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Abstract: In this study, we introduced a novel hybrid artificial intelligence approach of rotation forest

(RF) as a Meta/ensemble classifier based on alternating decision tree (ADTree) as a base classifier

called RF-ADTree in order to spatially predict gully erosion at Klocheh watershed of Kurdistan

province, Iran. A total of 915 gully erosion locations along with 22 gully conditioning factors were

used to construct a database. Some soft computing benchmark models (SCBM) including the ADTree,

the Support Vector Machine by two kernel functions such as Polynomial and Radial Base Function

(SVM-Polynomial and SVM-RBF), the Logistic Regression (LR), and the Naïve Bayes Multinomial
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Updatable (NBMU) models were used for comparison of the designed model. Results indicated

that 19 conditioning factors were effective among which distance to river, geomorphology, land

use, hydrological group, lithology and slope angle were the most remarkable factors for gully

modeling process. Additionally, results of modeling concluded the RF-ADTree ensemble model could

significantly improve (area under the curve (AUC) = 0.906) the prediction accuracy of the ADTree

model (AUC = 0.882). The new proposed model had also the highest performance (AUC = 0.913) in

comparison to the SVM-Polynomial model (AUC = 0.879), the SVM-RBF model (AUC = 0.867), the

LR model (AUC = 0.75), the ADTree model (AUC = 0.861) and the NBMU model (AUC = 0.811).

Keywords: gully erosion; machine learning; ensemble algorithms; geomorphology; Geographic

information science; Kurdistan province

1. Introduction

Water-related soil erosion as an environmental concern and considerable source of transferring

sediments into rivers is a threating land degradation phenomenon affecting around one billion hectares

in the world [1]. The consequents of the water erosion include on-site impacts such as loss of soil

resources, decrease in soil fertility, reduction of vegetation growth, filling of valleys and reservoirs,

desertification and destruction of human infrastructure, and off-site impacts consisting of sedimentation

of water courses, decreases in water quality and economic and ecological damages to societies [2,3].

Water erosion occurs in different forms based on changes in its morphometric characteristics on hill

slopes including rain splash, sheet (interrill) erosion, rill erosion, bank erosion and gully (badland)

erosion [4]. Among these, gully erosion is a complex erosion problem [5] that will be accelerated or

triggered with land use change and heavy rainfalls [6]. The contribution of gullies in overall sediment

production in semi-arid and arid regions is 50–80% worldwide [7]. It has been reported that soil loss

rates by gully erosion ranges from minimal 10% up to 94% of total sediment yield in water erosion [5].

According to the definition, gully erosion is an erosion process where runoffwater accumulates

and sometimes recurs in narrow channels and then, over a short time, the soil from the narrow channels

will be removed and a considerable channel with high depth will emerge [8]. Three types of gullies

have been reported as (i) permanent gullies which are often related to agricultural lands, and are

specified with very deep channels that with ordinary tillage are obliterated. Their depth ranges from 0.5

to as much as 25–30 m [9–12], (ii) ephemeral gullies (rill form) are small eroded channels by overland

flow that are easily filled through normal tillage [9]. They are specified by a critical cross-sectional area

of about 929 cm2 [13], a minimum width and depth of 0.3 and 0.6 m, respectively [14], and (iii) bank

gullies constitute wherever a morphological bank will be cut by concentrated runoff. With increasing

the local slope of the soil surface as subvertical or vertical, they will be quickly developed by erosion,

piping and consequently mass movements at or below the soil surface [15,16].

An area of about 1.1% of the world’s land areas has been covered by Iran where the annual

amount of soil loss is 2–2.5 billion tons, ranking as the second in the world in terms of the amount of

soil erosion [17]. Reports indicate that about 88 million hectares (more than half of the area) of Iran is

covered by critical soil erosion conditions [17]. Since gullies lead to degradation of a large amount of

soil and transferring huge volume of sediments into streams, the agriculture lands, residential areas

and even infrastructures will suffer [18]. Therefore, recognition of the areas that are more prone to

gully erosion is a critical issue for better land management and prevention of gully erosion in land

allocation studies.

Over the last decades, some investigations and numerous computer-aided techniques have

been developed for gully erosion modelling including expert knowledge methods such as analytical

hierarchy process (AHP) [19,20], bivariate statistical methods (BSMs) such as frequency ratio (FR) [21,22],

certainty factors (CF) [23], weight of evidence (WoE) [22,24], information value (InVal) and evidential



Sensors 2019, 19, 2444 3 of 34

belief function (EBF) [25], conditional probability (CP) [26], index of entropy (IOE) [27], multivariate

statistical methods (MSMs) such as linear regression (LiR) [28] and logistic regression (LR) [29,30],

and machine learning methods such as support vector machine (SVM) [31–33], and random forest

(RF) [34,35], classification and regression trees (CART) [33] and artificial neural networks (ANN) [33].

Recently, ensemble machine learning methods have been used more for spatial prediction of natural

hazards studies such as groundwater and flood [36–44], landslides [45–58], wildfire [59], sinkhole [60],

droughtiness [61] and land/ground subsidence [62]. However, few studies using ensemble machine

learning models have been reported on gully erosion, such as [31]. An advantage of the ensemble

algorithms as powerful techniques is that they have higher goodness-of-fit and perdition accuracy

than the individual or single-based methods/algorithms by removing their weaknesses. For instance,

Pourghasemi et al. [31] used artificial neural network (ANN), SVM, maximum entropy (ME) and their

ensembles to prepare gully susceptibility mapping. They reported that the ANN-SVM ensemble had

more ability to detect gully erosion in comparison to the individual and other ensemble methods.

Although some methods and techniques have been developed for susceptibility assessment, the results

of the modeling process are different from one region to another even from a model to another one,

indicating that the obtained results by a model are for that specific case study. Overall, ensemble

machine learning has improved the prediction capability of gully erosion models significantly.

This aim of this work is to expand the body of the proposed gully erosion modelling and verify a

new ensemble artificial intelligence approach based on rotation forest (RF) and the ADTree algorithm,

named as RFADT, for gully erosion mapping in a semi-arid watershed, Klocheh, Bijar in Kurdistan

province, Iran. RF is a relatively new and powerful ensemble framework that has proven its efficiency

in various real world problems [63–67], whereas the ADTree is a new robust and efficient algorithm [41].

To the best of our knowledge, RFADT has not been considered for gully erosion susceptibility mapping.

Finally, the effectiveness of the proposed RFADT model is assessed by comparing its performance

with benchmarks, ADTree, SVM with RBF and Polynomial kernel functions, LR and Naïve Bayes

Multinomial Updatable (NBMU), and conclusions are given.

2. Description of Study Area

The study area is the Klocheh watershed, located between Kurdistan province and Hamadan

province in the west of Iran, between longitudes 47◦50′24” E and 48◦8′35” E, and latitudes 35◦14′24” N

and 35◦40′5” N, covering an area of about 498.49 km2 (Figure 1). Elevation in the study area varies

from 1612 to 2331 m above sea level, with an average elevation of 1925.47 m. The terrain surface of the

area is relatively steep with slope ranging from 0◦ to 67.06◦ with the mean slope of 6.56◦. Statistical

analysis of rainfall for the period of 1987–2010 shows that the annual average rainfall is about 338 mm.

The mean daily maximum and minimum temperatures are 4.4 and 13.4 ◦C, respectively. The number

of frost days is 104 and the number of snow days is 35 (http://kurdistanmet.telepol.ir).

The Klocheh watershed is a branch of the Sefid Rood River which the latter itself is drained into

the Caspian Sea Basin. Six geomorphologic units can be identified in the Klocheh watershed including

old plain unit (40.43%), new plain unit (29.98%), hill slope unit (21.38%), fluvial sediment unit (3.72%),

valley unit (3.20%) and mountain unit (1.28%). In this study, five types of land use patterns were

also identified including barren lands, dry farming lands, poor pasture lands, semi-dense pasture

lands and woodlands. The dry farming lands have occupied the largest area (73.95%), followed by

semi-dense pasture (11.97%), poor pasture (9.58%), woodlands (3.38) and barren lands, respectively.

