

Inducing Metaassociations and Induced Relationships
†

Xavier Burgués1, Xavier Franch1, Josep M. Ribó2

1Universitat Politècnica de Catalunya. J. Girona 1-3, Campus Nord. 08034 Barcelona, Spain.
2Universitat de Lleida. Jaume II 69. 25001 Lleida, Spain.

{diafebus, franch}@lsi.upc.edu

josepma@diei.udl.cat

Abstract. In the last years, UML has been tailored to be used as a domain-
specific modelling notation in several contexts. Extending UML with this
purpose entails several advantages: the integration of the domain in a standard
framework; its potential usage by the software engineering community; and the
existence of supporting tools. In previous work, we explored one particular
issue of heavyweight extensions, namely, the definition of inducing meta-
associations in metamodels as a way to induce the presence of specific relation-
ships in their instances. Those relationships were intended by the metamodel
specifier but not forced by the metamodel itself. However, our work was
restricted to the case of induced associations. This paper proposes an extension
to the general case in which inducing metaassociations may force the existence
of arbitrary relationships at M1. To attain this goal, we provide a general defini-
tion of inducing metaassociation that covers all the possible cases. After revisi-
ting induced associations, we show the inducement of the other relationship
types defined in UML: association classes, generalization and dependencies.

Keywords: UML, MOF, Metamodels.

1. Introduction

In the last years, we may find several contexts in which UML [1, 2] has been tailored
to be used as a domain-specific modeling notation. For instance, we may mention
extensions to model data warehouses [3], software processes [4], real-time issues [5],
etc. Extending the UML with this purpose entails several advantages: the integration
of the domain in a standard framework; its potential usage by the software
engineering community; and the existence of supporting tools.

Two different strategies may be adopted in order to extend UML:

─ Lightweight extensions, which create a UML profile with the UML standard
extension mechanisms provided in the profiles package (e.g., [6]).

─ Heavyweight extensions, which enlarge the UML metamodel, creating a new
metamodel specific for the target domain (e.g, [3, 4, 7]).

† This work has been partially supported by the Spanish project TIN2007-64753.

In this paper, we are interested in heavyweight extensions, that take place at the
M2 level of the MetaObject Facility (MOF) Specification [8], where the UML
metamodel is placed. Modifications to this M2 level impact on the form that UML
models, located at the M1 MOF level, may take (and transitively on the possible
model instances that conform to the M0 MOF level).

In [9], we explored one particular issue of heavyweight extensions, namely, the
lack of expressive power that most metamodeling approaches have for building M2
metamodels that force a specific association in their model instances (at level M1). To
overcome this limitation, we introduced the notions of inducing metaassociations and
induced associations. In short, induced associations are those associations in a UML
model whose existence is implied by a specific kind of metassociations (which are
tagged as "inducing") that have been included in a UML metamodel extension. In that
paper, we defined formally the notions of inducing metaassociation and induced
association, we analyzed how several other UML constructs (like adornments and
subsettings) were affected by these definitions, and we presented a method for
introducing induced associations in a UML model based on tagging the appropriate
metaassociations as inducing metaassociations. We explored the feasibility of the
proposal in a complex case study for building a generic quality model as an extension
of the UML metamodel (as proposed in [10]).

Once the concepts of induced associations and inducing metassociations were
defined, the next natural step is to induce other kinds of UML relationships that are
also needed in the process of UML metamodel extension. This need arose also in the
heavyweight metamodel extensions that we have built. In this paper, we tackle the
inducement of the other type of relationships defined in the UML metamodel [1, 2]:
association classes, generalization relationships and dependencies. To avoid working
in a case-by-case basis, we rephrase the notion of inducing metassociation in a way
that it may induce all these relationship types, as well as induced associations as
defined in [9], and eventually others that could arise in the future.

The rest of the paper is structured as follows. In Section 2, we revisit the problem
of induced associations as explored in [9], which provides the necessary background
to understand the rest of the paper. Then we present the general definition of inducing
associations in Section 3 and explore its application in Section 4. Section 5 deals with
the combination of induced elements and the presence of generalizations in models at
M1. We finish the paper in Section 6 with the conclusions and future work.

2. Background

To illustrate the problem, let’s consider the definition of a metamodel for quality
aspects of software as presented in [10]. Such a quality metamodel, located at M2, is
defined as a heavyweight extension of the UML metamodel and is responsible for
defining the generic concepts that come up in the definition of a quality model and the
relationships between these concepts. Each particular quality model will be defined as
an instance in M1 of the quality metamodel. For example, the quality model ISO-
9126 [11] could be defined as an instance of the quality metamodel.

