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ABSTRACT 

Sh. Shah Heydari. Large-Area Land Cover Mapping Using Deep Neural Networks And Landsat 

Time-Series Observations, 186 pages, 19 tables, 27 figures, 2021. Chicago style guide used. 
 

This dissertation focuses on analysis and implementation of deep learning methodologies in 

the field of remote sensing to enhance land cover classification accuracy, which has important 

applications in many areas of environmental planning and natural resources management. 

The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United 

States by considering six classifier variants. An extensive grid search was conducted to optimize 

classifier parameters using only the spectral components of each pixel. Results showed no gain 

in using deep networks by using only spectral components over conventional classifiers, possibly 

due to the small reference sample size and richness of features. The effect of changing training 

data size, class distribution, or scene heterogeneity were also studied and we found all of them 

having significant effect on classifier accuracy. 

The second manuscript reviewed 103 research papers on the application of deep learning 

methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal 

data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network 

architecture improvement over  selected convolutional classifiers. The effect of network size, 

learning methodology, input data dimensionality and training data size were also studied, with 

deep models providing enhanced performance over conventional one using spectral and spatial 

data. The analysis found that input dataset was a major limitation and available datasets have 

already been utilized to their maximum capacity. 

The third manuscript described the steps to build the full environment for dataset generation 

based on Landsat time-series data using spectral, spatial, and temporal information available for 

each pixel. A large dataset containing one sample block from each of 84 ecoregions in the 

conterminous United States (CONUS) was created and then processed by a hybrid 

convolutional+recurrent deep network, and the network structure was optimized with thousands 

of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. 

Also, the model was evaluated for its overall and per-class performance under different 

conditions, including individual blocks, individual or combined Landsat sensors, and different 

sequence lengths. The analysis found that although the deep model performance per each block 

is superior to other candidates, the per block performance still varies considerably from block to 

block. This suggests extending the work by model fine-tuning for local areas. The analysis also 

found that including more time stamps or combining different Landsat sensor observations in the 

model input significantly enhances the model performance. 
 

Keywords: land-cover mapping, remote sensing, per-pixel classification, deep neural network, 

recurrent network, convolutional network, Long Short-Term Memory (LSTM), Grey-Level Co-

occurrence Matrix (GLCM), map accuracy assessment  
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CHAPTER 1: DISSERTATION INTRODUCTION 

1.1. Background and motivation 

1.1.1. Land cover mapping and the application of machine learning 

Land cover mapping is the process by which a thematic map is generated to delineate 

features of interest on the ground, typically georeferenced in a spatial coordination system. This 

task is a foundation for many applications including land and agriculture planning, forestry and 

wildlife habitat monitoring, and environmental impact evaluation (Vogelmann et al. 2001). It is 

also the basis for some second-level analysis such as land use mapping and land cover/land use 

change analysis (LCLUC), and it has been increasingly used as a basic tool for studies on 

subjects such as climate change and conservation planning, particularly when it requires 

continuous evaluation (Fry et al. 2011).   

Both land cover data collection and processing can be very difficult and time consuming. The 

use of aerial imagery or drones may be appropriate for a limited local area, but use of satellite 

imagery quickly becomes the only viable option for increased mapping footprint. The remotely 

sensed data is typically in the form of raster imagery in multiple electromagnetic bands. But this 

basic data is commonly complemented with other maps or tabular data to enhance the mapping 

quality. These additional data  may be driven by remotely sensed information such as climate 

and topographic data or night-time light (for example see Yu et al., 2013; Wulder et al., 2018), or 

administrative procedures such as natural resources inventory maps or population data 

(Vogelmann et al. 2001). The mapping process, i.e. converting image and other tabular data to 

thematic maps, will then be a combination of image processing and data mining tasks with all 

geoprocessing and photogrammetry considerations in place (for good examples see National 
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Land cover Dataset – NLCD – reference articles by Vogelmann et al., 2001; Homer et al., 2007; 

Fry et al., 2011). Launch of the first Landsat satellite in the early 1970s and subsequent missions 

provided a breakthrough technology that brought a new era of possibilities for data availability. 

Map generation and image classification was one of the main tasks applied to this data.  

As shown in Landsat-based timeline of Figure 1-1, different generations of image 

classification methods have been practiced over time, from early visual inspection to 

incorporating machine learning methodologies by unsupervised and supervised classification. 

Classification was enhanced over time to include advanced methods with data fusions, object-

based analysis, and advanced classifiers. The remote sensing field has adopted methods available 

in computer vision and produced machine learning libraries to deploy powerful algorithm to 

mine ever increasing available remote sensing data and automatically generate the most accurate 

maps.  

It is needed in many cases to have land cover classification with subtypes of major types 

(e.g., different types of forest such as coniferous, deciduous, or mixed), with the finest possible 

spatial resolution, and with greatest accuracy. But all these qualities are limited in practice, 

especially if we want to go global. First of all, data sources with spatial resolution below 10 

meters are still scarce or expensive for global or even regional applications. Depending on the 

type of investigated land covers, we may have the problem of mixed pixels (one pixel having 

different land covers types existing in its area) at Landsat 30 meters resolution or higher. There 

are also many rules and mapping preferences that we may want to impose such as class or 

feature-specific preferences, and a simple image processing will fail to apply it automatically. 

Even without giving consideration to mixed pixels, we still have many design and 

implementation issues with land cover class definition. For example, separating similar land 



3 

 

cover types such as different densities of urbanism or similar crops is not trivial. We also have 

class boundaries that are user-defined, administrative, or dynamic for some classes, for example 

developed land intensity levels, road network, or wetlands. All these issues demand better fusion 

of remote sensing and administrative information and more powerful data mining algorithms for 

pixel and object analysis, for which the deep learning is currently the most promising 

methodology.  

 

Figure 1-1: Landsat mission launches and land cover classification development over time, adapted 

from Phiri and Morgenroth (2017).  Orange/red bar indicates failure in launching or malfunction in 

operation. OBIA stands for Object-Based Image Analysis. 

Some of the most important and widely used advanced classifiers nowadays are deep 

networks, which are complex multilayer neural networks that aim to look deeply into feature 

structures and relationships and extract useful hidden features from input data in successive 

layers, from simple geographical features (boundaries, corners, etc.) to feature groups and 

eventually to objects (face components, buildings, etc.). Once the relationships/objects have been 
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hierarchically analyzed, their classification will be potentially easy. Deep learning has been used 

for more than a decade in many applications such as computer vision, speech recognition, and 

natural language processing. These approaches have also found their way into the remote sensing 

area as well, and especially since 2015 we have seen a surge of related papers (X. X. Zhu et al. 

2017a). Within various applications of deep learning in remote sensing, scene and pixel 

classification are the most studied applications and land cover mapping directly falls under this 

category. This dissertation discusses various methodologies for deep learning application in land 

cover mapping. The main aim of deep learning methodologies is to automatically generate rich 

features from raw input data, hence increase final classification performance. Deep learning 

architectures may look at different dimensions of the data – spectral, spatial, and temporal – and 

our aim in this research is to move a step forward to employ all these dimensions in a hybrid 

architecture combining different network types such as standard multilayer, convolutional, and 

recurrent neural networks.   

Feature generation is very important both for spatial dimension, which is the natural focus of 

computer vision as well, and spectral dimension, which is of particular interest when dealing 

with hyperspectral imagery with hundreds of spectral bands. Different network types or their 

combination are employed for hyperspectral image processing such as Mou et al. (2017) or 

Lakhal et al. (2018). Extraction of features by deep networks is even extended beyond direct use 

of raw remote sensing values to modeling spectral curves such as the work by Kim et al. (2018) 

or Lee et al. (2020) which employed convolutional neural network. 

In addition to the above, deep learning is being used more and more in applications such as 

change detection, for example Lyu et al. (2016) or Song and Choi (2020) used two time stamps 

and recurrent neural network for identifying the land cover change. Deep learning has also been 
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used in forecasting, for which MODIS (Moderate Resolution Imaging Spectroradiometer) data 

has a special position because of its better temporal resolution than Landsat. Although it has 

lower spatial resolution than Landsat, they have been used in combination to predict some 

parameters such as vegetation index (Kong et al., 2018) or regress crop yields (Jiang et al., 

2020). In other approaches, Cao et al. (2019) used land cover maps (no remote sensing data 

directly) to forecast the next period of land cover, and Mu et al. (2019) used Landsat imagery 

first to determine land cover, then added regional economic, climate, and construction data to it 

and used a recurrent network to predict the land use in the next years. 

1.1.2. Identified research gaps  

Phiri and Morgenroth (2017) provide a general discussion of the continuous effort to enhance 

the mapping quality by applying new methods and technologies. Alhassan et al. (2020) focuses 

on the application of deep learning and mostly convolutional networks in land cover mapping. 

Although there is substantial research on application of deep networks in local land cover 

classification, there is a gap of research to apply this methodology to large area and global land 

cover mapping. This is a particularly important application because the accuracy of global land 

cover mapping is still unsatisfactory and there is high hope that deep learning can help to boost 

this performance.  

There are, however, some obstacles ahead. One of the big obstacles in application of deep 

learning methods is their need for large datasets to reveal their potential for advanced data 

mining. This is because the deep networks are generally complex and have many parameters in 

their structure that have to be optimized by training on a dataset of appropriate size. This is really 

a big issue because most of the prior research on application of deep learning in land cover 

mapping has been done on limited areas and to the best of our knowledge, there is no global or 
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regional land cover mapping application of deep neural network surpassing traditional methods 

in achieved accuracy. So, our work is two-fold: generate reference datasets (as an input product) 

and develop model (the research work as well as end product). We need to focus effort on dataset 

generation to support model training and testing. The NLCD (National Land Cover Database) 

reference labels may be a good starting point for US-wide land cover data, but because it is an 

end product of a classification effort and not matched to ground truth in every point, it is better to 

be verified manually for those points that are going to be used as the reference labels for another 

classification. We also need to verify the stability of land cover for reference points over the 

analysis time period.  

The main idea and promise of deep learning methodology is about automatic generation of 

powerful features from input data to achieve better results than traditional methods. However, as 

shown in chapter 2 of this dissertation, simple deep networks based on just spectral information 

may not outperform traditional classifiers. Except for change detection or forecasting 

applications, where the time stamp matters, the prior research on land cover classification has 

been focused mostly on spectral and spatial dimensions, particularly through convolutional 

networks and custom-designed modules and optimizing algorithms, and the network design 

based on the use of all data dimensions is still a relatively untouched area. One of the reasons is 

that convolutional networks has been studied extensively for computer vision and big models has 

been trained and are already available. Further, convolutional networks have been found to be 

powerful in automatic feature extraction in image processing applications. Deep networks in 

general have a very flexible structure and there are almost unlimited possibilities to setup the 

layers, neurons, connections, and network options. However, this flexibility makes it very 

difficult to find a roadmap in designing and optimizing them. As discussed in chapter 3 of this 
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dissertation, the literature reviews provide mostly general information and do not provide 

detailed description about and comparison between many new emerging approaches and network 

enhancements, and they do not provide a quantitative comparison. 

Employing temporal dimension along with the others and expanding the work to a global 

extent is of our special interest in this research. We aim to try different network and experiment 

design parameters – especially different methods of feature generation – and find the best 

combination to get the highest possible accuracy. 

1.2. Research objectives and questions 

The proposed research focuses on enhancing global land cover mapping based on Landsat 

data. To this end, we worked on the three objectives and their related research questions. 

1) Our first objective was to evaluate and compare a deep classifier to some widely used 

traditional classifiers using spectral data only. It is also of interest to identify their best 

parameter settings and scene-specific statistics. We studied SVM, Decision Tree ensemble (a 

close cousin of Random Forest classifier), K-Nearest Neighbor (KNN), Naïve Bayesian (a 

Maximum-Likelihood type classifier), conventional multilayer Neural Network, and a 

specific implementation of deep neural networks.  This step answered these questions:  

a. What is the classification accuracy of the above methods on Landsat spectral data? 

b. How to choose model and design parameters to reach the best performance? 

c. What are the effects of training sample size, class distribution, and scene complexity on 

performance? 

Answering the above questions provides a good insight into the Landsat spectral-based land 

cover classification performance and the study of other parameters and scene dependency. 
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2) Aiming to deploy a state-of-the-art deep architecture in our work, the next objective was to 

do an extensive literature review on deep learning approaches in remote sensing image 

classification and do a meta-analysis of the findings. We want to know: 

a. Which techniques have been used in the past and how frequently?  

b. Is there any significant improvement in applying deep learning methods compared to 

conventional non-deep classifiers?  

c.  Which deep architecture gives better results? 

The literature review included a quantitative comparison between deep learning and 

conventional classification methods. This analysis is still very general because of the different 

datasets and design parameters and hyperparameters applied in each study. 

3) The main goal of our research was to investigate the potential of combining different data 

dimensions, particularly the less frequently applied temporal dimension. To this end, we 

concentrated on recurrent neural networks, which are inherently fit to analyze time-series 

data, and constructed a hybrid design to process combined spectral-spatial-temporal Landsat 

data to generate high accuracy land cover maps in any ecoregion in the conterminous United 

States. We want to know: 

a. Do deep recurrent network improve classification accuracy compared to non-recurrent 

neural networks and non-deep conventional classifiers?  

b. Which network configuration and feature selection generate the best result? 

c. What is the performance of the best model on individual blocks and its variation?  

d. Considering use of temporal data dimension is this part of work, what is the model’s 

response to limited input scenarios (e.g., just one Landsat sensor or limited number of 

available scenes per year)? 
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The last question is of special interest from a practical point of view because if the model 

requires high temporal resolution, its application will be limited to locations with very low cloud 

cover through the year and also it cannot be used until near the end of the current year. 

Based on those objectives and questions, our research hypotheses are: 

Hypothesis 1: Deep networks do not provide practical improvement in classification 

performance over conventional classifiers when dataset is small compared to number of network 

parameters or only spectral data dimension is used. 

Hypothesis 2: Our proposed network architecture for processing temporal-spectral-spatial 

Landsat data can achieve better accuracy than its companion spectral-spatial or spectral-only 

variants, and performs better than currently available global land cover products (over 

conterminous US). 

Hypothesis 3: There is considerable improvement in fusion of different Landsat sensors in 

terms of achieved accuracy and minimum number of requires scenes. 

 

1.3. Dissertation organization and chapters overview 

This dissertation is organized in three main chapters after this introduction, each focused on 

one of the research objectives. After that, we revisit the research questions and hypotheses in the 

conclusion and provide some insights on future work. Here we briefly introduce the contents and 

methodology used in each chapter to give the reader a better overall picture of this work.   
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1.3.1. Chapter 2: Effect of classifier selection, reference sample size, reference class 

distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat 

sites 

For this part, we trained and tested various popular classifiers on a dataset used in a prior 

research that was based on the USGS Land cover Trends project data (Khatami et al. 2017). This 

dataset consists of sample 10 km ×10 km areas from 26 selected Landsat scenes along with their 

associated land cover maps, taken from different states within conterminous US. We included 

five conventional and one example deep classifier and evaluate performance of each classifier on 

each block. Each classifier had a set of hyperparameters that we tested their different values in a 

wide range of settings to tune the model parameters. We also tried changing some other 

simulation parameters including training data sampling rate and class distribution. This part of 

our work was published as Heydari and Mountrakis (2018). 

1.3.2. Chapter 3: Deep learning in remote sensing: Review and meta-analysis of mono-

temporal image classification methods 

This part of our research was based on an extensive literature review focused on papers 

dealing with application of deep learning techniques on per-pixel classification of remote sensing 

data. It was accompanied by a meta-analysis (an overarching analysis of the results obtained by 

some other existing analyses on a common topic) to build comparative quantitative results on 

those cases who compare a popular conventional non-deep classifier to a deep network 

implementation (we found SVM as the most common basis for our comparison). Such an 

analysis could give insight into the pros and cons of different deep learning architectures, for 

which there was no quantitative analysis published. We discussed different design ideas and 
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network configurations focusing on mono-temporal image classification research, and this work 

was also  published (Heydari and Mountrakis 2019). 

1.3.3. Chapter 4: Large area land cover mapping using deep neural networks and Landsat 

time-series observations 

This chapter presented the main body and goal of our research. Here we first discussed our 

work on generating a big feature-rich training dataset of Landsat observations over the 

conterminous United States. Then, we explained developing a deep recurrent network to extract 

useful spectral-spatial-temporal patterns in pixel’s data and classify them with a high level of 

accuracy to answer research questions in this section. Each sample land cover map was a 10 km 

×10 km block at 30m resolution, carefully checked using Google Earth high resolution imagery 

to assign proper land cover to its pixels, and different data blocks were aggregated to feed our 

proposed network models. 

We explained how a complex feature-rich time sequence is extracted for each pixel, 

comprising Landsat band values, additional spectral indices, topography, texture and spatial 

information, and climate variables. We then reported on the result of our experiments to find the 

best combination of input features and tune the network structural and other hyperparameters to 

obtain the best classification performance. We also studied the network performance on 

individual blocks and under various scenarios of limited sensor or available time stamps, plus 

visual study and interpretation of results for selected blocks. The corresponding paper for this 

chapter is in final drafting stages and will be submitted for publication soon.  

1.4. Intended Audience 

Land cover mapping has a lot of applications in all levels of public and private administration 

and resources management, therefore a better model for doing this task will be of interest to a 
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diverse audience. Our work was focused on large area CONUS-wide land cover mapping, for 

which some big organizations such as USGS and NASA are involved, and the results of our 

work may be of their interest to enhance their models. Because the model is based on public 

Landsat data, it can be easily used by any other researcher anywhere in the world to use it 

directly or via fine-tuning and model transfer to study their own area of interest. Any land cover 

application – particularly at global scope – has a very immediate application in natural resource 

management and monitoring and change detection, for which the base model accuracy is 

paramount. Our developed architecture can be applied to those applications directly or with some 

change. Examples would include forest management, wetland inventory, urban development 

studies, crop analysis, and climate change and its effects on natural resources.  

References 

Alhassan, Victor, Christopher Henry, Sheela Ramanna, and Christopher Storie. 2020. “A Deep 

Learning Framework for Land-Use/Land-Cover Mapping and Analysis Using Multispectral 

Satellite Imagery.” Neural Computing and Applications 32 (12): 8529–44. 

https://doi.org/abdi. 

Cao, Cong, Suzana Dragićević, and Songnian Li. 2019. “Short-Term Forecasting of Land Use 

Change Using Recurrent Neural Network Models.” Sustainability 11 (19): 5376. 

https://doi.org/10.3390/su11195376. 

Fry, Joyce, George Z. Xian, Suming Jin, Jon Dewitz, Collin G. Homer, Limin Yang, Christopher 

A. Barnes, N.D. Herold, and J.D. Wickham. 2011. “Completion of the 2006 National Land 

Cover Database for the Conterminous United States.” Photogrammetric Engineering and 

Remote Sensing 77 (9): 858–64. 

Heydari, Shahriar S., and Giorgos Mountrakis. 2018. “Effect of Classifier Selection, Reference 

Sample Size, Reference Class Distribution and Scene Heterogeneity in per-Pixel 

Classification Accuracy Using 26 Landsat Sites.” Remote Sensing of Environment 204 

(January): 648–58. https://doi.org/10.1016/j.rse.2017.09.035. 

———. 2019. “Meta-Analysis of Deep Neural Networks in Remote Sensing: A Comparative 

Study of Mono-Temporal Classification to Support Vector Machines.” ISPRS Journal of 

Photogrammetry and Remote Sensing 152 (June): 192–210. 

https://doi.org/10.1016/j.isprsjprs.2019.04.016. 

Homer, Collin, Jon Dewitz, Joyce Fry, Michael Coan, Nazmul Hossain, Charles Larson, Alexa 

Mckerrow, J. VanDriel, and James Wickham. 2007. “Completion of the 2001 National Land 

Cover Database for the Conterminous United States.” Photogrammetric Engineering and 

Remote Sensing 73 (April). 



13 

 

Jiang, Hao, Hao Hu, Renhai Zhong, Jinfan Xu, Jialu Xu, Jingfeng Huang, Shaowen Wang, Yibin 

Ying, and Tao Lin. 2020. “A Deep Learning Approach to Conflating Heterogeneous 

Geospatial Data for Corn Yield Estimation: A Case Study of the US Corn Belt at the County 

Level.” Global Change Biology 26 (3): 1754–66. https://doi.org/10.1111/gcb.14885. 

Khatami, Reza, Giorgos Mountrakis, and Stephen V. Stehman. 2017. “Mapping Per-Pixel 

Predicted Accuracy of Classified Remote Sensing Images.” Remote Sensing of Environment 

191 (March): 156–67. https://doi.org/10.1016/j.rse.2017.01.025. 

Kim, Miae, Junghee Lee, Daehyeon Han, Minso Shin, Jungho Im, Junghye Lee, Lindi J. 

Quackenbush, and Zhu Gu. 2018. “Convolutional Neural Network-Based Land Cover 

Classification Using 2-D Spectral Reflectance Curve Graphs With Multitemporal Satellite 

Imagery.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing 11 (12): 4604–17. https://doi.org/10.1109/JSTARS.2018.2880783. 

Kong, Yun-Long, Qingqing Huang, Chengyi Wang, Jingbo Chen, Jiansheng Chen, and Dongxu 

He. 2018. “Long Short-Term Memory Neural Networks for Online Disturbance Detection in 

Satellite Image Time Series.” Remote Sensing 10 (3): 452. 

https://doi.org/10.3390/rs10030452. 

Lakhal, Mohamed Ilyes, Hakan Çevikalp, Sergio Escalera, and Ferda Ofli. 2018. “Recurrent 

Neural Networks for Remote Sensing Image Classification.” IET Computer Vision 12 (7): 

1040–45. https://doi.org/10.1049/iet-cvi.2017.0420. 

Lee, Junghee, Daehyeon Han, Minso Shin, Jungho Im, Junghye Lee, and Lindi J. Quackenbush. 

2020. “Different Spectral Domain Transformation for Land Cover Classification Using 

Convolutional Neural Networks with Multi-Temporal Satellite Imagery.” Remote Sensing 12 

(7): 1097. https://doi.org/10.3390/rs12071097. 

Lyu, Haobo, Hui Lu, and Lichao Mou. 2016. “Learning a Transferable Change Rule from a 

Recurrent Neural Network for Land Cover Change Detection.” Remote Sensing 8 (6): 506. 

https://doi.org/10.3390/rs8060506. 

Mou, Lichao, Pedram Ghamisi, and Xiao Xiang Zhu. 2017. “Deep Recurrent Neural Networks 

for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote 

Sensing 55 (7): 3639–55. https://doi.org/10.1109/TGRS.2016.2636241. 

Mu, Lin, Lizhe Wang, Yuewei Wang, Xiaodao Chen, and Wei Han. 2019. “Urban Land Use and 

Land Cover Change Prediction via Self-Adaptive Cellular Based Deep Learning With 

Multisourced Data.” IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing 12 (12): 5233–47. https://doi.org/10.1109/JSTARS.2019.2956318. 

Phiri, Darius, and Justin Morgenroth. 2017. “Developments in Landsat Land Cover 

Classification Methods: A Review.” Remote Sensing 9 (9): 967. 

https://doi.org/10.3390/rs9090967. 

Song, Ahram, and Jaewan Choi. 2020. “Fully Convolutional Networks with Multiscale 3D 

Filters and Transfer Learning for Change Detection in High Spatial Resolution Satellite 

Images.” Remote Sensing 12 (5): 799. https://doi.org/10.3390/rs12050799. 

Vogelmann, Jim, S. Howard, Limin Yang, C. Larson, Bruce Wylie, and N Driel. 2001. 

“Completion of the 1990s National Land Cover Data Set for the Conterminous United States 

From LandSat Thematic Mapper Data and Ancillary Data Sources.” Photogrammetric 

Engineering and Remote Sensing 67 (June): 650–55. https://doi.org/10.1007/978-94-011-

4976-1_32. 



14 

 

Wulder, Michael A., Nicholas C. Coops, David P. Roy, Joanne C. White, and Txomin 

Hermosilla. 2018. “Land Cover 2.0.” International Journal of Remote Sensing 39 (12): 

4254–84. https://doi.org/10.1080/01431161.2018.1452075. 

Yu, Le, Jie Wang, and Peng Gong. 2013. “Improving 30 m Global Land-Cover Map FROM-

GLC with Time Series MODIS and Auxiliary Data Sets: A Segmentation-Based Approach.” 

International Journal of Remote Sensing 34 (16): 5851–67. 

https://doi.org/10.1080/01431161.2013.798055. 

Zhu, Xiao Xiang, Devis Tuia, Lichao Mou, Gui-Song Xia, Liangpei Zhang, Feng Xu, and 

Friedrich Fraundorfer. 2017. “Deep Learning in Remote Sensing: A Comprehensive Review 

and List of Resources.” IEEE Geoscience and Remote Sensing Magazine 5 (4): 8–36. 

https://doi.org/10.1109/MGRS.2017.2762307. 