The Klocheh watershed is geologically located in the Sanandaj-Sirjan zone so that its effects are

seen as magmatism in the basin (geological map with scale of 1:100,000). The lithology of the basin

includes metamorphic-sedimentary rocks of the Jurassic period and Tertiary sediments includes Js

(schist, sandstone, quartzite), JL (intracellular limestone layers), Plt (trachyte, trachyandesite, dacite)

and Plb (basalt, basinite), which are covered by deposits of Mm (light green and red marls), Pcg

(conglomerate loose deposits), Pl,m (clay limestone, marl, sand marl, limestone sandstone), Qt1 (high

alluvial sediments) and Qal (river beds sediments) (geological map with scale of 1:100,000). Stone units

http://kurdistanmet.telepol.ir
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cover about 4.93% and sediment units cover 95.07% of the basin surface. Based on this classification,

sedimentary and rocky units of the basin have been classified into low erodibility units such as Js, Plt,

and JL; moderate erodibility including Qc, Qt1, Pcg, Mm, and Plb; high erodibility including Qtr, and

Qt2; very high erodibility including Qal, Plm, covering an area of about 4.061%, 43.826%, 20.49% and

31.62% of the basin, respectively. Gullies in the study area have been mainly formed due to susceptible

lithological units such as marl and alluvial deposits on the rivers. We in this study selected the head

of gullies of the tributaries of the streams. The gullies on the main river of the study area had large

sizes in depth (>10 m) and width (>7 m) while the head of gullies of the tributaries had smaller sizes

(depth < 2–3 m and width < 1 m). Our main aim of this study was to recognize the locations that are

prone to gully development in the future.

 

Figure 1. Location of study area and gully erosion sites in Kurdistan province and Iran.

3. Data Acquisition

3.1. Gully Inventory Map

In this study, locations of some gullies had been recorded earlier by the Natural Resources and

Watershed Management General Office of Kurdistan province; however, other locations were recorded

during comprehensive field surveys and these locations were then checked by Google Earth images

(dated 22 May 2017) in order to prepare an accurate gully erosion inventory map. A total of 915 gully

erosion lines were ultimately detected in the study area which were mainly on or near the river

networks (Figure 1). These gully lines were converted to the points using “feature to point” using

ArcGIS 10.2, with more focus on the head of gullies. These points were then randomly classified into

70% (640 gullies) and 30% (275 gullies) for modeling and validation processes, respectively. Most of

the gullies are classified as permanent and bank gullies (stream gullies) in the current study. It should

be noted that for the modeling process using machine learning algorithms, the dataset should contain



Sensors 2019, 19, 2444 5 of 34

both present and absent events of the gully erosion process. Basically, besides dividing gully erosion

locations into 70% and 30%, a total of 915 non-gully erosion locations should be selected and classified

into a ratio of 70%/30%. In this study, we selected these locations randomly over the watershed using

“create random point” tool in ArcGIS 10.2. Figure 2 shows some typical examples of gullies in the

study area. As can be seen in these figures, gullies in the study area are surprisingly developed from

rill with small size in depth and width, in which some of them have a depth more than 4 m and a width

more than 10 m. The primary filed surveys based on the expert knowledge revealed that shear stress

of flow and geology were the most important factors to cause gullies. Indeed, the gully locations are in

concordance with the loose and erodible quaternary depositions including marl with interlayers of

limestone. The Natural Resources and Watershed Management General Office of Kurdistan province,

Iran, has done many control practices including construction of check dams to prevent and even to

control these gullies; however, as observed in Figure 2, all of them were unsuccessful since the check

dams were destroyed and overturned.

  

Figure 2. Photos of gully erosion in the Klocheh Watershed, Kurdistan province, Iran.

3.2. Gully Erosion Conditioning Factors

A large set of geo-environmental factors are usually used in scientific literature to analyze gully

erosion hazard. However, there are no universal guidelines for selecting gully conditioning factors.

Previous researchers have considered different factors as independent variables. According to the

literature, we selected 22 gully-erosion susceptibility predictor variables, which can be divided into six

categories (Table 1): (1) Topographic factors; (2) Hydrological factor; (3) Lithological factors; (4) Land

cover factors; (5) Anthropogenic factors; and (6) Geomorphological factors. Topographic factors include

slope, aspect, elevation, plan curvature, profile curvature, sediment transport index (STI) and valley

depth (VD). Hydrological factors include rainfall, stream power index (SPI), topographic wetness

index (TWI), hydrological group (HG), flow accumulation, permeability, distance to river and river

density. Lithological factors refer to lithology, distance to fault and fault density. Land cover factors
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include land use while distance to road and road density factors are anthropogenic factors considered

in the analysis; and geomorphological factors enclose landforms. Table 1 shows gully conditioning

factors and their classes for gully erosion modeling.

A Digital Elevation Model with 12.5 m resolution was extracted from ALOS PALSAR data,

collected from Alaska Satellite Facility’s (https://vertex.daac.asf.alaska.edu/#). Slope, aspect, elevation,

plan curvature, STI, VD, SPI, TWI, HG, flow accumulation, permeability, distance to river and river

density were constructed from the digital elevation model (DEM) using ARC GIS 10.2 and SAGA

6.0.0 software.

Slope inclination is an important factor in gully formation and development. Gentle slopes are

assumed to have higher infiltration in comparison to steeper slopes, and therefore gentle slopes are

considered to be susceptible to gully initiation [21,68]. The slope factor was classified into six classes of

(1) 0–2; (2) 2–5; (3) 5–10; (4) 10–15; (5) 15–20; (6) >20 (Table 1). Aspect is another conditioning factor that

plays an important role in gully development [26]. Aspect can control evapotranspiration, vegetation

cover and incoming solar radiation [69]. The aspect factor of the study area was created using the

DEM and categorized later into nine classes of (1) Flat; (2) North; (3) Northeast; (4) East; (5) Southeast;

(6) South; (7) Southwest; (8) West; (9) Northwest (Table 1). Elevation influences microclimate and

vegetation community [70]. Therefore, several researchers have taken it into account in geohazards,

especially for predicting gully-erosion susceptibility [30,71]. According to the previous research, most

of occurred gullies were concentrated in low-altitude areas [26]. The elevation factor was divided to

eight classes: (1) 1612–1700; (2) 1700–1800; (3) 1800–1900; (4) 1900–2000; (5) 2000–2100; (6) 2100–2200;

(7) 2200–2300; (8) 2300–2400 m (Table 1). Plan curvature can be an important predictor of gully erosion

by representing the spatial variability in diverging and converging overland flow of water [21,72].

The plan curvature factor of the study area was reclassified into five categories: (1) [(−5.67)–(−0.736)];

(2) [(−0.736)–(−0.188)]; (3) [(−0.188)–0.149]; (4) [0.149–0.697]; (5) [0.6974–5.08] (m−1) (Table 1). Profile

curvature can reflect the geometric features of slopes, which in turn can influence stress distribution

of slopes in the development of gully [73]. The profile curvature of the study area was classified

into five classes: (1) [(−6.357)–(−0.972)]; (2) [(−0.972)–(−0.187)]; (3) [(−0.187)–0.317]; (4) [0.317–1.1];

and (5) [1.1–7.94] (m−1) (Table 1). The sediment transport index (STI) as another effective factor in

gully erosion has an important role in characterizing the process of erosion and deposition. In the

present study, the STI was divided into five classes: (1) 0–1.286; (2) 1.286–2.894; (3) 2.894–5.145;

(4) 5.145–8.468; (5) 8.468–27.33 (Table 1). Valley depth (VD) is computed based on the elevation using

SAGA 6.0.0 software. It was divided into five categories including (1) 0–48.231; (2) 48.231–108.520;

(3) 108.520–176.340; (4) 176.340–254.720; and (5) 254.720–384.340 (Table 1).

Rainfall as a triggering factor by penetrating into the cracks of soils leads to gully occurrence and

its development in different directions [6]. The annual average rainfall factor of the Klocheh watershed

was obtained from the inside and outside rain gauge stations of the study area using Inverse Distance

Weighted (IDW) method. The rainfall factor was divided into five classes including (1) 261–286;

(2) 286–298; (3) 298–306; (4) 306–312; and (5) 312–322 mm.