Fig. 1. The intention (b, d) and a possible non-intended result (c, e) of the instantiation of a
metamodel for quality (a).

This quality metamodel contains, among others, the metaclasses Attribute and
Metric. Attribute represents the quality aspects that are to be measured by a specific
model. Metric represents the element used to measure an attribute. A metaassociation
measures between both metaclasses is defined in the metamodel. Also, we consider
the existence of two types of attributes, direct attributes whose value is computed
from direct observation of a software artefact, and indirect attributes, computed from
other attributes’ values. Fig. 1(a) presents this metamodel fragment.

Because of its semantics, the metaassociation measures is intended to be an
inducing metaassociation: when a model instance of this quality metamodel is defined
(thus, at level M1), for each pair of instances of Metric and Attribute that belong to
the extension of measures, an association should come up at M1. Fig. 1(b) shows two
instances of these two metaclasses for the ISO/IEC 9126 quality model,
ISOQualityFactor and ISOMetric, that belong to measures’ extension, and the
association between them. As a consequence, classes and relationships among them
(in particular, associations) defined in M1 are eventually instantiated by objects and
links between them when that model is instantiated (level M0). In Fig. 1(d), we show
how a specific instance of ISOMetric, named linesOfCode, can be used to measure a
specific instance of ISOQualityFactor, named timeToLoad.

A similar reasoning applies to the specialization relationship that comes up in the
metamodel. In particular, note in Fig. 1(d) that instances of DirectISOAttribute like
size may be linked to linesOfCode, due to the M1 induced inheritance relationship.

However, a careful analysis reveals that the metamodeller intentions are, in fact,
not really represented in the metamodel. The presence of the association at level M1
(which was meant by the metamodeller) is not implied by the semantics of the
metamodel and, hence, is left to the modeller skills. As a result of this limitation, the
M1 model may not convey all the information that was meant by the M2 metamodel
which it is an instance of, leading to incompleteness and inaccuracies. This situation
is shown in Fig. 1(c), and the effects on M0 are shown in Fig. 1(e), where no links
between the instances appear. Furthermore, even if the association was correctly

added, traceability is seriously damaged since no explicit link is established with the
metaassociation at M2. This is what may happen if the issue is not taken into account
or if, as is done in the Unified Process [12], stereotypes are attached to associations at
layer M1 with no connection with the metamodel at M2.

In [9] we addressed this limitation by providing a technical solution for the case of
inducing metaassociations. As shown in Fig. 2(a), metaassociations may be forced to
be inducing by attaching an appropriate OCL constraint that connects it with a new
class, declared as heir of the Association metaclass. As a consequence, now at M1
induced associations appear stereotyped with the metaclass name (Fig. 2(b)).
Therefore, instances at M0 may be connected again as intended (Fig. 2(c)).

Whilst Fig. 2 shows our solution to the case of inducing metaassociations as given
in [9], it also reveals the limitations of the approach: no other inducing metaelements
have been considered. Therefore, the specialization declared at level M2 that is also
intended to be inducing, is not covered by our solution, then it is not possible to force
M1 models to contain those needed inheritance relationships, being thus the non-
intended situation illustrated at Fig. 2(b) possible to occur. As a consequence, it may
not be possible to link instances of DirectISOAttribute with instances of ISOMetric
(i.e., to establish metrics for direct attributes) which of course was not intended by the
metamodeller. The same would happen for any other type of metamodel element
except metaassociations. The purpose of this paper is then to further refine the
proposal given in [9] for avoiding situations like this in Fig. 2(b, c).

Fig. 2. Declaring inducing metaassociations at M2 and the consequences in the lower levels.

3. Relationship-inducing Metaassociations

In this section, we generalize the idea of inducing metaassociation for induced
associations presented in [9] to allow inducing metassociations to induce all type of
relationships at M1. We call them relationship-inducing metaassociations.

Let EM be an extension of the UML metamodel (at layer M2) containing three
metaclasses MC1, MC2 and MR and a metaassociation M2A between MC1 and MC2.

In order to make the pair (M2A, MR) induce relationships (i.e., associations,
association classes, generalizations or dependencies) at layer M1, the next procedure
shall be followed (see Fig. 3):

a) Add to EM a generalization relationship from MR to one heir of the UML Relation-

ship metaclass: Association, AssociationClass, Generalization or Dependency.

– The instances of MR will constitute relationships induced by (M2A, MR).