 

 

 
 

  



15 

 

CHAPTER 2 (MANUSCRIPT 1): 

 Effect of classifier selection, reference sample size,  

reference class distribution and scene heterogeneity in  

per-pixel classification accuracy using 26 Landsat sites 

Abstract  

Land cover mapping is an important and widely used practice that is typically done by 

converting aerial or satellite imagery to thematic maps. This task is typically done through 

classification and therefore a major issue in land cover mapping is classifier selection. In this 

study we investigated classifier performance under different sample sizes, reference class 

distribution, and scene complexities for twenty six 10 km ×10 km blocks with complete 

reference information across the continental US. Per-pixel classification was done using the six 

spectral bands from Landsat imagery. The tested classifiers included Naïve Bayes (NB), Support 

Vector Machine (SVM), K-Nearest Neighbor (KNN), Bootstrap-aggregation ensemble of 

decision trees (BagTE), artificial neural network (ANN) up to 2 hidden layers, and deep neural 

network (DNN) up to 3 hidden layers. Our accuracy assessment conducted on full blocks extent 

indicated that all classifiers, with the exception of NB (a Maximum Likelihood variant), 

performed similarly. However, when we concentrated on the edge pixels –defined as the pixels 

at the border of adjacent land cover classes- it was clear that the SVM and KNN offer 

considerable accuracy advantages, especially for larger reference datasets. Coupled with their 

relatively low execution times we would recommend them for classifications using Landsat’s 

spectral inputs and Anderson’s 11-level classification scheme. Caution should be exercised 

though as primarily the SVM and secondarily the KNN demonstrated substantial accuracy 
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degradation during the parameter grid search, therefore an exhaustive parameter optimization 

process is suggested.  While the ANN and DNN variants did not perform as well, their 

performance may have been restricted by the lack of rich contextual information in our simple 

six band per-pixel relatively small input spaces. The effect of class distribution in the training 

dataset was also evident on the calculated accuracy metric. We also observed gradual accuracy 

degradation as the edge pixel presence increased. Future work could focus on data-rich 

classification problems such as change detection using Landsat stacks or expand in high spectral 

or spatial resolution sensors.  

2.1. Introduction  

Classification of remotely sensed data is essential in generating thematic maps, which have 

many applications in environmental management, agricultural planning, health studies, climate 

and biodiversity monitoring, and land change detection (Khatami et al. 2016).  A wide range of 

regional and global datasets are currently available facilitating studies at unprecedented scales 

(Grekousis et al. 2015). The classification process, in general, is composed of different tasks, 

from the selection of data source and sampling design, to classification method selection and 

classifier performance evaluation (Lu and Weng 2007). Although all of these tasks are important 

and their successful implementation is dependent on each other, a core task is the selection of the 

suitable classification method.   

Each classification method may be more suitable for a specific target objective, problem 

condition, or imaging details (see table 1 in Lu and Weng, 2007). The classifiers performance 

assessment is also highly dependent on data quality, data values distribution, and sampling 

design (Jin et al. 2014; Li et al. 2014); and it can also be evaluated under various criteria like 

accuracy, reproducibility and/or robustness (Cihlar et al. 1998). Even for the most widely used 



17 

 

assessment criteria, classification accuracy, there are important concerns that limit the ability to 

properly assess the accuracy of resulting map (see Foody, 2002, for a review). This line of 

research has been followed by more recent papers discussing the problems arising from 

increasing accuracy degradation over time in temporal land cover analysis and change detection 

( Foody, 2010), or stressing the importance of sample size or statistical hypothesis testing when 

comparing different classifiers or scenarios performance ( Foody, 2009).  

Therefore, it is difficult to generate a general statement to advise on classifiers ranking and 

one should always clarify the specific conditions that the classifier performance assessment is 

based on it. There are good review papers that introduce the classifiers in general and discuss 

their application conditions, strengths and weaknesses (Lu and Weng, 2007; Li et al. 2014), but 

they are mostly qualitative without specific quantitative results for best attainable classifiers 

accuracy. There are also works that go more in depth discussing classifiers for certain problem 

types. For example, see Weng (2012) for a discussion on classifiers for mapping of impervious 

surfaces, Mallinis and Koutsias (2012) for a comparison of ten classifiers for burned area 

mapping, J. He et al. (2015), for comparing four main classifiers in generation of arctic 

geological maps, or Pelletier et al. (2016) for assessing the robustness of random forest (RF) 

classifier for a specific area. Another research category is to review the application of a specific 

classifier in more detail. For example, see Mountrakis et al. (2011) for a review of SVM 

classifiers; Pal and Mather (2003), for an assessment of decision tree methods for land use 

classification; or Belgiu and Drăguţ (2016), for an overview of random forest classifier. 

Additional processing is also of interest, such as making ensemble of classifiers (X. Li et al. 

2014), controlling of misclassification by post-processing ( Martinez and Baerenklau, 2015), or 

using ancillary data to aid in classification by field visits (Meddens et al. 2016) or other sources 

and sensors (Z. Zhu et al. 2016). Based on numerous case studies, one can perform a meta-
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analysis of previously researched cases and assess the comparative results of case studies at a 

higher level. This meta-analysis has been done for a single type of classifier such as KNN 

(Chirici et al. 2016), or more general including pairwise comparisons among many classifiers 

(Khatami et al. 2016).  

While fragmented comparisons between traditional classifiers can be found in existing 

literature, they are limited in terms of: i) number of case studies incorporated, ii) the search space 

of the classifier parameters (often resorting to default values), and iii) absence of a promising 

new classification family based on deep neural networks (DNN). To the best of our knowledge, 

there are just a few studies that investigated per-pixel classifier accuracy performance over 

multiple case studies or over a large area. For example, Ballantine et al. (2005) performed 

mapping for continental North Africa using MODIS data but comparisons were restricted to a 

few classifiers. In Gong et al. (2013) a global sampling and classification has been done using 

four different classifiers, but they used a fixed set of parameters for each classifier. Similarly, 

Lawrence and Moran (2015) tested classification accuracy for multiple classifiers for 30 data sets 

but they used a fixed set of classifier parameters that may not allow classifiers to reach their best 

potential. Pelletier et al. (2016) did a grid search on classifier parameters over two large areas in 

France, focusing on SVM and Random Forest classifiers. Finally, W. Li et al., (2016) employed 

most important classifiers plus the new autoencoder-based DNN implementations over one 

composite set sampled through the entire Africa, but they only reported a fixed parameter set 

(except for DNN).   

Therefore, it is important to fill this research gap overcoming the three aforementioned 

limitations. Our research goals were: i) to compare classifiers’ best achievable accuracy, ii) 

identify the accuracy costs associated with the reduction of the parameter grid and training 
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dataset size and iii) investigate how data distribution and landscape heterogeneity influences 

classifier performance. We tested six different classifiers in our research: Naïve Bayes (NB), 

Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Bootstrap-aggregation ensemble 

of decision trees (BagTE), artificial neural network (ANN) up to 2 hidden layers, and 

autoencoder-based deep neural network (DNN) up to 3 hidden layers. We used a dataset of 26 

Landsat images for classifiers comparison, and run each classifier with a grid of parameter 

settings to evaluate its performance.   

2.2. Study area  

This study uses the same input data reported in Khatami et al. (2017). The data was based on 

a set of 26 Landsat images (blocks), each covering a 10 km ×10 km area at 30m spatial 

resolution and represented by a matrix of 333×333 6-band pixel values. It was also accompanied 

with the entire block reference data on land cover classes for the complete 26 blocks. This set 

was part of a larger work maintained by US Geological Survey under the Land Cover Trends 

program. Reference data was created with the help of aerial photography, and over 33,000 

geographically referenced field photos with associated keywords capturing existing land cover 

(the field photo map is available at http://landcovertrends.usgs.gov/fieldphotomap/map.html). 

Land cover types were represented by a single value for each pixel and coded in 11 different 

classes according to modified Anderson scheme (Anderson et al. 1976). The selected blocks 

covered a range of climate and topographic conditions throughout the continental US, and all 

had the same spatial resolution of 30m (Figure 2-1). The incorporated Landsat images reflected 

the same acquisition years of the high resolution data. Land cover class composition for every 

block is provided in Appendix A, Table A-1.  

 

http://landcovertrends.usgs.gov/fieldphotomap/map.html
http://landcovertrends.usgs.gov/fieldphotomap/map.html
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Figure 2-1: Spatial distribution and three samples of the 26 images used in this study 

(from Khatami et al. 2017) 

2.3. Methodology  

2.3.1 Sampling design  

We used a fixed-rate stratified class-proportional random sampling on each image to train the 

classifiers and validate them. Having full reference data for each of the 26 blocks, we randomly 

sampled each land cover type at 2% and 0.2% to assess the effect of sample size. Note that land 

cover types with less than two sample pixels in the sampled set (less than 122 instances in the 

entire image) were dropped. To increase the statistical confidence on the performance results, the 

process was replicated 10 times to create 10 independent sampled data sets (that we name 

calibration sets hereafter) for each image, and the calibration datasets were the same for all 

classifiers. Each calibration set was further divided into training and validation parts. The 

training part comprised 82% of calibration set and was used to train a classifier, and the 

validation part was used to check classifier’s generalization capability and pick the best model 

for accuracy assessment. Final assessed accuracy was reported at the entire block according to 

the procedure described in section 2.3.3. As the main purpose of this research was to compare 

the classifiers’ performance over a large data set and under an extended parameter grid search, 
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we did not enter the topic of optimizing training sample selection and especially recent advances 

in active learning area. 

2.3.2 Classifier parameterization and training   

Six popular classifiers were selected, and their implementation in Mathwork’s Matlab was 

used to run the experiments. Details on these classifiers can be found in multiple sources, for 

example Domingos and Pazzani (1997) for Bayesian classifiers; Foody and Mathur (2004) for 

SVM; Calvo-Zaragoza et al. (2015) for KNN; Breiman (1996) and Breiman (2001) for tree 

ensembles and Random Forests; Mas and Flores (2008) for ANN; and Chen et al. (2014) for 

DNN. However, we recommend consulting the Matlab documentation (Mathworks Inc. 2016) 

and Matlab help pages for classifier parameters description, especially for neural network 

classifiers. Each classifier has a set of tuning parameters; we selected the most important ones 

(based on past studies) as indicated in Table 2-1. We defined ranges of applicable values for each 

parameter and tested the classifiers’ performance for each possible combination of individual 

parameters to identify the best performer (i.e., a grid search approach). The range of values for 

each parameter was chosen to cover the practically important cases. In some cases, a subset of all 

available parameter settings was used through a quick initial assessment in order to constrain the 

large number of possible parameter combinations.   
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Table 2-1: Classifiers’ parameters 

Classifier  Parameter  Parameter values/range  

Naïve Bayesian (NB)  Probability distribution type  Normal, Kernel  

Smoothing function  Normal, Box, Triangle, Epanechnikov  

K-Nearest Neighbor  

(KNN)  

Distance metric  Chebychev, Euclidean, Mahalanobis, Minkowski  

Distance weight  Inverse, squared inverse  

Number of neighbors  1 to 40 (step of 2)  

Support Vector  

Machine (SVM)  

Kernel function  Fixed at Gaussian  

Box constraint (C)  0.01, 0.1, 0.5, 1, 2, 5, 10, 25, 50, 100, 300  

Kernel scale (gamma)  0.1, 0.5, 1, 2, 5, 10, 25, 50  

Tree ensemble   

(BagTE)  

Ensemble method  Bagging  

Number of trees  50, 100, 200, 500  

Maximum number of tree splits  10, 25, 50, 100, 200  

Minimum tree leaf size  1, 3, 5, 10, 25  

Number of simulation iterations  10   

Artificial Neural  

Network   

(1 or 2 hidden layers, 

followed by a softmax 

classifier)   

Training algorithm  Resilient backpropagation (trainrp)   

# of nodes in 1st hidden layer  5 to 15 (step of 1)  

# of nodes in 2nd hidden layer  0 to 8 (step of 1)  

Number of simulation iterations  100  

Training parameters (specific to 

chosen training algorithm):   

- Learning rate  

- Delta0  

- Delta_inc  

- Delta_dec  

Changed randomly in each iteration within given 

range:  

- 0.01 ~ 1  

- 0.01 ~ 0.5  

- 1 ~ 5  

- 0.1 ~ 1  

Deep Neural Network, 

autoencoder-based  

(1, 2, or 3 hidden layers, 

followed by a softmax  

classifier)  

Training algorithm  Standard backpropagation  

# of nodes in 1st hidden layer  5 to 30 (step of 2)  

# of nodes in 2nd hidden layer  0 to 20 (step of 2)  

# of nodes in 3rd hidden layer  0 to 10 (step of 2)  

Number of simulation iterations  100  

Training parameters (specific to 

chosen training algorithm):  

- Lambda  

- Rho  

- Beta  

  

  

- 1E-8 ~ 1E-3  

- 0.05 ~ 0.7  

- 1 ~ 9  
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Additional considerations pertaining to a specific classifier include the following:   

- NB: The smoothing function was used only when the probability distribution type is set 

to ‘Kernel’.  

- KNN: The ‘Minkowski’ metric setting requires an additional parameter named 

‘exponent’, it was set at a fixed value of 3 in all simulations of this distance type.  

- BagTE: Due to the randomization involved in the bagging algorithm, we repeated each 

single run of classifier for a number of iterations and picked best result to record. Our 

experiments showed that the tree ensemble performance result varied marginally between 

iterations so we limited the number of iterations to 10. Note that the BagTE slightly 

differs from the Random Forest implementation. The Random Forest preselects the 

features used to make each tree branch randomly among all the feature sets, but in the 

BagTE all the features are available at each branching.   

- ANN: As with the BagTE parameter initialization values may affect the result. In the 

ANN this effect is more pronounced than in the BagTE (standard deviation more than 

20% accuracy in some cases) therefore we set the number of iterations to 100. For some 

parameters an exhaustive grid search took place (# of nodes) while for other parameters, 

random values within the predefined range were assigned for each run to keep the 

combination choices at a reasonable level.   

- DNN: Training followed the same considerations as the ANN.  To have control over 

training parameters, the DNN implementation was based on custom code with the help of 

the “Unsupervised Feature Learning and Deep Learning” web site at 

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial.  

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
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After building the training/validation data sets and setting up the classifier parameter grid, 

the main experiment was done by running each classifier on each image separately, iterating 

through all parameters grid points and all ten input data sets (repetitions for same parameters) for 

that image.   

2.3.3 Accuracy Assessment  

The accuracy assessment replicates the typical algorithmic training procedure with the 

advantage that entire block accuracy metric generalizations can be extracted for further study. 

Table 2-2 presents the general steps followed to obtain accuracy estimations for each classifier 

and block.  

Table 2-2: Pseudocode of accuracy calculation for each classifier and each image block 

Define classifier to use  

For replication =1:10 (10 calibration datasets per block) 

For each parameter combination (dependent on classifier characteristics, see Table 1)  

For iterations =1:n (n=10 for BagTE, n=100 for ANN and DNN, n=1 for others)  

    Train classifier using training data  

    Estimate accuracy metric using validation data  

End  

End  

                Identify optimal parameter set defined as the set with the highest validation accuracy metric for  

  given replication  

                Calculate the entire block accuracy metric for the selected optimal parameters  

End  

Calculate average best entire block accuracy metric (and standard deviation) over the ten calibration datasets  

 

The above process was repeated for the two sampling rates, 0.2% and 2% separately 

(sections 2.4.1 and 2.4.2). We also did the assessment only for the subset of edge pixels (i.e. 

pixels that lay on the border line of different land cover classes) to assess the influence of 
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landscape heterogeneity, further discussed in section 2.4.4. In some cases, the simulations were 

also repeated by changing the class distribution in data sets as described in section 2.4.3. 

There are many metrics available to assess classifiers performance in the literature. We used 

overall accuracy (OA) as one of the most widely used metrics with easy interpretation and high 

practical value. The drawback is that OA hides the class specific performance and as discussed 

in H. He and Garcia (2009), the OA value can be deceiving when the input dataset is highly 

imbalanced. In such a case, the OA value mostly reflects the dominant class performance while 

the rare classes may be classified very poorly. Using other metrics such as Precision/Recall or 

Receiver Operating Characteristics (ROC) is more favored when performance on rare classes is 

more important. Picking OA as the assessment metric, the best class distribution is the naturally 

occurring one H. He and Garcia (2009) and therefore our stratified sampling for training matches 

the selected metric. Another metric, the Kappa statistic, has also been used in prior literature to 

reflect the possibility of chance agreement. However, its usage is nowadays less favored and 

even it is highly criticized to be “useless, misleading and/or flawed for the practical applications 

in remote sensing that we have seen” (Pontius and Millones, 2011). Therefore, we opted to 

solely report OA results. 

In our presented results we mainly compare classifiers according to their performance 

(measured by OA) on the same dataset, therefore dependency of OA to class distribution does 

not bias results. In section 2.4.4 we look at the change in OA over all blocks by change in 

frequency of edge pixels, which may affect results. We therefore discuss the class distribution 

issue in section 2.4.3 before presenting the edge pixel analysis results. 
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2.4. Results  

2.4.1 Classifier accuracy comparison for a typical 2% reference dataset  

Table 2-3 shows the obtained average best entire block overall accuracy following the 

procedure of Table 2-2 for the 2% calibration dataset (Table A-2 in Appendix contains the 

corresponding results for the 0.2% calibration dataset).  The coefficient of variation (ratio of 

standard deviation to mean value) is shown in parenthesis. The SVM was the best classifier in 18 

out of 26 cases followed by BagTE (3 cases), ANN (3), and DNN (2). However, with the 

exception of NB that had significantly lower performance, all other classifiers performed 

similarly with minor practical variations. This result indicates that when sufficient training data 

and parameter searches are fed to these popular algorithms, performance does not differ 

substantially.    

We also looked at the best setting of classifier parameters for each image but found that there 

is no specific parameter value that can be advised for a classifier as the best parameters over all 

study cases. In fact, raising one configuration as the winner over the others is not justified and 

everything is dependent on a specific image (and sampling design). The NB method was not 

considered further in this manuscript due to its considerably lower performance.    

   



27 

 

Table 2-3: Best average overall accuracies and their coefficient of variation for 2% sample size 

Classifier→  
NB SVM KNN BagTE ANN DNN 

ImageNo ↓  

1  
95.10%  

(0.80%)  

98.11%  

(0.32%)  

98.08%  

(0.21%)  

98.19%  

(0.13%)  

98.05%  

(0.16%)  

98.10%  

(0.10%)  

2  
64.45%  

(6.76%)  

83.84%  

(0.40%)  

83.14%  

(0.52%)  

82.97%  

(0.42%)  

82.42%  

(0.55%)  

83.12%  

(0.56%) 

3  
73.01%  

(1.01%)  

92.01%  

(0.96%)  

91.25%  

(0.26%)  

91.32%  

(0.49%)  

91.72%  

(0.40%)  

91.81%  

(0.37%) 

4  
74.71%  

(1.46%)  

80.38%  

(0.50%)  

79.28%  

(0.48%)  

80.24%  

(0.31%)  

79.93%  

(0.63%)  

80.35%  

(0.62%)  

5  
96.31%  

(0.41%)  

98.37%  

(0.15%)  

98.15%  

(0.13%)  

98.09%  

(0.06%)  

98.31%  

(0.20%)  

98.24%  

(0.23%)  

6  
68.71%  

(4.47%)  

77.95%  

(0.54%)  

77.71%  

(0.72%)  

78.18%  

(0.18%)  

78.10%  

(0.34%)  

78.02%  

(0.51%)  

7  
87.99%  

(0.16%)  

90.85%  

(0.25%)  

90.57%  

(0.19%)  

90.48%  

(0.19%)  

90.73%  

(0.26%)  

90.80%  

(0.32%)  

8  
79.88%  

(0.85%)  

84.66%  

(0.43%)  

84.32%  

(0.51%)  

84.47%  

(0.31%)  

84.58%  

(0.32%)  

84.38%  

(0.47%)  

9  
57.26%  

(1.21%)  

65.29%  

(0.72%)  

64.17%  

(1.50%)  

64.76%  

(0.59%)  

64.15%  

(1.39%)  

64.57%  

(1.05%) 

10  
58.37%  

(0.96%)  

77.16%  

(0.32%)  

76.26%  

(0.75%)  

75.99%  

(0.36%)  

75.56%  

(0.73%)  

76.43%  

(0.51%) 

11  
87.83%  

(0.62%)  

92.26%  

(0.31%)  

92.21%  

(0.34%)  

92.39%  

(0.13%)  

92.18%  

(0.21%)  

92.19%  

(0.18%)  

12  
65.22%  

(0.82%)  

76.01%  

(1.03%)  

75.94%  

(0.37%)  

75.95%  

(0.35%)  

75.72%  

(0.65%)  

76.11%  

(0.33%)  

13  
80.39%  

(0.50%)  

83.85%  

(0.33%)  

83.75%  

(0.34%)  

83.72%  

(0.19%)  

83.88%  

(0.34%)  

83.99%  

(0.18%)  

14  
84.91%  

(0.46%)  

87.66%  

(0.30%)  

87.19%  

(0.56%)  

87.45%  

(0.20%)  

87.70%  

(0.36%)  

87.67%  

(0.23%)  

15  
64.13%  

(4.40%)  

86.72%  

(0.42%)  

86.24%  

(0.26%)  

86.20%  

(0.54%)  

86.27%  

(0.57%)  

86.54%  

(0.51%) 

16  
79.09%  

(0.95%)  

86.74%  

(0.28%)  

85.79%  

(0.28%)  

85.97%  

(0.37%)  

86.80%  

(0.29%)  

86.56%  

(0.44%)  

17  
77.68%  

(2.96%)  

85.83%  

(0.45%)  

84.78%  

(0.69%)  

85.06%  

(0.55%)  

85.21%  

(0.47%)  

85.35%  

(0.37%)  

18  
68.95%  

(7.39%)  

85.09%  

(0.44%)  

85.24%  

(0.30%)  

85.12%  

(0.17%)  

85.34%  

(0.27%)  

85.17%  

(0.26%)  

19  
72.62%  

(2.49%)  

80.53%  

(0.41%)  

80.26%  

(0.50%)  

80.29%  

(0.26%)  

80.39%  

(0.17%)  

80.33%  

(0.23%)  

20  
65.33%  

(1.73%)  

78.70%  

(0.99%)  

77.29%  

(1.54%)  

76.97%  

(0.63%)  

78.05%  

(0.59%)  

77.90%  

(1.07%) 

21  
80.20%  

(0.86%)  

87.20%  

(0.33%)  

86.88%  

(0.32%)  

86.55%  

(0.31%)  

87.17%  

(0.32%)  

86.68%  

(0.55%)  

22  
58.18%  

(2.24%)  

71.99%  

(1.00%)  

71.23%  

(0.40%)  

70.99%  

(0.54%)  

70.99%  

(0.64%)  

71.79%  

(0.59%) 

23  
74.43%  

(0.40%)  

87.74%  

(0.31%)  

86.80%  

(0.30%)  

86.74%  

(0.37%)  

87.36%  

(0.46%)  

87.37%  

(0.71%) 

24  
81.86%  

(1.03%)  

89.19%  

(0.16%)  

88.77%  

(0.32%)  

88.63%  

(0.25%)  

88.83%  

(0.37%)  

88.89%  

(0.30%)  

25  
76.18%  

(1.50%)  

80.38%  

(0.54%)  

80.26%  

(0.25%)  

80.20%  

(0.32%)  

79.91%  

(0.44%)  

79.84%  

(0.56%)  

26  
85.33%  

(1.04%)  

93.71%  

(0.24%)  

93.29%  

(0.19%)  

93.21%  

(0.28%)  

93.60%  

(0.16%)  

93.39%  

(0.45%)  

(for ANN and DNN classifiers, the listed OA is the highest achieved by any number of  

hidden layers and nodes per layer within the parameter limits) 
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2.4.2 Effect of sample size on classification accuracy  

Although it is desirable to have as many training data as possible, accurately located and 

labelled training samples in a remote sensing application are generally difficult to obtain. Our 

sampling rate of 2% for each land cover type (which translates to the total of 2218 pixels for 

each of our 110,889-pixel blocks) reflects a practical upper bound. For completeness, we also 

tested the classifiers’ performance with a larger 5% sampling rate and the results were very close 

to the 2% sampling ratio, showing a saturation in classifiers’ accuracy. We also examined a 

lower bound by generating a second, considerably smaller calibration dataset (with the same 

proportional stratified sampling design) at 0.2% of the image size (222 pixels). Table 2-4 shows 

the best result among all classifiers for 2% and 0.2% sampling scenarios. Detailed accuracy 

metrics for the 0.2% sampling rate were similar to Table 2-3 and are offered in the Appendix A, 

Table A-2. As expected, there was a decline in best attainable accuracy with the 0.2% sampling 

ranging from 0.6% to 5.7%.     

Table 2-4: Best attainable accuracy (over all classifiers) for sampling rates of 2% and 0.2% 

Image# →  1 2 3 4 5 6 7 8 9 10 11 12 13 

Sampling rate 2 98.2 83.8 92.0 80.4 98.4 78.2 90.9 84.7 65.3 77.2 92.4 76.1 84.0 

Sampling rate 0.2 97.6 79.5 88.5 77.5 97.6 76.1 88.9 81.8 59.6 71.6 91.5 73.6 82.1 

Image# →  14 15 16 17 18 19 20 21 22 23 24 25 26 

Sampling rate 2 87.7 86.7 86.8 85.8 85.3 80.5 78.7 87.2 72.0 87.7 89.2 80.4 93.7 

Sampling rate 0.2 86.0 84.1 84.3 82.7 83.4 79.1 73.3 84.4 66.9 84.5 86.2 78.5 91.2 

 

To investigate further individual classifier performance each classifier’s accuracy was contrasted 

with the SVM accuracy. Figure 2-2 depicts this comparison for the 2% and 0.2% calibration 

datasets (excluding NB due to low performance).   
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(a)  

 

(b)  

 

Figure 2-2: Classifiers overall accuracy relative to SVM for (a) 2% and (b) 0.2% calibration dataset 
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For the 2% case the SVM typically outperforms other classifiers. In the 0.2% case the BagTE 

is the best classifier in 12 out of 26 cases, and SVM wins in only 5 cases. However, 

independently of the calibration dataset size the magnitude of the accuracy difference is still 

small and practically insignificant.  

