

PM

SDK Development for Bridging Heterogeneous

Data Sources Through Connect Bridge Platform

MASTER PROJECT

Filipa José Faria Nóbrega
MASTER IN COMPUTER ENGINEERING

September | 2018

SDK Development for Bridging Heterogenous
Data Sources Through Connect Bridge Platform
MASTER PROJECT

Filipa José Faria Nóbrega
MASTER IN COMPUTER ENGINEERING

SUPERVISOR
Leonel Domingos Telo Nóbrega

CO-SUPERVISOR
Stanislav Pernecký

i

This page intentionally left blank

ii

DEDICATION AND ACKNOWLEDGEMENTS

irst of all, my deep sense of gratitude goes to all the extraordinary people who have

been generous enough to dedicate some of their time and knowledge during the

course of my dissertation work. The attitude of the people made this dissertation

possible.

I am extremely thankful to my supervisor Prof. Dr. Leonel Nóbrega for his guidance,

constant encouragement, valuable suggestions and critical discussions throughout my

dissertation work. During my dissertation-writing period, he provided encouragement,

good teaching, sound advice, and many good ideas. I also thank him for his patience and

kindness. His dedication to work and perfectionism will have a far-reaching impact on

my life, academic and beyond.

I would also like to thank my supervisor Eng. Stanislav Pernecký for his guidance,

inspiring suggestions and critical discussions throughout my dissertation work.

I am especially grateful to Connecting Software for creating excellent working conditions

and providing financial support.

My heartfelt thanks to my friends for providing me with unfailing support and continuous

encouragement.

Special thanks to all participants who spend their time to contribute to the outcome of

this dissertation.

I would also like to thank Max for his love, support, humour, and energy that has given

me strength in life.

Finally, thanks to my family for their unconditional love and support.

Thank you all!

F

iii

RESUMO

esta dissertação apresentou-se um SDK para a criação de conectores a integrar

com o CB Server, que pretende: acelerar o desenvolvimento, garantir melhores

práticas e simplificar as diversas atividades e tarefas no processo de desenvolvimento. O

SDK fornece uma API pública e simples, suportada por um conjunto de ferramentas, que

facilitam o processo de desenvolvimento, explorando as facilidades disponibilizadas

através da API. Para analisar a exatidão, viabilidade, integridade e acessibilidade da

solução apresentam-se dois exemplos e casos de estudo. Através dos casos de estudo foi

possível identificar uma lista de problemas, de pontos sensíveis e melhorias na solução

proposta. Para avaliar a usabilidade da API, uma metodologia baseada em vários métodos

de avaliação de usabilidade foi estabelecida. O múltiplo caso de estudo funciona como o

principal método de avaliação, combinando vários métodos de pesquisa. O caso de estudo

consiste em três fases de avaliação: um workshop, uma avaliação heurística e uma análise

subjetiva. O caso de estudo envolveu três engenheiros de software (incluindo

programadores e avaliadores). A metodologia aplicada gerou resultados com base num

método de inspeção, testes de utilizador e entrevistas. Identificou-se não só pontos

sensíveis e falhas no código-fonte, mas também problemas estruturais, de documentação

e em tempo de execução, bem como problemas relacionados com a experiência do

utilizador. O contexto do estudo é apresentado de modo a tirar conclusões acerca dos

resultados obtidos. O trabalho futuro incluirá o desenvolvimento de novas

funcionalidades. Adicionalmente, pretende-se resolver problemas encontrados na

metodologia aplicada para avaliar a usabilidade da API, nomeadamente problemas e

falhas no código fonte (por exemplo, validações) e problemas estruturais.

Palavras-chave: SDK, API, Metamodelo, Modelo de dados relacional, SQL, Usabilidade

N

iv

ABSTRACT

n this dissertation, we present an SDK for the creation of connectors to integrate with

CB Server which accelerates deployment, ensures best practices and simplifies the

various activities and tasks in the development process. The SDK provides a public and

simple API leveraged by a set of tools around the API developed which facilitate the

development process by exploiting the API facilities. To analyse the correctness,

feasibility, completeness, and accessibility of our solution, we presented two examples

and case studies. From the case studies, we derived a list of issues found in our solution

and a set of proposals for improvement. To evaluate the usability of the API, a

methodology based on several usability evaluation methods has been established.

Multiple case study works as the main evaluation method, combining several research

methods. The case study consists of three evaluation phases – a hands-on workshop, a

heuristic evaluation and subjective analysis. The case study involved three computer

science engineers (including novice and expert developers and evaluators). The applied

methodology generated insights based on an inspection method, a user test, and

interviews. We identify not only problems and flaws in the source code, but also runtime,

structural and documentation problems, as well as problems related to user experience.

To help us draw conclusion from the results, we point out the context of the study. Future

work will include the development of new functionalities. Additionally, we aim to solve

problems found in the applied methodology to evaluate the usability of the API, namely

problems and flaws in the source code (e.g. validations) and structural problems.

Keywords: SDK, API, Metamodel, Relational data model, SQL, Usability

I

v

CONTENTS

DEDICATION AND ACKNOWLEDGEMENTS ... II

RESUMO... III

ABSTRACT ...IV

CONTENTS .. V

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

LIST OF ABBREVIATIONS AND ACRONYMS .. X

LIST OF APPENDICES ... XII

1 INTRODUCTION .. 1

1.1 BACKGROUND .. 1

1.2 MOTIVATION .. 3

1.3 PROBLEM .. 3

1.4 OBJECTIVES .. 4

1.5 METHODOLOGY ... 4

1.6 CONTRIBUTIONS .. 5

1.7 DISSERTATION STRUCTURE ... 5

2 LITERATURE REVIEW ... 6

2.1 DATABASE SYSTEMS ... 7

2.2 DATA MODELS ... 7

2.2.1 History of Data Models Development .. 8

2.2.2 Relational Model .. 10

2.3 STRUCTURED QUERY LANGUAGE .. 11

2.3.1 Commands .. 11

2.3.2 Data Types ... 13

2.4 MODELS, METAMODELS AND MODEL-DRIVEN DEVELOPMENT .. 15

2.4.1 Model .. 15

2.4.2 Metamodels.. 20

2.4.3 Model-Driven Development ... 24

2.5 OMG’S METAMODELING FRAMEWORK .. 26

2.5.1 Design Principles ... 27

2.5.2 The Four-Layer Metamodeling Architecture .. 28

2.5.3 Meta Object Facility .. 29

2.5.4 Common Warehouse Metamodel .. 30

vi

3 DEVELOPMENT ... 32

3.1 FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS ... 32

3.2 ARCHITECTURAL DESIGN .. 35

3.2.1 Designing the Connector Metamodel .. 35

3.2.2 Designing the Command ... 45

3.2.3 Designing the Connector .. 56

3.2.4 Designing the Exceptions ... 58

3.2.5 Summary ... 59

3.3 IMPLEMENTATION.. 61

3.3.1 Connector API ... 63

3.3.2 Tools ... 66

3.4 SUMMARY .. 67

4 CASE STUDIES .. 68

4.1 MICROSOFT SQL SERVER ... 68

4.1.1 Overview ... 68

4.1.2 Implementation Details .. 69

4.1.3 Analysis and Discussion .. 70

4.2 OPEN DATA PROTOCOL ... 73

4.2.1 Overview ... 74

4.2.2 Implementation Details .. 75

4.2.3 Analysis and Discussion .. 77

5 EVALUATION.. 80

5.1 METHODOLOGY .. 81

5.1.1 Roles ... 81

5.1.2 Process Overview ... 82

5.2 CASE STUDY .. 84

5.2.1 Study Setup .. 85

5.2.2 Analysis .. 87

5.2.3 Discussion ... 91

6 CONCLUSIONS AND FUTURE WORK .. 94

6.1 CONCLUSIONS ... 94

6.2 CHALLENGES ... 95

6.3 FUTURE WORK ... 96

7 REFERENCES .. 97

vii

LIST OF TABLES

TABLE 2.1 HISTORICAL DEVELOPMENT OF MAJOR DATA MODELS .. 9

TABLE 2.2 SQL DATA DEFINITION COMMANDS .. 11

TABLE 2.3 SQL DATA MANIPULATION COMMANDS ... 12

TABLE 2.4 SQL DATA TYPES .. 14

TABLE 3.1 CONNECT BRIDGE DEVELOPMENT KIT FRS ... 33

TABLE 3.2 CONNECT BRIDGE DEVELOPMENT KIT NFRS .. 34

TABLE 5.1 LIST OF SIX TASKS FOR THE WORKSHOP PARTICIPANTS .. 86

TABLE 5.2 THE FIRST-LEVEL ATTRIBUTES FOR THE API EVALUATION ... 87

TABLE 5.3 FINDINGS (HE = HEURISTIC EVALUATION, W = WORKSHOP, SA = SUBJECTIVE ANALYSIS) 92

viii

LIST OF FIGURES

FIGURE 1.1 BASIC WORKFLOW IN CONNECT BRIDGE PLATFORM ... 2

FIGURE 2.1 STRUCTURAL PART OF THE RELATIONAL MODEL .. 10

FIGURE 2.2 ORIGINAL AND MODEL ... 17

FIGURE 2.3 RELATIONSHIP BETWEEN MODEL AND SYSTEM .. 19

FIGURE 2.4 RELATIONSHIP BETWEEN SYSTEMS .. 19

FIGURE 2.5 MODEL AS A SPECIALIZATION OF THE SYSTEM .. 20

FIGURE 2.6 RELATIONSHIPS BETWEEN THE CONCEPTS OF METAMODEL, LANGUAGE AND MODEL ... 22

FIGURE 2.7 THE MEGA-MODEL .. 23

FIGURE 2.8 OMG'S MDA .. 25

FIGURE 2.9 AN EXAMPLE OF THE FOUR-LAYER METAMODELING HIERARCHY .. 29

FIGURE 2.10 CWM PACKAGES PREARRANGED INTO FIVE FUNCTIONAL LAYERS ... 30

FIGURE 3.1 CONNECTOR METAMODEL’S ARCHITECTURE .. 36

FIGURE 3.2 ABSTRACT SYNTAX FOR OBJECT MODEL PACKAGE.. 38

FIGURE 3.3 ABSTRACT SYNTAX FOR DATA TYPES PACKAGE ... 40

FIGURE 3.4 ABSTRACT SYNTAX FOR RELATIONAL PACKAGE ... 42

FIGURE 3.5 ABSTRACT SYNTAX FOR COLLECTIONS PACKAGE ... 44

FIGURE 3.6 PACKAGE DIAGRAM - COMMAND PACKAGES ... 45

FIGURE 3.7 ABSTRACT SYNTAX FOR COMMAND PACKAGE .. 47

FIGURE 3.8 ABSTRACT SYNTAX FOR DATA HANDLER PACKAGE .. 48

FIGURE 3.9 TRANSFORMATION OF Q1 INTO A CHAIN OF SEQUENTIAL PROCESSING HANDLERS .. 49

FIGURE 3.10 TRANSFORMATION OF Q2 INTO A CHAIN OF SEQUENTIAL PROCESSING HANDLERS .. 49

FIGURE 3.11 ABSTRACT SYNTAX FOR ARGUMENT PACKAGE .. 52

FIGURE 3.12 ABSTRACT SYNTAX FOR FILTER CRITERIA PACKAGE .. 55

FIGURE 3.13 THE TREE-STRUCTURE OF SEARCH CRITERION... 56

FIGURE 3.14 PACKAGE DIAGRAM - CONNECTOR PACKAGES ... 56

FIGURE 3.15 OVERVIEW OF A FUNCTIONAL CONNECTOR ... 57

FIGURE 3.16 ABSTRACT SYNTAX FOR EXCEPTIONS PACKAGE .. 58

FIGURE 3.17 PACKAGE DIAGRAM – PACKAGE STRUCTURE OF THE API.. 60

FIGURE 3.18 PACKAGE DIAGRAM OF THE FULL SYSTEM (OVERVIEW OF THE IMPLEMENTATION) .. 61

FIGURE 3.19 FRAGMENT OF THE SOURCE MODEL – NAMED ELEMENT ... 64

FIGURE 3.20 FRAGMENT OF THE SOURCE MODEL – SCHEMA .. 65

FIGURE 3.21 THE PROJECT STRUCTURE .. 66

FIGURE 4.1 BASIC WORKFLOW IN MSSQL CONNECTOR ... 70

FIGURE 4.2 A SCREENSHOT OF THE MSSQL CONNECTOR ... 70

FIGURE 4.3 COMPARISON BETWEEN MSSQL AND MSSQL CONNECTOR METADATA .. 71

FIGURE 4.4 SYSTEM FUNCTION SCOPE_IDENTITY ... 73

FIGURE 4.5 BASIC WORKFLOW IN ODATA CONNECTOR .. 77

ix

FIGURE 4.6 A SCREENSHOT OF THE ODATA CONNECTOR .. 78

FIGURE 5.1 METHODOLOGICAL APPROACH .. 83

FIGURE 5.2 RESULTS OF THE ASQ – EXPERT DEVELOPER .. 88

FIGURE 5.3 RESULTS OF THE ASQ – NOVICE DEVELOPER .. 89

FIGURE 5.4 RESULTS OF THE HEURISTIC EVALUATION (N/A: NOT APPLICABLE) – EXPERT DEVELOPER 90

FIGURE 5.5 RESULTS OF THE HEURISTIC EVALUATION (N/A: NOT APPLICABLE) – NOVICE DEVELOPER 91

x

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

C# C Sharp

CB Connect Bridge

CBDK Connect Bridge Development Kit

CLR Common Language Runtime

CM Connector Metamodel

CRC Class-Responsibility-Collaborator

CRUD Create, read, update and delete

CWM Common Warehouse Metamodel

DBMS Database Management System

EA Enterprise Architect

EDM Entity Data Model

FIFO First-In-First-Out

FR Functional Requirement

HCI Human-Computer Interaction

IT Information Technology

JDBC Java Database Connectivity

JSON JavaScript Object Notation

MDA Model-driven Architecture

MDD Model-driven Development

MOF Meta Object Facility

MS Microsoft

MSSQL Microsoft SQL Server

NFR Non-functional Requirement

O/R Object/Relational

OData Open Data Protocol

ODBC Open Database Connectivity

OMG Object Management Group

OO Object-Oriented

RDBMS Relational Database Management System

RE Requirement Engineering

xi

RSA Rivest–Shamir–Adleman

SDK Software Development Kit

SQL Structured Query Language

UML Unified Modelling Language

UX User Experience

VS Visual Studio

xii

LIST OF APPENDICES

A. UML CONCEPTS AND DRAWING CONVENTIONS .. 103

B. ARCHITECTURAL STYLES AND DESIGN PATTERNS .. 104

B.1 ARCHITECTURAL STYLES .. 104

B.1.1 Pipes and Filters .. 104

B.2 DESIGN PATTERN ... 106

B.2.1 Lazy Load Pattern .. 107

B.2.2 Composite Pattern ... 108

B.2.3 Abstract Factory Pattern .. 108

B.2.4 Builder Pattern .. 108

C. SQL GRAMMAR ... 110

D. ARCHITECTURAL DESIGN .. 112

D.1 DATA HANDLER PACKAGE .. 112

D.2 FILTER CRITERIA PACKAGE .. 118

D.3 CONNECTOR PACKAGE .. 120

E. TOOLS .. 121

E.1 VS WIZARD WITH PROJECT TEMPLATE ... 121

E.2 RSA KEY GENERATOR .. 122

F. OPEN DATA PROTOCOL .. 123

G. SCHEMA COLLECTIONS ... 126

Chapter 1 Introduction

Filipa José Faria Nóbrega – January 2019 1

C
H

A
P

T
E

R

 1
1 INTRODUCTION

ata integration is one of the oldest research fields in the database area and has

emerged proximately after database systems were first made known to the

business world [1]. Nowadays, numerous organizations are increasingly recognizing the

need to utilize data integration tools to meet business and customer needs. In this setting,

data integration is becoming an important, yet very difficult challenge once data is stored

and represented in different data models [1], [2].

The integration of multiple information systems purposes to combine a set of

independent and heterogeneous information systems into a homogeneous logical view of

data [1]. To accomplish this, all data has to be represented using the same abstraction

principles (a unified global data model and unified semantics).

This chapter briefly introduces the background of the project, explicitly, the software

development company for which this project was developed and the platform for

software integration challenges. Moreover, the motivation, problem, objectives,

methodology, and contributions of the dissertation are outlined. Finally, the structure of

the dissertation is presented.

1.1 BACKGROUND

For years, the key to success for any business solution has been data. Selecting the right

solution to incorporate all types of organizational data from multiple autonomous and

heterogeneous sources into a unified and consolidated source is a pervasive challenge.

This has led us to the emergence of data integration, which should be a strategic topic in

all organizations because it affects everything the organization does. Thereby, many

organizations are increasingly recognizing the need to use complete and comprehensive

data integration tools that are capable of integrating datasets, warehouses, enterprise

applications, and systems.

D

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

2 Filipa José Faria Nóbrega – January 2019

Connecting Software is a software development company started in 2004 that provides

an easily extensible and versatile integration platform for software integration challenges

termed Connect Bridge and, pre-assembled products using its capabilities. By enabling

developers to integrate data virtually from any source (e.g. Microsoft OneDrive, Microsoft

SharePoint, Microsoft Exchange, Google Drive, etc.), this company dismantles the

boundaries of inter-software communication which allows systems and applications to

communicate in one universal language for managing data, so to speak: Structured Query

Language (SQL).

Connect Bridge (CB) is an independent solution based on a plugin architecture whose

main goal is to provide a uniform query interface to a multitude of data sources, thereby

freeing the casual user from having to locate data sources, interact with each one in

isolation and manually combine results.

Connect Bridge is divided into three major layers (see Figure 1.1):

Figure 1.1 Basic Workflow in Connect Bridge Platform

1. Client Layer. This layer provides connectivity between client applications and the

Server Layer. A client application is an application that utilizes Open Database

Connectivity (ODBC), Java Database Connectivity (JDBC) drivers or Web Services

to connect with the Server Layer, which can be written in any programming

language.

2. Server Layer. This layer provides connectivity between Client and Plugin layers.

When a connection is requested by the client application, Server Layer performs

authentication and authorization based on the configuration of the system

enabling the client application to manipulate data through SQL statements. As

soon as the client application is authenticated and authorized, the SQL statement

can be sent to the Server Layer to be processed. Server Layer receives the SQL

Chapter 1 Introduction

Filipa José Faria Nóbrega – January 2019 3

statement for processing in a parse tree once the SQL statement has been

evaluated according to the rules of a formal grammar – lexical, syntactic and

semantic analysis. A parse tree – a data structure that represents a parsed

statement – is formerly available to the plugins through a set of common

interfaces. Server Layer receives all data from Plugin Layer to be sent back to one

of the drivers and, subsequently, to the client application.

3. Plugin Layer. This layer provides connectivity between the data provider and the

Server Layer. A plugin (local or remote) is an external software component that

adds features to a host application (i.e. CB Server). A plugin has to implement a set

of common interfaces exposed by the Connector Application Programming

Interface (API)1 to intermediate the communication between the data provider

and CB Server.

1.2 MOTIVATION

This section discusses the three major reasons that motivate the work undertaken at

Connecting Software. First, there is a need to develop a Software Development Kit (SDK),

which has a set of software development tools, libraries, documentation, code samples,

and guides for the creation of connectors in order to help developers. Second, there is the

confidence that the applicability of CB may well increase, and the number of connectors

may well growth. Third, the taste for innovation and technological development coupled

with a personal wish to create new and practical solutions beyond knowledge and

experience.

1.3 PROBLEM

At the moment, Connecting Software provides an SDK for the creation of connectors

which is complex, intricate and hides functionality. Furthermore, the existing SDK does

not have documentation. For these reasons, connectors are developed internally by the

Connecting Software developers which set a limitation on the number of available

connectors, since the resources for their development are limited.

1 MG Framework

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

4 Filipa José Faria Nóbrega – January 2019

1.4 OBJECTIVES

The main objective of this dissertation is to develop an SDK containing a set of subroutine

definitions, interfaces, common structures, utilities, algorithms and tools that describes

and prescribes the expected behaviour for the creation of connectors to integrate with

Connect Bridge Server, which can be used with minimal technical support by the

developers.

The specific objectives are:

1. To make available a complete and clear SDK documentation.

2. To make available a Step-by-Step guide for creating a connector from scratch.

3. To create sample connector projects to illustrate the usage of the SDK.

4. To create a Visual Studio project template holding a connector skeleton.

5. To make available useful Visual Studio code snippets for typical code blocks.

1.5 METHODOLOGY

The research methodology that was followed for the purposes of this dissertation

involves two different types of research: primary and secondary research. For the

primary research, various methodologies namely case study, heuristic evaluation, and

interview were chosen to assess the feasibility and the usability of the SDK. For the

secondary research, a literature review was held on previous academic research

regarding database systems, data models, SQL, and so forth. Furthermore, Object

Management Group (OMG) specifications were gathered to serve as a formal reference

for modelling the SDK.

The software development methodology that was chosen for the purposes of this

dissertation was agile software development under which a system is developed through

repeated cycles, termed iteration. Each three-week iteration includes planning (man-day

estimation), requirements gathering and analysis, design, implementation, testing (unit

testing), and documentation.

Chapter 1 Introduction

Filipa José Faria Nóbrega – January 2019 5

1.6 CONTRIBUTIONS

One of the main contributions of this dissertation is to provide an SDK which accelerates

deployment, ensures best practices and simplifies the creation of connectors. As well, this

dissertation contributes to the application area of computer science, namely in the fields

of relational databases, data integration, and data modelling. Finally, another

contribution is to provide an open-source product which has a financial value.

1.7 DISSERTATION STRUCTURE

The dissertation is structured as follows:

− Chapter 1 Introduction contains the context of this work, the description of the

problems to tackle and the process followed to solve them. Additionally, the

motivating reasons and objectives of this dissertation are presented.

− Chapter 2 Literature Review introduces database and database systems. It also

contains the definition of data model, a brief history of data model development

and an overview of the relational data model. As well, the ANSI/ISO SQL standard

is briefly described. Furthermore, models, metamodels and Model-Driven

Development (MDD) concepts are presented along with the OMG’s metamodeling

framework.