– If MR is a subclass of the DirectedRelationship UML metaclass (i.e., MR is
Generalization or Dependency), M2A should be a unidirectional
metaassociation and the source and target of the induced directed relationship
are denoted by the navigability sense of M2A.

– (M2A, MR) constitutes a relationship-inducing metaassociation pair, where
“relationship” refers to the specific relationship type induced. For short, M2A
or MR can also be referred to as inducing metaassociation resp. relationship.

b) Add to EM a constraint attached to MR establishing that for all instances C1 of
MC1 and C2 of MC2 s.t. <C1, C2> is in M2A’s extension, there is an instance of
the relationship MR connecting C1 and C2 (and vice versa). The sense of the
connection in the case of DirectedRelationships is given by the navigability sense
of M2A.

c) Make MR subclass of InducedRelationship.

In order to generate a more structured metamodel, we have introduced a new
InducedRelationship metaclass that roots the hierarchy of M1-relationships that are
induced by M2 metaassociations. Hence, each subclass of InducedRelationship is also
an heir of the appropriate subclass of Relationship, according to its type. The
following constraint holds: “for each subclass MR of InducedRelationship there is a
metaassociation M such that all the M1-relationships which are instances of MR will
be induced by M”. This idea can be expressed by means of the OCL-helper
InducesRelationship(anyMA: Association) which is defined in the context of
InducedRelationship as shown in Fig. 4. It states the following:

(a) There will be an instance of the inducing relationship self binding each pair of
classes that are linked by the extension of the metaassociation anyMA. This is stated
by the part 1 in the case of directed relationships (the undirected case is similar to the
directed and not included here for reasons of space).

(b) All instances of self are meant to be relationships induced by the extension of
the metaassociation to which self is bound (anyMA). This is shown by the part 2 in the
case of directed relationships.

Notice that, since all kinds of relationships are heirs of the Relationship class in the
UML metamodel and the inducesRelationship() specification deals only with the
features of (Directed)Relationship (in the UML metamodel), this operation covers the
induction of any kind of such relationships (associations, association classes,
generalizations and dependencies) from inducing metaassociations. If, in the future,
some new relationship were added to the UML metamodel (or to a UML extension),
this new type of relationship could be handled in the same way than the others.

Fig. 3. Definition of relationship-inducing metaassociations

context InducedRelationship

def: inducesRelationship(anyMA: Association): Boolean =

 let MC1: Class = anyMA.memberEnd->at(1).class,

 MC2: Class = anyMA.memberEnd->at(2).class in

 self.oclIsKindOf(Relationship) and

 (MC1.allInstances()->forAll(c1 |

 MC2.allInstances()->forAll(c2 | c2.mc1 = c1

 implies if (anyMA.navigableOwnedEnd->size() = 2)

 inducesNonDirectedRelationship(anyMA)

 else inducesDirectedRelationship(anyMA) endif)))

context InducedRelationship

def: inducesDirectedRelationship(anyMA: Association): Boolean

 let TargetEnd: Class = anyMA.navigableOwnedEnd->at(1),

 SourceEnd: Class = if (anyMA.memberEnd->at(1) = TargetEnd)

 anyMA.memberEnd->at(2)

 else anyMA.memberEnd->at(1) in

 self.oclIsKindOf(DirectedRelationship)

 and -- PART 1

 TargetEnd.allInstances()->forAll(c1 |

 SourceEnd.allInstances()->forAll(c2 | c2.targetend = c1

 implies self.allInstances()->exists(r |

 r.target = c1 and r.source = c2)))

 and -- PART 2

 self.allInstances()->forAll(r |

 r.source->size() = 1 and r.target->size() = 1 and

 r.source->at(1).oclIsKindOf(SourceEnd) and

 r.target->at(1).oclIsKindOf(TargetEnd) and

 r.source->at(1).targetend = r.target->at(1))

Fig. 4. OCL representation of the inducesRelationship OCL-helper

4. Induced relationships

In this section we define four types of M1 induced UML relationships.

4.1 Induced associations

This is the case in which the relationship induced at level M1 by an M2-inducing
metaassociation is an association. In this case, MR is a subclass of the UML

Association metaclass. As opposed to [9] and explained in detail in the previous
section, now the heir of Association declares the inducement by calling the
inducesRelationship operation with the inducing metaassociation as parameter.

Sect. 1 presented an example of a situation requiring an inducing meta-association.
Fig. 5 shows the modelling of that inducing metaassociation together with the
corresponding induced associations following the definition proposed in Sect. 3.

