one user can only
borrow a single copy of a book. The definition including the derived expression for the
new association is as follows:

1 association BorrowsCombined between
2 User [0 . . ∗] role dUser
3 Copy [0 . . 1] role dCopy derive (aUser : User , aBook : Book) =
4 aUser . copy−>s e l e c t (c | c . book=aBook)
5 Book [0 . . ∗] role dBook
6 end

It uses a pair of copy and book objects to calculate the borrowed copies of the given
user (aUser) and the given book (aBook). As it can bee seen in the log at the lower part
of Fig. 3.10, the shown system state violates this multiplicity constraint on the derived
association end, because the user User1 has borrowed two copies of the book Book1.

37

3 Formalizing and Applying UML and OCL

Further, one can directly see the instances related to a single lending by looking at the
ternary links.

3.3 Behavior Modeling with Protocol State Machines
This section summarizes work on modeling dynamic behavior in a declarative way using
UML state machines, which has been published in [A22C] and [A16C]. The benefits of
using state machines to define behavior on the static level together with the validation
capabilities of USE in this context on the runtime level are shown using an example.

Our approach is similar to Executable UML [54], which is designed to specify a sys-
tem at a high level of abstraction, independent from specific programming languages
and decisions about the implementation. This follows the ideas of the Shlaer-Mellor
methodology, which separated concerns about the structure [83] and the behavior [82] of
a system to be developed. Executable UML is defined as a profile of the UML [69]. Exe-
cutable UML models are testable, and can be compiled into less abstract programming
languages to target a specific implementation. Executable UML supports model-driven
development through specification of platform-independent models.

When using Executable UML, a system is decomposed into multiple modeling sub-
languages: A class diagram defines the system structure in terms of the classes and
associations; a state machine defines the states, events, and state transitions for a class
instance; an action language defines the actions or operations that perform processing
on model elements; the system behavior is determined by the state machines and the
operations realized in the action language.

The following sections explain our support for state machines in order to complete
the description of behavior. Within USE, we integrate class diagram validation with
UML protocol state machine validation on the basis of OCL state invariants and OCL
guards and postconditions for transitions. In contrast to Executable UML, our approach
extends OCL in order to express actions and operation implementations, but does not
need to define a separate action language.

3.3.1 Design Time
Based on the exemplary system of a library that we used in Chap. 2 to describe UML
and our modeling tool USE, we are going to show the additional modeling capabilities
introduced by adding support for state machines into USE. For this, please recap the
class diagram of the library system shown in Fig. 2.3 on page 8 consisting of the three
classes User, Copy, and Book.

We extend this model by adding behavioral system requirements. Some of them are
shown in Fig. 3.11 on the facing page and 3.12 on page 40 as UML protocol state
machines with states and transitions. For the class Copy the valid object lifecycles are
depicted, which restrict the order of creation events and operation calls. Note, that

38

3.3 Behavior Modeling with Protocol State Machines

State machine `CopyLife'

prenatal

borrowedavailable

postnatal

borrowC(aUser : User)/

create/

init(aSignature : String, aBook : Book)/

returnC()/

Copy::CopyLife {protocol}

Figure 3.11: Requirements for the Behavior of the Class Copy

this figure is a modified version of the state machine presented in [A15C]. For example,
the used arrows for transitions are now correctly aligned to the UML syntax and it is
highlighted by using [...] that state invariants are suppressed.

As a central means to make the model precise, OCL is used in various places: States
are described by state names and state invariants in form of boolean OCL expressions;
transitions include: (a) the triggering create or call event, (b) a guard in form of a
boolean OCL expression asserting that the transition only takes places when the guard
holds, and (c) a postcondition in the form of a boolean OCL expression asserting that the
transition only takes place in the case that after the transition the postcondition holds.
Traditionally, the notion guard is used in connection with state machines; however,
because of the symmetric behavior of the guard and postcondition, the guard may also
be called transition precondition.

The state invariants may optionally be shown in the protocol state machine diagrams,
however, we have suppressed them in the diagram to maintain readability. For example,
for the class Copy, the three proper, non-pseudo states embody the state invariants
given in Listing 3.3 on the following page. In the state postnatal (after create), all
attributes must be undefined and the copy must not be linked to any book. In the state
available (after a call to the initialization operation init), all attributes are defined
and the copy is linked to a book.

The transitions are either labeled with the create event which brings the respective
object into life or with an event which calls an operation of the object. The protocol
state machine for the class Copy (Fig. 3.11) asserts a finite life-cycle demanding that after

39

3 Formalizing and Applying UML and OCL

Listing 3.3: State Invariants of the Class Copy
1 pos tna ta l [s e l f . s i g n a t u r e . o c l I sUnde f ined ()
2 and s e l f . numReturns . o c l I sUnde f ined ()
3 and s e l f . user−>isEmpty () and s e l f . book−>isEmpty ()]
4

5 a v a i l a b l e [not s e l f . s i g n a t u r e . o c l I sUnde f ined ()
6 and not s e l f . numReturns . o c l I sUnde f ined ()
7 and s e l f . user−>isEmpty ()]
8

9 borrowed [not s e l f . s i g n a t u r e . o c l I sUnde f ined ()
10 and not s e l f . numReturns . o c l I sUnde f ined ()
11 and s e l f . user−>notEmpty ()]

State machine `UserLife'

postnatal living
prenatal

[(self.copy->collect(c : Copy | c.book)->excludes(aCopy.book) and aCopy.oclInState(available))] borrowU(aCopy : Copy)/ [aCopy.oclInState(borrowed)]

[(self.copy->includes(aCopy) and aCopy.oclInState(borrowed))] returnU(aCopy : Copy)/ [aCopy.oclInState(available)]

create/ init(aName : String, anAddress : String)/

User::UserLife {protocol}

Figure 3.12: Requirements for the Behavior of the Class User

object creation only the operation init may be called once. It further guarantees that
after creation and initialization, the borrowC and returnC operations switch between
the states available and borrowed.

The state machine for the class User shown in Fig. 3.12 additionally employs OCL
for transition guards and postconditions. Please be aware of the fact that all states
are accompanied by OCL state invariants. Both operations, borrowU and returnU in
class User are allowed in state living, however, OCL restrictions via transition guards
and postconditions apply. The guard (precondition) for borrowU guarantees that a
user cannot borrow two copies of the same book. And the guard asserts that only
available (i. e., not borrowed) copies can be handled with the operation borrowU. The
postcondition of borrowU checks that the copy, which was available before the transition
took place, is now unavailable. Conversely, the guard for returnU asserts that the copy
to be returned belongs to the current user and is indeed a copy in state borrowed. The
postcondition checks that the parameter copy is indeed available after the returnU call.
Note that these simple example restrictions do not guarantee unproblematic behavior

40

3.3 Behavior Modeling with Protocol State Machines

in all possible implementations. The state invariants, guards, and postconditions have
been chosen for demonstration purposes.

An implementation on the modeling level of the operations can be realized in the
language SOIL (see Sect. 2.3.1 on page 17). As an example, we show implementations
for the operations of the class User in Listing 3.4 on the following page. These opera-
tion implementations allow the developer to build up simple or complex test states and
scenarios with call sequences easily. Consequently, model properties like consistency or
the reachability of protocol states can be checked with scenarios constructed with SOIL
statements. The SOIL command sequence in the upper right side of Fig. 3.13 on page 43
is an example for such a test scenario. The validity of model properties formulated in
OCL as class invariants, operation pre- and postconditions, state invariants, and transi-
tion pre- and postconditions is checked against these scenarios and by this also against
the SOIL implementation given for the operations. When writing down a particular test
scenario, the developer will have expectations on particular (class or state) invariants
and (operation and transition) pre- and postconditions. These informal expectations are
formally checked by the tool USE, and the validation results give detailed feedback to
the developer about the possible discrepancy between their expectations and the actual
facts: “What you write down doesn’t mean exactly what you think it means. And when
it does, it doesn’t have the consequences you expected.” [34, p. XIII]

3.3.2 Runtime

This section will explain how to apply the proposed concepts for the example at runtime.
Whereas the previously shown figures pictured structure and behavior of the library
system on a type level (design time), Fig. 3.13 on page 43 displays structure and behavior
of one system test scenario on the instance level (runtime). The object diagram in
the lower right represents the objects, their attribute values, and links after the SOIL
command sequence in the upper right part of the same figure has been executed. In the
left of the figure, the upper two state machine instances show the current protocol state
for the Copy objects dbs42 and dbs52. Also in the left, the lower two state machine
instances display the current protocol state for the User objects ada and bob in dark grey.
Please note that the state of both Copy objects and the state of both User objects are
different. The state sequence which the Copy object dbs52 went through was postnatal,
available, borrowed and again available. We can conclude this from the executed
operation sequence and from the attribute value 1 for attribute numReturns. In the
shown operation sequence, all OCL restrictions have been checked and no violation
occurs: all class invariants, state invariants and transition pre- and postconditions have
been evaluated to true.

This scenario can be extended by further operation calls. For example, the User
object ada could try to borrow the Copy object dbs43. In this situation, the guard for
the borrowU call on the transition from living to living would prevent the transition

41

3 Formalizing and Applying UML and OCL

Listing 3.4: Library Example in USE employing PSMs and SOIL
1 class User −− pre− and p o s t c o n d i t i o n s not shown
2 operations
3 i n i t (aName : String , anAddress : String)
4 begin s e l f . name := aName ;
5 s e l f . address := anAddress ; end
6

7 borrowU (aCopy : Copy)
8 begin aCopy . borrowC (s e l f) ; end
9

10 returnU (aCopy : Copy)
11 begin aCopy . returnC () ; end
12

13 statemachines
14 psm UserL i f e
15 states
16 prenata l : i n i t i a l
17

18 pos tna ta l
19 −− s t a t e i n v a r i a n t
20 [name . oc l I sUnde f ined () and address . o c l I sUnde f ined ()
21 and copy−>isEmpty ()]
22

23 l i v i n g
24 [not name . oc l I sUnde f ined () and not address . o c l I sUnde f ined ()]
25

26 transitions
27 prenata l −> pos tna ta l { c r e a t e }
28

29 pos tna ta l −> l i v i n g { i n i t ()
30 [not name . oc l I sUnde f ined () and not address . o c l I sUnde f ined ()
31 and copy−>isEmpty ()]
32 }
33

34 l i v i n g −> l i v i n g {
35 −− guard
36 [s e l f . copy−>c o l l e c t (c | c . book)−>exc ludes (aCopy . book)
37 and aCopy . o c l I n S t a t e (a v a i l a b l e)]
38 −− t r i g g e r
39 borrowU ()
40 −− p o s t c o n d i t i o n
41 [aCopy . o c l I n S t a t e (borrowed)]
42 }
43

44 l i v i n g −> l i v i n g {
45 [s e l f . copy−>i n c l u d e s (aCopy) and aCopy . o c l I n S t a t e (borrowed)]
46 returnU ()
47 [aCopy . o c l I n S t a t e (a v a i l a b l e)]
48 }
49 end

42

3.3 Behavior Modeling with Protocol State Machines

Figure 3.13: Example Scenario for Structure and Behavior (Runtime) [A22C]

43

3 Formalizing and Applying UML and OCL

Figure 3.14: Sequence Diagram of the Example Scenario [A22C]

44

3.3 Behavior Modeling with Protocol State Machines

Listing 3.5: The USE Information About a Failing Guard
1 ! ada . borrowU (dbs43)
2 >> Error : No v a l i d t r a n s i t i o n a v a i l a b l e in p r o t o c o l s t a t e machine
3 >> ‘ User : : Use rL i f e [cur r ent s t a t e : l i v i n g] ’ f o r opera t i on c a l l
4 >> User : : ada . borrowU (dbs43) due to f a i l i n g t r a n s i t i o n guard .

to take place: User ada has already borrowed another copy of the Book object date. On
the USE shell, a message will inform about the violation and the fact that the transition
is invalid. The message given in Listing 3.5 will be shown. Analogous error messages
would be displayed on the shell, if the transition postcondition or the state invariant of
the next state would be violated.

Summarizing we can say that taking a transition may be aborted due to four possible
reasons:

1. a failing transition guard (precondition),

2. a failing transition postcondition,

3. a failing state invariant in the resulting state, and

4. non-deterministic transitions, e. g., multiple transitions for the same trigger.

3.3.3 State Determination
One outstanding feature of our approach is the possibility to determine the current state
of state machine instances by using the invariants of the states. This feature is useful,
if a system state was built without following the execution trace of operation calls, e. g.,
if a system state was created by the USE model validator. Since the model validator
tries to find a system state that is valid w. r. t. structural constraints, no information
about behavior is available and therefore the current states of defined state machines
must be determined. Another application of this feature is shown in Sec. 4.3 beginning
on page 54 during runtime verification with USE.

In Fig. 3.15 on the following page, an example explains the usage of state invariants and
the state determination option. For a TrafficLight class with three boolean attributes
representing the red, yellow, and green bulbs, a protocol state machine allows the traffic
light to step through four phases, where each phase is represented by a single state and a
state invariant in the form of an OCL expression, characterizing the signal in terms of the
bulbs.2 The object diagram in the top center of the graphic shows four test traffic lights
equipped with randomly determined attribute values for the bulbs, not all representing

2The phases are the phases used in Germany, whereas in other countries, e. g., in Italy, the phases are
different.

45

3 Formalizing and Applying UML and OCL

Figure 3.15: Example for the Usage of the State Determination Option

valid signal configurations. The attribute values have been modified not by operations,
but with direct attribute assignments.

In the log window at the bottom, the result of executing the state determination com-
mand is given. This command aims to bring the state machine instances into the state
corresponding to their state invariants, if possible. For two traffic lights (sth and est),
a valid state fitting one of the four state invariants could not be found; the other state
machine instances are moved into a state determined by a state invariant. The displayed
state machine instance in the middle belongs to the TrafficLight object wst and shows
that the attribute values (wst.red=true and wst.ylw=true and wst.grn=false) fit to
the OCL state invariant expression (self.red and self.ylw and not(self.grn)) be-
longing to the current state redYlw shown in dark grey. As our approach supports OCL
during all development phases, the complete system state can be inspected with OCL

46

3.4 Related Work

expressions at any point in time. The OCL query expression in the upper right retrieves
all present traffic light objects which currently show both red and grn. The state deter-
mination together with OCL querying allows to check positive and negative test cases
with respect to structure (objects and attributes) and behavior (operations and state
machines).

3.4 Related Work

This section reports on relevant work related to the previously covered topics. A more
detailed evaluation of related work can be found in the publications summarized in this
chapter ([A18C, A15C, A16C]).

To what extend a precise semantics of UML is needed is discussed in [79] and [12].
The authors of [12] discuss the benefits and drawbacks of a precise UML specification
including a runtime semantics from several points of view. That there is a need for a
precise semantics can be seen be the publication of newer specifications of the OMG, like
the Semantics of a Foundational Subset for Executable UML Models (FUML) [66] and its
related Action Language for Foundational UML (ALF) [64]. One of the first proposals
on how to define the semantics of UML class diagrams including OCL constraints was
published in [74]. A detailed collection of different approaches on how to define the
semantics of UML elements, e. g., denotational, operational, and transformational, can
be found in [47]. In [81] a unified semantics framework using predicate logic formulas
for the multilayer metamodel hierarchy is presented.

A descriptive introduction to the usage of union and subsets together with composite
structures is given in [9]. A more detailed discussion of the semantics has been done
in [1] using a set-theoretic formalization, while graph transformations are used in [3, 2]
for this. The work in [52] uses a so-called property oriented abstract syntax to define the
semantics of what the authors call inter-association constraints (these include subsets
and union). [20] defines the semantics of property relations by translating them into a
so-called basic UML layer. This work is similar to our work in the sense that it uses
UML and OCL to define the semantics, however it differs by translating these constructs
into OCL invariants, like the one shown in Listing 3.1 on page 29, and not by defining
generic constraints on the meta level. A similar approach that transforms relations
between properties into constraints is presented in [59].

Work on derived properties in UML/OCL models has been done in [24]. The authors
translate conceptual schema, i. e., UML/OCL models, enriched with derived properties
specified in OCL, into first order logic to be able to reason about satisfiability and con-
tradictions. Query operations, which can be seen as another kind of derived properties,
were supported in one of the first versions of the USE tool [73, 29]. These kinds of
operations are also handled in [57], using an executable metalanguage called KerMeta.
However, derived attributes and furthermore derived associations are not discussed.

47

3 Formalizing and Applying UML and OCL

In our approach we use UML protocol state machines to constrain the model behavior.
The structure and the semantics of protocol state machines are also discussed in [71].
The authors present an approach that applies protocol state machines to produce class
contracts. The semantics of behavioral state machines is discussed in [48]. The authors
apply the semantics for validity proofs of refinement transformations on behavior state
machines. A formal semantics for the integration of UML statecharts into OCL, which
makes it possible to formulate expressions over states in UML statecharts is presented
in [25]. However the authors refer to an older UML version, whereby postconditions
of protocol state machine transitions are not handled. The dynamic semantics of state
machines is discussed in [11].

48

4 Runtime Verification using UML and OCL
In this chapter, we summarize the idea of runtime verification using UML and OCL as
published in [A17W, A19W, A21C, A23C, A24C]. We show how an implementation
needs to be observed by an external monitor to be able to verify its specification defined
in an abstract model. One benefit of monitoring an application using this approach,
is the tight coupling between the application and its representation as a model, which
reveals inconsistencies between them already during the verification task. Verifying a
concrete implementation against a model further raises the value of models in the overall
development process, since information about the specification that was gained during
the beginning of the development can still be used after manually writing code to detect
errors or design flaws. After explaining the requirements for a monitor independently of
a concrete validation tool, we show how this approach can make use of existing validation
features by applying it using the USE tool.

The summarized work in this chapter was incrementally developed. A first approach
for runtime verification using UML and OCL was published in [A19W], but was limited
to applications running inside the Java Runtime Environment (JRE). Later, this limi-
tation was removed by adding so-called adapters to support different runtime environ-
ments [A17W]. While [A17W] demonstrated the application to another object-oriented
target platform, the work in [A23C] showed how to apply our approach to verify role-
based access control rules on the level of relational databases.

The application of our approach using extended modeling elements, like protocol state
machines, is done in [A21C]. In [A24C] the implementation of our approach together
with reverse engineering techniques was shown as a tool demonstration.

4.1 Platform Aligned Model
As described in Sec. 2.4 on page 20, runtime verification requires an abstract model
that defines relevant parts of the system and the assumptions, i. e., the properties, to be
checked. This model should be as abstract as possible to allow a user to focus on the
aspects to verify. A simple but powerful abstraction is to leave out unnecessary parts of
a system. For example, if a user wants to verify the core logic of a system, plain technical
elements, like classes for persisting states of objects, can be ignored. However, to be able
to relate abstract model elements to the concrete runtime elements, information about
the implementation is needed. Since this information depends on the concrete target
platform of the monitored system, we call this model between an abstract specification

49

4 Runtime Verification using UML and OCL

(Extractor)

USE

Monitor

VM

Implementation

Assumptions Platform Aligned
Model (PAM)

Instance

Snapshot

Figure 4.1: Artifacts of the Monitoring Approach ([A21C])

and the implementation a platform aligned model (PAM). The relations between the
implementation, the PAM, and the assumptions are shown in Fig. 4.1. Such a PAM
can be defined in several ways. For example, when model-driven development is applied
that uses models as a central part of the overall development process and generates most
parts of the implementation from the models, the PAM can easily be generated, too. The
presented approach can then be used to verify the manually coded parts of the system.
If models are not a central part of the development process, a PAM can be extracted
using reverse engineering techniques as described in [A24C].

4.2 Runtime Snapshots
In our approach, we call an excerpt of a running system that is represented as an instance
of a PAM a snapshot (see Fig. 4.1). A validation tool can use this instance as a basis
to validate static and dynamic constraints. If the environment of the monitored system
supports querying the current state of a running system, like it is supported by the JRE,
such a snapshot can be created while the system is already running by attaching the
monitor to it and following the steps described in the next section. If such a querying
mechanism is absent, the monitoring needs to start at the beginning of the execution
using the approach described in Sect. 4.2.2 on page 53.

4.2.1 Snapshot Generation
When attaching to an already running system an initial snapshot has to be taken. Oth-
erwise, constraints covering all instances of classes, e. g., invariants and multiplicity
constraints, cannot be validated. After this, the snapshot can be incrementally build-up
by reacting on events that occur inside the running system. The creation of snapshots
needs to consider certain issues that arise by using a more abstract modeling language.
For example, common runtime environments like the JRE or the Microsoft CLR are
not aware of the concept of associations [84]. Therefore, this information needs to be

50

4.2 Runtime Snapshots

mapped by the concrete target platform adapter to the UML metamodel. Figure 4.2 on
the following page shows the metamodel defined by our approach that maps commonly
available elements inside a monitored system (prefixed by VM*) shown in the upper part
of the figure to core elements of the UML metamodel, which are shown in the lower part
of the figure and are prefixed by M*1. For example, the concept of a field (VMField)
can be mapped by an adapter either to an attribute (MAttribute) or an end of an
association (MAssociationEnd). Another considerable fact of commonly used runtime
environments is, that they do not necessarily contain all defined classes. Instead, classes
are only initialized if accessed the first time to reduce memory consumption. There-
fore, a monitor cannot expect, that all classes to monitor are available during the initial
snapshot generation.

Next, we describe how a snapshot can be created. While these steps can be applied to
other target platforms, we explain these steps based on the Java Virtual Machine (JVM)
as the target platform.

1. For all classes in the PAM that can be matched directly (by name or by special an-
notation information) to an already loaded class in the JVM, all existing instances
in the JVM are mapped to newly created instances of the platform aligned model.
In detail, this can be done by invoking the operation instances() on an object of
the type ReferenceType which returns proxies to all reachable objects inside the
JVM. This – for our approach important – operation was introduced in the JVM
version 1.6.

2. For each created abstract instance in step 1 the attribute values are read. The
mapping of primitive Java types to primitive OCL types should follow the common
practice (c. f. [92]). Attributes with a type of a class defined in the PAM, i. e.,
reference types, can be read by using the mapping created in step 1. The possibility
to define attributes referencing other instances is the reason why the creation of
instances (step 1) and this step needs to be separated.

3. For all associations in the abstract model, links are created between corresponding
instances. Technically this step can be merged into step 2 for performance reasons.
The retrieval of links is discussed in Sec. 4.5.1 on page 72.

These steps need to be aligned if a non object-oriented target platform is used. A
developer of an adapter needs to decide how concepts of the target platform can be
mapped to an object-oriented model. A first decision that needs to be done is the
alignment of monitored artifacts to the metamodel level. If a user can define model
elements like classes that can directly be mapped to runtime artifacts, as it is the case
if monitoring JRE applications where Java classes can be mapped to modeled classes,

1The shown metamodel elements are aligned to the implementation of USE, which is slightly different
because of historical reasons.

51

4 Runtime Verification using UML and OCL

+
g

e
tT

y
p

e
(

n
a

m
e

 :
 S

tr
in

g
)

 :
 V

M
T

y
p

e
+

g
e

tS
u

b
C

la
s
s
e

s
(

p
a

re
n

t
:

V
M

T
y
p

e
)

 :
 S

e
t<

V
M

T
y
p

e
>

+
g

e
tF

ie
ld

(
ty

p
e

 :
 V

M
T

y
p

e
,

n
a

m
e

 :
 S

tr
in

g
)

 :
 V

M
F

ie
ld

+
re

a
d

In
s
ta

n
c
e

s
(

ty
p

e
 :

 V
M

T
y
p

e
)

 :
 S

e
t<

V
M

O
b

je
c
t>

+
re

a
d

F
ie

ld
V

a
lu

e
(

fi
e

ld
 :

 V
M

F
ie

ld
)

 :
 V

a
lu

e
.
.
.

V
M

A
d

a
p

te
r

+
g

e
tI

d
()

 :
 O

b
je

c
t

+
g

e
tN

a
m

e
()

 :
 S

tr
in

g
+

g
e

tA
rg

u
m

e
n

tT
y
p

e
s
()

 :
 L

is
t<

V
M

T
y
p

e
>

V
M

M
e

th
o

d

+
g

e
tA

rg
u

m
e

n
tV

a
lu

e
s
()

 :
 L

is
t<

V
a

lu
e

>
+

g
e

tR
e

s
u

lt
()

 :
 V

a
lu

e

V
M

M
e

th
o

d
C

a
ll

+
n

e
w

In
s
ta

n
c
e

(
n

e
w

 :
 V

M
O

b
je

c
t

)
+

m
e

th
o

d
C

a
ll(

 c
a

ll
:

V
M

M
e

th
o

d
C

a
ll

)
.
.
.

M
o

n
it

o
rN

o
ti

fi
e

r

+
g

e
tI

d
()

 :
 O

b
je

c
t

+
g

e
tN

a
m

e
()

 :
 S

tr
in

g
+

is
C

la
s
s
T

y
p

e
()

 :
 b

o
o

le
a

n
.
.
.

V
M

T
y

p
e

+
g

e
tV

a
lu

e
()

 :
 V

a
lu

e

V
M

F
ie

ld
M

o
d

if
ic

a
ti

o
n

M
A

s
s

o
c

ia
ti

o
n

E
n

d

M
o

n
it

o
r

+
g

e
tI

d
()

 :
 O

b
je

c
t

+
is

A
liv

e
()

 :
 b

o
o

le
a

n
.
.
.

V
M

O
b

je
c

t

M
O

p
e

ra
ti

o
n

+
g

e
tI

d
()

 :
 O

b
je

c
t

+
g

e
tN

a
m

e
()

+
g

e
tV

a
lu

e
()

V
M

F
ie

ld M
A

tt
ri

b
u

te

J
V

M
A

d
a

p
te

r

+
a

tt
a

c
h

()
+

p
a

u
s
e

()
+

re
s
u

m
e

()
+

s
to

p
()

M
o

n
it

o
r

C
L

R
A

d
a

p
te

r

M
O

b
je

c
t

M
C

la
s

s

0
..

1

0
..

1

+
u

p
d

a
te

d
F

ie
ld

1

+
s
u

b
c
la

s
s

0
..

*

+
s
u

p
e

rc
la

s
s

0
..

*

0
..

1

0
..

*

+
fi
e

ld

0
..

*

+
o

w
n

e
r

+
m

e
th

o
d

0
..

*

+
o

w
n

e
r

1

0
..

1

+
ty

p
e

1+
a

rg
u

m
e

n
tT

y
p

e

{o
rd

e
re

d
}

0
..

*

0
..

1

-m
o

n
it
o

re
d

In
s
ta

n
c
e

s

0
..

*

-m
o

n
it
o

re
d

T
y
p

e
s

0
..

*

1

+
c
a

lle
d

M
e

th
o

d

1
0

..
*

10
..

1

+
in

s
ta

n
c
e

0
..

*

+
ty

p
e

1

«
u

s
e

»

Figure 4.2: Metamodel for Virtual Machines [A17W]

52

4.2 Runtime Snapshots

an adapter needs to read the runtime artifacts on the M0 level (instances). However,
sometimes it is useful to define a model that is tightly coupled to the adapter and defines
the M1 level. For example, to monitor Role-based Access Control (RBAC) rules inside
a relational database management system (RDBMS), as shown in Sec. 4.3.4 on page 68,
tables, which can be seen as elements of the M1 level, are read as instances on the M0
level. This allows to reuse the RBAC metamodel when another database is monitored,
i. e., the model provided to the validation tool is always the same, independent of the
concrete database scheme.

4.2.2 Snapshot Synchronization
To be able to verify the behavior of a system, it is required to listen to relevant changes
to its state. The previously described initial snapshot generation can be left out if a
system is monitored already at the startup. Otherwise, it is essential since information
about existing instances is required.

To keep a snapshot synchronized with a monitored system, a monitor needs to keep
track of different changes that lead to a modification of the snapshot. Again, we explain
our approach by using the JVM as the target. Other target platforms require different
handling by a concrete adapter. For example, the first injection point described next
would not be required, if all information for artifacts mapped to classes is always present,
as it is the fact when monitoring a RDBMS. Further, an adapter is free to implement
these intersection points using any applicable technique. Two commonly used techniques
are using debugger breakpoints and aspect-oriented programming [27, 75].

The injection points to synchronize a snapshot are:

1. At class initialization to allow the registration of the injection points described
next: As already mentioned, this injection point is not necessary if all runtime
artifacts that are mapped to classes are always available.

2. At constructors of monitored classes, i. e., classes defined in the abstract model:
This allows the monitor to keep track of newly created instances and therefore
enables an incremental built-up of the system state in contrast to always building
a new snapshot of the running system when needed.

3. At the start of an operation that is specified in the abstract model: This enables
the monitor to validate preconditions at runtime and in case of a failure pause the
monitored system.

4. Just before the exit of an operation call: This enables the monitor to validate
postconditions. The break must occur after the result of the operation is calculated.
The JVM provides such a mechanism. To reduce the total number of breakpoints
the operation exit breakpoint can be set while entering a monitored operation and
can be removed after the postconditions have been validated.

53

4 Runtime Verification using UML and OCL

5. When a monitored attribute or link is modified: An application does not need
to always use operations to modify attributes of an object. Therefore, a monitor
needs the possibility to react on a modification of an object field to synchronize its
snapshot. The JVM provides notifications when a field is modified to keep track of
changing attributes or single valued association ends. The monitoring of changes
to many to many associations is more complicated and is discussed in Sec. 4.5.1
on page 72.

6. When a runtime instance is destroyed: This allows the monitor to remove the
corresponding object from the snapshot. Depending on the target platform this is
not easy to achieve, since runtime environments that employ a garbage collector
do not always provide information about object destruction.

Using the described injection points, a monitor can synchronize the snapshot and no-
tify the used validation tool about the change. The tool can then perform the required
validations and react on violations. At these locations, the kind of the runtime verifica-
tion approach is determined (see Sec. 2.4 beginning on page 20). If the monitor waits for
feedback from the validation tool an on-line approach is used, otherwise it is an off-line
approach. The decision between trace-storing and non-storing is done by the validation
tool, since the monitor just provides the change events. The tool itself decides if these
events are stored or discarded. For example, the implementation in USE (see Sect. 2.3
beginning on page 14), used in the next section, is an on-line verification approach, since
after each event the monitor waits until the validation tool has finished the required
computation. However, the user can deactivate several validations, e. g., the validation
of state invariants after every change, to reduce the overhead. Further, it is trace-storing,
because USE requires all events to visualize the execution trace, but the computation is
done by using a synchronized snapshot and not by using the stored trace.

4.3 Runtime Monitoring in USE
In this section we apply the previously described monitoring approach using the model
validation tool USE. This is a summary of work presented in [A19W] and [A21C]. The
work also makes use of the extended modeling capabilities introduced in Chap. 3. Af-
terwards, we show different target platforms that are supported by USE. The support
for different targets was introduced in [A17W]. We will demonstrate the following ad-
vantages of our approach:

• Assumptions about a running implementation can be validated without the need
to modify the source code.

• The state of an implementation can be examined in an abstract way to discover
inconsistencies or design decisions.

54

4.3 Runtime Monitoring in USE

• Using protocol state machines the correct usage of the defined protocol of a class
can be validated.

• Concrete usage scenarios can be visualized by means of a sequence diagram.

These advantages will be exemplified by using the following case study.

4.3.1 Example System
We demonstrate our approach using the open source computer game Free Colonization or
in short FreeCol2. FreeCol is an open source implementation of the game Colonization.
Colonization was created by Sid Meier and Brian Reynolds and published in 19943.
The game is a turn-based strategy game. The goal of the game is to colonize the new
world starting in the year 1492. The player can control units of a European country,
like England or Spain. By building colonies and trading goods, the player must achieve
independence from Europe to win the game. A sample game situation is shown in
Fig. 4.3 on the following page. A class diagram containing relevant parts of the core of
the implementation is depicted in Fig. 4.4 on the next page. Central to the game is the
map the game takes place on. This is realized by the classes Map and Tile which are
related by the qualified association MapTiles. Units acting on the map are represented
by the equally named class Unit. Because Colonization is a turn-based game, units need
to keep track of their executed actions in a single turn, as it can be seen by the number
of moves (1/1) on the bottom right of the running game in Fig. 4.3. Technically, this is
done by the attribute movesLeft of the class Unit. If the value of this attribute reaches
zero by executing actions like moving around or chopping trees, the unit cannot act
anymore in the current round of the game. The current location of a unit is determined
by the association UnitLocation. During the game, a unit can be at several locations,
for example, in Europe to wait for a transfer to the new world, on the map to move
somewhere else, in a colony as a guard or in a building to produce goods. Therefore,
many classes inherit from the class Location.

4.3.2 Validating Operation Contracts
The previously described structure of the implementation of FreeCol can be used to
generate a snapshot of a running game. This snapshot allows the monitor to validate
multiplicity constraints and invariants. To support the verification of contracts between
a caller and a callee, pre- and postconditions can be defined in the PAM. If these
contracts are defined before or in parallel to the implementation, the USE monitor can
be used to verify the correctness of the manually written code w. r. t. specified contracts.
If behavior, i. e., method bodies, is generated from the application model, the monitor

2http://www.freecol.org
3http://en.wikipedia.org/wiki/Sid_Meier%27s_Colonization

55

4 Runtime Verification using UML and OCL

Figure 4.3: Screenshot of Example ’Open Source Game’ [A21C]

Figure 4.4: Class Diagram of Example ’Open Source Game’ [A21C]

56

4.3 Runtime Monitoring in USE

can be used to verify the transformation used for generating the implementation. Both
possibilities strengthen the use of early design models throughout the whole development
process.