− Chapter 3 Development contains the system requirements, architectural design

and implementation details.

− Chapter 4 Case Studies addresses two examples and case studies conducted to

assess the feasibility of the SDK.

− Chapter 4 Evaluation addresses a multiple case study conducted to evaluate the

usability of the SDK and subsequent analysis.

− Chapter 5 Conclusions and Future Work contains the closure of this work by

presenting a reflection about the development and evaluation chapters. Also, the

future work is provided.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

6 Filipa José Faria Nóbrega – January 2019

C
H

A
P

T
E

R

 2
2 LITERATURE REVIEW

ver the past few years, database research has contributed a great deal to the

database system becoming the most significant development in the field of

software engineering. The database is now the basic framework of the information

system, changing the way many companies and individuals work [3]. The importance of

the database system has increased in the last few years with significant developments in

this technology resulting in increased availability of database systems that are more

powerful, intuitive to use. Nowadays, by far the most popular database system available

is the relational database management system (RDBMS). As a result of the development

of the relational databases, SQL has emerged and become the standard relational

database language most widely used [4], [5].

This chapter was structured using a constructivist approach – a recognised educational

approach by which “new” knowledge is built on prior knowledge and reflective thinking.

In the constructivist approach, the big concepts are first emphasized, beginning with the

whole (more concrete) and expanding to include the parts (more abstract). As a result,

we start to define the database and database management system (DBMS). We then

introduce the definition of data model – a type of abstraction that serves as an

architectural focus for the design of databases and DBMS. Additionally, we provide a brief

history of data model development along with an overview of the relational data model.

We then introduce briefly the ANSI/ISO SQL standard – a query language for defining and

manipulating data stored in a database. In addition, we review some of the commands

and data types supported by the standard. We then define even more abstract concepts

such as models, metamodels and Model-Driven Development (MDD) – note that a data

model is an abstract language which can be described by creating a metamodel of a

language [6]. Finally, we introduce the OMG’s metamodeling framework for specifying,

managing, interchanging, constructing, and integrating models in software systems.

O

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 7

2.1 DATABASE SYSTEMS

A database is defined as an organized “collection of self-describing data” that stores a

collection of both data and metadata [3]. Data is raw facts of interest to the user [4].

Metadata describes the data’s structure within a database (i.e. data characteristics and

the set of relationships that links the data), through which the data is integrated and

managed [4], [5].

A database management system (DBMS) is defined as a software that manages the

database structure and controls access to the data stored in the database [4]. The major

components of DBMS include a data dictionary containing descriptive information about

the data within a database, a data definition language for further describing the

conceptual organization of the entire database (schema), a query language for simple

access to the database, and features to support data security, integrity, backup, and

recovery [4], [7], [8]. Each of these components is explained below.

− Data dictionary. The data dictionary (also named catalog or system catalog) is

used to maintain definitions of the data elements and their relationships

(metadata) within the scope of the database system.

− Data Definition Language (DLL). The DLL is used to define the database schema

components.

− Query Language. The query language is a specialized language that enables data

access through queries.

− Security, Integrity, Backup and Recovery Functions. DBMS performs several

functions to guarantee the integrity and security of the data in the database. To

guarantee integrity, DBMS enforces integrity rules to minimize data redundancy

and maximize data consistency. To guarantee security, DBMS enforces security

rules that control user’s access to the database. To ensure backup and recovery,

DBMS provides special backup and recovery of the database after a failure.

2.2 DATA MODELS

A data model is a type of data abstraction that serves as an architectural focus for the

design of databases and DBMS [7], [9], [10]. A data model is defined as “an integrated

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

8 Filipa José Faria Nóbrega – January 2019

collection of concepts for describing and manipulating data, relationships between data,

and constraints on the data” [3], [9]. The most important components of a data model

include [9]:

(1) A collection of data types and data structure types (the database building blocks);

(2) A collection of operators or rules of inference;

(3) A collection of general integrity rules.

2.2.1 History of Data Models Development

As of 1960, several data models have been proposed for the management of structured

data [3], [4], [9]. The first such data model to be proposed was the file system. As a result

of the file system’s critical shortcomings, the hierarchical model arose to handle and

manage vast amounts of information for complex projects such as the Apollo rocket [3],

[4]. The hierarchical model is based on a hierarchical structure, which conforms to an

upside-down tree, composed of levels, or segments – a segment is the equivalent of a file

system’s record type. This model was defined by the process of abstraction from IBM's

IMS [3], [9].

In the 1970s, another significant data model has emerged: network model. The network

model was created to represent complex relationships, to improve database

performance, and to impose a database standard. This model was defined by the process

of abstraction from CODASYL’s DBTG [3], [9]. The network model describes a set of 1:M

relationships between a parent and its segments, in which a segment can have more than

one parent, unlike the hierarchical model. The network model proposal defined some

important concepts:

− The schema, which is the logical organization of the entire database.

− The subschema, which defines the part of the database seen by application

programs.

− A data management language, which defines the language to manage and

manipulate the data in the database.

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 9

− A schema DDL, which enables the database system to define the database schema

components.

In the mid−1970s, Edgar F. Codd (IBM Researcher) published a theoretical paper “A

relational model of data for large shared data banks” on relational model as a

mathematical basis for the analysis and modelling of data, providing data independence

and addressing several issues related to database [11]; these features made it the

preferred data model for business applications. The relational model also has a downside

such as limited modelling capabilities. The relational model is further discussed in

Section 2.2.2.

In response to the increasing complexity of database applications, two “new” data models

have emerged: the object-oriented (OO) and the object/relational (O/R) models [4].

The OO data model was proposed as an alternative to the relational data model and is

based on a single structure known as object composed of data and their relationships [4],

[7]. The O/R data model can be defined as an attempt to extend relational data model

with the functionality necessary to support many of OO model’s features, providing a

bridge between relational and object-oriented paradigms [7].

Table 2.1 provides a summary of the historical development of major data models [4].

Table 2.1 Historical Development of Major Data Models

TIMEFRAME DATA MODEL EXAMPLES OBSERVATIONS

1960s−1970s File System VMS/VSAM The database system’s pioneer;

IBM mainframe systems;

Manage records, not relationships;

Each department stored and

controlled its own data.

1970s Hierarchical and

Network

IMS

IDS

Difficult to represent relationships;

Lack of data independence

(structural level dependence);

No ad-hoc queries;

Navigational access.

Mid–1970s

to present

Relational Oracle Conceptual simplicity (structural

independence);

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

10 Filipa José Faria Nóbrega – January 2019

2.2.2 Relational Model

In 1969, Edgar F. Codd (IBM Researcher) proposed the relational model based on

mathematical set theory [12]. Its structural part consists of domains, relations (with

tables as their principal theoretical representation), attributes, tuples, primary keys, and

candidate keys. The principal theoretical representation consists of a set of tuples (rows),

each tuple having the same set of attributes (columns) with the following properties [13]

(see Figure 2.1):

1. There is no duplication of rows (i.e. all rows are distinct from one another in

content);

2. Row and column order are immaterial;

3. All its entries are atomic values.

Figure 2.1 Structural part of the Relational Model

The manipulative part consists of the algebraic operators (select, join, project, etc.) which

transform relations into relations. The integrity part consists of two integrity rules: entity

integrity – the primary key of a table must contain a unique, non-null value for each row

Relation

Attribute

Tuple

MS SQL-

Server

MySQL

Ad hoc queries;

Set-oriented access.

Mid–1970s

to present

Object-oriented

Object/Relational

PostgreSQL More semantics;

Support for complex objects;

Inheritance;

Behaviour;

Unstructured data (XML);

XML data exchanges.

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 11

– and referential integrity – if the foreign key contains a value, that value must make

reference to an existing row in the parent table. In any application of a data model, it may

be necessary to impose further integrity constraints, and thereby define a smaller set of

consistent database states or changes of state.

The relational model is implemented through a very sophisticated relational database

management system (RDBMS) – the predominant database system for business

application at present [3], [4]. An RDBMS supports structural aspects of the relational

model, the insert-update-delete rules, and a clearly defined language as powerful as the

relational algebra [13].

2.3 STRUCTURED QUERY LANGUAGE

The Structured Query Language (SQL) was created by IBM researchers as an industry–

standardized language for defining and manipulating data stored in a database [5], [14].

An official standard for SQL was originally published by the American National Standards

Institute (ANSI) and the International Standards Organization (ISO) in 1986 and was

expanded in the following years [14]. SQL was originally developed to work on data in

databases that follow the relational model [5]. In fact, SQL is the de facto query language

and data access standard supported by most DBMSs [4].

2.3.1 Commands

The ANSI/ISO SQL standard is a combination of at least two major components [3]–[5]:

1. The Data Definition Language (DDL): SQL includes commands for defining the

database structure and access rights to the data. Table 2.2 provides a summary of

the data definition commands.

Table 2.2 SQL Data Definition Commands

Command or Option Description

CREATE SCHEMA Creates a database schema in the database

CREATE TABLE Creates a new table in the database

NOT NULL Ensures that a column will not have null values

UNIQUE Ensures that a column will not have duplicate values

PRIMARY KEY Defines a primary key for a table

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

12 Filipa José Faria Nóbrega – January 2019

2. The Data Manipulation Language (DML): SQL includes commands to insert,

update, delete, and retrieve data within the database. Table 2.3 provides a

summary of the data manipulation commands [4], [5], [14].

Table 2.3 SQL Data Manipulation Commands

FOREIGN KEY Defines a foreign key for a table

DEFAULT Defines a default value for a column

CHECK Validates data in a column

CREATE INDEX Creates an index

CREATE VIEW Creates a virtual table from one or more tables in the database

ALTER TABLE Modifies the structure of an existing table

CREATE TABLE AS Creates a new table based on a query

DROP TABLE Removes an unneeded table (and its data) from the database

DROP INDEX Removes an unneeded index from the database

DROP VIEW Removes a view from the database

Command or Option Description

INSERT Adds one or more rows of data to the database

SELECT Retrieves data from the database

FROM Specifies from which tables to retrieve data

WHERE Restricts the selection of rows based on a search criterion

GROUP BY Groups the selected rows based on one or more attributes

HAVING
Restricts the selection of grouped rows based on a search

criterion

ORDER BY Orders the selected rows based on one or more attributes

UPDATE Modifies existing database data

DELETE Removes one or more rows of data from the database

Operators Description

COMPARISON Used in search criteria

= Equal to

< Less than

> Greater than

<= Less than or equal to

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 13

2.3.2 Data Types

The ANSI/ISO SQL standard specifies several data types, which describes the type of data

that can be stored in a SQL-based database system and manipulated by the SQL language.

>= Greater than or equal to

<> or != Not equal to

LOGICAL Used in search criteria

AND Combines multiple conditions

OR Combines multiple conditions

NOT Negates a condition

SPECIAL Used in search criteria

BETWEEN Checks whether an attribute value is within a range

IS NULL Checks whether an attribute value is null

LIKE
Checks whether an attribute value matches a given string

pattern

IN
Checks whether an attribute value matches any value within

a list

EXISTS Checks whether a subquery returns any rows

DISTINCT Confines values to unique values

ARITHMETIC Used in search criteria

+ Add

- Subtract

* Multiply

/ Divide

^ Raise to the power of

Aggregate Functions Description

COUNT The number of rows with non-null values for a given attribute

MIN The minimum attribute value found in an attribute

MAX The maximum attribute value found in an attribute

SUM The sum of all values for a given attribute

AVG The average of all values for a given attribute

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

14 Filipa José Faria Nóbrega – January 2019

Table 2.4 provides a summary of the SQL data types specified in the ANSI/ISO SQL

standard [3], [5], [14].

Table 2.4 SQL Data Types

Data Type Description Declarations

Boolean

Consists of the distinct

truth values TRUE and

FALSE, as well as

UNKNOWN.

BOOLEAN

Character

Consists of a sequence of

characters. It may be

defined as having a fixed

or varying length.

CHAR [length]

VARCHAR [length]

Bit
Consists of a sequence of

binary digits.

BIT [length]

Exact numeric

Express the value of a

number exactly. The

number consists of digits,

an optional decimal point,

and an optional

sign.

NUMERIC [precision [, scale]]

DECIMAL [precision [, scale]]

INTEGER

SMALLINT

BIGINT

Approximate

numeric

Express the value of a

number that does not have

an exact representation.

FLOAT [precision]

REAL

DOUBLE PRECISION

Datetime

Defines points in time to a

certain degree of accuracy.

DATE

TIME [precision] [TIME ZONE]

TIMESTAMP [precision] [TIME

ZONE]

Interval
Represents periods of

time.

INTERVAL

Large objects

(LOBs)

Holds a large amount of

data, such as a long text file

or a graphics file.

CHARACTER LARGE OBJECT

(CLOB)

BINARY LARGE OBJECT (BLOB)

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 15

2.4 MODELS, METAMODELS AND MODEL-DRIVEN DEVELOPMENT

Modelling and models are the key tools in software engineering [15], [16]. Software

designers and developers often create models when designing and analysing large or

complex systems. A model is an abstraction of a system and its environment that has

proven to be highly successful throughout the software development process. Still, there

is a great deal of disbelief regarding the practical value of modelling software [15], [17].

There is a reason for this. Because models are translated into code manually, they are not

kept up-to-date as implementation progresses, and hence they become inaccurate, out-

dated and useless with time. Additionally, many modelling languages had very weak

semantic specifications. Consequently, the software engineering community’s view is

that models have only value in the early phases of development, playing a secondary,

mostly specification and documentation, role [17]–[19].

Model-driven development (MDD) is an approach to software development in which

models do not constitute documentation, but rather enjoy the same status as code, as

their implementation is automated – that is, models play a central and active role [15].

Models, modelling, and Model-Driven Architecture (MDA) are the foundation of MDD

[20].

The MDA initiative by the Object Management Group (OMG) has contributed significantly

to the interest in software modelling and model-driven techniques [15], [21]. As a result,

models received anew attention from the research community and IT industry [22]. This

led to the today’s central view wherein models become essential artefacts of the

development process, rather than simply serving a dispensable supporting purpose.

2.4.1 Model

The ability to find and use models is the basis of our abstract reasoning [23]. Thus, models

are very important. Yet, the term “model” is hard to define like other central notions.

In software engineering, models are the first artefacts of the development process to

systematically describe a software architecture. Their application can be found in various

areas and applications of software engineering and has become more popular with the

advent of the Unified Modelling Language (UML) in 1996. Yet, their application in

software engineering is at an early stage.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

16 Filipa José Faria Nóbrega – January 2019

In this dissertation, a model is defined as an abstraction or a coherent set of formal

elements describing a system for some purpose of analysis or synthesis. The ability to use

models in replacement of systems under study is the broad sense we adopt for this notion.

2.4.1.1 What is a model?

The term “model” is derived from the Latin modulus, which means pattern, measure,

example or rule to be followed [23]. As stated by Jean-Marie Favre in [24], the several

meanings for this term can be grouped into four groups:

1. Model as Representation: the notion of model is used as a simplified description

of a complex entity or process. The typical example of such model is a map.

2. Model as Example: the notion of model is used to describe a representative of a

category, which is a synonym of exemplar and instance. The typical examples of

such model are visual arts.

3. Model as Type: the notion of model is used to designate a set of elements

distinguished by some common characteristic or quality. A typical example of such

model is automobile industry where each new type of car is designated by a model.

4. Model as Mould: the notion of model is used as a representative form or pattern

worthy of imitation.

In software engineering, even though the term “model” is frequently recognized as

representation of a new or existing system, it can also be recognized as mould, as is the

case with design patterns.

2.4.1.2 The Model Criteria

To distinguish a model from other artefacts, we need to define criteria. As pointed out by

Ludewig in [23], in 1973 Stachowiak proposed three criteria that any model candidate

must satisfy:

1. Mapping criterion: there is an original object or phenomenon that is mapped to

the model.

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 17

2. Reduction criterion: not all the properties of “the original” are mapped on the

model, nonetheless, the model is somehow a simplification. Yet, the model must

reflect at least some properties of the original.

3. Pragmatic criterion: the model can substitute the original for some purpose –

that is, the model is useful.

The mapping criterion does not infer the real existence of the original; note that the

model may be planned, suspected, or even fictitious. Frequently, in software engineering,

the models act as the original of another model – the aim is to use the models in the

production process leading to the original.

At first sight, since not all the properties of the original are in the model, the reduction

criterion may imply a weakness of the model. However, that loss is the real strong point

of models; frequently, while the original cannot be handled the model can. Figure 2.2

illustrates the mapping between original and model according to [23]. Note that the

model is not necessarily like the original and the attributes may be mapped in various

ways.

Figure 2.2 Original and model

The pragmatic criterion is the explanation why we use models. The truth is that often

we are not able or not willing to use the original, so we may use the model as an

alternative.

So, the question that arises is, “what models can do for software development?” A model

of some system is a simplification of that system, where the properties of interest are

highlighted for a given viewpoint [17]. According to Bran Selic [17], a valuable model

should provide at least the following:

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

18 Filipa José Faria Nóbrega – January 2019

1. Abstraction: the model should remove or hide all irrelevant detail.

2. Understandable: the model should be expressed in a way that takes only the

essential information directly and precisely.

3. Accurate: the model must correctly mirror the properties of interest of the system

being modelled to within the acceptable tolerances required.

4. Predictive: the model must be able to precisely predict the behaviour and other

properties of the modelled system (which depends on the model’s accuracy).

Abstraction is deeply related to the reduction criterion introduced by Stachowiak – the

model is an abstraction of “the original” – but exposes the process by which the models

are obtained. The use of abstraction is commonly observed in the design of computer

software, in which a model/abstraction describes only the essential details of the system

to be modelled, ignoring the irrelevant details. Thus, there is always a simplification of

the modelled system which satisfies the reduction criterion.

For Bran Selic, a valuable model in software development (more precisely, in the context

of the MDA initiative) must be “sufficiently” understandable, accurate and predictable;

which is related to the mapping criterion where there is always an original system. Thus,

models are able to be developed, constructed, manipulated, and viewed as established in

the OMG’s proposal.

2.4.1.3 Definitions

While significant efforts have been made to define the term model, there is no universally

accepted definition. Yet, the definitions attempt to include several concepts previously

mentioned. Let’s cite some existing definitions. For Bran Selic, the term model is defined

as follows [17]:

“… model of some system is a reduced representation of that system that

highlights the properties of interest for a given viewpoint.”

Bézivin and Gerbé provide another definition [25]:

“A model is a simplification of a system built with an intended goal in

mind. The model should be able to answer questions in place of the actual

system.”

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 19

Seidewitz defines the term model as [26]:

“… a set of statements about some system under study (SUS).”

In the context of OMG’s MDA Guide [27], the term model is defined as follows:

“A model of a system is a description or specification of that system and

its environment for some certain purpose”

From these definitions, we are able to identify three central notions: the notion of model,

the notion of system and the relationship between these notions. The notion of system is

the key element of discourse when talking about software modelling and model-driven

techniques in software engineering [28]. The relationship between model and system is

called RepresentationOf, which is a synonym of InstanceOf. Figure 2.3 illustrates the three

notions before mentioned.

Figure 2.3 Relationship between model and system

It is important to understand that this relation is well-defined between systems: being a

model or system under study (SUS) is a relative notion, not an inherent property of an

artefact. In fact, a model of a model implies that a model is a system under study and,

consequently, this model is a system, emphasizing the idea that a model is also a system

as shown in Figure 2.4.

Figure 2.4 Relationship between systems

There is clearly a compromise between simplicity and expressiveness – Figure 2.4

illustrates a more reduced but less explicit diagram when compared to Figure 2.3. Yet,

Figure 2.4 fails to present the notion of model as a central notion and specifies that any

system can be a model, by simply identifying which system is being modelled. Therefore,

Figure 2.5 illustrates the model as a specialization of the system, in which the notion of

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

20 Filipa José Faria Nóbrega – January 2019

model appears as a central notion, preserving the relationships and specifying the

particularity that a model is also a system.

Figure 2.5 Model as a specialization of the system

In summary, a model is a system that should be able to answer questions in place of the

system under study.

2.4.2 Metamodels

In the previous section, various definitions of the term model were cited. None of these

definitions refers to the notion of language or of metamodel. Kleppe et al. give in [29] a

more restrictive definition of what is a model: “A model is a description of (part of) a

system written in a well-defined language”. In this definition, the concept of model is

strongly connected to the notion of language and therefore to the notion of metamodel.

Since these two concepts are often confused, this section clarifies the relationships

between these concepts.

2.4.2.1 What is a metamodel?

For Jean-Marie Favre in [30], “a language is a set of systems”, more precisely, “a language

is formalized as a set of sentences”. In fact, the notion of language is an abstract notion

itself since it does not have any materialization. For instance, we know that the

Portuguese language exists since, given a sentence, we can say if it is Portuguese or not;

because we use some models of the language – a grammar or a dictionary –, which provide

practical means to get answers.

So, the question that arises is, “what a model of a language is?”. In accordance with the

definition of model given previously, a model of a language is a system that could provide

answers about the language under study. For natural languages, grammars are models of

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 21

a language (note that a grammar is typically described using the language being

modelled). For programming languages, Backus-Naur Form (BNF) language is typically

used to define the grammar – a programming language is a set of words over an alphabet

which is defined by the conforming grammar. For the UML modelling language, the

modelling language’s definition is accomplished by building a model of the modelling

language – termed metamodel (The prefix meta is derived from the Greek metá, which

means “after” or “beyond”). In other words, the definition of UML modelling language is

defined in terms of itself: UML modelling language is written in UML.

But what about the other way around – that is languages of models? For Jean-Marie Favre

in [30], a modelling language is a set whose elements are models which can be expressed

through the language itself. In short,

(A) “A modelling language is a set of models.”

By introducing the concept of modelling language, it is possible to give an accurate

definition of what is a metamodel. For Jean-Marie Favre in [30], metamodels make

modelling languages explicit.

(B) “A metamodel is a model of a modelling language.”

In fact, replacing (A) into (B) leads logically to:

(C) “A metamodel is a model of a set of models.”