2.4.3 Effect of dataset class imbalance on classification accuracy  

In the previous two sections we compared different classifiers given similar training and 

testing data separately for each image, therefore class distribution did not bias the results. In this 

section, we specifically assess the effect of class distribution in obtained accuracy. Two training 

sample scenarios were examined, one with a stratified proportional training set (imbalanced 

training dataset), and another by training classifiers with randomly selected almost equal class 

member datasets. In addition to the two training scenarios, performance for each image was 

assessed using two different testing datasets, one covering the entire image (imbalanced testing 

dataset) and another constraining equal members per class (balanced testing dataset).  

Figure 2-3 shows the result of calculating OA for the imbalanced training dataset and Figure 

2-4 shows the same thing for balanced training dataset. In each case, OA values express the 

maximum attainable value among different classifiers for each image. Due to the low number of 

pixels in rare classes, the overall dataset size (and therefore the training part) in the balanced 

scenario was smaller than the original imbalanced case, therefore accuracy comparisons are only 

applicable within the same training dataset (i.e. Figure 2-3 and Figure 2-4 should not be 

combined). The OA drops is significant by changing class distribution with the imbalanced 

training dataset (Figure 2-3), however the difference is limited under the balanced distribution 

training (Figure 2-4). This finding suggests that stratification for sample selection can 
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significantly impact the obtained accuracy, therefore the sampling design should match the study 

preferences (highest overall scene accuracy vs. balanced accuracy between classes).    

 

Figure 2-3: Effect of changing class distribution in test sets on best  

attainable accuracy for imbalanced training set distribution 

 

Figure 2-4: Effect of changing class distribution in test sets on best  

attainable accuracy for balanced training set distribution 
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2.4.4 Effect of landscape heterogeneity on classification accuracy  

Numerous metrics have been developed over time to characterize and assess the scene and 

landscape heterogeneity, and software packages are also available for help (for example see 

Turner, 2005; or Lausch et al. 2015). These metrics can be defined in many ways and vary in 

scope, considering the number of different landscape classes and/or their spatial distribution. An 

exhaustive list of tens of landscape metrics can be found in FragStat software’s documentation 

(McGarigal, 2015). Although there is no general rule to pick among them, edge statistics are a 

good candidate to represent scene heterogeneity as it is affected by both class variety and class 

spatial arrangement. Here we defined the edge pixels as pixels lying on land cover change 

boundaries; they were extracted from the ground truth data. This selection was also natural from 

a remote sensing point of view, because Landsat images are of medium resolution and in the 

edge pixels, there is a high chance of land cover mixing. Our 26 blocks exhibited a wide range of 

edge pixel presence ranging from 2% to more than 40% of the overall block pixels. Two separate 

analyses are presented in the next two sections. First, we isolated each block and examined 

algorithmic performance on the edge pixels in order to identify best performing classifiers. 

Second, we combined classifier performance across all blocks to investigate accuracy 

degradation as scene heterogeneity increases through higher edge pixel presence.  

2.4.4.1. Algorithmic accuracy assessment on edge pixels separately for each block 

Having previously trained classifiers on stratified proportional samples, we can calculate the 

test accuracy by limiting the test pixels only to edge pixels for each image. The idea is to 

investigate how different classifiers perform particularly on these difficult-to-classify pixels. 

Resulting accuracies are depicted in Figure 2-5 relative to SVM performance. In Figure 2-5(a) 

the classifiers have been trained on 2% stratified proportional sample and tested on edge pixels 
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(for each image). Figure 2-5(b) shows the same result but the training has been done by 0.2% 

sampling rate. This figure shows superiority of the SVM and KNN classifiers, especially for the 

larger 2% calibration sample. BagTE, ANN and DNN performance is not as consistent; it can be 

close to the SVM/KNN or it could deviate considerably.  

(a)  

(b)  

Figure 2-5: Edge pixels classification accuracy relative to SVM for  

(a) 2% and (b) 0.2% calibration dataset 
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2.4.4.2 Effect of edge pixel presence on accuracy across blocks  

It is interesting to seek a potential relationship between scene heterogeneity and classification 

accuracy. Figure 2-6 shows the OA results vs. the ratio of edge pixels in each block. For clarity 

purposes and guided by results in Figure 2-5 we limited assessment to the two best performing 

classifiers, SVM and KNN. The presented results are based on the balanced training dataset to 

limit potential class influence on the obtained results. For testing purposes the entire block 

dataset was used as accuracy differences between an unbalanced and a balanced testing dataset 

were minor (see Figure 2-4).  

A clear decreasing trend can be identified with approximately 8-9% accuracy reduction for 

every 10% increase in edge pixel presence for SVM. While the model explained about one third 

of the variability, it is an important finding considering the multitude of additional factors that 

may affect classification accuracy in our 26 different sites (e.g., variable spectral signatures and 

separability of classes). 

 

Figure 2-6: Effect of edge pixel presence in classifiers overall accuracy,  

trained on balanced data set and tested on entire image 
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2.4.5 Trade-off between execution time and accuracy  

Average run-time requirements for the experiment reported in Table 2-3 (2% reference 

dataset) are presented in Table 2-5. To compensate for the usage of different machine 

configurations and parallel processing capabilities (i.e., number of CPU cores) the NB classifier 

ran on all machines and the run times were used as a benchmark to provide a common base for 

comparison. Our intention is not to provide exact execution times but simply a ballpark figure to 

guide user decisions. The total run time was directly dependent on the number and range of 

configuration parameters. We also calculated the average runtime per each parameter setting in 

the last column, but we still had an arbitrary parameter as the number of iterations some cases, 

which directly affect total runtime. In our case, NB and SVM were the fastest classifiers per 

image, but DNN classifiers tend to be the quickest classifiers per each parameter setting (on 

average).  

 

Table 2-5: Average computer run times per image per CPU core for different classifiers 

Classifier  
Average run time per  

Image per CPU core for 

all combinations (min.)  

# of parameter 

combinations  
# of iterations 

per parameter  

Average single run time 

per parameter setting 

(sec.)  
NB  1.5  5  1  18.1  

SVM  4.0  88  1  2.7  

KNN  22.1  160  1  8.3  

BagTE  53.3  100  10  3.2  

ANN  464.3  99  100  2.8  

DNN (1-Layer)  15.0  13  100  0.7  

DNN (2-Layer)  278.2  130  100  1.3  

DNN (3-Layer)  1365.8  650  100  1.3  

 

Lacking a specific protocol on how to set the classifier parameters for best performance, our 

approach was to do a complete set of simulations for each image/classifier over all reasonable 
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parameter combinations. However, building on our experiments we can investigate best 

attainable accuracy (on average) taking only a subset of the initial parameter values. A smaller 

set may miss some of the best parameter combinations, resulting in a decrease in best attainable 

accuracy. Table 2-6 and Table 2-7 show worst case estimates of this gap for different cases of the 

parameter set contraction for 2% and 0.2% sampling rates respectively. For generating these 

tables, we assumed that by extracting the accuracy at a given percentile the worst case scenario is 

obtained. For example in the 100%-75% column, the 75th percentile of the obtained accuracies 

for each case (image/classifier) was identified. It may be unlikely that by randomly constraining 

the parameter combinations to 75% of the total possibilities the resulting accuracy will also be 

bounded by accuracy’s 75th percentile, but this is the worst case. Then we averaged the gap 

between top and 75th percentile accuracy over all blocks for each classifier and reported the 

results in 100%-75% column (same procedure for other columns by changing 75th percentile to 

other percentile values). In the special case of 1-Layer DNN, which has only 13 different 

configurations, 5th percentile is not meaningful hence table entry is set to N/A. Results indicate 

that the most tolerant classifier to limiting parameter search space is the BagTE, while the least 

tolerant is the SVM.  

Table 2-6: Percentiles performance gap for 2% reference dataset 

Classifier  100%-75%  100%-50%  100%-25%  100%-10%  100%-5%  

SVM  0.9%  3.0%  8.7%  13.4%  13.7%  

KNN  0.3%  0.5%  1.0%  2.1%  3.8%  

BagTE  0.2%  0.6%  1.1%  1.7%  1.8%  

ANN  0.5%  0.7%  1.1%  2.1%  2.6%  

DNN (1-Layer)  0.5%  0.7%  1.1%  1.7%         N/A 

DNN (2-Layer)  0.7%  1.1%  1.5%  2.0%  2.4%  

DNN (3-Layer)  1.2%  1.8%  2.5%  3.1%  3.5%  
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Table 2-7: Percentiles performance gap for 0.2% reference dataset 

Classifier  100%-75%  100%-50%  100%-25%  100%-10%  100%-5%  

SVM  1.9%  5.0%  11.7%  11.9%  12.0%  

KNN  0.8%  1.3%  2.3%  3.9%  5.1%  

BagTE  0.5%  0.8%  1.4%  2.9%  3.1%  

ANN  1.3%  2.0%  2.9%  3.9%  4.7%  

DNN (1-Layer)  0.7%  1.4%  2.5%  3.7%        N/A  

DNN (2-Layer)  2.6%  3.5%  4.5%  5.4%  6.0%  

DNN (3-Layer)  2.9%  3.8%  4.8%  5.7%  6.3%  

2.5. Discussion and concluding remarks  

Our goal was to investigate classifier performance under different sampling scenarios and 

landscape complexities. For the entire block, our accuracy assessment indicated that all 

classifiers, with the exception of NB, performed similarly. The general performance gap with 

Naïve Bayes compared to the other classifiers can be explained by the high level of band 

correlation, which invalidates the class conditional independence assumption. For other 

classifiers, similar results can be obtained assuming sufficient search of optimal parameter 

identification. This suggests that parameter optimization is a key component in the training 

process and results using a pre-determined set could be misleading (as presented in Lawrence 

and Moran, 2015). Unfortunately, optimal parameter values may vary significantly across sites, 

therefore, an extensive grid search is required. Moving beyond individual classifiers, training 

data characteristics can be more influential than classifier selection as shown by limiting the test 

data to edge pixels. A similar conclusion has been made in other studies, for example in (C. Li et 

al. 2014).  

However, when we concentrated on the edge pixels, it was clear that the SVM and KNN 

offer considerable accuracy advantages. This could be attributed to the right balance between 

algorithmic and data complexity. Other methods (ANN, DNN) may offer higher modelling 



38 

 

capabilities; however, the relatively small training datasets result in unpredictable generalizations 

in the feature space.  SVM and KNN may also work better than decision trees in the presence of 

imbalanced data and rare classes because decision trees require enough training samples to find 

optimum branching decisions and divide-and-conquer strategies may fail on imbalanced data 

sets. Coupled with their relatively low execution times we would recommend SVM or KNN for 

classifications using Landsat’s spectral inputs and Anderson’s 11-level classification scheme. 

We should also caution though that primarily the SVM and secondarily the KNN demonstrated 

substantial accuracy degradation during the parameter grid search, therefore an exhaustive 

optimization process is suggested.   

Moving into further details and to compare our findings with prior research, we looked at the 

articles database provided in (Khatami et al. 2016) and selected similar case studies (i.e. 

analyzing Landsat multispectral images with no ancillary data) along with other recent works. 

According to Ouyang and Ma (2006), Zhong et al. (2007), Dixon and Candade (2008), Qing et 

al. (2010), and C.-H. Li et al. (2012), SVM outperformed the Maximum-Likelihood classifier 

(which is based on the same principle as our NB classifier) by at least 5% in overall accuracy, 

but the SVM gain was less than 5% compared to multilayer neural networks and less than 3% 

when compared to KNN classifier. In a different experiment Maximum Likelihood, Neural 

Network, and SVM achieved overall accuracies with difference less than around 1%, and it was 

not statistically significant (Mallinis and Koutsias, 2012).  

J. He et al. (2015) used Landsat images and reported SVM as the best classifier, followed by 

Neural Networks, Random Forest, and lastly Maximum Likelihood. The average performance 

difference between first two classifiers was not statistically significant, also between last two 

ones, but it was significant (although less than 5%) between the two groups. In another recent 



39 

 

study, the Maximum Likelihood classifier was 2% less accurate than the Random Forest, with 

the latter achieving 86.8% (J. Liu et al. 2016). Lawrence and Moran (2015) reported higher 

performance for Random Forest than SVM, although their use of a fixed set of parameters may 

not allow either algorithm to reach their potential. One recent study (Weijia Li et al. 2016) 

reported a 1.2% increase in overall accuracy of a 3-layer DNN compared to SVM; also RF was 

1.8% worse than SVM, with differences being statistically significant. However, it is not clear if 

an extensive grid search was used in their analysis for SVM and RF. Finally, Pelletier et al. 

(2016) did a large grid search on SVM and RF parameters and found the RF to perform 

significantly better than SVM. They also noticed the RF’s low sensitivity to parameter changes.  

With respect to the BagTE, a Random Forest variant, it showed the highest potential when 

the parameter search space is minimized, similar to Pelletier et al. (2016). This is attributed to the 

ensemble nature of this classifier that potentially makes it more tolerant to small or noisy 

samples. Neural network classifiers (ANN and DNN) did not reach their promising credentials in 

our study. In other fields, ANNs and particularly DNNs have provided significant advances 

when fed with large amounts of information. Rich data was not the case in our experiment as we 

restricted input data to pixel-based multispectral information and we found neural networks 

generally less promising in our case compared to SVM, KNN, and tree ensembles. This may be 

the result of insufficient or low quality training samples, or data overfitting because of higher 

complexity of classification network compared to data structure. In our simulations simpler (1-

layer) deep networks worked generally better than deeper ones, and we found in our additional 

trials that increasing the sampling ratio (we tried up to 5%) or using edge pixels for classifier 

training (case of active learning) does not make the neural network winner. Therefore, it is more 

probable that this deficiency comes from low number of features (and their dependence) and data 
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overfitting due to higher complexity of neural networks. As described in Zhang et al. (2016), the 

main benefit of DNN use will be for processing hyperspectral data, or mix the spectral data with 

spatial and contextual information and then combine the spectral and other information in a 

composite per-pixel analysis. Therefore, while neural networks offer limited benefits in our six-

dimensional spectral feature space, they still may offer advances when feature space 

dimensionality increases and spatial relationships are included.   

Another finding across classifiers is a reduction of classification accuracy as scene 

complexity increases. While this has been reported in the past by looking at the class richness or 

other landscape heterogeneity metrics (for example in Mallinis and Koutsias, 2012; Collin and 

Planes, 2012; Roelfsema and Phinn, 2010; and Andrefouet et al., 2003), comparing performances 

over multiple scenes based on ratio of edge pixels has not been done before to our knowledge.  

Looking into future work, there are two important areas for further evaluation: selection of 

performance evaluation metric, and sampling design alternatives. Although overall accuracy is 

widely used, there are some suggestions that prefer ROC or Precision/Recall curves over overall 

accuracy for analysis of imbalanced cases (e.g. Jeni et al. 2013). A closer look could also identify 

land cover classes that exhibit higher confusion and try to at least balance the misclassification 

errors over different classes (Puertas et al. 2013) or perform a one-class classification and modify 

the evaluation metric (Wenkai Li and Qinghua Guo, 2014). Another approach is to use accuracy 

metrics at the individual pixel level (Khatami et al. 2017).  

With respect to sampling design alternatives (for training) many approaches have been 

recently devised especially for learning from imbalanced data, as reviewed in H. He and Garcia 

(2009) and later presented in a book (H. He and Ma, 2013). Systematic inclusion of difficult-to-

classify samples like edge pixels is another option to consider, which has been investigated 



41 

 

recently in another research (M. Liu et al. 2016). This approach can be considered as an example 

of a group of techniques named active learning, which is well known in machine learning and 

has been used and discussed in remote sensing field as well (see Bachmann, 2003, and  Crawford 

et al. 2013). As discussed and reviewed in Tuia et al. (2011), it “aims at building efficient 

training sets by iteratively improving the model performance through sampling.” In other words, 

samples used for training are selected interactively. Most of the research in this area is, for now, 

concentrated on very high spatial/spectral resolution imagery, and Landsat type data is not 

examined by this approach. There are also cases of unexpected results with active learning 

(Wuttke et al. 2016), so caution should be exercised. 

To summarize, our experiments identified SVM and KNN as the best performing methods 

for Landsat classifications. Caution should be exercised though as their performance is 

dependent on a wide search of their parameter space. Furthermore, the selection of the training 

sample composition (class balance) will have a considerable effect on the obtained accuracy, 

therefore users should consider accuracy priorities (overall scene vs specific classes) in their 

sampling design. Finally, edge pixel presence, a heterogeneity metric, was shown to have a 

considerable effect on the classification accuracy.  
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Appendix 

Table A-1: Input images class distribution 

Class→ 

Image↓ 
1 2 3 4 5 6 7 8 9 10 

1   46 427     107949 403 2064     

2 783 11024  245   14320 84030 487   

3 7   43   18769 92070    

4 214 2019 5025 4211 5 73024 1050 7800 17541   

5 10     94 2735 108024 26   

6 8310 2048 1438 219  77368 2272 1784 17450   

7 2494 1196  6125  93251 7540 48 235   

8 444 2299 10812   79857 13350 1864 2263   

9 767 8406 3246 81  51288 2420 9983 34698   

10 1363 43961 1171 734 17 3107 609 48494 11433   

11 2488 737 3862 30  98369 3842  1561   

12 1662 6086 1286 652 150 28584 2178 64502 5789   

13   22 9255 65  77953 23513 81    

14 88 3696 3021   91143 9853 2940 148   

15 1030 35989 261   981 652 71254 722   

16 3965 1688  206 597 24055 72473 7713 192   

17 3039 1449 53 252 570 67015 28682 7052 2777   

18 686 677    6736 93279 9434 77   

19 471 3617    19139 2833 78919 5910   

20 818   96  415 45060 55931 8569   

21 6    3064 12356 86116 9119 46 182 

22 731 40068  1006  3834 17900 45477 1873   

23 1336 1925    727 21572 84802 527   

24 238 11327  345  8949  90030    

25 328 1047 7539 31  76036 6302 18116 1490   

26   769     271 2588 92381 13633 797   

Note: Those classes that have less than 122 instances in an image will result in less than 2 samples 

in the training set, and thus will be dropped by sampling. Those classes are underlined. 
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Table A-2: Best average overall accuracies and their coefficient of variation for 0.2% sample size 

Classifier

→ 
NB SVM KNN BagTE ANN 

DNN 

ImageNo 

↓ 
1 Layer 2 Layers 3 Layers 

1 
96.48%  

(1.19%) 

97.38%  

(0.13%) 

97.49%  

(0.34%) 

97.60%  

(0.22%) 

96.95%  

(0.77%) 

97.07%  

(0.43%) 

97.15%  

(0.48%) 

97.02%  

(0.45%) 

2 
69.17%  

(4.54%) 

79.02%  

(1.46%) 

79.53%  

(1.54%) 

78.01%  

(1.36%) 

78.23%  

(2.29%) 

77.99%  

(2.14%) 

75.48%  

(3.11%) 

76.42%  

(2.28%) 

3 
71.77%  

(6.13%) 

88.19%  

(1.08%) 

88.45%  

(1.71%) 

86.93%  

(1.21%) 

88.08%  

(1.92%) 

87.13%  

(1.49%) 

87.33%  

(1.82%) 

87.76%  

(1.70%) 

4 
72.67%  

(1.70%) 

77.54%  

(2.44%) 

75.39%  

(2.02%) 

77.12%  

(1.36%) 

75.92%  

(2.35%) 

77.01%  

(1.76%) 

71.84%  

(3.36%) 

73.46%  

(2.83%) 

5 
97.20%  

(0.37%) 

97.46%  

(0.14%) 

97.64%  

(0.22%) 

97.51%  

(0.13%) 

97.49%  

(0.90%) 

97.25%  

(0.18%) 

97.50%  

(0.57%) 

97.55%  

(0.44%) 

6 
70.65%  

(5.77%) 

75.28%  

(1.26%) 

75.11%  

(1.76%) 

76.08%  

(1.02%) 

75.71%  

(1.46%) 

75.87%  

(1.64%) 

69.44%  

(3.68%) 

69.87%  

(2.96%) 

7 
87.30%  

(1.29%) 

88.80%  

(1.24%) 

88.78%  

(0.67%) 

88.91%  

(0.76%) 

88.41%  

(1.04%) 

88.55%  

(1.29%) 

87.27%  

(1.35%) 

87.52%  

(1.25%) 

8 
75.69%  

(2.97%) 

81.79%  

(1.99%) 

81.48%  

(2.58%) 

81.76%  

(1.13%) 

81.25%  

(1.93%) 

80.22%  

(2.15%) 

78.71%  

(1.28%) 

78.28%  

(1.79%) 

9 
54.68%  

(6.71%) 

57.58%  

(7.18%) 

58.73%  

(4.09%) 

59.55%  

(2.84%) 

59.02%  

(2.79%) 

55.75%  

(7.29%) 

52.99%  

(3.81%) 

52.58%  

(4.46%) 

10 
55.63%  

(7.61%) 

71.57%  

(1.59%) 

68.82%  

(3.01%) 

70.39%  

(1.52%) 

70.63%  

(1.88%) 

70.67%  

(1.77%) 

66.32%  

(2.80%) 

66.26%  

(3.80%) 

11 
87.64%  

(1.81%) 

90.65%  

(1.08%) 

90.22%  

(1.37%) 

91.51%  

(1.03%) 

90.52%  

(0.63%) 

90.03%  

(1.06%) 

88.88%  

(1.40%) 

88.60%  

(1.02%) 

12 
63.39%  

(6.86%) 

72.95%  

(3.73%) 

72.14%  

(2.47%) 

73.56%  

(0.70%) 

72.51%  

(2.20%) 

72.45%  

(3.25%) 

68.93%  

(2.84%) 

67.41%  

(3.63%) 

13 
77.72%  

(5.11%) 

81.26%  

(3.18%) 

81.46%  

(0.95%) 

81.89%  

(1.48%) 

82.05%  

(0.65%) 

82.13%  

(1.40%) 

78.41%  

(3.06%) 

78.80%  

(2.93%) 

14 
82.78%  

(1.10%) 

85.94%  

(0.84%) 

85.74%  

(0.68%) 

86.00%  

(0.45%) 

85.07%  

(1.13%) 

85.65%  

(0.67%) 

83.03%  

(1.52%) 

82.54%  

(1.48%) 

15 
72.50%  

(5.98%) 

82.64%  

(2.88%) 

82.80%  

(1.28%) 

82.31%  

(2.15%) 

83.76%  

(1.50%) 

84.12%  

(1.20%) 

81.37%  

(2.20%) 

81.36%  

(2.34%) 

16 
77.54%  

(3.30%) 

84.25%  

(1.18%) 

82.37%  

(1.49%) 

83.03%  

(0.95%) 

83.83%  

(2.73%) 

83.99%  

(1.61%) 

81.35%  

(2.41%) 

81.06%  

(1.57%) 

17 
77.92%  

(2.97%) 

82.47%  

(0.42%) 

81.49%  

(1.30%) 

82.56%  

(0.33%) 

82.67%  

(1.00%) 

81.98%  

(1.15%) 

80.02%  

(2.08%) 

79.43%  

(2.03%) 

18 
70.58%  

(9.85%) 

82.92%  

(3.32%) 

83.32%  

(1.66%) 

83.40%  

(0.66%) 

82.56%  

(1.59%) 

82.78%  

(2.95%) 

77.76%  

(4.54%) 

78.55%  

(3.58%) 

19 
72.26%  

(6.21%) 

78.66%  

(1.33%) 

78.99%  

(0.77%) 

79.08%  

(0.69%) 

77.71%  

(1.38%) 

78.09%  

(1.67%) 

73.53%  

(3.34%) 

72.53%  

(2.68%) 

20 
64.02%  

(3.71%) 

72.01%  

(4.46%) 

71.39%  

(3.51%) 

70.73%  

(1.94%) 

73.27%  

(2.08%) 

72.80%  

(2.76%) 

70.94%  

(3.54%) 

68.92%  

(2.99%) 

21 
80.07%  

(1.43%) 

83.47%  

(1.87%) 

83.01%  

(1.15%) 

84.36%  

(0.88%) 

82.84%  

(2.05%) 

82.68%  

(1.20%) 

80.28%  

(2.38%) 

80.71%  

(1.29%) 

22 
58.09%  

(5.66%) 

66.27%  

(3.15%) 

64.87%  

(2.81%) 

65.18%  

(1.41%) 

66.91%  

(2.26%) 

66.53%  

(2.47%) 

63.71%  

(3.26%) 

63.10%  

(1.73%) 

23 
78.44%  

(3.39%) 

84.48%  

(2.13%) 

83.93%  

(1.80%) 

83.12%  

(1.65%) 

84.27%  

(2.77%) 

83.26%  

(1.87%) 

82.19%  

(1.87%) 

82.28%  

(2.59%) 

24 
80.21%  

(2.85%) 

85.64%  

(1.15%) 

85.58%  

(1.17%) 

86.17%  

(1.01%) 

85.44%  

(1.46%) 

85.45%  

(1.26%) 

85.54%  

(1.40%) 

84.57%  

(1.56%) 

25 
75.23%  

(1.84%) 

77.69%  

(1.81%) 

77.08%  

(2.67%) 

78.49%  

(0.55%) 

76.85%  

(1.39%) 

77.13%  

(1.76%) 

74.23%  

(1.89%) 

73.71%  

(1.96%) 

26 
85.04%  

(2.23%) 

91.09%  

(1.09%) 

91.00%  

(1.20%) 

91.03%  

(1.18%) 

91.19%  

(0.92%) 

90.66%  

(1.68%) 

89.83%  

(1.53%) 

89.19%  

(1.79%) 
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CHAPTER 3 (MANUSCRIPT 2): 

Meta-analysis of deep neural networks in remote sensing:  

A comparative study of mono-temporal classification to  

support vector machine 

Abstract 

Deep learning methods have recently found widespread adoption for remote sensing tasks, 

particularly in image or pixel classification. Their flexibility and versatility have enabled 

researchers to propose many different designs to process remote sensing data in all spectral, 

spatial, and temporal dimensions. In most of the reported cases they surpass their non-deep rivals 

in overall classification accuracy. However, there is considerable diversity in implementation 

details in each case and a systematic quantitative comparison to non-deep classifiers does not 

exist. In this paper, we look at the major research papers that have studied deep learning image 

classifiers in recent years and undertake a meta-analysis on their performance compared to the 

most used non-deep rival, Support Vector Machine (SVM) classifiers. We focus on mono-

temporal classification as the time-series image classification did not offer sufficient samples. 