The verification of operation contracts using the USE monitor can be exemplified by
defining contracts based on the rule of games for FreeCol. Since FreeCol has many rules,
we focus on a small excerpt of the overall game: the founding of new colonies. Some
informal descriptions of rules for this feature are:

1. To build a new colony, a unit must have enough moves left. After a colony was
build, the unit has no more moves left.

2. The tile on the map the new colony is going to be placed on must not be occupied
by another settlement.

3. The type of the tile must allow for the placement of settlements on itself. For
example, it is not allowed to found a colony on a mountain or on water.

4. No tile directly around a colony is occupied by another settlement.

These rules can be formally defined in OCL using pre- and postconditions, and invariants
as shown in Listing 4.1 on the following page. Note, that rules 3 and 4 can be defined
as preconditions as well as invariants, since both rules are inherent to all system states,
i. e., they define general laws (see Sec. 2.2 on page 12). Defining these two rules in both
ways has the following two advantages:

1. After taking an initial snapshot, which has no information about the previously
executed operations, they can still be validated by evaluating the invariants.

2. A precondition can be evaluated before any change to the system is performed,
whereas an invariant can only report a violation after the violating system state
has been reached. Further, pre- and postconditions in USE are automatically
evaluated during execution, whereas invariants are only checked if requested by
the user. Therefore, by defining both rules as preconditions one gets the benefit of
automatic validation together with immediate feedback if a condition fails.

Noteworthy for these constraints is the usage of the query operation getNeighbours()
as shown in Listing 4.2 on page 59, since it is not directly present in the implementation,
but eases the definition of constraints by encapsulating the complex coordinate system
of FreeCol. The operation returns all tiles surrounding the tile it was called on. Because
of the isometric map in FreeCol, the calculation of these adjacent tiles is done by using
deltas that depend on the value of the y coordinate to be even or odd.

As an example consider the snapshot shown in Fig. 4.5 on page 60 that shows relevant
instances of the game situation shown in Fig. 4.3 on the facing page. The coordinates
of the neighbours of the tile Tile323 with the coordinates (15,51), that is the tile the

57

4 Runtime Verification using UML and OCL

Listing 4.1: Game Rules as OCL Constraints
1 context Unit : : bui ldColony (colony : Colony)
2 −− Rule 1
3 pre movesLeft : s e l f . movesLeft > 0
4 post noMovesLeft : s e l f . movesLeft = 0
5

6 −− Rules 2 and 3
7 pre t i leIsEmptyAndFits :
8 s e l f . l o c a t i o n . oc l I sKindOf (T i l e) and
9 s e l f . l o c a t i o n . oclAsType (T i l e) . s e t t l ement . i sUnde f ined () and

10 s e l f . l o c a t i o n . oclAsType (T i l e) . type . c a n S e t t l e
11

12 −− Rule 4
13 pre noSurroundingColonies :
14 s e l f . l o c a t i o n . oc l I sKindOf (T i l e) and
15 s e l f . l o c a t i o n . oclAsType (T i l e) . getNeighbours()−> f o r A l l (t |
16 t . s e t t l ement . i sUnde f ined ())
17

18 context Colony inv va l idTi l eType :
19 −− Rule 3 as an i n v a r i a n t
20 s e l f . t i l e . type . c a n S e t t l e
21

22 context Colony inv noNeighbours :
23 −− Rule 4 as an i n v a r i a n t
24 s e l f . t i l e . getNeighbours()−> f o r A l l (t | t . s e t t l ement . i sUnde f ined ())

pioneer located north west in Fig. 4.3 on page 56 is placed on, can be retrieved by using
the following OCL query:

1 let c e n t e r T i l e = Ti l e . a l l I n s t a n c e s ()−>any (x=15 and y=51) in
2 c e n t e r T i l e . getNeighbours()−> c o l l e c t (n : T i l e | Tuple{x=n . x , y=n . y })

Evaluating this query results in a sequence of tiles containing all surrounding tiles start-
ing north (N) and going clockwise around the coordinates of the tile:

1 Sequence{ /∗N∗/ Tuple{x=15,y=49} , /∗NE∗/ Tuple{x=16,y=50} ,
2 /∗E∗/ Tuple{x=16,y=51} , /∗SE∗/ Tuple{x=16,y=52} ,
3 /∗S∗/ Tuple{x=15,y=53} , /∗SW∗/ Tuple{x=15,y=52} ,
4 /∗W∗/ Tuple{x=14,y=51} , /∗NW∗/ Tuple{x=15,y=50}
5 } : Sequence (Tuple (x : Integer , y : Integer))

By annotating the operation with @Monitor(isQuery="true") the monitor ignores this
operation, i. e., it will not try to listen to any calls to this operation inside the running
system, but still allows a modeler to reuse complex expressions when defining constraints.

Using the class diagram shown in Fig. 4.4 on page 56 and the constraints given in
Listing 4.1 as the PAM, one can verify the defined properties (the rules of game) by

58

4.3 Runtime Monitoring in USE

Listing 4.2: Query Operation Ignored by the Monitor
1 class Ti l e
2 . . .
3 operations
4 @Monitor (isQuery=" true ")
5 getNeighbours () : Sequence (T i l e) =
6 −− d e l t a s f o r the d i f f e r e n t d i r e c t i o n s
7 let N = Tuple{oddDX = 0 , oddDY = −2, evenDX = 0 , evenDY= −2} in
8 let NE = Tuple{oddDX = 1 , oddDY = −1, evenDX = 0 , evenDY= −1} in
9 let E = Tuple{oddDX = 1 , oddDY = 0 , evenDX = 1 , evenDY= 0} in

10 let SE = Tuple{oddDX = 1 , oddDY = 1 , evenDX = 0 , evenDY= 1} in
11 let S = Tuple{oddDX = 0 , oddDY = 2 , evenDX = 0 , evenDY= 2} in
12 let SW = Tuple{oddDX = 0 , oddDY = 1 , evenDX = −1, evenDY= 1} in
13 let W = Tuple{oddDX = −1, oddDY = 0 , evenDX = −1, evenDY= 0} in
14 let NW = Tuple{oddDX = 0 , oddDY = −1, evenDX = −1, evenDY= −1} in
15 −− a l l p o s s i b l e d i r e c t i o n s
16 let d i r e c t i o n s = Sequence{N, NE, E, SE , S , SW, W, NW} in
17

18 −− the used d e l t a s depend on the va lue o f y
19 let odd = s e l f . y . mod(2) <> 0 in
20

21 d i r e c t i o n s −>c o l l e c t (d |
22 let x = s e l f . x + i f odd then d . oddDX else d . evenDX endif in
23 let y = s e l f . y + i f odd then d . oddDY else d . evenDY endif in
24 s e l f . map . t i l e s [x , y])−> exc lud ing (n u l l)
25 . . .
26 end

executing the system under monitor (SUM) and connecting the monitor. After the
connection is established a snapshot is taken. In USE, these snapshots can be visualized
by means of an object diagram, as it was done to explain the coordinate system using
Fig. 4.5 on the following page for the game state given in Fig. 4.3 on page 56. Note that
the object diagram is an instance of an earlier class diagram used in [A19W] that slightly
differs from the one shown in Fig. 4.4 on page 56. For example, the shown class diagram
(the newer one) contains an attribute state that was introduced to be able to verify the
correct usage of protocols, which is covered in the next section. However, the structure
that defines the map is still valid and can be used to describe the visualization of a
snapshot as an object diagram. The overall snapshot consists of nearly 6000 objects and
4000 links which makes it impossible to manually extract an informative object diagram.
USE allows a user to select objects that should be shown or hidden in an object diagram
by using several features. Two useful ones are the selection by an OCL expression and
the selection of related objects by path length (see [A10W] for more information). One
can see, that the European colony ’Isabella’ that is placed at the top right corner in the

59

4 Runtime Verification using UML and OCL

Figure 4.5: Snapshot of an Exemplary Game Situation [A19W]

screenshot is place on the tile with the coordinates (17,50) and that it further hosts a
unit (in the running application this is highlighted by the number in the center of the
colony). The pioneer shown in the middle of the map in Fig. 4.3 on page 56 is named
Unit12 in the shown object diagram.

While the previously shown invariants validTileType and noNeighbours can be val-
idated with a given snapshot, the validation of dynamic contracts requires the execution
of the system. To validate the defined contracts of the operation Unit::buildColony,
the monitored system needs to be resumed and the corresponding feature of the system
needs to be invoked. For this, a user needs to invoke the functionality to build a colony
inside the running game. The monitor then listens to operation calls and changes of
values of the modeled elements and evaluates defined constraints. If a constraint fails,

60

4.3 Runtime Monitoring in USE

Figure 4.6: Sequence Diagram of a Monitored Execution [A21C]

the monitored application is paused and the user is informed about the violation. USE
then provides all of the functionality described in Sec. 2.3 starting on page 14 to examine
the failure.

One benefit of abstraction introduced by our monitoring approach can be seen by
comparing the class diagram consisting of 14 UML classes that were required to vali-
date the given game rules to the overall complexity of the implementation counting 551
Java classes. The monitored execution can further be visualized by diagrams supported
by USE. For example, the sequence diagram shown in Fig. 4.6 shows the operations
calls executed by the operation buildColony using the sample game state. Besides the
described validation capabilities these visualizations of execution traces can be used for
documentation purposes or to reveal unusual call sequences. For example, in the same

61

4 Runtime Verification using UML and OCL

sequence diagram it can be seen that the operation setMovesLeft() is called three times
with the same argument. One can use this information to examine the reason, why it is
called so often.

4.3.3 Validating Protocol Usage

Pre- and postconditions can only define a contract for a single operation call, since they
can only access the system state just before and just after an operation call. To be able
to specify contracts that define the correct order of operation calls on an instance, i. e.,
a usage protocol, a modeler would need to manually keep track of the execution order
by storing information about previously called operations.

For the FreeCol example, one might want to validate the correct usage of the operations
of a unit that are related to the possible movements during a game. For example, a call
to the operation joinColony(...) should not be allowed if a unit is already inside a
colony or if it is not active, i. e., doing something else. For this, an attribute defining the
current state of a unit together with corresponding pre- and postconditions can be used.
As it can be seen in the class diagram shown in Fig. 4.4 on page 56, the implementation
of FreeCol contains an enumeration named UnitState for the different states a unit can
pass through and an attribute named state for the class Unit to keep track of the current
state of a unit. Both elements, together with appropriate pre- and postconditions, can
be used to define the valid state transitions for a unit. However, for complex protocols,
this technique requires many pre- and postconditions that define the valid transitions.

A more abstract way to define such protocols is the usage of UML protocol state
machines as described in Sec. 3.3 beginning on page 38. One benefit of using PSMs
instead of pre- and postconditions is the possibility to visualize the states and transitions
by means of a state machine diagram, which can directly highlight the life-cycle of an
object. Further, they can be used for monitoring to verify correct usages of protocols
even if an implementation does not contain any kind of state machine implementation.

Figure 4.7 on the facing page shows an example state transition while playing FreeCol.
A pioneer is located in the center of the shown map on the left side. The right map shows
the game state after the pioneer has build a new colony called Jamestown and entered
it. The sketched state machine instances, displayed below the two maps, exemplify the
idea of verifying a usage protocol: while executing a task in the running application,
the state machines defined in the PAM keep track of the states and report any violating
operation call to the user of the monitor. This helps to identify inconsistencies between
the specification and the implementation as it is shown in the following example, for
which we want to define and verify the protocol for the class Unit related to the entering
and leaving of a colony.

Since our example is based on an existing implementation and is not build in a model-
driven way, we reverse engineered the defined assumptions by observing the game-playing
and examining the source code. This lead to a first definition of a PSM for the class

62

4.3 Runtime Monitoring in USE

Figure 4.7: An Exemplary Game Transition in FreeCol [A21C]

Figure 4.8: Protocol State Machine for the Class Unit

Unit shown in Fig. 4.8 defining the two states active and inColony. The transi-
tions between both states are executed if the operation joinColony(colony:Colony)
is called if the unit is in state active leading to the state inColony or if the operation
putOutsideColony() is called while the unit is in state inColony. All other calls to
these two operations, i. e., a call to joinColony(...) while the unit is in state inColony,
are invalid. Because any call to an operation not covered by a PSM is ignored by the
PSM [69, p. 549], we can leave out all other possible states and transitions of a unit,
which keeps the PSM focused to the protocol to verify. Note that the states defined for
the PSM are at first not related to the enumeration literals defined by the enumeration
UnitState shown in the class diagram in Fig. 4.4 on page 56. However, to strengthen
the PAM and to be able to determine the correct states after taking a snapshot, state
invariants were introduced that relate the states to the monitored values of the attribute
state of the class unit. Using the previously defined assumptions about the usage pro-
tocol of the class Unit that we specified by means of a protocol state machine, we can
apply our approach to the running application to validate these assumptions and to
identify possible mismatches between the implementation and the assumptions.

After taking an initial snapshot of the game situation shown on the left in Fig. 4.7 we
need to invoke the state determination command in USE (see Sec. 3.3.3 on page 45) to

63

4 Runtime Verification using UML and OCL

set all state machine instances to the correct state to be able validate the behavior. After
the states have been determined, the states of the relevant units of the snapshot are as
expected (active). After resuming the game and building the new colony Jamestown
we get a valid sequence of operation calls, which can be seen in the monitored sequence
diagram shown in Fig. 4.6 on page 61. We observed, that the invocation of the operation
joinColony(...) on the object Unit26 indeed leads to a transition of the PSM instance
to the state inColony because no violation of the defined PSM was reported. Without
querying the snapshot, we can conclude, that the value of the attribute Unit::state
was set to IN_COLONY, because otherwise, a violation of the state invariant of the state
inColony would have been occurred.

While the previously performed steps validate the correct sequences of executed op-
eration calls, i. e., the operation joinColony(...) is called while a unit is in state
active, incorrect behavior is still possible. An implementation can violate a PSM, even
if none of the defined operations is called, by performing changes during the execution of
other operations that lead to a violation of a state invariant. For this, USE provides the
ability to evaluate the state invariants of all PSM instances. Either after each change
or manually. When validating the state invariants in our example after the colony has
been build, one would be notified that not all PSM instances are valid.

A user can now examine the violating instances and the recorded traces to identify the
reason. For our example, Fig. 4.9 on the next page highlights the relevant parts of the
snapshot of the running game before the new colony is founded as an object diagram.
The shown part of the snapshot is divided into two parts, which are important while
validating the assumptions about the state transitions. Because we monitored a single
user game on a single machine the instance of the game contains both, the data used by
the game server and the client. By looking at the instances Tile3466 on the server side
and Tile1583 on the client side, one can see that the server part has more information
about the game than the client part. Both instances represent the same tile on a map,
because their positions are equal, but the client instance does not know what type the
tile has. To be able to determine if an object belongs to the server or client side we also
monitored the class Game together with the association ViewOwner. If a game object
is not linked to a player by this association it is the server game. The object diagram
further shows the owned units of the player named ada and the object for the tile on
which we want to build a colony (Tile4228 resp. Tile225).

After building the colony, the value of the attribute state of the client and server
object for the unit that has built the colony is changed to IN_COLONY, but USE reports
an error for the PSM instance of the client object. This is due to the fact that the
operation buildColony(...) is only called on the server object and only the new values
are transfered to the client object. Therefore, USE did not execute a transition from the
source state active to the target state inColony for the client unit, but monitored the
change of the attribute state to IN_COLONY, which leads to the violation of the state
invariant of the state active.

64

4.3 Runtime Monitoring in USE

Figure 4.9: Parts of a Snapshot Taken at Runtime [A21C]

Because the separation of the client and server objects seems to be a valid design
decision we can ignore the violations caused by objects belonging to the client and
continue the monitoring process to retrieve further information about the validity of
our assumptions. To test the defined protocol we use another unit and let it join and
exit the colony. While executing this scenario another issue arises because entering an
existing colony, i. e., a unit only enters a colony without building it before, does not lead
to an operation call to joinColony(...). Instead, only setLocation() is called which
is not handled by the PSM and therefore does not execute a transition keeping the PSM
instance in the state active, but the attribute value of the runtime instance is set to
IN_COLONY which violates the state invariant of the state active.

Using this information a user of the monitor needs to decide where the error is located:
in the implementation or in the PAM. For our example, we assume that the PAM
needs to be modified although it seems to be an unsound usage of the Unit class. If
we want to adapt our PSM to the last discovered facts, we need to handle the client
server separation and the additional operation calls. The modified PSM is shown in
Fig. 4.10. The additional operation setLocation(newLocation:Location) leads to
two new transitions in the PSM. Both transitions start from the state active but differ
in their target and guard. If the new location is of type ColonyTile, which represents
special tiles related to a colony, the new state after the execution is inColony otherwise

65

4 Runtime Verification using UML and OCL

Figure 4.10: Extended PSM for the Class Unit [A21C]

the state does not change. Interestingly, when a Unit object leaves a colony this leads
always to a call to putOutsideColony().

When using this modified PSM shown in Fig. 4.10 all scenarios described above lead
to the expected changes of the PSM states. Besides the manual execution of observed
game situations the presence of computer controlled players in the game can be used as a
test driver. As with the manual play, all analyzed operations are also used by computer
controlled players. We used this to strengthen our PAM.

If one looks at the reverse-engineered PSM, we can conclude that the usage of the
covered operations is not as clear as it could be. There are two possibilities for a unit to
reach the state inColony: (1) by using the clearly named operation joinColony(...) or
(2) by using the general operation setLocation(...), which determines the transition
to take by evaluating the runtime type of the new location. Both versions have their
benefits and drawbacks: the first option is more strict, but moves more responsibilities
to the caller, whereas the second one is easier for the caller, but may lead to wrong
usages if the caller is unaware of the fact that this operation is more than just a setter.
Regardless of which option is better, it would be a much cleaner design if only one of
the options is used. If our proposed runtime verification approach using a well-defined
PSM would have been used, such design flaws could have been detected.

4.3.4 Target Platforms

The source for our proposed approach was an implementation of the monitor that was
directly coupled to the JRE. To support multiple target platforms, an abstraction
layer between the monitor and the target platform was introduced [A17W]. An adapter
is queried by the monitor to gain information about the running system, e. g., static
information like available classes and attributes as well as runtime values. The next
sections briefly summarize the supported runtime environments.

66

4.3 Runtime Monitoring in USE

Figure 4.11: Monitoring Events and their Location on the Bytecode Level [A19W]

Java Runtime Environment

As mentioned before, the JRE was the first supported target platform [A19W, A21C].
The chosen approach to query and monitor an application executing inside a JVM is the
use of the remote debugger of the JVM. One benefit of using the remote debugger is
that there is no need to change either the sourcecode or the bytecode. One drawback is
the relatively high delay introduced by this approach. If timing is critical, an approach
using aspect oriented programing (c. f. [75]) could be used by adding a new adapter. For
both kinds of listening approaches the relevant interception points, recall the injection
points from Sec. 4.2.2 on page 53, on the bytecode level, as shown in Fig. 4.11, are
the same. For example, to monitor an instance creation one needs to get notified if a
constructor is called by the bytecode instruction invokespecial. The injection point
for recognizing the destruction of an instance is missing in this figure, since it has no
direct representation in bytecode. In Java this is done by the garbage collector and other
techniques are required to react on instance destructions. For now, the USE monitor
does not cover this injection point.

Microsoft Common Language Runtime

The support for the Microsoft Common Language Runtime (CLR) was added by a
student for his diploma thesis [33]. In parallel, the abstraction layer for adapters was
developed by the author and the results were published in [A17W]. The adapter for the
CLR directly queries the heap of a running application inside the CLR, since the remote

67

4 Runtime Verification using UML and OCL

debugger API provided by the CLR lacks some essential functionality, like for example,
access to all instances of a class. Further, the implementation of the debugging API is
currently not well-documented and some operations lead to unexpected errors. However,
as a prototype, the adapter showed that the defined abstraction layer supports multiple
target platforms.

Relational Database Systems

A simple adapter to read and monitor data in a relational database can be build by
reading tuples as instances of classes. By the nature of an RDBS, monitoring dynamic
behavior is limited to data manipulation statements (insert, update, delete). Therefore,
this kind of monitoring is not very useful. Another approach, as presented in [A23C],
combines a well-defined metamodel for role-based access control (RBAC) rules with a
specific adapter for the USE monitor. Using this approach, a modeler can define RBAC
rules and validate them by monitoring the database. One typical RBAC rule that is not
commonly supported by database systems is dynamic separation of duty (dSoD). Such
an dSoD rule could for example state that a single person is not allowed to first approve
and afterward validate the same cheque, even if the person has defined rights to perform
both tasks on cheques. The RBAC approach for the USE monitor can report violations
of these rules. Further, it can generate test cases for possible violation scenarios by
applying the USE model validator.

4.4 Abstraction Concepts
One of the main advantages of our monitoring approach is the possibility to validate an
implementation in an abstract way. By using UML as the modeling language, one auto-
matically gets a first abstraction by the support of associations. By using associations,
related instances can be identified more easily in diagrams than by using attributes.
However, there are other abstractions that can be used by our monitoring approach.
Three of them are described in the next sections.

4.4.1 Abstracted Superclass
Since a PAM does not need to contain all implementation classes, but still needs to
keep track of instances of possibly unmodeled subclasses, the concept of an abstracted
superclass is introduced (shortly described in [A17W]). An abstracted superclass is a
class in a PAM that collects instances of unmodeled subclasses of the implementation
to still be able to access all instances of an incomplete modeled generalization tree.

Consider the inheritance trees shown in Fig. 4.12 on the next page. On the left side,
the complete inheritance tree regarding settlements of the implementation of FreeCol is
shown, whereas on the right side only the classes considered by the PAM are shown. To

68

4.4 Abstraction Concepts

Figure 4.12: Example of an Abstracted Superclass

still be able to navigate from a unit to its location, all instances of the implementation
class IndianSettlement and the corresponding links must be available. In this example,
the class Settlement acts as an abstracted superclass by saving instances of the class
IndianSettlement as instances of itself inside a snapshot.

This concept adds additional information to cover into the basic monitoring metamodel
discussed earlier. The relevant parts of the metamodel are shown in Fig. 4.13 on the
following page. The concept of an abstracted superclass adds two additional operations
and new constraints to the metamodel, which are shown below the figure. The operation
isAbstractedSuperclass() identifies a class as an abstracted superclass, if it is mapped
to a runtime type that has at least one subtype that does not map to a class in the PAM.
Note that only direct subtypes are considered. If an indirect subtype is not mapped to a
class in the PAM, there could be another abstracted superclass in between. To retrieve
all covered types for a given class in the PAM the operation abstractedTypes() is
introduced. The operation calculates all implementation types for which instances need
to be mapped to the PAM class. The operation needs to examine the whole inheritance
graph, since an unmapped type can have other unmapped types. However, if a direct or
indirect subtype is covered by another abstracted superclass this type and it subtypes
are not included into the result.

In addition to the previously explained operations the constraints for a valid runtime
snapshot need to be aligned. For a given class of a PAM, all of its objects need to be
mapped to the runtime instances of all covered runtime types:

1 context MClass inv cove r ed Ins tance s :
2 s e l f . o b j e c t . vmObject = s e l f . abstractedTypes () . i n s t a n c e

Figure 4.14 on page 71 shows the instance of the metamodel part used in this section
that represents the example given in Fig. 4.12 including two different runtime instances.

69

4 Runtime Verification using UML and OCL

superclass

subclass

*

*

supertype

subtype

*

*

VMType
name : String
isClassType : Boolean

allSubTypes() : Set(VMType)

VMObject MObject

MClass
name : String

isAbstractedSuperclass() : Boolean
abstractedTypes() : Set(VMType)

subclass
*

superclass
*

vmType 0..1 pamClass
0..1

vmObject
1

pamObject
0..1

subtype
*

supertype
*

instance*

type1

object *

clazz 1

1 context MClass : : i s A b s t r a c t e d S u p e r c l a s s () : Boolean def :
2 not s e l f . vmType . oc l I sUnde f ined () and
3 s e l f . vmType . subtype−>e x i s t s (vmSubType |
4 vmSubType . pamClass . o c l I sUnde f ined ())

5 context MClass : : abstractedTypes () : Set (VMType) def :
6 Set{ s e l f . vmType}−>c l o s u r e (s t | s t . subtype−>s e l e c t (
7 pamClass . o c l I sUnde f ined ()))

Figure 4.13: Relevant Parts of the Metamodel for Abstracted Superclasses

The runtime instance jamestownVM of the runtime type Colony is linked to the snapshot
object jamestownPAM of the class Colony, whereas the runtime instance xaymacaVM of
the runtime type IndianSettlement is linked to the snapshot object xaymacaPAM, which
is an instance of the abstracted superclass Settlement. Using the described approach it
is ensured, that no information is lost at association ends or attributes of the type of an
abstracted superclass. The navigation from Unit to the association end location still
leads to all settlements including the unmodeled class IndianSettlement.

To be able to determine that an object is not a runtime instance of the given class,
a monitor implementation can provide special attributes, for example, an attribute for
the concrete class name.

4.4.2 Connected Instances

For runtime verification, it is sometimes necessary to include classes that are not only
specific to the application model [51]. During runtime, all instances of them would be
covered by a snapshot, including those instances that are not connected to any instance
of a relevant PAM class. For example, if the monitoring of the Java collection class
ArrayList is required, the monitor would include all lists contained in the runtime.
Since lists are used heavily in different parts of the JRE this would lead to a much

70

4.4 Abstraction Concepts

settlementVM:VMType
name='Settlement'
isClassType=true

xaymacaPAM:MObject

jamestownVM:VMObject

colonyVM:VMType
name='Colony'
isClassType=true

settlementPAM:MClass
name='Settlement'

xaymacaVM:VMObject

locationVM:VMType
name='Location'
isClassType=false

locationPAM:MClass
name='Location'

jamestownPAM:MObject

colonyPAM:MClass
name='Colony'

indianSettlementVM:VMType
name='IndianSettlement'
isClassType=true

vmObject pamObject

subclass

superclass

instance

type

subtype

supertype

subtype

supertype

subclass

superclass

object

clazz

vmType pamClass

instance

type

object

clazz

vmType pamClass

subtype

supertype

vmObject
pamObject

Figure 4.14: Instance of the Monitor Metamodel with an Abstracted Superclass

bigger snapshot than required. To avoid this, the USE monitor supports the annotation
property onlyConnected which enables the monitor to exclude instances not connected
to the graph of objects defined by a PAM. Note that this feature requires a lot of
computation since the monitor needs to determine for each instance whether it is used
by a class of the PAM.

4.4.3 Excluding Sub-Calls
While the previously described features consider structural abstractions, also abstrac-
tions for the dynamic behavior were recognized as being useful. One of such features is
the possibility to exclude the monitoring of all sub-calls inside an operation, even if the
called operations should be monitored. This can be used reduce the validation overhead
by excluding irrelevant parts and also to reduce the complexity of the resulting diagrams.

As an example, consider the excerpt of a Java console application shown in Listing 4.3
on the next page, which asks a user for a regular expression, an input string to match,
and prints all found matches to the console. Monitoring the operation find() of the class
Matcher would unveil that the Java implementation of the console also uses a matcher
to format the given output string, which may contain a format pattern, as shown in the

71

4 Runtime Verification using UML and OCL

Listing 4.3: Simple Java Console Application
1 . . .
2 pattern = Pattern . compile (con so l e . readLine ("%nEnter your regex : ")) ;
3 input = conso l e . readLine (" Enter input s t r i n g to search : ") ;
4 matcher = pattern . matcher (input) ;
5

6 while (matcher . f i n d ()) {
7 conso l e . format (" I found the text \"%s \" s t a r t i n g at " +
8 " index %d and ending at index %d.%n" ,
9 matcher . group () , matcher . s t a r t () , matcher . end ()) ;

10 }
11 . . .

sequence diagram in Fig. 4.15 on the facing page. To suppress the monitoring of these
calls, the operation readLine in the PAM can be annotated as follows:

1 class Console
2 operations
3 @Monitor (i gnoreSubCal l s =" t rue ")
4 readLine (prompt : String , a rgs : Sequence (OclAny)) : String
5 end

Using this annotation excludes the internal usage of the class Matcher and removes
the calls inside the gray box and the now unused objects including their lifelines from
the shown sequence diagram. The resulting trace is now more focused on the intended
monitoring.

4.5 Limitations and Possible Solutions
This section discusses encountered limitations of our runtime monitoring approach. For
each limitation, the reasons are shown and possible solutions are given.

4.5.1 Link Retrieval

The retrieval of links of a one-to-many association (1..*) is straight forward. The
instances at the association end marked as many are queried for an attribute of the
opposite rolename and this attribute is read. This automatically leads to a one to many
association in an UML tool. Problems arise, if no such single valued attribute is present,
because the monitor needs detailed knowledge about the implementation of collection
valued attributes. For example, to query a multi-valued attribute in Java for each
container class of the collection library or, if present, for each custom container class,
a handler must be implemented that can query this container class for the contained

72

4.5 Limitations and Possible Solutions

Console1:Console Matcher1:Matcher Pattern1:PatternPattern2:Pattern

readLine('%nEnter your regex: ',Sequence{})

'a..a'

readLine('%nEnter your regex: ',Sequence{})

'a..a'

compile()compile()

readLine('Enter input string to search: ',Sequence{})

'from abba to zappa'

matcher('Enter input string to search: ')

@Matcher1

matcher('Enter input string to search: ')

@Matcher1

find_(0)

false

find_(0)

false

readLine('Enter input string to search: ',Sequence{})

'from abba to zappa'

matcher('from abba to zappa')

@Matcher2

matcher('from abba to zappa')

@Matcher2

matcher('Enter input string to search: ')matcher('Enter input string to search: ')matcher('Enter input string to search: ')EE(p g)

@Matcher1@Matcher1@

find_(0)find_(0)_()

falsefalsess

Figure 4.15: Sequence Diagram of a Detailed Execution Trace

values. While this issue is addressed in programming languages by abstracting the
iteration over different containers by some kind of iterator pattern, a monitor in general
cannot make use of such abstraction mechanism. First of all, this relies on the fact, that
it can only read the current state of a system under monitor. But also, if the target
platform allows an external program to execute program code, like it is possible using
the remote debugger of the Java virtual machine, it is not guaranteed that the execution
does not change the current system state.

4.5.2 Monitoring of Interfaces

For classes, the monitor can extract the required information out of the PAM by query-
ing the defined attributes of a class and retrieving the current values. Since interfaces
cannot define attributes, the monitoring of the states of instances of classes that imple-
ment such an interface is not possible without further information about the concrete
implementations.

One solution would be to add additional information about the concrete implemen-
tations into the PAM, by guiding the monitor to the concrete fields of implementation
classes as it is illustrated in the USE model shown in Listing 4.4 on the next page. One
drawback of this approach is the high knowledge that is required about the implemen-
tation, which leads to a loss of abstraction.

73

4 Runtime Verification using UML and OCL

Listing 4.4: Monitoring of Interfaces
1 class MyInter face
2 attributes
3 @Monitor (i n t e r f a c e I m p l ="MyClassA . anInteger ")
4 @Monitor (i n t e r f a c e I m p l ="MyClassB . myInteger ")
5 anInteger : Integer
6 end

Another solution would be to annotate operations as getters. This would allow an
adapter to execute this operation and to use the return value as an attribute value.
However, the aforementioned issues of executing parts of a program during debugging
still exist.

4.6 Related Work
In the following, we summarize different approaches and tools for runtime verification.
Since there are many of such tools, this enumeration is just an excerpt, but should give
the reader an impression about the different kinds of runtime verification approaches. A
more detailed comparison of such approaches can be found in [27] for Java programs as
the target and in [6] for monitors using OCL as the specification language.

A runtime verification framework that aims to provide high flexibility and reuse is
presented in [55, 16]. Based on the experience gained at the NASA project Java
PathExplorer [32], the authors propose an approach called Monitoring Oriented Pro-
gramming (MOP). The idea is to integrate monitoring consequently into the development
process by letting the specification and the implementation together form the system. It
is a generalized software development and analyses framework that also supports runtime
verification. Besides runtime verification, the authors emphasize two other perspectives
of MOP: (1) an extension of programming languages with logics and (2) as a lightweight
formal method. MOP supports the reuse of so-called logic plug-ins, for instance a plug-in
for FTLTL (see Sec. 2.4.1 on page 21), by concrete language dependent instances of the
MOP framework4, e. g., Java-MOP for monitoring Java applications. A user of MOP can
then specify a property together with actions written in the target language to handle
validations and violations using one of the available logics. The concrete MOP tools
automatically synthesize monitors from the specifications and integrate them together
with the user-defined code into the application or into an external monitor. MOP sup-
ports different kinds of monitors. For example, a monitor can be in-line or out-line (see
Sec. 2.4.2 on page 23), depending on the concrete use case. In contrast to our work, the
definitions of the properties to verify in MOP is very specific to the target language and

4http://fsl.cs.illinois.edu/mop

74

4.6 Related Work

can therefore not easily be used for different platforms. Another benefit of our approach
is the application of USE, which provides a rich set of querying and visualization features
in case of a violation, whereas in MOP the handling of violations is completely handled
by user-defined code.