Fig. 5. Inducing metaassociations and induced associations

4.2 Induced association classes

Another particular case of relationship-inducing metaassociation takes place when the
metaclass MR is, actually, a subclass of the UML AssociationClass metaclass (which,
in turn, is a subclass of Association). In this case, the pair (M2A, MR) induces
association classes at layer M1.

For induced association classes, the subclass MR of the UML metaclass
AssociationClass, usually comes up as a metaclass that modelizes a (meta-)domain
concept, while in the case of induced associations, MR usually models an association
between (meta-)domain concepts.

Induced association classes constitute a common need in metamodeling situations.
Consider, for instance, in the context of the quality metamodel, the metaclass
QualityModel (which has been defined as a subclass of AssociationClass). The
ontology proposed in [10] stated that quality models apply for a given software
domain (e.g., the domain of business applications, or the software categories
identified in a IT consulting company, …) and a given environment (e.g., public
administration, SME, …). In that paper, this situation was modelled in M1 with an
association class as shown in Fig. 6, where also some M0 instances are represented.

From the metamodelling perspective, this association class must be defined as
induced, because it does not show up from scratch but from some metamodel
concepts. Specifically, the quality metamodel includes the metaclasses Domain and
Environment, and also a metaclass QualityModel for the association class itself.
Finally, a metaassociation usedIn between Domain and Environment is introduced,
and to make it association-class-inducing, QualityModel is declared as heir of
AssociationClass with the usual constraint about inducement. As a result, the
metamodeller has established that there is a different quality model associated to each
specific (Environment, Domain) pair (see Fig. 6).

Fig. 6. Inducing metaassociations and induced association classes

4.3 Induced generalizations

This is the case in which the relationship induced at level M1 by an M2-inducing
metaassociation is a generalization. In this case, MR is a subclass of the UML
Generalization metaclass.

It is worth noting that Generalization is a subclass of the UML
DirectedRelationship, which defines a non-symmetrical relationship from a source
class to a target class. As it has been stated in the general definition, when a
metaassociation induces a DirectedRelationship, it should be a unidirectional
metaassociation directed from the metaclass whose instance acts as source (in
generalizations, subclass) to the metaclass whose instance acts as target (in
generalizations, superclass).

Although in our experience, induced generalizations are not as common as induced
associations or induced association classes, there still exist situations in which it is
interesting that the metamodel forces specific generalizations between the classes that
are meant to instantiate it. One of those typical situations occurs if various groups of
elements, each one belonging to a different family, are expected at M1. The meta-
modeller may want that the M1 instances of the metamodel make clear the separation
between the different families and hence, force several (induced) generalizations.

Fig. 7 shows an example coming from the quality metamodel already outlined in
Sect. 2. In this metamodel excerpt, three metaclasses come up which model the
notions of Attribute (an element whose quality has to be measured), DirectAttribute
(an attribute that can be measured directly) and IndirectAttribute (an attribute whose
measure is obtained from that of other attributes). The inheritance relationships at M2
come from the fact that both direct and indirect attributes are themselves attributes
and, hence, inherit its features. Obviously, this pair of generalization relationships
does not imply any generalization relationship among their instances. With the
generalization-inducing metaassociation familyOf, the metamodeller is stating that
different families of attributes (instances of Attribute) may come up at M1. Each
family will be composed of a group of specific attribute classes (instances either of

DirectAttribute or IndirectAttribute). The classes that model direct and indirect
attributes corresponding to the same family will be linked by an induced
generalization to the class (instance of Attribute) that represents that family. Two
families are shown in Fig. 7: The ISO-9126 family and the SEI family. Notice that the
extension of the familyOf metaassociation determines which are the induced
generalizations (i.e., the attribute classes belonging to the same family).

As usual, the metaclasses bound by the familyOf associations are themselves linked
by means of a generalization relationship at M2. Although this is the normal case, it is
not a compulsory requirement. In some occasions, the metamodeller is not interested
in bringing up that generalization relationship (or one of the involved metaclasses)
because either it requires to model an artificial element or it does not provide any
relevant information to the metamodel.