Our work covered 103 manuscripts and included 92 cases that supported direct accuracy 

comparisons between deep learners and SVMs.   

Our general findings are the following: i) Deep networks have better performance than non-

deep spectral SVM implementations, with Convolutional Neural Networks (CNNs) performing 

better than other deep learners. This advantage, however, diminishes when feeding SVM with 

richer features extracted from data (e.g., spatial filters) ii) Transfer learning and fine-tuning on 

pre-trained CNNs are offering promising results over spectral or enhanced SVM, however these 
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pre-trained networks are currently limited to RGB (Red-Green-Blue or natural color) input data, 

therefore currently lack applicability in multi/hyperspectral data. iii) There is no strong 

relationship between network complexity and accuracy gains over SVM; small to medium 

networks perform similarly to more complex networks. iv) Contrary to the popular belief, there 

are numerous cases of high deep networks performance with training proportions of 10% or less.  

Our study also indicates that the new generation of classifiers is often overperforming 

existing benchmark datasets, with accuracies surpassing 99%. There is a clear need for new 

benchmark dataset collections with diverse spectral, spatial and temporal resolutions and 

coverage that will enable us to study the design generalizations, challenge these new classifiers, 

and further advance remote sensing science. Our community could also benefit from a 

coordinated effort to create a large pre-trained network specifically designed for remote sensing 

images that users could later fine-tune and adjust to their study specifics. 

3.1. Introduction 

Artificial neural networks (ANNs) first started with cybernetics in the 1940s–1960s and led 

to the invention of the first single neuron model named perceptron (Rosenblatt, 1958). Being a 

data-driven model with the ability to simulate arbitary computing functions through 

optimization, ANNs found a wide range of applications. The next major breakthrough happened 

in late 80’s with the invention of back-propagation and a gradient-based optimization algorithm 

to train a neural network with one or two hidden layers with any desired number of nodes 

(Rumelhart et al. 1986). The back-propagation method has worked well for non-deep structures 

(1-2 hidden layers) but gradient-based training of deep neural networks (DNNs) could get stuck 

in local minima or plateaus due to the dramatic increase in number of model parameters and 

vanishing of gradients during backpropagation (Bengio, 2009). There is no standard definition to 
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label a neural network as deep, but it mostly refers to network of two hidden layers or more, used 

to automatically extract a hierarchical set of features from data. Compared to 1-2 layer structures, 

DNNs promise to provide more compact models for the same modeling capabilities (Bengio, 

2009). However, the high node number of DNNs made it difficult to train and optimize in a 

practical manner. 

The seminal work of Hinton et al. (2006) showed that unsupervised pre-training of each 

layer, one after another, could considerably improve results. This layer-wise training approach, 

named greedy algorithm, was the key that opened new avenues to deep neural networks. The 

greedy algorithm could also be followed by a fine-tuning process, in which the entire network is 

tuned together using backpropagation, but this time from a much better starting point. Deep 

network theories and practices have expanded considerably during the last decade. It has resulted 

in establishment of some major network types (with continuous enhancements) and numerous 

applications in different domains. In close relationship with image processing and computer 

vision, remote sensing (RS) is one of many areas that deep learning is targeting.  

Generally and following discussion in L. Zhang et al. (2016), we can categorize remote 

sensing applications of deep learning into four groups: 1) RS image pre-processing, 2) scene 

classification, 3) pixel-based classification and image segmentation, and 4) target detection. For 

image pre-processing tasks, we can name pan-sharpening, denoising, and resolution 

enhancement as major applications. Scene classification is done based on some extracted 

features from a scene, which the deep networks are assumed to be good at. The non-deep 

approaches normally use some handcrafted features extracted from the scene to feed the 

classifier (SVM, KNN, etc.) and predict the scene type. Deep networks have opened the door to 

direct use of spectral and spatial information together to generate a richer set of features 
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automatically. This automatic extraction increases the potential for good generalization and 

scalability of this method compared to handcrafted features. Handcrafted features tend to be 

tailored closely to a specific case and application and possibly perform better than any automatic 

system, but because of this specificity they cannot be easily or successfully generalized to 

another cases/studies. This type of work is closely related to image recognition task but for 

categorization of remote sensing scenes (such as agricultural field, residential area, airport, 

parking lot, etc.), therefore sharing network configurations between computer vision and remote 

sensing applications is common here. Pixel classification and segmentation (or semantic 

labeling) are similar to scene classification but operate at the pixel rather than scene level, and 

produce a thematic map instead of a single category index. This is perhaps the most studied RS 

application and deep networks have shown performance benefits due to their ability to co-

process spatial and spectral data easily, especially for hyperspectral images. Our main target in 

this paper is to focus on image or scene classification - we do not address other applications. In 

addition, we focus on mono-temporal classification as the time-series image classification is still 

in its infancy. Target or object detection is generally an extension to the three aforementioned 

groups, where specific objects defined by their shape or boundary are extracted from an image. 

This field has found many useful but challenging applications in high resolution and real time 

image/video processing. 

Following the explosive growth of new algorithmic developments and case studies in deep 

learning RS applications in the past 3-4 years, several review manuscripts have been published 

(Ghamisi et al. 2017; Xia et al. 2017; L. Zhang et al. 2016; or P. Liu et al. 2017). The majority of 

these reviews are descriptive and do not offer a quantitative assessment of deep learning benefits 

building on the extensive available comparisons in the literature. The overal goal of this work is 



53 

 

to bridge this knowledge gap by undertaking a meta-analysis comparing deep and non-deep 

classification algorithms through a meta-analysis of published research. 

Other meta-analysis works exist but they do not examine explicitly deep learning benefits. 

For example, Khatami et al. (2016) grouped all neural network types under one category and did 

not distinguish deep networks from other implementations. Ma et al. (2017) conducted similar 

meta-analysis focusing on object-based classification (thus excluding pixel-based ones) without 

separating deep learning methods. There are some other papers that review deep learning 

architectures in general such as Deng (2014) or W. Liu et al. (2017), or for specific type of data, 

such as Camps-Valls et al. (2014) on hyperspectral data classification. These works also lack 

quantitative comparisons using a meta-analysis approach.  

The overarching goal here is to provide readers with the “big picture” of current research and 

build on the collective knowledge of published works to assess deep learning benefits in remote 

sensing. To undertake the proposed meta-analysis task, we reviewed major research papers and 

built a database of case studies of deep network applications in the remote sensing field while 

extracting main network and data characteristics. This database was analyzed to identify deep 

learning classification performance and its distribution across these network (e.g. network 

complexity) and data characteristics (e.g. spatial resolution). We expect this analysis to provide a 

knowledge baseline as the remote sensing community further incorporates deep leaning in 

related activities. 

The structure of the manuscript is as follows. A brief overlook of deep network types is 

presented in section 3.2 along with key introductory references. A summary table is also 

provided to describe extracted parameters for each research paper. Section 3.3 starts with 

introducing a descriptive statistics and summarizing design ideas encountered in the selected 
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resesrch papers and used datasets. Then we provide our main comparative analysis and discuss 

important research questions about parameters effect on network performance. The last section 

provides concluding remarks. 

3.2. Methods 

In this section we first describe three DNN methods that have been popular in Remote 

Sensing (RS) tasks. Section 3.2.2 contains an explanation on the paper database and associated 

characteristics and metrics used in the comparative accuracy analysis between DNNs and non-

deep methods. 

3.2.1. Summary of popular deep neural networks in remote sensing 

The deep learning paradigm is concentrated on automated hierarchical feature extraction. 

Numerous methods and their modifications have been devised along the past years. Here we 

briefly introduce the three most widely used structures which were used in our identified studies. 

More detailed descriptions of each structure can be found in many machine learning textbooks, 

for example Bengio (2009) and Goodfellow et al. (2016), or tutorials such as Le (2015) and 

Deng (2014). Zhu et al. (2017) and L. Zhang et al. (2016) also provide tutorials for deep learning 

for remote sensing applications.  

Deep networks have been developed to enhance and enrich data representations in an 

automated and intelligent manner. A good representation is, of course, dependent on the specific 

application and should be learned from training data. One important deep network category in 

this class is based on Autoencoders (AEs). The idea behind an autoencoder is basically an 

encoder-decoder network to regenerate the input as accurately as possible in its output. Under 

specific conditions, the encoder part works as a good feature extractor and can be stacked to 

build deep networks named Stacked Auto Encoders or SAEs (the decoder part is not used). The 
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imposed condition on objective function is typically a form of sparsity, but other variants are also 

studied. To put it simply, AE learns a deterministic representation of the input by minimizing a 

cost function based on the difference between input and the regenerated one at the decoder 

output. This learning takes place using gradient-based optimization and standard 

backpropagation techniques. AEs are well suited to unsupervised learning and can be trained 

layer-wise, possibly followed by a supervised fine-tuning phase of the entire network. For a good 

overview of autoencoders with some work examples and executable codes see Andrew Ng’s 

Deep Learning tutorial at http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial. 

Vincent et al. (2010) also provide more details on autoencoders and unsupervised learning.  

Another way of thinking about data representation is to learn the statistical distribution of 

input, i.e., a probabilistic approach. This approach has led to Generative models or Structured 

Probabilistic Models. Deep belief network (DBN) based on stacking layers of Restricted 

Boltzmann Machine (RBM) is the most popular variant for RS applications. Here the aim is to 

minimize the Boltzmann cost function, to maximize “the similarity (in a probabilistic sense) 

between the representation and projection of the input” (Singhal et al. 2016). This optimization 

does not use an assumed output, so a different algorithm (contrastive divergence) is required to 

train the neurons. However, similarly to the autoencoder, training is unsupervised and, more 

important, it can be done in a greedy layer-wise approach for a stack of layers. This layer-wise 

approach was devised by the seminal work of Hinton et al. (2006) and later implemented by both 

SAEs and DBNs. Therefore SAEs and DBNs are often discussed together in the literature (e.g. 

Vincent et al. 2010). When trained, the network can provide extracted features for the new data 

to be classified. Tutorials on RBM and DBN are available through the internet, for example see 

https://deeplearning4j.org/restrictedboltzmannmachine, which includes executable codes. 

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
https://deeplearning4j.org/restrictedboltzmannmachine
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The third type, which is the most used structure in recent years, is the convolutional neural 

network (CNN). Inspired by the human visual system and designed to process images, it has 

limited connection to only adjacent neurons in each layer, with the same connection weights for 

each neuron within each layer. It may include down-sampling in each layer, which reduces the 

processing resolution but adds translation invariance property to the network. Each layer’s output 

is typically named a map and it is generally desired to have multiple maps generated at each 

layer. Here the filter weights are tuned typically by supervised training, as the limited number of 

shared parameters in each layer (compared to a fully connected network) allows it. There are also 

some pre-trained large network structures publicly available for use and fine-tuning them for 

specific applications is another common approach. For a university course on convolutional 

neural networks readers are referred to http://cs231n.stanford.edu/. Zeiler and Fergus (2014) also 

provide a discussion on visualization and understanding of the internal CNN workings. 

Working with sequence data is another important type of remote sensing works, particularly 

on three bases: studying hyperspectral signal variations and analyzing their dependencies; adding 

the time dimension as another data element to explore land use feature patterns (profiles) and use 

them in classification; and pursuing detection of changes in land cover or land use by processing 

time-series data. Neural networks – and specifically Recurrent Neural Networks – are gaining 

momentum for these applications but the number of published papers is still low. These networks 

are promising with new modifications such as adding more powerful and deep memory cells (see 

for example Lyu et al. 2016, Mou et al. 2017, Rußwurm and Körner 2017, Rußwurm and Körner 

2018, Ndikumana et al. 2018, Niculescu et al. 2018, or Sharma et al. 2018). However, we did not 

consider sequence data applications in our paper due to lack of enough data and our focus was 

only on feed-forward networks and its three main variants: SAE, DBN, and CNN. 

http://cs231n.stanford.edu/
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3.2.2. Comparative performance database creation 

Our overarching goal is to look at the analyzed DNN case studies and compare them together 

and to a well-known non-deep classifier, Support Vector Machine (SVM). SVM served both as a 

representative for non-deep classifier to compare with deep networks, and as a baseline to 

compare different DNN architectures. SVMs were selected as the benchmarking algorithm 

because: i) they were found to be the best non-deep performing classifiers in an extensive 

comparison of published work (Khatami et al., 2016), and ii) the majority of DNN papers found 

in this review chose to include SVM as the main benchmark, thus validating our decision. We 

also examined accuracy trends across data and method characteristics. Direct comparisons of 

published works were not feasible due to variances in data types, sampling design, algorithmic 

details, and test metrics. Therefore, we concentrated on aggregating results from manuscripts 

where accuracy metrics are reported mutually under common conditions for deep and non-deep 

implementations. This database was then used to do comparative meta-analysis and other 

quantitative statistical analyses.  

The result was 103 research papers from 2014 until Nov. 2018 covering 183 case studies that 

include deep learning-based classification, 92 cases of which supported direct comparisons of 

accuracy to SVM. The main characteristics of these case studies are summarized in Appendix A, 

Table A-1, with each column of the appendix table defined in Table 3-1 below. These parameters 

reflect the most important aspects of the research design and we used them to present the 

discussion of our research questions in the subsequent sections. We treated each data set in a 

research paper as a separate case, because the output result and possibly the network structure 

may vary per case in any single paper.  
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Table 3-1: Parameters collected on each case study 

Reference Citation code for the referenced research paper 

Network Type One of below categories: 

- Convolutional Neural Network (CNN),  

- Deep Belief Network (DBN),  

- Stacked AutoEncoder (SAE) 

Learning strategy One of below categories: 

- Unsupervised 

- Unsupervised & fine-tuning 

- Semisupervised 

- (fully) Supervised 

- Transfer learning 

- Transfer learning & fine-tuning 

Number of 

parameters 

Number of trainable network parameters, i.e. weights and biases of 

network neurons and connections. We manually created this number 

to approximate network complexity. 

Dataset Name of dataset used for the research, including: 

- Brazilian coffee, NWPU-RESISC45, RSSCN7, UC Merced, 

and WHU-RS19: 3-band images used in scene classification, 

- Indian Pines, Houston, Kennedy Space Center, Pavia University, 

Pavia City Center, and Salinas: hyperspectral images used in pixel 

classification, 

- ISPRS Potsdam and ISPRS Vaihingen: very high resolution images 

used in image segmentation, 

- Others: Remaining datasets. 

Spatial resolution Dataset spatial resolution expressed through pixel size. 

# of channels Number of spectral and auxiliary channels. 

Training proportion Proportion of training data size in reference dataset. 

Metric type Metric used for reporting performance in research case, including 

Overall Accuracy, Average Accuracy, Average Precision, F1, Kappa, 

etc. 

Deep network result Best reported value of network classification performance 

SVM results Best achieved performance of SVM implementation 

 

One of the most important parameters in network specification is the number of network 

parameters which reflects network complexity. This is typically a surrogate of network depth and 

width. It is expected that a bigger network would be more powerful, but the network architecture 
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and way of processing (reflected in other columns of the table) greatly impacts this performance. 

Therefore, it is not unexpected that a smaller but more elegant network outperforms a larger one 

in obtained accuracy. For example, in classifying the ISPRS Potsdam and Vaihingen datasets, 

Maggiori et al. (2016) achieved more than 1% better accuracy than Volpi and Tuia (2017) by a 

network having around 1/10th of their network size. This number was mostly calculated from 

network parameters given in the cited paper but in some cases it is given in the cited paper as 

well. In cases that given information was not sufficient or ambiguity was not cleared by 

correspondence, the entry was left blank. This number included parameters in as many network 

branches as implemented, but it did not include parameters associated with additional stages of 

combination or fusion with other data or algorithms. It also counted the network layers 

parameters up to the last layer before the final classifier, which was typically a Softmax layer but 

SVM was also used. In around 70% of our cases the deep network was followed by a Softmax 

classifier, therefore we dropped the final classifier type from our list of parameters.  

The learning strategy column was another important network parameter. It does not point to 

the final classifier training as it is always supervised, but shows the methodology for determining 

network parameters. The supervised learning was the most common approach in deep networks. 

It could also have different variations in the form of cost function or optimization procedure, or 

being enhanced by data-driven techniques such as active learning. Those advanced cases were 

designated as supervised+ in our database. The fine-tuning options show the cases when network 

parameters are fine-tuned after an initial unsupervised learning or transferred from a pre-trained 

network in transfer learning. Transfer learning is available to CNN only.  DBNs were usually 

limited to unsupervised & fine-tuning type, while SAEs were used with both unsupervised 
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learning techniques. Semi-supervised learning was also used in some cases, which is a strategy 

for using both labeled and unlabeled data in optimizing the network cost function.  

Spatial resolution in our collected research cases varied from 5cm for very high resolution 

(VHR) imagery to 30m for Landsat, left blank if not provided. The number of channels shows 

the ones that have been actually used in the experiment (some channels have been set aside for 

their low quality in some studies but not in the others). Note that in some cases the input 

channels were processed and dimensionality was reduced (mostly employing principal 

component analysis) and the result was applied to the network, but we did not mention this 

dimensionality reduction in Table A-1, although we took it into consideration when calculating 

the number of parameters and considered the network in its actual tested configuration. There 

were two cases of using Landsat and one case of MODIS imagery that has been indicated in 

Table A-1 separately due to importance of these data sources. Although from one hand they are 

of less attention today because of their inferior spatial resolution, but from the other hand they 

are of interest for their rich temporal dimension in time-series analysis. Data fusion from 

different sources is also experiencing growing attention, especially adding height data through 

Digital Elevation Models (DEM). We discuss this further in the design options (section 3.3.3) 

but an in-depth analysis of this issue was outside the scope of this work. 

Another important factor in network prediction performance was the data training size. More 

training data typically leads to better network generalization, but in many cases the labeled 

training data was very limited. The corresponding column in Table A-1 shows the rounded 

proportion of (labeled) training data samples to the entire reference data set, varying from as low 

as 0.1% to 90%. We refer to it as “training proportion” hereafter, and consider the proportion in 
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one single run of the network, therefore a cross-validation scheme does not change the value in 

the table from a similar hold-out. 

The reported classification accuracy (overall or average) value was the best performance 

reported for the reference dataset in each case. It was reported as a number between 0-100 except 

for the Average Normalized Modified Retrieval Rank (ANMRR) metric. Although overall 

accuracy is an aggregate metric and cannot show important class-dependent performance values, 

but it is still the most widely used metric due to its simplicity and general applicability. Even 

though in some cases more detailed evaluations were provided along with overall accuracy, due 

to different experimental designs and data structures in our meta-analysis, these detailed metrics 

were not widely comparable and therefore class-specific measures were not included.  

In some cases, an additional pre- or post-processing step complements the deep network to 

enhance the performance, for example merging the resulting map with an auxiliary segmentation 

result, adding a conditional random field (CRF) layer for edge enhancement, or object-based 

processing. These methods differ largely in implementation details and experiment setup so 

cannot be directly compared to assess the processing gains; we provided more details on them in 

section 3.3.3.  

Although the chosen non-deep methods varied greatly in type and options from paper to 

paper, there were still numerous cases where DNNs are compared to an SVM-based 

implementation, with Random Forest and KNN being the next classifier types used by much less 

frequency in our observed cases. Therefore, we chose those papers reporting on SVM results as 

the candidates for doing our quantitative analysis (in the next section). SVM is a good choice for 

benchmarking because it is a well-established and proven classification tool with generally 

superior performance (Mountrakis et al. 2011; Khatami et al. 2016). Note that in remote sensing 
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image or scene classification tasks, we are generally interested in both feature generation and 

classification. Neural networks can do both automatically – and deep networks put more stress 

on the feature extraction task – but SVM classifiers should be fed with features already generated 

by another algorithm. The SVM implementation itself may vary between processing the raw 

pixels data or some secondary handcrafted spectral/spatial features derived from data. To ensure 

a more fair comparison we separated these two cases due to the potential important impact of 

working with features instead of raw data. Clearly, there are many variations and methods for 

handcrafting features and each paper may include a different set of methods for comparison, so 

we could not go into their implementations detail and a detailed comparison. Furthermore, SVM 

optimization methods varied by hyperparameters or kernel choice. However, we assumed (and it 

was also stressed in some papers) that the authors reported their best SVM performance after 

tuning parameters.   

We should mention here that although our meta-analysis covers many different cases, each 

case had almost a unique setting of the above parameters and therefore our analysis is naturally 

limited in depth and statistical richness. Our objective was to study general trends and for the 

first time in the literature offer a quantitative meta-analysis of DNNs in remote sensing 

applications. Our quantitative analysis did not go into a detailed analysis of the effect of every 

design option due to lack of data. 

3.3. Results and discussion 

3.3.1. Descriptive statistics 

Table 3-2 provides information on case studies distribution by year, network type, spatial 

resolution and input dimensionality. Note that some manuscripts may contain more than one 

study, and spatial or input dimensionality information was not always available. 
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Table 3-2: Basic statistics of collected case studies 

Year 2014 2015 2016 2017 2018 

Number of publications 4 27 21 22 33 

 

Network Type CNN DBN SAE 

Number of cases 150 9 25 

 

Dataset spatial resolution < 30cm 30cm ~  3m > 3m 

Number of cases 23 88 48 

 

Spectral and auxiliary bands 1-3 4-10 11-99 > 100 

Number of cases 59 48 1 70 

 

There is an increase in research papers on deep networks for remote sensing classification 

applications after 2014, continuing to date. CNN was the most commonly used network type, 

then SAE followed by DBN. Most of the datasets were either hyperspectral (>100 spectral 

channels) or less than 10 channels. Just one case study had spectral channels between 10 and 

100. Hyperspectral datasets were of high spatial resolution (around 1m) so sit in the middle 

group of spatial resolution category. Very high resolution ones (<30cm) were mostly available in 

RGB with possibly adding Near-Infrared (NI) band and/or DSM data to it, with just one very 

recent case incorporating a drone-based six band experiment at spatial resolution of 4.7 cm. 

More information on datasets will be given in the next section. 

3.3.2. Datasets in the selected case studies 

A wide variety of approximately 60 different datasets were used throughout the selected case 

studies. They included frequently used datasets along with datasets selected from public sources 

such as Google Earth, QuickBird, WorldView, Landsat archives and proprietary data sources. 
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Cases that have been used more than twice in our review are listed in Table 3-3. The table 

includes both scene and pixel classification applications as indicated in the last column, and the 

“labelled elements” column should be interpreted accordingly. Among them, the Brazilian 

Coffee, NWPU-RESISC45, RSSCN7, UC Merced, and WHU-RS19 have been used for scene 

classification while the others concentrated on pixel classification/image segmentation. It is 

important to note a significant limitation. While still being extensively used even in papers from 

2018, some of the commonly used datasets are old and outdated:  the major issue is their small 

size compared to datasets with millions of elements typically used in computer vision and other 

artificial intelligence studies. This issue has been partly addressed by some very high resolution 

datsets such as ISPRS Vaihingen and Potdam datasets, which became a standard test bench for 

newly arrived (mostly CNN-based) networks. Furthermore, hyperspectral cases are limited to a 

single scene and some datasets cover a very small geographic area, which limits the 

generalization ability of the obtained results. Again, there is a new dataset presented through 

IEEE GRSS contest in 2018 which consists of a relatively big area of 1.4 km2 covered by both 

very high resolution (5cm) RGB and high resolution (1m) multispectral data. However, none of 

our reviewed articles were based on this new dataset (Le Saux et al. 2018).  

It seems that there is a still a need to create more large and rich datasets for remote sensing 

applications in different spatial and spectral resolutions. Preparing datasets for tackling temporal 

applications is another important issue, which is even more restricted than other applications. 

However, the decision to pick specific labels and the procedure for creating ground truth maps is 

very application-specific and it needs more serious discussion in the community. Provision of 

auxiliary data (commonly DSM based on LiDAR) is also an important enhancement that is 

available in few datasets and should be encouraged.  
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Table 3-3: Specifications for most frequently used datasets 

Dataset 

name 

Sensor 

platform 

Dataset 

size 

Image size 

(pixels) 

Labelled 

elements 

Spatial 

res. 