Another generic framework for on-line and off-line runtime monitoring is Kieker5 [88,
87] developed jointly by researchers from Kiel University’s Software Engineering Group
and University of Stuttgart’s Reliable Software Systems Group. Kieker can be used for
different monitoring aspects, e. g., for application performance monitoring or architecture
discovery. Collecting architectural information about existing software systems is sup-
ported by extracting call graphs or sequence diagrams, which is similar to our approach.
Required architectural entities, like classes and operations, can be collected by using
static and dynamic analysis. While Kieker focuses on Java-based systems, its extensible
architecture allows to add custom logging facilities for different runtime environments,
called monitoring probes in the context of this framework. These probes monitor, pos-
sibly distributed, traces of method executions and transfer monitoring records to the
system core. The kind of records is defined by the concrete probe, but share a com-
mon base definition (technically a common base class). To support off-line analysis of
recorded traces, Kieker includes several monitoring log writers, which can serialize re-
ceived records for later use. For example, they can be stored using the file system or a
relational database. Further, these writers can be either synchronous or asynchronous.
Collected traces can be analyzed and visualized by different features, e. g., UML sequence
diagrams, dynamic call trees, dependency diagrams, and Markov chains [87]. Additional
features for analyzing monitored data can be added by plug-ins.

The BeepBeep tool that is specifically designed for the runtime verification of com-
puter games is presented in [90, 89]. The authors observed that nearly every computer
game is running a so-called game-loop. Based on this observation, they reason that in-
jecting monitoring related code in that loop instead of into fine grained operation calls
is adequate for runtime verification of computer games. This approach implies that the
monitoring code supplies sequences of snapshots instead of event traces. This further
changes the way, how the monitored properties are expressed. The authors use the
terms snapshot-based semantics for defining properties over a sequence of snapshots and
event-based semantics when they are expressed over an event trace. As stated before,
BeepBeep requires a developer to introduce code that extracts required snapshot infor-
mation each time a game-loop is passed through. Which information is required depends
on the properties to be verified. BeepBeep expects snapshot data in an XML language,
because it applies an own temporal language called LTL-FO+, which uses XPath for
path expressions. LTL-FO+ is based on linear temporal logic (see Sec. 2.4.1 on page 21)
and is extended by first order logic (FO) [89]. This approach differs to our approach
in the sense that our approach does not need to inject custom code to retrieve the re-

5http://kieker-monitoring.net

75

4 Runtime Verification using UML and OCL

quired data. Using our approach, one can also leave out fine grained operation calls, by
excluding operations from the PAM. Further, BeepBeep currently lacks any support of
visualization.

The Dresden OCL toolkit6 makes available two distinctive approaches for OCL-based
runtime verification [22]. While the generative approach injects AspectJ code, the in-
terpretative one integrates the Dresden OCL Interpreter into a runtime environment in
order to interpret OCL constraints.

One widely known language for assertion checking in Java programs is the Java mod-
eling language (JML) [49]. While JML itself can be directly placed inside the source
code, the approaches presented in [30] and [5] translate OCL expressions into JML. A
tool that enforces OCL expressions by integrating them into Java byte-code is ocl2j [23].
As with the first monitoring approach employing USE [75] the integration is done using
AspectJ.

6http://www.dresden-ocl.org

76

5 Summary of Additional Contributions

The work presented in this thesis so far represents the main research contributions by
the author. Since the database systems group is researching in several directions in the
context of model-driven development sometimes together with other researchers around
the world, joined work has been published. The contribution of the author of this thesis
to these publications is explained in the next paragraphs.

5.1 OCL Community
Around the OCL, a community of researchers has arisen. This can be seen by the number
of OCL workshops, with the workshop held in 2013 [15] being the 13th. Our research
group contributes regularly to the OCL community. In the following, the work of the
author in the context of the OCL community is summarized.

Like other languages, OCL faces the problem of a misleading or unclear specification.
For this, our group proposed a benchmark for OCL tools to improve tool compatibil-
ity [A28J]. The proposed benchmark covers a wide range of OCL features. It starts with
a Core Benchmark using class diagrams and OCL expressions. The core part starts by
using OCL to navigate in simple class diagrams containing only basic UML elements,
like for example, classes, binary associations, and attributes. It is extended in a step-
wise manner to cover extended features, like ternary and qualified associations. While
supporting the definition of the benchmark, the main contribution to this work was to
collect and evaluate the benchmark results of different tools.

A detailed discussion of newly integrated collection types in OCL was done in [A4W].
Several discussed issues were encountered while the author integrated these new types
into the USE tool. For the joined work in [A5W], developers and maintainers of OCL
tools were asked to align their tools to a previously defined feature model of OCL
tools [17]. This has been done by the author for the USE tool.

5.2 Model Validation and Model Finding
Formal model properties like consistency, independence of invariants and consequences
have been studied in [A11C]. It was shown, how such properties of models can be semi-
automatically examined in the USE tool by applying the generator and its language
ASSL (see Sec. 2.3.1 beginning on page 14). For this model finding task, i. e., looking for

77

5 Summary of Additional Contributions

a valid model instance with defined properties, the generator needs to examine a large
search space. In [A13C] we have shown how several techniques can be used to reduce
the complexity of the search algorithm.

While this previous work was based on a procedural snapshot language, which requires
a developer to specify detailed search information to be applicable, the work in [A27C],
focused on a declarative approach that transforms UML/OCL models into representa-
tions usable by SAT-solvers. This transformation relies on a library for relational logic
which in the end uses SAT-solvers to find a satisfying model instance.

Work on applying this efficient solving technologies on behaviored models, i. e., mod-
els including pre- and postconditions, has been done in [A8C, A25C]. In this context,
models including pre- and postconditions are called application models. These models
are transformed into so-called filmstrip models that retain the behavior definitions by
representing it as well-defined class structures including invariants only. After the trans-
formation model-finding techniques can be used to find valid or invalid execution traces.
In this work the author was highly involved into the development of the structure of the
filmstrip models, as well as the conceptual definition of the applied transformation.

Supporting work of the author involved the development of the TRACTS tool chain,
presented in [A29J]. This tool allows a developer to formally verify and test model
transformations, which is similar to the approach presented in [A7W] and [A6W]. The
former work applies ASSL (see Sec. 2.3 beginning on page 14) to generate test suites,
which are used as an input for ATL [37] and, after executing the model transformation
under test, are translated back to USE to validate the transformation. Whereas the latter
work, solely applies USE and the USE model validator to test model transformations
and to reason about transformation properties.

5.3 USE Applications and Extensions

USE is applied by different researchers for teaching and research purposes. Some of these
usages lead to joint publications, like the aforementioned TRACTS tool chain [A29J] or
the applications of USE to realize a declarative approach of describing workflows [A2W].
In both cases, the author of this thesis was involved in the development process.

Work on extensions to USE has been published in [A1C, A9C, A10W]. These exten-
sions do not only improve the usability of USE, but can be integrated into other modeling
tools as well to foster the usage of model-driven approaches. In [A1C] a technique for
debugging and examining OCL expressions is described. It allows a user, to deeply dig
into expressions by highlighting relevant aspects of the evaluation process. This exten-
sion allows for an easier correction of specification errors, since all evaluation steps can
be accessed. [A10W] shows how OCL can be used to query graph like structures to
identify relevant elements to show in a diagram. In addition, several other graphical
user interface features, not only useful while working with UML class and object dia-

78

5.4 Model-Driven Engineering in the Context of eGovernment

(a) USE 0.9.0 (b) USE 3.1.0

Figure 5.1: Visualization of the Evolution of USE

grams, are presented. [A9C] identifies new kinds of diagrams to support the process of
identifying independence of invariants.

An experience report about the development of USE has been published in [A20W].
This report highlights key extensions to USE and reports about experiences on how to
successfully retain high quality. Further, the evolution of USE is shown by means of city
maps [93] as shown in Fig. 5.1. These maps visualize the structure of object-oriented
source code by showing packages as districts containing their owned classes as buildings.
The height and the width of each building are defined by the number of attributes and
by the number of operations. As it can be seen by the different populations in the two
city maps, which cover 15 years of development, USE has been growing noticeably.

5.4 Model-Driven Engineering in the Context of eGovernment
For several years, the author was involved in joint work together with a standardization
organization of the German government called KoSIT [44, 14].

The joint work started with a model-driven approach of standardizing the data ex-
change between registration offices in Germany (called XMeld). After this starting
project, other areas of the German public authorities, like justice and civil status reg-
istrations started to use this approach. This interest in the MDE approach lead to a
generalized version of the framework called XÖV (XML in public authorities or in Ger-
man XML in der öffentlichen Verwaltung). A central component of this MDE approach
is a model-to-text transformation application called XGenerator. The XGenerator itself
applies the USE tool as a validation and query component for UML models. Therefore,
some of the previously presented work on USE was directly applied to this project as
well. A report about the successful application of MDE in the context of eGovernment
was presented in [A3J]. Some insights about the usage of OCL in this context are re-
ported in [A26W]. Further, the question of how to apply automated tests on the model
level in this context was addressed in [A14W].

79

6 Conclusion and Future Work
This thesis summarizes and relates the two main research contributions of the author:
work on defining precise meanings to elements of the UML and applying UML and OCL
to runtime verification.

6.1 Conclusion
In the first part, an approach has been presented that allows to define a precise semantics
of the UML by using itself together with OCL. The main advantages of this approach
are that it does not introduce another formalism and that the defined semantics can be
validated by using existing tools. We exemplified the approach by picking out central
elements of the UML specification that are widely used, not only to specify the UML
metamodel, but are also used by other modeling languages. We have further shown, how
the support of derived modeling elements can ease the understanding of larger models.
For this, we identified requirements for an evaluator and for the derive expressions to
be able to compute them at runtime. At the end of this part, we presented how the
integration of protocol state machines can foster the definition of behavioral models.

The second part of this thesis recapped work on runtime verification using UML and
OCL. This work supports a model-driven development process in the sense, that it makes
models an important artifact during the implementation phase, even if they only partly
define the resulting system. This allows for the verification of the manually written
implementations against properties that were modeled in an early phase of design. A
mid-sized real word application was used to highlight the possibilities of our approach.
In addition, we have shown, how our approach can easily be reused to validate business
rules on a non object-oriented platform, namely a relational database. In more detail
than the published work, we discussed abstraction concepts our approach supports and
limitations as well as possible solutions for them.

Both parts of this thesis influenced each other. For instance, during the work on run-
time verification, a need for protocol state machines was identified. Their integration into
the USE tool has not only increased the features for monitoring, but also extended the
modeling capabilities of USE. In the other direction, work on the semantics of relations
between properties and the support for derived properties added further capabilities for
the runtime verification approach.

Finally, additional publication of the author were summarized. Most of them are
results of the development of USE. For example, ambiguities in the specifications of UML

81

6 Conclusion and Future Work

and OCL were encountered or the application of USE in other research areas, e. g., model
finding or verification of model transformations, lead to new research contributions.

6.2 Future Work
All of the presented work can be extended in many directions. At first, a broader coverage
of the runtime semantics of the UML would strengthen its usability. For this, the
semantic domain model needs to be extended by adding new elements and constraints.
Providing a runtime semantics for state machines using our approach might be a starting
point for this. To be able to do so, a possibility to evaluate constraints defined in the
user model, e. g., transition guards, on the level of a metamodel instance needs to be
developed.

For the USE tool, several extensions to improve its capabilities as a model validation
tool are possible. An integration of behavioral state machines would highly increase
the capabilities of modeling behavior. This would also lead to the ability to validate
asynchronous message flows. Further, it might show ambiguities or missing elements in
the OCL specification in the context of messaging. For this, SOIL would need to be
extended to achieve an Executable UML like modeling environment covering full OCL
support. Working with complex behavioral models would raise the need for debugging
capabilities for executed models, which are currently absent in USE.

To extend the support of model transformations, a mechanism for the navigation on
the metamodel level of UML and OCL models could be developed. This would allow
for an easier definition of generic constraints, since they could be specified on the meta
level and could be applied to all user models. To gain higher reuse for USE models
the possibility to extend the OCL library by defining new operations for built-in data
types and by adding new user defined data types would be useful. This would imply
an extension of OCL, which allows for a usage of template parameters in operation
definitions.

Also for the USE monitor several possibilities of improvement exist. First, additional
adapters for other platforms would not only increase its usefulness, but could also reveal
new extensions to the monitor. Additional adapters for already covered target platforms
that use other injection mechanism would allow for a comparison of the different mecha-
nisms. The difficulties encountered while using state invariants to determine the state of
monitored instances could be reduced by adding specific state determination expressions
that are used by the monitor. A promising research direction for these state determi-
nation expressions would be to examine how the work done for proving global invariant
independence needs to be aligned to prove the independence of such expressions for a
single object.

82

Bibliography of the Author

[A1C] Jens Brüning, Martin Gogolla, Lars Hamann, and Mirco Kuhlmann. Evaluating
and Debugging OCL Expressions in UML Models. In Achim D. Brucker and
Jacques Julliand, editors, Proc. 6th Int. Conf. Tests and Proofs (TAP’2012),
pages 156–162. Springer, Berlin, LNCS 7305, 2012.

[A2W] Jens Brüning, Lars Hamann, and Andreas Wolff. Extending ASSL: Mak-
ing UML Metamodel-based Workflows Executable. In Jordi Cabot, Robert
Clariso, Martin Gogolla, and Burkhart Wolff, editors, Proc. Workshop OCL
and Textual Modelling (OCL’2011). ECEASST, Electronic Communications,
http://journal.ub.tu-berlin.de/eceasst/issue/view/56, 2011.

[A3J] Fabian Büttner, Ullrich Bartels, Lars Hamann, Oliver Hofrichter, Mirco
Kuhlmann, Martin Gogolla, Lutz Rabe, Frank Steimke, Yorck Rabenstein, and
Alina Stosiek. Model-Driven Standardization of Public Authority Data Inter-
change. Science of Computer Programming, 89:162–175, 2014.

[A4W] Fabian Büttner, Martin Gogolla, Lars Hamann, Mirco Kuhlmann, and Arne
Lindow. On Better Understanding OCL Collections or An OCL Ordered Set Is
Not an OCL Set. In Sudipto Ghosh, editor, Workshops and Symposia at 12th
Int. Conf. Model Driven Engineering Languages and Systems (MODELS’2009),
pages 276–290. Springer, Berlin, LNCS 6002, 2010.

[A5W] Joanna Dobroslawa Chimiak-Opoka, Birgit Demuth, Andreas Awenius, Dan
Chiorean, Sebastien Gabel, Lars Hamann, and Edward Willink. OCL Tools
Report based on the IDE4OCL Feature Model. In Jordi Cabot, Robert
Clariso, Martin Gogolla, and Burkhart Wolff, editors, Proc. Workshop OCL
and Textual Modelling (OCL’2011). ECEASST, Electronic Communications,
http://journal.ub.tu-berlin.de/eceasst/issue/view/56, 2011.

[A6W] Martin Gogolla, Lars Hamann, and Frank Hilken. Checking Transformation
Model Properties with a UML and OCL Model Validator. In Moussa Amrani,
Eugene Syriani, and Manuel Wimmer, editors, Proc. 3rd Int. Workshop on
Verification of Model Transformation (VOLT’2014), http://ceur-ws.org/, To
appear, 2014. CEUR Proceedings.

83

Bibliography of the Author

[A7W] Martin Gogolla, Lars Hamann, and Frank Hilken. On Static and Dynamic Anal-
ysis of UML and OCL Transformation Models. In Jürgen Dingel, Juan de Lara,
Levi Lucio, and Hans Vangheluwe, editors, Proc. Int. Workshop on Analysis
of Model Transformations (AMT’2014), pages 24–33, http://ceur-ws.org/
Vol-1277/, 2014. CEUR Proceedings, Vol. 1277.

[A8C] Martin Gogolla, Lars Hamann, Frank Hilken, Mirco Kuhlmann, and Robert B.
France. From Application Models to Filmstrip Models: An Approach to Auto-
matic Validation of Model Dynamics. In Hans-Georg Fill, Dimitris Karagian-
nis, and Ulrich Reimer, editors, Proc. Modellierung (MODELLIERUNG’2014),
pages 273–288. GI, LNI 225, 2014.

[A9C] Martin Gogolla, Lars Hamann, and Mirco Kuhlmann. Proving and Visualiz-
ing OCL Invariant Independence by Automatically Generated Test Cases. In
Gordon Fraser and Angelo Gargantini, editors, Proc. 4th Int. Conf. Test and
Proof (TAP’2010), pages 38–54. Springer, Berlin, LNCS 6143, 2010.

[A10W] Martin Gogolla, Lars Hamann, Jie Xu, and Jun Zhang. Exploring (Meta-)Model
Snapshots by Combining Visual and Textual Techniques. In Fabio Gadducci and
Leonardo Mariani, editors, Proc. Workshop Graph Transformation and Visual
Modeling Techniques (GTVMT’2011). ECEASST, Electronic Communications,
http://journal.ub.tu-berlin.de/eceasst/issue/view/53, 2011.

[A11C] Martin Gogolla, Mirco Kuhlmann, and Lars Hamann. Consistency, Indepen-
dence and Consequences in UML and OCL Models. In Catherine Dubois, editor,
Proc. 3rd Int. Conf. Test and Proof (TAP’2009), pages 90–104. Springer, Berlin,
LNCS 5668, 2009.

[A12W] Martin Gogolla, Matthias Sedlmeier, Lars Hamann, and Frank Hilken. On
Metamodel Superstructures Employing UML Generalization Features. In Colin
Atkinson, Georg Grossmann, Thomas Kühne, and Juan de Lara, editors, Proc.
Int. Workshop on Multi-Level Modelling (MULTI’2014), pages 13–22, http:
//ceur-ws.org/Vol-1286/, 2014. CEUR Proceedings, Vol. 1286.

[A13C] Lars Hamann, Fabian Büttner, Mirco Kuhlmann, and Martin Gogolla. Op-
timierte Suche von Modellinstanzen für UML/OCL-Beschreibungen in USE.
In Elmar J. Sinz and Andy Schürr, editors, Proc. Modellierung (MODEL-
LIERUNG’2012), pages 155–170. Springer, LNI 201, 2012.

[A14W] Lars Hamann and Martin Gogolla. Improving Model Quality by Validating Con-
straints with Model Unit Tests. In Levi Lucio, Elisangela Vieira, and Stephan
Weissleder, editors, Proc. Workshop on Model-Driven Engineering, Verification,
and Validation (MODEVVA’2010), pages 49–55. IEEE, 2010.

84

Bibliography of the Author

[A15C] Lars Hamann and Martin Gogolla. Endogenous Metamodeling Semantics for
Structural UML 2 Concepts. In Ana Moreira, Bernhard Schätz, Jeff Gray,
Antonio Vallecillo, and Peter J. Clarke, editors, Proc. 16th Int. Conf. Model-
Driven Engineering Languages and Systems (MoDELS’2013), Miami, FL, USA,
pages 488–504. Springer, Berlin, LNCS 8107, 2013.

[A16C] Lars Hamann, Martin Gogolla, and Oliver Hofrichter. Zur Integration von
Struktur- und Verhaltensmodellierung mit OCL. In Wilhelm Hasselbring and
Nils Christian Ehmke, editors, Proc. Software Engineering (SE’2014), pages
75–76. GI, LNI 227, 2014.

[A17W] Lars Hamann, Martin Gogolla, and Daniel Honsel. Towards Supporting Mul-
tiple Execution Environments for UML/OCL Models at Runtime. In Nelly
Bencomo, Gordon Blair, Sebastian Götz, Brice Morin, and Bernhard Rumpe,
editors, Proc. 7th Int. Workshop Models at Runtime (MRT’2012), pages 46–51.
ACM Digital Library, 2012.

[A18C] Lars Hamann, Martin Gogolla, and Mirco Kuhlmann. Zur Validierung
von Kompositionsstrukturen in UML mit USE. In Gregor Engels, Dimitris
Karagiannis, and Heinrich C. Mayr, editors, Proc. Modellierung (MODEL-
LIERUNG’2010), pages 169–177. GI, LNI 161, 2010.

[A19W] Lars Hamann, Martin Gogolla, and Mirco Kuhlmann. OCL-Based Runtime
Monitoring of JVM Hosted Applications. In Jordi Cabot, Robert Clariso,
Martin Gogolla, and Burkhart Wolff, editors, Proc. Workshop OCL and Tex-
tual Modelling (OCL’2011). ECEASST, Electronic Communications, http:
//journal.ub.tu-berlin.de/eceasst/issue/view/56, 2011.

[A20W] Lars Hamann, Frank Hilken, and Martin Gogolla. Collected Experience and
Thoughts on Long Term Development of an Open Source MDE Tool. In Fran-
cis Bordelau, Jürgen Dingel, Sebastien Gerard, and Sebastian Voss, editors,
Proc. Int. Workshop on Open Source Software for Model Driven Engineer-
ing (OSS4MDE’2014), pages 42–52, http://ceur-ws.org/Vol-1290/, 2014.
CEUR Proceedings, Vol. 1290.

[A21C] Lars Hamann, Oliver Hofrichter, and Martin Gogolla. OCL-Based Runtime
Monitoring of Applications with Protocol State Machines. In Antonio Val-
lecillo and Juha-Pekka Tolvanen, editors, Proc. 8th European Conf. Modelling
Foundations and Applications (ECMFA’2012), pages 384–399. Springer, Berlin,
LNCS 7349, 2012.

85

Bibliography of the Author

[A22C] Lars Hamann, Oliver Hofrichter, and Martin Gogolla. On Integrating Structure
and Behavior Modeling with OCL. In Robert France, Juergen Kazmeier, Ruth
Breu, and Colin Atkinson, editors, Proc. 15th Int. Conf. Model Driven En-
gineering Languages and Systems (MoDELS’2012), Innsbruck, Austria, pages
235–251. Springer, Berlin, LNCS 7590, 2012.

[A23C] Lars Hamann, Karsten Sohr, and Martin Gogolla. Monitoring Database Access
Constraints with an RBAC Metamodel: a Feasibility Study. In Proc. Interna-
tional Symposium on Engineering Secure Software and Systems (ESSoS’2015).
Springer, Berlin, LNCS 8978, 2015. To be published.

[A24C] Lars Hamann, Laszlo Vidacs, Martin Gogolla, and Mirco Kuhlmann. Abstract
Runtime Monitoring with USE. In Tom Mens, Anthony Cleve, and Rudolf
Ferenc, editors, Proc. European Conf. Software Maintenance and Reengineer-
ing (CSMR’2012), pages 549–552. IEEE, 2012.

[A25C] Frank Hilken, Lars Hamann, and Martin Gogolla. Transformation of UML and
OCL Models into Filmstrip Models. In Davide Di Ruscio and Dániel Varró,
editors, Proc. 7th Int. Conf. Model Transformation (ICMT’2014), pages 170–
185. Springer, LNCS 8568, 2014.

[A26W] Oliver Hofrichter, Lars Hamann, Martin Gogolla, and Frank Steimke. The
Secret Life of OCL Constraints. In Mira Balaban, Jordi Cabot, Martin Gogolla,
and Claas Wilke, editors, Proc. 12th Int. Workshop Object Constraint Language
(OCL’2012), pages 63–64. ACM Digital Library, 2012.

[A27C] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive Validation of
OCL Models by Integrating SAT Solving into USE. In Judith Bishop and Anto-
nio Vallecillo, editors, Proc. 49th Int. Conf. Objects, Models, Components, and
Patterns (TOOLS’2011), pages 289–305. Springer, Berlin, LNCS 6705, 2011.

[A28J] Mirco Kuhlmann, Lars Hamann, Martin Gogolla, and Fabian Büttner. A Bench-
mark for OCL Engine Accuracy, Determinateness, and Efficiency. Software and
Systems Modeling, 11(2):165–182, 2012.

[A29J] Antonio Vallecillo, Martin Gogolla, Loli Burgueno, Manuel Wimmer, and Lars
Hamann. Formal Specification and Testing of Model Transformations. In Marco
Bernardo, Vittorio Cortellessa, and Alphonso Pierantonio, editors, Proc. 12th
Int. School Formal Methods for the Design of Computer, Communication and
Software Systems: Model-Driven Engineering, pages 399–437. Springer, Berlin,
LNCS 7320, 2012.

86

Bibliography

[1] Marcus Alanen and Ivan Porres. A Metamodeling Language Supporting Subset and
Union Properties. Software and System Modeling, 7(1):103–124, 2008.

[2] Carsten Amelunxen. Metamodel-based Design Rule Checking and Enforcement. PhD
thesis, Technische Universität Darmstadt, 2009.

[3] Carsten Amelunxen and Andy Schürr. Formalizing Model Transformation Rules
for UML/MOF 2. IET Software Journal, 2(3):204–222, June 2008. Special Issue:
Language Engineering.

[4] Roman Asendorf. Entwicklung einer Plugin-Architektur für USE. Master’s thesis,
Universität Bremen, 2009.

[5] Carmen Avila, Guillermo Flores, and Yoonsik Cheon. A Library-Based Approach to
Translating OCL Constraints to JML Assertions for Runtime Checking. In Hamid R.
Arabnia and Hassan Reza, editors, Proceedings of the International Conference on
Software Engineering Research & Practice (SERP’2008), pages 403–408. CSREA
Press, 2008.

[6] Carmen Avila, Amritam Sarcar, Yoonsik Cheon, and Cesar Yeep. Runtime Con-
straint Checking Approaches for OCL, A Critical Comparison. In Proceedings of the
22nd International Conference on Software Engineering & Knowledge Engineering
(SEKE’2010), pages 393–398. Knowledge Systems Institute Graduate School, 2010.

[7] Helmut Balzert. Lehrbuch der Softwaretechnik: Software-Management, Software-
Qualitätssicherung, Unternehmensmodellierung. Spektrum, Akademischer Verlag,
1997.

[8] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. Bounded Model Checking. In Advances in Computers, volume 58, pages
117 – 148. Elsevier, 2003.

[9] Conrad Bock. UML 2 Composition Model. Journal of Object Technology, 3(10):47–
73, December 2004.

[10] Grady Booch. Object-oriented Analysis and Design with Applications (2Nd Ed.).
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

87

Bibliography

[11] Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. Modeling the Dynamics
of UML State Machines. In Yuri Gurevich, Philipp W. Kutter, Martin Odersky,
and Lothar Thiele, editors, Proceedings of International Workshop on Abstract State
Machines, Theory and Applications (ASM’2000), pages 223–241. Springer, Berlin,
LNCS 1912, 2000.

[12] Manfred Broy and María Victoria Cengarle. UML Formal Semantics: Lessons
Learned. Software and System Modeling, 10(4):441–446, 2011.

[13] Fabian Büttner. Reusing OCL in the Definition of Imperative Languages. PhD
thesis, Universität Bremen, Fachbereich Mathematik und Informatik, 2010.

[14] Fabian Büttner, Mirco Kuhlmann, Martin Gogolla, Jens Dietrich, Frank Steimke,
Andre Pankratz, Alina Stosiek, and Alexander Salomon. MDA Employed in a
Joint eGovernment Strategy: An Experience Report. In Terry Bailey, editor, Proc.
3rd ECMDA Workshop “From Code Centric To Model Centric Software Engineer-
ing” (2008). European Software Institute, 2008.

[15] Jordi Cabot, Martin Gogolla, István Ráth, and Edward D. Willink, editors. Pro-
ceedings of the MODELS 2013 OCL Workshop co-located with the 16th Interna-
tional ACM/IEEE Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2013), Miami, USA, September 30, 2013, volume 1092 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[16] Feng Chen, Marcelo d’Amorim, and Grigore Roşu. A Formal Monitoring-Based
Framework for Software Development and Analysis. In Jim Davies, Wolfram
Schulte, and Michael Barnett, editors, Proceedings of 6th International Conference
on Formal Engineering Methods (ICFEM’2004), pages 357–372. Springer, Berlin,
LNCS 3308, 2004.

[17] Joanna Dobroslawa Chimiak-Opoka and Birgit Demuth. A Feature Model for an
IDE4OCL. In Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla, editor, Pro-
ceedings of the Workshop on OCL and Textual Modelling (OCL’2010), volume 36.
ECEASST, 2010.

[18] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, Cambridge, Mass., 6. edition, 2008.

[19] Séverine Colin and Leonardo Mariani. Run-Time Verification. In Manfred Broy,
Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner,
editors, Model-Based Testing of Reactive Systems, pages 525–555. Springer, Berlin,
LNCS 3472, 2005.

88

Bibliography

[20] Dolors Costal, Cristina Gómez, and Giancarlo Guizzardi. Formal Semantics and
Ontological Analysis for Understanding Subsetting, Specialization and Redefinition
of Associations in UML. In Manfred Jeusfeld, Lois Delcambre, and Tok-Wang
Ling, editors, Proceedings of 30th International Conference on Conceptual Modeling
(ER’2011), pages 189–203. Springer, Berlin, LNCS 6998, 2011.

[21] John Deacon. Object-oriented Analysis and Design: A Pragmatic Approach. Pearson
Addison Wesley, 2005.

[22] Birgit Demuth and Claas Wilke. Model and Object Verification by Using Dresden
OCL. In Proceedings of the Russian-German Workshop Innovation Information
Technologies: Theory and Practice, pages 687–690, Ufa, Russia, 2009.

[23] Wojciech J. Dzidek, Lionel C. Briand, and Yvan Labiche. Lessons Learned from
Developing a Dynamic OCL Constraint Enforcement Tool for Java. In Satellite
Events at the MoDELS 2005 Conference, Revised Selected Papers, pages 10–19.
Springer, Berlin, LNCS 3844, 2006.

[24] Carles Farré, Anna Queralt, Guillem Rull, Ernest Teniente, and Toni Urpí. Au-
tomated Reasoning on UML Conceptual Schemas with Derived Information and
Queries. Information & Software Technology, 55(9):1529–1550, 2013.

[25] Stephan Flake and Wolfgang Müller. Formal Semantics of Static and Temporal
State-oriented OCL Constraints. Software and System Modeling, 2(3):164–186,
2003.

[26] David Frankel. Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[27] Lorenz Froihofer, Gerhard Glos, Johannes Osrael, and Karl M. Goeschka. Overview
and Evaluation of Constraint Validation Approaches in Java. In Proceedings of
29th International Conference on Software Engineering (ICSE’2007), pages 313–
322, Washington, DC, USA, 2007. IEEE Computer Society.

[28] Martin Gogolla, Jörn Bohling, and Mark Richters. Validation of UML and OCL
Models by Automatic Snapshot Generation. In Grady Booch, Perdita Stevens, and
Jonathan Whittle, editors, Proceedings of the 6th International Conference Unified
Modeling Language (UML’2003), pages 265–279. Springer, Berlin, LNCS 2863, 2003.

[29] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL. Science of Computer Program-
ming, 69:27–34, 2007.

89

Bibliography

[30] Ali Hamie. Translating the Object Constraint Language into the Java Modelling
Language. In Proceedings of the 2004 ACM Symposium on Applied Computing
(SAC’2004), pages 1531–1535, New York, NY, USA, 2004. ACM.

[31] Klaus Havelund and Thomas Pressburger. Model Checking JAVA Programs Using
JAVA PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

[32] Klaus Havelund and Grigore Roşu. Monitoring Java Programs with Java PathEx-
plorer. Electronic Notes in Theoretical Computer Science, 55(2):200 – 217, 2001.
Special Issue: RV’2001, Runtime Verification (in connection with CAV’01).

[33] Daniel Honsel. Technologieübergreifende Verifikation von Laufzeit-Annahmen mit
UML- und OCL-Modellen. Master’s thesis, Universität Bremen, August 2013.

[34] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

[35] Ivar Jacobson. Object-Oriented Software Engineering - a Use Case Driven Ap-
proach. In Boris Magnusson, Bertrand Meyer, and Jean-François Perrot, editors,
Proceedings of 10th International Conference on Technology of Object-Oriented Lan-
guages and Systems (TOOLS’1993), page 333. Prentice Hall, 1993.

[36] Jun Zhang Jie Xu. Komfortable Darstellung von und komplexe Selektion in UML-
Klassen- und Objektdiagrammen. Master’s thesis, Universität Bremen, 2007.

[37] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model
transformation tool. Science of Computer Programming, 72(1-2):31–39, 2008.

[38] Frederick P. Brooks Jr. No Silver Bullet - Essence and Accidents of Software Engi-
neering (Invited Paper). In IFIP Congress, pages 1069–1076, 1986.

[39] Frederick P. Brooks Jr. The Mythical Man-Month - Essays on Software Engineering
(2. Ed.). Addison-Wesley, 1995.

[40] Joost-Pieter Katoen and Christel Baier. Principles of Model Checking. MIT Press,
Cambridge, Mass., 2008.

[41] Alfons Kemper and André Eickler. Datenbanksysteme. Oldenbourg Wis-
senschaftsverlag, München, 5. edition, 2004.

[42] Anneke Kleppe. Object Constraint Language: Metamodeling Semantics. In Kevin
Lano, editor, UML 2 Semantics and Applications, pages 163–178. John Wiley &
Sons, Inc., 2009.

90

Bibliography

[43] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[44] Die Koordinierungsstelle für IT-Standards (KoSIT). http://www.
it-planungsrat.de/DE/Organisation/KoSIT/KoSIT_node.html.

[45] Mirco Kuhlmann and Martin Gogolla. From UML and OCL to Relational Logic
and Back. In Robert France, Juergen Kazmeier, Ruth Breu, and Colin Atkinson,
editors, Proceedings of the 15th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS’2012), pages 415–431. Springer, Berlin,
LNCS 7590, 2012.