By reason of uniformity, the relation between the language and model will be called

ElementOf according to [30]. Note that nothing prevents a model of a set being itself an

element of that set. In fact, it is necessary to know the Portuguese language to understand

what is written in the Portuguese grammar. Yet, not all metamodels are part of the

language they model. Figure 2.6 illustrates the relationship between the concepts of

metamodel, language and model.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

22 Filipa José Faria Nóbrega – January 2019

Figure 2.6 Relationships between the concepts of metamodel, language and model

In Figure 2.6 there is no direct relation between the concepts of metamodel and model,

but rather between the language and model. However, from the practical point of view,

the ElementOf is not operational since languages are usually infinite and abstract systems.

To decide whether a model is an element of the language or not, it is necessary to confront

the model with the metamodel chosen for the language. This use of metamodel requires

a derived relation from RepresentationOf which is called (Linguistic) InstanceOf in

Atkinson and Kühne [31] and ConformantTo in Bézivin [32]. In fact, checking the

conformance between a model and a metamodel makes it possible to decide whether a

model is an element of the language or not. For instance, the spelling checker is a

metamodel that checks if a given text is conformant or not – note that if the spelling

checker admits as valid a given Portuguese text, this does not mean that the given text is

an element of the Portuguese language. Similarly, a Java parser is a metamodel that

checks whether their programs are conformant or not – note that if the Java parser admits

as valid a program, this does not mean that the program is an element of the Java

language; by the contrary, a program is valid according to a grammar. The same problem

occurs with the modelling language and its models. In fact, one can argue that a model

conforms to a chosen metamodel to represent a modelling language. Similarly, one can

think in a language induced from metamodel, in which the conformance with the

metamodel ensures that a model is an element of the language induced from metamodel.

Figure 2.7 illustrates the concepts of metamodel, language and model, highlighting the

relationships between these concepts. In [30], Jean-Marie Favre introduces the

Megamodel to model the notion of metamodel, language and model, which contributed a

great deal to avoid the “meta-muddle”. In [33], Bézivin defines a Megamodel as "a model

which elements represent models, metamodels and other global entities".

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 23

Figure 2.7 The Mega-model

The definitions of the concepts of language and metamodel are definitively very weak,

however, the understanding regarding these concepts is “good enough” for the purposes

of this dissertation.

2.4.2.2 Definitions

The notion of metamodel is poorly defined in software engineering. As pointed out by

Jean-Marie Favre in [28], there is some confusion around the notion of metamodel; an

example can be found on the help documentation on Eclipse Modelling Framework: “A

metamodel is simply the model of a model” [24]. With the emergence of metamodeling as

a crucial area of software engineering, it is expected to progressively overcome the

misunderstanding and confusion.

OMG stated in [34] that “a metamodel is a model used to model modeling itself”, which has

contributed to the “meta-muddle”. This definition, unfortunately, came to replace the

previous one presented in [35]: “A meta-model is a model that defines the language for

expressing a model”, which is more coherent with the definitions previously mentioned.

Seidewitz provides another definition [26]:

“A metamodel is a specification model for a class of SUS where each SUS

in the class is itself a valid model expressed in a certain modelling

language.”

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

24 Filipa José Faria Nóbrega – January 2019

This last definition, though valuable, has also flaws. Yet, it is reasonable to accept that a

meta-model can be "descriptive" and not only "prescriptive", just like other models. Note

that from this last definition we can identify the notion of class to refer to the set of models

that constitute the modelling language.

The most conciseness definition is proposed in OMG’s MDA Guide [27]:

“metamodel: a model of models”

Although this last definition is correct, those who missed the last "s" may misinterpret

that “a metamodel is a model of a model”.

2.4.3 Model-Driven Development

Model-Driven Development (MDD) is one of the most prominent paradigms of

contemporary software development in which models and model technologies are

primary artefacts to raise the level of abstraction at which developers create and evolve

software, with the goal of both simplifying and formalizing the various activities and tasks

in the software development process [16], [17], [36]. MDD paradigm addresses a core set

of problems which are present in software development – complexity and ability to

change [16]. According to Selic in [17], the essence of MDD consists of two key

resolutions:

− Raising the level of Abstraction of specifications to reason about a problem

domain by using modelling languages with higher-level and better-behaved

constructs.

− Raising the level of Automation by using computer-based tools and integrated

environments.

Models, modelling, and model transformation are the heart of MDD [20]. Modelling and

models are the key tools in software engineering. However, there is a big difference

between “what models represent” and “how there are used”. Martin Fowler in [37] states

that “most new ideas in software developments are really new variations on old ideas”. In

fact, the idea of MDD arose from early experiments with automatic code generation from

computer-based software models [17]. The idea of MDD was later expanded with the

advent of Computer Aided Software Engineering (CASE) at the beginning of the nineties

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 25

[15]. However, CASE tools have proven itself remarkable ineffective. As a result, not only

the tools but also the model-based software development approach were abandoned.

Eventually, the weaknesses of CASE tools led to the formation of the OMG’s MDA

initiative. The OMG’s MDA initiative has contributed a great deal to the interest in

software modelling and model-driven techniques [15]. MDA comprehends a set of OMG

standards that enables the specification of models and their transformation into other

models and complete systems while separating the specification of the operation of a

system from the implementation [18], [27]. The result is an architecture that is not tied

to any language, vendor, or platform [16].

The core of OMG’s MDA, at the middle of Figure 2.8, is based on OMG’s well-known

modelling standards: UML, Meta Object Facility (MOF) and Common Warehouse

Metamodel (CWM) [21].

Figure 2.8 OMG's MDA

According to Brown et al. in [20], the four principles underlying the OMG's view of MDA

are as follows:

1. Models expressed in a well-defined notation are fundamental to understand

systems for enterprise-scale solutions.

2. Building systems can be prearranged around a set of models by imposing a series

of transformations between models organized into an architectural framework of

layers and transformations.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

26 Filipa José Faria Nóbrega – January 2019

3. A formal underpinning for describing models in a set of metamodels facilitates

meaningful integration and transformation among models so that automation

through tools is possible.

4. Industry standards provide openness to consumers, and foster competition

among vendors.

The primary benefits of MDA are portability, cross-platform interoperability, reusability

and productivity through architectural separation of concerns [16]. Other goals are

improved application quality, the rapid inclusion of new technology, reduced cost and

development time.

2.5 OMG’S METAMODELING FRAMEWORK

The Object Management Group (OMG) is the world's major international, open

membership, non-profit technology standards consortium that creates and maintains

software interoperability specifications to help computer users solve integration

problems, founded in 1986 [18], [38]. As of 1986, OMG has proven to be able to stay

abreast of evolving business and IT needs and remain a foremost force in the industry

[39]. By encouraging industrywide adoption of guidelines and object management

specifications, OMG fosters the software development that supports open architecture,

enabling multiple systems to work together [40].

Although OMG was originally established for the standardization and promotion of

distributed OO systems, it is now focused on modelling and model-based standards,

providing the IT industry with a proven process for establishing and promoting model-

based standards. OMG’s model-based standards extend beyond programming, enabling

powerful visual design, execution, and maintenance of software [39].

OMG’s model-based standards for analysis and design include Unified Modelling

Language (UML) and the repository standard Meta-Object Facility (MOF) [41]. The UML

is a result of fusing the best features of the various OO approaches into one modelling

language and notation [42]. Adopted as an OMG specification in 1996, it represents a

collection of best engineering practices that have proven best and most successful

exemplar in the modelling of large and complex systems and is a well-defined, widely

accepted response to business and IT needs. As a result, UML became the first de facto

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 27

standard for the IT industry [41], [42]. The MOF is OMG’s standard for metamodeling and

metadata repositories and lies at the core of MDA. Fully integrated with UML, it uses the

UML notation for describing repository metamodels. MOF is basically a meta-metamodel,

or model of the metamodel (named an ontology2) capable of defining a common, abstract

language for specifying metamodels. Although UML existed before the MOF, UML is an

instance of the MOF [41]. This is because UML was originally not formally defined. The

MOF was defined later to specify UML formally based on the MOF.

The OMG’s metamodeling framework is a model-driven, OO framework for specifying,

managing, interchanging, constructing, and integrating models in software systems. The

aim of the framework is to support any type of model and to allow new types of models

to be added as required. To achieve this, the framework uses a four-layer metamodeling

architecture proposed by OMG.

2.5.1 Design Principles

The framework has been architected according to the following design principles [44]:

4. Modularity. The principle of strong cohesion and loose coupling, introduced by

Larry Constantine, is applied to group constructs into packages and organize

features into meta-classes.

5. Layering. Layering is applied in two different ways: 1) to separate the core

constructs from the higher-level constructs that use them; 2) to consistently apply

the 4-layer metamodel architectural pattern to separate concerns across layers of

abstraction.

6. Partitioning. Partitioning is used to organize conceptual areas within the same

layer.

7. Extensibility. The UML can be extended in two ways: 1) to define a new dialect by

using profiles; 2) A new language related to UML can be specified by reusing part

of UML’s metamodel library and augmenting with appropriate meta-classes and

meta-relationships.

2 Ontologies are “formal explicit specifications of a shared conceptualization” [43].

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

28 Filipa José Faria Nóbrega – January 2019

8. Reuse. A metamodel library is provided that is reused to define the UML

metamodel, as well as other architecturally related metamodels, such as the Meta

Object Facility (MOF) and the Common Warehouse Metamodel (CWM).

2.5.2 The Four-Layer Metamodeling Architecture

The four-layer metamodeling architecture proposed by OMG consists of a hierarchy of

model layers where each (except the top) is characterized as an instance of the layer

above [31], [45]:

− M3 Layer: The foundation of the four-layer metamodeling architecture. The MOF,

a self-describing meta-metamodel capable of defining the language for specifying

metamodels.

− M2 Layer: The metamodel capable of defining a language for specifying models,

that is, the structure and semantics. Examples of metamodels are UML and CWM.

− M1 Layer: The model capable of defining languages that describe semantic

domains, that is, the organization and behaviour of a system.

− M0 Layer: The concrete data objects the system is designed to manipulate at some

point in time. The run-time instances of model elements defined in a model.

Figure 2.9 illustrates an example of the four-layer metamodeling hierarchy and how these

layers relate to each other [44], [46]. Note that the information on each layer is a more

abstract representation of the information at the layer below it.

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 29

Figure 2.9 An example of the four-layer metamodeling hierarchy

The four-layer metamodeling architecture provides the capability of representing

information at multiple layers of abstraction [46]. By describing the information on each

layer according to the model on the layer above, it increases the precision and correctness

of the specification [44]. Moreover, it has the advantage of easily accommodating new

modelling standards as MOF instances at the M2 layer [31].

2.5.3 Meta Object Facility

The Meta Object Facility (MOF) is an OMG standard for metamodeling and metadata

repositories and constitutes the core of the MDA [27], [46]. MOF is basically a meta-

metamodel, or model of the metamodel (named an ontology2) capable of defining a

common, abstract language for specifying metamodels [41]. Fully integrated with UML, it

uses the UML notation for describing repository metamodels, which can cause confusion

since UML is an instance of the MOF. Even though UML existed before the MOF, UML was

originally not formally defined – that is, it was only defined in “words” [15]. The MOF was

defined later to specify UML formally based on the MOF (UML 2.0). Thus, MOF is a self-

describing meta-metamodel. Formally, this is possible through the specification of

packages/namespaces for model elements and the MOF layered architecture where

model elements can be in different meta-layers. The MOF defines the model elements,

syntax, and structure of metamodels that are used to construct them [41]. The model

elements are defined in terms of abstract syntax, well-formedness rules, and semantics.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

30 Filipa José Faria Nóbrega – January 2019

The MOF is not only important as a formal, solid foundation of metamodels, it is also

essential for the OMG's standardization efforts and the tool to define the meta-metamodel

completely, formally, and correctly and to guarantee software interoperability and

portability [15], [41].

2.5.4 Common Warehouse Metamodel

The Common Warehouse Metamodel (CWM) is an OMG standard for metadata

interchange in the data warehousing and business analysis environments, proposed by

IBM, Oracle, and Unisys in 1998 [41]. CWM extends the OMG’s well-known metamodeling

architecture defining a common metamodel and interchange mechanism for

interoperable databases, tools, and applications. The CWM specification is built upon

existing OMG technology standards for metadata and repository architectures – that is,

UML, MOF, and XML-based Metadata Interchange (XMI). The CWM is organized in small,

understandable packages prearranged into five functional layers, where each package

addresses the modelling requirements of some subdomain of data warehousing and

business analysis as shown in Figure 2.10.

Figure 2.10 CWM packages prearranged into five functional layers

− Object Model Layer, which represents the lowest layer in the CWM, a subset of

the UML used as the base metamodel for all other CWM packages.

− Foundation Layer, which consists of metamodels that extends Object Layer to

facilitate the modelling of common services.

Chapter 2 Literature Review

Filipa José Faria Nóbrega – January 2019 31

− Resource Layer, which consists of metamodels used to construct metadata

defining relational, record-oriented and multidimensional databases. The layer

contains metamodel packages such as Relational, Record, Multidimensional and

XML that extend both the Object Model and Foundation layers. The Relational

package represents the largest single package in CWM and is SQL-compliant,

wherein the SQL logical aspects are described – that is, tables, columns, views,

trigger, procedures, and so forth.

− Analysis Layer, which consists of metamodels for defining business analysis

metadata on top of the various resource models.

− Management Layer, which consists of metamodels for the modelling of common

data warehouse management.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

32 Filipa José Faria Nóbrega – January 2019

C
H

A
P

T
E

R

 3
3 DEVELOPMENT

his chapter presents the software requirements gathering and analysis as the first

step in developing this dissertation work. The outcome consists of a

comprehensive set of functional requirements (FRs) and non-functional requirements

(NFRs). The system design is then established from the software requirements. The

software to satisfy the system design has to be produced. As a result, we provide a brief

overview of the system implementation.

3.1 FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

The first step in developing a successful software project is to properly capture the

software requirements in the process of requirement engineering (RE). The output of this

phase is a comprehensive set of functional requirements (FRs) and non-functional

requirements (NFRs). Functional requirements define what the system should do,

whereas non-functional requirements provide constraints and guides to the system

architecture [47].

The following challenges and issues faced by the IT developers were gathered:

1. Because the data transfer is ineffective, the server receives all data from the

connector and then saves it in memory until all data is sent to the client.

2. The system needs to support more than one Result Set.

3. The connector does not have a means of sharing important information with the

client.

4. The system has limited possibilities regarding how to test a connection with the

data provider according to connector properties.

5. The system does not support different types of parameter’s direction, such as OUT,

INOUT and RETURN.

T

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 33

6. The Connector API3 is difficult of learning, lacks understandability – developers

do not understand how it works –, and hides functionality. Furthermore, the

database schema was designed for static schemas making difficult to implement

dynamic schemas, and the conditional expression is not well-made containing

several exceptions and missing important information.

7. The system needs to provide means of throwing meaningful exceptions. A set of

exceptions with a specified error code to get additional information is needed.

8. Multiline INSERT is not supported.

9. The connectors cannot set a maximum length for a string attribute; therefore, it is

treated as an “unlimited” string. As a result, the server cannot predict the size and

allocate memory.

10. The system needs to improve compatibility with T-SQL.

11. The system needs to have a possibility to create custom stored procedures and

views.

12. The system needs to have detailed statistics of executed queries.

After understanding the challenges and issues, we discussed with the IT developers the

functional requirements, explicitly, the features and functions of the Connect Bridge

Development Kit (CBDK). In other words, what does the system do? In the end, they

agreed that CBDK has the functional requirements shown in Table 3.1.

Table 3.1 Connect Bridge Development Kit FRs

3 MG Framework

No. Requirement

FR-1 The software will support T–SQL data manipulation commands

FR-2 The software will support multiline INSERT

FR-3 The software will support all possible kinds of parameter’s direction

FR-4 The software will provide error handling (e.g. custom exceptions)

FR-5 The software will support more than one Result Set

FR-6 The software shall allow defining most database objects

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

34 Filipa José Faria Nóbrega – January 2019

We reviewed these functional requirements in terms of feasibility, completeness, and

accessibility, and obtained the necessary sign-off.

Then, discussions with the IT developers revealed the non-functional requirements

described in Table 3.2.

Table 3.2 Connect Bridge Development Kit NFRs

We reviewed these non-functional requirements in terms of feasibility, completeness,

and impact on the system design, and obtained the necessary sign-off. These

requirements were included in the following categories: usability, documentation,

performance, and maintainability.

FR-7 The software must provide detailed statistics of executed queries (e.g. number

of affected rows)

FR-8 The software will support static and dynamic schemas

FR-9 The software will support large objects (BLOBs and CLOBs)

FR-10 The software shall provide means of returning the last inserted rows

FR-11 The software must maintain backwards compatibility with “old” connectors

FR-12 The software shall allow accessing database objects by unique name and

ordinal position

No. Requirement

NFR-1 The software will include technical documentation

NFR-2 The software will include user documentation

NFR-3 The software will be easy to learn for both novices and seasoned developers

NFR-4 Developers shall be able to develop the connector’s basic functionality in less

than 10-man-day

NFR-5 The software shall provide developers with necessary functionalities and to

permit developers with different needs to adapt and use the system

NFR-6 The software shall allow detecting and managing errors without leaving the

error undetected

NFR-7 The software will work with the minimal use of resources (i.e. memory)

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 35

3.2 ARCHITECTURAL DESIGN

The design goal of the CBDK is to provide a simple, public API for the creation of

connectors to integrate with CB Server, which supports relational to object and relational

to relational mapping. In this setting, the API exposes a set of common interfaces to

migrate a data source (relational or non-relational) to SQL-based, relational database.

This section describes the architectural design of the API from the requirements

summarized in Section 3.1. First, we design the metamodel that defines the abstract

syntax of the metadata. An OMG specification is used as a formal reference to design the

metamodel [34], [48]. Second, we design the command that defines the abstract syntax of

the data manipulation language. The Pipes and Filters style is used to design the

command. Finally, we design the connector to define the abstract syntax of a functional

connector, as well as the exceptions that define a rich set of custom exceptions with

additional information (e.g. error code, message, and so on), respectively. For modelling

purposes, UML concepts and drawing conventions, which are detailed in Appendix A, are

used.

3.2.1 Designing the Connector Metamodel

The main goal that is pursued with the Connector Metamodel (CM) is to provide a semi-

formal model of a language for the definition of relational and non-relational data

sources. To achieve this goal in an effective and consistent manner, we follow the MDD

approach since it improves software development lifecycle by providing a higher level of

abstraction for metamodeling [49]. In this setting, the MDA initiative by the OMG provides

several important OMG’s well-known modelling standards such as MOF, UML and CWM,

which are designed according to the four-layer metamodeling architecture. MOF serves

as the common model of CM.

At its core, the CM extends the OMG’s established four-layer metamodeling architecture

that customizes it for the needs and purposes of the relational or non-relational data

sources. As such, it has a modular architecture built on the object-oriented basis that

describes the parts from which it is constructed and how those parts are arranged. Figure

3.1 illustrates how the CM’s architecture conforms to the classic four-layer metamodeling

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

36 Filipa José Faria Nóbrega – January 2019

architecture. Additionally, CM supports a model-driven approach, in which formal models

are constructed according to the specifications of the metamodel.

Figure 3.1 Connector Metamodel’s Architecture

The CM results in class diagrams developed using MOF modelling constructs. We

designed the metamodel in a modular, or packages, way. The metamodel is defined at

OMG’s M2 level and is organized in four small, logical packages: Object Model, Data

Types, Relational, and Collections as shown in Figure 3.1. Each package covers

dissimilar aspects of the metamodel.

3.2.1.1 Object Model Package

The Object Model package contains the basic concepts used to describe the structure of

object-oriented data sources. We used the semantics defined in the M3 layer (MOF Model)

for the Object Model. Then, a common vocabulary was studied for a better understanding

of “new” basic concepts. Finally, several rules were applied which resulted in removals,

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 37

additions, and replacements. The semantics in the Object Model package are as follows

(see Figure 3.2):

Element (from MOF). The foundation for all other modelling concepts in the

metamodel. An Element – a constituted of a model – has no attributes and provides

a single point from which all objects can be found.

Descriptor. A textual annotation that can be attached to an element. Every kind of

element may own a descriptor. The descriptor for an element adds no semantics

but may represent information useful to the reader of the model.

Named Element (from MOF). An element in the model that has a name. The name

is used for identification of the Named Element within the Namespaces wherein it

is defined or accessible.

Namespace (from MOF). An element in the model that contains a set of owned

elements that can be identified by name within the Namespace. Typically, nearly

every element in the model will be owned by some Namespace, which is a Named

Element. The composite association between Namespace and Named Element

allows Namespaces to own Named Elements, and consequently, other Namespaces.

This association allows Named Elements to be organized in hierarchical, or tree-

like, arrangements wherein the parent Namespace is said to own its child Named

Elements. Accordingly, if an element of a Namespace with the name “Production”

is a Named Element with the name “Product”, the fully qualified name of a Named

Element is “Production.Product”.

Constraint (from MOF). An assertion that indicates a restriction that must be

satisfied by any valid realization of the model containing the constraint. A

constraint is attached to a set of constrained elements, and it represents

supplementary semantic information about those elements.

Data Type (from MOF). A named element that specifies a set of allowed data

values. A Data Type constrains the values represented by a Typed Element.

Typed Element (from MOF). A named element that has a type specified for it.

Ordinal Element. A named element that has an ordinal position specified for it,

which stipulates where an element is in an order.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

38 Filipa José Faria Nóbrega – January 2019

Property (from MOF). A structural element that represents an attribute.

Queryable Element. A namespace that can be manipulated by the SQL language.

As it is a Namespace, allows Named Elements to be collected in hierarchies.

Typically, a Queryable Element owns a set of Properties and/or Constraints.

However, this restriction is not implied in the model description. Considering this,

we end up with an even more flexible model.

Model. A view of a physical system. In other words, an abstraction of the physical

system.

Figure 3.2 Abstract Syntax for Object Model Package

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 39

The Named Element, Namespace, Data Type, Constraint, and Property semantics in the

Object Model package are the pillars of CM. Note that the Object Model package

represents a subset of the MOF Model and is used as the base metamodel.

The main goal that is pursued with the Object Model package is to provide a familiar,

common set of metamodel concepts, relationships, and constraints for defining mainly

object-oriented data sources. These concepts create an environment wherein the focal

point is their purposes. The primary role of the Object Model package is to make clear

why some commonly used concepts, such as Table and Column, supports object-oriented

concepts like Entity and Attribute. Therefore, if an object-oriented data source cannot be

visualized or created through the Relational package, the Object Model package can be

used.