# of spectral and 

aux. channels 

# of classes / classification task 

Brazilian 

coffee 

SPOT 50000 64x64  50000 scenes  RG + NI 3 class, but highly imbalanced / 

scene 

Houston 

(2013 GRSS) 

ITRES-

CASI 

1 1905x349 15029 2.5 m 144 + LiDAR 15 class / pixel 

Indian pines AVIRIS 1 145x145 10249 20 m 220 16 class / pixel 

ISPRS 

Potsdam 

Aerial 

photo 

38 6000x6000  24 full images  

(of 38) 

5 cm RGB + NI + 

DSM 

6 class / pixel 

ISPRS 

Vaihingen 

Aerial 

photo 

33 circa 

2500x2000  

16 full images  

(of 33) 

9 cm RG + NI + DSM 6 class / pixel 

KSC 

(Kennedy 

Space 

Center) 

AVIRIS 1 512x614  5211 18 m 224 13 class / pixel 

NWPU-

RESISC45 

Google 

Earth 

images 

31500 256x256 31500 scenes 0.2 m ~ 

30 m 

RGB 45 class, 700 samples per class / 

scene 

Pavia Center ROSIS 1 512x614  148152 1.3 m 103 9 class / pixel 

Pavia 

University 

ROSIS 1 610x340 42776 1.3 m 103 9 class / pixel 

RSSCN7 Google 

Earth 

images 

2800 400x400  2800 scenes 
 

RGB 7 class, 400 samples per class / 

scene 

Salinas AVIRIS 1 512x217 5348 3.7 m 224 16 class / pixel 

UC Merced USGS 

satellite 

imagery 

2100 256x256 2100 scenes 1 ft RGB 21 class, 100 samples per class / 

scene 

WHU-RS19 Google 

Earth 

images 

950 600x600 950 scenes 0.5 m RGB 19 class, 50 samples per class / 

scene 

 

3.3.3. Network design options 

In terms of network optimization for deep networks the simplest way is to change the 

network depth (number of layers) and width (neurons per layer). Additional modifications 

include changes in the activation function, the type of classifier or the training strategy 

(supervised/unsupervised). Looking beyond these fairly common adjustments, we presented in 

Table 3-4 a descriptive summary of the most important design innovations we encountered. The 

table is organized to titles summarizing the main design point, followed by specific design ideas 

in each section. The number of papers using each option is provided to suggest popularity. Some 

design options were not exclusive to a specific network type (e.g. network mixing options), 

while some others may only be applicable to specific network types (e.g. fully convolutional 
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network). The classification task type may also require special provisions. For example, in image 

segmentation the objects’ boundary alignment is of primary concern, while in scene 

classification this is not important. This makes edge enhancement techniques more relevant to 

the former application than the latter. Because each design idea was presented and tested in a 

unique setting with single or multiple choices of listed options on different datasets and 

compared with different non-deep rivals, comparison between different design ideas and 

quantitative analysis of their merit was not possible. However, we discuss general findings on 

design options below and our intent is that this table act as a preliminary catalog and guide future 

research, either through gap analysis or through frequently-implemented method identification. 

Dense (fully connected) networks: This CNN-type network is the de-facto network of choice 

for very high resolution classification and almost all of the image segmentation works – 

particularly experiments with ISPRS Potsdam and Vaihingen datasets. The competition in this 

field is extensive, and some of the most popular networks have been implemented in this 

category to win the ISPRS competition. It is always possible to run the entire network and 

classify the image pixel by pixel, but it means a huge redundancy in calculations and therefore a 

direct map-to-map conversion (which typically contains chain of downsampling and then 

upsampling) is preferred. Upsampling design is a hot topic and each paper tried to find a better 

way to do it. Edge enhancement and additional segmentation techniques have also been 

examined by different approaches to enhance the result (we will refer to it in another paragraph 

in this section).       

Multiscale capability options: This issue is of a particular interest in CNN networks due to 

the limited connectivity of their neurons to the previous layer, but other network types may also 

use it when they use a sliding window mechanism in their input layer. In custom CNN networks 
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the multiscale filters with or without skip links (forwarding features/scores from one layer to 

another non-adjacent layer) is a promising choice, but this option is not typically available for 

pre-trained networks. 

Network mixing options: There were a variety of practices for this option as listed by 

categories in Table 3-4.  The most frequent option was ensemble of different networks or using a 

parallel network on different bands (especially when the additional input in form of DSM or 

LiDAR is provided). Parallel 1-D (spectral) and 2-D (spatial) network was also found in some 

cases, but other forms of spectral/spatial input combination were more frequent (we discuss it in 

a later paragraph). As the use of pretrained networks becomes more common, parallel networks 

are the natural way of overcoming the imported network input limitation to RGB channels.  

Training options: Engineering the input data was the most frequent form of enhancing 

training operations in deep networks, which was implemented in a variety of methods. The 

simplest case was to crop, rotate and flip the input patches (basic data augmentation) or adding 

virtual samples to the input data (particularly used for making input set more balanced). 

Recently, active learning and interactive sample selection approaches are gaining more attention. 

There were other specially designed algorithms used to enhance data quality, such as salient 

patch selection; or specialized methods for calculating network parameters, such as calculation 

of neurons weights by clustering or PCA decomposition instead of training.  

Multimodal processing: Deep networks in remote sensing classification started with 

processing spectral components but quickly evolved to process other dimensions of data as well. 

Data processing in spatial context is now typical, especially with CNN, and joint spectral-spatial 

processing in 3-D convolutional filters is popular. Before that, other techniques such as 

averaging over spatial dimension or PCA compression of spectral dimension were common, but 
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newer 3-D architectures have shown slightly better performance in our case studies. The newest 

trend in multimode processing was to incorporate sequence/temporal processing, for example by 

treating spectral component of hyperspectral imagery as a (correlated) sequence, or working on 

time-series of spectral-spatial data cubes. 

Other features: In addition to the above, we identified numerous special algorithms and 

techniques throughout our survey that are organized in this section. In earlier studies we saw 

some cases of performance improvement by feeding network with handcrafted features, but it 

seems to be an obsolete idea now. Object-based classification, image segmentation, and 

additional MRF/CRF processing have been attractive research areas from the early days and still 

draw a lot of attention. Parallel to that, developing and applying newer and more complicated 

network modules (for example residual modules in CNN or LSTM in RNN) in RS applications 

are increasing trends. In the reviewed cases, newly emerging modules seem to have the upper 

hand at the expense of much larger and more complicated networks. The other options found are: 

- CRF postprocessing of deep network predictions to delineate and enhance object edges. 

- Initial segmentation and creation of superpixels to feed deep network. 

- Merging of deep network predicted map and segmented or CRF/MRF generated map based 

on network prediction confidence. 

- Other pre/post processing methods (e.g., GLCM/gabor filters). 

There was no dominant method among the aforementioned techniques and new methods are 

continuously emerging. 
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Table 3-4: Network options and design innovations in collected papers 

Option Frequency 

Making dense (full resolution) output options (for CNN):  
Fully Convolutional Network (convolution and deconvolution) 13 

No down-sampling 1 

Multiscale capability options:  

Getting multiscale input 10 

Using multiscale kernels (filters) 7 

Skip links (forwarding features/scores from one layer to another non-adjacent layer) 8 

Network mixing options (fusion/aggregation method varies by case):  

Parallel handcrafted features 3 

Parallel 1-D and 2-D convolutional networks 3 

Parallel networks on different band combinations or sensors 9 

Cascaded networks 3 

Parallel (Ensemble) of different deep networks 10 

Training options:  

Salient patches selection to train/test network 2 

Active learning or iterative feature selection (removing inferior features) 4 

Data augmentation or adding virtual samples to the input data 15 

Other specialized methods 9 

Multimodal processing:  
3-D processing modules 7 

Spatial averaging/filtering over a neighborhood for spectral+spatial input generation 2 

PCA dimensionality reduction and spectral+spatial input generation 9 

Sequence data/temporal processing 4 

Other specialized methods 2 

Other features:  

Feeding network with handcrafted features (not raw data) 4 

Optimizing input band selection with genetic algorithms 1 

MRF/CRF processing or boundary detection 7 

Denoising SAE implementation 3 

Initial and/or final data/feature filtering or segmentation to enhance object 

discrimination 12 

Sparse or other type of coding to create codebook after feature generation and classify 

the code 4 

Emerging network modules (e.g., residual module, inception module, LSTM) 10 
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3.3.4. DNN vs. SVM classification accuracy comparisons 

This section focuses on classification accuracy comparisons between DNN and SVM 

methods. We focused on SVM comparisons since the majority of the manuscripts we reviewed 

selected SVM as their benchmark. The SVM choice over other methods (e.g., RF) is further 

supported by a previously conducted meta-analysis, where SVM was found to outperform other 

(non-deep) methods (Khatami et al. 2016). For a case study to be considered in this section, both 

methods should have been tested on the same dataset and results reported in the form of average 

or overall accuracy. 

Deep networks are usually designed to employ high volumes of available spectral and spatial 

data. However, in many of the selected cases of pixel classification, the authors compare DNNs 

to simple spectral processing by SVM or other non-deep rivals, thus providing an unfair 

advantage to DNNs as they also incorporate spatial information. Knowledge of feature 

generation details may not be a primary concern in deep networks as it is optimized 

automatically by the network, but finding the best method for feature generation to feed an SVM 

is not a straightforward task that often requires trial and error for each dataset. On the other hand, 

designing the best deep networks out of standard basic schemes is not a trivial issue and we see 

new designs continuously arising. To further inform readers in all figures in this section, we 

marked the cases with enhanced feature generation for non-deep classifier (SVM) with a black 

circle in below figures to separate them from cases using exclusively spectral information in their 

SVM implementation. Initial summary results are depicted in Figure 3-1. As there were just two 

cases with SVM accuracy below 70%, we set our scale to start from that and omitted those two 

in display to reduce the congestion on the upper accuracy values in pictures. 
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Figure 3-1: Comparative performance distribution of DNN vs SVM  

 

In general, deep learning approaches offer consistently better results than SVM methods. The 

reported improvement (difference in accuracy value) can be as high as 30% for CNN1, 16% for 

SAE and 3% for DBN. The DBN values may not be very representative due to the scarcity of 

this network type application in remote sensing, but this lower application rate itself can be a 

sign of its lack of merit and/or underlying complexity. CNN accuracy benefits are often 

attributed to the integrated processing of spatial and spectral information, while for SAE or DBN 

benefits involve specific experimental design. As an example, one author used the average 

values of a neighborhood around each pixel (to be classified) for each band and added it to the 

central pixel’s own data, then fed the SAE or DBN with this composite data vector. It was also 

 
1 This difference was reported where SVM accuracy were below 70% and therefore was omitted in Figure 3-1. 
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common in hyperspectral image classification to process input image with dimensionality 

reduction techniques such as PCA first, and then build the spatial information to be added to the 

original central pixel for classification. 

CNN has the ability to preserve the spatial relationships while processing through different 

layers, as spatial filtering takes place in each layer without flattening data to a row vector. In 

SAE or DBN implementations, the spatial information was flattened and concatenated to the 

spectral data at the network input, and although the spatial information is implicitly included, the 

spatial relations between vector values are lost (Y. Li et al. 2017; Yue et al. 2015; Basu et al. 

2015). However, the CNN spatial coverage is limited to a neighborhood of fixed size at the 

input, increasing step by step while resolution is reduced accordingly in pooling layers. This 

issue was restrictive to scale-dependent information, although it could be remedied to some 

extent by a multiscale structure (for example see X. Chen et al. 2014, Zhao et al. 2015, or Zhao 

and Du 2016). Other networks are not inherently limited by these rules, though the strength of 

spatial relationships is generally reduced with the increasing distance from the central point 

according to Tobler’s law in geography (Tobler, 1970). It is also important to consider that the 

SAE and DBN methods were trained in an unsupervised fashion while the CNN method 

followed a supervised approach. Therefore, the CNN implementation might be advantageous due 

to the incorporation of labeling information (Y. Li et al. 2017; Shi and Pun, 2018). SAE and 

DBN were also trained in a greedy layer-wise fashion that may limit potential learning 

opportunities; each layer’s parameters are fixed when tuning the next layer. Joint training of 

layers for SAE and DBN has been proposed in Zhou et al. (2014) and reported to perform better 

than typical greedy layer-wise approach, but it was not of common use.  



73 

 

To investigate further DNN accuracy gains, we examined their distribution across five 

contributing factors, namely the DNN learning method, the network complexity, spatial 

resolution, input dimensionality and training dataset proportion. Due to the low number of case 

studies and variation of design parameters and datasets employed in different studies we did not 

report a multivariable regression model. Instead, we limit our analysis to single factor 

distribution plots. 

Distribution across learning methods. Figure 3-2 and Figure 3-3 present accuracy comparisons 

for different learning methods for CNN and SAE, respectively. DBNs had a single learning 

option therefore they were omitted from this analysis. Starting with Figure 3-2 and CNN 

methods, the majority of cases have used supervised training or its enhanced version shown as 

supervised+ (cases with different cost function or optimization procedure, or being enhanced by 

data-driven techniques such as active learning). CNNs using supervised learning was mostly 

compared to spectral SVM and tend to offer higher relative gains in more complex 

classifications, where the corresponding SVM accuracy is lower. This result is expected due to 

integration of spatial data in CNN and lack of it in spectral SVM. As mentioned in Zhao et al. 

(2017), there are similarities between low-level features in different classes that cannot be 

resolved solely by the spectral components and integration of spatial data is required (an example 

is the road and building roof pixels in an aerial image). As seen in the upper right corner of the 

graph, in cases where the SVM was fed with enhanced features, the performance can be fairly 

close to the supervised learning DNN cases. One benefit of deep networks is the flexibility to 

build the features automatically and match them to the specific dataset under study, contrary to 

handcrafted features that should be selected among many variants for SVM or other non-deep 

classifiers. 
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Figure 3-2: Comparative performance distribution across learning methods for CNN  

Transfer learning in CNN also offers some improvements visible in Figure 3-2 – and 

especially when combined with fine-tuning – over enhanced SVM. Base networks are typically 

taken from models developed and trained in computer vision industry and will not be introduced 

here. The most widely used model in our reviewed cases was AlexNet (9 cases), followed by 

VGG-16 (8 cases), VGG-M (5 cases), and GoogLeNet (4 cases). Other networks have also been 

applied with lower frequency such as ResNet, other VGG-series networks, SegNet, Overfeat, and 

CaffeNet. Their improved performance over supervised learning CNN cases could be attributed 

to the fact that supervised CNN cases are usually custom designed and small in size compared to 

CNN networks used for transfer learning, therefore they may not be much more powerful than a 

SVM fed with enhanced features. A large fully supervised network may achieve considerable 
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improvement over an enhanced SVM, but the computational budget might be prohibitive and the 

risk of overfitting is high. Transfer learning, however, uses a proven network architecture that is 

pre-set using an extensive collection of labelled image data, and reduces user involvement into 

network design issues. Successful application of this technique suggests that the features 

generated by those large image collections have a good generalization capability and can be 

matched to arbitrary datasets assuming a fine-tuning step. Supervised training and transfer 

learning (with or without fine tuning) for selected CNN architectures are described in detail in 

Nogueira et al. (2017) and tested for three well-known scene classification datasets, and 

comparisons of different possibilities for feature extraction is presented. They suggested to use 

transfer learning and fine-tuning instead of fully supervised training because the pre-trained 

networks start from a better initialization state in the search space. A significant limitation 

though is that pre-trained networks are not currently applicable in multispectral/hyperspectral 

classification tasks because existing pre-trained networks come from computer vision - trained 

on ImageNet - using RGB images. However, as studied in Huang et al. (2018), we could mix a 

big pre-trained network fed by the RGB portion of spectrum with a smaller deep network 

capable of mining the entire spectrum and obtain good results. Such a combination can also be 

run on limited number of input samples as the large network is pretrained. For the other options 

of semisupervised and unsupervised learning we could see limited improvement but there were 

not enough samples for conclusive results. 

Looking at Figure 3-3 and the SAE learning methods, fine-tuning of unsupervised methods 

tends to offer some gains over enhanced SVM, while there was no gain without fine-tuning. An 

explanation could be that unsupervised learning receives its strength from using much more data 

(labeled or unlabeled), so the features may be more representative of the data. However, 
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matching them to classes requires an extra step of supervised learning. Therefore, unsupervised 

learning alone is comparable to enhanced SVM, and fine-tuning further improves results. Semi-

supervised learning was used in two cases with better results, but its application detail is case-

dependent. There were different methods and also underlying assumptions about actual class 

distribution for doing semi-supervised learning (for example see Zhu and Goldberg, 2009, and 

Camps-Valls et al. 2014). Each method and assumption were embedding a specific additional 

regularization term for unlabeled data in the optimization cost function but there was no 

standardized way of doing that. This lack of standardization might be a cause for its limited use.    

 

 
Figure 3-3: Comparative performance distribution across learning methods for SAE 

 

Distribution across network complexity. To examine this, we discretized the number of 

parameters to six bins from less than 10K (class A) to greater than 100M (class F); the result is 

shown in Figure 3-4. Extremely low end (class A) cases were rare and do not seem to offer 
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considerable improvements. Class B had the highest frequency (23 cases), then class C, D, E, 

and F with 16, 11, 10, and 9 cases correspondingly. It could be seen that class B, which is a still 

relatively small network, was mostly present in the upper right part of the graph, where the 

performance of spectral SVM is already high. These cases were those mostly associated with 

supervised learning method mentioned before. But larger networks (especially classes D and F) 

showed considerable improvements over enhanced SVM. Based on this, we may advise to use 

larger networks (with fine-tuning) as mentioned before. However, this graph also demonstrates 

that all network complexity classes have the potential to achieve accuracy of 95% or more, 

which might be sufficient for many cases, especially considering other data limitations (e.g. 

registration errors). Note that class F cases were all ImageNet pre-trained networks, which were 

the largest networks in our study cases. 

 

 
Figure 3-4: Comparative performance distribution across network complexity 
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Distribution across spatial resolution. The corresponding graph is shown in Figure 3-5. It 

was difficult to discern a specific pattern with respect to the spatial resolution, therefore no 

conclusive remarks could be made. 

 

 

 
Figure 3-5: Comparative performance distribution across spatial resolution  

Distribution across input data dimensionality. Figure 3-6 organizes the results in three 

general categories, mostly separating RGB (group A) and hyperspectral images (group C), with 

group B being cases employing additional multispectral components such as NI and/or auxiliary 

data such as DSM/LiDAR.  

Although it seems that multispectral group (B) generally achieves a bit less improvement 

compared to other two groups, there was no strong evidence and supporting theory for that.  
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Figure 3-6: Comparative performance distribution across input data dimensionality 

Distribution across training size/proportion. In the examined manuscripts the sampling was 

either a single pixel (for pixel classification or image segmentation applications) or an image 

patch (for scene classification or target detection applications). Labeled data size was mostly in 

the order of a few thousands, with some cases with considerably more labelled data. Sampling 

was done within the labelled dataset, with the proportion varying substantially in different 

implementations from as low as 0.1% to as high as 90%. We considered two different ways of 

training data size affecting network simulations. The first issue is the training data size, which 

should be considered in accordance with the network size and number of parameters. A large 

network with few training data may experience overfitting and lack of generalization, while a 

small network may not be powerful enough to model a complex set of training data. The other 

issue was the training data proportion, which imposes the same underfitting/overfitting scenario. 
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We compared the absolute number of training data units (pixels or scenes) to the number of 

network parameters in our database and found that in almost 90% of cases we have less data 

units than networks parameters to be tuned. The overfitting control mechanisms such as 

regularization were mostly included in the network design and it alleviate overfitting problem, 

but there was still a substantial difference between the remote sensing and computer vision 

fields, as we have very large reference datasets in the latter. Looking at Table 3-3, the only case 

with millions of samples in remote sensing were ISPRS datasets, but the winners were all CNNs 

and there was no comparison reported with SVMs (competition is just between different CNN 

architectures) so we couldn’t include them in our SVM-based charts. 

Two figures were produced in order to examine how DNN gains were influenced by training 

data absolute size and relative proportion with respect to the testing data. Figure 3-7 shows the 

comparative performance categorized in training proportions from A (less than 20%) to E 

(greater than 80%), and Figure 3-8 groups cases by absolute training dataset size from A (below 

1000) to E (over one hundred thousand). The observed variability in the graphs and the lack of a 

consistent pattern suggest that high training size or proportion are not a general requirement for 

deep learning algorithms because there were various cases of high (> 95%) overall accuracy 

from very low to very high sampling ratio or size. A closer examination took place to further 

investigate training size and proportion with respect to network and learning method type. In 

cases of DBN, the training proportion was always high (> 50%) but there was no explanation or 

justification for it in the reviewed articles. In general, the CNN methods with supervised learning 

have been used in a wide range of training proportions, while CNNs with transfer learning with 

fine-tuning were run with higher training proportion. This may be attributed to overfitting 

concerns in transfer learning cases, as the base network is usually large with millions of 
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parameters. Therefore, it is an open question how the transfer learning works in remote sensing 

cases where low training ratios are predominant. 

 
Figure 3-7: Comparative performance distribution across training proportion 

 
Figure 3-8: Comparative performance distribution across training data size 
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There is also another concern that has not been discussed in the reviewed papers. About 64% 

of the cases in our entire database (and about 73% of cases used in the figures) belong to pixel 

classification category with the rest focusing on scene classification. In scene classification cases 

we had completely separated train and test scenes, therefore adding spatial data in training phase 

(which naturally happens in any CNN network) would not affect the testing performance. In 

pixel classification application the train and test pixels are chosen independently, but if the 

spatial processing is part of algorithm (that is typical), the training and testing pixels’ 

neighborhoods may overlap and this may violate the basic assumption of independent 

training/testing samples. The real impact of this issue was not discussed in any of reviewed 

literature and it seems that the authors didn’t consider it critical. It can be also argued that with 

multiple pooling layers in a CNN network and enlarging scale of pixel influence, there is always 

some trace of even far pixels on training phase. Therefore, strictly enforcing independency rule 

to the neighboring pixels may invalidate all of the CNN networks, which is no desire for 

anybody.    

 

Review of widely-used data sets. In previous sections the objective was to reveal patterns (or 

lack of any pattern) in different networks comparative performance along important parameters. 

The main limitation of this analysis is that the comparisons could not be done by varying just one 

parameter and fixing the others as we could not have such a control in our data collection (hence 

we used the term ‘distribution’ instead of ‘effect’ in our section titles). In this section we went 

one step further and looked at different cases as applied on the same dataset to extract more 

information on the competency of different network types. There were some datasets that have 

been heavily used in various papers and therefore can serve as a benchmark for algorithmic 
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comparison. Except for ISPRS Potsdam and ISPRS Vaihingen (where comparison to SVM was 

not available), Figure 3-9 shows the result graphically.  

 

 

 
Figure 3-9: Comparative performance distribution across widely used datasets 

 

Here are some observations: 

- Indian Pines (a hyperspectral dataset): The highest accuracy here was obtained by CNN at 99.8% 

overall accuracy, but SAE and CNN have generally the same level of performance. Their 

improvement over spectral SVM can be as large as 16% for both network types. However, this 

high gain is reduced to just about 2-4% in comparison to enhanced SVM cases. 

- Kennedy Space Center (a hyperspectral dataset): Recently CNN achieved an accuracy of 100% 

on this dataset (Haut et al. 2018) but with a high training proportion of  85% and 5.6% gain 

improvement over spectral SVM. Other comparisons were made with CNN and SAE but with 
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enhanced SVM. The best accuracy of SAE was 98.8%, which was almost the same as a very 

sophisticated SVM implementation. 

- Pavia Center (a hyperspectral dataset): CNN implementations showed a little improvement up 

to 3.3% with training proportion of10%. The peak achieved accuracy was 99.95% but with a 

training proportion of 80% with very minor gains over SVM, and in all cases it was compared 

to the spectral SVM. We have only one SAE implementation for this dataset in our list, which 

does not improve over the enhanced SVM. 

- Pavia University (a hyperspectral dataset): Here CNN here worked better than SAE with a 

maximum overall accuracy of 99.7% and improvements up to 16.7% over spectral SVM, while 

for SAE it is at most 7.6% (both with training proportion of 10%). We have about 2% 

improvement over a very sophisticated SVM implementation for this dataset, but for SAE the 

gain over enhanced SVM is minor. 

- Salinas (a hyperspectral dataset): This dataset was only applied to CNN and the best achieved 

accuracy was 99.9% with a training proportion of 50%. This was 8% gain in accuracy 

compared to spectral SVM, and other results showed some other gains. But there was no case 

of comparison with enhanced SVM. 

- UC Merced (an RGB dataset used for scene classification): Here CNN works well with 

maximum overall accuracy of 99.5% and improvement up to 21% over SVM, while SAE was 

tested once with improvement of just 1%. In all cases, training proportion was high (60%-80%) 

and it was compared to enhanced SVM, but SVM was fed with very different features in 

different cases. 

For the ISPRS Potsdam and Vaihingen datasets, the CNNs has been the winner over all of 

the recent contests, so the race was only between them and there was no research that compare 
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them to a SVM based classification. Therefore, we could not include them in Figure 3-9. In both 

ISPRS datasets the best results are achieved by transfer learning & fine-tuning in recent years. 

The best case was based on ResNet-101 with overall accuracy of 91.1% for both cases, followed 

by VGG-16 and SegNet-based cases with overall accuracy of 90.3%. Training proportion is 

standardized at 30% for Vaihingen and 45% for Potsdam (except ResNet-101 case, where the 

training proportion was 47% and 63%, respectively). These implementations are large networks, 

but a recent paper (C. Zhang et al. 2018) has also achieved accuracies of 89.4% for Potsdam and 

88.4% for Vaihingen with a small supervised network with number of parameters much less than 

above transferred networks (but with increasing training proportion to 70-75%). In almost all 

cases additional enhancement techniques such as joint segmentation, CRF processing or 

multiscale blocks has been implemented to boost the performance a bit higher. 