[46] Orna Kupferman and Sharon Zuhovitzky. An Improved Algorithm for the Mem-
bership Problem for Extended Regular Expressions. In Krzysztof Diks and Woj-
ciech Rytter, editors, Proceedings of 27th International Symposium Mathematical
Foundations of Computer Science (MFCS’2002), pages 446–458. Springer, Berlin,
LNCS 2420, 2002.

[47] Kevin Lano. UML 2 Semantics and Applications. John Wiley & Sons, Inc., 2009.

[48] Kevin Lano and David Clark. Semantics and Refinement of Behavior State Ma-
chines. In José Cordeiro and Joaquim Filipe, editors, Proceedings of the 10th Inter-
national Conference on Enterprise Information Systems (ICEIS’2008), pages 42–49,
2008.

[49] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.
How the design of JML accommodates both runtime assertion checking and formal
verification. Science of Computer Programming, 55(1-3):185–208, 2005.

[50] Martin Leucker and Christian Schallhart. A brief account of runtime verification.
The Journal of Logic and Algebraic Programming, 78(5):293 – 303, 2009. Pro-
ceedings of 1st Workshop on Formal Languages and Analysis of Contract-Oriented
Software (FLACOS’07).

[51] Felipe Lopez. Fallstudien zum Monitoring von Java-Anwendungen mit UML und
OCL. Master’s thesis, Universität Bremen, 2012.

[52] Azzam Maraee and Mira Balaban. Inter-association Constraints in UML2: Com-
parative Analysis, Usage Recommendations, and Modeling Guidelines. In Robert B.
France, Jürgen Kazmeier, Ruth Breu, and Colin Atkinson, editors, Proceedings of
the 15th International Conference on Model Driven Engineering Languages and
Systems (MODELS’2012), pages 302–318. Springer, Berlin, LNCS 7590, 2012.

91

Bibliography

[53] Nicolas Markey. Temporal Logic with Past is Exponentially more Succinct. Bulletin
of the EATCS, 79:122–128, 2003.

[54] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley, 2002.

[55] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore
Roşu. An Overview of the MOP Runtime Verification Framework. International
Journal on Software Techniques for Technology Transfer, 14(3):249–289, 2012.

[56] Bertrand Meyer. Applying “Design by Contract”. Computer, 25(10):40–51, 1992.

[57] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Executabil-
ity into Object-Oriented Meta-languages. In Lionel C. Briand and Clay Williams,
editors, Proceedings of 8th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS’2005), pages 264–278. Springer, Berlin,
LNCS 3713, 2005.

[58] Quang Dung Nguyen. Integration von Objektzuständen aus Statecharts in Se-
quenzdiagramme und Implementierung von Kommunikationsdiagrammen in USE.
Master’s thesis, Universität Bremen, 2014.

[59] Pilar Nieto, Dolors Costal, and Cristina Gómez. Enhancing the Semantics of UML
Association Redefinition. Data Knowledge Engineering, 70(2):182–207, 2011.

[60] Object Management Group (OMG). UML Human-Usable Textual Notation
(HUTN). http://www.omg.org/spec/HUTN/, August 2004.

[61] Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation, v1.1. http://www.omg.org/spec/QVT/1.1/, Jan-
uary 2011.

[62] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification
2.4.1. http://www.omg.org/spec/MOF/2.4.1, August 2011.

[63] Object Management Group (OMG). Object Constraint Language 2.3.1. http:
//www.omg.org/spec/OCL/2.3.1/, January 2012.

[64] Object Management Group (OMG). Concrete Syntax for a UML Action Language:
Action Language for Foundational UML (ALF). http://www.omg.org/spec/ALF/.

[65] Object Management Group (OMG). Model Driven Architecture (MDA). http:
//www.omg.org/mda/.

[66] Object Management Group (OMG). Semantics of a Foundational Subset for Exe-
cutable UML Models (FUML). http://www.omg.org/spec/FUML.

92

Bibliography

[67] Object Management Group (OMG). UML Specifications. http://www.omg.org/
spec/UML.

[68] Object Management Group (OMG). UML Infrastructure 2.4.1. http://www.omg.
org/spec/UML/2.4.1/Infrastructure, August 2011.

[69] Object Management Group (OMG). UML Superstructure 2.4.1. http://www.omg.
org/spec/UML/2.4.1/Superstructure, August 2011.

[70] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of 18th Annual
Symposium on Foundations of Computer Science (FOCS’1977), pages 46–57. IEEE
Computer Society, 1977.

[71] Ivan Porres and Irum Rauf. From Nondeterministic UML Protocol Statemachines
to Class Contracts. In Proceedings of 3rd International Conference on Software
Testing, Verification and Validation (ICST’2010), pages 107–116. IEEE Computer
Society, 2010.

[72] Elaine Rich. Automata, Computability and Complexity: Theory and Applications.
Pearson Prentice Hall, 2008.

[73] Mark Richters. A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, Universität Bremen, Fachbereich Mathematik und Informatik,
Logos Verlag, Berlin, BISS Monographs, No. 14, 2002.

[74] Mark Richters and Martin Gogolla. On Formalizing the UML Object Constraint
Language OCL. In Tok-Wang Ling, Sudha Ram, and Mong Li Lee, editors, Pro-
ceedings of 17th International Conference Conceptual Modeling (ER’1998), pages
449–464. Springer, Berlin, LNCS 1507, 1998.

[75] Mark Richters and Martin Gogolla. Aspect-Oriented Monitoring of UML and OCL
Constraints. In Omar Aldawud, Mohamed Kande, Grady Booch, Bill Harrison, Do-
minik Stein, Jeff Gray, Siobhan Clarke, Aida Zakaria, Peri Tarr, and Faisal Akkawi,
editors, Proceedings of UML’2003 Workshop Aspect-Oriented Software Development
with UML. Illinois Institute of Technology, Department of Computer Science, 2003.

[76] Grigore Roşu and Klaus Havelund. Rewriting-Based Techniques for Runtime Veri-
fication. Automated Software Engineering, 12(2):151–197, 2005.

[77] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-oriented Modeling and Design. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1991.

[78] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 2. edition, 2004.

93

Bibliography

[79] Bernhard Rumpe and Robert B. France. Variability in UML Language and Seman-
tics. Software and System Modeling, 10(4):439–440, 2011.

[80] Koushik Sen and Grigore Roşu. Generating Optimal Monitors for Extended Regu-
lar Expressions. Electronic Notes in Theoretical Computer Science, 89(2):226–245,
2003.

[81] Lijun Shan and Hong Zhu. Unifying the Semantics of Models and Meta-Models
in the Multi-Layered UML Meta-Modelling Hierarchy. Software and Informatics,
6(2):163–200, 2012.

[82] Sally Shlaer and Stephen J. Mellor. Object Lifecycles: Modeling the World in States.
Yourdon Press, EngleWood Cliffs, NJ, 1992.

[83] Sally Shlaer and Stephen J. Mellor. Object-Oriented Systems Analysis: Modelling
the World in Data. Yourdon Press, EngleWood Cliffs, NJ, 1992.

[84] Dilek Stadtler and Friedrich Steimann. Wie die Objektorientierung relationaler wer-
den sollte: Eine Analyse aus Sicht der Datenmodellierung. In Gregor Engels, Dim-
itris Karagiannis, and Heinrich C. Mayr, editors, Proceedings of Modellierung 2010,
pages 149–167. GI, LNI 161, 2010.

[85] Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessandro Tiso, and Gianna
Reggio. Relevance, Benefits, and Problems of Software Modelling and Model Driven
Techniques - A Survey in the Italian Industry. Journal of Systems and Software,
86(8):2110–2126, 2013.

[86] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna
Grumberg and Michael Huth, editors, Proceedings of 13th International Conference
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’2007),
pages 632–647. Springer, Berlin, LNCS 4424, 2007.

[87] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers,
Sören Frey, and Dennis Kieselhorst. Continuous Monitoring of Software Services:
Design and Application of the Kieker Framework. Technical Report TR-0921, De-
partment of Computer Science, Kiel University, Germany, November 2009.

[88] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proceed-
ings of the 3rd ACM/SPEC International Conference on Performance Engineering
(ICPE’2012), pages 247–248. ACM, April 2012.

[89] Simon Varvaressos, Kim Lavoie, Alexandre Blondin Masse, Sebastien Gaboury, and
Sylvain Halle. Automated Bug Finding in Video Games: A Case Study for Runtime

94

Bibliography

Monitoring. In Proceedings of 7th International Conference on Software Testing,
Verification and Validation (ICST’2014), pages 143–152. IEEE, March 2014.

[90] Simon Varvaressos, Dominic Vaillancourt, Sébastien Gaboury, Alexandre Blondin
Massé, and Sylvain Hallé. Runtime Monitoring of Temporal Logic Properties in
a Platform Game. In Axel Legay and Saddek Bensalem, editors, Proceedings of
4th International Conference on Runtime Verification (RV’2013), pages 346–351.
Springer, Berlin, LNCS 8174, 2013.

[91] D.R. Wallace and R.U. Fujii. Software verification and validation: an overview.
Software, 6(3):10–17, May 1989.

[92] Jos Warmer and Anneke Kleppe. Object Constraint Language 2.0. mitp, 2004.

[93] Richard Wettel and Michele Lanza. Visual Exploration of Large-Scale System Evo-
lution. In Ahmed E. Hassan, Andy Zaidman, and Massimiliano Di Penta, editors,
Proceedings of the 15th Working Conference on Reverse Engineering (WCRE’2008),
pages 219–228. IEEE, 2008.

95

Publication A15C

Endogenous Metamodeling
Semantics for Structural

UML 2 Concepts

Authors: Lars Hamann and Martin Gogolla

Proc. 16th International Conference Model-Driven Engineering Languages and Systems
(MoDELS’2013)

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-642-41533-3_30

�

�

�

�
97

Endogenous Metamodeling Semantics for
Structural UML 2 Concepts

Lars Hamann and Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany
{lhamann,gogolla}@informatik.uni-bremen.de

http://www.db.informatik.uni-bremen.de

Abstract. A lot of work has been done in order to put the Unified Mod-
eling Language (UML) on a formal basis by translating concepts into var-
ious formal languages, e.g., set theory or graph transformation. While the
abstract UML syntax is defined by using an endogenous approach, i. e.,
UML describes its abstract syntax using UML, this approach is rarely
used for its semantics. This paper shows how to apply an endogenous
approach called metamodeling semantics for central parts of the UML
standard. To this end, we enrich existing UML language elements with
constraints specified in the Object Constraint Language (OCL) in order
to describe a semantic domain model. The UML specification explicitly
states that complete runtime semantics is not included in the standard
because it would be a major amount of work. However, we believe that
certain central concepts, like the ones used in the UML standard and in
particular property features as subsets, union and derived, need to be
explicitly modeled to enforce a common understanding. Using such an
endogenous approach enables the validation and verification of the UML
standard by using off-the-shelf UML and OCL tools.

Keywords: Metamodeling, Semantics, Validation, UML, OCL

1 Introduction

In order to describe the abstract syntax of modeling languages, well-known con-
cepts like classes, associations, and inheritance are used to express the structure
of a language. These elements are commonly used in combination with a textual
language to express further well-formedness rules which cannot be expressed
using a graphical syntax. To improve the expressiveness of graphical modeling
languages, especially when using complex inheritance relations, additional an-
notations have been developed to express more detailed information about the
relation between model elements. Examples of these annotations are the subsets
relations between properties and tagging a property as a derived union. The ab-
stract syntax definition of the UML [23, 26] uses these newer modeling elements

�

�

�

�
99

since UML 2. Such a distinguished usage calls for the need of a precise definition
at the syntax level (design time) and also on the semantic level (runtime)1.

In this paper, we present an endogenous approach to specify the syntax and
the semantics of central concepts of modeling languages. To this end, we use
the same formalism, i. e., class diagrams enriched with constraints expressed in
the Object Constraint Language (OCL) [24, 32], as used currently for the syn-
tax description of modeling languages. To demonstrate our approach we choose
particular UML language features (subsets, union and derived), but the same
method may be applied to all UML language elements. The language features we
choose are also important on their own, because they are used in MOF (i. e. as
a description language for UML) without having a proper formal semantics cur-
rently. Our work is different to other approaches, like for example [1, 19], that
define a formal semantics for the modeling elements mentioned above, in the
sense, that we use the same languages to describe the syntax and the semantics
instead of translating syntactical elements into a different formalism.

The rest of this work is structured as follows: In the next section we describe
the concept of metamodeling semantics. In Sect. 3 we explain our approach for
metamodeling the runtime semantics of modeling elements by using well-known
examples. Section 4 identifies benefits arising when using tool-based validation
of modeling concepts. Before the paper ends with a conclusion and future work,
we discuss related approaches in Sect. 5.

2 Metamodeling Semantics

The notion Metamodeling Semantics can be explained well by quoting a state-
ment from [16]:

Metamodeling semantics is a way to describe semantics that is similar
to the way in which popular languages like UML are defined. In meta-
modeling semantics, not only the abstract syntax of the language, but
also the semantic domain, is specified using a model.

Metamodeling a language by defining the abstract syntax using a graphical
modeling language combined with a formal textual language to express well-
formedness rules is a well-known technique. The UML specification for example
uses UML (or MOF which itself uses UML) in combination with the Object
Constraint Language (OCL) to define its abstract syntax. In [16] this is called
the Abstract Syntax Model (ASM), which defines the valid structures in a model.
The same technique is rarely used to define the semantics of a language, i. e., to
specify a Semantic Domain Model (SDM) of a modeling language. A semantic
domain defines the meaning of a particular language feature, whereas a seman-
tic domain model describes this meaning by modeling the runtime behavior of
a (syntactically) valid model using its runtime values and applying meaning to

1 In this work, we distinguish between design time and runtime by using classes and
objects. Note, that this distinction is not always appropriate.

�

�

�

�
100

them. For example, later we will see that in the UML there is the class Class
in the abstract syntax part, and there is the class InstancesSpecification in
the semantic domain part which together can describe (through an appropriate
association) that a class (introduced at design time) is interpreted (at runtime)
by a set of objects, formally captured as instance specifications. Another pub-
licly available example for metamodeling semantics can be found in Section 10
of the OCL specification [24]. It defines constraints on values, i. e., runtime in-
stances, which are part of the SDM. For example, the runtime value of a set is
constrained as follows:

context SetTypeValue inv: self.element->isUnique(e : Element | e.value)

The central idea behind the approach in [24] is to describe the runtime be-
havior of OCL using OCL, which is similar to the UML metamodel described by
UML models. While this is done in the UML to constrain the metamodel level
M1, i. e., the valid structure of models, very little formal information is given for
the level M0. Nearly only, the structure for the runtime snapshots is specified,
but little use is made of defining runtime constraints in a formal language like
OCL. An excerpt of the UML metamodel which shows important elements for
our work is shown in Fig. 1. The diagram combines elements from roughly six
syntax diagrams of the UML metamodel. On the left side, the ASM (syntax)
of the UML is shown. On the right, the SDM (semantics) elements are given as
they are present in the current specification. In the next section we define run-
time constraints on the semantic domain model for several modeling constructs
which are frequently used in the definition of the UML metamodel, but are only
defined in an informal way with verbal descriptions in the current UML.

3 OCL-based Instance and Value Semantics

In this section we describe our approach of metamodeling semantics for different
language features. We start with commonly used constraints on properties and
how they can be described without leaving the technology space. Next we explain
the semantics for evaluating derived properties.

3.1 Subsetting and Derived Unions

We explain our proposal by starting with a basic class diagram, which uses
subsetting and union constraints on attributes of classes. Later on, we extend
this diagram by using subsetting and union on associations. Subsetting and
union constraints on properties (a property can be an attribute or an association
end) define a relation between these two properties. The values of a subsetting
property must be a subset of the values for the subsetted property. Union can
be used on a single property. Its usage defines that the values of a property are
the union of all its subsetting properties.

Figure 2 shows a simple model of vehicles (c. f. [4]). A vehicle consists of
vehicle parts. For a car, information about the front and back wheels is added to

�

�

�

�
101

E
le

m
en

t

ow
ne

dE
le

m
en

t {
un

io
n}

ow
ne

r {
un

io
n}

Fig. 1. Combined view of UML metamodel elements important for our work

�

�

�

�
102

the class Car. Because these wheels are part of the overall vehicle, the properties
front and back are marked as subsets of the general property part. The prop-
erty part itself is marked as a derived union of all of its subsets. Furthermore,
the subsetting properties restrict the lower and upper bounds of the wheels to
the common number of wheels for a car (2 is equivalent to 2..2). A valid object

Fig. 2. Class diagram using subsets and union on attributes

diagram w. r. t. the given class diagram is shown in Fig 3. For this simple dia-
gram, one can see directly that the intended constraints are fulfilled. However,
for more complicated models, an automatic validation is required. If the used
modeling language would not provide subsets and union constraints, a modeler
could still specify constraints on the classes Vehicle and Car:

context Vehicle inv partIsUnion: let selfCar = self.oclAsType(Car) in

selfCar <> null implies self.part = selfCar.front->union(selfCar.back)

context Car inv frontIsSubset: self.part->includesAll(self.front)

context Car inv backIsSubset: self.part->includesAll(self.back)

However, these constraints would strongly couple the abstract class Vehicle
and its subclass Car, because Vehicle needs information about its subclasses
to validate the union constraint. This breaks well-known design guidelines. The
above constraints are similar to the generated constraints from [20]. Using such
an automatic approach would reduce the coupling.

wheel3:Wheel

wheel2:Wheel
aCar:Car

part=Set{@wheel1,@wheel2,@wheel3,@wheel4}
front=Set{@wheel1,@wheel2}
back=Set{@wheel3,@wheel4}

wheel1:Wheel

wheel4:Wheel

Fig. 3. A valid object diagram of the class diagram shown in Fig. 2

To allow a generic usage of these constraints the UML provides the ability
to specify subset relations between properties using a reflexive association on
Property (which represents class attributes and association ends) and to mark

�

�

�

�
103

a property as a derived union (see Fig. 1). Further, several well-formedness OCL
rules are given, to ensure the syntactical correctness of the usage. For example,
the type of the subsetting property must conform to the type of the subsetted
end [23, p. 126]. However, information about the semantics of the UML language
element subsets is only provided textually, not in a formal way. We propose
to add (what we call) runtime semantics by means of OCL constraints to the
already present elements describing runtime elements. For the above example,
a constraint describing the runtime semantics of subsets can be specified on the
UML metaclass Slot (a slot allows, for example, to assign an attribute value to
an attribute):

context Slot inv subsettingIsValid:

let prop = self.definingFeature.oclAsType(Property) in

(prop <> null and prop.owner.oclIsKindOf(Class)) implies

prop.subsettedProperty->forAll(subsettedProp |

let subsettedValues = self.owningInstance.slot->

any(definingFeature=subsettedProp).value.getValue()->asSet() in

let currentValues = self.value.getValue()->asSet() in

subsettedValues->includesAll(currentValues))

This constraint checks for each slot that defines a value or values for an
attribute of a class, if it is a subset of the values defined by the slots of the
subsetted properties. Because this constraint only considers attributes of classes,
the navigation to the slots of the owning instance of the context slot is enough.
For associations, and especially for associations with more than two ends, the
calculation of the values to be considered is more complicated.

A class diagram which makes use of subsets and union on association ends is
given in Fig. 4. The previously specified attributes part and front are changed
to association ends, while the attribute back is left out in order to keep the
following examples at a moderate size.

Class diagram

WheelCar

Vehicle VehiclePartpart {union}
1..*inVehicle {union}

1

front {subsets part}
2inCarAsFront {subsets inVehicle}

1

Fig. 4. Class diagram using subsets and union on association ends

Figure 5 shows an example instantiation of the class diagram. The links shown
as a solid line are inserted by the user, while the dashed links are automatically
calculated by our tool, because they are part of a derived union. In our tool, all
derived links (either established through a derived union or through an explicit
derived association end) are shown as dashed links.

�

�

�

�
104

Object diagram

wheel2:Wheel

wheel1:Wheel

aCar:Car

part {union}

front {subsets part}
front {subsets part}

part {union}

Fig. 5. A valid object diagram of the class diagram shown in Fig. 4

The object diagram in Fig. 6 shows an instantiation of the UML metamodel
representing the class diagram of Fig. 4 at the top and the object diagram
shown in Fig. 5 at the bottom. This figure intentionally includes so many dashed
lines and compositions, in order to show the inherent complexity of the UML
metamodel. This complexity can automatically be revealed by using our tool.
In Sect. 4 we are going to explain these so-called virtual links in more detail.
On the other side, these virtual links allow us to suppress certain elements in
the object diagram to make it easier to be read. For example, the generalization
relationships are only shown as derived links between the classes leaving out the
generalization instance. To be more concrete, in the left upper part of Fig. 6 the
dashed link between Class3 (Vehicle) and Class4 (Car) corresponds to the left
generalization arrow in Fig. 4. We use this diagram in the following to explain
an extended runtime semantics which also covers associations.

A runtime semantics for subsetting that covers attributes and association
ends must consider all tuples of instances which are linked to a subsetted prop-
erty and the set of instances linked to this tuple at the subsetting end. For the
previously shown example on attributes, this tuple contains only one element,
namely the defining instance, whereas for association ends of an association
with n ends, this tuple contains n − 1 elements. We accomplish this by using
a query operation called getConnectedObjects() which is similar to the oper-
ation Extent::linkedObjects(...) defined in the MOF specification[22], but
covers n-ary associations, properties, and derived unions. We do not show the
operation in detail, because it is rather lengthy2. The query operation uses the
metaclasses of the semantic domain model to obtain all connections specified for
a property. For this, it navigates to all instance specifications to consider and
their owned slots. If a property is defined as a derived union, this operation is
recursively invoked on all properties subsetting the derived union property and
collects all connected values in a single set, i. e., it builds the union of the values.
To give a more detailed view of the usage of this central operation, Fig. 7 shows
the result of invoking it on the property part using the state shown in Fig. 6.

2 Interested readers are referred to the USE distribution which contains a well-defined
subset of the UML metamodel including this operation.

�

�

�

�
105

O
bj

ec
t d

ia
gr

am

IS
5:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'w
he

el
2'

S
lo

t9
:S

lo
t

IS
1:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'a
C

ar
'

IS
7:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

U
nd

ef
in

ed

C
la

ss
4:

C
la

ss
na

m
e=

'C
ar

'
is

A
bs

tra
ct

=f
al

se

P
ro

pe
rty

4:
P

ro
pe

rty
na

m
e=

'fr
on

t'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=2

/ u
pp

er
=2

is
R

ea
dO

nl
y=

fa
ls

e
is

D
er

iv
ed

=f
al

se
is

D
er

iv
ed

U
ni

on
=f

al
se

S
lo

t1
0:

S
lo

t

S
lo

t3
:S

lo
t

IS
3:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

U
nd

ef
in

ed

C
la

ss
1:

C
la

ss
na

m
e=

'V
eh

ic
le

P
ar

t'
is

A
bs

tra
ct

=t
ru

e
P

ro
pe

rty
3:

P
ro

pe
rty

na
m

e=
'in

V
eh

ic
le

'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=1

/ u
pp

er
=1

is
R

ea
dO

nl
y=

tru
e

is
D

er
iv

ed
=t

ru
e

is
D

er
iv

ed
U

ni
on

=t
ru

e

P
ro

pe
rty

2:
P

ro
pe

rty
na

m
e=

'p
ar

t'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=1

/ u
pp

er
=*

is
R

ea
dO

nl
y=

tru
e

is
D

er
iv

ed
=t

ru
e

is
D

er
iv

ed
U

ni
on

=t
ru

e

IV
8:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

A
ss

oc
ia

tio
n1

:A
ss

oc
ia

tio
n

na
m

e=
'C

_I
nV

eh
ic

le
_P

ar
t'

is
A

bs
tra

ct
=f

al
se

is
D

er
iv

ed
=U

nd
ef

in
ed

C
la

ss
3:

C
la

ss
na

m
e=

'V
eh

ic
le

'
is

A
bs

tra
ct

=t
ru

e

IV
7:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

S
lo

t4
:S

lo
t

A
ss

oc
ia

tio
n2

:A
ss

oc
ia

tio
n

na
m

e=
'C

_I
nC

ar
A

sF
ro

nt
_W

he
el

'
is

A
bs

tra
ct

=f
al

se
is

D
er

iv
ed

=U
nd

ef
in

ed

P
ro

pe
rty

5:
P

ro
pe

rty
na

m
e=

'in
C

ar
A

sF
ro

nt
'

is
O

rd
er

ed
=f

al
se

is
U

ni
qu

e=
tru

e
/ l

ow
er

=1
/ u

pp
er

=1
is

R
ea

dO
nl

y=
fa

ls
e

is
D

er
iv

ed
=f

al
se

is
D

er
iv

ed
U

ni
on

=f
al

se

IV
2:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

IS
2:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'w
he

el
1'

C
la

ss
5:

C
la

ss
na

m
e=

'W
he

el
'

is
A

bs
tra

ct
=f

al
se

IV
1:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

/g
en

er
al

in
st

an
cety

pe

ow
ni

ng
In

st
an

ce
 {s

ub
se

ts
 o

w
ne

r}

de
fin

in
gF

ea
tu

re

fe
at

ur
e

{u
ni

on
}

su
bs

et
te

dP
ro

pe
rty

ty
pe

cl
as

si
fie

r

/e
nd

Ty
pe

 {o
rd

er
ed

, s
ub

se
ts

 re
la

te
dE

le
m

en
t}

va
lu

e
{o

rd
er

ed
, s

ub
se

ts
 o

w
ne

dE
le

m
en

t}

de
fin

in
gF

ea
tu

re

in
st

an
ce

cl
as

si
fie

r

/g
en

er
al

in
st

an
ce

/e
nd

Ty
pe

 {o
rd

er
ed

, s
ub

se
ts

 re
la

te
dE

le
m

en
t}

su
bs

et
te

dP
ro

pe
rty

cl
as

si
fie

r

fe
at

ur
e

{u
ni

on
}

Fig. 6. The diagrams shown in Fig. 4 and 5 as an instantiation of the UML metamodel

�

�

�

�
106

Fig. 7. Querying runtime values by using the operation getConnectedObjects()

The result is a set of tuples with two parts:

1. source: The sequence of source objects in the same order as the association
ends, if the property is owned by an association.

2. conn: The objects connected to the source objects at the property.

The result of the evaluation is the calculated union of the property values for
all possible source objects. Because only one vehicle (named aCar), is present in
the given state, the set contains a single tuple. This tuple consists of the sequence
containing the instance specification representing the object aCar and a set of
values which are linked to this instance via subsetting properties of part.

Given the previously described operation getConnectedObjects(), we can
define a constraint which ensures the subsetting semantics:

1 context Property inv subsettingIsValid:

2 let subsetLinks = self.getConnectedObjects() in

3 self.subsettedProperty->forAll(supersetProperty |

4 let supersetLinks = supersetProperty.getConnectedObjects() in

5 subsetLinks->forAll(t1 |

6 supersetLinks->one(t2 | t1.source=t2.source and

7 t2.conn.getValue()->asSet()->includesAll(

8 t1.conn.getValue()->asSet()))))

The central part of the given invariant can be seen on line 7 where the op-
eration includesAll is used, which is the OCL way to validate, if a collection
is a superset of another one. Some things need to be explained in a more detail.
First, the usage of the operation getValue():OclAny, which is an extension
to the UML metaclass ValueSpecification, is required to be able to get the
concrete value of a value specification. The UML metamodel defines several op-
erations on this class for retrieving basic types like stringValue():String but
excludes a generic definition. Second, the collected values need to be converted
to a set using ->asSet() (see lines 7 and 8) because values can map to the same
specifications. It should be mentioned, that if evaluated at runtime, the invari-
ant only validates the union calculation if subsets is used in the context of a
derived union. If subsets is used on a property which is not a derived union, the

�

�

�

�
107

constraint validates the user defined structure. Including the described invariant
and similar invariants for other runtime elements, adds a precise definition of its
semantics to the modeling language.

3.2 Derived Properties

Derived properties are widely used during the specification of models and meta-
models, because they allow to shorten certain expressions and to assign asso-
ciated elements an exact meaning by naming them. If a formal expression is
given which describes how to calculate the values of the derived properties, the
definition of the metamodel is even stronger. If the derived property is marked
as read only, a query language can be used to evaluate these derive expressions.
Writable derived properties are allowed for example in the UML, but we exclude
this type of properties, because the computational overhead of computing the
inverse values would be too high. Furthermore, only bijective derive expressions
can be used. For example, an attribute weight for the class Car used in the
example could be derived as follows:

context Car::weight:Integer derive: self.part.weight->sum()

Assigning a value to the attribute weight of a car cannot lead to a single
result in the weights of the parts. A common way to overcome this issue is to
use a declarative approach like it is done in the UML specification by using
invariants for a derive expression [23, p. 128]. This transfers the responsibility
to set the correct derived values or the inverse direction to an implementation.
Therefore, the UML metamodel excludes the ability to add a derive expression
to a property like it is done with default values. Whereas, the OCL specification
links to the UML metamodel for the placement of derive expressions [24, p. 182].
We propose to add such a possibility, to allow the specification of the runtime
semantics of derived read only properties. For this, we extend the metamodel by
defining an additional association between Property and ValueSpecification.
To ensure, that a derived expression is only used on read only properties, the
following well-formedness rule needs to be added:

context Property inv: self.derivedValue <> null implies self.readOnly

The context of such a derive expression used during evaluation is related
to the previously explained semantics of subsets and union. To recapitulate
the essentials, for a generic solution it is necessary to consider the combinations
of source objects and their connected objects. Only this allows to use derived
association ends on associations with more than two association ends and further
allows the evaluation of backward navigations, i. e., from a derived end to an
opposite end. The major difference to the validation of subsetting is, that only
if a derived association end of a binary association or an attribute are the target
of a navigation, the source objects are known. If a navigation uses instead the
derived end as the source, for all possible combinations of the connected end
types the expression needs to be evaluated and checked if the source object of

�

�

�

�
108

the navigation is in the result. As an example consider the derived association
end /general of the reflexive association defined on the class Classifier shown
in Fig. 1. The UML specification defines the derived end using a constraint on
classifier as follows [23, p. 52]3:

general = self.generalization.general->asSet()

Used as a derive expression, the result for a navigation from a classifier
instance to the association end general can be calculated using the source in-
stance as the context object self. For the opposite direction of the navigation,
i. e., navigating from a classifier instance to its subclasses, the derive expression
needs to be evaluated for all instances of Classifier:

superclass = Classifier.allInstances()->select(general->includes(self))

For n-ary associations navigating to the derived association end, the derive
expression needs to be evaluated with each combination of the source object and
all possible instances at the other ends (excluding the derived end). The resulting
set is the union of all evaluation results. If a navigation starts at the derived
end of an n-ary association, the calculation is similar to the case of navigating
backward in a binary association. Except, that the evaluation is performed for
the cross product of all instances which can participate in the association. This
means all instances of the end types except the derived end.

4 Tool based Validation

Because of the endogenous nature of the semantics described in the previous
chapter, they were developed in parallel to extensions to a modeling tool. To
validate the structural constraints used inside the UML metamodel, these were
added to the tool, which allowed us to represent greater parts of the metamodel.
Using a tool based validation approach and extending it in a step-wise manner
added a reverse link to the specification of the runtime semantics. Without a
validation tool, it is rather hopeless to bring a metamodel including well-defined
semantics for a modeling language to a consistent state. Using a modeling tool
to validate its modeling language, like the bootstrapping approach used for com-
pilers, allows to discover issues beyond syntactical errors in an early state. For
example, only after using derived unions in combination with derived association
ends we discovered an infinite recursive definitions at the metamodel level in the
current UML standard. In this particular case, a derived association end was
used inside a union and the derive expression used this union. In the following
parts of this section, we explain some beneficial features supporting the defini-
tion of (meta-)models which are integrated in our modeling tool USE [11, 30].
Additional supporting features are beyond the scope of this paper, but can be

3 The constraint has slightly been modified to be more expressive. In detail, the body
of the operation Classifier::parent() was embedded into the constraint. Further,
asSet() was added to establish type soundness.

�

�

�

�
109

found in several publications of our group, e. g., [13, 14, 12]. Such a left out fea-
ture is the possibility to evaluate the specified constraints on a model instance,
which was used to validate the invariants presented in this paper.

During the development of a metamodel, already on the syntactical level the
usage of automatically generated dynamic views can support the user. While the
size of a model increases, the usage of the modeling elements discussed in this
paper (subsets, union and derived properties) can get unmanageable without
adequate support by a tool. USE provides a comprehensive view which provides
information about these elements defined for an association. An example of this
view is presented in Fig. 8. It shows the derived union association specified
between the metaclasses Classifier and Feature in the UML metamodel. A
user can directly see which associations are related to the selected one and what
kind of relations are defined. Implicit information, like for example a missing
subsets on the opposite end is highlighted.

Fig. 8. Information about association relations available in USE

Another valuable functionality, which was touched slightly while explaining
Fig. 5 and 6 is the automatic calculation and presentation of virtual links (pre-
sented as dashed lines) which result from associations that include a derived
expression or derived unions. In Fig. 9 an in-depth view on the defined and de-
rived links between the instances representing the composition C InCarAsFront

and its owned end front is shown. While the three lower links are specified by
the user, the upper four links are automatically presented to the user because
they are part of a derived union. Another usage of virtual links is to compress
diagrams as it was done in Fig. 6 by excluding the generalization instances,
but still showing the generalization link between classes using the derived end
/general.