3.2.1.2 Data Types Package

The notion of data type – a named type that consists of a set of allowed data values – is

central to most modern programming languages and database systems. The Data Types

package provides the infrastructure required to support the definition of primitive,

parametric and complex data types. The semantics in the Data Types package are as

follows (see Figure 3.3):

Parametric Type. A data type – parameterized over type – that is determined at

runtime.

Complex Type. A data type for defining structured data in the form of one or more

properties, each of which has a data type and describes an instance of a data type.

A complex type is a Namespace; as such, it has the capability of owning Named

Elements. However, some boundaries must be taken into consideration like

Complex Types can only exist as a type; Constraints cannot be defined inside of

Complex Types; and Complex Types cannot participate in relationships. The

primary, advanced feature of a Complex Type is to include a set of methods.

Table Type. A complex data type for defining the structured data of a specific table.

JSON Type. A complex data type for accessing data in a JavaScript Object Notation

(JSON) document. The JSON Type provides several advantages over storing JSON-

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

40 Filipa José Faria Nóbrega – January 2019

format strings in a string Property, such as automatic validation of JSON

documents stored in a JSON Property, and optimized storage format.

Figure 3.3 Abstract Syntax for Data Types Package

Primitive Type (from MOF). A predefined data type without any substructure.

Within the boundaries imposed by CB Server, we defined the primitive data types.

A primitive data type definition requires information, such as precision, scale,

maximum length, octet length, and/or data type code; which is used to inform

about how to handle with a Typed Element based on its data type. Additionally, we

defined a noteworthy method for converting a given value object to the common

language runtime (CLR) type.

The Data Types package provides a familiar, common set of concepts for defining both

object-oriented and relational data types. In its first definition, we only considered

primitive data types – decimal, Int16, Int32, Int64, UInt16, UInt32, UInt64, Single, char,

string, DateTime, Boolean, double, byte array, and byte. Then, we introduced the

parametric data type as a consequence of having Typed Elements whose output data type

depends on the input; thus, the type could be determined at runtime as desired. Along

with the parametric data type, we introduced a “new” primitive type for generalization of

all other types: Any Type, which is the type to which all other types conform. Next, we

introduced the complex data types as a result of having Typed Elements whose type

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 41

represents a table type or a JSON type. Both complex data types do not have defined

methods. Finally, we introduced a “new” primitive type: signed byte, which was missing.

3.2.1.3 Relational Package

Relational database concepts can be described by the Relational package. The metamodel

for the Relational package, as the name suggests, supports the description of SQL-based

relational databases, including its object-oriented extensions.

Though the Relational package is adequate for the definition of relational data, it is

unlikely that it can hold a complete description of any commercial relational database

data model. This is because the metamodel supports the logical aspects – tables, views,

columns, procedures, functions, and so on – but not the physical aspects – file locations,

attributes, indexes, and similar characteristics – of relational databases. These aspects of

relational databases are not commonly the kind of information that needs to be defined.

The semantics in the Relational package, which satisfies FR-6, are as follows (see Figure

3.4):

Schema. A logical grouping of database objects. It is the conceptual organization

of the relational database. A schema is metadata. It may own tables, views,

functions, data types, and procedures.

Table. A logical structure identifiable within the schema. A table may own columns

and constraints.

View. A virtual table who provides an alternative way of looking at the data in one

or more tables. A view can be used to perform joins and simplify multiple tables

into a single virtual table and hide complexity. A view may own columns.

Procedure. A namespace that accepts input parameters and possibly will return

one or more values. A procedure is mainly used to perform an action. A procedure

may own parameters.

Function. A namespace that accepts input parameters and must return one or

more values. A function may own parameters.

Column. A property owned by a table or view.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

42 Filipa José Faria Nóbrega – January 2019

Parameter. A property owned by a function or procedure. The direction property

specifies whether a value is passed into, out of, or both into and out of the owning

function or procedure. Thru the direction property, FR-3 is fulfilled.

Figure 3.4 Abstract Syntax for Relational package

Not Null. Ensures that a constrained element has no NULL value.

Primary Key. Enforces data integrity and ensures unique identification.

Unique Key. Ensures that all values of a constrained element are dissimilar.

Foreign Key. Enforces data integrity and establishes a link between two Named

Elements.

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 43

The Relational package provides a familiar, common set of concepts for defining

relational databases. The envisioned outcome is to empower the definition of relational

and object-oriented data sources through the Relational package.

3.2.1.4 Collections Package

Several modern programming languages and DBMSs offer means of creating and

manipulating collections of related objects. A program may create and reference many

objects. A database may hold a greater collection of objects. To provide this significant

characteristic in an effective and consistent manner, the Collections package provides the

infrastructure required to support the definition of collections of related objects which

can be individually accessed by index or key. The semantics in the Collections package,

which satisfies FR-12, are presented in Figure 3.5.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

44 Filipa José Faria Nóbrega – January 2019

Figure 3.5 Abstract Syntax for Collections package

Any modern object-oriented programming language provides this as well. So, what

features does Collections package offer us? The major feature of Collections package is to

provide fast search based on key and type, and index-based access; wherein the main

enhancement is performance and ease of use. Additionally, the Collections package

provides eager and lazy loading semantics to load related data. By means of lazy load, the

performance improvements are significant if the initialization of the object is costly. See

Appendix B.2.1 for a detailed explanation of this solution.

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 45

3.2.2 Designing the Command

As described throughout the previous chapters, when a user inputs an SQL statement or

query through a client application, the SQL statement is collected by the CB Server for

processing in a parse tree after the SQL statement has been evaluated according to the

rules of a formal grammar. A parse tree is a data structure that represents a parsed

statement. The parsed statement is expected to be formally defined into a formal model.

As a result, a formal definition of the semantics of SQL queries has to be well-defined. To

achieve this, we had to extract and consolidate several major concepts found in the SQL

Grammar (see Appendix C) and use them as the basis for our formal model.

Figure 3.6 Package Diagram - Command packages

The Command, which satisfies FR-1, has a modular, or packages, architecture built on T-

SQL basis that describes the parts from which an SQL statement is constructed and how

those parts are arranged. The Command is organized in four substantial, understandable

packages: Command, Data Handler, Argument, and Filter criteria as shown in a

package diagram, Figure 3.6. Each package covers different parts of an SQL statement.

This is shown by the following queries.

Q1 SELECT DISTINCT <argument>

 FROM <reference table>

 WHERE <filter criteria>

 GROUP BY <argument>

 HAVING <filter criteria>

 ORDER BY <argument>

 LIMIT <argument> OFFSET <argument>

Q2 SELECT TOP 5 <argument>

 FROM <reference table>

 WHERE NOT EXISTS <subquery>

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

46 Filipa José Faria Nóbrega – January 2019

3.2.2.1 Command Package

The Command package contains the basic concepts used to describe an SQL statement in

accordance with T-SQL, which is a Microsoft’s extension of SQL Language and expands on

the SQL standard. This standard was selected because of its widespread acceptance in the

database field and because it is the standard already used by the CB Server.

Although the Command package is suitable for the definition of the semantics of SQL

statements, it is unlikely that it can hold a complete description of ANSI/ISO SQL

standard. This is because Command package supports concepts which are consistent with

the SQL grammar defined by CB Server. The core semantics in the Command package are

as follows (see Figure 3.7):

Command. An SQL command that specifically relates to data handling. Some of

these commands perform data definition functions; and other data manipulation

functions. We only consider the data manipulation commands that allow inserting,

updating, deleting, and retrieving data from the data source.

Statement. An SQL statement queries or manipulates data in an existing data

source. A Statement is a Command. As such, it has the capability of handling data.

Data Handler. A data handler consists of a chain of sequential processing handlers

arranged so the information flows in these handlers from the sink calling for data

until the source between directly connected handlers. We follow the Pipes and

Filters style – pull flow variant. The aspects described here are discussed in greater

detail in the subsequent section. Note that a data handler is a data structure that

represents a parsed statement. Every single Data Handler will be owned by some

Statement.

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 47

Figure 3.7 Abstract Syntax for Command Package

3.2.2.2 Data Handler Package

The Data Handler package provides the infrastructure required to support the definition

of a parsed statement – that is, the parts from which it is constructed and how those parts

are arranged. We follow the Pipes and Filters style. This architectural style was selected

because of its independence and flexibility. The Pipes and Filters style supports three

ways by which information flows between directly connected handlers: push, pull, and

pull/push. We selected the pull flow variant. The rationale behind the selection of the pull

flow variant was as follows: 1) a request may generate large amount of data; 2) different

sources may exist for a request (e.g. Join between two or more sources); and 3) the handler

receives information by generating a request in which the information flows from the sink

calling for data until the source. See Appendix B.1.1 for a detailed explanation of this

solution. The core semantics in the Data Handler package are as follows (see Figure 3.8):

Data Source. A data handler in the chain of processing handlers. The

responsibility of a source element is to provide input data.

Data Filter. A data handler in the chain of processing handlers that encapsulates

a processing step (algorithm). The responsibilities of a filter element are: 1) get

input data, 2) perform one or more operations on its input data, and 3) supply

output data. The basic activities of a filter element, often combined in a single filter,

are as follows:

1. Enrich input data;

2. Refine the input data (e.g. filter out “uninteresting” input, sort input);

3. Transform input data (e.g. perform calculation).

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

48 Filipa José Faria Nóbrega – January 2019

Figure 3.8 Abstract Syntax for Data Handler Package

Data Sink. A data handler in the chain of processing handlers. The responsibility

of a sink element is to consume the output data (that is, the result of the complete

computation).

The SQL data manipulation commands – JOIN, WHERE, ORDERBY, SELECT, UPDATE, and

so forth (see Figure 3.8) – are widely understood and will not be further discussed here.

See Appendix D.1 for a complete definition of the abstract syntax for Data Handler

package.

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 49

To further illustrate how can classes represent the parts from which an SQL statement is

constructed and how those classes can be arranged, two concrete examples are given

below in which the Class-Responsibility-Collaborator (CRC) model is used.

For example, for the following SQL statement, Figure 3.9 is given below.

Q1 UPDATE Customers

 SET Country= ‘Portugal’, City = ‘Lisbon’

 WHERE CustomerId= 1

Figure 3.9 Transformation of Q1 into a chain of sequential processing handlers

In yet another example, for the following SQL statement, Figure 3.10 is given below.

Q2 SELECT DISTINCT *

 FROM Customers

 ORDER BY Country ASC

Figure 3.10 Transformation of Q2 into a chain of sequential processing handlers

We have defined that the data handler’s state is captured and externalized so that it can

be set only by the Server Layer and accessed by the Plugin Layer. As a result, we end up

simplifying the data handler implementation details.

3.2.2.3 Argument Package

The notion of data – raw facts of interest to the user – is central to all modern

programming languages and database systems. In fact, in database systems, at the

intersection of every database table’s column and row is a specific data item called a value

from which we can extract meaningful relationships and trends. The Argument package

provides the basic concepts used to describe the various kinds of values, as well as

expressions and functions in a parsed statement. Remember that functions examine data

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

50 Filipa José Faria Nóbrega – January 2019

and calculate a value based on the data, while expressions are an ordered combination of

data values and operations that can be evaluated to produce a single value. The semantics

in the Argument package are as follows (see Figure 3.11):

Argument. The foundation for all other modelling concepts in the Argument

package. An argument is a typed element that may represent a value.

Identifier. An argument that may uniquely identify a value. SQL Identifiers are

often used to represent aliases, constants, variables, column name and so forth.

Constant. An identifier that may represent a value. Logically enough, the value of

a constant never changes. In some SQL statements a numeric, string or date data

value has to be expressed in text form. For instance, in the following SQL statement

the value for each column is specified in the VALUES clause:

Q1 INSERT INTO Department (DepartmentID, Name, GroupName, ModifiedDate)

VALUES (115, 'Engineering', ‘Development’, '2018-05-13 14:15:07.000')

Constant data values are also used in expressions, such as in the following SQL

statement:

Q2 SELECT *
 FROM [Product]
 WHERE [Price] > (2 * [Weight]) + 5

Variable. An identifier that may represent a value. Logically enough, the value of

a variable may change. For instance, in the following SQL statement a numeric

value is stored in a variable named @price:

Q1 UPDATE Product

 SET Price= @price

 WHERE ProductId= 151

Column Argument. An identifier that may represent a column-reference. A

column contains values, one in each row of a table. SQL statements often refer to

such values. For instance, in the following SQL statement:

Q1 SELECT Price

 FROM Product

 WHERE Size = ‘M’

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 51

Size is a column-reference. This reference contains the value ‘M’. Price is also a

column-reference, but its value is unknown until the previous SQL statement

executes.

Column references are also used in aggregate function, such as in the following

SQL statement:

Q2 SELECT MAX (Price)

 FROM Product

Price is a column-reference. When a column-reference is used in an aggregate

function, the column of the SQL statement results in a calculated column and hence

has no column name to be used for the specification.

Column Source. A column-reference whose values come directly from the

database.

Column Projection. A column-reference whose values are calculated from the

stored data values – so-called calculated column.

Valued Function. An argument that may represent a function reference. A valued

function is a simple to complex operation.

Aggregate Function. A valued function that may represent a value. Aggregate

functions are used to get information from several rows, process that information

in some way (e.g. complex calculation) and deliver a single-row value. COUNT,

AVG, MAX, MIN, and SUM are well-known SQL aggregate functions. For instance,

in the following SQL statement the value is the number of rows with non-null

values for the table Product:

Q1 SELECT COUNT (*)

 FROM Product

Scalar-Valued Function. A valued function that may represent a value. Scalar-

valued functions are used to calculate a scalar (single) value. For instance, in the

following SQL statement the Price of each Product is calculated as a percentage of

its Weight:

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

52 Filipa José Faria Nóbrega – January 2019

Q1 SELECT Size, Price, (Price/Weight) * 100
 FROM [Product]
 WHERE [Weight] > 0

The division (X / Y) and the multiplication (X * Y) are scalar-valued functions (so-

called expressions).

Scalar-valued functions represent several kinds of operations (not only arithmetic

operations), as such in the following SQL statement:

Q2 SELECT *
 FROM [Product]
 WHERE [Price] > CEIL([Weight]) + 88.99

The addition (X + Y) and CEIL(Z) are scalar-valued functions.

Figure 3.11 Abstract Syntax for Argument Package

Set. An argument that may represent a set of values. For instance, in the following

SQL statement the search criterion tests whether a data value matches one of a set

of target values:

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 53

Q1 SELECT *

 FROM [Customers]

 WHERE [Country] IN (‘Germany’, ‘Portugal’, ‘France’)

Block. A set whose values are enclosed in parentheses.

The Argument package provides a familiar, common set of concepts for describing the

basic elements of the SQL language, such as constants, variables, expressions, functions,

and so on. Functions can be parsed directly in a hierarchical data structure, which follows

the Composite Pattern described in Appendix B.2.2. The tree-structure of functions is

provided by the composite association between Function and Argument in which the

result of one function may act as an actual parameter to its containing function. For

example, the expression (Price+5)*(Weight/10) can be represented in a functional

notation as follows:

Mult(Add(Price,5), Div(Weight,10))

3.2.2.4 Filter Criteria Package

The Filter Criteria package provides the basic concepts used to describe a rich set of

search criteria (so-called predicates in the ANSI/ISO standard) that allow specifying a

condition that is “true”, “false”, or “unknown” about a given row or group of data. Simple

SQL search criteria can be combined to form more complex ones, which in turn may

themselves be compound search criteria. To accomplish this, we follow the Composite

Pattern. This design pattern was selected because of its ability to represent part-whole

hierarchies by composing objects into tree structures. See Appendix B.2.2 for a detailed

explanation of this solution. The core semantics in the Filter Criteria package are as

follows (see Figure 3.12):

Filter Criteria. The foundation for all other modelling concepts in the Filter

Criteria package. A search condition that specifies a condition that is “true”, “false”,

or “unknown” about a given row or group of data. The reflexive composite

association from Filter Criteria to itself allows Filter Criteria to own Filter Criteria.

This association allows Filter Criteria to be organized in hierarchical, or tree-like,

arrangements wherein the parent Filter Criteria is said to own its child Filter

Criteria.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

54 Filipa José Faria Nóbrega – January 2019

Binary Criteria. A filter criterion that combines two search criteria.

Unary Criteria. A filter criterion that negates a search criterion.

Comparison Criteria. A filter criterion that compares multiple arguments.

Remember that an argument can be as simple as a column name or a constant, or

they can be expressions and functions. Comparison criteria are often used to

represent basic predicate, quantified predicate, BETWEEN predicate, IN predicate,

and so forth. For instance, in the following SQL statements the ANY is used in

conjunction with one of the six SQL comparison operators (=, <>, <, <=, >, >=) to

compare a value with a set of values (note that a Basic Comparison Criteria is said

to own its child Quantifier Criteria):

Q1 SELECT *

 FROM [Product]

 WHERE [ProductID] = ANY (SELECT [ProductID] FROM [ProductDetails])

In yet another example, in the following SQL statement the BETWEEN is used to

check whether a data value lies between two specified values (note that BETWEEN

is an Extended Comparison Criteria):

Q2 SELECT *

 FROM [Product]

 WHERE [ReleaseDate] BETWEEN '2011-06-1' AND '2018-05-1'

Block. A unary criterion whose search criteria are enclosed in parentheses.

Parentheses are often used to build more complex search criteria. For instance, in

the following SQL statement the parentheses are used to ensure portability,

increase the readability of the statement, remove any possible ambiguity and

make programmatic SQL statements easier to maintain:

Q1 SELECT *

 FROM [Product]

 WHERE ([Price] > 100.5)

 OR (Weight IS NOT NULL AND Weight > 10)

Parentheses are used to group the search criteria so that SQL process the search

criteria in the expected order. Search criteria within parentheses are evaluated

first. If the order is not specified by parentheses, NOT has the highest precedence,

followed by AND and then OR.

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 55

It is worthy of note that when an SQL statement is collected by the CB Server for

processing in a parsed statement, CB Server always adds parentheses even when

they are not required (in the search criteria).

Figure 3.12 Abstract Syntax for Filter Criteria Package

The SQL search conditions – IN, EXISTS, IS NULL, LIKE, and so on – are widely understood

and will not be further discussed here. See Appendix D.2 for a complete definition of the

abstract syntax for Filter Criteria package.

To further illustrate how a search criterion can be parsed directly in a hierarchical data

structure, a concrete example is given below. For example, for the following SQL

statement, Figure 3.13 is given below. Remember that search criteria follow the WHERE

clause.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

56 Filipa José Faria Nóbrega – January 2019

Q1 SELECT *

 FROM [Product]

 WHERE ([Name] LIKE ‘%st%’)

 OR (Weight >=10 AND Weight IN (‘XL’, ‘M’))

Figure 3.13 The tree-structure of search criterion

3.2.3 Designing the Connector

As previously stated, the real purpose of this dissertation is to develop an SDK for the

creation of connectors to integrate with CB Server that can be used with minimal

technical support by the developers. In fact, creating connectors can be challenging. As a

result, a set of subroutine definitions, interfaces, classes, common structures, utilities, and

helpers has to be defined to simplify the process of creating connectors. To accomplish

this, we had to identify various major concepts from which to analyse, gather, and model

the requirements.

Figure 3.14 Package Diagram - Connector Packages

The Connector has a modular, or packages, architecture organized in four small,

understandable packages: Connector, Properties, Authentication, and Caching

Provider as shown in a package diagram, Figure 3.14. Each package covers different

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 57

aspects of the creation of “new” connectors to integrate with CB Server. The Connector

package, which depends upon Plugin package4, defines all basic constructs required to

specify the backbone of a functional connector. The Properties package provides the

structure required to support the definition of connector properties which hold

configuration information. The Authentication package contains several kinds of user

authentication (OAuth 1.0, OAuth 2.0, and Basic Authentication). The Caching Provider

package provides the basic concepts underlying in-memory cache that allow improving

the performance and scalability by reducing the effort required to generate content.

We present here only a very small overview of the Connector whose complete definition

can be found in Appendix D.3.

Figure 3.15 illustrates an overview of a functional connector as a realization of Connector

Interface. A functional connector is modelled as a relational database – a collection of both

data and metadata. As well, a functional connector has to provide the result of the

complete computation of a SQL data manipulation command. Because Connect Bridge

Server includes most of the major components of DBMS – that is, a data dictionary, a

query language, and so forth – it is defined as a simulated database system (DBMS).

Figure 3.15 Overview of a functional connector

4 The Plugin package is part of an existing standard library and provides the Plugin interface which contains
properties and methods required to specify a “old” functional connector.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

58 Filipa José Faria Nóbrega – January 2019

3.2.4 Designing the Exceptions

Error handling is one of the most neglected aspects of programming. An experience

shared by almost every computer user is that programs fail with a cryptic, nonsensical,

idiotic, useless, plainly wrong, or even missing error message. In fact, correct and

complete reporting of error information can make the difference between spending 5

minutes or a week on finding the cause of an error. Thus, adequate treatment of errors

become the key factor for the usability of a software product. Consequently, it is usually

a good idea to produce custom exceptions so that computer users see (by the exception

type) if the exception was raised by our code or by foreign code, and more importantly,

since the exceptions are ours, we are able to change their definition to include additional

information (e.g. error code, message, and so on). To accomplish this, we had to identify

as much as possible information that might be relevant in an error situation.

The Exceptions, which satisfies FR-4, has a modular, or packages, architecture organized

in one package called Exceptions. The Exceptions package provides a rich set of custom

exceptions that is ideal for both CB Server and Connector.

Figure 3.16 Abstract Syntax for Exceptions Package

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 59

3.2.5 Summary

In this section, we presented a clear understanding of the architecture’s key aspects,

including the rationale and options considered, such as choosing design patterns and

architectural styles. Through architecture decisions and design rationale, we are capable

of documenting traceability between requirements and technical implementation.