The above datasets, while used extensively for classification assessment, should be avoided 

in the future. They are relatively small to match the generalization capabilities of deep networks 

and in most cases there are already algorithms that reach 100% accuracy, therefore offering 

limited opportunities for improvement. It is necessary to develop new, large and multi-sensory 

datasets for remote sensing image classification, especially for hyperspectral data, to help better 

investigate the potential of deep networks.  

3.4. Concluding remarks 

While the number of case studies precluded detailed statistical analysis on the effect of each 

contributing factors generally we can see that: 

- Deep networks have generally better performance than spectral SVM implementations, with 

CNNs performing better than other deep learners. This advantage, however, diminishes when 

using SVM over more rich features extracted from data. 
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- Transfer learning and fine-tuning on pre-trained CNNs offer promising results even when 

compared to enhanced SVM implementations, and they provide for flexibility and scalability 

because there is no need to manually engineer the features or use a very large training dataset. 

However, these pre-trained networks are currently limited to RGB input data, therefore 

currently lack applicability in multi/hyperspectral data. They have also not been tested in low 

training proportion scenarios. 

- There is no strong relationship between network complexity and accuracy gains over SVM; 

small to medium networks perform similarly to more complex networks. 

- Contrary to popular belief, there are numerous cases of good deep network performance with 

training proportions of 10% or lower.  

As previously noted, deep networks are important due to their ability to extract useful rich 

features automatically from large data sets without the need for manual feature extraction. For 

example, automatic feature extraction has been used in Rußwurm and Körner (2018) to 

automatically detect cloud occlusion in temporal remote sensing data. This automation of feature 

extraction also has limitations, most notably the difficulty to extract and evaluate these features. 

The visualizations in deep networks rarely go further than the first two layers, which focus on 

very basic features like edges and gradients. There have been limited trials to describe and 

visualize the extracted features and even developing methods for it (for example see Zeiler and 

Fergus, 2013, or Yosinski et al. 2015), but currently  research is lacking in remote sensing tasks.  

We compare different studies and reflect on their findings in a collective manner. The 

possible reasons for deep network strengths in each individual aspect (network type, learning 

strategy, sampling proportion, etc.) was discussed in previous sections without going into 

mathematical formulas, due to the nature of meta-analysis. The majority of manuscripts reported 
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that the SVM (or other rivals) parameters have been tuned and optimized for best performance, 

but there is a lack of consistency in reporting and protocol (e.g., grid search density). 

Establishing best optimization practices would benefit our community by limiting 

inconsistencies that could lead to result bias. 

Another important conclusion is that algorithms are now outpacing benchmark datasets. We 

already see accuracy estimations exceeding 99% for some well-known datasets such as Indian 

Pine, Pavia Center and University, Salinas, and UC Merced. To allow deep learners to reach 

their full potential, it is paramount that more elaborate benchmark datasets should become 

available with diverse spectral/spatial/temporal resolution and geographic coverage. 

We could not analyze further the processing time because either it was not available in many 

cases, or it was not specified if it contains the entire time for optimizing meta-parameters or not. 

It is generally true that deep networks need considerably more processing time for training 

(though the testing/simulation process is generally quick) but with continuous increases in 

processing power, deep networks are readily usable particularly by incorporating both CPUs and 

GPUs together. It would be interesting to evaluate the time saved by using pre-trained networks 

and just fine-tuning them, but currently there were no statistics reported to extract conclusive 

guidance. 

There are numerous design options currently offered (see Table 3-4). Multiscale input is 

particularly useful to capture geographic relationships in earth observations. Furthermore, fully 

convolutional networks are promising for dense semantic labeling (classification of all image 

pixels at once and producing the same output dense map as the input image size). Other research 

have added various segmentation techniques, boundary detection and correction methods and 

CRF/MRF post-processing and showed their benefit to enhance classification of edge pixels. 
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While existing comparisons suggest the potential of CNN, they do not concretely identify a 

winning design among different options. For example, at the ISPRS Vaihingen image 

segmentation contest three CNN methods were within 1.2% of overall accuracy (Sherrah, 2016; 

Audebert et al. 2016; and Marmanis et al. 2016b). Looking into the future, remote sensing 

experts will favor 3-D CNN structures from pre-processing, dimensionality reduction methods 

like PCA or shallow 1-D and 2-D networks. The current state of the art 3-D CNN structures has 

already offered significant improvements and the training process is becoming easier (see Chen 

et al. 2016, and Y. Li et al. 2017). Furthermore, our community would significantly benefit from 

a coordinated investment from large funding institutions to create a pre-trained DNN for remote 

sensing data (similar to the ImageNet for RBG images).  This pre-trained network would harness 

the power of large data volumes while allowing fine-tuning to specific applications. 
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Appendix  

Table A-1: Database of collected deep network application in remote sensing 

                                         Best Reported Performance 

Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

(Penatti, 

Nogueira, 

and Santos 

2015) 

CNN 289M Transfer learning Brazilian coffee  3 0.8 
Average 

accuracy 
83 87 

(Yang Yu 

et al. 2017) 
CNN 24.6M Unsupervised Brazilian coffee  3 0.8 Overall accuracy 87.8 87 

(Castellucci

o et al. 

2015) 

CNN 5M Transfer learning Brazilian coffee  3  Overall accuracy 91.8  

(Nogueira, 

Penatti, and 

Santos 

2017) 

CNN 60M 
Transfer learning & fine-

tuning 
Brazilian coffee  3 0.6 Overall accuracy 94.5 87 

(Hao Wu 

and Prasad 

2018) 

CNN+RNN   Semisupervised Houston 2.5 m 144  Overall accuracy 82.6 80.2 

(Xu et al. 

2018) 
CNN   Supervised+ Houston 2.5 m 144+1 0.19 Overall accuracy 88 80.5 

(Pan, Shi, 

and Xu 

2018) 

CNN     Houston 2.5 m 144  Overall accuracy 90.8  

(T. Li, 

Zhang, and 

Zhang 

2014) 

DBN 14.7K Unsupervised & fine-tuning Houston 2.5 m 144  Overall accuracy 97.7 97.5 

(Zabalza et 

al. 2016) 
SAE 4.2K Unsupervised Indian Pines 20 m 200 0.05 Overall accuracy 80.7 82.1 

(Ghamisi, 

Chen, and 

Zhu 2016) 

CNN 188K Supervised Indian Pines 20 m 200 0.05 Overall accuracy 83.3 78.2 

(Shi and 

Pun 2018) 
CNN 2.5M Supervised Indian Pines 20 m 200 0.01 Overall accuracy 85.2  

(Mou, 

Ghamisi, 

and Zhu 

2018) 

CNN 1.44M Unsupervised & fine-tuning Indian Pines 20 m 200 0.05 Overall accuracy 85.8 72.8 

(C. Zhao et 

al. 2017) 
SAE 30.2K Unsupervised & fine-tuning Indian Pines 20 m 200 0.1 Overall accuracy 89.8 88.9 

(W. Hu et 

al. 2015) 
CNN 80.6K Supervised Indian Pines 20 m 220 0.2 Overall accuracy 90.2 87.6 

(Pan, Shi, 

and Xu 

2018) 

CNN     Indian Pines 20 m 200  Overall accuracy 90.7  
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

(Xing, Ma, 

and Yang 

2016) 

SAE 241K Unsupervised Indian Pines 20 m 200 0.5 Overall accuracy 92.1 90.6 

(Wei Li et 

al. 2017) 
CNN 57.9K Supervised Indian Pines 20 m 220 0.2 Overall accuracy 94.3 88.2 

(Yushi 

Chen, 

Zhao, and 

Jia 2015) 

DBN   Unsupervised & fine-tuning Indian Pines 20 m 200 0.5 Overall accuracy 96 95.5 

(J. Li, 

Bruzzone, 

and Liu 

2015) 

SAE 21.7M Unsupervised & fine-tuning Indian Pines 20 m 200 0.05 Overall accuracy 96.3 92.4 

(X. Sun et 

al. 2017) 
SAE 107K Semisupervised Indian Pines 20 m 200 0.1 Overall accuracy 96.4 80.6 

(Ding et al. 

2017) 
CNN 380K Unsupervised Indian Pines 20 m 200 0.5 Overall accuracy 97.8  

(X. Ma, 

Geng, and 

Wang 

2015) 

SAE 14.2K Unsupervised & fine-tuning Indian Pines 20 m 200 0.1 Overall accuracy 98.2  

(Paoletti et 

al. 2018) 
CNN 96M Supervised Indian Pines 20 m 200 0.24 Overall accuracy 98.4  

(Yushi 

Chen et al. 

2016) 

CNN 44.9M Supervised Indian Pines 20 m 200 0.2 Overall accuracy 98.5 96.9 

(H. Zhang 

et al. 2017) 
CNN   Supervised Indian Pines 20 m 200 0.1 Overall accuracy 98.8  

(Makantasi

s et al. 

2015) 

CNN 97.6K Supervised Indian Pines 20 m 224 0.8 Overall accuracy 98.9 82.7 

(Y. Li, 

Zhang, and 

Shen 2017) 

CNN 197K Supervised Indian Pines 20 m 200 0.5 Overall accuracy 99.1  

(Haut et al. 

2018) 
CNN 8.9M Supervised+ Indian Pines 20 m 200 0.5 Overall accuracy 99.8 81.3 

(Sherrah 

2016) 
CNN 3.26M Supervised ISPRS Potsdam 5 cm 5 0.45 Overall accuracy 84.1  

(Volpi and 

Tuia 2017) 
CNN 6.38M Supervised ISPRS Potsdam 5 cm 5 0.45 Overall accuracy 85.8  

(Maggiori 

et al. 2016) 
CNN 530K Supervised ISPRS Potsdam 5 cm 4 0.45 Overall accuracy 87  

(C. Zhang, 

Pan, et al. 

2018) 

CNN 17K Supervised ISPRS Potsdam 5 cm 4 0.75 Overall accuracy 89.4 82.4 

(Sherrah 

2016) 
CNN 22.7M 

Transfer learning & fine-

tuning 
ISPRS Potsdam 5 cm 4 0.45 Overall accuracy 90.3  

(Yongchen

g Liu et al. 

2018) 

CNN 481M 
Transfer learning & fine-

tuning 
ISPRS Potsdam 5 cm 

4 (DSMs not 

used) 
0.63 Overall accuracy 91.1  

(Tschannen 

et al. 2016) 
CNN 30K Supervised ISPRS Vaihingen 9 cm 5 0.3 Overall accuracy 85.5  
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

(Paisitkrian

gkrai et al. 

2015) 

CNN  Supervised ISPRS Vaihingen 9 cm 5 0.3 Overall accuracy 86.9  

(W. Zhao, 

Du, and 

Emery 

2017) 

CNN   Supervised ISPRS Vaihingen 9 cm 4 0.1 Overall accuracy 87.1 66.6 

(Volpi and 

Tuia 2017) 
CNN 6.38M Supervised ISPRS Vaihingen 9 cm 4 0.3 Overall accuracy 87.3  

(Marcos et 

al. 2018) 
CNN 100K Supervised ISPRS Vaihingen 9 cm 4 0.45 Overall accuracy 87.6  

(C. Zhang, 

Sargent, 

Pan, 

Gardiner, et 

al. 2018) 

CNN 17K Supervised ISPRS Vaihingen 9 cm 4 0.7 Overall accuracy 88.4 81.7 

(Maggiori 

et al. 2016) 
CNN 727K Supervised ISPRS Vaihingen 9 cm 4 0.3 Overall accuracy 88.9  

(Sherrah 

2016) 
CNN 3.26M Supervised ISPRS Vaihingen 9 cm 4 0.3 Overall accuracy 89.1  

(Audebert, 

Le Saux, 

and Lefèvre 

2016) 

CNN 32M 
Transfer learning & fine-

tuning 
ISPRS Vaihingen 9 cm 4 0.3 Overall accuracy 89.8  

(Marmanis, 

Schindler, 

et al. 2016) 

CNN 806M 
Transfer learning & fine-

tuning 
ISPRS Vaihingen 9 cm 4 0.3 Overall accuracy 90.3  

(Yongchen

g Liu et al. 

2018) 

CNN 481M 
Transfer learning & fine-

tuning 
ISPRS Vaihingen 9 cm 

3 (DSMs not 

used) 
0.47 Overall accuracy 91.1  

(C. Zhao et 

al. 2017) 
SAE 20.8K Unsupervised & fine-tuning 

Kennedy Space 

Center 
18 m 224 0.1 Overall accuracy 93.5 91.1 

(Yushi 

Chen et al. 

2016) 

CNN 5.85M Supervised 
Kennedy Space 

Center 
18 m 224 0.1 Overall accuracy 97.1 95.7 

(Y. Chen et 

al. 2014b) 
SAE 8.72K Unsupervised & fine-tuning 

Kennedy Space 

Center 
18 m 176 0.6 Overall accuracy 98.8 98.7 

(Haut et al. 

2018) 
CNN 8.8M Supervised+ 

Kennedy Space 

Center 
18 m 224 0.85 Overall accuracy 100 94.4 

(Ishii et al. 

2015) 
CNN 60M Supervised Landsat 8 30m 3 0.35 F1 71 37.2 

(Mou, 

Bruzzone, 

and Zhu 

2018) 

CNN+RNN   Supervised Landsat ETM 30 m 6  Overall accuracy 98 95.7 

(Karalas et 

al. 2015) 
SAE 155K Unsupervised & fine-tuning MODIS 500 sq.m 7  

Average 

precision 
62.8  

(Weixun 

Zhou et al. 

2017) 

CNN 126M 
Transfer learning & fine-

tuning 
Other 0.5m 3  ANMRR 0.04  

(Kemker, 

Salvaggio, 

and Kanan 

2018) 

CNN 11.9M Supervised+ Other 4.7 cm 6 0.25 
Average 

accuracy 
57.3 29.6 
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

(Kemker, 

Salvaggio, 

and Kanan 

2018) 

CNN 69M Supervised+ Other 4.7 cm 6 0.25 
Average 

accuracy 
59.8 29.6 

(Bittner, 

Cui, and 

Reinartz 

2017) 

CNN 134M 
Transfer learning & fine-

tuning 
Other 0.5m 1  F1 70  

(Lagrange 

et al. 2015) 
CNN 141M Transfer learning Other 5 cm 4 0.6 Overall accuracy 72.4 70.2 

(Y. Cao, 

Niu, and 

Dou 2016) 

CNN 60M 
Transfer learning & fine-

tuning 
Other  3  F1 72.4  

(Ji et al. 

2018) 
CNN 102K Supervised+ Other 15 m 4 0.85 Overall accuracy 79.4 78.5 

(Fu et al. 

2017) 
CNN   Supervised Other 1m 3 0.9 F1 79.5 61.5 

(Tang et al. 

2017) 
CNN   

Transfer learning & fine-

tuning 
Other  3  

Average 

precision 
79.5  

(Huang, 

Zhao, and 

Song 2018) 

CNN 39M 
Transfer learning & fine-

tuning 
Other 0.5 m 4 0.57 Overall accuracy 80 71.8 

(F. Chen et 

al. 2018) 
CNN   

Transfer learning & fine-

tuning 
Other 8 , 16 m 3  

Average 

precision 
80  

(X. Chen et 

al. 2013) 
DBN 4.2M Unsupervised & fine-tuning Other  3 0.2 F1 81.7 78.4 

(Marcos et 

al. 2018) 
CNN 430K Supervised Other 5 cm 4 0.7 Overall accuracy 82.6  

(Cheng et 

al. 2017) 
CNN 14.7M Transfer learning Other 30m  0.2 Overall accuracy 84.3  

(Yanfei Liu 

et al. 2018) 
CNN   Supervised Other 

4 m (MSI), 1 m 

(Pan) 
3 0.8 Overall accuracy 85 84.7 

(Yongchen

g Liu et al. 

2018) 

CNN 481M 
Transfer learning & fine-

tuning 
Other 1 m 3 0.93 F1 85.6  

(Geng et al. 

2015) 
SAE 28.4K Unsupervised & fine-tuning Other 0.38m 1 0.5 Overall accuracy 88.1 76.9 

(Lguensat 

et al. 2017) 
CNN 177K Supervised Other  1 0.18 Overall accuracy 88.6  

(Han et al. 

2018) 
CNN 286M Semisupervised Other 30m   Overall accuracy 88.6  

(W. Zhao et 

al. 2015) 
DBN 379K Unsupervised & fine-tuning Other 0.6m 1 0.7 Overall accuracy 88.9 85.6 

(C. Zhang, 

Sargent, 

Pan, Li, et 

al. 2018) 

CNN 226K Supervised Other 50 cm 4 0.6 Overall accuracy 89.5 79.5 

(C. Zhang, 

Pan, et al. 

2018) 

CNN 17K Supervised Other 50 cm 4 0.5 Overall accuracy 89.6  

(C. Zhang, 

Sargent, 

Pan, 

CNN 17K Supervised Other 50 cm 4 0.7 Overall accuracy 89.8 81.2 
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

Gardiner, et 

al. 2018) 

(Vakalopou

lou et al. 

2015) 

CNN 60M Transfer learning Other 0.6m 4 0.4 
Average 

precision 
90  

(Qayyum et 

al. 2017) 
CNN 6.61M Transfer learning Other 15cm 3 0.8 Overall accuracy 90.3 83.1 

(Cheng, 

Han, and 

Lu 2017) 

CNN 134M 
Transfer learning & fine-

tuning 
Other 30m  0.8 Overall accuracy 90.3  

(F. Zhang, 

Du, and 

Zhang 

2015) 

SAE 90.3K Unsupervised Other 1 m 3 0.25 Overall accuracy 90.8 90 

(C. Zhang, 

Pan, et al. 

2018) 

CNN 17K Supervised Other 50 cm 4 0.5 Overall accuracy 90.9  

(C. Zhang, 

Sargent, 

Pan, Li, et 

al. 2018) 

CNN 226K Supervised Other 50 cm 4 0.6 Overall accuracy 90.9 80.4 

(C. Zhang, 

Sargent, 

Pan, 

Gardiner, et 

al. 2018) 

CNN 17K Supervised Other 50 cm 4 0.7 Overall accuracy 91 81.7 

(W. Zhao 

and Du 

2016) 

CNN   Supervised Other 1.8m 8 0.15 Overall accuracy 91.1  

(Huang, 

Zhao, and 

Song 2018) 

CNN 39M 
Transfer learning & fine-

tuning 
Other 1.24 m 8 0.62 Overall accuracy 91.3 80 

(Khan et al. 

2017) 
CNN 151M 

Transfer learning & fine-

tuning 
Other 25m 3 0.9 Overall accuracy 91.3 76.5 

(Han et al. 

2018) 
CNN 286M Semisupervised Other    Overall accuracy 91.4  

(X. Chen et 

al. 2014) 
CNN 395K Supervised Other  1  F1 91.6 79.3 

(L. Zhang, 

Shi, and 

Wu 2015) 

CNN 44M Transfer learning Other  3 0.75 F1 91.8  

(Khan et al. 

2017) 
CNN 151M 

Transfer learning & fine-

tuning 
Other 25m 3 0.9 Overall accuracy 92 74.1 

(F. Zhang, 

Du, and 

Zhang 

2017) 

CNN 266K Supervised Other 1.2 m 3 0.8 Overall accuracy 92.4  

(Pan, Shi, 

and Xu 

2018) 

CNN     Other 1 m 84  Overall accuracy 93.2  

(S. Liu et 

al. 2018) 
CNN 28.4M 

Transfer learning & fine-

tuning 
Other  3 0.67 Overall accuracy 93.4 78 

(Basu et al. 

2015) 
DBN 3.6K Unsupervised & fine-tuning Other  4 0.8 Overall accuracy 93.9  
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

(Längkvist 

et al. 2016) 
CNN 1.91M Unsupervised & fine-tuning Other 0.5 m 6 0.7 Overall accuracy 94.5  

(Ji et al. 

2018) 
CNN 102K Supervised+ Other 4 m 4 0.17 Overall accuracy 94.7 93.5 

(Rezaee et 

al. 2018) 
CNN 53.9M 

Transfer learning & fine-

tuning 
Other 5 m 

5 (3 used for 

CNN) 
0.46 Overall accuracy 94.8  

(Cui et al. 

2018) 
CNN 9.7K Supervised Other 

2m (MSI), 0.5m 

(Pan) 

8 (MSI) + 

Pan 
0.8 Overall accuracy 94.8  

(Yanfei Liu 

et al. 2018) 
CNN   Supervised Other 2 m 3 0.8 Overall accuracy 94.8 80.3 

(Xing, Ma, 

and Yang 

2016) 

SAE 52.8K Unsupervised Other 30 m 224 0.5 Overall accuracy 95.5 96.9 

(M. Gong 

et al. 2017) 
SAE 81K Unsupervised & fine-tuning Other 2m 4 0.5 Overall accuracy 95.7 94.4 

(Z. Ma et 

al. 2016) 
CNN   Supervised Other  4 0.8 Overall accuracy 96  

(W. Zhao, 

Du, and 

Emery 

2017) 

CNN   Supervised Other 0.5 m 8 0.1 Overall accuracy 96.3 66.5 

(Han et al. 

2018) 
CNN 286M Semisupervised Other  3  Overall accuracy 96.8  

(J. Hu et al. 

2017) 
CNN   Supervised Other 1m 161  Overall accuracy 97 93.6 

(Yongtao 

Yu et al. 

2016) 

DBN 2.43M Unsupervised & fine-tuning Other 0.27m 3  F1 97  

(Hao Wu 

and Prasad 

2018) 

CNN+RNN   Semisupervised Other 1 m 360  Overall accuracy 97.3 95.2 

(S.-H. 

Wang et al. 

2018) 

CNN 252K Supervised Other  3 0.74 Overall accuracy 97.3 93.7 

(Basu et al. 

2015) 
DBN 3.6K Unsupervised & fine-tuning Other  4 0.8 Overall accuracy 97.9  

(Xu et al. 

2018) 
CNN   Supervised+ Other 1 m 63+1 0.03 Overall accuracy 97.9 92.7 

(Nogueira, 

Penatti, and 

Santos 

2017) 

CNN 5M 
Transfer learning & fine-

tuning 
Other 0.5 m 3 0.6 Overall accuracy 98 90 

(Y. Tao et 

al. 2018) 
CNN   Supervised Other 0.5 ~ 4 m 4 0.008 Overall accuracy 98.4 89.2 

(Z. Ma et 

al. 2016) 
CNN   Supervised Other  4 0.8 Overall accuracy 98.4  

(X. Gong et 

al. 2018) 
CNN 139M 

Transfer learning & fine-

tuning 
Other 2 m 3 0.8 Overall accuracy 98.5 77.7 

(Jun Wang 

et al. 2015) 
CNN 438K Supervised Other  3 0.6 Overall accuracy 98.7  

(F. Zhang, 

Du, and 

Zhang 

2016) 

CNN  Supervised Other 1 m 3 0.2 Overall accuracy 98.8  
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

(Qian 

Weng et al. 

2018) 

CNN 3.4M Transfer learning Other   0.25 Overall accuracy 98.8 91.3 

(X. Gong et 

al. 2018) 
CNN 139M 

Transfer learning & fine-

tuning 
Other  3 0.8 Overall accuracy 98.8  

(Ji et al. 

2018) 
CNN 107K Supervised+ Other 4 m 4 0.03 Overall accuracy 98.9 96.5 

(Maggiori 

et al. 2017) 
CNN 459K Supervised Other 1 m 3 0.9 Overall accuracy 99.5 94.9 

(Y. Li, 

Zhang, and 

Shen 2017) 

CNN 128K Supervised Other 30 m 242 0.5 Overall accuracy 99.6  

(Basaeed, 

Bhaskar, 

and Al-

Mualla 

2016) 

CNN 56.4K Supervised Other 30m 10 0.75 Overall accuracy 99.7  

(Qian 

Weng et al. 

2018) 

CNN 3.4M Transfer learning Other   0.5 Overall accuracy 99.7  

(W. Zhao, 

Du, and 

Emery 

2017) 

CNN   Supervised Pavia Center 1.3 m 103 0.1 Overall accuracy 96.3 92.98 

(Shi and 

Pun 2018) 
CNN 673K Supervised Pavia Center 1.3 m 103 0.001 Overall accuracy 97  

(Aptoula, 

Ozdemir, 

and 

Yanikoglu 

2016) 

CNN 1.31M Supervised Pavia Center 1.3 m 103 0.05 Kappa 97.4  

(Zabalza et 

al. 2016) 
SAE 2.4K Unsupervised Pavia Center 1.3 m 103 0.05 Overall accuracy 97.4 97.4 

(Ben 

Hamida et 

al. 2018) 

CNN 3681 Supervised Pavia Center 1.3 m 103 0.05 Overall accuracy 98.9  

(C. Tao et 

al. 2015) 
SAE   Unsupervised Pavia Center 1.3 m 103 0.05 Overall accuracy 99.6  

(W. Zhao 

and Du 

2016) 

CNN   Supervised Pavia Center 1.3 m 103 0.05 Overall accuracy 99.7 97.7 

(Makantasi

s et al. 

2015) 

CNN 10.9K Supervised Pavia Center 1.3 m 103 0.8 Overall accuracy 99.9 99 

(Ghamisi, 

Chen, and 

Zhu 2016) 

CNN 188K Supervised Pavia University 1.3 m 103 0.1 Overall accuracy 83.4 78.2 

(Mou, 

Ghamisi, 

and Zhu 

2018) 

CNN 1.39M Unsupervised & fine-tuning Pavia University 1.3 m 103 0.1 Overall accuracy 87.4 79.9 

(Hao Wu 

and Prasad 

2018) 

CNN+RNN   Semisupervised Pavia University 1.3 m 103  Overall accuracy 88.4 81.2 
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

(Ding et al. 