Stream Power Index (SPI), as a hydrological factor, indicates the erosion power of streams that

can affect gully occurrence [21]. It is calculated as follows [74]:

SPI = As tan β, (1)

where As (m2m−1) is the specific catchment area and β is the cumulative upslope area and slope

gradient (in degrees). The SPI factor of current study was divided into five classes including (1) 0–112.4;

(2) 112.4–224.8; (3) 224.8–401.5; (4) 401.5–722.7; (5) 722.7–4095.

https://vertex.daac.asf.alaska.edu/#
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Topographic wetness index (TWI) is considered an important factor in gully development.

Therefore, some researchers have applied TWI as a secondary topographic factor for modeling gully

occurrence [26,30]. The formula of TWI is shown in Equation (2):

TWI = ln

(

As

tanβ

)

, (2)

where As and β are the cumulative upslope area and slope gradient (in degrees), respectively. In this

study, the TWI value was produced in SAGA-GIS 6.0.0 software using a 12.5 m DEM and then

reclassified into five groups: (1) 1–3; (2) 3–4; (3) 4–5; (4) 5–6; (5) 6–9.059.

Hydrological soil group (HSG) is another conditioning factor in gully erosion studies. It reflects

the soil potential for runoff generation based on the amount of infiltration [75]. The HSG factor was

classified in four groups including (1) A; (2) B; (3) C; (4) D.

The distance to road map was constructed from the road network built by Iran National

Cartographic Center (INCC) in DGN format with 1:25,000 scale. Flow accumulation, distance to river

(m) and river density (km/km2) are prominent hydrological factors that have an important role in

gully erosion. The possible effect of river networks on gully erosion was analyzed by calculating the

distance to the nearest perennial or major upstream ephemeral rivers in the region in every raster cell.

The values of three factors were constructed from the DEM 12.5 m using ArcGIS 10.2 and SAGA 6.0.0

software. Their classes are shown in Table 1.

Permeability or degree of porosity in soil indicates the ability of water to percolate and disintegrate

the structure of soils [76]. It is expected that soils with low permeability and high pore spaces are more

prone to gully occurrence. In this study, the permeability map was prepared by the constant-head

test (ASTM D 2434). It was then classified into three categories including low permeability, moderate

permeability and high permeability.

The different lithology and weathering properties of geologic parent materials influence land

surface processes and development of erosional landforms such as gullies [21,68,77]. The lithology

factor was obtained from a geological map with the scale of 1:100,000. Lithology units of the study area

include layered limestone layers (JL); schist, quartzite, and dark gray metamorphosed sandstones (JS);

(3) an alternative of light green and red marls (Mm); (4) basalt and bazanite (PLb); (5) conglomerate with

a matrix of marl and sandstone (Pcg); (6) clay limestone, marl, sand marl, sandstone (Plm); (7) trachyte,

trachy-andesite, dacite (Plt); (8) fluvial sediment (Qal); (9) terraces land (Qc); (10) travertine stone (Qtr);

(11) high alluvial terraces (Qt1); and (12) low alluvial terraces (Qt2) (Table 1).

Distances to fault (m) (proximity to the fault) and fault density (km/km2) (cumulative length

of faults per unit area) are important lithological factors in gully erosion. The rills which are closer

to faults or have higher cumulative length of faults in the area have higher probability of becoming

gullies [22]. The distance to fault and fault density factors are extracted from a geological map with the

scale of 1:100,000. They are classified into five classes that are shown in Table 1.

Land use is also a key element in land degradation in general and in gully formation in

particular [68]. The land use map of the present study was exploited using interpretation of Landsat 7

ETM+ satellite images from the land cover map acquired on 25 August 2017. The land use factor was

divided into five categories: (1) Wood lands; (2) Dry-farming and cultivated lands; (3) Poor pastures;

(4) Semi-dense pastures; and (5) Destroyed pastures.

Distance to road (m) and road density (km/km2) as anthropogenic/man-made factors show a

remarkable influence on gully erosion [78]. These two man-made factors were generated from a

topographic map with the scale of 1:150,000. Then, they were divided into five categories shown in

Table 1.

Geomorphologic units have different roles in gully erosion occurrence. For example, gullies will

generally be formed on low slope angle and loose sediments (quaternary depositions). They will

be triggered by changing in overland flow, decreasing in runoff lag time and increasing in runoff

volume [79]. In this study, the geomorphological map was categorized into five classes including
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(1) The valley plain unit (2) Hilly unit; (3) Mountain unit; (4) New plain unit; (5) Old plain unit; and

(6) Fluvial sediment unit (Table 1).

Table 1. Gully conditioning factors and their classes for gully modeling in Klocheh Watershed,

Kurdistan Province, Iran.

No. Factors Classes Classification Method

Topographic

1 Slope (o)
(1) 0–2; (2) 2–5; (3) 5–10; (4) 10–15; (5) 15–20;
(6) >20

Manual

2 Aspect
(1) Flat; (2) North; (3) Northeast; (4) East;
(5) Southeast; (6) South; (7) Southwest;
(8) West; (9) Northwest

Azimuth

3 Elevation (m)
(1) 1612–1700; (2) 1700–1800; (3) 1800–1900;
(4) 1900–2000; (5) 2000–2100; (6) 2100–2200;
(7) 2200–2300; (8) 2300–2400

Manual

4
Plan curvature

(m−1)

(1) [(−5.67)–(−0.736)]; (2) [(−0.736)–(−0.188)];
(3) [(−0.188)–0.149]; (4) [0.149–0.697];
(5) [0.6974–5.08]

Natural break

5
Profile curvature

(m−1)

(1) [(−6.357)–(−0.972)]; (2) [(−0.972)–(−0.187)];
(3) [(−0.187)–0.317]; (4) [0.317–1.1];
(5) [1.1–7.94]

Natural break

6 STI
(1) 0–1.286; (2) 1.286–2.894; (3) 2.894–5.145;
(4) 5.145–8.468; (5) 8.468–27.33

Natural break

7 VD
(1) 0–48.231; (2) 48.231–108.520;
(3) 108.520–176.340; (4) 176.340–254.720;
(5) 254.720–384.340

Natural break

Hydrological

8 Rainfall (mm)
(1) 261–286; (2) 286–298; (3) 298–306;
(4) 306–312; (5) 312–322

Natural break

9 SPI
(1) 0–112.4; (2) 112.4–224.8; (3) 224.8–401.5;
(4) 401.5–722.7; (5) 722.7–4095

Natural break

10 TWI (1) 1–3; (2) 3–4; (3) 4–5; (4) 5–6; (5) 6–9.059 Natural break

11 HG (1) A; (2) B; (3) C; (4) D HG type

12 Flow accumulation (1) 0–5; (2) 5–10; (3) 10–20; (4) 20–30; (5) >30 Manual

13 Permeability (1) Low; (2) Moderate; (3) High Permeability type

14
Distance to river

(m)
(1) 0–20; (2) 20–40; (3) 40–60; (4) 60–80; (5) >80 Manual

15
River density

(km/km2)
(1) 0–2.775; (2) 2.775–4.810; (3) 4.810–6.598; (4)
6.598–8.694; (5) 8.694–15.72

Natural break

Lithological
16 Lithology

(1) JL; (2) JS; (3) Mm; (4) PLb; (5) Pcg; (6) Plm;
(7) Plt; (8) Qal; (9) Qc; (10) Qtr; (11) Qt1;
(12) Qt2

Lithology type

17
Distance to fault

(m)
(1) 0–100; (2) 100–200; (3) 200–500;
(4) 500–1000; (5) >1000

Manual

18
Fault density

(km/km2)
(1) 0–0.287; (2) 0.287–0.823; (3) 0.823–1.270;
(4) 1.270–1.820; (5) 1.820–2.440

Natural break

Land cover 19 Land use

(1) Wood land; (2) Dry-farming and
cultivated lands; (3) Poor pastures;
(4) Semi-dense pastures; (5) Destroyed
pastures

Land use type

Anthropogenic
20

Distance to road
(m)