In summary, the CBDK API is organized into 14 small, understandable separate packages

as shown in Figure 3.17. Because understanding the main ideas of each package was our

primary concern, the package descriptions had been simplified and focus on their central

ideas.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

60 Filipa José Faria Nóbrega – January 2019

Figure 3.17 Package Diagram – Package structure of the API

In Figure 3.17, the content and interrelationships of 14 packages are shown. To promote

further understandability, the packages are organized into five large, compound

packages. Figure 3.17 contains 15 packages not 14 as previously mentioned; this is

because Plugin package is not part of the CBDK API. Note that the Dataware package,

which satisfies FR-5, FR-7 and FR-9, is not described in this section; this is because it is

not required to understand other packages and because it was designed by a team

member.

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 61

3.3 IMPLEMENTATION

The architectural design presented in section 3.2 was implemented. This section presents

a brief overview of the implementation. Our solution was implemented using C#

programming language with .NET Framework 4.6.1. and the Visual Studio environment.

The source code is under a non-disclosure agreement to safeguard a company’s

proprietary information.

Figure 3.18 depicts our solution which: (a) supports an open and flexible architecture to

make easier the development of new connectors to integrate with CB Server; and (b)

provides some artefacts/tools which facilitate the development process.

Figure 3.18 Package diagram of the full system (overview of the implementation)

Our solution consists of the following components (those visualized in grey were defined

during the implementation):

− The Information Schema (from Connector API) which is a complete ANSI/ISO

SQL standard definition for INFORMATION_SCHEMA. The information schema

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

62 Filipa José Faria Nóbrega – January 2019

contains the system tables. The system tables hold the database’s metadata. The

definition of the information schema is based on SQL Server Schema Collections,

which is detailed in Appendix G.

− The Connector Metamodel (from Connector API) which is a complete meta-level

representation for modelling relational and non-relational data sources as a

database. The Connector Metamodel realises the connector metamodel design

presented in section 3.2.1. Furthermore (within Factories package), we follow the

Abstract Factory Pattern. This design pattern was selected because of its ability to

create families of related objects without specifying their concrete classes. See

Appendix B.2.3 for a detailed explanation of this solution. Additionally (within

Creator package), we follow the Builder Pattern. This design pattern was selected

because of its ability to separate the construction of a model from its

representation and because it allows instantiating a model by means of eager

loading. See Appendix B.2.4 for a detailed explanation of this solution.

− The Connector Data (from Connector API) for creating tables of data and checking

data consistency. A table of data represents a database result set, which is usually

generated by executing a statement that queries the database. A table of data

consists of a set of rows, each row having the same set of columns and at the

intersection of every column and row is a specific data item called a value.

− The Command (from Connector API) realises the command design presented in

section 3.2.2.

− The Connector (from Connector API) realises the connector design presented in

section 3.2.3. In addition (within Utilities package), we provide helper methods for

encrypting/decrypting, checking and parsing input data.

− The Exceptions (from Connector API) realises the connector design presented in

section 3.2.4.

− The Test (from Unit Test) for validating the source code in the Connector API. The

validation consists of validating individual units of source code through unit

testing so that we could improve the software quality.

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 63

− The Visual Studio (VS) Wizard with Project Template tool (from Tools) tool for

generating the skeleton of a functional connector exploiting the API. A Windows

Form is displayed to gather user input (i.e. name, description, author, version, and

connector properties) and to generate public/private Rivest–Shamir–Adleman

(RSA) key pair.

− The RSA Key Generator tool (from Tools) for generating a public/private RSA key

pair.

3.3.1 Connector API

The Connector API was implemented following the architectural presented in section 3.2.

We started by developing the source code conventionally (i.e. through writing the code

by hand). For this, the following implementation-level rules were applied:

Rule1. Primitive data types are directly mapped to corresponding primitive data

types in the programming language.

Rule2. Enumeration is mapped to the corresponding enumeration in the

programming language.

Rule3. For all classes in the source model, a C# interface was created, respecting the

inheritance and relationships that are defined in the source model. In this sense,

the interface hierarchy reflects the class hierarchy defined in the source model.

Rule4. The class attributes of the type primitive type are mapped to properties with

same definition (i.e. name and data type) in the corresponding interface.

Rule5. The class attributes that are sets (usually, as result of associations), are

mapped to properties in the corresponding interface where the type is mapped to

collection types in the programming language or custom collection types, which

take advantage of Generics to enforce type compliance at compile time.

In total, the architectural design involves 15 primitive data types, 11 enumerations, 117

classes and 47 associations.

For example, for the following fragment of the source model (considering the Named

Element class), the C# interface is given below (by applying Rule1, Rule3 and Rule4).

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

64 Filipa José Faria Nóbrega – January 2019

Figure 3.19 Fragment of the source model – Named Element

public interface INamedElement : IElement

{

 string Name { get; }

 string QualifiedName { get; }

 INamedElement Owner { get; set; }

}

In yet another example, for the following fragment of the source model (considering the

Schema class), the corresponding source code is given below (by applying Rule5).

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 65

Figure 3.20 Fragment of the source model – Schema

internal class Schema : Namespace, ISchema

{

 public Schema(string name) : base(name)

 {

 ...

 Functions = new SubCollection<INamedElement, IFunction>(Elements);

 }

 public sealed override IElementCollection<INamedElement> Elements { get; }

 public IElementCollection<IFunction> Functions { get; }

 ...

}

In Figure 3.20, the notation functions 0..* {subsets ownedElements} means that the set of

elements for the property functions subsets the elements for the property

ownedElements. But C# programming language has no definition for the notion of

subsets. For this, our solution comprehends the SubCollection type (in Collections

Package), which represents a subset of elements. For instance, the set of elements for the

property functions will contain all the functions within the set of the elements of the

property ownedElements.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

66 Filipa José Faria Nóbrega – January 2019

Note that the relationships previously mentioned are established in the class constructor.

The definition of the remaining interfaces and their realizations in classes is a long

repetition of the procedures previously described.

3.3.2 Tools

The Connector API allows settling an open and flexible infrastructure to make easier the

development of new connectors to integrate with CB Server. We briefly present a set of

tools around the Connector API developed which facilitate the development process by

exploiting the Connector API facilities.

The VS Wizard with Project Template, which is depicted in Appendix E.1, provides a

starting point for developers to start creating new connectors to integrate with CB Server.

The project template provides the files that are required for creating a new connector,

includes standard assembly references, and sets default project properties and compiler

options. The VS Wizard opens a Windows Form before the project is created. The form

allows computer users to insert a custom parameter value that is added to the source

code during project creation. To accomplish this, we implemented the IWizard interface.

Figure 3.21 illustrates the project structure.

Figure 3.21 The project structure

Chapter 3 Development

Filipa José Faria Nóbrega – January 2019 67

The RSA Key Generator, which is depicted in Appendix E.2, allows computer users to

generate public/private RSA key pair to the console or to the XML file using

System.Security.Cryptography. The console application includes a simple menu and

requests the connector name.

3.4 SUMMARY

In this chapter, we presented a clear understanding of the overall process, including the

rationale and decisions made in the course of this dissertation work. The overall process

turned out to be iterative: that is, as the requirements changed or as requirements

problems were encountered, the system design or implementation had to be reworked

and retested.

All selected software requirements were satisfied. The system design was originally

established from the software requirements, without considering the constraints

imposed by CB Server. Consequently, there are some functionalities presented on the

final product that are not supported by the CB Server.

Furthermore, on the way to help novice or expert developers, we produced a variety of

documents: a step-by-step guide for creating a connector; a Sandcastle API specification;

and Enterprise Architect (EA) class diagrams. Thus, NFR-1 and NFR-2 were fulfilled.

In short, the final product overcomes the problems previously identified, including

several “new” concepts and constructs.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

68 Filipa José Faria Nóbrega – January 2019

C
H

A
P

T
E

R

 4
4 CASE STUDIES

his chapter presents two examples and case studies to analyse the correctness,

feasibility, completeness, and accessibility of the API. While the first case study

presents a connector for a relational data source (Microsoft SQL Server), the second case

study presents a connector for a non-relational data source (OData). The outcome

consists of a list of issues found in the API and a set of proposals for improvement.

4.1 MICROSOFT SQL SERVER

Microsoft SQL Server (MSSQL) is Microsoft’s relational database management system

which manages the database structure and controls access to the relational data stored

in the database [50]. MSSQL supports ANSI/ISO SQL standard, explicitly T-SQL, which is

a Microsoft’s extension of SQL Language and expands on the SQL standard.

4.1.1 Overview

The real purpose of this case study was twofold: 1) to analyse the correctness, feasibility,

completeness, and accessibility of the API for relational data sources, and 2) because

CB Platform is SQL-compliant, to validate the functionality of the “new” CB Platform. The

output of this work consists of the MSSQL connector, as well as a list of issues and

proposals for improvement.

The development was done conventionally (that is, through writing the code by hand).

The software was developed in C# with the .NET framework 4.6.1. Besides the .Net

framework two important larger libraries were used:

− MG.dll. Connector library required for the creation of connectors to integrate with

CB Server.

T

Chapter 4 Case Studies

Filipa José Faria Nóbrega – January 2019 69

− Microsoft.SqlServer.Scripting.dll5. SQL Server Management Objects (SMO)

library required to execute scripts.

The remaining code was written from scratch.

For developing the MSSQL connector, we set up a development environment that is made

up of at least a SQL Server6 instance installed on the local machine, including the

AdventureWorks20167 sample database, and a CB Platform instance installed on the local

machine, including a license for connector development.

4.1.2 Implementation Details

The development of MSSQL connector was simple and straightforward. This is because

MSSQL connector is a SQL-based relational database for a relational data source. The

overall process of developing MSSQL connector exploiting the API consists of the

following steps:

1. Define the backbone of MSSQL connector.

2. Definition of the metamodel for MSSQL concepts.

a. Get the metadata (i.e., tables, views, columns, parameters, etc.).

b. Convert MSSQL data types to API data types.

3. Generate a SQL statement to execute against the MSSQL and retrieve data.

Step 1. resulted in the backbone of the MSSQL connector. We started by defining the

name, description, author, version, and public/private key, and then we defined the

properties. To minimize complexity only one property was defined:

− Connection String, which specifies information about a MSSQL database and the

means of connecting to it.

Step 2. lead to the instantiation of the connector’s metamodel by means of lazy loading.

5 https://www.nuget.org/packages/Microsoft.SqlServer.Scripting/
6 https://go.microsoft.com/fwlink/?linkid=875802
7 https://www.microsoft.com/en-us/download/details.aspx?id=49502

https://www.nuget.org/packages/Microsoft.SqlServer.Scripting/
https://go.microsoft.com/fwlink/?linkid=875802
https://www.microsoft.com/en-us/download/details.aspx?id=49502

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

70 Filipa José Faria Nóbrega – January 2019

Step 3. We started by defining a data structure containing the parts from which an SQL

statement is constructed. The data structure is provided to all handlers. Each handler fills

the data structure according to its information. We then generate the SQL statement

according to the data structure to execute against MSSQL and retrieve data. Figure 4.1

illustrates the basic workflow here described.

Figure 4.1 Basic Workflow in MSSQL connector

4.1.3 Analysis and Discussion

Figure 4.2 depicts the final result of the MSSQL connector.

Figure 4.2 A screenshot of the MSSQL connector

As a result of the development of MSSQL connector, the following issues and proposals

for enhancement were encountered:

Chapter 4 Case Studies

Filipa José Faria Nóbrega – January 2019 71

1. The system can only show Tables (of the default schema) and Stored Procedures

in the Connection browser as shown in Figure 4.3. This situation is problematic

because users will not possess means of knowing about all other data elements.

Figure 4.3 Comparison between MSSQL and MSSQL connector metadata

2. The system still needs to improve compatibility with T-SQL (on the server side).

Several SQL search conditions, such as EXISTS, ALL, and ANY, as well as

subqueries, are not supported.

3. The system needs to provide the ability to invoke a table-valued function in a

FROM clause as shown in the following SQL statement:

SELECT * FROM [dbo].[ufnGetContactInformation] (1)

4. The API needs to provide more kinds of data types, such as Any Type and

Parametric Type. For instance, in the following definition of the MAX function:

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

72 Filipa José Faria Nóbrega – January 2019

Expression is an input parameter of the type any type, while the return parameter

is of the type parametric type; this is because the return parameter depends upon

the type of the Expression.

5. The API fails to convert some MSSQL data types to API data types, and vice-versa.

6. The API should include some system functions (e.g. SCOPE_IDENTITY).

Our findings suggest that: (a) most of the fundamental issues from the previous CB

Platform still remain unresolved; and (b) the API requires better testing so that errors do

not pass unnoticed. The issues labelled 2 and 3 confirm that most of the functionality

supported by MSSQL is not supported by the “new” CB Platform, while issue labelled 5

confirms that the API generates unexpected errors.

With regards to our findings, we had to make some improvements in both API and CB

Server. First, considering enhancement labelled 4, we introduced the parametric data

type along with the primitive data type Any Type. Second, considering issue labelled 5,

we made corrections in the Convert method for several primitive data types (e.g. string,

byte array), and hence the unit tests were improved. Third, considering enhancement

labelled 6, we introduced the SCOPE_IDENTITY as system function in the Information

Schema (see Figure 4.4), which satisfies FR-10. Fourth, considering issues labelled 2 and

3, a team member made some modifications in the CB Server to improve compatibility

with T-SQL since the CB Server has limited access. Finally, because a “new” web-based

interface was being developed to replace CB Query Analyser and CB Administration Tool,

the issue labelled 1 was left unresolved.

Chapter 4 Case Studies

Filipa José Faria Nóbrega – January 2019 73

Figure 4.4 System function SCOPE_IDENTITY

4.2 OPEN DATA PROTOCOL

Open Data Protocol (OData) is an ISO/IEC approved, OASIS standard for building and

consuming RESTful APIs [51]. The protocol provides a uniform way to describe both the

metadata (i.e., a machine-readable description of the data model exposed by a data

provider) and the data (i.e. sets of data entities and the relationships between them).

Additionally, the protocol supports the editing and querying of data according to the

metadata. An OData metadata document is a representation of a service’s data model

exposed for client consumption. The data exposed by an OData service is described in

terms of the Entity Data Model (EDM). The core concepts in the EDM are entities, entity

sets, singletons, relationships, and operations.

Entities are instances of entity types (e.g. Person, Photo, etc.). Entity types are

nominal structured types with a key. Entity types support inheritance from other

entity types. Entities consist of named properties and may include relationships

with other entities.

Entity sets are named collections of entities (e.g. People is an entity set containing

Person entities).

Singletons are named single entities (e.g. Me is a singleton containing Person

entity).

Relationships have a name and are used to navigate from an entity to related

entities. Relationships are represented in entity types as navigation properties.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

74 Filipa José Faria Nóbrega – January 2019

Relationships may be addressed directly through a navigation link representing

the relationship itself. Each relationship has a cardinality. Relationships may

include binding information to bind the entity to existing entities.

Operations allow the execution of custom logic on parts of a data model. Actions

allow side effects (e.g. an action may be used to extend CRUD operations or to

invoke custom operations). Functions do not allow side effects. Actions and

functions may include parameters and return type.

4.2.1 Overview

The real purpose of this case study was to analyse the correctness, feasibility,

completeness, and accessibility of the API for non-relational data sources. The output

of this work consists of the OData connector, as well as a list of issues and proposals for

improvement.

The development was done conventionally (that is, through writing the code by hand).

The software was developed in C# with the .NET framework 4.6.1. Besides the .Net

framework three important larger libraries were used:

− MG.dll. Connector library required for the creation of connectors to integrate with

CB Server.

− Microsoft.OData.Edm.dll8. Microsoft OData library required to represent,

construct, parse, serialize and validate Entity Data Models.

− Newtonsoft.Json.dll9. JSON library required to serialize and deserialize JSON.

The remaining code was written from scratch.

For developing the OData connector, we set up a development environment that is made

up of at least a CB Platform instance installed on the local machine, including a license for

8 https://www.nuget.org/packages/Microsoft.OData.Edm/
9 https://www.nuget.org/packages/Newtonsoft.Json/

https://www.nuget.org/packages/Microsoft.OData.Edm/
https://www.nuget.org/packages/Newtonsoft.Json/

Chapter 4 Case Studies

Filipa José Faria Nóbrega – January 2019 75

connector development, a Postman10 instance installed on the local machine, and several

OData APIs (e.g. Trippin11, Microsoft Graph12, and Microsoft Dynamics CRM).

4.2.2 Implementation Details

The development of OData connector was more complicated. This is because OData

connector is a SQL-based relational database for a non-relational data source (e.g.

relationships, complex types, XML parser, JSON parser, etc.). The overall process of

developing OData connector exploiting the API consisted of the following steps:

1. Define the backbone of OData connector.

2. Definition of the metamodel for OData concepts.

a. Get the metadata (i.e., entities, entity sets, operations, etc.).

b. Convert OData data types to API data types.

3. Generate an URL to execute against the OData service and retrieve data.

4. Deserialize JSON data into Result Set.

Step 1. resulted in the backbone of the OData connector. We started by defining the name,

description, author, version, and public/private key, and then we defined the properties.

To control how the OData connector models OData APIs as a database, the following

properties were defined:

− Service Root URL, which identifies the root URL of an OData service.

− Use Simple Names, which specifies restrictions on OData’s Name attribute.

− Supports Expand, which specifies restrictions on OData’s $expand query option.

− Maximum Expansion Depth, which specifies restrictions on OData’s $expand

query option.

10 https://www.getpostman.com/
11 https://services.odata.org/V4/TripPinServiceRW/$metadata
12 https://graph.microsoft.com/v1.0/$metadata

https://www.getpostman.com/
https://services.odata.org/V4/TripPinServiceRW/$metadata
https://graph.microsoft.com/v1.0/$metadata

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

76 Filipa José Faria Nóbrega – January 2019

To authenticate to an OData service, several connection properties were defined to

support various kinds of user authentication: OAuth 1.0, OAuth 2.0, Basic Authentication,

and No Authentication.

Step 2. lead to the instantiation of the connector’s metamodel. We begin by deserializing

the OData metadata document into an EDM object, and then we automatically derived

from the EDM object the following data elements:

− Schema, which describes the entity model exposed by an OData service.

− Table, which describes entity sets, singletons and relationships. To accomplish this,

the following implementation-level rules were applied:

Rule1. An entity set or singleton results in a table with the same name. All

named properties are represented as columns (no additional information).

Rule2. A relationship (i.e., navigation property) with binding information

results in a table named in the format ParentTable_Target. Only the keys

are represented as columns (no additional information).

Rule3. A relationship (i.e., navigation property) without binding information

results in a table named in the format _ParentTable_NavigationProperty. All

named properties of the related entity and the key of the parent table are

represented as columns.

− Stored Procedure, which describes unbounded or bounded actions. To

accomplish this, the following implementation-level rules were applied:

Rule1. An unbounded action results in a procedure with the same name. All

parameters are represented as input parameters and the return type as a

return parameter.

Rule2. A bounded action results in a procedure named in the format

ActionNameForBindingParameter. All parameters (except the binding

parameter) and key of the binding parameter are represented as input

parameters and the return type as a return parameter.

− Function, which describes unbounded or bounded functions.

Chapter 4 Case Studies

Filipa José Faria Nóbrega – January 2019 77

− Data Type, which describes EDM primitive types, Enumeration types, Collection

types, Complex types, JSON types or Table types.

See Appendix F for a detailed explanation of this solution.

Because we found problems related to performance and memory consumption for

Microsoft Graph and Microsoft Dynamics CRM, we decided to instantiate the connector’s

metamodel by means of eager and lazy loading.

Step 3 and step 4. We started by defining a data structure containing the parts from

which an OData URL is constructed (i.e., $filter, $expand, $top, $select, etc.). The data

structure is provided to all handlers. Each handler fills the data structure according to its

information. We then generate the OData URL according to the data structure to execute

against the OData service and retrieve data (in JSON format). Figure 4.5 illustrates the

basic workflow here described. The retrieved data is deserialized into Result Set using

JsonTextReader.

Figure 4.5 Basic Workflow in OData connector

4.2.3 Analysis and Discussion

Figure 4.6 depicts the final result of the OData connector.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

78 Filipa José Faria Nóbrega – January 2019

Figure 4.6 A screenshot of the OData connector

As a result of the development of MSSQL connector, the following issues and proposals

for enhancement were encountered:

1. The system still needs to improve compatibility with T-SQL (on the server side).

2. The API should include facilities for XML and JSON deserialization.

3. The API should provide facilities for supporting several types of user

authentication: OAuth 1.0, OAuth 2.0, and Basic Authentication.

4. The system needs to provide the ability to store connection properties on server

side (e.g. access token, refresh token, expiration date, etc.).

5. The API needs to provide facilities for generating documentation.

Chapter 4 Case Studies

Filipa José Faria Nóbrega – January 2019 79

6. The API needs to provide more kinds of data types, such as JSON Type and Table

Type. For instance, in the following definition of the assignLicence procedure:

<Action Name="assignLicense" IsBound="true">

 <Parameter Name="bindingParameter" Type="user" Nullable="false"/>

 <Parameter Name="addLicenses" Type="Collection(assignedLicense)" Nullable="false"/>

 <Parameter Name="removeLicenses" Type="Collection(Edm.Guid)" Nullable="false"/>

 <ReturnType Type="microsoft.graph.user"/>

</Action>

addLicenses is an input parameter of the type collection of complex type, while the

return parameter is of the type entity type. A collection of complex type may be

represented as JSON Type, which can include a set of methods (e.g. json_value,

json_query, json_exists, is_json, json_contains, etc.). An entity type may be

represented as Table Type.

Our findings suggest that: (a) some of the fundamental issues from the previous case

study still remain unresolved; and (b) the API fails to provide facilities for various

activities and tasks in the software development process.

With regards to our findings, we had to make some improvements in both API and CB

Server. First, considering enhancement labelled 3, we introduced facilities for

supporting several types of user authentication (OAuth 1.0, OAuth 2.0, and Basic

Authentication). Additionally, we made available OAuthConnector class for OAuth 1.0 and

2.0 to generate login URL and to define call-back URL which will be called by third-party

services on successful authentication. Second, considering enhancement labelled 6, we

introduced the JSON Type along with the Table Type as Complex Types; however, both

complex types do not have defined methods. Third, considering issue labelled 1 and

enhancement labelled 4, a team member made some modifications in the CB Server to

improve compatibility with T-SQL and to support saving connection properties on server

side since the CB Server has limited access. Finally, because enhancements labelled 2

and 5 were placed in a low priority, they were left unresolved.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

80 Filipa José Faria Nóbrega – January 2019

C
H

A
P

T
E

R

 5
5 EVALUATION

fter several years of progress in software engineering, there is still poor API design.