Furthermore, using derived associations allows a user to model information
in a different way which may be more suitable to express her intention. The
USE session presented in Fig. 10 shows an example, which uses a derived ternary
association to show the direct relation of associated objects. The example defines
a small library model composed of classes for users, copies and books. The fact
that a user can borrow copies of books is modeled by two binary associations
which together link all three classes. A third association is defined, that is derived

�

�

�

�
110

Association2:Association
name='C_InCarAsFront_Wheel'
isAbstract=false
isDerived=Undefined

Property4:Property
name='front'
isOrdered=false
isUnique=true
/ lower=2
/ upper=2
isReadOnly=false
isDerived=false
isDerivedUnion=falseassociation {subsets notNavigableMember} memberEnd {ordered, subsets member}

member {union}

ownedElement {union}owner {union}

 ownedEnd {ordered,
 subsets feature,
subsets ownedMember,
 subsets memberEnd}

owningAssociation
{subsets featuringClassifier,
 subsets namespace,
 subsets association}

feature {union}featuringClassifier {union}

navigableOwnedEnd {subsets ownedEnd}

 ownedMember {union,
subsets ownedElement, subsets member}namespace {union, subsets owner}

Fig. 9. A detailed view on virtual links present in the UML metamodel instance (Fig. 6)

and combines the aforementioned associations into a single ternary one. The
definition of the derived association in the concrete syntax of USE is as follows:

association BorrowsCombined between

User[*] role dUser

Copy[0..1] role dCopy derived(aUser:User,aBook:Book) =

aUser.copy->select(c | c.book=aBook)

Book[*] role dBook

end

The shown textual language is an excerpt of the language used to define
UML models in USE. It is comparable to HUTN (UML Human-Usable Textual
Notation) of the OMG [21]. To be able to show derived links, our language
defines the keyword derive to mark an an association end as derived. The derive
keyword requires an OCL expression which defines the derived links. For n-ary
associations, also the naming of the parts of a combination is required to be able
to evaluate an arbitrary OCL expression. In contrast to this, a derived expression
on a binary association can use a single context variable self, because there is
no combination of instances at association ends.

For example, to calculate the links for the association BorrowsCombined the
derive expression at the association end dCopy is evaluated for all pairs of User
and Book objects (these pairs are expressed by the signature (aUser:User,

aBook:Book) of the derive definition shown above. The derive expression returns
all copies associated with a given pair of a user and a book. For each Copy

object in the result set a link connected to the input pair and the copy object is
shown in the object diagram. In addition, the example shows how one can use a
multiplicity constraint on derived associations. In this example, the multiplicity
constraint 0..1 in the association end dCopy excludes double borrowings (a user
borrows more than one copy of the same book). The multiplicity violation of the
example state is reported to the user, as can be seen at the bottom of Fig. 10.

�

�

�

�
111

Fig. 10. Screenshot of USE while validating a snapshot with derived ternary association

5 Related Work

Metamodeling semantics has been used in areas not focused in this paper. In [8]
it is applied to define the semantics of multiple inheritance using a set-theoretic
based metamodel. [16] shows its application to specify the semantics of OCL,
whereas [9, 15] cover a detailed view on the overall topic of metamodeling seman-
tics. A combined view of different metamodeling levels is used in [10] to specify
the semantics of entity relationship diagrams and their transformation into the
domain of relational schemata.

As examples for the ongoing discussion about the need of a formal semantics
for UML and to what extend it should be defined, we refer to [27] and [5]. The
authors of [5] discuss the benefits and drawbacks of a precise UML specification
including runtime semantics from several points of view. Furthermore, the prob-
lems arising by trying to be a general purpose language for different domains
implying semantic variation points is explained. We believe, that both points of
view are valid, but the viewpoints change during the development process. At
an early stage of design, the used modeling language could allow to violate the
precise semantics. While the process continues, these violations should be more
and more forbidden until a state is reached where no violation is allowed.

Beside the vast amount of publications defining the semantics of UML, e. g.
[18, 31, 28], work covering the UML language elements presented in this paper
has been done. [4] gives a descriptive insight of using union and subsets and
shows its relation to composite structures.

�

�

�

�
112

Exogenous definitions of the semantics for subset and union properties have,
for example, been provided in [1] using a set-theoretic formalization, [3, 2] using
graph transformations, and [19] using a so-called property oriented abstract syn-
tax to define the semantics of what the authors call inter-association constraints
(these include subsets and union). These examples of exogenous definitions of
semantics all require to have expertise in the respective external semantic tech-
nology space. [20] introduces a UML profile covering redefinition and other ele-
ments. While the work is similar to ours in the sense that it stays in the same
technological space, the runtime semantics is enforced generating model specific
OCL constraints, like the ones shown at the beginning of Sect. 3. A semantics
for subsetting using the same transformation approach is given in [7]. Another
transformation approach to describe the runtime semantics of UML constraints
using OCL is shown in [6]. Here, the runtime semantics implied by UML com-
positions are translated to OCL constrains, i. e. the semantics must be defined
by a transformation into a specific application model. Whereas our semantics
works in a universal way, where constraints are formulated on the metamodel
level without the need for transformation.

In this paper we presented a way to validate (meta-)model instances by
creating snapshots, i. e., instantiations, of these models and by examining their
behavior, for example, by checking the multiplicity constraints on an instance
or by examining the current states of the defined invariants. Other approaches
use automatic techniques to reason about models specified in UML/OCL. An
approach like [17] could, for example, be used to find valid configurations of
writable derived properties as discussed earlier in this paper. In addition, it can
be used like the ones in [29] and [25] to answer questions about the satisfiability
and other properties of a model.

6 Conclusion and Future Work

We presented a proposal to specify the runtime semantics of a modeling language
using a metamodel describing syntax and semantics in the same language. Us-
ing the same technology space reduces the overall complexity of the language
description, because knowledge of other languages is not required. Furthermore,
the process of specifying the language is improved, if this self describing tech-
nique is used in combination with tool-supported validation. As we have shown
in Sect. 4, bringing models into being by creating snapshots can give insights
into the model which are rather vague if only the static specification is used.

As future work, the application of our approach to other areas of modeling
languages, for example property redefinition and association generalization, seem
to be promising directions to extend our work. The covered elements of the UML
metamodel for validation and the options on the user interface in our tool USE
can be strengthened as well. Larger case studies with other modeling language,
for example domain-specific languages, will give further feedback on the usability
of the approach.

�

�

�

�
113

References

1. Alanen, M., Porres, I.: A metamodeling language supporting subset and union
properties. Software and Systems Modeling 7(1), 103–124 (Feb 2008)

2. Amelunxen, C.: Metamodel-based Design Rule Checking and Enforcement. Ph.D.
thesis, Technische Universität Darmstadt (2009), dissertation

3. Amelunxen, C., Schürr, A.: Formalizing Model Transformation Rules for
UML/MOF 2. IET Software Journal 2(3), 204–222 (June 2008), special Issue:
Language Engineering

4. Bock, C.: UML 2 Composition Model. Journal of Object Technology 3(10), 47–73
(Dec 2004), http://www.jot.fm/issues/issue_2004_11/column5

5. Broy, M., Cengarle, M.V.: UML formal semantics: lessons learned. Software and
System Modeling 10(4), 441–446 (2011)

6. Chavez, H.M., Shen, W.: Formalization of UML Composition in OCL. In: Miao,
H., Lee, R.Y., Zeng, H., Baik, J. (eds.) ACIS-ICIS. pp. 675–680. IEEE (2012)

7. Costal, D., Gómez, C., Guizzardi, G.: Formal Semantics and Ontological Analysis
for Understanding Subsetting, Specialization and Redefinition of Associations in
UML. In: Jeusfeld, M.A., Delcambre, L.M.L., Ling, T.W. (eds.) ER. Lecture Notes
in Computer Science, vol. 6998, pp. 189–203. Springer (2011)

8. Ducournau, R., Privat, J.: Metamodeling semantics of multiple inheritance. Science
of Computer Programming 76(7), 555–586 (2011)

9. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A
Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML.
In: Evans, A., Kent, S., Selic, B. (eds.) UML. Lecture Notes in Computer Science,
vol. 1939, pp. 323–337. Springer (2000)

10. Gogolla, M.: Exploring ER and RE Syntax and Semantics with Metamodel Object
Diagrams. In: Nürnberg, P.J. (ed.) ACM Int. Conf. Proceeding Series (Vol. 214),
Proc. Metainformatics Symposium (MIS’2005). ACM Press, New York (2005),
ACM Digital Library, 12 pages

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

12. Gogolla, M., Hamann, L., Xu, J., Zhang, J.: Exploring (Meta-)Model Snap-
shots by Combining Visual and Textual Techniques. In: Gadducci, F., Mari-
ani, L. (eds.) Proc. Workshop Graph Transformation and Visual Modeling Tech-
niques (GTVMT’2011). ECEASST, Electronic Communications, journal.ub.tu-
berlin.de/eceasst/issue/view/53 (2011)

13. Hamann, L., Hofrichter, O., Gogolla, M.: OCL-Based Runtime Monitoring of Ap-
plications with Protocol State Machines. In: Vallecillo, A., Tolvanen, J.P. (eds.)
Proc. 8th European Conf. Modelling Foundations and Applications (ECMFA
2012). pp. 384–399. Springer, Berlin, LNCS 7349 (2012)

14. Hamann, L., Hofrichter, O., Gogolla, M.: Towards Integrated Structure and Behav-
ior Modeling with OCL. In: France, R., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
Proc. 15th Int. Conf. Model Driven Engineering Languages and Systems (MoD-
ELS’2012). pp. 235–251. Springer, Berlin, LNCS 7590 (2012)

15. Hausmann, J.H.: Dynamic META modeling: a semantics description technique for
visual modeling languages. Ph.D. thesis, University of Paderborn (2005)

16. Kleppe, A.: Object constraint language: Metamodeling semantics. In: Lano, K.
(ed.) UML 2 Semantics and Applications, pp. 163–178. John Wiley & Sons, Inc.
(2009)

�

�

�

�
114

17. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) Proc.
49th Int. Conf. Objects, Models, Components, and Patterns (TOOLS’2011). pp.
289–305. Springer, Berlin, LNCS 6705 (2011)

18. Lano, K.: UML 2 Semantics and Applications. John Wiley & Sons, Inc. (2009)
19. Maraee, A., Balaban, M.: Inter-association Constraints in UML2: Comparative

Analysis, Usage Recommendations, and Modeling Guidelines. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MoDELS. Lecture Notes in Computer
Science, vol. 7590, pp. 302–318. Springer (2012)

20. Nieto, P., Costal, D., Gómez, C.: Enhancing the semantics of UML association
redefinition. Data Knowl. Eng. 70(2), 182–207 (2011)

21. OMG (ed.): UML Human-Usable Textual Notation (HUTN). Object Management
Group (OMG) (Aug 2004), http://www.omg.org/spec/HUTN/

22. OMG (ed.): Meta Object Facility (MOF) Core Specification 2.4.1. Object Man-
agement Group (OMG) (Aug 2011), http://www.omg.org/spec/MOF/2.4.1

23. OMG (ed.): UML Superstructure 2.4.1. Object Management Group (OMG) (Aug
2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

24. OMG (ed.): Object Constraint Language 2.3.1. Object Management Group (OMG)
(Jan 2012), http://www.omg.org/spec/OCL/2.3.1/

25. Queralt, A., Teniente, E.: Verification and Validation of UML Conceptual Schemas
with OCL Constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13 (2012)

26. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language - Refer-
ence Manual. Addison-Wesley, 2 edn. (2004)

27. Rumpe, B., France, R.B.: Variability in UML language and semantics. Software
and System Modeling 10(4), 439–440 (2011)

28. Shan, L., Zhu, H.: Unifying the Semantics of Models and Meta-Models in the
Multi-Layered UML Meta-Modelling Hierarchy. Int. J. Software and Informatics
6(2), 163–200 (2012)

29. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP. LNCS,
vol. 6706, pp. 152–170. Springer (2011)

30. A UML-based Specification Environment. Internet, http://sourceforge.net/

projects/useocl/

31. Varró, D., Pataricza, A.: Metamodeling Mathematics: A Precise and Visual Frame-
work for Describing Semantics Domains of UML Models. In: Jézéquel, J.M., Huß-
mann, H., Cook, S. (eds.) UML. Lecture Notes in Computer Science, vol. 2460,
pp. 18–33. Springer (2002)

32. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Object Technology Series, Addison-Wesley, Reading/MA (2003)

�

�

�

�
115

Publication A19W

OCL-Based Runtime
Monitoring of JVM Hosted

Applications

Authors: Lars Hamann, Martin Gogolla, and Mirco Kuhlmann

Proc. Workshop OCL and Textual Modelling (OCL’2011)

�

�

�

�
117

ECEASST

OCL-based Runtime Monitoring of JVM hosted Applications

Lars Hamann1, Martin Gogolla2, Mirco Kuhlmann3

1 lhamann@informatik.uni-bremen.de
2 gogolla@informatik.uni-bremen.de

3 mk@informatik.uni-bremen.de
University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

Abstract: In this paper we present an approach that enables users to monitor and
verify the behavior of an application running on a virtual machine at the model level.
Concrete implementations of object-oriented software usually contain a lot of tech-
nical classes. Thus, the central parts of an application, e.g., the business rules, may
be hidden among peripheral functionality like user-interface classes or classes man-
aging persistency. Our approach makes use of modern virtual machines and allows
the devloper to profile an application in order to achieve an abstract monitoring
and verification of central application components. We represent virtual machine
bytecode in form of a so-called platform-aligned model (PAM) comprising OCL in-
variants and pre- and postconditions. In contrast to related work, our approach uses
the original source or bytecode of the monitored application as it stands and does
not require any changes. We show a prototype implementation as an extension of
the UML and OCL tool USE. Also, we investigate the impact of our approach to the
execution time of a monitored system.

Keywords: Runtime Validation, Monitoring, OCL, UML, Virtual Machine, Profile

1 Introduction

Model-driven development (MDD) is currently considered to be a promising paradigm for soft-
ware production. MDD aims at employing models in all development phases and for different
purposes. Quite common is the forward transformation of a platform-independent model (PIM)
into a platform-specific model (PSM). Less common, but also studied is the backward direction
transforming a PSM into a PIM. This paper studies the latter direction and concentrates on how
to connect, monitor and analyse applications running on a virtual machine (e.g., the Java virtual
machine (JVM) for Java or the common language runtime (CLR) for .NET languages) in terms of
a design-like model formulated as a UML class diagram and enriched with OCL state invariants
and OCL operation pre- and post-conditions [OMG09, OMG10].

The aim of our work is to detect general properties of a running application. When saying
‘general’, we think of properties that are not explicitly part of the source code but reflect char-
acteristics which generalize and abstract certain implementation details. Our aim is to formulate
central properties of a running application as OCL invariants and OCL pre- and postconditions.
We call a collection of such properties a platform-aligned model (PAM) which can be seen as a
link between a PSM and a PIM. A PAM will be formulated by means of assumptions which have

1 / 20 Volume 44 (2011)

�

�

�

�
119

OCL-based Runtime Monitoring of JVM hosted Applications

monitor Implementation : Monitor

 : Validation Engine

 : Snapshot

vm : Virtual Machine

SUM : Implementation

 : Debugging Services

design model : PIM

aligned model :
PAM

Runtime Layer

Model Layer

<<use>>

<<use>>

maps to a subset of

Figure 1: Deployment diagram of the monitoring approach

to be checked in prototypical scenarios invented and formulated by the developer. Designing a
PAM is an iterative process in which assumptions are stated, checked and refined. Failure of an
assumption may be due to an unjustified assumption which was made in the model or due to a
justified assumption which does not hold in the implementation. According to the failure reason,
one either has to change the model or report the failed assumption to the implementor. Thus, the
development of a PAM may be seen as a (further) testing and quality assurance process for the
running application.

The rest of this paper is structured as follows. In Section 2 we put forward the basic ideas
of our proposal for analyzing applications running in the Java virtual machine. Section 3 ex-
plains these ideas by means of a middle-sized case study applied with a plugin for the tool
USE [GBR07]. Section 4 examines the impact on the runtime performance of a system and
shows details about special parts of our approach. Section 5 discusses related work. The paper
ends with a conclusion and ideas for future work.

2 General approach

The main idea of our approach is to bridge the gap between platform independent models (PIM
or abstract models) and the most platform specific models (PSM or implementation models).
The bytecode of applications running inside a virtual machine can be seen as a PSM which is
abstract enough to apply our approach, but also specific enough to make assumptions about the
running system. This level of abstraction is needed because at this level one can make use of
already existing features of the runtime environment of the PSM.

Modern virtual machine implementations like the JVM or the CLR of Microsoft .NET provide
a rich pool of debugging and profiling interfaces. For example, the Java Platform Debugger
Architecture [Ora11] allows easy access to applications running inside a (possible remote) virtual
machine. We applied our approach to the Java virtual machine, but it should be possible to apply
it to other virtual machines as well.

Proc. OCL 2011 2 / 20

�

�

�

�
120

ECEASST

The first step of our approach is to define an platform aligned model (PAM) of the system
under monitoring (SUM) which describes the expected behavior in a declarative way. This PAM
could, for example, be generated out of a PIM, or reverse engineered out of an implementation.
Further a PAM could be derived from a component specification to validate the possible exter-
nalized implementation of the component during the integration test phase. For this scenario
our approach fits well because it does not need full access to the sourcecode of a component or
system.

The PAM lies in between the runtime layer of an application and the modeling layer when
using a model driven development process. Figure 1 shows the position and relations of the
platform aligned model in the overall monitoring approach.

The PAM is provided as a UML model containing central classes of the SUM with attributes
and associations. The class definitions contain relevant attributes, operations and OCL invariants.
The dynamic behavior of a class is specified by means of OCL pre- and postconditions of the
operations. The PAM should only contain central aspects of the SUM, i. e., it should abstract as
far as possible from technical implementation aspects. To be able to monitor systems without
modifying their source- or bytecode, the model needs to be enriched with annotations containing
some information about implementation details. These implementation details are for example
the concrete package a class is located in or a different name of an attribute. Further, query
operations used inside the monitor need to be explicitly annotated because the monitor should
not trace their execution inside the SUM.

The next step is to execute the SUM with enabled remote debugging capabilities. In the case
of the JVM this can be done by providing specific arguments at startup. We do not make any
assumptions about how the SUM is executed. Two possibilities are to execute it manually or by
a test driver.

Once the SUM is started, the monitor with the PAM specified in the first step needs to be
attached to the running system to start the monitoring process. In USE this is done by invoking
a monitor start command with information how to connect to the remote application. The
required information consists of the name of the host on which the application is running and
the port on which the virtual machine is listening for a remote debugger. This port can be set
as a startup parameter of the virtual machine. After the monitor has successfully connected to
the SUM, it is left to the concrete implementation of the monitor, if the SUM is further executed
or immediately suspended. However, the dynamic monitoring of a running SUM can only be
done after it has once been suspended and an initial abstract snapshot of the system state has
been taken. Such an abstract snapshot, e. g., an instantiation of a PAM, can be build up following
these steps:

1. For all classes in the PAM which can be matched directly (by name or by special an-
notation information) to an already loaded class in the JVM1, all existing instances in
the JVM are mapped to newly created instances of the platform aligned model. In de-
tail, this can be done by invoking the operation instances() on an object of the type
ReferenceType which returns proxies to all reachable objects inside the JVM. This –
for our approach important – operation was introduced in JVM version 1.6.

1 Using the default class loader Java uses lazy initialization for classes. Therefore, not all classes might be loaded
when building a snapshot.

3 / 20 Volume 44 (2011)

�

�

�

�
121

OCL-based Runtime Monitoring of JVM hosted Applications

2. For each created abstract instance in step 1 the attribute values are read. The mapping
of primitive Java types to primitive OCL types should follow the common practice (c. f.
[WK03]). Attributes with a type of a class defined in the PAM, i. e., reference types, can be
read by using the mapping created in step 1. The possibility to define attributes referencing
other instances is the reason why the creation of instances (step 1) and this step needs to
be separated.

3. For all associations in the abstract model, links are created between corresponding in-
stances. Technically this step can be merged into step 2 for performance reasons. The
retrieval of links is discussed in Sec. 4.2.

After such a snapshot has been build, the monitor needs to register to several events that occur
in the VM in order to allow a dynamic monitoring of the SUM. For example, the monitor needs
to get informed if a not yet loaded class is initialized to be able to react on operation calls on
instances of that class. However a user can already examine the SUM at this time by performing a
check of the system state, e. g., by checking multiplicity constraints and invariants, by querying
the system state with OCL expressions, or by visualizing the system state using examination
patterns as described in [GHXZ11].

The next step in the monitoring process is to resume the suspended SUM to monitor its runtime
behavior. In USE, this is done by simply invoking the command monitor resume. Now, a
monitor can make use of the before mentioned events that it registers for. To keep the snapshot
synchronized with the SUM, a monitor needs to set and listen to breakpoints inside the VM at
several locations:

1. At class initialization to allow the registration of the breakpoints described next.

2. At constructors of monitored classes, i. e., classes defined in the abstract model. This
allows the monitor to keep track of newly created instances and therefore enables an in-
cremental built-up of the system state in contrast to always building a new snapshot of the
running system when needed. Additional issues need to be considered for this dynamic
build-up of the system state which are discussed later.

3. At the start of an operation which is specified in the abstract model. This enables the
monitor to validate preconditions at runtime and in case of a failure pause the SUM.

4. Just before the exit of an operation call. This enables the monitor to validate postcon-
ditions. The break must occur after the result of the operation is calculated. The JVM
provides such a mechanism. To reduce the total number of breakpoints the operation exit
breakpoint can be set while entering a monitored operation and can be removed after the
postconditions have been validated.

5. When a monitored attribute or link is modified. An application does not need to always
use operations to modify attributes of an object. Therefore, a monitor needs the possibility
to react on a modification of an object field to synchronize its snapshot. The JVM pro-
vides notifications when a field is modified to keep track of changing attributes or single
values association ends. The monitoring of changes to many to many associations is more
complicated and is discussed in Sec. 4.2.

Proc. OCL 2011 4 / 20

�

�

�

�
122

ECEASST

Figure 2: Monitoring events and the corresponding locations on the bytecode level

Figure 2 maps these listening locations to their adequate representation in Java bytecode, ex-
cept the event when new classes are initialized. This event has no direct representation as a
bytecode instruction and is also very specific to the virtual machine and the used class loader.
Therefore, it is shown in an informative way.

These event locations allow a monitor to capture the relevant modifications inside a running
application and trace its execution. This incremental build-up can be done until the application
is exited or the monitoring process is ended. However, while applying this approach we found
it useful to rebuild the snapshot when pausing the monitored application again. This enables the
monitor to clean-up internal states.

Monitoring an application in the presented way allows a user to monitor the validity of UML
constraints like multiplicities or compositions, invaraints, pre- and postconditions without the
need to modify the source code of the application or to use special bytecode intersection mecha-
nism which might alter the behavior of the system. A user can validate formulated assumptions
about the application at runtime. This can be useful when validating a third party component
where the sourcecode itself is not available, but the specification of the public interfaces can be
used to create a PAM. When encountering an error during the monitoring process a user can
make use of the, in contrast to the usage of a debugger, more abstract snapshot of the system.
This more abstract snapshots focuses on the central parts of an application by hiding technical
details. This task can be seen as abstract debugging. After locating the error, the user has to
decide if the implementation or the PAM has to be corrected. This is equal to the task when
testing and finding an error. To reduce the errors in the PAM, unit tests can be used as introduced
for OCL in [CO09] and discussed in detail in [HG10].

3 Case Study

In this section we apply our monitoring approach to an existing mid-sized application using an
developed plugin for the USE tool. We monitor the application to validate assumptions about

5 / 20 Volume 44 (2011)

�

�

�

�
123

OCL-based Runtime Monitoring of JVM hosted Applications

its structure and behavior. These assumptions are formulated by multiplicities, OCL invariants
and OCL pre- and postconditions. Further, we show how the examination of a snapshot helps to
explore unexpected behavior of a system, e. g., memory leaks.

We exemplify our approach by using an open source computer game called Free Colonization2

or in short FreeCol. It is a modern Java-based implementation of the 1994 published game Sid
Meier’s Colonization3. The game itself is a round-based strategy game with the goal to colonize
America and finally to achieve independence. The game takes place on a matrix-like map which
consists of tiles with different types, e. g., water, mountain, forest. Different units operate on
this map and can explore unknown territory, build colonies, trade goods, etc. Fig. 3 shows an
example state of a running game. One unit (i. e. a pioneer) is placed in the center of the shown
map part surrounded by several different tile types.

To formulate assumptions about the application we start by taking a look at some central
game rules. While there are many other rules, we only use some rules related to the founding
of a colony to keep the example moderate. The following rules are derived by examining the
documentation and by own observations while executing the game. A unit can build a colony if

1. its current position is on a tile which does not contain another colony,

2. the unit has enough moves left to build a colony, or

3. there are no other colonies placed directly to the current tile.

Because we are monitoring an existing application which does not provide a design model
we need to build one from scratch. Another approach would be to reverse engineer the source-
code and then simplify the extracted model to the required elements. As we will see, building a
model from scratch does fit well to our purpose. When analyzing the rules using the common ap-
proach to find candidate classes by nouns, we find four class candidates in the rules: Position,
Tile, Colony, Unit. However there are some other needed classes, e. g., Map which is not
mentioned in the rules but the class is needed as a container. Other candidates are no classes but
roles of them, e. g., position as role of tile.

A possible platform independent model which can be created out of the information given by
the above rules is shown in Fig. 4(a). In this model a unit is positioned on a tile which is part of
exactly one map. A tile has three to eight surrounding tiles and can be the position of at most
one colony. The available moves of a unit a stored inside of the attribute movesLeft. Our
assumptions about when a unit is allowed to build a colony are shown as OCL preconditions in
Fig. 4(b).

As described before, the PIM has to be aligned to the platform the application is running
on. Therefore information about the concrete implementation is needed. When applying our
approach as part of a model driven process these information is encoded inside the transformation
rules used to generate the PSM and can be reused to generate the PAM. While we are examine
an application which is not developed in a model driven way, we need to align it manually by
examining the implementation.

2 Project website: http://www.freecol.org
3 The corresponding Wikipedia article gives detailed information about the game play. http://en.wikipedia.org/wiki/
Sid Meier%27s Colonization

Proc. OCL 2011 6 / 20

�

�

�

�
124

ECEASST

Figure 3: Sample game situation in FreeCol

(a) Class diagram

context Unit::buildColony()
pre tileIsEmpty:
self.position.placedColony.isUndefined()

pre noSurroundingColonies:
self.position.surroundingTiles->forAll(t |
t.placedColony.isUndefined())

pre hasMovesLeft:
self.movesLeft > 0

(b) Preconditions

Figure 4: Platform independent model derived from above game rules

7 / 20 Volume 44 (2011)

�

�

�

�
125

OCL-based Runtime Monitoring of JVM hosted Applications

The source code of version 0.9.2 of FreeCol contains an overall of 551 classes, but as we will
show relevant to our goal to validate the implementation of the above rules are only few of them.
The central “business logic” of FreeCol is located in a package called net.sf.freecol.
common.model. This package still contains 92 classes. The concrete implementation differs
from our first model because of various reasons. First, it takes into account a lot of other features
which are not relevant to our assumptions. Further, the developers took other design decisions
when implementing the game. For example the implementation of the map stores the tiles inside
of a multi-dimensional array whereas we modeled it as some kind of linked list, i. e., the map is
constructed by linking a tile to its surrounding tiles. From the modeling perspective, that makes
sense, but taking performance considerations into account the array implementation fits better.

A model which is aligned to the concrete implementation is given in Fig. 5(a). One can
see that the reflexive association of tile is no longer needed because the neighbored tiles can
be calculated by the x and y coordinates. The implementation as a multidimensional array is
represented as a qualified association which also guides the snapshot generation process to read
an array at runtime. Another interesting change is the introduction of the class Location.
While examining the rules we stated that position is a role instead of a class. It turns out that
due other features a class Location is needed because there are several entities that can serve
as a location. A unit itself can be the location of other units, e. g., a ship. Another important
change is the introduced parameter colony of the operation Unit::buildColony(). The
developers decided that not the class Unit should take care of creating a new instance of the
class Colony. Instead, an already created instance is passed as an argument.

Because the structure of the model changed, the OCL constrains defined for the PIM need to
be changed, too. The adjusted constraints are shown in Fig. 5(b). One might wonder why the
invariant Colony::noNeighbours is contained in the model. Looking at the preconditions
of the operation buildColony() it seems to be redundant. The reason for explicitly consid-
ering the invariant is that while monitoring, our approach allows a user to attach to a system at
any time. Therefore we cannot make any assumptions about the validity of the preconditions in
previous calls to operations.

The operation Tile::getNeighbours() is introduced to simplify the definitions of the
constraints. To notify USE to ignore this operation while monitoring it is annotated as a query
operation. This is done by the USE annotation mechanism that is provided to allow plugins to
read additional information out of a USE model without the need to change the model parser.
USE annotations look very like Java annotations. After an @ symbol the name of the annotation
is given following a possible empty list of attribute values pairs enclosed in brackets:

@Monitor(isQuery="true")
getNeighbours() : Set(Tile) = let neighbours = Set{} in ...

On the semantic level, these annotations are conceptually equal to UML stereotypes. The only
difference in USE is that they are not statically typed, e. g., no profile has to be defined and ref-
erenced. The model can now be used to monitor the execution of the application. In contrast
to simplify an automatically reversed engineered model with all 551 classes their attributes and
operations which would have been reverse engineered, the demonstrated forward modeling ap-
proach resulting in seven classes seems to be more efficient when validating central aspects of a
system.

Proc. OCL 2011 8 / 20

�

�

�

�
126

ECEASST

(a) Class diagram

context Unit::buildColony(colony:Colony) context Colony inv noNeighbours:
pre movesLeft: self.movesLeft > 0 self.tile.getNeighbours()->forAll(t |

t.settlement.isUndefined())
pre tileIsEmptyAndFits:
self.location.oclIsKindOf(Tile) and
self.location.oclAsType(Tile).
settlement.isUndefined()

pre noSurroundingColonies:
self.location.oclIsKindOf(Tile) and
self.location.oclAsType(Tile).
getNeighbours()->forAll(t |
t.settlement.isUndefined())

(b) Constraints

Figure 5: Platform aligned model

9 / 20 Volume 44 (2011)

�

�

�

�
127

OCL-based Runtime Monitoring of JVM hosted Applications

To begin the monitoring process the application needs to be started with additional param-
eters which setup the interfaces of the virtual machine to listen for remote connections. The
parameters are well documented in the JVM documentation and are not described here, except
one interesting parameter. The parameter suspend allows to specify the execution behavior of
the virtual machine. When using the value yes the JVM immediately pauses execution until
a remote application instruments it to resume. This option is useful to monitor an application
including the whole initialization process.

After FreeCol is started with a JVM listening for a connection, the monitoring process can be
started by USE. Before it can attach itself to the JVM the PAM has to be loaded. After this, the
monitoring can be started by the command monitor start. After a successful connect, USE
registers for important events and keeps track of changes inside the virtual machine. However
when an application was started without the suspend option, USE at first needs a snapshot of the
running application. This can be achieved by invoking the command monitor pause. USE
suspends the monitored application and reads all instances of the classes specified in the PAM,
sets their attributes and creates links as described in Sec. 2. Figure 6 shows parts of the snapshot
taken at the state of FreeCol as shown in Fig. 3. We only show a part of it because already with
the smallest map and at the very beginning of a game the snapshot read into USE consists of
about 6,000 objects most of them (5,750) of type Tile and 4,000 links.

Please note that the alignment of the tile objects is following their x and y values and not their
positions in the screenshot of the game. FreeCol uses a rather complicated approach following
the layout on the screen to save the game maps. For example, when moving to north a unit
decreases its x position by two instead of one.

While the colony Isabella and the Indian settlement can easily be found, the units are harder
to identify because they are not named. Unit85 is the Indian unit placed south of the Indian
settlement. Unit10 is the unit placed south-east of the Indian settlement. Unit12 is the
pioneer located in the center of the screen, whereas Unit46 is not visible because it resides
inside of the colony Isabella which is denoted inside of the screenshot by the number displayed
in the center of the colony.

The difference between the number of tiles (5,750) and the overall number of links (4,000)
already indicates that our assumption about the multiplicity specification at the association end
map reachable from Tile is wrong. When examining the snapshot it turns out, that 1,830 tiles
are not linked to a map but are referenced inside the virtual machine by some other objects. A
possible cause of such a situation could be an implementation which leads to memory leaks.
Although Java uses a garbage collector (GC) to reduce the possibilities of memory leaks, they
still can happen. For example, when using static container classes the containing objects will
never be collected by the GC because they are always reachable by the static container. In fact,
the detection of memory leaks was one of the reasons why the used operation instances()
was added to the JDA4.