2017) 
CNN 226K Unsupervised Pavia University 1.3 m 100 0.5 Overall accuracy 90.6  

(W. Hu et 

al. 2015) 
CNN 80.6K Supervised Pavia University 1.3 m 103 0.05 Overall accuracy 92.6 90.5 

(Yue et al. 

2015) 
CNN 182K Supervised Pavia University 1.3 m 103  Overall accuracy 95.2 85.2 

(Xing, Ma, 

and Yang 

2016) 

SAE 212K Unsupervised Pavia University 1.3 m 103 0.5 Overall accuracy 96 93.6 

(W. Zhao et 

al. 2015) 
CNN 239K Unsupervised Pavia University 1.3 m 103 0.1 Overall accuracy 96.4 85.2 

(Wei Li et 

al. 2017) 
CNN 57.9K Supervised Pavia University 1.3 m 103 0.05 Overall accuracy 96.5 90.6 

(W. Zhao 

and Du 

2016) 

CNN   Supervised Pavia University 1.3 m 103 0.1 Overall accuracy 96.8 80.1 

(Ben 

Hamida et 

al. 2018) 

CNN 6862 Supervised Pavia University 1.3 m 103 0.05 Overall accuracy 97.2  

(Paoletti et 

al. 2018) 
CNN 173M Supervised Pavia University 1.3 m 103 0.04 Overall accuracy 97.8  

(Aptoula, 

Ozdemir, 

and 

Yanikoglu 

2016) 

CNN 1.31M Supervised Pavia University 1.3 m 103 0.1 Kappa 97.9  

(Shi and 

Pun 2018) 
CNN 673K Supervised Pavia University 1.3 m 103 0.01 Overall accuracy 98.5  

(Y. Chen et 

al. 2014b) 
SAE 29K Unsupervised & fine-tuning Pavia University 1.3 m 103 0.6 Overall accuracy 98.5 97.4 

(C. Tao et 

al. 2015) 
SAE   Unsupervised Pavia University 1.3 m 103 0.1 Overall accuracy 98.6  

(X. Ma, 

Geng, and 

Wang 

2015) 

SAE 10K Unsupervised & fine-tuning Pavia University 1.3 m 103 0.1 Overall accuracy 98.7  

(X. Sun et 

al. 2017) 
SAE 30.2K Semisupervised Pavia University 1.3 m 103 0.1 Overall accuracy 98.7 91.1 

(Xu et al. 

2018) 
CNN   Supervised+ Pavia University 1.3 m 103 0.04 Overall accuracy 99.1 89.9 

(Yushi 

Chen, 

Zhao, and 

Jia 2015) 

DBN   Unsupervised & fine-tuning Pavia University 1.3 m 103 0.5 Overall accuracy 99.1 98.4 

(Y. Li, 

Zhang, and 

Shen 2017) 

CNN 110K Supervised Pavia University 1.3 m 103 0.5 Overall accuracy 99.4  

(Makantasi

s et al. 

2015) 

CNN 10.9K Supervised Pavia University 1.3 m 103 0.8 Overall accuracy 99.6 93.9 

(H. Zhang 

et al. 2017) 
CNN   Supervised Pavia University 1.3 m 103 0.05 Overall accuracy 99.7  
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

(Yushi 

Chen et al. 

2016) 

CNN 5.85M Supervised Pavia University 1.3 m 103 0.1 Overall accuracy 99.7 97.7 

(Weixun 

Zhou et al. 

2017) 

CNN 126M 
Transfer learning & fine-

tuning 
RSSCN7  3  ANMRR 0.3  

(Zou et al. 

2015) 
DBN 3.1M Unsupervised & fine-tuning RSSCN7  3 0.5 

Average 

accuracy 
77  

(Hang Wu 

et al. 2016) 
SAE 2.53M Unsupervised RSSCN7  3 0.5 Overall accuracy 90.4  

(W. Hu et 

al. 2015) 
CNN 80.6K Supervised Salinas 3.7 m 220 0.05 Overall accuracy 92.6 91.7 

(Wei Li et 

al. 2017) 
CNN 57.9K Supervised Salinas 3.7 m 204 0.05 Overall accuracy 94.8 92.9 

(Xu et al. 

2018) 
CNN   Supervised+ Salinas 3.7 m 204 0.06 Overall accuracy 97.7 92.2 

(X. Ma, 

Geng, and 

Wang 

2015) 

SAE 37.7K Unsupervised & fine-tuning Salinas 3.7 m 204 0.01 Overall accuracy 98.3  

(Makantasi

s et al. 

2015) 

CNN 10.9K Supervised Salinas 3.7 m 224 0.8 Overall accuracy 99.5 94 

(Haut et al. 

2018) 
CNN 8.9M Supervised+ Salinas 3.7 m 204 0.5 Overall accuracy 99.9 91.1 

(Weixun 

Zhou et al. 

2017) 

CNN 126M 
Transfer learning & fine-

tuning 
UC Merced 1 ft 3  ANMRR 0.33  

(Weixun 

Zhou et al. 

2015) 

SAE 51.6K Unsupervised UC Merced 1 ft 3  
Average 

precision 
64.5  

(F. Zhang, 

Du, and 

Zhang 

2015) 

SAE 301K Unsupervised UC Merced 1 ft 3 0.8 Overall accuracy 82.7 81.7 

(Romero, 

Gatta, and 

Camps-

Valls 2016) 

CNN 49.1M Unsupervised UC Merced 1 ft 3 0.8 Overall accuracy 84.5  

(Yang Yu 

et al. 2017) 
CNN 24.6M Unsupervised UC Merced 1 ft 3 0.8 Overall accuracy 88.57 81.7 

(Marmanis, 

Datcu, et al. 

2016) 

CNN 155M 
Transfer learning & fine-

tuning 
UC Merced 1 ft 3 0.7 Overall accuracy 92.4  

(Hang Wu 

et al. 2016) 
SAE 2.53M Unsupervised UC Merced 1 ft 3 0.5 Overall accuracy 92.7  

(Qian 

Weng et al. 

2017) 

CNN 60M Transfer learning UC Merced 1 ft 3 0.7 Overall accuracy 93.4  

(Luus et al. 

2015) 
CNN 920K Supervised UC Merced 1 ft 3 0.8 Overall accuracy 93.5  

(F. Zhang, 

Du, and 
CNN   Supervised UC Merced 1 ft 3 0.8 Overall accuracy 94.5  
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Reference 
Network 

Type 

# of 

parameters 
Learning type Dataset 

Spatial 

resolution 

# of 

channels 

Training 

proportion 
Metric type 

Deep 

network 

SVM  

(Non deep) 

Zhang 

2016) 

(Han et al. 

2018) 
CNN 286M Semisupervised UC Merced 1 ft 3  Overall accuracy 94.5  

(Yanfei Liu 

et al. 2018) 
CNN   Supervised UC Merced 1 ft 3 0.8 Overall accuracy 95.6 92.9 

(W. Zhou, 

Shao, and 

Cheng 

2016) 

CNN 126M 
Transfer learning & fine-

tuning 
UC Merced 1 ft 3 0.8 Overall accuracy 96.48 92.3 

(F. Hu et al. 

2015) 
CNN 19.6M Transfer learning UC Merced 1 ft 3 0.8 Overall accuracy 96.9  

(Castellucci

o et al. 

2015) 

CNN 5M Transfer learning UC Merced 1 ft 3  Overall accuracy 97.1  

(Gu et al. 

2018) 
CNN 117M Transfer learning UC Merced 1 ft 3 0.8 Overall accuracy 97.1 81.7 

(X. Gong et 

al. 2018) 
CNN 139M 

Transfer learning & fine-

tuning 
UC Merced 1 ft 3 0.8 Overall accuracy 98.3 77.4 

(Penatti, 

Nogueira, 

and Santos 

2015) 

CNN 204M Transfer learning UC Merced 1 ft 3 0.8 
Average 

accuracy 
99.4 81 

(Nogueira, 

Penatti, and 

Santos 

2017) 

CNN 5M 
Transfer learning & fine-

tuning 
UC Merced 1 ft 3 0.6 Overall accuracy 99.5 90 

(F. Hu et al. 

2015) 
CNN 44.1M Transfer learning WHU-RS19  3 0.6 Overall accuracy 98.6  
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CHAPTER 4 (MANUSCRIPT3): 

Large area land cover mapping using deep neural networks 

and Landsat time-series observations 

Abstract  

Land cover mapping is an important activity for many applications in high-level planning 

and for monitoring of natural resources and forestry/agriculture sector. In this paper we present 

our results on employing deep neural networks for land cover classification over selected regions 

within all United States ecoregions. Our work is based on Landsat data, but we augmented it by 

spectral indices, spatial convolutional-based features and texture features generated from Landsat 

data, plus topography data from another dataset. No other data source was needed. This 

combination is applied to a hybrid recurrent/multilayer neural network to process all spectral, 

spatial, and temporal dimensions of data and predict the land cover class among seven principal 

types. Network optimization was done in multiple stages by first selecting the best combination 

of input features and then trying many different network configurations and input data sizes. Our 

best network consisted of 11 different layers of convolutional, recurrent, and dense neural 

network layers with about 2.7 million parameters. The trained network was then tested on 

different configurations such as individual ecoregion blocks or limited sensor availability and 

available scenes per year. 

The best achieved overall accuracy over the whole evaluation dataset was 98.0% with 

average and minimum class F1 of 98.2% and 96.9%. Comparison was also made with non-

recurrent neural network and traditional classifiers such as SVM and Random Forest. SVM was 

not scalable to our dataset size and we found the other two classifiers’ performance considerably 
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below our selected deep network configuration. Although the performance over all blocks is 

promising, our tests on individual blocks showed lower performance on some of them, which 

may be due to lack of enough samples or extreme local conditions in some classes. We also 

found that including two Landsat sensors (5/7 or 7/8) provide gain of about 4.5% in overall 

accuracy and average F1 over single-sensor experiments, and it also showed better performance 

with limited number of input scenes per year. We also tested an ensemble of up to 10 selected 

models and found that ensembling can increase individual block performance, and this gain was 

more for blocks that experienced lower performance on single model simulations.   

4.1. Introduction 

4.1.1. Global land cover mapping  

Land cover mapping is the process of compiling geographical data and creating thematic 

maps to delineate different land regions and assign desired labels to them based on features that 

make up the ground. This task has been under continuous attention for many years and has found 

many applications from land and agriculture planning and forestry and wildlife habitat 

monitoring to environmental impact evaluation, fire risk assessment, urban studies, and even 

human health risks (Vogelmann et al. 2001). It has been more pronounced in recent years as a 

basic tool for studies on subjects such as climate change and conservation planning, particularly 

when re-evaluated continuously (Fry et al. 2011).   

Our emphasis here is on regional and global studies, for which remote sensing tools and 

satellite sensors play a vital role. The remotely sensed data is typically in the form of raster 

imagery in multiple electromagnetic bands, commonly complemented with many other maps or 

tabular data. The mapping process itself will then be a combination of image processing and data 

mining tasks with all geoprocessing and photogrammetry considerations in place (for good 
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examples see US National Land Cover Dataset – NLCD – reference articles by Vogelmann et al. 

2001, Homer et al. 2007, or Fry et al. 2011). 

The review paper of Grekousis et. al (2015) discusses the specifications, pros and cons of 21 

global and 43 regional land cover mapping products which covers spatial resolutions from 30 m 

to 1 km using Landsat, MODIS, MERIS, and other satellite platforms. Pérez-Hoyos et al. (2017) 

also review seven global land cover maps for cropland classification. In our research we are 

concentrating on medium-resolution spatial and temporal sensors such as Landsat, because the 

spatial resolution of 30 m and temporal resolution of 16 days are reasonable selections for global 

land cover mapping application, also we have Landsat data globally available and free. 

According to  et al. (2015), the best reported global overall accuracy among the above-mentioned 

products (by the date of their paper) was achieved by GlobeLand30 using Landsat 2010 data at 

80.3% (Jun Chen et al. 2015) and FROM-GLC at up to around 70% (L. Yu et al. 2014) which 

are not very high accuracies. The situation in continental or regional maps is not much better: 

Assessed accuracy of US-covering NLCD maps is around 80%  (Fry et al. 2011) while another 

product covering South American continent is evaluated at 89% accuracy (Giri and Long, 2014), 

and another reported accuracy is 71.7% over China (L. Hu et al. 2014). These quantities are not 

satisfactory and should be improved. Additional work has been done on refining global land 

cover datasets using additional data sources such as in Yu et al. (2013) by merging Landsat plus 

MODIS, or fusing several different global land cover maps in Feng and Bai (2019) and 

producing one enhanced global product, but their overall accuracies did not improve beyond 

71%. In addition to the above, there have been some more recent research on global land cover 

classification such as improving FROM-GLC model accuracy to 72% using 10 m resolution 
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Sentinel-2 data ( Gong et al. 2019). USGS has also made a new product named LCMAP that has 

achieved an overall accuracy of up to 87% in continental US (Brown et al. 2020).  

However, all of the above results have been obtained by unsupervised or supervised 

classification methods based on decision tree, random forest, or SVM. The LCMAP product is 

different as it uses a well-known algorithm named Continuous Change Detection and 

Classification (CCDC) for harmonic modelling of Landsat observation time series (Zhu and 

Woodcock, 2014) and passes the model parameters to the classifier, which is an enhanced 

version of classification trees.  

Note that there is no universal ‘best’ land cover class definition as the class definitions are 

always problem dependent. Classes are normally separated based on user-defined preferences 

and thresholds for intensity level selection, and decision making for mixed pixels may vary from 

case to case. The global land cover maps mentioned before correspond to classification systems 

of as low as 5 classes to as high as 30 classes or more, which, as studied by Yang et al. (2017), 

turns out to be incompatible and inconsistent and need to be harmonized for terminology, 

semantic interpretation, and legend translation. Also, there is considerable difference between 

overall and per class performance, which can vary widely depending on classification system. 

For example, Alhassan et al. (2020) reported 90% overall accuracy but per-class precision varied 

from 52 to 97% for the best design of their land cover classifier for an application in lower 

Manitoba, Canada. Therefore, there is still high demand for more advanced classifiers who can at 

the same time achieve higher overall accuracy and better and more balanced per-class accuracies.   

4.1.2. Deep models for land cover classification 

Deep learning has been used for more than a decade in many applications such as computer 

vision, speech recognition, and natural language processing. Deep learning methods have also 
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found their way into remote sensing applications as well in remote sensing (RS) image pre-

processing, scene classification, pixel-based classification and image segmentation, and target 

detection. Scene and pixel classification are the most studied applications with land cover 

classification typically falling into the pixel classification category. Phiri and Morgenroth (2017) 

stated that land cover classification has progressed through several phases from early 

unsupervised and supervised classification methods in the late 1970s to use of machine learning 

algorithms, object-based methods, hybrid methods, and recently more advanced classifiers 

including deep neural networks. However, currently available global land cover maps are still 

based on conventional unsupervised or supervised classification and none of them have tried new 

deep learning methods. The aim of using deep networks is to employ their inherent capability to 

discover useful features in data automatically (contrary to non-deep methods that rely on hand-

crafted features). As we discussed in chapter 3 of this dissertation, deep implementations based 

on convolutional networks has been more popular and achieved better results by generating 

powerful spatial and spectral features. However, utilizing time-series and temporal dimension is 

less practiced in the past literature and is gaining more recently. Here we will review the past 

research on deep learning by emphasizing those cases working on data from medium-resolution 

sensors such as Landsat and Sentinel and utilize temporal data.  

Basically, deep networks based on just spectral information may not have an advantage over 

traditional classifiers without employing all data dimensions and enough amount of training data. 

For example Abdi (2020) used Sentinel-2 data for a region in Sweden and showed SVM to be 

the best classifier compared to their deep learning model and Random Forest. We also used 

Landsat data from different regions in US as described in chapter 2 of this dissertation, and 

achieved similar performance for both conventional and deep classifiers with overall accuracies 



114 

 

varying from region to region and a worst case regional accuracy of 64%.. Accuracy can be 

improved by including spatial dimension and particularly by introducing convolutional networks 

and ensembling. For example X. Zhao et al. (2019) applied deep convolutional network to 

regions in China and obtained overall accuracies around 74-78% using Landsat data. J. Wang et 

al. (2017) reported overall accuracy of 75% using fully convolutional network trained on NLCD 

data over Kansas. Verma and Jana (2020) applied convolutional neural network (CNN), artificial 

neural network (ANN), Random Forest (RF), and SVM classifiers to Sentinel-2 data and got the 

best accuracy of 82% on CNN (they enhanced ANN, RF, and SVM classification results with 

post-processing to include spatio-textural information by majority voting). 

One early example of using ensemble of classifiers is Mountrakis et al. (2009), who used a 

hierarchical structure of nodes and expert decision making to find the best combination of SVM, 

neural network, and decision tree classifiers to classify impervious land in the Las Vegas area 

based on Landsat data. Using this hierarchical combination, they achieved overall accuracy of 

92.4%. More recently, Kussul et al. (2017) used ensemble of Landsat and Sentinel-2 data to 

classify crop type in Ukraine and obtained an overall accuracy of 94.6%. Shendryk et al. (2019) 

used ensemble of convolutional networks on some scenes using Sentinel-2 and PlanetScope 

sensors data and obtained overall accuracies ranging from 74% to 90%, depending on which test 

and training sets were used, and this clearly shows limitation of generalizability of classification 

results on local data. They classified clouds as well, so didn’t need the do pre-processing to 

eliminate cloudy pixels. Alhassan et al. (2020) used advanced deep learning techniques and 

combined convolutional/adversarial architecture to reach overall accuracy of 90% on Landsat 

data for land cover mapping in a region in Canada.   
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Recurrent-type neural networks (RNNs) are of special interest to utilize the temporal 

dimension of data because they are designed to process time-series data efficiently (see 

Salehinejad et al. (2017) for a detailed review of recurrent neural networks). RNN has entered 

the remote sensing literature in 2016 (see Lyu et al. 2016) for change analysis, and then found 

applications in  scene or land cover classification and forecasting values with good results. The 

basic form of employing temporal information in classification is to feed the recurrent network 

directly with time series of imagery bands. This line of research has been tried in the past for 

crop type classification by Rußwurm and Körner (2017) on Sentinel-2 data with overall accuracy 

of 84.4%, and by Sun et al. (2019) on Landsat data with overall accuracy about 89% for land 

cover classification. Temporal dimension and structure of RNN enables us to increase 

performance by incorporating more time stamps in processing, which is pursued in different 

forms in Rußwurm and Körner (2017) and Zhao et al. (2019). Campos-Taberner et al. (2020) 

also report on a bidirectional Long Short-Term Memory (LSTM) implementation on Sentinel-2 

data to get overall accuracy of 98.7% for crop type classification, while the best non-deep 

classifier was RF with accuracy of 94.9%. 

Adding spatial information is done in a variety of forms in different articles, such as 

flattening spatial information (converting a 2-D spatial neighborhood around a pixel to a 1-D 

array) and feeding a recurrent network with a temporal sequence of flattened spatial-spectral data 

(Sharma et al. 2018). But the more popular approach is to put a convolutional neural network 

before the RNN step. This idea has been applied to crop type classification in Pelletier et al. 

(2019) using a stack of Formosat-2 images. CNN implementation can be integrated in LSTM 

cell, as Rußwurm and Körner (2018) used to process top of atmosphere Sentinel-2 data for 17-

class crop type classification with overall accuracy of 90%, and they showed that their network is 
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even capable of detecting the cloudy scenes by itself. The CNN part can also be put after the 

recurrent part as demonstrated by Mazzia et al. (2019) who reported overall accuracy of 96.5% 

using Sentinel-2 data for crop type classification. The CNN part can also be placed in parallel to 

recurrent network as used by Interdonato et al. (2018), where they aggregated output of either of 

RNN and CNN branches for all time stamps in one data vector, combined two aggregated feature 

vectors and classified the result. Using Sentinel-2 data, they reported overall accuracies of 86.1% 

and 96.8% for two land cover classification case studies. Parallelism has gone further by fusion 

of Landsat, high-resolution imagery via National Agriculture Imagery Program (NAIP) dataset, 

climate data via PRISM dataset, and terrain topography data in Chang et al. (2019). In this work 

for each pixel and its neighborhood, Landsat data were processed by convolutional LSTM 

subnetwork, NAIP data were processed by a special convolutional-dense network, climate and 

terrain data were processed by another dense network, and resulting features are all concatenated 

and classified for the final land cover type. They reported average class producer accuracy of 

92% and also conducted additional regression estimations (such as above ground biomass, 

canopy cover, and two other quantities) using these features. 

Fusion of optical and radar data is also a hot topic addressed in some research. For example. 

Liao et al. (2020) extracted backscatter features from multiple observations by Radarsat-2 and 

combined it with optical data from Venµs satellites to classify crop type. They tried different 

deep and conventional classifiers and reached overall accuracies of better than 96% for their best 

data fusion strategy with all classifiers.  

There is also some research based on specialized and custom-designed network architectures 

or processing algorithms to process temporal dimension in recurrent networks. One example is 

Ienco et al. (2017) who used a combination of pixel data and spatial object-based data to do land 
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cover and crop type classification by an LSTM network and reached overall accuracy between 

75.3% and 84.6% for different datasets. Feng et al. (2019) used a special technique called 

deformable convolutional networks on each time stamp of imagery taken by Sentinel-1 and 

Sentinel-2 for their study area, fused the features together in another special neural network and 

did the final land cover classification to reach overall accuracy of 93.8%. A promising work was 

also done by Jia et al. (2019) in which a complex architecture based on General Adversarial 

Network (GAN) principle is presented. The network accepts MODIS and Sentinel-2 data and 

processes their time series and uses MODIS data to estimate and fill the gaps in Sentinel-2 data, 

thereby enhancing the crop type classification.  

4.1.3. Research objectives and contributions 

One of the main issues in most of the research mentioned above is the limitation of 

geographical or temporal span of the training dataset and subsequently the resulting model. The 

performance statistics reported are also very dependent on the locality and the land cover 

classification type, for example, fine crop type classification typically results in lower accuracy 

than broad and general land cover classification (because of the more similarity between 

reflection profile of many crops), so the results cannot be generalized. Lack of remote sensing 

training data is mentioned in many articles but never resolved, and to the best of our knowledge, 

our work is the first study to build a deep model by training it over many years and covering all 

ecoregions of the United States. This is a very challenging situation because of the huge diversity 

in ecoregion specifications and inherent differences between pixels having the same land cover 

label in different geographic areas. For example, type and density of a “forest” setting in 

Colorado is naturally very different than Florida or New York state, but we want a model to be 

trained on all regions with a very high accuracy and be transferable to every individual region 
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with minimal loss in performance. Such a model will be of a very high practical value, either 

directly on any desired area or by being fine-tuned to other local areas to overcome possible 

deficiencies. We investigated the potential of deep learning models by employing recurrent 

neural networks and training them with a big dataset consisting of Landsat observations, climate 

and topography data, spectral indices, texture metrics, and convolutional-based spatial features to 

achieve this goal. As discussed in the introduction, global land cover mapping accuracies are not 

satisfactory and there has been no product available to take benefit of deep learning 

methodologies in this field. Therefore, the main contribution of this paper is to harvest the 

extensive Landsat archive and combine it with state-of-the-art deep learners to improve 

classification accuracy of large area mapping. 

After this introduction, the rest of the paper is organized as follows: Section 4.2 presents the 

description of our data sources, including the reference data and calibration/test data. Section 4.3, 

Methods, details the steps done to generate the data, setup the simulation environment, architect 

the system, and assess the results. Section 4.4 provides the results of our experiments and 

analyzing them from different viewpoints. Last section, section 4.5, will provide the concluding 

discussion and future related works.      

4.2. Data 

4.2.1. Study area and reference labels  

Our study area was the entire conterminous United States, which is divided into 84 

ecoregions at level III classification by EPA as shown in Figure 4-1. As defined in 

https://www.epa.gov/eco-research/ecoregions, ecoregions are areas where ecosystems (and the 

type, quality, and quantity of environmental resources) are generally similar.  We received land 

cover samples for 2717 10 km ×10 km blocks for each ecoregion from USGS, which was 
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originally produced for the USGS Land Cover Trends Project 

(https://www.usgs.gov/centers/wgsc/science/land-cover-trends). The blocks composed of 

333×333 pixels (at 30 m ground resolution per pixel) at Albers Conical Equal Area projection 

and each pixel was labeled according to a modified Anderson classification system (USGS, 

2014) to designate the pixel’s dominate land cover. The 11 classes were Water, 

Developed/Urban, Mechanically Disturbed (human-induced distrubances), Barren, Mining, 

Forests/Woodlands, Grassland/Shrubland, Agriculture, Wetland, Nonmechanically Disturbed 

(disturbances caused by natural causes such as caused by wind, floods, fire, animals), and 

Ice/Snow. The data were dated around year 2000. We selected one representative block for each 

of 84 ecoregions for further investigation and refinement, as explained in the methods section. 

