295 research outputs found

    A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran)

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. In this study, we introduced a novel hybrid artificial intelligence approach of rotation forest (RF) as a Meta/ensemble classifier based on alternating decision tree (ADTree) as a base classifier called RF-ADTree in order to spatially predict gully erosion at Klocheh watershed of Kurdistan province, Iran. A total of 915 gully erosion locations along with 22 gully conditioning factors were used to construct a database. Some soft computing benchmark models (SCBM) including the ADTree, the Support Vector Machine by two kernel functions such as Polynomial and Radial Base Function (SVM-Polynomial and SVM-RBF), the Logistic Regression (LR), and the Naïve Bayes Multinomial Updatable (NBMU) models were used for comparison of the designed model. Results indicated that 19 conditioning factors were effective among which distance to river, geomorphology, land use, hydrological group, lithology and slope angle were the most remarkable factors for gully modeling process. Additionally, results of modeling concluded the RF-ADTree ensemble model could significantly improve (area under the curve (AUC) = 0.906) the prediction accuracy of the ADTree model (AUC = 0.882). The new proposed model had also the highest performance (AUC = 0.913) in comparison to the SVM-Polynomial model (AUC = 0.879), the SVM-RBF model (AUC = 0.867), the LR model (AUC = 0.75), the ADTree model (AUC = 0.861) and the NBMU model (AUC = 0.811)

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance

    A hybrid computational intelligence approach to groundwater spring potential mapping

    Full text link
    © 2019 by the authors. This study proposes a hybrid computational intelligence model that is a combination of alternating decision tree (ADTree) classifier and AdaBoost (AB) ensemble, namely "AB-ADTree", for groundwater spring potential mapping (GSPM) at the Chilgazi watershed in the Kurdistan province, Iran. Although ADTree and its ensembles have been widely used for environmental and ecological modeling, they have rarely been applied to GSPM. To that end, a groundwater spring inventory map and thirteen conditioning factors tested by the chi-square attribute evaluation (CSAE) technique were used to generate training and testing datasets for constructing and validating the proposed model. The performance of the proposed model was evaluated using statistical-index-based measures, such as positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity accuracy, root mean square error (RMSE), and the area under the receiver operating characteristic (ROC) curve (AUROC). The proposed hybrid model was also compared with five state-of-the-art benchmark soft computing models, including singleADTree, support vector machine (SVM), stochastic gradient descent (SGD), logistic model tree (LMT), logistic regression (LR), and random forest (RF). Results indicate that the proposed hybrid model significantly improved the predictive capability of the ADTree-based classifier (AUROC = 0.789). In addition, it was found that the hybrid model, AB-ADTree, (AUROC = 0.815), had the highest goodness-of-fit and prediction accuracy, followed by the LMT (AUROC = 0.803), RF (AUC = 0.803), SGD, and SVM (AUROC = 0.790) models. Indeed, this model is a powerful and robust technique for mapping of groundwater spring potential in the study area. Therefore, the proposed model is a promising tool to help planners, decision makers, managers, and governments in the management and planning of groundwater resources

    ELULC-10, a 10 m European land use and land cover map using Sentinel and landsat data in Google Earth Engine

    Get PDF
    Land Use/Land Cover (LULC) maps can be effectively produced by cost-effective and frequent satellite observations. Powerful cloud computing platforms are emerging as a growing trend in the high utilization of freely accessible remotely sensed data for LULC mapping over large-scale regions using big geodata. This study proposes a workflow to generate a 10 m LULC map of Europe with nine classes, ELULC-10, using European Sentinel-1/-2 and Landsat-8 images, as well as the LUCAS reference samples. More than 200 K and 300 K of in situ surveys and images, respectively, were employed as inputs in the Google Earth Engine (GEE) cloud computing platform to perform classification by an object-based segmentation algorithm and an Artificial Neural Network (ANN). A novel ANN-based data preparation was also presented to remove noisy reference samples from the LUCAS dataset. Additionally, the map was improved using several rule-based post-processing steps. The overall accuracy and kappa coefficient of 2021 ELULC-10 were 95.38% and 0.94, respectively. A detailed report of the classification accuracies was also provided, demonstrating an accurate classification of different classes, such as Woodland and Cropland. Furthermore, rule-based post processing improved LULC class identifications when compared with current studies. The workflow could also supply seasonal, yearly, and change maps considering the proposed integration of complex machine learning algorithms and large satellite and survey data.Peer ReviewedPostprint (published version