Fig. 7. Generalization-inducing metaassociations

4.4 Induced dependencies

When the relationship induced at level M1 by an M2-inducing metaassociation is a
UML dependency, MR is a subclass of the UML Dependency metaclass. Induced
dependencies are, in our experience, not as frequent as the other kinds of induced
relationships. In particular, no need for induced dependencies has been encountered in
the quality metamodel that we are mentioning through this paper (although we needed
them in other metamodeling experiences). However, the metamodeller could have
eventually been interested in capturing the following situation: all the instances of a
specific metaclass (e.g., Metric) should behave according to a specific M1 interface in
every single model that is an instance of the quality metamodel, e.g., they should offer
the operation assessMetric(art:Artifact). This interface would be shared by all the
models instance of the quality metamodel. This requirement can be modelled as
shown in Fig. 8. In fact, ImplementsMetric_M1 is a heir of InterfaceRealization which
is an indirect heir of Dependency. We haven't depicted the entire path of the
generalization hierarchy to avoid messing the figure up. Instances of Realization
connect classes with Interface as the realizations depicted in the M1 level of Fig. 8 do.

Fig. 8. Dependency-inducing metaassociation.

5. Induced relationships and inheritance

We claimed above that a new M1-relationship would be induced for each pair of cla-
sses in the extension of each inducing metaassociation. However, when some of the
classes in such extension are connected by inheritance relationships at M1, this may
result in redefinitions in the induced relationships. This section deals with this issue.

5.1 Induced associations with inheritance

When some of the classes in the extension of an association-inducing metaassociation
are connected by inheritance relationships, some of the induced M1-associations can
be considered as redefinitions of other more general induced M1-associations.

UML does not consider the notion of redefinition applied to associations (i.e., they
are not RedefinableElements). Next, we define a notion of association redefinition
which is appropriate for the purposes of this article. Let C1, C2, S1 and S2 be classes
such that S1 conforms to C1 and S2 to C2 (i.e., S1 is C1 or one of its descendants, and
the same for S2). We say that an association R between classes S1 and S2 is a
redefinition of another association A between C1 and C2 if:

a) R is derived from A by specialization [13] with the specialization condition: given
a pair (c1, c2) of A’s extension, c1 is an instance of S1 and c2 is an instance of S2.

b) Each association-end of R redefines its respective association end of A.

Intuitively, this idea corresponds to the fact that the association R is the same as A for
the particular case in which instances of S1 and S2 are involved.

Notice in the definition above that neither b) implies a) nor the other way around.
In particular, R could be derived from A by the specialization stated in a) but the
extension of A could include a pair (c1, c2) where c1 is an instance of S1 and c2 is not
an instance of S2 (thus, the S2 end of R would not be a redefinition of the C2 end of
A). On the other hand, it could happen that each association end of R was a
redefinition of the corresponding association end of A but certain attributes of A were

not shared by R. For instance, A could have the metafeature
UML::Property::isReadOnly corresponding to one of its ends defined as true, while R
did not. In this case, A would not be a generalization of R.

As example, Fig. 9 presents a fragment of the ISO-9126 quality model, expressed
as an instance of the quality metamodel (see Fig. 2 (a)). According to ISO-9126, this
fragment splits the quality factors (the concept captured by the Attribute metaclass)
into three categories: characteristics (ISOCharacteristics), subcharacteristics
(ISOSubcharacteristics) and attributes (ISOAttribute). On the other hand, the
metamodel states that attributes can be direct (DirectAttribute metaclass, when they
can be measured by observation) and indirect (IndirectAttribute metaclass, whose
measure depends on that of other attributes). In the ISO framework, characteristics
and subcharacteristics are indirect while attributes (ISOAttributes) may be of both
kinds. Finally, we decide to classify our metrics into observation metrics
(ObservISOMetric) and calculated metrics (CalculatedISOMetric). The following
extension of the measures metaassociation makes the appropriate assignment of
metrics to quality factors and induces M1-associations (as depicted in Fig. 9):

Ext(measures) = {(ISOQualityFactor, ISOMetric),

 (ISOCharacteristic, CalculatedISOMetric),

 (ISOSubcharacteristic, CalculatedISOMetric),

 (ISOAttribute, ISOMetric),

 (IndirectISOAttribute, CalculatedISOMetric),

(DirectISOAttribute, ObservISOMetric)}

Some of the associations of the above figure may be seen as redefinitions of others.

For example, the association between DirectISOAttribute and ObservedISOMetric
(named measuresDirAttr in Fig. 9) is a redefinition of the association between
ISOAttribute and ISOMetric (named measuresAttr in the figure), which, in turn, is a
r e d e f i n i t i o n o f t h e a s s o c i a t i o n b e t w e e n I S O Q u a l i t y F a c t o r a n d
ISOMetric(measuresQF). The meaning of this redefinition is the following: when an
instance of the class DirectISOAttribute is linked to some instance (say, m) of the

Fig. 9. An instantiation of the metamodel with redefined associations

class ISOMetric, m will be, actually, an ObservedISOMetric (and vice versa). In other
words, the association measuresDirAttr is the same as the associations measuresAttr
and measuresQF for the particular case in which instances of DirectISOAttribute or
ObservedISOMetric are involved. Incidentally, notice that this forbids the existence of
a link in the extension of the association measuresAttr between a DirectISOAttribute
and a CalculatedISOMetric, among other similar cases.