(1) 0–100; (2) 100–200; (3) 200–300;
(4) 300–500; (5) >500

Manual

21
Road density

(km/km2)
(1) 0–0.684; (2) 0.684–1.750; (3) 1.750–2.570;
(4) 2.570–3.690; (5) 3.690–6.980

Natural break

Geomorphology 22 Geomorphology
(1) The valley plain unit (2) Hilly unit;
(3) Mountain unit; (4) New plain unit; (5) Old
plain unit; (6) Fluvial sediment unit

Geomorphology type
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4. Background of Machine Learning Methods

4.1. Support Vector Machine Classifier

Support Vector Machine (SVM) which introduced by Vapnik [80], is a well-known machine

learning classifier applied to facilitate the solution of many real world problems including landslide

prediction [81,82], flood prediction [83,84] and forest fire prediction [85,86]. It is based on the principle

of structural risk minimization of statistical learning theory to reduce the error test and complexity

of computation. Using the SVM, an optimal hyper-plane is constructed to separate two classes for

classification whereas one class is assigned as “1” located above the hyper-plane and another is

assigned “0” located below the hyper-plane. A number of support vectors are used to define the

optimal hyper-plane which can be obtained by minimizing the objective function as below:

Min

n
∑

i=1

ϕi −
1

2

n
∑

i=1

n
∑

j=1

ϕiϕ jyiy j(xi, x j). (3)

Subject to

Min

n
∑

i=1

ϕiy j = 0and0 ≤ αi ≤ D, (4)

where x = xi, i = 1, 2, ..., n is a vector of input variables, y = y j, j = 1, 2, ..., n is a vector of output

variables and ϕi is defined as Lagrange multipliers.

At last, the decision function used for the classification can be expressed as below:

f (x) = sgn















n
∑

i=1

yiϕiK(xi, x j) + a















, (5)

where a is defined as the bias defined as the distance of hyper plane from the origin, K
(

xi, x j

)

are the

kernel functions namely polynomial (POL) and radial basis function (RBF) which can be expressed as

below [87]:

KPOL

(

xi, x j

)

= ((x.y) + 1)d, (6)

KRBF

(

xi, x j

)

= e−γ‖x−xi‖
2
. (7)

4.2. Logistic Regression Classifier

Known as the most popular multivariate statistical analysis, logistic regression (LR) has been

applied to many scientific fields such as medical science [88,89], computer science [90] and natural

hazard assessment [91,92]. It can be used for prediction and assessment of gully erosion in regional

scale [30]. Main principle of LR is that it uses logistic function to analyze the relationship between a

set of the conditioning factors based on a set of dependent variables and one or more independent

variables. Logistic function used in the LR can be expressed as the following equations:

Q =
1

1 + e−t
. , (8)

t = log it (a) = ln
(

a

1− a

)

= e0 + e1x1 + . . .+ en xn. , (9)

where Q is defined as the probability of an gully erosion occurrence, xi (i = 1, 2, 3, . . . , n) are defined as

the conditioning factors, t is defined as the linear logistic factor which varies from −∞ to +∞, e0 is

defined as the constant modeling coefficient, ei (i = 1, 2, 3, . . . , n) are the modeling coefficients, and n is

defined as the number of independent variables.
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4.3. Naïve Bayes Multinomial Updatable Classifier

Known as one of the effective Bayesian classifiers, Naïve Bayes has been applied to many studies

such as text classification [93,94], heart disease prediction [95], classification of agricultural land

soils [96], facies identification [97] and natural hazard prediction [98]. The main principle of naïve

bayes (NB) is based on the probabilities of the observations from past observations to find the state of

query among other variables in the dataset. It is a simple and fast learning method for classification.

Training NB can be implemented through several steps such as (i) collection of data, (ii) estimation of

the probability and mean for each class, (iii) crtion of the variance and covariance matrix and building

of the discriminant function for each class. Decision function of NB can be expressed as the following

equation:

yNB = argmax P(yi)
n
∏

i=1
P(xi, yi)

yi =[gully, non− gully]
(10)

where x (x1, x2 , . . . xn) is the vector of the influencing factors and y (y1, y2) is the vector of the output

variables (gully, non-gully), P(yi) is defined as the prior probability of yi, P(xi, yi) is defined as the

conditional probability expressed as below:

P(xi, yi) =
1

√

2πβ
e
−(xi−α)

2

2β2 , (11)

where α and β are defined as the mean and standard deviation, respectively.

4.4. Alternating Decision Tree Classifier

Alternating Decision Tree (ADT) which introduced by Freund and Mason [99], is known as one of

the effective decision tree classifiers which is based on the boosting algorithm. Representation of this

classifier is to construct a classification tree where each decision node is replaced by two nodes such as

a prediction node and a splitter node [100]. Out of these nodes, a prediction node is related with a

real value and a splitter node is related with a test [101]. In the ADT, the decision rules are easy to be

interpreted; therefore, its decision-tree structures are simpler than other decision classifiers such as

Classification and Regression Tree (CART) [102] and Random forest [103]. Let a base ruler mapping to

the real number from the instances includes a precondition t1 and a base condition t2 and u and v are

two real numbers where the prediction is u as t1 ∩ t2 or v as t1 ∩ t2 (t is a negation of t). Value of u and v

can be calculated by the following equations:

u =
1

2
ln

W+(c1 ∩ c2)

W−(c1 ∩ c2)
, (12)

v =
1

2
ln

W+(t1 ∩
−t2)

W−(t1 ∩
−t2)

, (13)

where W(pr) is the total weight of the training instances which satisfy the predicate pr. The best

precondition t1 and base condition t2 are chosen by minimizing the Z(t1, t2) which is expressed

as follows:

Z(t1, t2) = 2

√

W+(t1 ∩ t2)W−(t1 ∩ t2) +
√

W+

(

t1 ∩ t2

)

W−
(

t1 ∩ t2

)

+ W
(

t2

)

. (14)

4.5. Rotation Forest Ensemble Classifier

Proposed by Rodriguez [64], Rotation Forest (RF) is known as one of the most effective ensemble

techniques which have been used for improving the predictive capability of many single classifiers

such as naïve Bayes tree [45], Random forest [65], support vector machines [104]. Training the RF
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model can be carried out in several main steps such as (i) several subsets are generated by dividing

the attribute sets, (ii) sample subsets are obtained by resampling and transforming features on the

generated subsets, (iii) the rotation matrix is realigned according to sequence of original attribute sets,

(iv) base classifiers are trained using the rotated sample subsets, and (v) the final outcome is obtained

by integrating the results of various base classifiers on different sample subsets. In the RF, the rotation

matrix is expressed as follows [64]:

Ri =









































e
(1)
i,1

, e
(2)
i,1

, . . . , e
(M1)
i,1

0 · · · 0

0 e
(1)
i,1

, e
(2)
i,1

, . . . , e
(M2)
i,1

· · · 0
...

...
. . .

...

0 0 · · · e
(1)
i,1

, e
(2)
i,1

, . . . , e
(MK)
i,1









































, (15)

where e(1)i j, e(2)i j, . . . , e(Mj)
i j are the coefficients of the rotation matrix, M = n

K where n is the number of

input factors and K is the number of subsets. Coefficients for each class in the given test sample are

attained using the average combination method expressed as below [64]:

η
(X)
j

=
1

N

N
∑

i=1

ci j(xRa
i ), j = 1 . . . d., (16)

where η
(X)
j

is defined as the largest confidence of the output class, ci j

(

xRa
i

)

is the probability assigned

by the classifier with the regression ci j, d is the number of output classes. The flowchart of this study is

shown in Figure 3.

1 2 1
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1 ,                  1, , .

 

Figure 3. The flowchart of the study.

4.6. Factor Selection Using Information Gain Ratio (IGR)

Selecting the most important factors in the modeling process has a determinant role in the obtained

results. In this stage, the factors that have noise and over-fitting problems will be detected and they

should be eliminated from the final modeling process to achieve an accurate model [36,48]. There are

some techniques for factor selection in the literature including Relief, Least Square Support Vector

Machine (LSSVM), Fuzzy-Rough Sets (FRS), Information Gain, and Information Gain Ratio (IGR) [105].