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Land cover and forest segmentation using deep neural networks

    Get PDF
    Tiivistelmä. Land Use and Land Cover (LULC) information is important for a variety of applications notably ones related to forestry. The segmentation of remotely sensed images has attracted various research subjects. However this is no easy task, with various challenges to face including the complexity of satellite images, the difficulty to get hold of them, and lack of ready datasets. It has become clear that trying to classify on multiple classes requires more elaborate methods such as Deep Learning (DL). Deep Neural Networks (DNNs) have a promising potential to be a good candidate for the task. However DNNs require a huge amount of data to train including the Ground Truth (GT) data. In this thesis a DL pixel-based approach backed by the state of the art semantic segmentation methods is followed to tackle the problem of LULC mapping. The DNN used is based on DeepLabv3 network with an encoder-decoder architecture. To tackle the issue of lack of data the Sentinel-2 satellite whose data is provided for free by Copernicus was used with the GT mapping from Corine Land Cover (CLC) provided by Copernicus and modified by Tyke to a higher resolution. From the multispectral images in Sentinel-2 Red Green Blue (RGB), and Near Infra Red (NIR) channels were extracted, the 4th channel being extremely useful in the detection of vegetation. This ended up achieving quite good accuracy on a DNN based on ResNet-50 which was calculated using the Mean Intersection over Union (MIoU) metric reaching 0.53MIoU. It was possible to use this data to transfer the learning to a data from Pleiades-1 satellite with much better resolution, Very High Resolution (VHR) in fact. The results were excellent especially when compared on training right away on that data reaching an accuracy of 0.98 and 0.85MIoU

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Generation of a Land Cover Atlas of environmental critic zones using unconventional tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    The contribution of multitemporal information from multispectral satellite images for automatic land cover classification at the national scale

    Get PDF
    Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information SystemsImaging and sensing technologies are constantly evolving so that, now, the latest generations of satellites commonly provide with Earth’s surface snapshots at very short sampling periods (i.e. daily images). It is unquestionable that this tendency towards continuous time observation will broaden up the scope of remotely sensed activities. Inevitable also, such increasing amount of information will prompt methodological approaches that combine digital image processing techniques with time series analysis for the characterization of land cover distribution and monitoring of its dynamics on a frequent basis. Nonetheless, quantitative analyses that convey the proficiency of three-dimensional satellite images data sets (i.e. spatial, spectral and temporal) for the automatic mapping of land cover and land cover time evolution have not been thoroughly explored. In this dissertation, we investigate the usefulness of multispectral time series sets of medium spatial resolution satellite images for the regular land cover characterization at the national scale. This study is carried out on the territory of Continental Portugal and exploits satellite images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and MEdium Resolution Imaging Spectrometer (MERIS). In detail, we first focus on the analysis of the contribution of multitemporal information from multispectral satellite images for the automatic land cover classes’ discrimination. The outcomes show that multispectral information contributes more significantly than multitemporal information for the automatic classification of land cover types. In the sequence, we review some of the most important steps that constitute a standard protocol for the automatic land cover mapping from satellite images. Moreover, we delineate a methodological approach for the production and assessment of land cover maps from multitemporal satellite images that guides us in the production of a land cover map with high thematic accuracy for the study area. Finally, we develop a nonlinear harmonic model for fitting multispectral reflectances and vegetation indices time series from satellite images for numerous land cover classes. The simplified multitemporal information retrieved with the model proves adequate to describe the main land cover classes’ characteristics and to predict the time evolution of land cover classes’individuals
    • …
    corecore