Henning stated in [52] that the major reason is that “it is very easy to create a bad

API and rather difficult to create a good one”. In fact, we all recognize a good API when we

get to use one; a good API is pleasant and intuitive to use, is well documented, can be

found and memorized easily, and provides abstractions to reduce further complexity.

However, we do not yet possess metrics to measure the quality of an API. API quality

encompasses several aspects, such as correctness, completeness, usability, performance

and so forth. Our focus here is only on API usability. The best well-known definition of

usability is perhaps the one in [53] which defines usability as “the extent to which a

product can be used by specified users to achieve specified goals with effectiveness, efficiency

and satisfaction in a specified context of use”. However, usability is not simply “better” or

“worse”; so, how do we analyse the usability of an API?

Several existing approaches of human-computer interaction (HCI) can be applied to

evaluate the usability of an API. One of the well-known frameworks is GOMS. John and

Kieras stated in [54] that GOMS “is useful to analyse the knowledge of how to do a task in

terms of goals, operators, methods, and selection rules”. Briefly, goals represent the user’s

goals; operators are the basic actions that the user performs to accomplish its goals;

methods are sequences of sub-goals and operators; and selection rules are the reason why

users choose one method to use in a certain context. The weakness of GOMS framework

is the complexity of predicting the detailed time of every single task, as well as the lack of

support for notational issues. Green and Petre [55] proposed a different approach, named

cognitive dimensions framework, as a “broad-brush evaluation technique for interactive

devices and for non-interactive notations”. Unlike many other approaches, the cognitive

dimensions framework focuses on assessing the overall usability of the design. Other

approaches emphases on software quality metrics. A software quality metric is defined

as a “function whose inputs are software data and whose output is a single numerical value

A

Chapter 5 Evaluation

Filipa José Faria Nóbrega – January 2019 81

that can be interpreted as the degree to which software possesses a given attribute that

affects its quality” [56].

In fact, the existing approaches related to API usability are heterogeneous in terms of

goals, scope, and audience, and the use of software quality metrics to measure API

usability is focused only on quantifiable characteristics rather than usability aspects [57].

To overcome this problem, E. Mosqueira-Rey et al. in “A systematic approach to API

usability: Taxonomy-derived criteria and a case study” proposed an approach to API

Usability based on a comprehensive model of usability and context-of-use.

This chapter introduces the methodological approach applied to evaluate the usability of

the API. Multiple case study works as the main evaluation method, combining several HCI

methods. The case study consists of three evaluation phases – a hands-on workshop, a

heuristic evaluation and subjective analysis. Moreover, results collected from all phases

of the evaluation are presented and further discussed. In addition, the context of the study

is discussed to help withdraw conclusion from the results.

5.1 METHODOLOGY

Our methodological approach for evaluating API usability combines several usability

evaluation methods – observations, heuristic evaluation, questionnaires and interviews.

Each method has different strong and weak points. It combines several HCI methods to

take full advantage of the strong points of each method. This combination provides an

opportunity to get a broad view of the usability of the API to be evaluated. These may be

not only problems and flaws in the source code, but also conceptual and runtime

problems as well as findings related to user experience (UX). The methodology is the first

step in the direction of defining a structured process to accomplish these goals.

5.1.1 Roles

In our methodological approach we identify the following roles:

− Expert Developers, Computer science engineers knowledgeable in the application

domain with experience in the programming language of the evaluated API. They

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

82 Filipa José Faria Nóbrega – January 2019

should be fully familiar with the previous API13. The expert developers are used in

the hands-on workshop (1st phase of the evaluation process), heuristic evaluation

(2nd phase) and subjective analysis (3rd phase).

− Novice Developers, Computer science engineers with experience in software

development. They should be familiar with the programming language of the

evaluated API, but they should not be familiar with the application domain. The

novice developers participate in the hands-on workshop (1st phase of the

evaluation process), heuristic evaluation (2nd phase) and subjective analysis (3rd

phase).

− Evaluators, Computer science engineers who collect and analyse findings in each

phase of the evaluation. They actively participate in the hands-on workshop and

they also conduct the interviews.

5.1.2 Process Overview

Figure 5.1 illustrates the process of our evaluation approach addressing the usability of

the API. The process consists of five phases: (1) planning; (2) workshop with novice and

expert developers, where the questions, problems, and potentials are assessed; (3)

heuristic evaluation; (4) subjective analysis, where questions and subjective opinions are

evaluated; and (5) the final analysis. The three different evaluation methods are

conducted independently, and the subjective analysis is done right after the workshop to

avoid the repetition of an introduction part to the API.

13 MG Framework

Chapter 5 Evaluation

Filipa José Faria Nóbrega – January 2019 83

Figure 5.1 Methodological Approach

Phase 1: Planning. In the planning phase, the evaluators define a few novice and expert

developers to be involved in the evaluation process. Evaluators also decide the objectives

and identify relevant parts of the API to be evaluated, as well as details of the next phases.

Phase 2: The Hands-on Workshop takes approximately 3-5 days and consists of two

parts – introduction, and hands-on project. In the introduction, the application domain of

the API is presented as well as the API itself. After that novice and expert developers are

asked to implement a connector defined by the evaluators using the API. They are also

asked to note problems they struggle with. Evaluators are also present during the

workshop. The role is to observe, note usability problems and provide help when

someone is struggling with a problem for too long. A demographic questionnaire and an

informed consent have to be signed by them at the beginning of the workshop.

Phase 3: The heuristic evaluation is conducted after the hands-on workshop. Novice and

expert developers receive a list of heuristics used to find, analyse, and categorize

problems identified with the API – API Usability questionnaire. The outcome of the

heuristic evaluation consists of a list of strong and weak points of the usability of the API

and a set of proposals for improvement. After the evaluation, the findings are collected

and analysed.

Phase 4: Subjective Analysis is conducted right after the heuristic evaluation to try to

clarify any questions that developers could have had when filling the API Usability

questionnaire, and to obtain subjective opinions regarding their individual experience of

the workshop. The interviews are recorded to allow future analysis.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

84 Filipa José Faria Nóbrega – January 2019

Phase 5: Discussion. After collecting all materials, evaluators analyse notes, logs, and

questionnaires. They identify and summarize usability problems. The output of the

methodology is a set of recommendations for improving the evaluated API.

5.2 CASE STUDY

Case studies are one of the several research approaches within scientific research. Other

research approaches include archive research, survey research and experiments [58].

Amongst existing research approaches, case studies are considered the preferred

approach for answering “how?” and “why?” questions, although they are less useful for

investigating “what?” and “how much?” questions.

Yin in [58] defines case study as follows:

“an empirical inquiry that investigates a contemporary phenomenon

within its real-life context; when the boundaries between phenomenon

and context are not clearly evident; and in which multiple sources of

evidence are used”

This definition helps us to understand clearly how case studies differ from other research

approaches. Experiments intentionally divide a phenomenon from its context and often

the context is "controlled" by the laboratory environment; while case studies focus on the

phenomenon in its real-life context. Survey research can deal with phenomenon and

context, but their capability to do so is limited. Archive research can deal with

phenomenon and context but focus on non-contemporary phenomena.

Within case study research it is possible to differentiate between single and multiple case

studies [58]. While a single case study relies on one single case (as the name suggests),

multiple case studies rely on the investigation of several cases. Obviously, investigating

an issue in more than one context/case is typically better than basing results on just one

single case. However, there are occasions when a single case study is quite sufficient (e.g.

for investigating extreme or unique cases).

Multiple case studies are considered more appealing as their results are more robust.

However, conducting multiple case studies can require extensive resources and time, as

well as considerable thought on which cases to select. Yin in [58] advises that “multiple

Chapter 5 Evaluation

Filipa José Faria Nóbrega – January 2019 85

cases” should be regarded as “multiple experiments” and not “multiple respondents in a

survey”, and so replication logic and not sampling logic should be used for the selection of

cases. The main idea behind replication logic is that based on one’s theory one expects

that the phenomenon differs if the situations change or the same phenomenon occurs in

the same situations. That is, representativeness is not the criteria for the selection of

cases [59], rather the choice of each case should be made such that it either: predicts

similar results for predictable reasons (i.e., literal replication); or predicts contrary

results for predictable reasons (i.e., theoretical replication).

Because phenomenon and context are not always distinguishable in real-life situations,

case studies offer a useful approach for combining several sources of evidence, such as

observations, documents and archives, and interviews.

5.2.1 Study Setup

Following the methodology described in section 5.1 we set up a multiple case study to

obtain results from the different evaluation methods. The goal was to explore different

HCI methods to find usability problems in the API. We conducted a workshop (see section

5.1 – Phase 2) to get in-depth information about the actual usability of the API. A heuristic

evaluation (see section 5.1 – Phase 3) to obtain findings identified by novice and expert

developers. Additionally, we interviewed each developer (see section 5.1 – Phase 4) to

gather qualitative data about the usability of the API. Both qualitative and quantitative

data were gathered for analysis as a source for supporting evidence for potential usability

problems.

The hands-on workshop had the primary goal to evaluate the usability of the API in its

real-life context. The workshop started with a setup session that had the purpose to

explain the particular requirements and objectives of the workshop. During this session,

novice and expert developers obtained all the resources necessary to develop with the

API and also got an introduction to the documentation of the API. In addition, they were

given a demographic questionnaire that focuses on the programming experience.

The setup session was followed by an in-depth presentation providing developers with

insights about the objectives of the workshop and the functional parts of the API (overall

concepts).

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

86 Filipa José Faria Nóbrega – January 2019

After the theoretical introduction, novice and expert developers were asked to start

developing their own hands-on project. They were provided with ideas that they could

“easily” implement – Google Calendar, Google Drive, Gmail, and OPC Unified Architecture

(UA). The developers were asked to use the documentation and templates available and

to note all the problems, misunderstandings, potential bugs, and errors they identified.

They were provided with six task scenarios defined by evaluators to cover as much of the

API as possible (Table 5.1). In addition, they were given an After-Scenario Questionnaire

developed by Lewis [60] to assess their subjective satisfaction regarding each task.

Table 5.1 List of six tasks for the workshop participants

Only two developers (all men, mean age 23) participated in a five-day workshop. Pre-

requirements for the developers participating have been defined through required prior

knowledge in programming C#, SQL and the Visual Studio environment.

The heuristic evaluation was conducted after the workshop to identify usability

problems of the API. The heuristic evaluation involves 42 heuristics based on API design

guidelines identified by E. Mosqueira-Rey et al. [57]. These heuristics were selected as

they summarize existing guidelines available in the literature on API usability but also

cover other usability aspects that have been neglected by the literature. Table 5.2 gives a

short description of the first-level attributes based on [57]. The heuristic evaluation

required to analyse the API itself in consort with the documentation. The findings were

collected by the evaluators. The heuristics were classified according to the following

categories: Yes (it is fulfilled), No (it is not fulfilled), Partially (it is only in part fulfilled),

and Not Applicable (it is not possible to apply the heuristic for numerous reasons).

Task No. Description

Task 1 Define connector properties (e.g. username, password, etc.)

Task 2 Check the connection with the data provider

Task 3 Create session

Task 4 Obtain metadata and Generate metamodel (e.g. tables, columns, etc.)

Task 5 Simple SQL Select

Task 6 Return data

Chapter 5 Evaluation

Filipa José Faria Nóbrega – January 2019 87

Table 5.2 The first-level attributes for the API evaluation

The subjective analysis has been done after the heuristic evaluation (on the day after).

Each developer had an interview with the evaluator to try to clarify any question that

they could have had when filling the API usability questionnaire. Throughout the

interviews, several usability aspects were addressed such as learnability,

understandability, helpfulness misconceptions, errors, perception of the API,

documentation, and user experience. The notes that have been given by the developers

during the workshop, as well as the ASQ outcomes, act as a base for the interviews.

5.2.2 Analysis

In this section, we present the results of the analysis of the three different parts of the

evaluation of the API.

Attribute Description

Knowability

The API should be easy to understand, learn and remember.

This attribute is subdivided into clarity, consistency, memorability,

and helpfulness.

Operability

The API should provide the necessary functionalities to implement

the tasks intended by the user.

This attribute is subdivided into completeness, precision,

universality, and flexibility.

Efficiency

The API should produce appropriate results in return for the

resources that are invested.

This attribute is subdivided into efficiency in human effort, in task

execution, in tied up resources, and in economic costs.

Robustness

The API should resist error and adverse situations.

This attribute is subdivided into robustness to internal error, to

improper use, to third-party abuse, and to environment problems.

Safety

The API should avoid risk and damage derived from its use.

This attribute is subdivided into user safety, third-party safety, and

environment safety.

Subjective

satisfaction

The API should produce feelings of pleasure and interest in users.

This attribute is subdivided into interest and aesthetics.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

88 Filipa José Faria Nóbrega – January 2019

Hands-on workshop. During the hands-on workshop different types of materials have

been collected – notes, logs, and questionnaires. The collected material provided us with

insights into understanding the usability problems of the API and the documentation.

Two participants were asked to fill out an After-Scenario Questionnaire (ASQ) for each of

the six task scenarios to assess three important aspects of user satisfaction: ease of task

completion, time to complete a task, and adequacy of support information

(documentation). Each of these three aspects was measured based on a seven-point

Likert Scale with the left and right anchor being “Strongly Disagreed” and “Strongly

Agreed”, respectively. We computed the results from the ASQ for each role, individually.

Figure 5.2 shows the results of the ASQ for the expert developer. Results reveal that most

of the tasks were perceived as easy to solve, except task 5.

Figure 5.2 Results of the ASQ – Expert Developer

Figure 5.3 shows the results of the ASQ for the novice developer. Results reveal that the

novice developer found tasks 1, 2 and 5 as difficult to solve.

0 1 2 3 4 5 6 7

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

T
a

sk
 N

o
.

ASQ

Perceived adequacy of support information Perceived Time Perceived Ease

Chapter 5 Evaluation

Filipa José Faria Nóbrega – January 2019 89

Figure 5.3 Results of the ASQ – Novice Developer

An interesting finding is that tasks perceived as difficult have associated documentation

problems. In addition, both novice and expert developers perceived task 5 as difficult.

The issues identified in the workshop were mainly related to documentation issues, to

the perception of names, to undetected errors, and to the unnecessary complexity. In the

course of the workshop, evaluators had to provide further examples and explanations to

help developers.

Heuristic evaluation. Two participants were asked to fill out the API Usability

questionnaire. They inspected several classes and interfaces in 14 packages, and two

sample projects using the API. The duration of one inspection varied between two to

three hours. Heuristic evaluation explores all parts of the API equally.

The findings were collected and then analysed by the evaluators. The results of analysing

the 42 heuristics were computed for each role, individually. Figure 5.4 shows the results

of analysing the 42 heuristics for the expert developer. The problems that we found in

the API were mostly from the knowability attribute: it was not easy to understand what

the code did (KCS-2), and it was not clear what classes and methods developers need to

use to perform some tasks (KCF-3). Also, the API was difficult to use because it was poorly

documented (KHS-1), did not include only relevant information (KHS-2) and did not

provide code samples for the most common scenarios (KHS-5).

We found also problems in other categories like operability – the API did not provide the

functionalities necessary to implement common tasks (OC-1); robustness – the API did

0 1 2 3 4 5 6 7

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

T
a

sk
 N

o
.

ASQ

Perceived adequacy of support information Perceived Time Perceived Ease

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

90 Filipa José Faria Nóbrega – January 2019

not use exception to expose potential errors (RI-1) – and finally, subjective satisfaction –

using the API was not satisfying (SI-1).

Figure 5.4 Results of the heuristic evaluation (N/A: Not Applicable) – Expert Developer

Figure 5.5 shows the results of analysing the 42 heuristics for the novice developer. Most

of the problems that we found in the API were from the knowability (identical problems

listed above).

We found also problems in other categories like operability – the API did not provide the

functionalities necessary to implement common tasks (OC-1) and the API did not contain

backwards compatibility deprecating properties (OC-2); and efficiency – the user needed

to put too much effort when implementing a task (EH-1).

0

2

4

6

8

10

12

14

16

18

20

Knowability Operability Efficiency Robustness Safety Subjective
Satisfaction

H
e

u
ri

si
tc

s

Heuristic Evaluation

N/A

No

Partial

Yes

Chapter 5 Evaluation

Filipa José Faria Nóbrega – January 2019 91

Figure 5.5 Results of the heuristic evaluation (N/A: Not Applicable) – Novice Developer

Subjective analysis. The interviews with novice and expert developers were conducted

on the day after the workshop. The interviews allowed us to gain valuable insights into

the main problems that the developers struggled with. Again, the largest number of

problems in the API was mainly from the knowability attribute. Participants mentioned

that the API was poorly documented – code snippets, source code documentation, sample

projects, FAQs, and in-depth description of main concepts (e.g. metamodel, data handler,

etc.) – and also the API does not expose vulnerabilities that allow users to make errors –

lacks validation and compile-time errors. These problems are the most crucial to be

corrected as they represent obstacles. Such obstacles can then easily discourage a novice

developer from using the API.

Besides usability problems, interviews revealed the subjective opinion of the developers

of the evaluated API. The expert developer liked the structure of the API and considered

the API easier to learn and understand than the previous API. The novice developer

negatively commented on the structure (mainly, the chain of sequential processing

handlers). Both developers agreed that documentation needs to be improved.

5.2.3 Discussion

Before we discuss the findings from each part of the methodology, we will point out the

context of the study that will help us draw conclusions from the results.

0

2

4

6

8

10

12

14

16

18

20

Knowability Operability Efficiency Robustness Safety Subjective
Satisfaction

H
e

u
ri

si
tc

s

Heuristic Evaluation

N/A

No

Partial

Yes

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

92 Filipa José Faria Nóbrega – January 2019

Each applied method has its strong and weak points and focuses on different areas of

problems. A combination of the selected methods resulted in a more complete view of the

overall usability. Combining such specific methods hence allows addressing related

usability problems with an API in an appropriate way.

Despite heuristic evaluation involves a small group of usability experts analysing an API

and examining its compliance with a predefined set of heuristics, in our methodological

approach, novice and expert developers performed the heuristic evaluation. As stated by

Molich and Jeffries in [61], heuristic evaluation can be applied by “someone without

particular knowledge of usability engineering”. Hertzum and Jacobsen also stated in [62]

that “any computer professional should be able to apply heuristic evaluation, but the

informality of the method leaves much to the evaluator”. In fact, levels of expertise and

experience of individual evaluators have evident influences on usability evaluation

results – the so-called evaluator effect [62]. We tried to reduce the evaluator effect during

the hands-on workshop by providing an in-depth introduction to the documentation of

the API and to its functional parts (main concepts).

Furthermore, in our methodological approach, we included a small sample of participants

because 1) the case-study requires extensive resources and time, and 2) our supervisor

agreed that a small sample would be sufficient to draw useful and reliable conclusions.

Due to the sample size, our findings have limited generalizability.

The findings were different from each part of the methodology. Whereas heuristic

evaluation provided formal and detailed descriptions of problems in the API, the

workshop focusses on usability problems regarding concept and structure of the API.

During the workshop, we could reveal more runtime problems that are not obvious and

thus cannot be found in the heuristic evaluation. Interviews not only provided a deeper

understanding of these problems but also revealed the subjective opinions to the API. An

excerpt of the findings is shown in Table 5.3.

Table 5.3 Findings (HE = Heuristic evaluation, W = workshop, SA = subjective analysis)

Finding Phase

…

Class: Model HE

Chapter 5 Evaluation

Filipa José Faria Nóbrega – January 2019 93

After all, we decided to modify the API focusing mainly on the documentation problems

that were easy to solve at this stage of development. Nonetheless, problems in other

categories were left for future work.

Finding: Interfaces are used as arguments of functions that expect a specific

data type to work correctly.

Heuristic: KCE-2

Class: Model

Finding: constructor requires default schema name; but the schema is not

automatically generated

Heuristic: KCF-1

HE

Class: OAuthConnector

Finding: PluginPropertyList should be hidden and marked as deprecated.

Heuristic: OC-2

HE

Class: DataHandler

Finding: Missing mechanisms to access connector properties.

Heuristic: OC-1

HE

The use of the data type Any Type resulted in runtime errors (columns were

not presented in the CB Query Analyser).

W

Tables accept several columns with same ordinal number. W

There are missing helpers for XML/JSON parser. SA

There is missing some validation at compile time. SA

I’m not happy using the API mainly due to poor documentation which leads

to frustration.

SA

It would be good to have a step-by-step guide. SA

The metamodel part is simple and pleasing SA

The data handlers are very difficult to understand without proper examples

and diagrams.

SA

…

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

94 Filipa José Faria Nóbrega – January 2019

C
H

A
P

T
E

R

6
6 CONCLUSIONS AND FUTURE WORK

his chapter presents the main conclusions about the work done and some

challenges of this dissertation, as well as a few ideas for future work that must be

done in order to have a fully functional SDK for the creation of connectors to integrate

with CB Server which can be used with minimal technical support by the developers.

6.1 CONCLUSIONS

In this dissertation, we have presented an SDK for the creation of connectors to integrate

with CB Server which accelerates deployment, ensures best practices and simplifies the

various activities and tasks in the software development process. The SDK offers a public,

simple API together with a set of tools exploiting the API. The key requirements of the

API are: to store a collection of both data and metadata for relational and non-relational

data sources and to allow inserting, updating, deleting, and retrieving data from the data

source.

For this, we first had to align the connector metamodel with current versions of the MOF,

exploiting the MDD metamodeling approach. The connector metamodel is a metamodel

of a relational data model. We introduced several concepts and constructs for the

alignment. We believe that the proposed concepts and constructs could be useful for

modelling metadata for relational and non-relational data sources. A formal definition of

the semantics of SQL queries has been implemented to allow inserting, updating, deleting,

and retrieving data from the data source, but limited to SQL data manipulation commands

(that is, SELECT, UPDATE, DELETE, INSERT, and EXEC). Additionally, the backbone of a

functional connector has also been defined, as well as a rich set of custom exceptions

including additional information (e.g., error code, message, and so forth). Furthermore, a

set of utilities has been developed to help developers in the software development

process.