In our example, we used the following approach to examine the cause of the missing links
to a map. In a step wise manner, we added classes to the PAM which use an attribute of the
type Tile. For each step we connected to the a running game and took a snapshot of the
running system and evaluated OCL queries on it. We quickly found classes which use delegates

4 See http://bugs.sun.com/bugdatabase/view bug.do?bug id=5024119

Proc. OCL 2011 10 / 20

�

�

�

�
128

ECEASST

Figure 6: Parts of the snapshot taken at runtime

11 / 20 Volume 44 (2011)

�

�

�

�
129

OCL-based Runtime Monitoring of JVM hosted Applications

of tiles not connected to a map. These classes are mostly used inside of the graphical part
of the application and are not used by the data model containing the important rules for our
assumptions. Therefore, we could exclude a memory leak at this part and needed to align our
assumption about the multiplicities. Interestingly, there seems to be still a memory leak related
to the class Tile. After loading a saved game the number of tile instances is growing. We have
not examined this issue any further, but it indicates that when loading a game the old game state
is not disposed correctly.

While we have shown that examining a snapshot of a suspended application can be useful
to detect possible structural issues, it can be used to examine some dynamic aspects of the
application as well. One can check, for example, if an operation can currently be called on
any instance of the defining class. Taking our snapshot into account one can check if any unit
can currently build a colony. This can be achieved by using the preconditions as query condi-
tions. However this is only possible in a simple way for preconditions that do not use param-
eter values. A skeleton for the combined query representing the precondition of the operation
Unit::buildColony for all units owned by the player ’lhamann’ is shown below. Instead
of repeating the bodies of the preconditions shown in Fig. 5(b) they are represented by the place-
holder <preBody>. The variables used inside of the let expressions denote the corresponding
body.

let myUnits = Unit.allInstances()->select(owner.name='lhamann') in
myUnits->select(self |
let preMovesLeft = <preBody> in
let preTileIsEmptyAndFits = <preBody> in
let preNoSurroundingColonies = <preBody> in
preMovesLeft and preTileIsEmptyAndFits and preNoSurroundingColonies)

This query results in a set of units which should be able to build a colony w.r.t. our assumptions.
To validate our assumptions we resume the game and let the unit placed in the center of the
sample state build a colony. Using our assumptions, this is indeed successful. The overall
command list can be examined in USE and is shown in Fig. 7. Note that the object identifier
are different to the identifier of the snapshot shown in Fig. 6, although the operation was called
exactly at the same state. This is because we used a different run of the application to record the
operation call using a saved game to start at the same state. This exemplifies, that when taking a
snapshot one can not rely on the order in which instances are read, because the virtual machine
could, for example, have reordered the objects on the heap.

The shown command list leads to another interesting observation. Some commands are exe-
cuted more then once, e. g., setting the attribute movesLeft to 0. One can now examine the
implementation to work out why this command is executed that often or she can refine the model
to include more operation calls that should be monitored. When using the latter approach we
quickly find out that several operations are setting the attribute value to zero. This behavior is
indeed needed, because the operation can be called independent from each other.

Because the monitored product FreeCol is in a stable state of development and the observed
operation is a central part of it, it is hard to identify a real bug to show a failing precondition. To
simulate it, we interspersed a simple error (changing movesLeft>0 to movesLeft=0) into
our assumed precondition. Given this circumstances the last visible command in the command

Proc. OCL 2011 12 / 20

�

�

�

�
130

ECEASST

Figure 7: Monitored commands of buildColony()

list shown in Fig. 7 is 9925. A user now can examine the current system state and try to identify
the error. As mentioned before the user has to take the specification of the PAM and the imple-
mentation into account and needs to judge what caused the error: a flawed implementation or
incorrect assumptions as it is the case with our incorrectly defined precondition.

It could also be the case, that the design of an application uses a defensive programming style,
i. e., the called operation validates it parameters and informs the caller of the failed preconditions
by raising an exception. Therefore, in our approach the normal execution can be continued by
resuming the application. Using such a defensive programming style will move the assumptions
specified in a PAM into the postconditions, e. g., forcing the return value of an operation to the
undefined value when an argument violates assumptions.

As with the preconditions, the handling of postconditions is nearly the same, except the access
to the system state before the operation was called using the @pre operator. When using and
OCL validation engine which supports the @pre operator and manages an own instance of the
system state, this feature can be used without much effort. This is one reason, why the validation
of constraints is done with an own snapshot instead of querying the Java heap.

When running the monitoring process with a more detailed PAM, the overall call stack can be
taken into account when resolving failed assumptions. Call stacks can be visualized using a UML
sequence diagram as shown in Fig. 8. Again, the object identifier changed because we needed to
reattach to the SUM with a more detailed model. This visualization of call sequences is in our
opinion also useful for documentation purposes. It allows an easy way to show central operation
calls of real executions of a system, in contrast to exemplified call sequences constructed by hand
or reversed engineered sequence diagrams showing an abstract execution path.

13 / 20 Volume 44 (2011)

�

�

�

�
131

OCL-based Runtime Monitoring of JVM hosted Applications

Figure 8: Monitored sequence diagram of an execution of buildColony()

Table 1: Performance of snapshot creation

Task SOIL Native
Instance creation ≈8,700 ≈9,700 instances/s
Attribute assignment ≈8,700 ≈17,400 attributes/s
Link creation ≈4,100 ≈4,100 links/s

4 Discussion

In this section we discuss technical aspects of out approach in detail. First give some brief in-
formation about general performance and the runtime overhead introduced by using our monitor
implementation. After this, we discuss the link retrieval task in detail to show various ways with
their advantages and disadvantages how to achieve this.

4.1 Performance and Runtime Overhead

Our implementation can use two different kinds of snapshot generation. It can be built by either
using native USE system operations or by evaluating SOIL5 statements [Büt11]. Using SOIL
statements, the whole build-up process of the snapshot is encapsulated in command objects.
These commands can be used to save an initial snapshot to a script file for later use. Table 1
shows the average values for the three main task when creating a snapshot, i. e., instance creation,
attribute assignment and link insertion.

The values were measured on a Intel Core 2 Duo notebook running at 2.5 GHz while taking
the whole snapshot which is partly shown in Fig. 6. The snapshots were taken several times
to exclude the overhead of the just in time compiler. It can be seen that the impact of SOIL

5 SOIL is an acronym for simple OCL-based imperative language.

Proc. OCL 2011 14 / 20

�

�

�

�
132

ECEASST

Table 2: Performance of dynamic monitoring

Monitored events Duration #Events monitored #Events/s
None (no monitor attached) 6 ms 0 n/a
None (monitor attached) 6 ms 0 n/a
Instance creation ≈7,600 ms 10,001 ≈760
+ Attribute assignment ≈8,500 ms 30,002 ≈3,530
+ Link creation ≈9,400 ms 40,002 ≈4,225
+ Operation call ≈18,000 ms 60,002 ≈3,333

comes to play only while assigning attribute values. This is due to the fact that an assignment
of an attribute needs fewer validation tasks when executed than a link creation and therefore the
encapsulation of the commands has a greater influence.

To examine the overhead of the dynamic monitoring we used a small application which exe-
cutes several steps that can be monitored in a loop. We used an own small application because
it allows a more precise measurement of the overhead in contrast to our case study which mon-
itored an operation that is called rarely. For the case study we can only state that there is a
marginal impact to the runtime behavior which leads to small delays that are barely noticeable,
for example, when moving units, which changes parts of the snapshot, e. g., the unit position.

The application creates a new instance and calls an operation on it inside each iteration. The
operation sets a primitive attribute of type integer and an object valued attribute. The loop was
iterated 10,000 times. The time needed to execute the whole iteration with different granularity
of monitored events is shown in Tab. 2. The overhead of one or two events respectively results
from the fact that a single instance is created before the loop which is used to set the object
valued attribute. When monitoring attribute assignments for each iteration step, two events are
monitored: the initialization inside the constructor and the assignment inside the operation.

At a first look, this overhead seems to be out of scale, but as described before our approach
is meant to be applied only to central parts of a system. Unrelated parts of the system are not
tangled by the monitoring, e. g., graphical operations which are called very often, and therefore
perform as without an attached monitor.

4.2 Link retrieval

While retrieving links of one-to-many associations can easily be done by reading the value of
the field at the association end with multiplicity one, reading many-to-many associations is more
complicated. This is similar to the issue how to generate association implementations when
applying model transformations in an MDA process (c. f. [AHM07]).

We identified two potential ways to read links of a many-to-many association into a snapshot
of an platform aligned model, either by examine the fields of the container object which saves
the corresponding objects or by using iterators.

The main drawback of reading the details of container classes is that it requires a deep knowl-
edge about the internal structure of them. Further, when new versions of the collection library,
e. g., a new Java runtime version, is released the monitoring framework has to be adopted.

15 / 20 Volume 44 (2011)

�

�

�

�
133

OCL-based Runtime Monitoring of JVM hosted Applications

The usual way to abstract from these detailed information is to use some kind of iterator
pattern [GHJV95]. However using a iterators requires to execute parts of the application out
of the normal program flow. While this could be done with current virtual machines this could
lead to forged results when monitoring an application. An implementation can for example write
something while iterating over a container, but our monitoring approach should not alter the
system state of a running application. The main benefit of this approach is that a monitored
application does not need to keep all linked objects in memory at once, e. g., they can be stored
in a database and retrieved when needed. We decided to retrieve links only by examining the
fields of container classes to keep the execution flow of the monitored application untouched.
However, we plan to support both approaches in the future.

Nearly the same considerations are valid in the context of the dynamic built-up of many-to-
many links during program execution. A monitor can listen for a modification of the underlying
data structure or it can set breakpoints at operations which modify the content of a container, e. g.,
List.add(Object o). Which technique to use depends on the concrete implementation
of the monitored system. For example, if the monitor uses operation breakpoints no detailed
knowledge about the underlying container is needed, but it cannot be sure that an element is
really added. This would be the case when using modification events, but as stated above a
mapping to the concrete implementation is needed.

5 Related Work

Today, several approaches to applying runtime monitoring for verification and validation pur-
poses exist. General comparisons regarding different methods for checking constraints at run-
time have been carried out in [FGOG07] and [ASCY10]. The authors in [FGOG07] call ap-
proaches using AspectJ and other reactive techniques like proxy implementations ‘Interceptor
Mechanisms’. These mechanisms are related to our approach. However, all presented inter-
ceptor mechanisms alter the implementation of the monitored system, either by changing the
sourcecode, by injecting bytecode, or by enforcing a particular architecture like the application
of proxy classes.

In [ASCY10], the authors identify four distinctive approaches using OCL constraints to per-
forming runtime checks:

(1) using implementation languages such as Java,
(2) using built-in assertion facilities such as the assert statement,
(3) using assertion or design-by-contract languages such as JML,
(4) using aspect-oriented programming language such as AspectJ

The first two categories are based on built-in structures of the target platform like if- or
assertion statements. In contrast to our approach, the integration of approaches belonging to
these categories into a system requires a full access to the sourcecode.

The Java Modeling Language (JML) can be applied for formal verification and runtime asser-
tion checking [LCC+05]. Approaches for translating OCL expressions and constraints into JML
are, for example, presented in [Ham04] and [AFC08]. In [CLSE05], program code is separated
from code intended for specification purposes by introducing model methods and model fields

Proc. OCL 2011 16 / 20

�

�

�

�
134

ECEASST

which abstract from concrete program variables and query methods. The respective features were
implemented in the runtime assertion checker for JML. A JML compiler built on the Eclipse Java
compiler is presented in [SC10] which, in contrast to the original JML compiler, supports Java 5
features, and is significantly faster, since it makes use of an AST merging technique.

The tool ‘ocl2j’ enforces OCL constraints in Java through translating OCL expressions into
Java code [DBL06]. The generated assertion code is integrated at the bytecode level using As-
pectJ. Analog approaches are presented in [BDL05] (focusing on templates for automatically in-
tegrating invariants and pre- and posconditions at the bytecode level) and [GR08, GM09, RG03].
In [CA10], the AspectJ approach is applied to program testing by using OCL constraints for fil-
tering test data and determining test results.

The Dresden OCL toolkit provides for two distinctive approaches to runtime verification based
on OCL constraints [DW09]. Within the so-called interpretative approach the Dresden OCL2
Interpreter is integrated into a runtime environment interpreting the OCL constraints for all in-
stances of the underlying model during execution. The ‘generative’ approach is currently based
on the generation of AspectJ code which can ensure constraints at software runtime.

In [BSG10] the monitoring of state machines is focused. OCL is not used. The authors,
though, sketch three general possibilities to extract runtime models. Beside the already men-
tioned ‘aspect oriented approach’, a so called ‘listener approach’ and a ‘debugging approach’
is described. The debugging approach is closely related to our method of using the debugging
facilities. However, the tool presented in [BSG10] relies on the listener approach which can be
seen as an architecture enforcing approach.

So called ‘synchronizers’ are used in [SHCS10] to synchronize a running system with a run-
time model, i. e., to immediately change the system when the model has been updated, and to
immediately adapt the model if the system progresses. Synchronizers can be generated for spe-
cific platforms. They make use of the APIs provided by the target systems. As discussed in
Sec. 4.2, the use of APIs may lead to side-effects while querying the system state. In [SHCS10],
the runtime model is represented in form of an EMF model. Thus, various MDE tools can be
applied.

6 Conclusion

We presented an approach for monitoring assumed properties in form of OCL constraints for a
running Java application. The approach was made possible by taking advantage of the powerful
features of the Java virtual machine. Assumptions are formulated as state invariants or operation
contracts and are understood as a platform-aligned model (PAM). We reported on a prototypical
implementation of a monitor integrated into the UML-based Specification Environment (USE).
The connection between the PAM and the platform-specific model (JVM byte code) was estab-
lished through particular annotations in the PAM. Our approach does not need to modify the PSM
as in approaches based on aspect-orientation. We explained our work by a non-trivial example
of an open-source game.

As future work we want to (semi-)automatically detect the constraints in the platform-aligned
model. For example, it could be possible to extract invariants or pre- and post-conditions (or
at least parts thereof) from boolean expressions in the source code. The extraction of classes,

17 / 20 Volume 44 (2011)

�

�

�

�
135

OCL-based Runtime Monitoring of JVM hosted Applications

attributes and role ends of associations could be based on run-time metrics. We have to work
further on the detection of associations and links in the case of many-to-many relationships.
Comprehensive case studies will help to improve our work. An in-depth comparison to related
approaches, for example, based on aspect-orientation or approaches considering the JML as a
target language is needed. The prototype has to be improved in various directions. Moreover, a
direct integration of OCL-like features into a virtual machine (e.g., by means of the plugin-like
agent mechanism in the JVM) seems a promising line of research as well.

Bibliography

[AFC08] C. Avila, G. Flores, Y. Cheon. A Library-Based Approach to Translating OCL Con-
straints to JML Assertions for Runtime Checking. In Arabnia and Reza (eds.), ro-
ceedings of the 2008 International Conference on Software Engineering Research &
Practice, SERP 2008. Pp. 403–408. CSREA Press, 2008.

[AHM07] D. Akehurst, G. Howells, K. McDonald-Maier. Implementing associations: UML
2.0 to Java 5. Software and Systems Modeling 6(1):3–35, mar 2007.

[ASCY10] C. Avila, A. Sarcar, Y. Cheon, C. Yeep. Runtime Constraint Checking Approaches
for OCL, A Critical Comparison. In roceedings of the 22nd International Conference
on Software Engineering & Knowledge Engineering (SEKE’2010). Pp. 393–398.
Knowledge Systems Institute Graduate School, 2010.

[BDL05] L. C. Briand, W. J. Dzidek, Y. Labiche. Instrumenting Contracts with Aspect-
Oriented Programming to Increase Observability and Support Debugging. In Pro-
ceedings of the 21st IEEE International Conference on Software Maintenance.
Pp. 687–690. IEEE Computer Society, Washington, DC, USA, 2005.

[BSG10] M. Balz, M. Striewe, M. Goedicke. Monitoring Model Specifications in Program
Code Patterns. In Proceedings of the 5th International Workshop Models@run.time.
Pp. 60–71. 2010.

[Büt11] F. Büttner. Reusing OCL in the Definition of Imperative Languages. PhD thesis,
University of Bremen, 2011.

[CA10] Y. Cheon, C. Avila. Automating Java Program Testing Using OCL and AspectJ. In
Proceedings of the 2010 Seventh International Conference on Information Technol-
ogy: New Generations. ITNG ’10, pp. 1020–1025. IEEE Computer Society, Wash-
ington, DC, USA, 2010.

[CO09] J. Chimiak-Opoka. OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for the Ob-
ject Constraint Language. In Schürr and Selic (eds.), Model Driven Engineering
Languages and Systems. Lecture Notes in Computer Science 5795, pp. 665–669.
Springer Berlin / Heidelberg, 2009.

Proc. OCL 2011 18 / 20

�

�

�

�
136

ECEASST

[CLSE05] Y. Cheon, G. Leavens, M. Sitaraman, S. Edwards. Model variables: Cleanly Sup-
porting Abstraction in Design By Contract. Softw. Pract. Exper. 35:583–599, May
2005.

[DBL06] W. J. Dzidek, L. C. Briand, Y. Labiche. Lessons Learned from Developing a Dy-
namic OCL Constraint Enforcement Tool for Java. In Satellite Events at the MoD-
ELS 2005 Conference, MoDELS 2005. LNCS 3844, pp. 10–19. Springer, Berlin,
2006.

[DW09] B. Demuth, C. Wilke. Model and object verification by using Dresden OCL. In Pro-
ceedings of the Russian-German Workshop Innovation Information Technologies:
Theory and Practice. Pp. 687–690. Ufa, Russia, 2009.

[FGOG07] L. Froihofer, G. Glos, J. Osrael, K. M. Goeschka. Overview and Evaluation of Con-
straint Validation Approaches in Java. In Proceedings of the 29th international con-
ference on Software Engineering. ICSE ’07, pp. 313–322. IEEE Computer Society,
Washington, DC, USA, 2007.

[GBR07] M. Gogolla, F. Büttner, M. Richters. USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69:27–34,
2007.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1995.

[GHXZ11] M. Gogolla, L. Hamann, J. Xu, J. Zhang. Exploring (Meta-)Model Snapshots by
Combining Visual and Textual Techniques. In Proc. 10th Int. Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT’2011). 2011.

[GM09] S. R. GY. Cheon, C. Avila, C. Munoz. Checking design constraints at run-time using
OCL and AspectJ. International Journal of Software Engineering 2(3):5–28, 2009.

[GR08] M. Gopinathan, S. K. Rajamani. Runtime Monitoring of Object Invariants
with Guarantee. In Runtime Verification, 8th International Workshop, RV 2008.
LNCS 5289, pp. 158–172. Springer, Berlin, 2008.

[Ham04] A. Hamie. Translating the Object Constraint Language into the Java Modelling Lan-
guage. In Proceedings of the 2004 ACM symposium on Applied computing. SAC ’04,
pp. 1531–1535. ACM, New York, NY, USA, 2004.

[HG10] L. Hamann, M. Gogolla. Improving Model Quality by Validating Constraints with
Model Unit Tests. In Proc. 7th Int. Workshop on Model-Driven Engineering, Verifi-
cation, and Validation (MODEVVA’2010). 2010.

[LCC+05] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, D. R. Cok. How the design of JML ac-
commodates both runtime assertion checking and formal verification. Sci. Comput.
Program. 55(1-3):185–208, 2005.

19 / 20 Volume 44 (2011)

�

�

�

�
137

OCL-based Runtime Monitoring of JVM hosted Applications

[OMG09] UML Superstructure 2.2. Object Management Group (OMG), Feb. 2009.
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

[OMG10] Object Constraint Language 2.2. Object Management Group (OMG), Feb. 2010.
http://www.omg.org/spec/OCL/2.2/

[Ora11] Oracle. JavaTMPlatform Debugger Architecture - Structure Overview. 2011.
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html

[RG03] M. Richters, M. Gogolla. Aspect-Oriented Monitoring of UML and OCL Con-
straints. In Aldawud et al. (eds.), Proc. UML’2003 Workshop Aspect-Oriented Soft-
ware Development with UML. Illinois Institute of Technology, Department of Com-
puter Science, http://www.cs.iit.edu/∼oaldawud/AOM/index.htm, 2003.

[SC10] A. Sarcar, Y. Cheon. A new Eclipse-based JML compiler built using AST merging.
Technical report 10-08, Department of Computer Science, The University of Texas
at El Paso, Mar. 2010.

[SHCS10] H. Song, G. Huang, F. Chauvel, Y. Sun. Applying MDE Tools at Runtime: Experi-
ments upon Runtime Models. In Models@run.time. Pp. 25–36. 2010.

[WK03] J. Warmer, A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 2003. 2nd Edition.

Proc. OCL 2011 20 / 20

�

�

�

�
138

Publication A21C

OCL-Based Runtime
Monitoring of Applications

with Protocol State Machines

Authors: Lars Hamann, Oliver Hofrichter, and Martin Gogolla

Proc. 8th European Conference Modelling Foundations and Applications (ECMFA’2012)

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-642-31491-9_29

�

�

�

�
139

OCL-Based Runtime Monitoring of Applications
with Protocol State Machines

Lars Hamann, Oliver Hofrichter, Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

{lhamann|hofrichter|gogolla}@informatik.uni-bremen.de

Abstract. This paper presents an approach that enables users to mon-
itor and verify the behavior of an application running on a virtual ma-
chine (like the Java virtual machine) at an abstract model level. Models
for object-oriented implementations are often used as a foundation for
formal verification approaches. Our work allows the developer to verify
whether a model corresponds to a concrete implementation by validat-
ing assumptions about model structure and behavior. In previous work,
we focused on (a) the validation of static model properties by monitor-
ing invariants and (b) basic dynamic properties by specifying pre- and
postconditions of an operation. In this paper, we extend our work in or-
der to verify and validate advanced dynamic properties, i. e., properties
of sequences of operation calls. This is achieved by integrating support
for monitoring UML protocol state machines into our basic validation
engine.

1 Introduction

When one faithfully follows the Model-Driven Development (MDD) paradigm,
abstract representations of all artifacts, in particular of code, are needed in form
of models. Model-like descriptions can be used as central parts in the software
development process and are considered to be a promising paradigm for effective
software production. Models can be employed in all development phases and for
different purposes. Consequently and despite all justified criticism, the Unified
Modeling Language (UML) is playing a pivotal role as a modeling language.
Nearly every software engineer understands at least the UML core concepts,
while other more specialized modeling languages first need to be explained from
the scratch. This central role of the UML can also be observed by looking for
transformation approaches from UML to more formal and specialized languages
or tools such as the Alloy [24] language, SAT [25] or model checkers [19].

When using UMLmodels for abstractions of concrete software systems, model
quality is important. It has to be ensured that the developed models correspond
to the implementation to be abstracted from. Otherwise formal quality assurance
techniques would verify some disconnected abstract model and not the concrete
implementation. This is especially true, if the implementation is not fully gen-
erated from the model and finalized by a developer. This is currently the most
common case.

�

�

�

�
141

In [17] simulation of the model is proposed in the overall process of model
checking. The process is shown in Fig. 1 which is adapted from [17, p. 8]. Our
contribution and extension to the process is shown in the parts having a grey
background.

Fig. 1. Monitoring in the context of Model Checking (c.f. [17])

In our approach, we do not only simulate the model. We combine the system
model with the implementation (the system) in order to be able to detect mis-
matches between the implementation, the system model and the property spec-
ification. We do so while executing the actual implementation. As systems we
consider applications running inside a virtual machine, such as Java application
running inside the Java Virtual Machine (JVM). Our system model will be de-
fined as a UML class model extended by UML protocol state machines [20] and
augmented with property specifications resp. assumptions formulated as OCL
(Object Constraint Language) [21] state invariants and OCL operation pre- and
postconditions. Since the elements of this system model need to be identified by
our monitor, the system model needs to be aligned to the implementation. We
call such a model a platform aligned model (PAM). We connect these compo-
nents with a monitor in order to verify assumptions about the components at
runtime. Our monitor can be started at any time that the concrete system, i. e.,
the Java application, is running. As an extension to our work presented in [15]
and [16], we show how a state machine extension of the employed validation en-
gine can be used without modifying our monitor component. Here, we show how
UML protocol state machines (psms, singular psm) can be used to validate the
correct sequence of operation calls, i. e., a protocol definition for a given class.
We will further discuss some threads to validity which have to be considered
when using a monitor approach like ours.

The rest of this paper is structured as follows. In Section 2 we put forward
the basic ideas of our proposal for analyzing applications running in the Java
virtual machine. Section 3 gives an overview on the integration of protocol state
machines into our validation engine USE [11]. Section 4 explains the employment

�

�

�

�
142

of protocol state machines in combination with our monitoring approach by
means of a middle-sized case study applied in our tool USE. Section 5 discusses
related work. The paper ends with a conclusion and ideas for future work.

2 Monitoring

In this section we explain our monitoring approach. A more detailed description
can be found in [15]. The main idea of our approach is to monitor a running
implementation of a system and to extract a more abstract representation of the
current system state into a validation engine. We call this abstract representation
a snapshot of the system under monitoring (SUM), because in general it is a small
subset of the artifacts of the running system. Since we want to focus only on
central parts of the implementation we leave out unimportant parts. The basis
for this snapshot is a model which is more abstract than the implementation,
e. g., by defining associations which are not present in programming languages,
but specific enough to be able to find relevant parts inside the SUM, e. g., by
specifying concrete package names. Because of this alignment between the most
specific platform model, e. g., byte code and platform independent models we
call this model level platform aligned model (PAM).

(Extractor)

USE

Monitor

VM

Implementation

Assumptions Model (PAM)

Instance

Snapshot

Fig. 2. Overview of the monitoring approach

As shown in Fig. 2 the PAM is enriched with assumptions about the running
system. These assumptions are verified during the monitoring process by our
validation engine USE. In order to be able to verify assumptions specified in a
model USE needs an instance (i. e., objects and links) of it. In the monitoring
context we call this instance a snapshot. Figure 2 shows this relation at the bot-
tom. The monitor ensures, that the instance required by USE is a valid snapshot
of the monitored instance inside the virtual machine. The virtual machine itself
as shown at the top of the figure uses the implementation and an instance, i. e.,
the (heap) memory, stack, stack pointer, etc. of a running program. The PAM
can be defined in several ways. For example, it can be step-wise refined when
developing a system or it can be extracted by using reengineering techniques
as shown in [16]. Furthermore, it can be generated when using model driven
development.

�

�

�

�
143

Using modern virtual machine implementations like the JVM or the CLR of
Microsoft .NET allows our monitor to use a rich pool of debugging and profiling
interfaces. For example, the Java Platform Debugger Architecture[22] enables
third party tools to easily access applications running inside a local or remote
virtual machine. An important part of this interface is the possibility to retrieve
information about instances of a specific type. This is used as an entry point for
our monitoring approach described next.

First, the validation engine needs to be configured with the corresponding
PAM and the SUM needs to be started. Next, the monitor needs to be connected
to the running system. If the startup of a SUM is important, the user can also
start the application with specific parameters, so that it suspends directly when
started and is resumed only if the monitor signals this to the application. When
the monitor is connected after the application is already running, the monitor
creates a snapshot of the current system state. The following descriptions of the
steps to create this abstract snapshot are explained in more detail in [15].

1. For all classes in the PAM which can be matched to an already loaded class in
the VM, all existing instances of them are mapped to newly created instances
of the platform aligned model.

2. For each created instance in the previous step the values of the attributes
defined in the PAM are read. This step includes a mapping for values of
primitive types to built-in OCL types, e. g., String and Real (c. f. [28]). At-
tribute values with a type of a class defined in the PAM need to be mapped
using the mapping created in the first step.

3. For all associations in the PAM, links are created between corresponding
instances.

4. By using the current stack-trace of the monitored system the current oper-
ation call sequence relevant to the monitored elements can be rebuilt. For
this, the deepest operation call to a monitored operation (an operation spec-
ified in the PAM) on the call stack acts as an entry point for the following
monitored operations on the call stack.

After such a snapshot has been constructed, the monitor needs to register
to several events that occur in the VM in order to keep the snapshot synchro-
nized with the running system and to allow a dynamic monitoring of the SUM.
Currently our monitor makes use of the following breakpoint and watchpoint
locations:

1. At class initialization to allow the registration of all other breakpoints. This
ensures, that classes which were not loaded while taking the snapshot are
also monitored.

2. At constructors of monitored classes. This allows the monitor to keep track
of newly created instances and therefore enables an incremental construction
of the system state in contrast to always construct a new snapshot of the
running system when needed.

3. At the start of a monitored operation. This enables the monitor to validate
preconditions at runtime and to follow the call sequence.

�

�

�

�
144

4. Just before the exit of an operation call. This enables the monitor to validate
postconditions. The break must occur after the result of the operation is
calculated.

5. When a monitored attribute is modified. A monitored attribute might be an
attribute or association end inside of the PAM.

Monitoring an application in the presented way in combination with our val-
idation engine USE allows a user to monitor the validity of UML constraints
like multiplicities or composition properties, invaraints, pre- and postconditions
without the need to modify the source code of the application or to use special
bytecode injection mechanism. In addition, without changing the monitor com-
ponent, improvements made to the validation engine can be used. For example
after adding support for protocol state machines to USE, as described next, only
the PAMs of the monitored systems needed to be extended to allow a more de-
tailed monitoring of call sequences. Without the use of protocol state machines,
only a very small part of a call sequence could be validated in one step, because
OCL only allows access to the state just before an operation was called. Us-
ing protocol state machines it is possible to validate operation call sequences of
arbitrary length.

3 Protocol State Machines in USE

The UML specifies two kinds of state machines: behavioral and protocol state
machines [20]. As the name suggest, the former kind is used to specify the behav-
ior of UML elements including actions attached to transitions to specify changes
inside a system while taking a transition. The latter one specifies the allowed call
sequences of a protocol. In USE we added support for protocol state machines
in the context of a class. Following the general idea of USE, we start with a
small well-defined subset of the many features for UML state machines. In the
following we describe this implemented subset and its semantics.

First of all, all state machines in USE are flat, i. e., they have only one region
and no composite states. They have only a single initial and a single end state.
All other states are proper states and no pseudo states, which means that there
are no forks or joins. States can have a state invariant which needs to be valid if
a given psm instance is in the corresponding state. The context of a psm instance
and also for the state invariant (accessed by using self in an OCL expression) is
the instance of the context class of the psm which owns the psm instance. For the
initial state only an unnamed transition or a transition with the event create
is allowed as an outgoing transition. An initial state has no incoming transitions
while an end state has no outgoing transitions. The transitions between states
specify the valid call sequences of operations for the context class. As described
in the UML the protocol state transitions between states consist of three parts:

1. the referred operation (op),
2. an optional guard (G), i. e., a precondition and
3. a postcondition (PC) which is also optional.

�

�

�

�
145

In an state machine diagram the transitions are labeled using the following

schema:
[G] op()/ [PC]−−−−−−−−−→. A state can have multiple outgoing transitions that refer

to the same operation. To be still able to choose a single transition the guard,
post condition and state invariant of the target state for all transitions referring
to the same operations are considered by USE. In some situation the usage
of all this information still leads to multiple possible transitions. When USE
encounters such a situation it reports an error to the user.

When an operation on an object whose class defines at least one psm is
called, the selection of the transition to be taken for each psm is done in the
following way. First, it is checked if the operation call needs to be ignored, i. e.,
no transition must be taken. This is the case if

– none of the transitions inside the protocol state machine covers the called
operation (see [20, p. 545]) or

– the psm is not in a stable state, i. e., a transition is currently active.

If the operation cannot be ignored it is checked

– if at least one outgoing transition of the current state is enabled, i. e., the
state has one or more outgoing transitions which refer to the called operation
while having a valid precondition.

All enabled transitions are saved as possible transitions which could be taken
after the operation call is completed. When the called operation finishes its
execution, for all possible transitions the postcondition and the state invariant
of the target state are validated. If only one transition fulfills the postcondition
and the state invariant the transition is taken. Otherwise an error is reported
which also explains if either no transition could be taken or multiple transitions
would be possible.

3.1 State determination

One benefit of our monitoring approach is the possibility to connect to a mon-
itored system at any time. While this allows a SUM to run without overhead
until the monitoring starts, this ability leads to some issues to be considered.
One major problem is the lack of information of previously called operations, so
that all protocol state machine instances are in an undefined state. To allow a
correct monitoring of psms it is important to determine the correct states of all
psm instances. To be able to determine the states after an initial snapshot has
been taken we use state invariants. These state invariants need to be well-defined
because otherwise the snapshot would be in an unsound state. For example, all
psm instances should be in a given state after the state determination check. In
this context well-defined means that the state invariants should be independent
of each other, i. e., at any state only one state invariant evaluates to true for
every instance referring to the psm.

When using complex state invariants the task of verifying the independence
of state invariants can be accomplished by using automatic model finding tech-
niques. These are similar to the one presented in [13] which allows a user to

�

�

�

�
146

show the independence of invariants. In [13] the independence of invariants is
slightly different form the independence of state invariants we want to achieve.
In [13] an invariant is defined as independent if it cannot be removed without
loss of information meaning, there exists at least one system state where this
single invariant is violated. For the independence of state invariants required for
the state determination, we consider state invariants as independent if for all
system states only a single state invariant is fulfilled.