Among these, the IGR technique [106] was used for selecting the most significant factors for gully

erosion modeling using a training dataset. In this method, the IGR assigned the weights by entropy

(En) method to each factor titled “average merit (AM)” and the factors will be ordered based on it.
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The higher the value of IGR is, the more important the conditioning factor will be. The AM is specified

as the average information gain ratio with 10-fold cross-validation that has ranges between 0 and

1 [107]. Consider T as a training dataset with n input samples and the class label Gi (gully erosion,

non-gully erosion). The IGR will compute an AM for a given conditioning factor such as slope angle

(SA) as follows [108]:

IGR (T, SA) =
En(T) − En(T, SA)

SplitEn(T, SA)
, (17)

En(T) = −
2

∑

i=1

n(Ai, SA)

|T|
log2

n(Ai, SA)

|T|
, (18)

En (T, SA) =
m
∑

j=1

T j

|T|
En(T), (19)

SplitEn(T, SA) = −
m
∑

j=1

∣

∣

∣T j

∣

∣

∣

|T|
log2

∣

∣

∣T j

∣

∣

∣

|T|
. (20)

4.7. Development of Gully Erosion Maps

To construct the gully erosion maps each machine learning algorithm was performed based on

each probability distribution function (PDF) of algorithms. Then, the gully erosion susceptibility

indexes (GESI) for all pixels of the study area were computed. These values were converted to raster

format using the “point to raster” tool in ArcGIS 10.2 and all gully erosion maps were prepared.

Consequently, these maps were classified into five zones including very low susceptibility (VLS), low

susceptibility (LS), moderate susceptibility, high susceptibility (HS) and very high susceptibility (VHS)

using different classification methods such as equal interval, natural breaks, quantile and geometrical

interval. In order to select the best classification method, the proportion of the whole cells of the

watershed and all the observed gullies in each susceptibility class were calculated according to different

classification methods and developed models.

4.8. Evaluation and Comparison Methods

4.8.1. Statistical Index-Bases Measures

In this study, four statistical measures including sensitivity, specificity (SPF), accuracy and root

mean square error (RMSE) were used for evaluation of the new proposed and other soft computing

benchmark models. The sensitivity (SST), specificity (SPF) and accuracy (ACC) were computed based

on the four types of possible consequences including True Positive (TP), False Positive (FP), True

Negative (TN) and False Negative (FN) [109–111]. The TP and FP are the proportion of the number of

gully cells that are correctly classified as gully and non-gully cells, respectively. While TN and FN are

the number of gully cells classified correctly and incorrectly as non-gully cells, respectively. Basically,

SST is defined as the number of correctly classified gully cells per total predicted gully cells. The SPF is

the number of incorrectly classified gully cells per total predicted non-gully cells. While the ACC is

the proportion of gully and non-gully cells which are correctly classified. The difference between the

observed and estimated data can be obtained by the error metric of RMSE. The better performance of

gully models were acquired when the values of SST, SPF, and ACC were high and the RMSE value was

low. These statistical measures can be calculated as follows;

SST =
TP

TP + FN
, (21)

SPF =
TN

TN + FP
, (22)
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ACC =
TP + TN

TP + TN + FP + FN
, (23)

RMSE =

√

1

n

n
∑

i=1

(XP −XA)
2, (24)

where XP and XA are the predicted and actual (output) values in the training dataset or the validation

dataset from the gully susceptibility models, and n is the total number of samples in the training

dataset or the validation dataset.

4.8.2. Receiver Operating Characteristic (ROC)

The Receiver Operating Characteristic (ROC) is a standard tool for evaluation the performance

of the models that it is plotted based on the sensitivity and 100-specificity on the x- and y-axis,

respectively [108]. The area under the ROC curve, AUC, generally has been used to evaluate model

performance. The AUC for an ideal and inaccurate model have the values of 1 and 0.5, respectively [112].

The AUC is calculated as follows:

AUC =
(
∑

TP+
∑

TN
)

/(P + N), (25)

where P and N are the total number of gullies and non-gullies, respectively.

4.8.3. Freidman and Wilcoxon Sign Rank Tests

In addition to the abovementioned measures, two statistical tests including Freidman and Wilcoxon

sign-ranked tests for more evaluation of the efficiency of the new proposed gully model were used.

These non-parametric tests assess the comparison of performance of two or more gully models. If there

are no differences between the treatment/performance of the gully models at the significant level of α

= 0.05, the null hypothesis is predominant. To reject or accept the null hypothesis, the probability of a

hypothesis (p-value) will be judged. The null hypothesis is rejected when it is true resulting in the

existence of a significant difference between the two models and vice versa [108]. Freidman tests were

used for evaluation of performance of models without pairwise comparison [113]. Consequently, if

the p-value is less than 0.05 between two or more models (the null hypothesis is true), the results of

comparison is not reliable [48]. Basically, Wilcoxon signed-ranked test is used to check the statistical

significance of systematic pairwise between the gully models. The results by this test are judged based

on the p-value and z-value if the p-value is less than 0.05 and the z-value exceeds the critical values of z

(−1.96 and +1.96), the null hypothesis is true (rejected) and thus the performance of the susceptibility

models is significantly different [45,108].

4.8.4. Gully Density

Gully density for a gully erosion susceptibility map is defined as the ratio of the number of gully

erosion cells to the number of cells in susceptibility class. It was computed for the machine learning

algorithms and then the obtained results were analyzed and assessed.

5. Result and Analysis

5.1. The Most Important Factors in Gully Modelling by IGR

The predictive average merit of gully erosion affecting factors by the IGR method is shown in

Figure 4. Factor selection results showed that 19 out of 22 conditioning factors were capable of modeling

gully erosion prediction (AM > 0). Distance to river has the highest average merit for gully modeling

(AM = 0.283). It is because most gullies in the study area were located beside the river networks.

It is followed by geomorphology (AM = 0.147), land use (AM = 0.134), HG (AM = 0.134), lithology

(AM = 0.076), slope (AM = 0.053), STI (AM = 0.052), SPI (AM = 0.051), river density (AM = 0.046),
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rainfall (AM= 0.045), elevation (AM = 0.036), road density (AM = 0.032), TWI (AM = 0.03), permeability

(AM = 0.026), aspect (AM = 0.024), distance to road (AM = 0.019), profile curvature (AM = 0.008) and

flow accumulation (AM = 0.007).

−

−

−

Figure 4. The most important conditioning factors for gully erosion modeling in the Klocheh Watershed,

Kurdistan Province, Iran.

5.2. Gully Modeling Procedure or Optimization

In the modeling process, the determination of optimum parameters values in all algorithms is a

critical issue for achieving an algorithm with the highest goodness-of-fit and performance. The optimum

parameters of the investigated models are shown in Table 2. Basically, the new hybrid RF-ADTree and

soft computing benchmark models (NBMU, SVM-Polynomial, SVM-RBF, and LR) were built using

19 conditioning factors and training dataset for the spatial prediction of gullies. In this study, the

optimum number of seed (from 1 to 10) and iteration (from 10 to 20 iterations) was obtained with

various numbers of iterations and seeds versus AUC and RMSE for the training and validation of

datasets under a trial and error procedure.

Table 2. Machine learning algorithm used parameters for gully modeling in the Klocheh Watershed,

Kurdistan Province, Iran.

Model Name Description of Parameters

RF-ADTree
Classifier: ADTree; MaxGroup: 3; MinGroup: 3; Number of iterations: 10; Number of
Groups: False; Projection Filter: PCA; Removed Percentage: 50; Number of seeds: 5

ADTree
Number of Boosting Iterations: 10; Random Seed: 0; Save Instance Data: false; Search
Path: Expand all Paths

LR Maximum Its: −1; Ridge: 1.0 × 108

SVM-PolyKernel
Build Logistic Models: True; C: 1; Check turned Off: False; Epsilon: 1.0 × 1012: Filter
Type: Not normalization/standardization; Kernel: PolyKernel; Number of folds: −1;
Tolerance Parameter: 0.001

SVM-RBF
Build Logistic Models: True; C: 1; Check turned Off: False; Epsilon: 1.0 × 1012: Filter
Type: Not normalization/standardization; Kernel: RBF; Number of folds: −1; Tolerance
Parameter: 0.001

NBMU -
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The results of optimum value selection for the number of seeds are shown in Figure 5a–d.