T

Chapter 6 Conclusions and Future Work

Filipa José Faria Nóbrega – January 2019 95

To prove the adequacy of our approach, we presented two examples and case studies.

The first case study presents a connector for a relational data source (MS SQL Server).

The second case study presents a connector for a non-relational data source (OData). The

outcome was a list of issues found in the API and a set of proposals for improvement.

Based on the results we had to make some improvements in both API and CB Server.

To evaluate the usability of the API a methodology based on several usability evaluation

methods has been developed. Combining the HCI methods is important as it allows us to

get a broad view of problems covering several aspects of API usability. We applied this

method in a multiple case study. The applied methodology generated insights based on

an inspection method, a user test, and interviews. We identify not only problems and

flaws in the source code, but also runtime, structural and documentation problems, as

well as problems related to user experience. Based on the findings we decided to modify

the API focusing mainly on the documentation problems.

Although the API is targeted to the connector development process, we think that our

approach can be applied to any other formal method to develop software around the

fields of relational databases, data integration, and data modelling.

6.2 CHALLENGES

This dissertation presented many challenges. First, we had to study the basic workflow

in CB Platform so that the “new” SDK overcomes the problems identified in the previous

SDK. For this, we had to develop a simple connector without prior knowledge, and to read

some internal documentation that were missing many details and information. Second,

we had to provide a public API so that external developers, in a directed or undirected

way, can build connectors that the company is unable to develop itself. For this, from a

technical standpoint, the system architecture, including its interface to external

developers, is the central, critical pillar and serious mistakes will probably cause

significant dissatisfaction and rejection among the external developers. The challenge

here is to provide a stable and easy to use and learn interface between the CB platform

and the external developers that evolves in an expected way; without prior experience in

system architecture. Finally, we had to develop tools and documentation to help

developers in the software development process. For this, we had to study how to use

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

96 Filipa José Faria Nóbrega – January 2019

wizards with project templates and how to generate documentation automatically with

Sandcastle.

6.3 FUTURE WORK

Future work will include the development of new functionalities in the API such as a

connector wrapper for “old” connectors to exploit as much as possible the “new” API, and

standard implementation for all data handlers to emulate the pipeline. Furthermore, we

aim to solve some problems found in the applied methodology described in Section 5 to

evaluate the usability of the API, namely problems and flaws in the source code (e.g.

validations) and structural problems.

Chapter 7 References

Filipa José Faria Nóbrega – January 2019 97

C
H

A
P

T
E

R

7
7 REFERENCES

[1] P. Ziegler and K. R. Dittrich, “Data Integration — Problems, Approaches, and

Perspectives,” in Conceptual Modelling in Information Systems Engineering, Springer,

Berlin, Heidelberg, 2007, pp. 39–58.

[2] E. M. Zaman, “Information Integration for Heterogeneous Data Sources,” IOSR J.

Eng., vol. 02, no. 04, pp. 640–643, Apr. 2012.

[3] T. M. Connolly and C. E. Begg, Database Systems: A Practical Approach to Design,

Implementation, and Management. Pearson Education, 2005.

[4] C. Coronel and S. Morris, Database Systems: Design, Implementation, &

Management. Cengage Learning, 2016.

[5] A. G. Taylor, SQL for dummies, 5th ed. Hoboken, NJ: Wiley, 2003.

[6] E. Eessaar, “Using Metamodeling in Order to Evaluate Data Models,” in Proceedings

of the 6th Conference on 6th WSEAS Int. Conf. On Artificial Intelligence, Knowledge

Engineering and Data Bases - Volume 6, Stevens Point, Wisconsin, USA, 2007, pp. 181–

186.

[7] R. Ramakrishnan and J. Gehrke, Database Management Systems, 2nd ed. New York,

NY, USA: McGraw-Hill, Inc., 2000.

[8] J. F. Courtney, D. B. Paradice, K. L. Brewer, and J. C. Graham, Database Systems For

Management, 3rd Edition, 3rd ed. 2010.

[9] E. F. Codd, “Data Models in Database Management,” in Proceedings of the 1980

Workshop on Data Abstraction, Databases and Conceptual Modeling, New York, NY, USA,

1980, pp. 112–114.

[10] R. Elmasri and S. Navathe, Fundamentals of database systems, 6th ed. Boston:

Addison-Wesley, 2011.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

98 Filipa José Faria Nóbrega – January 2019

[11] S. B. Navathe, “Evolution of Data Modeling for Databases,” Commun ACM, vol. 35,

no. 9, pp. 112–123, Sep. 1992.

[12] E. F. Codd, The Relational Model for Database Management: Version 2. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 1990.

[13] E. F. Codd, “Extending the Database Relational Model to Capture More Meaning,”

ACM Trans Database Syst, vol. 4, no. 4, pp. 397–434, Dec. 1979.

[14] J. R. Groff, P. N. Weinberg, and A. Oppel, SQL The Complete Reference, 3rd Edition.

McGraw Hill Professional, 2008.

[15] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven Software

Development: Technology, Engineering, Management. John Wiley & Sons, 2013.

[16] R. Picek and V. Strahonja, “Model Driven Development - Future or Failure of

Software Development?,” in In IIS’07: 18th International Conference on Information and

Intelligent Systems, 2007.

[17] B. Selic, “Model-driven development: its essence and opportunities,” in Ninth IEEE

International Symposium on Object and Component-Oriented Real-Time Distributed

Computing (ISORC’06), 2006, pp. 7 pp.-.

[18] S. J. Mellor, A. N. Clark, and T. Futagami, “Model-Driven Development,” IEEE Softw.,

p. 5, 2003.

[19] C. Lange, M. Chaudron, and J. Muskens, “In Practice: UML Software Architecture

and Design Description,” IEEE Softw, vol. 23, no. 2, pp. 40–46, Mar. 2006.

[20] A. W. Brown, J. Conallen, and D. Tropeano, “Introduction: Models, Modeling, and

Model-Driven Architecture (MDA),” in Model-Driven Software Development, Springer,

Berlin, Heidelberg, 2005, pp. 1–16.

[21] R. Soley, “Model Driven Architecture.” OMG, Nov-2000.

[22] “In practice: UML software architecture and design description - IEEE Journals &

Magazine.” [Online]. Available: https://ieeexplore.ieee.org/document/1605177/.

[Accessed: 19-Jul-2018].

Chapter 7 References

Filipa José Faria Nóbrega – January 2019 99

[23] J. Ludewig, “Models in software engineering – an introduction,” Softw. Syst. Model.,

vol. 2, no. 1, pp. 5–14, Mar. 2003.

[24] J. Favre, “Megamodeling and etymology - a story of words: From MED to MDE via

MODEL in five milleniums,” presented at the In Dagstuhl Seminar on Transformation

Techniques in Software Engineering, number 05161 in DROPS 04101. IFBI, 2005.

[25] J. Bezivin and O. Gerbe, “Towards a precise definition of the OMG/MDA

framework,” in Proceedings 16th Annual International Conference on Automated Software

Engineering (ASE 2001), 2001, pp. 273–280.

[26] E. Seidewitz, “What models mean,” IEEE Softw., vol. 20, no. 5, pp. 26–32, Sep. 2003.

[27] “MDA Guide Version 1.0.1.” OMG, Jun-2003.

[28] J.-M. Favre, “Foundations of Model (Driven) (Reverse) Engineering - Episode I:

Story of The Fidus Papyrus and the Solarus,” presented at the Dagsthul Seminar On Model

Driven Reverse Engineering, 2004.

[29] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven

Architecture: Practice and Promise. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 2003.

[30] J. Favre, “Foundations of meta-pyramids: Languages vs. metamodels – episode II:

Story of thotus the baboon,” in Dagstuhl Seminar Proceedings. Internationales

Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, 2005.

[31] C. Atkinson and T. Kuhne, “Model-driven development: a metamodeling

foundation,” IEEE Softw., vol. 20, no. 5, pp. 36–41, Sep. 2003.

[32] J. Bézivin, “In Search of a Basic Principle for Model Driven Engineering,”

Novatica/Upgrade, vol. 5, 2004.

[33] J. Bezivin, “Model Engineering: From Principles to Platform,” in WIT-Kolloquium,

Technical University of Vienna, 2005.

[34] “OMG Meta Object Facility (MOF) Core Specification.” OMG, Nov-2016.

[35] “Meta Object Facility.” OMG, Apr-2002.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

100 Filipa José Faria Nóbrega – January 2019

[36] B. Hailpern and P. Tarr, “Model-driven development: The good, the bad, and the

ugly,” IBM Syst. J., vol. 45, no. 3, pp. 451–461, 2006.

[37] M. Fowler, “Language Workbenches: The Killer-App for Domain Specific

Languages?” [Online]. Available:

https://martinfowler.com/articles/languageWorkbench.html. [Accessed: 23-Jul-2018].

[38] “About OMG,” About OMG, 2018. [Online]. Available:

https://www.omg.org/about/. [Accessed: 09-Jul-2018].

[39] J. Pike, “We Set the Standard,” p. 3.

[40] E. Keremitsis and I. J. Fuller, “HP distributed smalltalk: a tool for developing

distributed applications,” vol. 46, pp. 85–92, Apr. 1995.

[41] J. Poole, D. Chang, D. Tolbert, and D. Mellor, Common Warehouse Metamodel. John

Wiley & Sons, 2002.

[42] B. Selic, “What’s New in UML 2.0? Technical report IBM Rational Software,” IBM

Corporation, Apr. 2005.

[43] U. Aßmann, S. Zschaler, and G. Wagner, “Ontologies, Meta-models, and the Model-

Driven Paradigm,” in Ontologies for Software Engineering and Software Technology,

Springer, Berlin, Heidelberg, 2006, pp. 249–273.

[44] “UML 2.2 - UML Infrastructure Specification.” OMG, Feb-2009.

[45] M. J. Emerson, J. Sztipanovits, and T. Bapty, “A MOF-Based Metamodeling

Environment.,” J UCS, vol. 10, pp. 1357–1382, Jan. 2004.

[46] A. Butković Tomac and D. Tomac, “Metadata Interchange in Service Based

Architecture,” J. Inf. Organ. Sci., vol. 27, no. 2, pp. 73–79, Dec. 2003.

[47] I. Sommerville, Software Engineering, 8th ed. Pearson Education, 2007.

[48] C. Bock et al., “UML 2.5 - UML Specification.” OMG, Mar-2015.

[49] T. Cowling, “Model-driven development and the future of software engineering

education,” in 2013 26th International Conference on Software Engineering Education and

Training (CSEE T), 2013, pp. 329–331.

Chapter 7 References

Filipa José Faria Nóbrega – January 2019 101

[50] K. Delaney, A. Machanic, P. S. Randal, K. L. Tripp, C. Cunningham, and B. Nevarez,

Microsoft SQL Server 2008 Internals. Microsoft Press, 2009.

[51] “OData - the Best Way to REST.” [Online]. Available: https://www.odata.org/.

[Accessed: 12-Aug-2018].

[52] M. Henning, “API Design Matters,” Commun ACM, vol. 52, no. 5, pp. 46–56, May

2009.

[53] ISO 9241-11, “Ergonomic Requirements for Office Work with Visual Display

Terminals (VDTs),” in Part 11: Guidance on usability, Genova: International Organization

for Standardization, 1998.

[54] B. E. John and D. E. Kieras, “Using GOMS for User Interface Design and Evaluation:

Which Technique?,” ACM Trans Comput-Hum Interact, vol. 3, no. 4, pp. 287–319, Dec.

1996.

[55] T. R. G. Green and M. Petre, “Usability Analysis of Visual Programming

Environments: A ‘Cognitive Dimensions’ Framework,” J. Vis. Lang. Comput., vol. 7, no. 2,

pp. 131–174, Jun. 1996.

[56] “IEEE Standard for a Software Quality Metrics Methodology,” IEEE Std 1061-1992,

p. 3, 1993.

[57] E. Mosqueira-Rey, D. Alonso-Ríos, V. Moret-Bonillo, I. Fernández-Varela, and D.

Álvarez-Estévez, “A systematic approach to API usability: Taxonomy-derived criteria and

a case study,” Inf. Softw. Technol., vol. 97, pp. 46–63, May 2018.

[58] R. K. Yin, Case Study Research: Design and Methods. Sage Publications, 1994.

[59] R. E. Stake, The Art of Case Study Research. Sage Publications, 1995.

[60] J. R. Lewis, “IBM Computer Usability Satisfaction Questionnaires: Psychometric

Evaluation and Instructions for Use (IBM Technical Report 54.786),” Int. J. Hum.-Comput.

Interact., pp. 57–78, 1995.

[61] R. Molich and R. Jeffries, “Comparative Expert Reviews,” in CHI ’03 Extended

Abstracts on Human Factors in Computing Systems, New York, NY, USA, 2003, pp. 1060–

1061.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

102 Filipa José Faria Nóbrega – January 2019

[62] M. Hertzum and N. E. Jacobsen, “The Evaluator Effect: A Chilling Fact about

Usability Evaluation Methods,” p. 17.

[63] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging

Discipline. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[64] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

[65] M. Fowler, Patterns of Enterprise Application Architecture. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2002.

[66] “SQL Server Schema Collections,” Microsoft Docs. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql-server-

schema-collections. [Accessed: 15-Jun-2018].

Appendix A

Filipa José Faria Nóbrega – January 2019 103

A
P

P
E

N
D

IX

 A
A. UML concepts and drawing conventions

This appendix uses a simple restaurant model to summarize the UML concepts and

drawing conventions used in the descriptions of the packages (Figure A.1). As Enterprise

Architect (EA) was used for these descriptions, the UML concepts and drawing

conventions shown here are related with EA convections and drawing concepts.

Figure A.1 A simple restaurant model illustrating how packages are described

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

104 Filipa José Faria Nóbrega – January 2019

A
P

P
E

N
D

IX

 B
B. Architectural Styles and Design Patterns

This appendix reviews the main architecture styles and design patterns used throughout

this dissertation.

B.1 Architectural Styles

An architectural style characterizes a family of related systems in terms of a pattern of

structural organizations [63]. More precisely, an architectural style defines a vocabulary

of elements – components and connector types – together with a set of rules – or

constraints – on how that vocabulary is used, and semantic assumptions about that

vocabulary.

There are several commonly used architectural styles, such as: objects, pipes and filters,

implicit invocation, layering, repositories, interpreters, and process control. Our focus

here is only on pipes and filters style.

B.1.1 Pipes and Filters

In [63], Garlan and Shaw describe the Pipes and Filters style as follows:

“In a pipe-and-filter style each component has a set of inputs and a set of

outputs. A component reads streams of data on its inputs and produces

streams of data on its outputs. […] Hence components are termed filters.

The connectors of this style serve as conduits for the streams, transmitting

outputs of one filter to another. Hence the connectors are termed pipes.

[…] filters must be independent entities: in particular, they should not

share state with other filters. […] filters do not know the identity of their

upstream and downstream filters.”

Appendix B

Filipa José Faria Nóbrega – January 2019 105

In other words, a Pipes and Filters style consists of several components – named filters –

and connectors – named pipes. Each filter processes a local and incremental data

transformation on the data received on its inputs and sends the results on its outputs.

Each pipe represents a sequential flow of data between two filters, in which the output

stream of a filter flows to the input of the next filter. Filters can be characterized by their

input/output behaviour: source filters produce a stream without any input; transform

filters consume an input stream and produce an output stream; and sink filters consume

an input stream but do not produce any output. Figure B.1 illustrates this style.

Figure B.1 Pipes and Filters

The pipe and filter style has several good properties that make it attractive and efficient

for numerous applications. It is relatively simple to describe, understand and implement.

It is also quite intuitive and allows to model systems while preserving the flow of data.

Because of the interaction modalities between filters, complex systems described in

terms of data flowing from filter to filter are easily understandable as a series of local

transformations. The implementation details of each filter are irrelevant to understand

the overall system, as long as a logical definition of their behaviour is specified (input,

transformation and output). The localization and isolation of transformations facilitates

design, implementation, maintenance and evolution. Additionally, filters can be

implemented and tested individually. Furthermore, because filters are independent

entities, filters allow reusability and interoperability, as well as parallel and distributed

processing, which contribute to efficiency and scalability.

Nonetheless, it also has their shortcomings and limitations. Because the pipes are first-

in-first-out (FIFO), the overall throughout of a Pipes and Filters system is imposed by the

transmission rate of the slowest filter in the system. If filters independence provides a

natural design for parallel and distributed processing, the pipes impose arbitrary

transmission bottlenecks that make it non-optimal. It also can lead to massive/expensive

data copying, loss of performance and increased complexity.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

106 Filipa José Faria Nóbrega – January 2019

Common specializations of this style include: (1) pipelines, which restricts the topologies

to linear sequences of filters; (2) bounded pipes, which restrict the amount of data that

can reside on a pipe; and (3) typed pipes, which require that the data passed between two

filters have a well-defined type.

The pipeline approach is based on the pure form of Pipes and Filters style, in which each

filter has only a single input stream and a single output stream. Within pipeline approach,

there are three alternatives to control data flowing from filter to filter: (1) push-flow, in

which each filter of the pipeline pushes data in a downstream; (2) pull-flow, in which each

filter of the pipeline pulls the data from an upstream; and (2) push/pull-flow, in which

each filter of the pipeline may pull data from an upstream and push transformed data in

a downstream.

B.2 Design Pattern

In [64], Gamma et al. stated that: “a design pattern names, abstracts, and identifies the

key aspects of a common design structure that make it useful for creating a reusable object-

oriented design”. Several ways in which design patterns can affect the way we design

object-oriented software include:

− A common design vocabulary for designers to communicate, document, and

explore design alternatives at a higher level of abstraction so that software

complexity is reduced.

− A flexible and reusable base of experience and knowledge.

− A target for reducing the amount of refactoring.

Design patterns describe a problem which occurs repeatedly in our environment, and

then describe the solution to that problem so that we can use this solution, without doing

it same way twice.

We describe design patterns using a consistent format. Each pattern consists of three

essential parts: the pattern name, an abstract description, and the consequences of using

the design pattern to a system’s architecture.

Appendix B

Filipa José Faria Nóbrega – January 2019 107

B.2.1 Lazy Load Pattern

The Lazy Load Pattern is a behavioural pattern in which an object, that does not contain

all the data, encapsulates all the information needed to get it [65]. There are four main

ways we can implement Lazy Load:

− Lazy initialization, which is the simplest approach. The basic idea is that every

access to the field checks first to see if it’s null. If so, it calculates the value of the

field before returning the field. A consequence of using the Lazy initialization is:

o It tends to force a dependency between the object and the database.

− Virtual proxy, which is an object that provides a surrogate or placeholder for

another object that should be in the field but doesn’t contain actually anything.

Only when one of its methods is called does it load the correct object. Some

consequences of using the Virtual Proxy are:

o It can hide the fact that an object resides in a different address space.

o It can perform optimizations such as creating an object on demand.

o Both protection proxies and smart references allow additional

housekeeping tasks when an object is accessed.

− Value holder, which is an object that wraps another object. To get the underlying

object we ask the value holder for its value, but only on the first access does it

actually load. A consequence of using the Value holder is:

o It loses the explicitness of strong typing.

− Ghost, which is a real object in a partial state. In essence, a ghost is an object where

every field is lazy-initiated, or as a virtual proxy, where the object is its own virtual

proxy. In fact, a ghost doesn’t need to be completely “empty”; for instance, it may

make sense to load data that is quick to get and commonly used when we load the

ghost.

A consequence of using the Lazy Load Pattern is:

1. It improves performance when the initialization of the object is costly – often,

loading one object has the effect of loading a huge number of related objects; to

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

108 Filipa José Faria Nóbrega – January 2019

solve this problem, Lazy Load Pattern interrupts this loading process for the

moment, leaving a marker in the object structure so that if the data is needed it

can be loaded only when it is used.

B.2.2 Composite Pattern

The Composite Pattern is a structural pattern, which deals with the composition of classes

or objects. More precisely, this design pattern composes “into tree structures to represent

part-whole hierarchies […]; lets clients treat individual objects and compositions of objects

uniformly” [64].

Some consequences of using the Composite Pattern are:

1. It defines class hierarchies consisting of primitive objects and composite objects.

2. It makes the client simple.

3. It makes it easier to add new types of components.

4. It can make software design overly general.

B.2.3 Abstract Factory Pattern

The Abstract Factory Pattern is a creational pattern, which abstracts the process of object

creation. More precisely, this design pattern provides “an interface for creating families of

related or dependent objects without specifying their concrete classes” [64].

Some consequences of using the Abstract Factory Pattern are:

1. It isolates concrete classes.

2. It makes exchanging product families easy.

3. It promotes consistency among products.

4. Supporting new kinds of products is difficult.

B.2.4 Builder Pattern

The Builder Pattern is a creational pattern, which abstracts the process of object creation.

More precisely, this design pattern separates “the construction of a complex object from

Appendix B

Filipa José Faria Nóbrega – January 2019 109

its representation so that the same construction process can create different

representations” [64].

Some consequences of using the Builder Pattern are:

1. It lets us vary a product's internal representation.

2. It isolates code for construction and representation.

3. It gives us finer control over the construction process.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

110 Filipa José Faria Nóbrega – January 2019

A
P

P
E

N
D

IX

 C
C. SQL Grammar

This appendix describes the SQL grammar.