In this way, all the associations in the above figure can be considered as
redefinitions and just one of them is a non-redefining one: measuresQF. We think that
this vision is the closest to the specifier’s intention and, hence, we have adopted it.
This kind of situation is repeated in many other modelling examples (e.g. [9]).

As a final remark, note that this redefinition notion applies whenever
generalization relationships exist between classes connected by induced associations,
not depending on the source of the generalizations, which may be induced by
metaassociations (like those between quality factors in the example) or additionally
stated by the modeller (like those between metrics in the example). In this last case,
care should be taken not to introduce generalization relationships that are not
compatible with induced ones leading to an incorrect instantiation of the metamodel.
This would be the case if we pretend to state that an instance of DirectAttribute is a
generalization of an instance of Attribute. This is left as future work (see Sect. 6).

5.2 Induced association classes with inheritance

In a similar way as happened with induced associations, we may have an induced
association class (R) whose ends are subclasses of the ends of some other induced
association class (A). In this case, as before, R will be a redefinition of A.

In order to show an example, Fig. 10 presents an instantiation of a fragment of the
quality metamodel (see Fig. 6, M2 level), together with the association classes that
would be induced in the case that the extension of usedIn was the following:

Ext(usedIn) = {(GartnerClassification, UniversityEnvironment),
 (OfficeSuiteApp, AcademicEnvironment)}

In the model we instantiate Domain with GartnerClassification because we want to
structure the software domains according to this catalogue of domains. We also define
a specialization, OfficeSuiteApp, to handle more specific software domains. In a
similar way, we define two instances of Environment. Two quality models come up as
induced association classes: ISOQMGartnerUniv (those quality models that result
from applying the ISO-9126 to domains of the Gartner classification in University
environments) and ISOQMOfficeAcademic, which applies the ISO-9126 principles to
a specific subclass of domains (office suites) and to specific subclass of university

environment (academic environment, as opposed to administrative environment,
which is also a part of university environment but has different requirements).

The pair (GartnerClassification, UniversityEnvironment) induces the association
class called ISOQMGartnerUniv, which is an instance of <<QualityModel>>. On the
other hand, the pair (OfficeSuiteApp, AcademicEnvironment) induces the association
class named ISOQMOfficeAcademic, also instance of <<QualityModel>>.

Fig. 10. An instantiation of the quality metamodel with redefined association-classes

The association class ISOQMOfficeAcademic may be seen as a redefinition of
ISOQMGartnerUniv. The meaning of this redefinition is the following: when an
instance of the class OfficeSuiteApp is linked to some instance (say, uenv) of the class
UniversityEnvironment, uenv will be, actually, an AcademicEnvironment (and vice
versa). In other words, the association class ISOQMOfficeAcademic is the same as the
association class ISOQMGartnerUniv for the particular case in which instances of
OfficeSuiteApp and AcademicEnv are involved.

In order to make the formalization of this idea easier, we introduce, in next section,
the notion of directed graph associated to the extension of a metaassociation.

5.3 Formal definition

Let M2A be an association/association-class inducing metaassociation between the
metaclasses MC1 and MC2. Let MA be a heir of Association. Hence, (M2A,MA) is the
pair that induces associations/association-classes at layer M1. Let Ext(M2A) be an
extension of M2A. This extension is constituted by a set of pairs (C1, C2), where C1
is an instance of MC1 and C2 is an instance of MC2. According to the declaration of
M2A as inducing, each pair in Ext(M2A) will have an (induced) distinct instance of
MA (i.e., an association/association class) connecting them.

We define the directed graph associated to Ext(M2A,MA) in a particular
metamodel instantiation (denoted as DGExt(M2A,MA)) as a directed graph such that:

─ The set of vertices of DGExt(M2A,MA) is the set of instances of MA that
connect the pairs in Ext(M2A,MA).

─ Given two distinct vertices A and A' of DGExt(M2A,MA), being A, A' associa-
tions or association-classes between C1 and C2, and C1' and C2' respectively:
there is an edge from A to A' iff C1 conforms to C1' and C2 conforms to C2'.