The highest AUC values of RF-ADree model for the training and validation datasets (AUC = 0.906)

were obtained with the number of seeds equal to 5 and the number of iterations equal to 10 (Figure 5a,b).

Additionally, other results indicated that the lowest values of the RMSE (0.379) were obtained with the

number of seeds and iterations equal to 5 and 10, respectively (Figure 5c,d).

 

 

 

(a) 

Training of RF-ADTree model Validation of RF-ADTree 

Training of ADTree model 

Validation of ADTree model 

Validation of RF-ADTree model Training of RF-ADTree model (b) 

    Training of ADTree model 

Validation of RF-ADTree model Training of RF-ADTree model 

Validation of ADTree model 

Training of RF-ADTree model Validation of RF-ADTree model 

(c) 
Training of RF-ADTree model 

Training of RF-ADTree model 

Validation of ADTree model 

Validation of RF-ADTree model 

Training of ADTree model 

Training of RF-ADTree model Validation of RF-ADTree model 

Figure 5. Cont.
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    Training of ADTree model 

Validation of RF-ADTree model Training of RF-ADTree model 

(d) Validation of ADTree model 

Figure 5. Modeling process for selecting the best values for the number of seed and iteration parameters

for rotation forest (RF) as a Meta/ensemble classifier based on alternating decision tree (RF-ADTree)

model: (a) number of seeds based on the area under the curve (AUC) of Receiver Operating Characteristic

(ROC), (b) number of iterations based on the AUC of ROC, (c) number of seeds based on the root mean

square error (RMSE), and (d) number of iterations based on the RMSE.

The results of statistical performance analysis of models by the training dataset are shown in

Table 3. These results indicate that all of the models have shown good performance for gully erosion in

the training stage. In terms of sensitivity, the results stated that the new proposed model, RF-ADTree,

has the highest sensitivity (0.877), indicating that 87.7% of gully erosions are correctly classified as

gully erosion. It is followed by SVM-Polynomial kernel (0.875), SVM-RBF kernel (0.858), ADTree

(0.842), LR (0.739) and the NBMU (0.768) models. Similarly, the values of specificity concluded that the

new proposed model showed the highest value (0.804), followed by SVM-RBF kernel (0.793), ADTree

(0.771), LR (0.764), SVM-Polynomial kernel (0.762) and the NBMU (0.747) models. The accuracy values

indicated that the RF-ADTree model also has the highest value (0.837), followed by the SVM-RBF kernel

(0.822), SVM-Polynomial kernel (0.809), ADTree (0.802), LR (0.797) and the NBMU (0.765) models.

Additionally, the RF-ADTree hybrid model obtained the least RMSE value (0.373) in the training

dataset, followed by the SVM-RBF kernel (0.375), LR (0.376), SVM-Polynomial kernel (0.378), ADTree

(0.379) and the NBMU (0.398) models. Moreover, it can be observed that the RF-ADTree model has the

highest AUC value (0.909), followed by the SVM-RBF kernel model (0.895), the ADTree (0.885), the LR

model (0.876), the SVM-Polynomial kernel (0.871) and the NBMU model (0.844).

Table 3. Model performances in the training dataset for the new hybrid “RF-ADTree” model and other

benchmark models.

Measures NBMU SVM-Polynomial SVM-RBF LR ADTree RF-ADTree

True positive 466 461 494 470 476 501
True negative 513 574 558 550 551 570
False positive 174 179 146 170 164 139
False negative 127 66 82 90 89 70
Sensitivity (%) 0.786 0.875 0.858 0.839 0.842 0.877
Specificity (%) 0.747 0.762 0.793 0.764 0.771 0.804
Accuracy (%) 0.765 0.809 0.822 0.797 0.802 0.837

RMSE 0.398 0.378 0.375 0.376 0.379 0.373
AUC 0.844 0.871 0.895 0.876 0.885 0.909



Sensors 2019, 19, 2444 17 of 34

Performance analysis of the gully erosion models using validation dataset was also carried out

(Table 4). The results showed that all models have shown high performance for prediction of gully

erosion. Out of these, like the training stage, the RF-ADTree model has the highest predictive capability

(sensitivity= 0.859; specificity= 0.795; accuracy= 0.824; RMSE= 0.378 and AUC= 0.926) and the NBMU

model has shown the lowest performance (sensitivity = 0.756; specificity = 0.739; accuracy = 0.747;

RMSE = 0.403 and AUC = 0.843). Other values of the statistical indices of model performance are

shown in Table 4. Overall, the RF-ADTree model has the best performance for spatial prediction of

gullies using both training and validation datasets. In other words, the RF model can improve the

performance of ADTree as a base classifier for spatial prediction of gully erosion by detecting and

eliminating the weakness of ADTree.

Table 4. Model performances in the validation dataset for the new hybrid “RF-ADTree” model and

other benchmark models.

Measures NBMU SVM-Polynomial SVM-RBF LR ADTree RF-ADTree

True positive 201 195 198 201 204 213
True negative 210 244 227 236 240 240
False positive 74 80 77 47 71 62
False negative 65 31 48 39 35 35
Sensitivity (%) 0.756 0.863 0.805 0.838 0.854 0.859
Specificity (%) 0.739 0.753 0.747 0.834 0.772 0.795
Accuracy (%) 0.747 0.798 0.773 0.836 0.807 0.824

RMSE 0.403 0.380 0.381 0.380 0.384 0.378
AUC 0.843 0.863 0.873 0.869 0.882 0.906

5.3. Development of Gully Erosion Maps

As above-mentioned, the GESI for each cell converted into raster format and gully erosion

susceptibility maps were prepared and they were classified. Generally, the histograms of all models

for different classification methods indicated that the majority of the observed gullies are located in

VHS class (Figure 6). According to the susceptibility map of the RF-ADTree model, the very high

susceptibility class determined by equal interval, natural breaks, quantile and geometrical interval

methods cover 26.9%, 26.4%, 20.2% and 19.5% of the whole watershed cells and, 71.4%, 70.6%, 56.1% and

53.4% of the observed gully cells, respectively. Therefore, for the RF-ADTree model, the equal interval

method was selected as the most appropriate method for classification of gully erosion susceptibility.

Accordingly, the geometrical interval method was selected for SVM-Polynomial kernel and SVM-RBF

kernel susceptibility maps, and the natural break method was the appropriate classification method

for the LR, the NBMU and the ADTree susceptibility maps. The gully erosion susceptibility maps

generated by the developed models are shown in Figure 7.

 

Figure 6. Cont.
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Figure 6. Histograms of all models for selecting the best classification method of gully

susceptibility maps.

  

  

Figure 7. Cont.
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Figure 7. Gully erosion maps obtained by RF-ADTree model and other soft computing

benchmark models.

5.4. The Contribution of the Sixth Most Important Factors Using GESMs

In this study, we overlaid the sixth most important factors obtained by the IGR technique with

gully erosion susceptibility maps developed by the models. The results are shown in Figure 8. It can be

concluded that the first class of distance to river factor (<20 m) occupied the most cells of VHS class of

gully erosion susceptibility map prepared by the ADTree (35.56%) model, followed by the RF-ADTree

(37.39%), the NBMU (36.31%), the SVM-RBF kernel (36.26%), the SVM- Polynomial kernel (36.19%) and

the LR (35.84%) models. It implied that the lowest distance from the rivers had the highest potential for

gully erosion occurrence. Additionally, results indicated that the third class of geomorphology (fluvial

sediment) occupied the most cells of VHS class in the LR (49.45%) model. It was followed by the

SVM-RBF kernel (43.97%), the ADTree (43.25%) model, the RF-ADTree (42.11%), the NBMU (41.89%)

and the SVM-Polynomial kernel (23.46%) models. It can be indicated that the fluvial sediments were

more prone to gully occurrence in comparison to other geomorphologic classes. In terms of land use

analysis, the results revealed that the dry-farming and cultivated lands covered the most cells of VHS

class in the LR (81.21%) model while the lowest one was obtained for the NBMU (74.86%) model.