Table C.1 Syntax of SQL Queries

QUERY BLOCK

1 <QUERY> = SELECT [ALL | DISTINCT] <SELECT LIST> <FRCLAUSE> [<WHCLAUSE>] [<GBCLAUSE>] [<HCLAUSE>] [OBCLAUSE]

2 <SELECT LIST> = list of <SELECT ELEMENT>

3 <SE.ECT ELEMENT> = <COL OR VAL> | <FUNC SPEC>

4 <COL OR VAL> = <correlation name><column name> | <literal>

5 <FUNC SPEC> = <COUNT FUNCTION SPEC> | <AGGR FUNCTION SPEC>

6 <COUNT FUNCTION SPEC> = <DISTINCT COUNT FUNCTION> | COUNT (*)

7 <AGGR FUNCTION SPEC> = <DISTINCT AGGR FUNCTION> | <ALL AGGR FUNCTION>

8 <DISTINCT COUNT FUNCTION> = COUNT (DISTINCT <correlation name><column name>)

9 <DISTINCT AGGR FUNCTION> = <AGGR FUNCTION NAME> (DISTINCT <correlation name><column name>)

10 <ALL AGGR FUNCTION> = <AGGR FUNCTION NAME> ([ALL] <correlation name><column name>)

11 <AGGR FUNCTION NAME> = AVG | MAX | MIN | SUM

12 <FRCLAUSE> = FROM <TABLE REFERENCE> [. <TABLE REFERENCE>]

13 <TABLE REFERENCE> = <table name><correlation name>

14 <WHCLAUSE> = WHERE <WHERE SEARCH COND>

15 <GBCLAUSE> = GROUP BY <correlation name><column name>

16 <HCLAUSE> = HAVING <HAVING SEARCH COND>

17 <OBCLAUSE> = ORDER BY <correlation name><column name> [ASC | DESC]

WHERE SEARCH CONDITION

18 <WHERE SEARCH COND> = “Boolean Expression of” <WPRED>

19 <WPRED> = <SIMPLE PRED> | <COMPLEX PRED>

20 <SIMPLE PRED> = <COL OR VAL> <comp op><COL OR VAL>

21 <COMPLEX PRED> = <ANY QUATIFIED PRED>|<ANY QUANTIFIED AFPRED>|<ALL QUANTIFIED PRED>|

|<ALL QUANTIFIED AFPRED>|<COMPLEX IN PRED>|<COMPLEX IN AFPRED>|<COMPLEX NOT IN PRED>|

|<COMPLEX NOT IN AFPRED>|<EXISTS PRED>|<COMPLEX COMP PRED>|<COMPLEX COMP AFPRED>

22 <ANY QUATIFIED PRED> = <COL OR VAL><comp op>ANY<SUBQ>

23 <ANY QUATIFIED AFPRED> = <COL OR VAL><comp op>ANY<AFSUBQ>

24 <ALL QUATIFIED PRED> = <COL OR VAL><comp op>ALL<SUBQ>

25 <ALL QUATIFIED AFPRED> = <COL OR VAL><comp op>ALL<AFSUBQ>

26 <COMPLEX IN PRED> = <COL OR VAL>IN<SUBQ>

27 <COMPLEX IN AFPRED> = <COL OR VAL>IN<AFSUBQ>

28 <COMPLEX NOT IN PRED> = <COL OR VAL>NOT IN<SUBQ>

29 <COMPLEX NOT IN AFPRED> = <COL OR VAL>NOT IN<AFSUBQ>

30 <EXISTS PRED> = EXISTS<SUBQ>

31 <COMPLEX COMP PRED> = <COL OR VAL><comp op><SUBQ>

32 <COMPLEX COMP AFPRED> = <COL OR VAL><comp op><AFSUBQ>

HAVING SEARCH CONDITION

33 <HAVING SEARCH COND> = “Boolean Expression of” <HPRED>

Appendix C

Filipa José Faria Nóbrega – January 2019 111

34 <HPRED> = <HSIMPLE PRED>|<HCOMPLEX PRED>|<HACOL PRED>|<HAFUNC PRED>|<HACOMPLELX PRED>

35 <HSIMPLE PRED> = <SIMPLE PRED>

36 <HCOMPLEX PRED> = <COMPLEX PRED>

37 <HACOL PRED> = <FUNC SPEC><comp op><COL OR VAL>

38 <HAFUNC PRED> = <FUNC SPEC><comp op><FUNC SPEC>

39 <HACOMPLEX PRED> = <AFANY QUANTIFIED PRED>|<AFANY QUANTIFIED AFPRED>|<AFALL QUANTIFIED PRED>|

|<AFALL QUANTIFIED AFPRED>|<AFCOMPLEX IN PRED>|<AFCOMPLEX IN AFPRED>|<AFCOMPLEX NOT IN PRED>|

|<AFCOMPLEX NOT IN AFPRED>|<AFCOMPLEX COMP PRED>|<AFCOMPLEX COMP AFPRED>

40 <AFANY QUATIFIED PRED> = <FUNC SPEC><comp op>ANY<SUBQ>

41 <AFANY QUATIFIED AFPRED> = < FUNC SPEC><comp op>ANY<AFSUBQ>

42 <AFALL QUATIFIED PRED> = <FUNC SPEC><comp op>ALL<SUBQ>

43 <AFALL QUATIFIED AFPRED> = <FUNC SPEC><comp op>ALL<AFSUBQ>

44 <AFCOMPLEX IN PRED> = <FUNC SPEC>IN<SUBQ>

45 <AFCOMPLEX IN AFPRED> = <FUNC SPEC>IN<AFSUBQ>

46 <AFCOMPLEX NOT IN PRED> = <FUNC SPEC>NOT IN<SUBQ>

47 <AFCOMPLEX NOT IN AFPRED> = <FUNC SPEC>NOT IN<AFSUBQ>

48 <AFCOMPLEX COMP PRED> = <FUNC SPEC><comp op><SUBQ>

49 <AFCOMPLEX COMP AFPRED> = <FUNC SPEC><comp op><AFSUBQ>

SUBQUERY BLOCK

50 <SUBQ> = SELECT [ALL | DISTINCT] <COL OR VAL><FRCLAUSE> [<WHCLAUSE>] [<GBCLAUSE>] [<HCLAUSE>] [OBCLAUSE]

51 <AFSUBQ> = SELECT [ALL | DISTINCT] <FUNC SPEC><FRCLAUSE> [<WHCLAUSE>] [<GBCLAUSE>] [<HCLAUSE>] [OBCLAUSE]

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

112 Filipa José Faria Nóbrega – January 2019

A
P

P
E

N
D

IX

 D
D. Architectural Design

This appendix presents absent parts of the architectural design presented in section 3.2.

D.1 Data Handler Package

This appendix shows the abstract syntax for Data Handler package.

Figure D.1 Abstract syntax for Data Handler package – Data Handler

Appendix D

Filipa José Faria Nóbrega – January 2019 113

Figure D.2 Abstract syntax for Data Handler package – Data Source

Figure D.3 Abstract syntax for Data Handler package – Table Reference

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

114 Filipa José Faria Nóbrega – January 2019

Figure D.4 Abstract syntax for Data Handler package – Join

Figure D.5 Abstract syntax for Data Handler package – Subquery

Appendix D

Filipa José Faria Nóbrega – January 2019 115

Figure D.6 Abstract syntax for Data Handler package – Data Filter

Figure D.7 Abstract syntax for Data Handler package – Having

Figure D.8 Abstract syntax for Data Handler package – Having

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

116 Filipa José Faria Nóbrega – January 2019

Figure D.9 Abstract syntax for Data Handler package – Distinct

Figure D.10 Abstract syntax for Data Handler package – Where

Figure D.11 Abstract syntax for Data Handler package – Order By

Figure D.12 Abstract syntax for Data Handler package – Limit and Offset

class Data Handler

DataFilter

Distinct

+ Init(IDataHandlerArguments): void

DataHandlerArguments

DistinctArguments

+ DistinctArguments(IColumnArgument[])

Column
Identifier

Argument::
ColumnArgument

«property»
+ IsRequired(): bool
+ IsSourceColumn(): bool

+arguments

0..1

+columns

0..*

class Data Handler

DataFilter

Where

+ Init(IDataHandlerArguments): void

DataHandlerArguments

WhereArguments

«constructor»
+ WhereArguments(IFilterCriteria)

FilterCriteria::FilterCriteria

+ Filter(object[], object): bool

+filter

0..1

+parent 0..1

+arguments

0..1

class Data Handler

DataFilter

OrderBy

+ Init(IDataHandlerArguments): void

DataHandlerArguments

OrderByArguments

+ OrderByArguments(ItemToOrder[])
+ ParseSortType(string): SortType

OrderByArguments::ItemToOrder

+ Sort(): SortType

«constructor»
+ ItemToOrder(IArgument, SortType)
+ ItemToOrder(IArgument, string)

TypedElement

Argument::
Argument

+arguments

0..1

+argument

0..1

+items 0..*

class Data Handler

DataFilter

Limit

+ Init(IDataHandlerArguments): void

DataHandlerArguments

LimitArguments

«property»
+ Limit(): int
+ Offset(): int

«constructor»
+ LimitArguments(int, int)

+arguments

0..1

Appendix D

Filipa José Faria Nóbrega – January 2019 117

Figure D.13 Abstract syntax for Data Handler package – Data Sink

Figure D.14 Abstract syntax for Data Handler package – Select

Figure D.15 Abstract syntax for Data Handler package – Insert

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

118 Filipa José Faria Nóbrega – January 2019

Figure D.16 Abstract syntax for Data Handler package – Delete

Figure D.17 Abstract syntax for Data Handler package – Execute (EXEC)

Figure D.18 Abstract syntax for Data Handler package – Update

D.2 Filter Criteria Package

This appendix shows the abstract syntax for Filter Criteria package.

class Data Handler

DataSink

DeleteSink

+ Init(IDataHandlerArguments): void

DataHandlerArguments

DeleteSinkArguments+arguments

0..1

class Data Handler

DataSink

UpdateSink

+ Init(IDataHandlerArguments): void

DataHandlerArguments

UpdateSinkArguments

«constructor»
+ UpdateSinkArguments(AssignArguments)

AssignArguments
+arguments

0..1

+arguments

0..1

Appendix D

Filipa José Faria Nóbrega – January 2019 119

Figure D.19 Abstract syntax for Filter Criteria package – Basic Comparison Criteria

Figure D.20 Abstract syntax for Filter Criteria package – Extended Comparison Criteria

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

120 Filipa José Faria Nóbrega – January 2019

Figure D.21 Abstract syntax for Filter Criteria package – Quantifier Criteria

D.3 Connector Package

This appendix shows the abstract syntax for Connector package.

Figure D.22 Abstract syntax for Connector package

class Connector

Connector

+ CreateSession(): ISession

Session

«property»
+ DatabaseName(): string
+ SessionId(): Guid
+ State(): SessionState

DataHandlerFactory

+ TryCreate(CrossJoin*): bool
+ TryCreate(Having*): bool
+ TryCreate(Aggregate*): bool
+ TryCreate(Distinct*): bool
+ TryCreate(OrderBy*): bool
+ TryCreate(Limit*): bool
+ TryCreate(Where*): bool
+ TryCreate(SubQuery*): bool
+ TryCreate(FullJoin*): bool
+ TryCreate(RightJoin*): bool
+ TryCreate(LeftJoin*): bool
+ TryCreate(InnerJoin*): bool
+ TryCreate(DeleteSink*): bool
+ TryCreate(ExecuteSink*): bool
+ TryCreate(InsertSink*): bool
+ TryCreate(SelectSink*): bool
+ TryCreate(UpdateSink*): bool
+ TryCreate(TableSource*): bool

Namespace

Object Model::Model

«property»
+ DefaultSchema(): string

+sessions

0..*

+metaModel

1

+handlerFactory

1

Appendix E

Filipa José Faria Nóbrega – January 2019 121

A
P

P
E

N
D

IX

 E
E. Tools

This appendix shows the final result of the tools presented in section 3.3.2.

E.1 VS Wizard with Project Template

Figure E.1 Connector Description

Figure E.2 Connector Properties

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

122 Filipa José Faria Nóbrega – January 2019

Figure E.3 Public/Private RSA key pair

E.2 RSA Key Generator

Figure E.4 RSA Key Generator

Appendix F

Filipa José Faria Nóbrega – January 2019 123

A
P

P
E

N
D

IX

 F
F. Open Data Protocol

This appendix shows how metamodel concepts are defined following the

implementation-level rules presented in section 4.2.2.

For instance, for the following XML fragment, the table definition is given below (by

applying Rule1).

<EntityType Name="Airport"><Key><PropertyRef Name="IcaoCode"/></Key>

<Property Name="IcaoCode" Type="Edm.String" Nullable="false"/>

<Property Name="Name" Type="Edm.String" Nullable="false"/>

<Property Name="IataCode" Type="Edm.String" Nullable="false"/>

<Property Name="Location" Type="AirportLocation" Nullable="false"/>

</EntityType>

<EntitySet Name="Airports" EntityType="Airport"/>

For instance, for the following XML fragment, two table definitions are given below (by

applying Rule2 and Rule3, respectively).

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

124 Filipa José Faria Nóbrega – January 2019

<EntityType Name="Person" OpenType="true"> <Key> <PropertyRef Name="UserName"/> </Key>

 <Property Name="UserName" Type="Edm.String" Nullable="false">...</Property>

 <Property Name="FirstName" Type="Edm.String" Nullable="false"/>

 <Property Name="LastName" Type="Edm.String" Nullable="false"/>

 <Property Name="Emails" Type="Collection(Edm.String)"/>

 <Property Name="AddressInfo" Type="Collection(Location)"/>

 <Property Name="Gender" Type="PersonGender"/>

 <Property Name="Concurrency" Type="Edm.Int64" Nullable="false">...</Property>

 <NavigationProperty Name="Friends" Type="Collection(Person)"/>

 <NavigationProperty Name="Trips" Type="Collection(Trip)" ContainsTarget="true"/>

 <NavigationProperty Name="Photo" Type="Photo"/>

</EntityType>

<EntitySet Name="People" EntityType="Person">

 <NavigationPropertyBinding Path="Friends" Target="People"/>

 <NavigationPropertyBinding Path="Photo" Target="Photos"/>

</EntitySet>

For instance, for the following XML fragment, the procedure definition is given below (by

applying Rule1).

<Action Name="ResetDataSource"/>

For instance, for the following XML fragment, two procedure definitions are given below

(by applying Rule2).

Appendix F

Filipa José Faria Nóbrega – January 2019 125

<Action Name="ShareTrip" IsBound="true">

 <Parameter Name="person" Type="Person" Nullable="false"/>

 <Parameter Name="userName" Type="Edm.String" Nullable="false"/>

 <Parameter Name="tripId" Type="Edm.Int32" Nullable="false"/>

</Action>

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

126 Filipa José Faria Nóbrega – January 2019

A
P

P
E

N
D

IX

 G
G. Schema Collections

This appendix describes the schema collections for SQL Server from Microsoft [66].

Table G.1 Schema collections for MS SQL Server

MS SQL Server

 Name Description

Databases

DATABASE_NAME Name of the database.

DBID Database Identifier.

CREATE_DATE Creation data of the

database.

Foreign Keys

CONSTRAINT_CATALOG Catalog the constraint

belongs to.

CONSTRAINT_SCHEMA Schema that contains the

constraint.

CONSTRAINT_NAME Constraint Name.

TABLE_CATALOG Table Name constraint is

part of.

TABLE_SCHEMA Schema that contains the

table.

TABLE_NAME Table Name.

CONSTRAINT_TYPE Type of constraint.

IS_DEFERRABLE Specifies whether the

constraint is deferrable.

INITIALLY_DEFERRED Specifies whether the

constraint is initially

deferrable.

Appendix G

Filipa José Faria Nóbrega – January 2019 127

MS SQL Server

 Name Description

Indexes

CONSTRAINT_CATALOG Catalog that index belongs

to.

CONSTRAINT_SCHEMA Schema that contains the

index.

CONSTRAINT_NAME Name of the index.

TABLE_CATALOG Table name the index is

associated with.

TABLE_SCHEMA Schema that contains the

table the index is

associated with.

TABLE_NAME Table Name.

INDEX_NAME Index Name.

TYPE_DESC The type of the index.

IndexColumns

CONSTRAINT_CATALOG Catalog that index belongs

to.

CONSTRAINT_SCHEMA Schema that contains the

index.

CONSTRAINT_NAME Name of the index.

TABLE_CATALOG Table name the index is

associated with.

TABLE_SCHEMA Schema that contains the

table the index is

associated with.

TABLE_NAME Table Name.

COLUMN_NAME Column name the index is

associated with.

ORDINAL_POSITION Column ordinal position.

KEYTYPE The type of object.

INDEX_NAME Index Name.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

128 Filipa José Faria Nóbrega – January 2019

MS SQL Server

 Name Description

Procedures

SPECIFIC_CATALOG Specific name for the

catalog.

SPECIFIC_SCHEMA Specific name for the

schema.

SPECIFIC_NAME Specific name for the

catalog.

ROUTINE_CATALOG Catalog that stored

procedure belongs to.

ROUTINE_SCHEMA Schema that contains the

stored procedure.

ROUTINE_NAME Name of the stored

procedure.

ROUTINE_TYPE The type of procedure:

PROCEDURE or FUNCTION.

CREATED Time the procedure was

created.

LAST_ALTERED The last time the procedure

was modified.

Procedure

Parameters

SPECIFIC_CATALOG Catalog name of the

procedure for which this is

a parameter.

SPECIFIC_SCHEMA Schema that contains the

procedure for which this

parameter is part of.

SPECIFIC_NAME Name of the procedure for

which this parameter is a

part of.

ORDINAL_POSITION Ordinal position of the

parameter starting at 1.

Appendix G

Filipa José Faria Nóbrega – January 2019 129

MS SQL Server

 Name Description

PARAMETER_MODE Returns IN if an input

parameter, OUT if an

output parameter, and

INOUT if an input/output

parameter.

IS_RESULT Indicates if result of the

procedure is a function.

AS_LOCATOR Indicates if parameter was

declared as locator.

PARAMETER_NAME Name of the parameter.

DATA_TYPE System-supplied data type.

CHARACTER_MAXIMUM_LENGTH Maximum length, in

characters, for binary or

character data types.

CHARACTER_OCTET_LENGTH Maximum length, in bytes,

for binary or character data

types.

COLLATION_CATALOG Catalog name of the

collation of the parameter.

COLLATION_SCHEMA Always returns NULL.

COLLATION_NAME Name of the collation of the

parameter.

CHARACTER_SET_CATALOG Catalog name of the

character set of the

parameter.

CHARACTER_SET_SCHEMA Always returns NULL.

CHARACTER_SET_NAME Name of the character set

of the parameter.

NUMERIC_PRECISION Precision of approximate

numeric data, exact

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

130 Filipa José Faria Nóbrega – January 2019

MS SQL Server

 Name Description

numeric data, integer data,

or monetary data.

NUMERIC_PRECISION_RADIX Precision radix of

approximate numeric data,

exact numeric data, integer

data, or monetary data.

NUMERIC_SCALE Scale of approximate

numeric data, exact

numeric data, integer data,

or monetary data.

DATETIME_PRECISION Precision in fractional

seconds if the parameter

type is datetime or small-

datetime.

Tables

TABLE_CATALOG Catalog of the table.

TABLE_SCHEMA Schema that contains the

table.

TABLE_NAME Table Name.

TABLE_TYPE Type of table.

Columns

TABLE_CATALOG Catalog of the table.

TABLE_SCHEMA Schema that contains the

table.

TABLE_NAME Table Name.

COLUMN_NAME Column Name.

ORDINAL_POSITION Column identification

number.

COLUMN_DEFAULT Default value of the

column.

IS_NULLABLE Nullability of the column.

DATA_TYPE System-supplied data type.

Appendix G

Filipa José Faria Nóbrega – January 2019 131

MS SQL Server

 Name Description

CHARACTER_MAXIMUM_LENGTH Maximum length, in

characters, for binary data,

character data, or text and

image data.

CHARACTER_OCTET_LENGTH Maximum length, in bytes,

for binary data, character

data, or text and image

data.

COLLATION_CATALOG Indicates the database in

which the collation is

located – master (if column

is character data or text

data type).

CHARACTER_SET_CATALOG Indicates the database in

which the character set is

located – master (if column

is character data or text

data type).

CHARACTER_SET_SCHEMA Always returns NULL.

CHARACTER_SET_NAME If this column is character

data or text data type,

Returns the unique name

for the character set.

NUMERIC_PRECISION Precision of approximate

numeric data, exact

numeric data, integer data,

or monetary data.

NUMERIC_PRECISION_RADIX Precision radix of

approximate numeric data,

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

132 Filipa José Faria Nóbrega – January 2019

MS SQL Server

 Name Description

exact numeric data, integer

data, or monetary data.

NUMERIC_SCALE Scale of approximate

numeric data, exact

numeric data, integer data,

or monetary data.

DATETIME_PRECISION Subtype code for datetime.

IS_FILESTREAM Indicates if the column has

FILESTREAM attribute.

IS_SPARSE Indicates if the column is a

sparse column.

IS_COLUMN_SET Indicates if the column is a

column set column.

Users

UID Unique identifier in the

database.

USER_NAME Unique username or group

name in the database.

CREATEDATE Date the account was

added.

UPDATEDATE Date the account was last

changed.

Views

TABLE_CATALOG Catalog of the view.

TABLE_SCHEMA Schema that contains the

view.

TABLE_NAME View name.

CHECK_OPTION Type of WITH CHECK

OPTION

IS_UPDATABLE Indicates if the view is

updatable.

ViewColumns VIEW_CATALOG Catalog of the view.

Appendix G

Filipa José Faria Nóbrega – January 2019 133

MS SQL Server

 Name Description

VIEW_SCHEMA Schema that contains the

view.

VIEW_NAME View name.

TABLE_CATALOG Catalog of the table that is

associated with this view.

TABLE_SCHEMA Schema that contains the

table that is associated with

this view.

TABLE_NAME Name of the table that is

associated with the view.

COLUMN_NAME Column name.

UserDefinedTypes

(UDT)

ASSEMBLY_NAME The name of the file for the

assembly.

UDT_NAME The class name for the

assembly.

VERSION_MAJOR Major Version Number.

VERSION_MINOR Minor Version Number.

VERSION_BUILD Build Version Number.

VERSION_REVISION Revision Version Number.

CULTURE_INFO The culture information

associated with the UDT.

PUBLIC_KEY The public key used by the

assembly.

IS_FIXED_LENGTH Indicate if length of type is

always same as

MAX_LENGTH.

MAX_LENGTH Maximum length of type in

bytes.

CREATE_DATE The date the assembly was

created/registered.

SDK Development for Bridging Heterogeneous Data Sources Through Connect Bridge Platform

134 Filipa José Faria Nóbrega – January 2019

MS SQL Server

 Name Description

PERMISSION_SET_DESC The friendly name for the

permission-set/security-

level for the assembly.