Formally, given the set of all possible system states σ(M) of a Model M and
the invariants i1, . . . , in the independence of an invariant ik is defined in [13] as

∃σ ∈ σ(M)(σ(i1) ∧ · · · ∧ σ(ik−1) ∧ σ(ik+1) ∧ · · · ∧ σ(in) ∧ ¬σ(ik))

whereas in this work the independence of state invariants i1, . . . , in for a single
psm is defined as

∀σ ∈ σ(M)(σ(ik)⇒ ¬σ(i1) ∧ · · · ∧ ¬σ(ik−1) ∧ ¬σ(ik+1) ∧ · · · ∧ ¬σ(in))

However, the same validation techniques apply, but as the universal quantifica-
tion indicates, a full verification requires a complete search through all possible
system states, which implies the well-known state space explosion problem and
is therefore not a trivial task and we restrict ourselves to checking occurring test
cases.

4 Case Study

In this section we apply our extensions to the monitoring approach to the public
available, mid-sized application we used in [15]. The case study will demonstrate
the advantages of our approach.

– Assumptions about a running implementation can be validated without the
need to modify the source code.

– The state of an implementation can be examined in an abstract way to
discover inconsistencies or design decisions.

– Using protocol state machines the correct usage of the defined protocol of a
class can be validated.

– Concrete usage scenarios can be visualized by means of a sequence diagram.

This will be exemplified by the following case study using an open source com-
puter game called Free Colonization1 or in short FreeCol. It is a modern Java-
based implementation of the 1994 published game Sid Meier’s Colonization2.
The game itself is a round-based strategy game with the goal to colonize Amer-
ica and finally to achieve independence. The game takes place on a matrix-like
map which consists of tiles with different types, e. g., water, mountain, forest.

1 Project website: http://www.freecol.org
2 The corresponding Wikipedia article gives detailed information about the game play.
http://en.wikipedia.org/wiki/Sid_Meier\%27s_Colonization

�

�

�

�
147

Different units operate on this map and can explore unknown territory, build
colonies, trade goods, etc. Figure 3 shows an example state transition of a run-
ning game. One unit (i. e., a pioneer) is placed in the center of the shown map
on the left side and is surrounded by several different tile types. The right map
shows the game state after the pioneer has build a new colony called Jamestown.
The sketched state machines displayed below the two maps exemplify our new
contribution. We want to be able to monitor the transition of the pioneer state
from one state before she or he built a colony to another state after she or he
joined the colony (note, that this is a single step in the game).

Fig. 3. Sample game situation in FreeCol

To be able to monitor this transition, we extended the PAM presented in
[15] in a step-wise manner. First we added the enumeration UnitState to our
PAM and defined a new attribute state:UnitState to the class Unit as shown
in Fig. 4. The presence of this attribute simplified the definition of the state
invariants as we will see later.

For our purpose the class diagram shown in Fig. 4 with an overall of 14
classes is detailed enough. When compared to the 551 classes which are present
in version 0.9.2 of FreeCol we used for the monitoring this illustrates that the
PAM for an application only needs to represent a small subset of the moni-
tored implementation. Because we focus on state transitions we do not show any
constraints defined for the PAM. Examples can also be found in [15].

Except for one case, we modeled attributes of a Java class which use a class
present in the PAM as associations. The exception is the attribute Tile::type
which reduces the number of links in an object diagram, but still allows to di-
rectly see that tiles differ in their type. For a first definition of a psm which
monitors the entrance and the exit of a colony for a unit, we only need to
consider the class Unit and its operations joinColony(aColony:Colony) and
putOutsideColony() in combination with the attribute state:UnitState. These
elements are present in the concrete implementation of the class Unit and can
directly be monitored. The enumeration UnitState defines nine different enu-
meration literals which express different states of a unit. Since we are only inter-

�

�

�

�
148

Fig. 4. Platform aligned model

ested in the state IN COLONY and do not consider the other states we can specify
a protocol machine with two states. One for the state IN COLONY and one for
all other game states. Our assumption about the protocol of the class Unit is
that an operation call to putOutsideColony() is only valid after the operation
joinColony() has been called on the same object sometime before.

To be able to set the correct state of a monitored instance we need to spec-
ify state invariants for these two states. As stated earlier, the presence of the
attribute state for the class Unit simplifies this task, because we only need
to check the value of the attribute to determine the current state after a snap-
shot has been taken. Therefore, the state invariant for the psm state inColony

is self.state = UnitState::IN_COLONY and the other state invariant only
changes the comparison from equal to not equal. Given the previously expressed
assumptions, this leads to a psm which has two states and two transitions leaving
out the transition for the creation. This psm is shown in Fig. 5. A Unit object
starts in the state active after it is created and enters the state inColony

when the operation joinColony(colony:Colony) was executed. If the opera-
tion putOutsideColony() is called the state changes back to active. Any other
operation call to a unit instance is ignored as described in the UML specification
for operation not mentioned in a psm. This means, the psm only allows a state
change when one of the two operations is called.

Figure 6 shows the relevant part of the snapshot after connecting to the
running game when it is in the game state shown on the left of Fig. 3 as an object
diagram. The overall snapshot consists of nearly 6000 objects and 4000 links
which makes it impossible to manually extract an informative object diagram.
USE allows a user to select objects which should be shown or hidden in an object
diagram by using several features. Two useful ones are the selection by an OCL
expression and the selection of related objects by path length (see [12] for more

�

�

�

�
149

Fig. 5. Protocol state machine for the class Unit

information). The shown part of the snapshot is divided into two parts, which are
important while validating the assumptions about the state transitions. Because
we monitored a single user game on a single machine the instance of the game
contains both, the data used by the game server and the client. By looking at
the instances Tile3466 on the server side and Tile1583 on the client side one
can see that the server part has more information about the game than the client
part. Both instances represent the same tile on a map, because their positions
are equal, but the client instance does not know of what type the tile is. To
be able to determine if an object belongs to the server or client side we also
monitored the class game with the association ViewOwner. If a game object is
not linked to a player by this association it is the server game. The equivalent
OCL expression (self.owner.ownedView->isEmpty()) is used as a body for
the operation isServerObject() of the class Unit. This operation is marked as
a query operation and is therefore ignored by the monitor. The object diagram
further shows the owned units of the player named ‘ada’ and the object for the
tile on which we want to build a colony (Tile4228 resp. Tile225).

After taking this initial snapshot, the states of the protocol state machines
for the existing unit objects need to be determined. This can be done by a single
command in USE which also informs the user about objects for which the psm
instance could not be set to a single state. This happens, if no state invariant
or multiple state invariants evaluate to true w. r. t. the given snapshot. Because
this state determination is a common task after a snapshot has been taken,
the monitor plugin can automatically execute the state determination after the
construction of a snapshot. After the states have been determined the states
of the relevant units of the snapshot are as expected (active). After resuming
the game and building the new colony Jamestown we get a valid sequence of
operation calls which can be seen in the monitored sequence diagram shown in
Fig. 7. We observed, that the execution of the operation joinColony() indeed
leads to the attribute value IN COLONY of the attribute Unit::state, because
no violation of a transition is reported.

To get further information about our assumptions we can instruct USE to
validate the current state invariants of all psm instances. After the validation
of our current snapshot USE reports an error for the psm instance of the client
object of the unit which has built the colony. This is due to the fact that the
operation buildColony is only called on the server object and only the new
values are transfered to the client object. Therefore, USE did not execute a

�

�

�

�
150

Fig. 6. Parts of the snapshot taken at runtime

transition from the source state active to the target state inColony for the
client unit but monitored the change of the attribute state to IN COLONY. Now,
the new attribute value violates the state invariant of the state active.

Because the separation of the client and server objects seems to be a valid de-
sign decision we can ignore these violations and continue the monitoring process
to retrieve further information about the validity of our assumptions. To test the
defined protocol we use another unit and let it join and exit the colony. While
executing this scenario another issue arises because entering an existing colony,
i. e., a unit only enters a colony without building it before, does not lead to an
operation call to joinColony(). Instead, only setLocation() is called which is
not handled by the psm and therefore does not execute a transition keeping the
psm instance in the state active, but the attribute value of the runtime instance
is set to IN COLONY which violates the state invariant of the state active.

Using this information a user of the monitor needs to decide where the error is
located: in the implementation or in the PAM. For our example, we assume that
the PAM needs to be modified although it seems to be an unsound usage of the
Unit class. This assumption is backed by the fact, that the developers of FreeCol
refactored this part of the game in newer releases. If we want to adapt our psm to
the last discovered facts, we need to handle the client server separation and the
additional operation calls. The modified psm is shown in Fig. 8. The additional
operation setLocation(newLocation:Location) leads to two new transitions
in the psm. Both transitions have as their source state the state active but
differ in their target and guard. If the new location is of type ColonyTile, which
represents special tiles related to a colony, the new state after the execution is

�

�

�

�
151

Fig. 7. Sequence diagram of the monitored execution

inColony otherwise the state does not change. Interestingly, when a Unit object
leaves a colony this leads always to a call to putOutsideColony().

However, the problem how to differentiate the server and client objects still
exists. When taking a snapshot all state invariants should be independent to
allow a valid determination of the current state. If we would introduce a new
state for client objects with the state invariant not self.isServerObject()

and add a new conjunction self.isServerObject() to the two existing state
invariants the state determination would work, because each instance can be
mapped to a single state. Either it is a client object or it is a server object
and the two server states are independent because of the different comparison
operators. The problem with this approach is the dynamic monitoring after
existing instances are read. A new instance would be in the state active which
is now only defined for a server object due to the new conjunction. If a new client
instance is created this would violate the state invariant. Further, the new client
instance would never change the state because none of the monitored operations
is called for client objects as described before. Using an implies condition would

�

�

�

�
152

Fig. 8. Extended PSM for the class Unit

violate the independence of the two server states because for client objects both
invariants would be fulfilled.

A simple solution would be to add a transition which covers the operation
that specifies the new instance to be a client instance. However, FreeCol does
this inside of the constructor which is represented as the create transition and
the UML explicitly forbids multiple outgoing transitions for the initial state and
also no post condition on it. If it was allowed the distinction could be done using
postconditions on two different create transitions. Another solution for this is
to use a change event on a transition. By specifying the change expression not

self.isServerObject() a psm instance can move to a specify client state. A
drawback of this solution is the relative high calculation cost of such change
events. Because a change expression can generally access every object or prop-
erty of the current snapshot all currently valid transitions with change events
would need to be checked after every change in the snapshot. The costs can
be reduced by using special analysis algorithms which calculate the change ex-
pressions that need to be checked after a change as presented in [7]. Currently,
such a mechanism is not present in USE, but could be integrated in the future.
For now, we need to ignore state violations of the client objects. Note, that the
validation of the correct transitions for the server objects still works.

When using this modified psm all scenarios described above lead to the ex-
pected changes of the psm states. Beside the manual execution of observed game
situations the presence of computer controlled players in the game can be used
as a test driver. As with the manual play all analyzed operations are also used
by computer controlled players. We used this to strengthen our PAM.

5 Related Work

In our previous work we focused on the runtime verification of static properties
(like multiplicity constraints and invariants) of an application running on a vir-
tual machine [15]. Different approaches for checking information extracted from
a running system for certain properties exist. [10] and [2] make a comparison be-
tween these approaches. According to [10] most constraint validation techniques
for Java are based on the design-by-contract-principle introduced by the Eiffel
programming language. In contrast to our approach, the approaches compared
to each other in [2] require a full access to the source code of the system under

�

�

�

�
153

monitoring. The Java Modeling Language (JML) is appropriate both for formal
verification and runtime assertion checking [18].

In this paper, we extended our validation engine by support for UML protocol
state machines in order to be able to verify and validate dynamic sequences of
operation calls. Our approach applying protocol state machines differentiates
from approaches which are based on the usage of regular expressions. Such an
approach is presented in [5]. It enables programmers to define parameterized
runtime monitors. For this purpose a temporal ordering over breakpoints, which
are used for debugging purposes by programmers, is introduced. The temporal
ordering is defined by regular expressions. Another approach uses tracematches
for runtime verification [6]. As the previous approaches, this one is also based
on regular expressions.

A UML protocol state machine as used in our approach is different from
regular expressions through the information of transitions: protocol state ma-
chines provide the possibility to specify an initial condition (guard) under which
an operation can be called. This possibility makes protocol state machines more
powerful than regular expressions. The authors of [23] present an approach which
applies UML protocol state machines to produce class contracts. For this purpose
they define the structure and the semantics of UML protocol state machines.

With ‘ocl2j’ a tool exists which allows to enforce OCL constraints in Java
through translating OCL expressions into Java code [9]. An analog approach is
presented e. g. in [14]. From the authors runtime verification approach the tool
‘INVCOP’ has arised. The Dresden OCL toolkit makes available two distinctive
approaches for OCL-based runtime verification [8]. While the ‘generative’ ap-
proach is based on the generation of AspectJ code, the ‘interpretative’ approach
integrates the Dresden OCL2 Interpreter into a runtime environment in order
to interpret OCL constraints.

In [4] the monitoring of state machines is focused while the usage of OCL is
relinguished. With the ‘aspect oriented approach’, the ‘listener approach’ and the
‘debugging approach’, the authors describe three possibilities to extract runtime
models.

To synchronize a running system with a runtime model the authors of [26] use
‘synchronizers’. Thus the system can be changed immediately when the model
has been updated and the model can be immediately adapted if the system
progresses.

Java PathFinder (JPF) is a runtime verification and testing environment for
Java developed at NASA Ames Research Center [27]. JPF is based upon a special
Java Virtual Machine which is called from a model checking engine included in
JPF. The authors of [1] present JPF-SE, a symbolic execution extension to
JPF. The framework Polyglot has been integrated with the Java PathFinder [3].
Polyglot enables the execution of multiple variants of statecharts including UML
statecharts and the verification of their models against properties. It uses an
intermediate representation which is translated from a range of modeling tools.
The intermediate representation is used to generate Java code representing the
structure of a statechart which is analyzed by applying JPF.

�

�

�

�
154

6 Conclusion

We have presented an extension to our approach for monitoring assumed prop-
erties in form of OCL constraints for a running Java application. Based on this
approach, which takes advantage of the powerful features of the Java virtual
machine, we have added support for protocol state machines to the underlying
validation engine. This allows us to specify assumptions not only formulated as
class invariants or operation contracts, but also as state invariants. By using a
protocol state machine, more knowledge about the history of an object is avail-
able because of the recording of states. We have shown that the definition of
state invariants is important for our approach in order to determine the correct
states of an object when connecting to a running system without the information
about previous operation calls. We explained our work by a non-trivial example
of an open-source game.

As future work we want to extend the support for protocol state machines
within our validation engine. One major improvement would be the support for
change events. To be applicable in practice, an efficient implementation is needed
which considers only the transitions with an effective change event. A more de-
tailed study of similar approaches, for example, based on aspect-orientation or
approaches considering the Java Modeling Language (JML) as a target language,
might introduce alternative features and our monitor could be improved in var-
ious directions. For example, one could consider abstract model breakpoints,
which are configurable by the user or by extended information about elements
that are only present within the running system. Last, but not least, comprehen-
sive case studies must give more feedback about the applicability of our work.

References

1. Anand, S., Pasareanu, C.S., Visser, W.: JPF-SE: A Symbolic Execution Extension
to Java PathFinder. In: Grumberg, O., Huth, M. (eds.) TACAS. LNCS, vol. 4424,
pp. 134–138. Springer (2007)

2. Avila, C., Sarcar, A., Cheon, Y., Yeep, C.: Runtime Constraint Checking Ap-
proaches for OCL, A Critical Comparison. In: SEKE (2010)

3. Balasubramanian, D., Pasareanu, C.S., Whalen, M.W., Karsai, G., Lowry, M.R.:
Polyglot: modeling and analysis for multiple Statechart formalisms. In: Dwyer,
M.B., Tip, F. (eds.) ISSTA. pp. 45–55. ACM (2011)

4. Balz, M., Striewe, M., Goedicke, M.: Monitoring Model Specifications in Program
Code Patterns. In: Proc. of the 5th Int. WS Models@run.time. pp. 60–71 (2010)

5. Bodden, E.: Stateful breakpoints: a practical approach to defining parameterized
runtime monitors. ESEC/FSE ’11, ACM, New York, NY, USA (2011)

6. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative Run-
time Verification with Tracematches. J. Log. Comput. 20(3), 707–723 (2010)

7. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. Journal of Systems and Software 82(9), 1459 – 1478 (2009)

8. Demuth, B., Wilke, C.: Model and object verification by using Dresden OCL. In:
Proceedings of the Russian-German Workshop Innovation Information Technolo-
gies: Theory and Practice. pp. 687–690. Ufa, Russia (2009)

�

�

�

�
155

9. Dzidek, W.J., Briand, L.C., Labiche, Y.: Lessons Learned from Developing a Dy-
namic OCL Constraint Enforcement Tool for Java. In: Satellite Events at the
MoDELS 2005 Conference. LNCS, vol. 3844, pp. 10–19. Springer, Berlin (2006)

10. Froihofer, L., Glos, G., Osrael, J., Goeschka, K.M.: Overview and Evaluation of
Constraint Validation Approaches in Java. In: Proc. of ICSE ’07. pp. 313–322.
IEEE Computer Society, Washington, DC, USA (2007)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

12. Gogolla, M., Hamann, L., Xu, J., Zhang, J.: Exploring (Meta-)Model Snapshots
by Combining Visual and Textual Techniques. In: Proc. 10th Int. Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT’2011) (2011)

13. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, Independence and Conse-
quences in UML and OCL Models. In: Dubois, C. (ed.) Proc. 3rd Int. Conf. Test
and Proof (TAP’2009). pp. 90–104. Springer, Berlin, LNCS 5668 (2009)

14. Gopinathan, M., Rajamani, S.K.: Runtime monitoring of object invariants with
guarantee. In: Runtime Verification, 8th International Workshop, RV 2008. LNCS,
vol. 5289, pp. 158–172. Springer, Berlin (2008)

15. Hamann, L., Gogolla, M., Kuhlmann, M.: OCL-Based Runtime Monitoring of JVM
Hosted Applications. In: Proc. WS OCL and Textual Modelling. ECEASST (2011)

16. Hamann, L., Vidács, L., Gogolla, M., Kuhlmann, M.: Abstract Runtime Monitoring
with USE. In: Proc. CSMR 2012. pp. 549–552 (2012)

17. Katoen, J.P., Baier, C.: Principles of Model Checking. MIT Press (2008)
18. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of

JML accommodates both runtime assertion checking and formal verification. Sci.
Comput. Program. 55(1-3), 185–208 (2005)

19. Moffett, Y., Beaulieu, A., Dingel, J.: Verifying UML-RT Protocol Conformance
Using Model Checking. In: Whittle, J., Clark, T., Kühne, T. (eds.) MoDELS.
LNCS, vol. 6981, pp. 410–424. Springer (2011)

20. UML Superstructure 2.2. Object Management Group (OMG) (Feb 2009), http:
//www.omg.org/spec/UML/2.2/Superstructure/PDF/

21. Object Constraint Language 2.2. Object Management Group (OMG) (Feb 2010),
http://www.omg.org/spec/OCL/2.2/

22. Oracle: JavaTMPlatform Debugger Architecture - Structure Overview (2011),
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/

architecture.html
23. Porres, I., Rauf, I.: From Nondeterministic UML Protocol Statemachines to Class

Contracts. In: Int. Conf. on Software Testing, Verification, and Validation. pp.
107–116. IEEE Computer Society, Los Alamitos, CA, USA (2010)

24. Shah, S., Anastasakis, K., Bordbar, B.: From UML to Alloy and Back Again. In:
Ghosh, S. (ed.) Models in Software Engineering, LNCS, vol. 6002, pp. 158–171.
Springer Berlin / Heidelberg (2010)

25. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP. LNCS,
vol. 6706, pp. 152–170. Springer (2011)

26. Song, H., Huang, G., Chauvel, F., Sun, Y.: Applying MDE Tools at Runtime:
Experiments upon Runtime Models. In: Models@run.time. pp. 25–36 (2010)

27. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Pro-
grams. Autom. Softw. Eng. 10(2), 203–232 (2003)

28. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley (2003), 2nd Edition

�

�

�

�
156

Publication A22C

On Integrating Structure and
Behavior Modeling with OCL

Authors: Lars Hamann, Oliver Hofrichter, and Martin Gogolla

Proc. 15th International Conference Model Driven Engineering Languages and Systems
(MoDELS’2012)

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-642-33666-9_16

�

�

�

�
157

On Integrating
Structure and Behavior Modeling with OCL

Lars Hamann, Oliver Hofrichter, and Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

{lhamann,hofrichter,gogolla}@informatik.uni-bremen.de

http://www.db.informatik.uni-bremen.de

Abstract. Precise modeling with UML and OCL traditionally focuses
on structural model features like class invariants. OCL also allows the
developer to handle behavioral aspects in form of operation pre- and
postconditions. However, behavioral UML models like statecharts have
rarely been integrated into UML and OCL modeling tools. This pa-
per discusses an approach that combines precise structure and behav-
ior modeling: Class diagrams together with class invariants restrict the
model structure and protocol state machines constrain the model behav-
ior. Protocol state machines can take advantage of OCL in form of OCL
state invariants and OCL guards and postconditions for state transitions.
Protocol state machines can cover complete object lifecycles in contrast
to operation pre- and postconditions which only affect single operation
calls. The paper reports on the chosen UML language features and their
implementation in a UML and OCL validation and verification tool.

Keywords: Structure modeling, Behavior modeling, UML, OCL, Pro-
tocol state machine, State invariant, Guard, Transition postcondition

1 Introduction

Executable UML [23] is designed to specify a system at a high level of abstrac-
tion, independent from specific programming languages and decisions about the
implementation. Executable UML follows the ideas of the Shlaer-Mellor method-
ology, which separated concerns about the structure [34] and the behavior [33] of
a system to be developed. It is defined as a profile of the Unified Modeling Lan-
guage (UML) [26]. Executable UML models are testable, and can be compiled
into less abstract programming languages to target a specific implementation.
Executable UML supports model-driven development (MDD) through specifi-
cation of platform-independent models. The approach proposed in this paper
follows these ideas.

When using Executable UML, a system is decomposed into multiple mod-
eling sub-languages: A class diagram defines the system structure in terms of
the classes and associations; a state machine defines the states, events, and state

�

�

�

�
159

transitions for a class instance; an action language defines the actions or opera-
tions that perform processing on model elements; the system behavior is deter-
mined by the state machines and the operations realized in the action language.

Our tool USE (UML-based Specification Environment) supports the devel-
opment of class diagrams by validating OCL class invariants and operation pre-
and postconditions [7, 8, 19]. Recently, the tool was extended with an action lan-
guage [3] which is based on the Object Constraint Language (OCL) [27, 36]. The
present contribution explains our support for state machines in order to complete
the description of behavior. Within our tool, we integrate class diagram valida-
tion with UML protocol machine validation on the basis of OCL state invariants
and OCL guards and postconditions for transitions. In contrast to Executable
UML, our approach extends OCL in order to express actions and operation
implementations, but does not need to define a separate action language.

The need for integrating structure and behavior modeling in the OCL context
arose from monitoring running Java applications in terms of UML class diagrams
and OCL constraints and our state machine approach. In [12] we describe the
monitoring of a non-trivial Java application with constraints. Other applications
of our state machine implementation include middle-sized example models.

The rest of this paper is organized as follows. Section 2 introduces with a
running example the main state machine features which we employ on the type
level (at design time). Section 3 puts the state machine features which we handle
in the context of UML and our implementation. In Sect. 4, model validation of
state machines in connection with class diagrams is discussed on the instance
level (at runtime). Section 5 connects our contribution with related work, before
we conclude in Sect. 6.

2 Structure and Behavior at Design Time by Example

Our running example describes a digital support system for a library. The struc-
tural system requirements are shown in form of a UML class diagram in the top of
Fig. 1. The system supports the administration of users, book copies, and books
represented by respective classes and appropriate attributes. Two associations
can establish object connections: the association Borrows between the classes
User and Copy is meant to express that a User object has currently borrowed a
Copy object, and the association BelongsTo between the classes Copy and Book

expresses that a Copy object is an exemplar of a particular Book object. Further
properties are specified by restricting multiplicities, role names (in the example,
class names with lower first letter) and invariants (e.g., uniqueness requirements
for the attributes name, signature, and title, as well as a range restriction
for the attribute year). All classes possess operations for initializing objects.
The association Borrows can be manipulated from both participating classes
through the operations borrow and return. In order to support easy recogni-
tion of operation names, the first letter of the respective class has been added
to these names (borrowU, returnU, borrowC, returnC). The return operations
also modify the attribute numReturns.

�

�

�

�
160

Fig. 1. Example System Requirements for Structure and Behavior (Design Time)

�

�

�

�
161

The behavioral system requirements are shown in the bottom of Fig. 1 as
UML protocol state machines possessing states and transitions. For every class,
the valid object lifecycles are depicted, which restrict the order of creation events
and operation calls. As a central means to make the model precise, OCL is used
in various places: States are described by state names and state invariants in
form of boolean OCL expressions; transitions include (a) the triggering create
or call event, (b) a guard in form of a boolean OCL expression asserting that
the transition only takes places when the guard holds, and (c) a postcondition
in form of a boolean OCL expression asserting that the transition only takes
place in the case that after the transition the postcondition holds. Traditionally,
the notion guard is used in connection with state machines; however, because of
the symmetric behavior of the guard and postcondition, the guard may also be
called transition precondition.

The state invariants may optionally be shown in the protocol state machine
diagrams, however, we have suppressed them here. For example for the class
Book, the two proper, non-pseudo states possess the following state invariants.

postnatal [title.isUndefined and authSeq->isUndefined and

year.isUndefined and copy->isEmpty()]

blocked [title.isDefined and authSeq->isDefined and year.isDefined]

In state postnatal (after create), all attributes must be undefined and the
book must not be linked to any copy. In state blocked (after a call to the initial-
ization operation init), all attributes are defined, but note that no statement
about the linked copies is made, because there may or may not be copies for that
book in the library (either copy->notEmpty() or copy->isEmpty() may hold).

The transitions are either labeled with the create event which brings the
respective object into life or with an event which calls an operation of the object.
The protocol state machine for the class Book asserts a finite lifecycle demanding
that after object creation only the operation init may be called once. The
state machine for class Copy guarantees that after creation and initialization,
the borrowC and returnC operations switch between the states available and
borrowed. The state machine for the class User is the only one employing OCL
for transition guards and postconditions. But please be aware of the fact that all
states are accompanied by OCL state invariants. Both operations, borrowU and
returnU in class User are allowed in state living, however, OCL restrictions
via transition guards and postconditions apply. The guard (precondition) for
borrowU guarantees that a user cannot borrow two copies of the same book,
for fairness reasons. And the guard asserts that only available, not borrowed
copies can be handled with the operation borrowU. The postcondition of borrowU
checks that the copy, which was available before the transition took place, is
now unavailable. Conversely, the guard for returnU asserts that the copy to be
returned belongs to the current user and is indeed a copy in state borrowed.
The postcondition checks that the parameter copy is indeed available after
the returnU call. Note that these simple example restrictions do not guarantee
unproblematic behavior in all possible implementations. The state invariants,
guards, and postconditions have been chosen for demonstration purposes.

�

�

�

�
162

An implementation on the modeling level of the operations can be realized in
our language SOIL (Simple OCL-based Imperative Language) [3]. Such an imple-
mentation is indispensable for animating and validating the model. SOIL allows
the developer to make system state manipulations with attribute assignments,
object and link creation and destruction, and control flow using conditionals,
loops, and operation calls. As an example, we show implementations for the
operations of the classes User and Copy.

class User -- pre- and postconditions not shown

operations

init(aName:String,anAddress:String)

begin self.name := aName;

self.address := anAddress; end

borrowU(aCopy:Copy)

begin aCopy.borrowC(self); end

returnU(aCopy:Copy)

begin aCopy.returnC(); end

end

class Copy

operations

init(aSignature:String, aBook:Book)

begin self.signature := aSignature; self.numReturns := 0;

insert (self, aBook) into BelongsTo; end

borrowC(aUser:User)

begin insert(aUser, self) into Borrows; end

returnC()

begin delete(self.user, self) from Borrows;

self.numReturns := self.numReturns+1; end

end

These operation implementations allow the developer to build up simple or
complex test states and scenarios with call sequences easily. Consequently, model
properties like consistency or the reachability of protocol states can be checked
with scenarios constructed with SOIL statements. The SOIL command sequence
in the upper right side of the forthcoming Fig. 3 is an example for such a test
scenario. The validity of model properties formulated in OCL as class invariants,
operation pre- and postconditions, state invariants, and transition pre- and post-
conditions is checked against these scenarios and by this also against the SOIL
implementation given for the operations. When writing down a particular test
scenario, the developer will have expectations on particular (class or state) in-
variants and (operation and transition) pre- and postconditions. These informal
expectations are formally checked by the tool USE, and the validation results
give detailed feedback to the developer about the possible discrepancy between

�

�

�

�
163

her expectations and the actual facts: What you write down doesn’t mean exactly
what you think it means. And when it does, it doesn’t have the consequences you
expected. [15, p. XIII]

3 Behavior Modeling with Protocol State Machines

3.1 Protocol State Machines in UML

The UML defines two different kinds of state machines: Behavioral state ma-
chines and protocol state machines [26, p. 535]. As the name suggests, the former
can model the behavior of a model element by specifying actions which are linked
to state transitions, whereas the latter focus on the specification of correct usage
protocols, leaving out concrete actions associated with transitions [26, p. 547].
These protocols can be specified for any model element of type Classifier [26, p.
544]. The metamodel for state machines provided by the UML allows to model
highly structured state machines composed of, for example, composite states,
multiple regions and substate machines. At the current stage, our approach sup-
ports only a well-defined subset of these features leaving out mainly concepts
to structure state machines, but allowing nearly the same expressiveness. Issues
arising from the high structuring possibilities can for example be found in [21].
Next we describe the protocol state machine language as implemented in our
work. Starting with the syntactical and semantical rules defined in the UML, we
continue by showing the current features supported in our approach and how
they are interpreted at runtime.

As other languages for (finite) state machines the core part of the state ma-
chines defined by the UML are states and transitions. The UML distinguishes
between concrete and pseudo-states [26, p. 536, 549, 559]. A state machine in-
stance cannot have a pseudo-state as its current state after a transition has been
completed. Pseudo-states are only traversed during the execution of a transition.
One example of such pseudo-states are choice points for a transition. Both kinds
of states are derived from the metatype Vertex for which directed transitions are
defined. Behavioral state machines consist of transitions which need a source and
target vertex. In addition, transitions can specify a trigger (e.g., a call event), a
guard and an effect, i. e., a behavior [26, p. 536].

As we will see, several parts of state machines can be enriched with additional
boolean OCL expressions in order to add additional constraints. States can be
enriched with a OCL state invariant which characterizes the state in more detail.
The state invariant for a given state must be true, if a state machine is in this
state. An OCL guard of a transition must be true to be able to execute this
transition. For example, this allows to separate two outgoing transitions from
one state with the same trigger. In protocol state machines it is also allowed
to specify a boolean OCL expression which describes the system state after a
protocol transition has been taken. This expression is called a postcondition of
the protocol transition.

The initial pseudo-state together with a single outgoing transition marks a
concrete state as the default state of the state machine. The transition from

�

�

�

�
164

the initial state to the default state can only define a behavior and no trigger
or guard [26, p. 550]. Furthermore, the initial state, as all other pseudo-states,
cannot specify a state invariant, whereas concrete states can.

Transitions inside a protocol state machine are defined by the metaclass
ProtocolTransition [26, p. 546]. This class extends the transition class of the
behavioral state machine and makes some extensions and restrictions. The main
restriction for protocol transitions is that they cannot specify an effect, because
they specify the usage of a protocol of a class and not its behavior. An effect of
a transition is instead specified in a declarative way by means of a postcondition
which cannot be specified for ordinary transitions. The trigger of a protocol
transition is usually an operation call, but it can also be an event.

When a protocol state machine defines at least one transition, which refers
to an operation, a call to this operation is only valid, if there exists a currently
valid transition for this call event. If an operation of the owning class is not
referred by a protocol state machine, a call to this operation is valid for any
state of the state machine [26, p. 549]. The specification of events other than call
events inside a protocol state machine defines requirements for the environment
using the owning class, stating that the event can only be sent to an instance
of the owning class under the current conditions specified by the protocol state
machine [26, p. 549]. An additional constraint specified for a transition is usually
called a guard, but for protocol transitions the naming is aligned to the area of
operations, calling this constraint a precondition.

3.2 Supported Concepts for Behavior Validation

Our approach supports protocol state machines which allows to specify valid call
sequences for lifecycles of an instance. A protocol state machine is defined in the
context of a class. The concrete syntax of such definitions is shown below.

class A

attributes

...

operations

...

statemachines

psm ALife -- psm: Protocol State Machine

states

s_i:initial

s_k [state_invariant_k]

...

s_n:final

transitions

s_src -> { [pre_cond] call_event [post_cond] } s_trg

...

end

end

�

�

�

�
165

First, more than one state machine (in the following we use the term state
machine to refer to protocol state machines) can be specified for a class. Beside
a name, each state machine defines two sections: states and transitions. The
state section contains the definition of the pseudo- and the concrete states. A
state machine must define exactly one pseudo-state of type initial acting as the
entry point of the state machine. As already mentioned, the initial state cannot
define any information except a name for the state. Concrete states are defined
by their names and an optional state invariant expressed as a boolean OCL
expression in the context of the owning class. State invariants will be discussed
in detail during the description of the runtime behavior of state machines. Beside
the concrete states and the initial pseudo-state, multiple final states can be
defined.