Moreover, the ADTree, the RF-ADTree, the SVM-Poly kernel, and the SVM-RBF kernel models had

the values of 77.05%, 75.52%, 78.77%, and 75.47%, respectively. The obtained results indicated that

land use change in the study area was one of the principal reasons for gully erosion so that most of

very high susceptibility class of gully susceptibility maps occurred on this land use unit. Among the

four classes of soil hydrological groups (SHG), type D was more effective for gully erosion incidence

in which results of overlaying the VHS class of susceptibility maps with SHG pinpointed that the

most cells of VHS classes were obtained in the LR model (77.82%), followed by the SVM-Polynomial

kernel (73.89%), the ADTree (73.24%), the RF-ADTree (73.06%), the SVM-RBF kernel (72.45%) and

the NBMU (72.06%) models. In terms of lithology (Plm), results stated that the ADTree (31.35%) and

the RF-ADTree (30.81%) models assigned the most cells of VHS class while the NBMU (30.29%), the

SVM-RBF kernel (28.63%), the LR (27.59%) and the SVM-Polynomial kernel (26.72%) gained the other

ranks. It implied also that the Plm lithological unit among other units was more responsible for gully

erosion in the study area. In the case of slope angle (10–15◦), results illustrated that the NBMU model

(30.36%) had the highest value of the VHS class of gully susceptibility map. It was followed by the

ADTree (30.36%), the SVM-RBF kernel (29.20%), the RF-ADTree (28.20%), the LR (27.12%) and the

SVM-Polynomial kernel (26.26%) models. Overall, the findings indicated that the first class of distance

to river, fluvial sediment, dry-farming and cultivated land, soil hydrological group D, Plm lithological
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unit and slope between 10◦ and 15◦ were more considerable for management and any prevention

practice in the land allocation of the study area.
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Figure 8. Histograms of gully susceptibility classes with the sixth most important factors: DR: distance

to river; L: lithology; Gm: geomorphology; HG: hydrological group; Lu: land use; S: slope, 1: ADTree

model; 2: Logistic Regression (LR) model; 3: Naïve Bayes Multinomial Updatable (NBMU) model;

4: Support Vector Machine-Radial Base Function (SVM-RBF) kernel model; 5: SVM-Polynomial kernel

model and 6: RF-ADTree model.
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5.5. Evaluation and Comparison of Gully Erosion Maps

The new ensemble RF-ADTree model performance in prediction of gully erosion susceptibility

was compared with SVM-Polynomial kernel, SVM-RBF kernel, LR, NBMU and ADTree benchmark

models using ROC, gully density method, Friedman’s and Wilcoxon signed-rank test measures.

The model accuracy was evaluated using the area under the ROC curve (AUC) for both training and

validation datasets. In the training stage, the AUC of the ensemble RF-ADTree model had the highest

value (AUC = 0.961), followed by the SVM-RBF kernel (AUC = 0.953), the LR (AUC = 0.952), the

SVM-Polynomial kernel (AUC = 0.949), the ADTree (AUC = 0.935) and the NBMU model (AUC = 0.901)

(Figure 9a).

Additionally, in the validation stage, the excellent predictive performance was taken place by

the RF-ADTree that by the AUC equal to 0.913 indicating an accuracy of 91.3%. It is followed by the

SVM-Polynomial kernel (AUC = 0.879), the LR (AUC = 0.875), the SVM-RBF kernel (AUC = 0.867), the

ADTree (AUC = 0.861) and the NBMU model (AUC = 0.811) (Figure 9b). The above-mentioned results

indicated that, similar to the RF-ADTree model, the other models had an acceptable accuracy in both

training and validation stages.

  

Figure 9. Model comparison using ROC (a) and AUC (b).

The gully erosion density (GED) is another index in order to evaluate the reliability of gully erosion

susceptibility maps. The gully erosion density increases for a perfect gully erosion susceptibility map

from very low to very high susceptibility classes.. For the RF-ADTree model, the GED values were

calculated equal to 0.003, 0.011, 0.046, 0.105 and 0.212 for VLS, LS, MS, HS and VHS gully erosion

classes, respectively. Thus, it can be concluded that the RF-ADTree model generated an ideal gully

erosion susceptibility map. For the SVM-Polynomial kernel model, the results indicated that the VHS

class showed the highest GED (0.211), followed by the HS (0.082), MS (0.060), LS (0.021), and VLS

(0.005) susceptibility classes. In the case of SVM-RBF kernel, the GED values were 0.003, 0.009, 0.048,

0.098 and 0.163 for VLS, LS, MS and VHS classes, respectively. Additionally, for the LR model, these

values were obtained as 0.003, 0.011, 0.046, 0.105 and 0.212, respectively. In the case of the ADTree

model, gully density for the VLS, LS, MS and VHS classes were calculated as 0.002, 0.011, 0.043, 0.082

and 0.180, respectively. In terms of the NBMU model, the values of 0.006, 0.029, 0.084, 0.123 and 0.133

were acquired for the VLS, LS, MS and VHS classes, respectively. Overall, all these models had an

increasing trend in the value of GED from VLS to VHS classes.
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5.6. Statistical Tests

The Friedman and Wilcoxon signed-rank tests were applied to evaluate the significant difference

between the predictions of the gully erosion susceptibility models. Based on the Friedman’s test, in the

study area, the average ranking was 4.80, 4.65, 3.49, 3.06, 2.71 and 2.29 for the RF-ADTree, ADTree,

NBMU, LR, SVM-RBF kernel and SVM-Polynomial kernel models, respectively. Additionally, the

chi-square statistic was 2040 at the 0.01 significance level, indicating a significant difference between

the models (Table 5). Since the Friedman’s test is not capable of finding which model makes any

difference when there is a significant difference, the Wilcoxon signed-rank test was used for pairwise

comparing between the models. According to this test, between all gully erosion susceptibility models,

the p-values had significant levels less than 5% and z-values were more than the critical values (–1.96

and +1.96) except between the ADTree and RF-ADTree models (p-value = 0.538 and z-value = −0.616).

Among the pairwise comparisons with a significant difference, the LR and NBMU models had a

significant difference at the level of 5%, the other pairs had significant difference at the level of 1%

(Table 6). Accordingly, it can be concluded that the efficiency of all gully erosion susceptibility models

had statistical differences with the others except the ADTree and RF-ADTree models which had a

similar efficiency.

Table 5. Average ranking of the five gully erosion models for the study area using the Friedman’s test.

No. Gully Models Mean Ranks χ2 Sig.

1 SVM-Polynomial 2.29

2040 0.000

2 SVM-RBF 2.71
3 LR 3.06
4 NBMU 3.49
5 ADTree 4.65
6 RF-ADTree 4.80

Table 6. Performance of the RF-ADTee model compared to other gully erosion models using Wilcoxon

signed-rank test (two-tailed).

No. Pairwise Comparison NPD NND z-value p-value Significance

1 SVM-Polynomial vs. SVM-RBF 303 540 −9.755 0.000 Yes

2 SVM-Polynomial vs. LR 245 700 −13.424 0.000 Yes

3 SVM-Polynomial vs. NBMU 349 905 −9.343 0.000 Yes

4 SVM-Polynomial vs. ADTree 196 1057 −23.838 0.000 Yes

5
SVM-Polynomial vs.
RF-ADTree

129 1126 −26.125 0.000 Yes

6 SVM-RBF vs. LR 325 568 −4.621 0.000 Yes

7 SVM-RBF vs. NBMU 434 813 −3.536 0.000 Yes

8 SVM-RBF vs. ADTree 234 1009 −21.050 0.000 Yes

9 SVM-RBF vs. RF-ADTree 194 1049 −23.189 0.000 Yes

10 LR vs. NBMU 448 780 −2.020 0.043 Yes

11 LR vs. ADTree 273 978 −19.344 0.000 Yes

12 LR vs. RF-ADTree 222 1019 −21.772 0.000 Yes

13 NBMU vs. ADTree 291 916 −19.038 0.000 Yes

14 NBMU vs. RF-ADTree 249 919 −19.714 0.000 Yes

15 ADTree vs. RF-ADTree 578 591 −0.616 0.538 No

NPD: Number of positive; NND: Number of negative differences.
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6. Discussion

Since gully erosion is considered as one of the main sources of sediments [6] and due to its

different onsite and offsite effects [114], detection of areas that are more prone to gully erosion is

an important strategy for preventing land degradation and soil transportation to rivers. In this

study, main streams and their tributaries of the watershed were recognized and mapped using a new

proposed and state-of-the-art ensemble algorithm namely the RF-ADTree model. Although, some

conditioning factors can affect the development of gullies, selecting the most important ones to enhance

the performance of the modeling process using feature selection is undeniable and essential [115].