The idea conveyed by this graph is that an induced association/association class A

between C1 and C2 is a redefinition (in the sense of the previous sections) of another
induced association/association class A' between C1’ and C2’ if and only if there is a
path from A to A'. For example, the directed graph DGExt(measures, measures_M1)
corresponding to the example shown in Fig. 10 is shown in Fig. 11. Notice that the
construction of this directed graph is straightforward from its definition.

Two issues can be easily drawn from the definition of DGExt:

Fig. 11. DGExt(measures,measures_M1) corresponding to the model of Fig. 9

1) DGExt(M2A,MA) is acyclic as long as generalization hierarchies are also acyclic.

 2) The relation (V, <) is a partial order, where:

─ V is the set of vertices of DGExt(M2A, MA) and

─ For any A, A' of V: A < A' iff DGExt(M2A, MAC) contains a path from A to A'.

The notion of directed graph associated to a metaassociation extension, together with
the partial order that can be drawn from such definition, allows an easy formalisation
of the idea presented in the previous sections concerning which induced M1-
associations/association classes are, actually, redefinitions of which other. The idea is
the following: given a metaassociation M2A and a metaclass MA (heir of Association)
conceived as a pair that induces associations at level M1 and given also a specific
model mod, an M1-association/association-class is induced in mod for each tuple in
the Ext(M2A,MA). In this context, the non-redefining M1-association/association
classes are those corresponding to the maximal elements of (V, <), that is, the vertices
of DGExt(M2A,MA) which have no successor (i.e., from which no edge is issued). In
the case of the example, there is one of such vertices: measuresQF.

On the other hand, the redefining associations correspond to those vertices which
are not maximal. In particular, a specific association/association-class represented by
a vertex v of DGExt(M2A,MAC) redefines the associations/association classes that
correspond to the vertices which are successors of v. For example, the association
measuresDirAttr is a redefinition of measuresQF.

5.4 Inheritance in other relationships

Consider the situation in which an inducing metaassociation MA leads to an induced
association a1 between classes A and B and to another induced association sa between
classes SA and SB, which are subclasses of A and B respectively. In such case, as it
has been discussed above, the issue of redefined associations comes up in a natural
way since: (a) both a and sa are induced from the same metaassociation, and (b) the
extension of sa is constituted by pairs of instances of SA and SB and the extension of
a, by pairs of instances of A and B. However, by definition of generalization,
instances of SA (SB) are also instances of A (B). Hence, it makes sense that the pairs
linked by sa are, in fact, a subset of those linked by a and, hence, the association sa
can be seen as a redefinition of a. In the case of induced generalizations or
dependencies, item (b) does not occur. Therefore, the notion of redefinition of either
induced generalizations or dependencies has a less natural sense.

6. Conclusions and future work

We have presented a general notion of inducing metaassociation to be used in
UML heavyweight extensions that extends our previous work in [9] by inducing not
just associations but all type of UML relationships at M1. As a necessary complement
to our work, we have also extended our analysis on how the presence of generaliza-
tions in M1 models (either induced or directly defined) affects the induced elements.

We believe that our proposal supplies more expressiveness and accuracy in the
definition of a heavyweight extension of the UML metamodel while keeping MOF-
compliance and providing strict metamodelling. Remarkably, the ability to declare
metaelements as inducing is a powerful conceptual tool for metamodelers since the
intended semantics of the UML extension can be more accurately defined. The effort
required is just to declare a new metaclass (heir of Relationship and the new
InducedRelationship metaclass) for every inducing metaassociation, but even this
declaration may be considered positive from the comprehensibility point of view,
since the inducing nature of metaassociations is made explicit in the metamodel.

The induced relationships that have been presented in this article are binary
relationships. In general, this is not a limitation since the vast majority of
relationships that come up naturally in a model are (or can be decomposed into)
binary relationships. However, the convenience of n-ary induced relationships cannot
be excluded in the future. For this reason, it could be interesting to define inducing
relationships for the case of n-ary relationships (specially, n-ary associations), which
should be considered carefully due to the absence of ternary metaassociations.

As more future work, we are considering to complement our inducing mechanism
providing the transformation of the heavyweight UML extension generated by our
approach into an UML profile, following the ideas presented in [14]. To make our
inducing mechanism even more useful and easy to apply we are also working on an
accurate definition of correct instantiation of a metamodel. This definition should
state which conditions must hold to guarantee the soundness of the models obtained
as instantiations of a metamodel taking also into account the induced elements.