The transition section specifies the structure of valid call sequences to the
owning class. The textual syntax is aligned to the graphical representation
in the state machine diagrams. For transitions, the source (s src) and target
state (s trg) separated by an arrow (->) are mandatory. Except for the outgo-
ing transition from the initial state, a call event is also mandatory. These call
events refer to an operation of the owning class. The call event for the outgoing
transition of the initial state can either be left out or must be named create

because a newly created object in our approach is immediately initialized with
instances of all defined state machines for its class. The call event can be sur-
rounded by a pre- and postcondition given as a boolean OCL expression. Like
pre- and postconditions for operations they can access the context object (the
instance receiving the call event) and the parameter values of the call event. The
postcondition can additionally make use of the OCL @pre keyword to access the
values which were valid when the call event was triggered.

When a USE model containing state machines is loaded, static checks are
made. These include checking the uniqueness of state names inside a single state
machine and the well-formedness of transitions, i.e., checking that state names
and transitions do refer to existing states and operations.

3.3 Protocol State Machines at Runtime

To validate a specified model, our approach allows the developer to instantiate
it and observe its behavior. The instantiation can be done in several ways, e.g.,
by manually manipulating the system state using the graphical user interface or
shell commands or by specifying statements in SOIL [3]. If an object of a class is
created, which contains state machines1, it is linked to the corresponding state
machine instances. These state machine instances are initialized with the default
state, i.e., the state reached by the outgoing transition of the initial state, as their
current state.

If an operation is called on an object, all state machines, which specify a
transition referring to the operation call, are checked for enabled transitions. A

1 In the following we refer to objects of classes with defined state machines when using
the word object.

�

�

�

�
166

transition is called enabled, if it is an outgoing transition leaving the current state
of a considered state machine instance, if it refers to the called operation and if it
has a currently valid precondition [26, p. 584]. If at least one enabled transition
for each state machine under consideration exists, the operation call is valid.
The transition to take is determined after the operation has been executed. This
is done by evaluating for each previously enabled transition the postcondition
and the state invariant of the target state. For each considered state machine
instance there must be exactly one transition fulfilling both conditions. By us-
ing this mechanism, we (currently) disregard non-deterministic state machines
and executions which are however generally allowed in UML. Otherwise, the
operation execution is invalid. The concrete error situation is reported to the
user stating that either there exists no valid transition or multiple transitions
are currently valid. When a state machine instance is currently in an unstable
state, i.e., it is executing a transition, all nested operation call events need to be
ignored. Otherwise, a call to another operation on the same object by a called
operation could for example change the current state making the previously en-
abled transition invalid. The modeler can turn on a notification mechanism for
such situations.

The explained runtime behavior of state machines lead to valid call sequences
respecting state invariants, transition pre- and postconditions, if the state of an
object is only modified by operations specified by protocol state machines. How-
ever, as we described earlier, a protocol state machine can leave out operations,
making them callable at any time. Because these unconsidered operations could
also modify the state of an object, it is not guaranteed that a state invariant
stays valid while a state machine instance remains in a certain state. Therefore,
our approach is able to validate state invariants after any change to the system
state, e.g., attribute assignments or link creations. A violation of state invariants
is immediately reported to the user, who can then react to the error.

Another unique feature of our approach is the possibility to determine the
current state of the state machines by the specified state invariants [11]. For
this, the validation of transitions and state invariants can be suppressed. After a
system state is constructed without the validation of state machines, the user can
invoke the state determination command. The command tries to determine the
current state for each state machine instance by evaluating its state invariants.
If exactly one state invariant of a state machine instance evaluates to true, the
state of this instance is modified. This can, for example, be used, if a given
system state needs to be constructed without the execution of operations and
afterwards an operation call sequence has to be validated. An application of this
mechanism is the USE monitor [10, 12] which allows to connect to a running
Java application and to retrieve a snapshot of the current application state.
When connecting to the application, not all information about previously called
operations is available, and therefore the current states must be calculated to
obtain the valid state machine configuration.

�

�

�

�
167

Fig. 2. Example Scenario for Structure and Behavior (Runtime)

�

�

�

�
168

4 Structure and Behavior at Runtime by Example

This section will explain how to apply the proposed concepts for the example.
Whereas Fig. 1 pictures structure and behavior of the library system on a type
level (design time), Fig. 2 displays structure and behavior of one system test
scenario on the instance level (runtime). The object diagram in the lower right

Fig. 3. Sequence Diagram and SOIL Commands for Example Scenario

represents the objects, their attribute values and links after the SOIL command
sequence in the upper right part of Fig. 3 has been executed. In the left of Fig. 2,
the upper two state machine instances show the current protocol state for the
Copy objects dbs42 and dbs52, respectively. Also in the left, the lower two state

�

�

�

�
169

machine instances display the current protocol state for the User objects ada and
bob in dark grey. Please note, that the state of both Copy objects and the state of
both User objects are different. The state sequence which the Copy object dbs52
went through was postnatal, available, borrowed and again available. We
can conclude this from the executed operation sequence and from the attribute
value 1 for attribute numReturns. In the shown operation sequence, all OCL
restrictions have been checked and no violation occurs: all class invariants, state
invariants and transition pre- and postconditions have been evaluated to true.
Please note, that full OCL support in our approach means that we can relate
OCL queries concerning structure with behavioral descriptions, for example, the
OCL query in Fig. 2 checks relevant Copy properties and these can be compared
with the current protocol state and the value of the state invariants.

This scenario can be extended by further operation calls. For example, the
User object ada could try to borrow the Copy object dbs43. In this situation,
the guard for the borrowU call on the transition from living to living would
prevent the transition to take place: User ada has already borrowed another
copy of the Book object date. On the USE shell, a message will inform about
the violation and the fact that the transition should not and will not occur. The
following message will be shown.

!ada.borrowU(dbs43)

>> Error: No valid transition available in protocol state machine

>> ‘User::UserLife [current state: living]’ for operation call

>> User::ada.borrowU(dbs43) due to failing transition guard.

Analogous error messages would be displayed on the shell, if the transition
postcondition or the state invariant of the next state would be violated. Summa-
rizing we can say that taking a transition may be aborted due to four possible
reasons:

– a failing transition guard (precondition),
– a failing transition postcondition,
– a failing state invariant in the resulting state, and
– non-deterministic transitions, e.g., multiple transitions for the same trigger.

In Fig. 4, another example explains the usage of state invariants and the state
determination option. For a TrafficLight class with three boolean attributes
representing the red, yellow, and green bulbs, a protocol state machine allows
the traffic light to step through four phases, where each phase is represented by
a single state and a state invariant in form of an OCL expression characterizing
the signal in terms of the bulbs.2 The object diagram shows four test traffic
lights equipped with randomly determined attribute values for the bulbs, not all
representing valid signal configurations. The attribute values have been modified
not by operations, but with direct attribute assignments.

2 The phases are the phases used in Germany, whereas in other countries, e.g., in Italy,
the phases are different.

�

�

�

�
170

Fig. 4. Example for Usage of State Invariants and State Determination Option

In the log window at the bottom, the result of executing the state determina-
tion command is given. This command aims to bring the state machine instances
into the state corresponding to their state invariants, if possible. The command
can be issued through an entry in the ‘State’ menu. For two traffic lights (sth
and est), a valid state fitting one of the four state invariants could not be found;
the other state machine instances are moved into a state determined by a state
invariant. The displayed state machine instance in the middle belongs to the
TrafficLight object wst and shows that the attribute values (wst.red=true
and wst.ylw=true and wst.grn=false) fit to the OCL state invariant expres-
sion (self.red and self.ylw and not(self.grn)) belonging to the current
state redYlw shown in dark grey. As our approach supports OCL during all
development phases, the complete system state can be inspected with OCL ex-
pressions at any point in time. The OCL query expression in the upper right
retrieves all present traffic light objects which currently show both red and grn.
The state determination together with OCL querying allows to check positive
and negative test cases with respect to structure (objects and attributes) and
behavior (operations and state machines).

�

�

�

�
171

5 Related Work

Specifying behavior in OCL OCL not only allows for specifying structural
model features but also constraints on the behavior of objects by means
of pre- and postconditions. In order that pre- and postconditions can be
interpreted unambiguously, a detailed semantics of operation specifications is
needed. The approach in [14] addresses this. However, according to [16], pre-
and postconditions describe static aspects of the system, as they compare
states of a system, which are static entities. Therefore in [16, 17] the so-
called action clause is introduced to the Object Constraint Language and is
provided with a semantics.

Semantics of state machines In our approach we use UML protocol state
machines to constrain the model behavior. The structure and the semantics
of protocol state machines are discussed in [28]. The authors present an ap-
proach which applies protocol state machines to produce class contracts. The
semantics of behavioral state machines is discussed in [20]. The authors apply
the semantics for validity proofs of refinement transformations on behavior
state machines. A formal semantics for the integration of UML statecharts
into OCL, which makes it possible to formulate expressions over states in
UML statecharts is presented in [5]. However the authors refer to an older
UML version, whereby postconditions of protocol state machine transitions
are not handled. The dynamic semantics of state machines is discussed in [2].

Usage of state machines Different approaches for the usage of state machines
in the software testing context exist. Model-based testing (MBT) tools often
use UML state machines as a basis for automatic test case generation. The
approach in [38] makes it possible to automatically generate state machine
diagrams from use cases. This approach is also implemented in a tool and
evaluated in different case studies. The approach in [31] applies behavioral
state machines for modeling reactive systems and automatic generation of
test cases. Based on this, the input-output conformance of the systems is
tested. The presented test approach is implemented by the so-called TEA-
GER tool suite. In [37], the authors report on an industrial cooperation
for model-based testing applying UML state machines with a German rail
engineering company. Based on a given UML state machine this approach
makes it possible to automatically generate unit tests. The use of UML state
machines for requirements validation is described in [25]. The authors ap-
ply Formal Concept Analysis (FCA) in analyzing the association between
a set of test scenarios with a set of transitions specified in a UML state
machine model. The authors of [35] use protocol state machines in the field
of network security. They introduce Veritas, a tool which uses applications
network traces to automatically generate protocol state machines. The gen-
erated state machines are able to represent incomplete knowledge about a
protocol and are labeled as probabilistic protocol state machines (P-PSM).
K-statecharts are an extension of UML statecharts which allow the use of
knowledge-logic formulae in the statechart transition guard and are used for
runtime verification of system behavior [4].

�

�

�

�
172

Tools In [32] a tool set which supports static and dynamic validation of UML
models is presented. The tool mOdCL is based on Maude, an executable
formal specification language and is able to validate invariants and pre- and
postconditions during the execution of a system [29]. In contrast to our ap-
proach and like the tool set presented in [32], mOdCL leaves out handling
and runtime validation of protocol state machines. In [29], the authors report
on the experiences with the development of a tool for dynamic enforcement
of OCL constraints. Applying aspect-oriented programming (AOP), ocl2j
automatically instruments OCL constraints in Java programs. In [24] a pro-
totype of a tool being able to check the conformance of components within
the UML extension for real-time (UML-RT) to the respective protocol state
machines, which specify the legal communication between components, is
described. Rhapsody is a verification environment for UML models. The
tool implements an own semantics of statecharts, as discussed in [13]. The
tool TABU allows for verification of reactive systems behavior [9]. For this
purpose the behavior is modeled by state machines and automatically trans-
formed into the used formal specification SMV (Symbolic Model Verifier).
Additionally a number of CASE tools suchs as [6] allow for modeling stat-
echarts, but are not able to validate state machines at runtime. In contrast
to our approach, [1] and [22] don’t provide full OCL support. Epsilon [18]
is a platform which allows for model validation. However handling for state
machines is not integrated.

Our contribution profits from these related works. It is however the only one
which combines state machine validation with full OCL support for structural
modeling and validation.

6 Conclusion

We have made a proposal for integrated structure and behavior modeling and
validation. Full OCL support for (class and state) invariants and (operation and
transition) pre- and postconditions guarantees that the underlying graphical
models become precise. We combine descriptive requirements with an OCL-like
imperative language. The models are validated and verified by test scenarios.

We plan to extend the supported UML state machine features, in particular,
we will care for structuring mechanism like nested states. A number of improve-
ments on the user interface can be realized, for example, an optional indication of
protocol state machine states on object lifelines in sequence diagrams. Features
of the behavior models like state reachability and other dynamic properties like
liveness could be supported in a (semi-)automatic way. Consistency, redundancy
and other relationships between the structural and behavioral model features
should be investigated. Methodological questions about the usage of (class and
state) invariants, and (operation and transition) pre- and postconditions must
be discussed. Last but not least, larger case studies must give further feedback
about the applicability and efficiency of the approach.

�

�

�

�
173

References

1. Abstract Solutions Ltd: Executable UML (xUML). Internet, http://www.kc.com/
XUML/

2. Börger, E., Cavarra, A., Riccobene, E.: Modeling the Dynamics of UML State
Machines. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) Abstract
State Machines. LNCS, vol. 1912, pp. 223–241. Springer (2000)

3. Büttner, F., Gogolla, M.: Modular Embedding of the Object Constraint Language
into a Programming Language. In: Simao, A., Morgan, C. (eds.) Proc. 14th Brazil-
ian Symposium on Formal Methods (SBMF’2011). pp. 124–139. Springer, Berlin,
LNCS 7021 (2011)

4. Drusinsky, D., tak Shing, M.: Using UML Statecharts with Knowledge Logic
Guards. In: Schürr and Selic [30], pp. 586–590

5. Flake, S., Müller, W.: Formal semantics of static and temporal state-oriented OCL
constraints. Software and System Modeling 2(3), 164–186 (2003)

6. Geiger, L., Zündorf, A.: Statechart Modeling with Fujaba. Electr. Notes Theor.
Comput. Sci. 127(1), 37–49 (2005)

7. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Journal on Software and System Modeling
4(4), 386–398 (2005)

8. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

9. Gutiérrez, M.E.B., Barrio-Solórzano, M., Quintero, C.E.C., de la Fuente, P.: UML
Automatic Verification Tool with Formal Methods. Electr. Notes Theor. Comput.
Sci. 127(4), 3–16 (2005)

10. Hamann, L., Gogolla, M., Kuhlmann, M.: OCL-Based Runtime Monitoring of JVM
Hosted Applications. In: Cabot, J., Clariso, R., Gogolla, M., Wolff, B. (eds.) Proc.
Workshop OCL and Textual Modelling (OCL’2011). ECEASST, Electronic Com-
munications, journal.ub.tu-berlin.de/eceasst/issue/view/56 (2011)

11. Hamann, L., Hofrichter, O., Gogolla, M.: OCL-Based Runtime Monitoring of Ap-
plications with Protocol State Machines. In: Vallecillo, A., Tolvanen, J.P., Kindler,
E., Strrle, H., Kolovos, D. (eds.) Modelling Foundations and Applications. LNCS,
vol. 7349, pp. 384–399. Springer Berlin / Heidelberg (2012)

12. Hamann, L., Vidács, L., Gogolla, M., Kuhlmann, M.: Abstract Runtime Monitoring
with USE. In: Ferenc, R., Mens, T., Cleve, A. (eds.) Proc. CSMR’2012 (2012)

13. Harel, D., Kugler, H.: The Rhapsody Semantics of Statecharts (or, On the Exe-
cutable Core of the UML) - Preliminary Version. In: Ehrig, H., Damm, W., Desel,
J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) SoftSpez Final
Report. LNCS, vol. 3147, pp. 325–354. Springer (2004)

14. Hennicker, R., Knapp, A., Baumeister, H.: Semantics of OCL Operation Specifi-
cations. Electr. Notes Theor. Comput. Sci. 102, 111–132 (2004)

15. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

16. Kleppe, A., Warmer, J.: Extending OCL to include Actions. In: Evans, A., Kent,
S., Selic, B. (eds.) UML. LNCS, vol. 1939, pp. 440–450. Springer (2000)

17. Kleppe, A., Warmer, J.: The Semantics of the OCL Action Clause. In: Clark, T.,
Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263, pp. 213–227.
Springer (2002)

�

�

�

�
174

18. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book. Internet, http://www.

eclipse.org/epsilon/doc/book/

19. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) Proc.
49th Int. Conf. Objects, Models, Components, and Patterns (TOOLS’2011). pp.
289–305. Springer, Berlin, LNCS 6705 (2011)

20. Lano, K., Clark, D.: Semantics and Refinement of Behavior State Machines. In:
Cordeiro, J., Filipe, J. (eds.) ICEIS (3-1). pp. 42–49 (2008)

21. Lano, K., Clark, D.: Axiomatic Semantics of State Machines, pp. 179–203. John
Wiley & Sons, Inc. (2009)

22. Lano, K., Kolahdouz-Rahimi, S.: UML RSDS Model Transformation and Model-
Driven Development Tools. Internet, http://www.dcs.kcl.ac.uk/staff/kcl/

uml2web/

23. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley (2002)

24. Moffett, Y., Beaulieu, A., Dingel, J.: Verifying UML-RT Protocol Conformance
Using Model Checking. In: Whittle, J., Clark, T., Kühne, T. (eds.) MoDELS.
LNCS, vol. 6981, pp. 410–424. Springer (2011)

25. Ng, P.: A Concept Lattice Approach for Requirements Validation with UML State
Machine Model. In: SERA. pp. 393–400. IEEE Computer Society (2007)

26. OMG (ed.): UML Superstructure 2.4.1. Object Management Group (OMG) (Aug
2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

27. OMG (ed.): Object Constraint Language 2.3.1. Object Management Group (OMG)
(Jan 2012), http://www.omg.org/spec/OCL/2.3.1/

28. Porres, I., Rauf, I.: From Nondeterministic UML Protocol Statemachines to Class
Contracts. In: ICST. pp. 107–116. IEEE Computer Society (2010)

29. Roldán, M., Durán, F.: Dynamic Validation of OCL Constraints with mOdCL.
ECEASST 44 (2011)

30. Schürr, A., Selic, B. (eds.): Model Driven Engineering Languages and Systems,
12th International Conference, MODELS 2009, Denver, CO, USA, October 4-9,
2009. Proceedings, LNCS, vol. 5795. Springer (2009)

31. Seifert, D.: Conformance Testing Based on UML State Machines. In: Liu, S.,
Maibaum, T.S.E., Araki, K. (eds.) ICFEM. LNCS, vol. 5256, pp. 45–65. Springer
(2008)

32. Shen, W., Compton, K.J., Huggins, J.: A UML Validation Toolset Based on Ab-
stract State Machines. In: ASE. pp. 315–318. IEEE Computer Society (2001)

33. Shlaer, S., Mellor, S.J.: Object Lifecycles: Modeling the World in States. Yourdon
Press, EngleWood Cliffs, NJ (1992)

34. Shlaer, S., Mellor, S.J.: Object-Oriented Systems Analysis: Modelling the World
in Data. Yourdon Press, EngleWood Cliffs, NJ (1992)

35. Wang, Y., Zhang, Z., Yao, D.D., Qu, B., Guo, L.: Inferring Protocol State Machine
from Network Traces: A Probabilistic Approach. In: Lopez, J., Tsudik, G. (eds.)
ACNS. LNCS, vol. 6715, pp. 1–18 (2011)

36. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Object Technology Series, Addison-Wesley, Reading/MA (2003)

37. Weißleder, S.: Influencing Factors in Model-Based Testing with UML State Ma-
chines: Report on an Industrial Cooperation. In: Schürr and Selic [30], pp. 211–225

38. Yue, T., Ali, S., Briand, L.C.: Automated Transition from Use Cases to UML State
Machines to Support State-Based Testing. In: France, R.B., Küster, J.M., Bordbar,
B., Paige, R.F. (eds.) ECMFA. LNCS, vol. 6698, pp. 115–131. Springer (2011)

�

�

�

�
175

Publication A24C

Abstract Runtime Monitoring
with USE

Authors: Lars Hamann, Laszlo Vidacs, Martin Gogolla, and Mirco Kuhlmann

Proc. European Conference Software Maintenance and Reengineering (CSMR’2012)

The final publication is available at IEEE via
http://dx.doi.org/10.1109/CSMR.2012.73

�

�

�

�
177

Abstract Runtime Monitoring with USE
Lars Hamann

University of Bremen
Germany

lhamann@informatik.uni-bremen.de

László Vidács
University of Szeged

Hungary
lac@inf.u-szeged.hu

Martin Gogolla
University of Bremen

Germany
gogolla@informatik.uni-bremen.de

Mirco Kuhlmann
University of Bremen

Germany
mk@informatik.uni-bremen.de

Abstract—We present a tool that permits developers to monitor
and verify assumptions at an abstract level about an application
running on a virtual machine. On the implementation level, a
so-called platform aligned model (PAM) described in the UML
(Unified Modeling Language) and enriched by OCL (Object
Constraint Language) requirements is used to formalize these
assumptions. Our solution allows a developer to concentrate on
verifying core parts of an implementation while ignoring major
parts of peripheral technical details. In order to easily detect a
PAM which characterizes the central requirements, we propose
a semi-automatic approach. First, a complete program model is
generated by analyzing the source code. Afterwards, this model
is reduced by the user to central classes and associations. This
reduced model is enriched by the assumptions about the expected
behavior of the system. The monitor connects to the running
system at a particular point in time and builds up an abstract
snapshot, i.e., an instance of the PAM, which corresponds to
the current state. When the application is further executed this
snapshot is synchronized by listening to changes in the running
system. During monitoring the stated assumptions are validated
and possible violations are reported to the user.

I. INTRODUCTION

Formal models are playing an important role in several
areas of software engineering. For example in model checking
a formal model of a system has to be specified to verify
properties of a system. This formal model needs to be a valid
abstraction of the concrete system to be able to exclude errors
which are introduced by the modeling task. In this paper we
present a tool-chain which is able to simulate an abstract
model by executing and monitoring its related implementation.
The model is automatically built from the source code of an
implementation. To be able to focus on central parts of the
application we present filtering techniques to reduce the overall
size of the system model. This reduced model is enriched by
the user with system assumptions which are formulated as
OCL [1] invariants, pre- and postconditions. The last model is
called a platform aligned model (PAM). If the monitor detects
a violation of a formulated assumption at runtime the user is
informed. She can now explore the monitored system in an
abstract way to identify the cause of the violation.

Several approaches on runtime verification exist. A detailed
comparison of runtime verification approaches using OCL can
be found in [2]. None of them uses the events provided by a
virtual machine to react on changes in the monitored system.
A runtime monitoring approach using other formal languages
is for example JavaMOP [3].

Extractor

USE

Monitor

VM

Implementation

Assumptions Model (PAM)

Instance

Snapshot

Fig. 1. Tools and artifacts

II. MONITORING APPROACH IN USE

The tools and artifacts used in our approach are shown
in Fig. 1. The artifacts are shown as solid rectangles. The
dashed rectangles are the tools and cover the artifacts which
are required by them.

A central part of our monitoring process is the UML and
OCL tool USE [4] placed at the bottom of the figure. It
uses a model and an instance of such a model to validate
constraints included in the model. In the context of our
monitoring approach the model instance is called a snapshot.
In the upper part of the figure a virtual machine (VM) is
shown, which executes an implementation. The runtime data
of the application (heap space, stack frames, etc.) is labeled
as the ‘instance’ of the implementation. The required parts
of an instance are read by the monitor and transformed into
a snapshot, i. e., an instance of the model provided to USE.
This model is generated by examining the source code of
the implementation and reducing it to central aspects of the
system. The central aspects depend on the assumptions a user
wants to check. Therefore, the generation task includes several
steps. Some of them can be done automatically while others
need user interaction. The result of this extraction process is
a model which concentrates on properties of the system by
ignoring irrelevant parts. After the extraction step the model is
enriched with assumptions that should be checked at runtime.

A. USE (UML-Based Specification Environment)

The main task for USE originally was to support the design
of systems in an early stage of development. A developer
can specify a model of a system with a subset of UML
and extend is with constraints formulated in OCL (Object
Constraint Language, c. f., [1]). The formulated constraints
can be validated by creating system states also called object

�

�

�

�
179

diagrams and examining the evaluation result of the constraints
against the specified system states. These system states can be
built manually as scenarios to validate if the specified model
behaves as expected. This manual checking is similar to unit
tests on the source level. Further, formal verifications can
be done to a certain degree by using a built-in system state
generator [5]. The most simple verification is to check if an
instance of a model exists, i. e., if the model is consistent. To
verify this, a user can search within predefined bounds for
a valid system state. If such a state is found, the model is
consistent which means no constraint contradiction occurs.

B. USE Monitor

The runtime monitor in USE [6] is realized as a plugin.
It currently supports the monitoring of applications running
inside a Java virtual machine (JVM). The monitor requires
a so-called platform aligned model (PAM) which specifies
central aspects of a system to monitor. It is called platform
aligned, because information about the implementation is
needed within the model, e. g., package names or attribute
names for association ends. The monitor can be attached to
a running system at any time. After it is connected it takes
a snapshot of the running system and maps instances inside
the virtual machine to instances of classes of the PAM. The
snapshot only contains instances of modeled classes, attributes
and associations. Therefore, a snapshot can be seen as a subset
of the central data of the running system. After this initial
snapshot has been taken a user can examine static aspects of
the system by checking structural constraints, e. g., specified
multiplicities or invariants. Dynamic validation can be done by
resuming the system which is monitored. After the application
has been resumed by the monitor, the monitor reacts on
several events coming from the virtual machine to keep track
of changes and to be able to synchronize the snapshot with
the running instance. When monitored operations (operations
specified in the PAM) are called inside the running system, the
monitor pauses the running system and validates the specified
preconditions for the operation. If a precondition fails the user
is notified and she can react on this violation by examining the
failed precondition and the current system state. Analogously
to normal testing, she has to decide whether the specified
constraint is erroneous or a feature of the implementation. If
no violation is encountered the execution is continued until
the operation is returning or other monitored operations are
called. When the operation is returning, the monitor pauses
the execution again and checks the specified postconditions
of the operation. At this point, a central benefit of reusing
USE as an execution environment for models gets visible. USE
records the system state before an operation was called which
allows the validation of postconditions including the usage of
the OCL-keyword @pre. In our previously published work [6]
the monitor was controlled by simple shell commands inside of
the USE shell. The approach was extended to a more intuitive
user interface (see Fig. 4). This also allows finer controlled
messages to the user and an elegant way to integrate model
breakpoints into the monitor in the future.

Fig. 2. Parts of a running FreeCol game

Fig. 3. PAM for FreeColonization and two assumptions

C. Sample monitoring process

To be able to compare the results of the semi-automatic
PAM extraction process to a hand written PAM we reuse the
example shown in [6]. In the example we build a PAM for the
open source computer game Free Colonization. We concen-
trate on monitoring the execution of one central functionality
of the game: the founding of colonies. The example game
situation is shown in Fig. 2. The left part is the state before
the founding of a colony, whereas the right part shows the state
after founding the colony Jamestown. A PAM for the game
with assumptions about the behavior formulated as pre- and
postconditions is shown in Fig. 3. In addition to the pre- and
postconditions introduced to the model, also a query operation
getNeighbours() was added to the PAM to be able to
reuse this expression. The presented preconditions in Fig. 3
state, that an operation call to buildColony is only valid, if
the unit has moves left and there are no surrounding colonies.
The screenshot of the USE system presented in Fig. 4 shows
the result of attaching the monitor to FreeCol when the game
is in the left state of Fig. 2 and monitoring the execution of
the founding of Jamestown which results in the right state of
Fig. 2. Parts of this state are shown as an object diagram in
USE on the right upper side of the screenshot. The execution
flow is shown in the center of the screenshot. Please note, we
used a more detailed PAM including additional operations for
the screenshot to make it more meaningful but we show only
a fragment in Fig. 3.

�

�

�

�
180

Fig. 4. System state presented in USE while monitoring

D. Support for PAM extraction

In our previous work the platform aligned model was
created manually by exploring the source code as shown
in Fig. 3. Although finding the appropriate part of a large
program remains a human task, it can be fairly supported by
reverse engineering techniques. The main problem with an
automatically extracted model is its size. Coping with huge
models at runtime is challenging: they cause severe perfor-
mance issues for modeling tools; and they hinder the visual
observation and program understanding of the developer.

We approximate the PAM model by a reverse engineered
class diagram. We extract the PAM of the whole application
from the source code and export it as a USE model. The
essential, important part of the model is achieved using further
filtering. Thus we employ filtering at two levels:
• pre-filtering - unnecessary details are filtered out during

the model building phase
• USE filtering - search/select the important part of the

model in USE
Figure 5 contains the overview of the tools used for auto-

matic extraction of PAM. Static analysis of source code is done
by the Columbus Java analyzer [7]. The obtained program
model is converted to a higher level, language independent

object-oriented model. The existing Columbus tool-chain is
extended with a new module, which computes the PAM and
exports it to a USE model.

USE model
Java program

model

Columbus
analyzer

Converter

Language
Independent
OO model

PAM

nt

.java .java .java .java …

ter

Exporter

Fig. 5. Tool architecture of the PAM Extractor

During PAM extraction we obtain facts from the source
code and convert them to a valid USE model. First, a base
class diagram is built consisting of classes, attributes, methods,
inheritance relationships and associations. Associations are
extracted as suggested by Kollmann et al. [8]. The final model
has to conform to several rules like source code traceability,

�

�

�

�
181

concise and consistent naming of elements and unique navi-
gability of associations. Source code elements at some points
break the well-formedness rules of USE models, e.g. when
an attribute is defined both in a base and in a descendant
class. To overcome these problems, the names in the model
are changed at several points - shortened or made unique
by appending unique identifiers to names. The source code
traceability of modified names is assured by name annotations
in the USE model. Pre-filtering currently consists of dropping
out attributes taking part in associations and filtering out Java
library classes and their references (attributes, methods with
library class parameters).

We validated our reverse engineering solution by extracting
the model of the FreeCol program. The extracted USE model
was filtered to be comparable to the model made previously
by hand. In the USE system there are several possibilities
to search classes and their neighbours; and to crop and hide
appropriate classes to get a reduced model showing essential
part of the application. A typical filtering step can be seen
in Fig. 6: the immediate neighbours of selected class Tile are
shown, while others are hidden.

Fig. 6. Examining neighbours of class Tile

Figure 7 shows the automatically extracted model after
filtering in USE. The main difference compared to Fig. 3 lies in
the discovered associations. Settlement and Tile are associated
in both directions, but there is also an additional association
from the direction of Tile pointing to the owning settlement.
Similar observations can be made with Unit and Location as
well. Furthermore, type : TileType is an attribute of class Tile
in the manual model, while it is generated as an association
according to the rules of automatic model extraction.

Finally, using the generated model we successfully re-
produced the same condition checking procedure as done
previously on manually the created models.

III. CONCLUSIONS

We have presented a tool-chain that allows developers to
monitor a Java application in form of a platform aligned
model (PAM) enriched by OCL requirements. With an exam-
ple we have shown that the tool-chain is capable of handling
non-trivial applications with several hundred classes. As future
work, larger case studies have to be carried out. In order to

Fig. 7. Extracted USE model of the Freecol example

find key classes and to support the PAM discovery, concept
location techniques could be applied. Furthermore, we think
of (what we would call) ‘model breakpoints’ which permit a
developer to force the application to pause at a certain point
in the model, not on a specified line in the code. Model
breakpoints may be employed in connection with particular
conditions. Another line of research would be to incorporate
traces in the approach so that certain operation call sequences
can be monitored. Last but not least we could check to what
extent the approach is applicable to other virtual machines like
CLR (Common Language Runtime) for .NET languages.

REFERENCES

[1] Object Constraint Language Specification Version 2.2, OMG -
Object Management Group, Feb. 2010. [Online]. Available: http:
//www.omg.org/spec/OCL/2.2

[2] C. Avila, A. Sarcar, Y. Cheon, and C. Yeep, “Runtime Constraint Check-
ing Approaches for OCL, A Critical Comparison,” in Proceedings of the
22nd International Conference on Software Engineering & Knowledge
Engineering (SEKE’2010). Knowledge Systems Institute Graduate
School, 2010, pp. 393–398.

[3] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Ros, u, “An Overview
of the MOP Runtime Verification Framework,” International Journal on
Software Techniques for Technology Transfer, 2011.

[4] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL,” Science of Computer
Programming, vol. 69, pp. 27–34, 2007.

[5] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence
and Consequences in UML and OCL Models,” in Proc. 3rd Int. Conf. Test
and Proof (TAP’2009), C. Dubois, Ed. Springer, Berlin, LNCS 5668,
2009, pp. 90–104.

[6] L. Hamann, M. Gogolla, and M. Kuhlmann, “OCL-Based Runtime
Monitoring of JVM Hosted Applications,” in Proc. Workshop OCL and
Textual Modelling (OCL’2011), J. Cabot, R. Clariso, M. Gogolla, and
B. Wolff, Eds., ECEASST. Electronic Communications, journal.ub.tu-
berlin.de/eceasst/issue/view/56, 2011.

[7] L. Schrettner, L. J. Fülöp, R. Ferenc, and T. Gyimóthy, “Visualization of
software architecture graphs of java systems: managing propagated low
level dependencies,” in Proceedings of the 8th International Conference
on Principles and Practice of Programming in Java, PPPJ 2010, Vienna,
Austria, 2010, pp. 148–157.

[8] R. Kollmann and M. Gogolla, “Application of the UML Associations and
Their Adornments in Design Recovery,” in Proc. 8th Working Conference
on Reverse Engineering (WCRE’2001), P. Aiken and E. Burd, Eds. IEEE,
Los Alamitos, 2001.

Acknowledgment: The work of László Vidács was supported by the DAAD.

�

�

�

�
182