Basically, among 22 conditioning factors in this study based on the IGR technique, 19 factors were

known to be more effective so that distance to river (the most important role), geomorphology, land

use, SHG, geology and slope angle were the first six significant factors. Indeed, the water shear stress

in the areas where lithology is more susceptible to erosion with low permeability, mainly quaternary

depositions, is the main factor for occurring and developing gullies in the study area. Wijdenes et

al. [116] have declared that land use changes and lithology were responsible for developing gullies in

Guadalentin catchment, southeast Spain. Moreover, Arabameri et al. [117] evaluated land use/land

cover, lithology and distance to roads as the most important factors for gully occurrence in their study

area. Rahmati et al. [22] based on the learning vector quantization (LVQ), pinpointed that distance

to river, drainage density and land use are the most effective factors for the development of gullies.

Most of gullies in the study area occurred along with the rivers and other factors were played as

triggered factors such geomorphology and land use. Chaplot et al. [28] reported that the land use is a

triggered factor for gully occurring.

The results of modeling process and gully susceptibility mapping evaluation using the new

proposed model and some soft computing benchmark models such as NBMU, SVM-Polynomial kernel,

SVM-RBF kernel, LR and ADTree indicated that the RF meta classifier combined with the ADTree

algorithm, acquired the most goodness-of-fit and also performance using training and validation

datasets. However, the ability of all these machine learning algorithms based on some statistical

measures indicted that they were more successful for detection of the areas prone to gully erosion

with emphasis on the new proposed model of RF-ADTree. Literature reviews showed that there is

no study about the application of RF as a Meta classifier on gully erosion modeling; however, RF has

been used more in landslide events as one of the soil erosion forms. Accordingly, results indicated that

it had a high performance, for example, Pham et al. [118] revealed that the RF-Naïve Bayes (RFNB),

Chen et al. [45] stated that the RF-Naïve Bayes Tree (RFNBT) and also Pham et al. [119] depicted

that the RF based Functional Tree (RFFT) as a new and promising technique was more powerful

technique and those outperformed the other Meta classifiers for landslide susceptibility modeling.

Hong et al. [63] exploited some meta classifiers on the J48 Decision Tree (JDT) as a base classifier and

concluded that the RFJDT model as a new proposed model had the highest performance in comparison

to other models. Our findings can be explained that the RF Meta classifier uses feature extraction by

principal component analysis (PCA) to optimize the learning of training dataset of the base classifier.

This feature of the RF ensemble classifier leads to enhance the goodness-of-fit and also predictive ability

of based classifier [64]. In other words, the RF model as a robust algorithm could be more efficient

in reduction of both variance and bias of the base classier such as ADT in this study. The results

also depicted that the ensemble models outperformed and outclassed the individual/single based

classifiers. This is agreed and confirmed by Jebur et al. [120], Bui et al. [121], Bui et al. [107] and

Shirzadi et al. [112]. Gully erosion susceptibility maps were prepared by all machine learning models

used in this study and then classified using four known classification methods such as natural breaks,

quantile, geometrical interval and equal interval [122]. All these methods for classifying gully erosion

susceptibility maps and the results indicated that, for example natural breaks, geometrical interval

and equal interval, had a low logical prediction as visualization. In other words, these classifications

were led to an underestimate of prediction so that lower number of gully locations had occurred on

high and very high susceptibility classes of gully erosion. Unlike, considering the histogram of gully
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distribution in this study revealed that the quantile method can be selected as the most appropriate

method because of its higher conformity with the real ground condition than the other classifiers.

Additionally, quantile method could assign more gully erosion location in the high and very high

susceptibility classes of gully susceptibility maps in all machine learning algorithms. Some researchers

have used the quantile classification method to divide the natural hazards susceptibility index such

as Umar et al. [123], while Farncis et al. [122] used natural beaks, Pham et al. [124] used geometrical

interval classification methods in their study.

The gully susceptibility maps were specified that the lowest distance from the rivers caused the

most susceptibility to gully erosion. The results of the new proposed model of RF-ADTree was overlaid

with the first six conditioning factors concluded that in terms of distance to river, the high (37.21%) and

the very high (37.39%) susceptibility classes covered the most cells of gully erosion so that they were

located on the first class of distance to river (<20 m). In terms of geomorphology, the fluvial sediment

unit (quaternary deposition) mostly covered the high (40.11) and the very high (42.11) susceptibility

classes of gully erosion susceptibility map. In terms of land use, according to the RF-ADTree model,

dry-farming and cultivated lands were more susceptible to gully occurrence in which the high and

the very high susceptibility classes occupied 68.45%, and 75.52%, respectively. Additionally, the high

(67.22) and the very high (73.06) susceptibility classes of gully erosion map are corresponded with

soil hydrologic group (SHG) D unit. It is noticed that soil hydrologic group D is mainly the soils

that have very low permeability and infiltration rate when thoroughly wet resulting in a high runoff

potential [125]. Therefore, soil hydrologic group D provided conditions for higher gully occurrence

and development over the study area. Geologic analysis indicted that among 12 lithological units,

the Plm unit had the highest susceptibility to gully erosion in which the most percentages of high

(33.83%) and very high (30.81%) susceptibility classes were located in this lithological unit. The Plm as

a low permeability unit consists of Pliocene marls including clay limestone, marl, sandstone, silty tuff,

conglomerate, sandstone and travertine. This unit has mainly been covered by hilly slopes in the study

area with an average elevation of 1800–2000 m. It generally has low slope and its color is often white to

worm, pepper and sometimes red, dark gray and yellow. Slope angles were other important factors

which slope angles between 2◦ and 15◦ were more significant for gully occurrence. However, slope

angle between 15◦ and 20◦ covered the high (3.65) and the very high susceptibility classes in the study

area. This class of slope angle dealt mainly with soil hydrologic groups C and D, Plm lithological

unit, hilly mountain and fluvial sediment of geomorphology class under the dry farming and also

cultivated land areas of land use factor. The validity of gully erosion susceptibility map prepared by

the new proposed model in addition to the AUC, also was statistically checked and the results were

verified and confirmed the applicability of this model and its prepared susceptibility map for gully

management purposes.

7. Conclusions

Gully erosion as one of the soil threatening hazards leads to damage and destruction of

infra-structure such as check dams in the Klocheh Watershed, Kurdistan Province, Iran, that was shown

Figure 1. However, identification, prediction, prevention and management of gullies have always

been top priorities for soil scientists, natural resources authorities and land managers. Therefore,

an accurate spatial prediction of the gully erosion locations is an essential issue for conservation of

natural resources such as soil and reducing its potential risks. For this purpose, we developed a

new designed intelligence-based ensemble model named RF-ADTree which could successfully map

the spatial prediction of gully erosion development in the Klocheh Watershed, Kurdistan Province,

Iran. Additionally, we used of five soft computing benchmark models to check the goodness-of-fit

and prediction accuracy of the new proposed model. Results of validation indicted that although all

machine learning algorithms had high prediction accuracy; however, the new ensemble model was

successful in gully erosion prediction due to the generation of a very accurate gully susceptibility

map of the study area compared to other benchmark models. We recommend this model for gully



Sensors 2019, 19, 2444 28 of 34

modeling in other similar areas with caution since other conditioning factors might be responsible for

gully erosion in other areas; while, distance to river was the most susceptible conditioning factor in the

Klocheh watershed. Therefore, the obtained gully erosion map from the new developed model can

be useful for planners, decision makers and engineers to better sustainably manage and decrease the

damage and losses from the existing and future gullies, or also better manage the high and very high

susceptible zones by appropriate decisions by preventive measures and mitigation procedures.
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