The problem faced in this article has also drawn the attention of other researchers,
who have identified it as an important challenge [15, 16, 17]. We analyzed these
approaches in [8] and found out that none of them was compliant with the MOF 2.0
architecture (thus being non-standard approaches) and some of them suffer from other
drawbacks. A newest approach, [18], is based on the same principles than those cited
above and, hence, suffers from the same difficulties.

It is worth mentioning that, if we look at metamodeling environments other than
MOF/UML, we find that some of them induce relationships in a natural way because
the instantiation of a relationship leads to another relationship in the next level, in the
same way as the instantiation of an entity leads to another entity (metaclass to class in
the MOF framework). This is the case of Telos [19], which defines individuals (to
represent entities) and attributes (binary relationships between individuals) and a
classification dimension (instantiation hierarchy) for both elements. Another
metamodeling example with symmetrical treatment of entities and relationships is the
MetaEdit+ Workbench tool [20]; it allows the user defining a relationship in a level

and instantiating it in a lower level to obtain relationships in this last level. Induction
of relationships proves to be a convenient option in those frameworks lacking this
symmetry, as happens in the MOF-related metamodels. For instance, in [21] and other
works around OWL [22], an ongoing research effort is adding metamodeling
expressiveness taking into account the computational problems that may arise. Last
but not least, we would like to remark that our proposal allows inducing not just
associations but also association classes, generalizations and dependencies. These
cases are not covered by the other approaches because the instantiation of the concept
equivalent to that of association in UML cannot generate anything else than another
association. Our future work includes a more detailed assessment of these facts.

References

1. UML 2.0 Infrastructure. OMG doc. formal/07-05-05. Available at http://www.omg.org/.
2. UML 2.0 Superstructure. OMG doc. formal/07-05-04. Available at http://www.omg.org/.
3. Common Warehouse Metamodel Specification. OMG doc. formal/2003-03-02. Available at

www.omg.org
4. Software Process Engineering Metamodel Specification (SPEM). OMG doc. formal/2005-

01-06. Available at www.omg.org.
5. UML profile for CORBA. OMG doc. formal/02-04-01. Available at www.omg.org
6. UML 2.0 testing profile. OMG doc. formal/05-07-07. Available at www.omg.org.
7. Knapp, A., Koch, N., Moser F., Zhang, G. “ArgoUWE: A CASE Tool for Web

Applications”. In Procs. EMSISE’03, 2003.
8. MOF 2.0 Core Final Adopted Specification. OMG doc. formal/06-01-01. Available at

http://www.omg.org/spec/MOF/2.0/.
9. Burgués, X., Franch, X., Ribó, J.M. “Improving the Accuracy of UML Metamodel Exten-

sions by Introducing Induced Associations”. SoSyM 7(1), Springer-Verlag, Feb. 2008.
10. Burgués, X., Franch, X., Ribó, J.M. “A MOF-Compliant Approach to Software Quality

Modeling”. In Procs. ER’05, LNCS 3716, Springer-Verlag, 2005.
11. ISO/IEC Standard 9126-1. Software Engineering – Product Quality – Part 1, 2001.
12. Kruchten, P. The Rational Unified Process. An Introduction. Addison-Wesley, 2000.
13. Olivé, A. Conceptual Modeling of Information Systems. Springer-Verlag, 2007.
14. Ribó, J.M. PROMENADE: A UML-based Approach to Software Process Modelling. PhD.

Thesis, UPC, 2002.
15. Atkinson, C., Kühne, T. “Rearchitecting the UML Infrastructure”. ACM TOMACS, 12(4),

Oct. 2002.
16. Álvarez, J., Evans, A., Sammut, P. “MML and the Metamodel Architecture”. WTUML 2001.
17. Henderson-Sellers, B., Gonzalez-Perez, C. “The Rationale of Powertype-based Metamo-

delling to Underpin Software Development Methodologies”. In Procs. APCCM’05, 2005.
18. Gutheil, M., Kennel, B., Atkinson, C. “A Systematic Approach to Connectors in a Multi-

level Environment”. In Procs. MoDELS’08, LNCS 5301, Springer-Verlag, 2008.
19. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M. “Telos: Representing Knowledge

About Information Systems”. ACM TOIS 8(4), Oct. 1990.
20. The MetaEdit tool. Available at http://www.metacase.com.
21. Motik, B. “On the Properties of Metamodeling in OWL”. JOLC 17(4), Oxford Univ. Press,

Aug. 2007.
22. OWL web page. Available at http://www.w3.org/2007/OWL/wiki/OWL_Working_Group.