The selection criteria were high class diversity and balanced distribution of land cover types 

through the block, which was checked visually. Within each block, we examined possible 

changes within each pixel’s land cover using Google Earth high-resolution imagery and selected 

a subset of pixels that have stable land cover over a long period. This period was generally 

considered to be 2005-2019 (including both start and end year) but was adjusted that for each 

pixel based on availability of high-resolution imagery at that location.   

https://www.usgs.gov/centers/wgsc/science/land-cover-trends
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Figure 4-1: Level III ecoregions in the conterminous United States (source: https://www.epa.gov/eco-

research/level-iii-and-iv-ecoregions-continental-united-states) and our selected blocks (red circles) 

4.2.2. Calibration and test data  

After selecting the valid points and their labels for each block in section 4.2.1, the model 

calibration and test data (which we name it “model data” hereafter) were generated based on 

Landsat Surface Reflectance data archive, available through Google Earth Engine platform. By 

calibration data we refer to the data that were used during model training, and the test data were 

used to evaluate model performance on unseen data. The Landsat data were processed to extract 

different spectral, spatial, and temporal domain features from it. The data have a spatial 

resolution of 30 m and temporal resolution of 16 days, which seems appropriate for a global land 

cover mapping application. But to supply the model with more information to better distinguish 

different land cover types (especially to mine inter-block and regional differences that are of 

https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
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special importance in our application), we added some climate and topography variables to our 

dataset. We extracted temperature and rain statistics from the PRISM dataset, which has a spatial 

resolution of 2.5 arc minutes and is available at temporal resolution of 1 day or 1 month; and 

topography information from SRTM dataset with spatial resolution of 30 m (it is a static value 

with no temporal dimension). All of these datasets are available freely under Google Earth 

Engine platform, which we used for data access and dataset generation. Each dataset may have 

different geospatial referencing system, but all spatial data was reprojected and resampled 

automatically to match the reference maps’ projection and spatial resolution when processing 

data under Google Earth Engine.  

4.2.2.1. Landsat data 

We used Landsat surface reflectance Tier 1 data in our work. Being surface reflectance, these 

data have already been corrected for atmospheric errors. We also used Landsat radsat_qa and 

pixel_qa quality bits for each pixel to identify radiometric saturation and cloud or cloud shadow 

conditions (medium or high confidence) and removed those pixels from our candidates. The 

Landsat 7 errors due to SLC failure have already been processed by Google Earth Engine and 

those pixels are masked. Our main motivation in this work was to use deep networks to generate 

features that reflect spatial-spectral-temporal profiles for each land cover class so they can best 

be distinguished from each other. If a point has a stable land cover, we can assume that a change 

in its remotely sensed data is mainly attributed to phenology and therefore the same pattern of 

change will be repeated each year (a long-term trend can be added using other variables). Based 

on this assumption, we generated yearly sequences of Landsat data values. Each record of the 

original sequence had the Landsat Blue, Green, Red, NIR, SWIR1, and SWIR2 band values for a 
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single observation. We incorporated all data available from Landsat 5, 7, and 8 sensors in the 

same sequence.  

4.2.2.2. Climate data 

PRISM dataset (AN81m) provides monthly average temperature and total monthly rain 

statistics per each pixel. PRISM also provides daily statistics, but the land cover is not affected 

by daily climate variations. The spatial resolution of PRISM is also lower than Landsat, but it is 

still appropriate for catching the climate trends and inter- and intra-block climate differences that 

may affect land cover. 

We derived two type of variables from PRISM dataset: one set is monthly data that was 

extracted for the current year (year of generating Landsat sequence as described in section 

4.2.2.1) and the other set was the normal long-term data, which is defined for each pixel as the 

average of climate variables for that pixel over 30 years. The choice of 30 years window is 

voluntary and we considered it from 1990 till 2020. These monthly and normal data were 

generated for both temperature and precipitation variables. The monthly values for each variable 

are grouped by the year of observation and added to the model data. Normal values are also 

calculated on a monthly basis (by averaging same month value over 30 years) but it is also 

complemented by three other aggregate variables: minimum, maximum, and average value of 

normal statistics over year. In other words, we put the monthly normal variables in a 2-D matrix 

with months in columns and years in rows, then first did an aggregation for each row over 

columns, then calculated minimum, maximum, and average of the above aggregate value over 

rows. The row aggregation for temperature was calculated as average value over the columns, 

but for precipitation it was calculated as the sum of values over columns. 
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4.2.2.3. Topography data 

We also used the Shuttle Radar Topography Mission (SRTM) digital elevation data V3 

product as provided in Google Earth Engine catalog and extracted elevation, slope, and aspect 

fields. These variables are static per pixel and do not change over year, same as climate normal 

statistics.      

4.3. Methods 

The methods section presents details for dataset generation (both reference and model data), 

simulation framework, and model architecture. We also discuss benchmark algorithms, and 

performance evaluation criteria. 

4.3.1. Dataset generation  

4.3.1.1. Reference labels generation 

As mentioned earlier our reference labels are based on USGS land cover trends maps. 

However, those maps were only prepared for a single year and our visual inspection revealed 

many inaccurate points in the generated maps. Therefore, we decided to edit the maps and only 

keep the points that we are certain of their stable land cover over multiple years. This helped 

create several different samples of model data (yearly sequences) for one label, thereby enriching 

our database to include different profiles for the same land cover and make model predictions 

more robust. Such a revision requires having a much more accurate imagery than Landsat, and 

we used Google Earth because it provides the best free source of high-resolution (less than one 

meter) imagery over the earth, while providing historical archive as well. 

To make things clearer and more objective, we reduced the land cover types from 11 in 

original USGS maps to 7, including water, developed, grass/shrub, forest, bare, agriculture, and 
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wetland. No ice/snow was present in our selected points. Details on class definition is given in 

Appendix A, along with detailed guidelines to decide how to assign labels to the pixels while 

dealing with all imperfections of low quality or missing data for some years in Google Earth, 

mixed pixels and transitions (for example between forest and grassland), dynamic boundaries 

(such as in wetlands), and class priorities. We assigned higher priority for detection of developed 

areas (anthropogenic impact on nature) and decided to assign that to a pixel if at least 20% of its 

area is human developed. The next priority was given to the agricultural fields if they occupy at 

least 20% of the pixel area, then to the other land cover types using a simple majority rule. We 

also developed many detailed notes on how to distinguish farm from grassland, grass or forest 

from wetland, wetland from water, bare from grassland, etc. A summary of required steps for 

data processing and overall workflow is given in Appendix B. Note that we used only high-

resolution normal color imagery for reference labels generation and only remote sensing datasets 

for model data (no administrative information). This would help to keep the process 

generalizable and applicable to other locations. It is also important to keep in mind that we 

dropped many pixels within each of the 84 blocks due to uncertainty and/or instability of land 

cover type, so our reference maps are patchy and not contiguous. 

4.3.1.2. Calibration and test data generation 

We ended up with about 35,000 up to 100,000 valid pixels in each of our 84 selected blocks 

after the reference label assignment, but with different stable time spans from 8 to 15 years and 

with differences in class distributions from block to block. To keep the simulation time 

reasonable, we selected about 7,000 to 50,000 pixels in each block to reach a total of about 1.6M 

(million) pixels with a specific class distribution. The detail of block class distribution is given in 

Appendix C, which shows the very unbalanced class distribution because of the class imbalance 
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in the original labels. Wetland and bare were rare classes compared to the others. Our tests 

showed that the bare land characteristics were sufficiently different than other land cover classes 

to make it relatively easy to separate. But we found that the wetland and developed classes were 

more challenging to classify accurately. Therefore, we selected all of the edited bare and wetland 

pixels and also selected a bigger proportion of edited developed class pixels compared to other 

classes. After generating yearly sequences for each available year for each pixel, the final dataset 

contains approximately 21M sequences with the class distribution presented in Table 4-1.   

Table 4-1: Selected final dataset class distribution 

Water Developed Grass/Shrub Forest Bare Agriculture Wetland Total 

1,407,689 7,131,290 3,657,994 2,574,143 1,091,321 3,888,984 1,430,939 21,182,360 

 

Each sample of our dataset is related to a specific pixel and year and consists of a sequence 

of Landsat and Landsat-derived features throughout the year, a vector of monthly climate 

variables for that year, and the fixed values of normal climate and topography variables (usage of 

these data will be discussed in section 4.3.3). The length of the Landsat sequence of features 

varied from pixel to pixel and block to block and ranged from 23 to 98 time stamps (mean of 50). 

These different sequence lengths required some special treatment (zero-padding) to be done 

when feding the data into the network. By zero-padding, extra feature records with zero values in 

their fields were added to the sequence to make all sequences having 100 time stamps. 

As with any other neural network implementation strategy, we must divide our dataset in 

calibration and test partitions, used for various stages in model training and evaluation. Our 

approach to the partitioning was the same and what we do for each block is: 

- Choosing N pair of calibration points in such a way that in each pair the training and 

validation points are disjoint (i.e., have no point is common), 
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- Choosing one set of test points in such a way that it is disjoint to all the above N sets. 

Our full dataset in our final experiments was partitioned in such a way that 4/35 (about 

11.5% or 2.4M sequences) were set aside as test data, and the rest was sampled N times to create 

N calibration sets in such a way that in each set, 28/35 (80% or 16.9M sequences) was used for 

training and the rest (8.5% or 1.8M sequences) for validation. Training sets were used to train the 

neural network during specified training epochs, while its companion validation data was used 

after each epoch during training to evaluate the model performance on unseen data and stop the 

training when it is no longer useful for generalization (i.e., prevent overfitting of the model). The 

reason for generating N different calibration sets was twofold: reducing the neural network 

performance variance that is caused by inherent randomness in its training, and enhancing our 

estimation of model performance on unseen data. As we trained many different model 

configurations with the same sets of calibration data, we needed another independent dataset to 

evaluate and compare their performance together and test set was fulfilling this purpose.  

One approach to have a quantitatively justified decision on the number of N is presented in 

Iyer and Rhinehart (1999), which is based on principle of choosing the best of N experiments 

and gives a very general and conservative formula. The best value of N depends on the level of 

confidence and the acceptable generalization error, but heuristically N=10 is an acceptable norm. 

We determined it more practically by running the network N times, looking at the average 

performance, ranking the performances for different configurations, and observing when the 

ranking is almost steady. In our case we found that N=8 is a good start for training sets of about 

500,000 samples but when size of data or network increases, it can be lowered because the model 

variance is decreased. 
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4.3.2. Network architecture and optimization  

Deep networks bring a lot of network parameters and hyperparameters that need to be 

optimized. Given the vast availability of data in our research, the network can also go very deep 

and become more complex, more difficult and time consuming to train and test, and include 

more hyperparameters to tune. Therefore, we had no other way than proceeding with the 

parameter selection step by step and a simultaneous exhaustive parameter  search was not 

possible. The most important parameters that we dealt with in our research were: 1) selection of 

input features, and 2) selection of network structure. Other parameters including network 

optimization settings (e.g., batch size, optimizer type, learning rate, and simulation stopping 

criteria) were tuned at the start of the work on a simple model and re-checked from time to time 

during simulations and also at the end on the final model. 

4.3.3. Model candidates   

The general schematic of our designed network is shown in Figure 4-2, which is composed of 

three input data sources, two multilayer dense subnets, one recurrent subnet, and one 

convolutional subnet, plus the final classifier.  Number of neurons/cells in each layer and number 

of layers were investigated through our simulation framework as described in the previous 

section. For principles of operation of dense or recurrent neural networks and refer the reader to 

the standard neural network textbooks and other literature cited in section 4.2.1. 

We had different model candidates based on the data dimensions or feature groups we 

wanted to include. We have considered three types of models that are expected to provide 

increasing performance and introduce them in subsections 4.3.3.1 to 4.3.3.3. Each model 

incorporates some of the blocks shown in Figure 4-2. For example, the convolutional processing 

block is not utilized in models presented in sections 4.3.3.1 and 4.3.3.2.  
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The base data in all models are sequences of Landsat data and other remote sensing datasets. 

Each sequence contains several records, and each record contains a number of features, including 

Landsat band values for a specific observation day plus optional spectral indices or spatial 

texture metrics as explained later. The whole sequence of features is applied to recurrent network 

to get an output after processing the last time stamp. There are different cell types proposed as 

building blocks for recurrent neural networks, for which LSTM and GRU (Gated Recurrent Unit) 

are the most used types. We tested both cell types and found LSTM performing slightly better, 

and it has more trainable parameters. Static data (such as topography) are in the form of 1-D 

vector and for each pixel, there is one vector of static features corresponding to one sequence of 

Landsat-based features. Parallel to processing of Landsat-based sequence by recurrent network, 

the static features are processed by a standard multilayer dense network (ND layers of MDi 

neurons each, where i is the layer index). Output features from recurrent subnet and the above 

mentioned dense subnet are concatenated and applied to the second multilayer dense network for 

further processing, which again has NP layers of MPi neurons each. The result is applied to a 

classifier to determine the assigned land cover to the input pixel.  
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Figure 4-2: Designed system architecture 

In our training and model building phase, input data were random pixels and did not 

constitute a whole scene. But in the same way, we can feed the trained network by a whole scene 

pixel by pixel and get a wall-to-wall output land cover map of the region. 

4.3.3.1. Temporal LSTM (T-LSTM) 

This is the base model that we start from, and it processes spectral and temporal data. We 

have eleven (11) base variables for each temporal observation that are included in this 

experiment for each pixel: Day-of-year (DOY), sensor type (Landsat 5/7/8), six Landsat surface 

reflectance values, and three topography variables (elevation, slope, aspect). In addition, we 

considered eight different spectral indices reported in different literature to be useful for 

identification of different ground features such as vegetation, water, built-up area, bare soil, and 

soil wetness, and we have provided the list of the reviewed indices and their formulas in 

appendix D. Among all of these indices, our experiments showed ENDISI significantly improved 



130 

 

network performance. All spectral index calculations were done in Google Earth Engine while 

extracting Landsat data. We tried both monthly and normal (long-term) climate variables on our 

LSTM model as well, but they did not provide any benefit compared to other selected variables, 

therefore they were dropped from the model data. Note that we used a fixed number of layers 

and cells in this experiment as we were interested in input feature selection and not the network 

structure optimization.  

4.3.3.2. Spatio-temporal LSTM (ST-LSTM) 

Our next model adds spatial data dimension by including texture features and increases the 

network complexity to reach the performance saturation. We considered two spatial information 

extraction methods: Gray-Level Co-occurrence Matrix (GLCM) and Local Binary Patterns 

(LBP). The GLCM method generates a co-occurrence matrix from any image band of interest 

from which multiple metrics are calculated that are used to describe the texture around the pixel 

(Hall-Beyer, 2017a). GLCM produces various texture metrics for each point in three main 

groups: contrast group, orderliness group, and descriptive statistics. Each group contains several 

metrics, which we tried individually and together. There is no clear best metric, since this 

depends on the application and GLCM parameters. Hall-Beyer (2017b) looked at this issue for a 

classification application based on Landsat data, and recommended choosing Mean/Correlation 

(for general texture identification), Contrast/Dissimilarity (helpful for classes containing edge-

like features), and Entropy (for more detailed texture study). We did some trials with our data 

and picked four metrics of dissimilarity, entropy, mean, and variance. GLCM generation requires 

specifying two other parameters: GLCM window size and quantization level. We fixed 

quantization level at 64 but generated the above four GLCM features for two window sizes 

(radius) of 5 and 15 pixels to serve different spatial scales. GLCM generation also requires 
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picking a base band to do the spatial calculation on it. Looking at the other works, we found that 

either one of visual bands, NIR band, or an artificial band such as principal component based on 

visual bands has been used for this purpose. In our work, we initially took NIR band for GLCM 

generation but then extended this idea and generated GLCM features based on two Landsat 

bands (blue, NIR) and two spectral indices (DD, ENDISI). Selection of these bands and indices 

was a result of another experiment in which we tested performance of a sample network when 

fed by GLCM features generated from all bands and indices, and we picked those that performed 

better in this experiment. Therefore, we had 4x2x4=32 GLCM features added per pixel, to 

compare and pick the best combination. For simplicity, we use a three-part name to designate 

each GLCM feature in our work. For example, ENDISI_ent_15x64 denotes the GLCM entropy 

metric generated based on ENDISI band using a window size of 15 and quantization level of 64. 

All GLCM calculations were done in Google Earth Engine with available functions. Based on 

our experiments, we selected DD_ent_5x64, ENDISI_ent_15x64, and blue_savg_15x64 as the 

best spatial texture features to include in our model.  

The LBP method finds local spatial patterns around a pixel and codifies it with numbers that 

can tell us if the point is a corner, edge, or middle of a homogeneous area (Ojala et al. 2002). As 

our initial tests did not show any benefit for LBP over GLCM, we did not use it in our main 

simulations.  

4.3.3.3. CNN+Spatio-Temporal LSTM (CNN+ST-LSTM) 

The last and most complete model builds upon the ST-LSTM model by supplementing the 

manually engineered spatial features (GLCM) with computer-generated convolutional features. 

In this model we utilized the CNN block in Figure 4-2 and added the spatial features generated 

by it to the input features of the recurrent network. In other words, they are added to the input 
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features of the previous Spatio-Temporal LSTM model. The input to this convolutional block 

can be any of the Landsat or other available bands in the input data, and we chose the 

combination of six Landsat surface reflectance bands plus Elevation band (as a possible factor in 

building powerful spatial features) as its input. For each training point, the neighborhood data for 

the chosen bands was extracted. Then we used standard 2-D convolutional filters without 

padding for doing convolution, because we want the final output of CNN network to be a 1-D 

vector. For example, for an input neighborhood of size 5, we can deploy a 3x3 filter in the first 

convolutional layer to reduce the 5x5 input to 3x3 (5-3+1=3), and then a 3x3 filter in the second 

convolutional layer to reduce it to a spatial size of 1x1. Our convolutional network consists of NC 

layers of MCi filters of size wi and its output will be a vector of length MCNc (number of filters in 

the last layer of CNN block). The rest of network is the same as Spatio-Temporal LSTM. 

4.3.4. Benchmark algorithms 

We compared many different configurations and input features in our simulations based on 

the network configuration described in section 4.3.3. We also tried the non-recurrent and non-

neural network classifiers listed below to see how better the performance of our hybrid 

convolutional/dense/recurrent network is compared to them: 

- Non-recurrent dense multilayer neural network 

- SVM 

- Random Forest  

One important distinction between the baseline models and our proposed deep models is that 

in our designed network, the data has a built-in temporal dimension and is presented to the 

network in the form of temporal sequences. This is not the case for the baseline models, which 

are not recurrent in nature. As each yearly record of our dataset contains on average about 50 
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time stamps (i.e. Landsat scenes), combining all time stamps of one year together and provide 

them as simultaneous input of baseline models is not feasible due to the large data volume. 

Instead, we opted to feed them with just one time stamp at a time. We tried various schemes of 

choosing individual time stamps from sequences. To have the baseline trained models as general 

as possible (in terms of both time and space), we chose one time stamp at random from each 

sequence. This scheme retains a representative from each sequence while distributing the 

sampling time as uniform as possible throughout the year. 

4.3.5. Accuracy assessment 

One important consideration in accuracy assessment is to ensure the independency of 

calibration and test datasets. We guarantee spatial independence by our point selection 

mechanism. But for the temporal dimension we particularly need all years in calibration and test 

data to adapt our model to any abnormal year conditions (e.g., extreme climate) and be able to 

test it. This is the normal practice in other literature that deal with time dimension, for example 

change detection using two fixed time stamps. As we seek good balanced performance in all 

classes and overall accuracy is more representative of the performance of dominant class, we 

decided to use the F1 metric2 for each class and then calculated the average of this value over all 

classes to obtain an aggregate performance measure for our models after each simulation. Along 

with average F1, we also calculated minimum F1 and overall accuracy (reported as test accuracy 

in our tables) in each simulation. Model selection was based on higher average F1, but if two 

models had very close average F1 values, the minimum F1 and overall accuracy were also 

considered to make a decision. The reported assessment is always done on test data unless 

 
2 F1 metric is defined for each class as the harmonic mean of the class precision and recall. It is calculated as  

F1 = 2 × precision × recall / (precision + recall).  
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otherwise specified, which consists of 2.4M sequences for the whole blocks (ecoregions) but 

each block may have a different share as listed in appendix C. 

Note that we run each classifier multiple times to have a higher confidence of its 

performance. Therefore, we calculated the average of the above performance metrics over these 

runs and built confidence intervals around it to compare different configurations.  

4.3.6. Algorithmic implementation 

Development and implementation of our model and data processing steps was done on 

different platforms but all of the coding was done using python. The Tensorflow environment 

was used for model development and simulation. As shown in Figure 4-2, extraction of data was 

done via Google Earth Engine platform and then the data were downloaded to our local 

machines. It was followed by pixel sampling and calibration/test datasets generation. Although 

some tests and model evaluation were done on our local resources, most of the model training 

runs were conducted on a cluster of powerful GPU-enabled nodes available through NASA high-

end computing facilities at NASA Ames research center. We used up to 56 single-GPU and 28 4-

GPU nodes during different stages of model training, comparison, and selection, which also 

required corresponding data transfers and job scripting tasks.  

We did another round of Google Earth Engine data extraction for year 2015 as a sample year 

using the same procedure as above for prediction of wall-to-wall maps after model selection. We 

did the prediction directly after downloading the dataset because no sampling is required in this 

case. A more detailed description of the algorithmic implementation is given in appendix B.   
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4.4. Results 

4.4.1. Properties of selected deep neural networks  

As mentioned before, we did our experiments in successive steps because of the huge 

number of parameter combinations. We fixed some parameters at the end of each stage, and the 

specific parameters of the selected models are listed in Table 4-2.  

Table 4-2: Selected models specification 

Model type T-LSTM ST-LSTM CNN+ST-LSTM 

Number of model parameters 52,663 2,297,127 2,685,287 

Training parameters 

Batch size 1024 1024 1024 

Optimizer Adadelta Adam Adam 

Optimizer parameters  Learning rate = 1.0 learning rate=0.001, 

AMSgrad=True 

learning rate=0.001, 

AMSgrad=True 

Final network architecture 

Layer structure: 

CNN layers: (# of filters and 

neighborhood size) per layer 

LSTM layers: # of cells per 

layer 

Multilayer network#1: # of 

neurons per layer 

Multilayer network#2: # of 

neurons per layer 

 

N/A 

 

48, 48, 48 

 

16, 16 

 

32, 32 

 

N/A 

 

320, 320. 320 

 

64,32 

 

256, 256, 256 

 

(128,3), (96,3) 

 

340, 340, 340 

 

32, 32 

 

128, 128, 128, 128 

Dropout regularization* 0.2, 0.2, 0 0.25, 0.1, 0 0.3,0.25,0.05,0.05 

Input features 

T-LSTM DOY, sensor, Landsat SR 6bands, Topography, ENDISI 

ST-LSTM DOY, sensor, Landsat SR 6bands, Topography, ENDISI, DD_ent_5x64, 

ENDISI_ent_15x64, blue_savg_15x64 

CNN+ST-LSTM CNN subnet input: Landsat SR 6 bands + Elevation 

Rest of network: DOY, sensor, Landsat SR 6bands, Topography, ENDISI, DD_ent_5x64, 

ENDISI_ent_15x64, blue_savg_15x64 

* Dropout ratios are given as a tuple of numbers and each number belongs to one of the blocks mentioned in the 

Layer Structure row. If not zero, the dropout ratio will be applied to all layers of that block.  
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4.4.2. Comparison of baseline models and proposed deep models 

We chose three other classification methods as baseline for comparison to our models: SVM 

(Support Vector Machines), RF (Random Forest), and non-recurrent multilayer neural network 

(also named MultiLayer Perceptron – MLP).  Among the baseline methods SVM was quickly 

unable to scale with input data sizes over a hundred thousand samples and had overall accuracy 

under 80%, so we didn’t continue with it. RF still takes a few days to train but it is of the same 

order as our model, and MLP was running in less than a day (due to its simpler architecture). For 

selection of input features to include, we fed the RF with all spectral, spatial (texture), and 

climate variables mentioned before and used the implemented possibility to automatically 

calculate the features relative importance. This analysis showed Landsat bands, topography 

variables, spectral indices and ENDISI_based GLCM features, and normal climate variables of 

higher importance. The higher priority of elevation and climate variables for RF (while climate 

variables were not among selected features in recurrent network) show that recurrent network 

can efficiently extract the local climate-related data from the data sequence Landsat bands, while 

RF and MLP are fed with single time stamps and do not have such an opportunity. We tried 

different feature combinations for a sample classifier and found that including all features gave 

us the best performance, so we kept all features (101 values) as the input to RF and MLP 

classifiers.   

For both RF and MLP there are some parameters to select: For RF the most important ones 

are number of trees, tree depth, and minimum leaf size, and for MLP the number of layers and 

number of neurons per layer. We tried different number of trees, tree depths, and minimum leaf 

sizes, and found the classifier performance saturated above 100 trees. Allowing for minimum 

leaf size of 1 and depth of 50 gave us the best performance (both overall accuracy and average 
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F1). For MLP, we tried networks of up to 5 layers and up to 1024 neurons per layer and found 

the classifier performance metrics (both overall accuracy and average F1) come close to the 

saturation with three layers of 1024 neurons each, having about 2.2 million parameters similar to 

our ST-LSTM model. For the MLP model, we kept the other hyperparameters such as batch size 

and network optimization algorithm the same as the values we chose for our final LSTM 

network. We also applied a dropout value of 0.05 to enhance the classifier generalization 

performance as we found this value working better than the other values. 

The results for the best model in each category of classifiers are reported in Table 4-3 for the 

2.4M samples test dataset, which shows considerable increase of up to 5.4% in average F1 and 

up to 6.3% in overall accuracy for our deep models compared to the Random Forest. Increase in 

individual class F1 values varied from 1.2% for bare class up to 8.8% for agriculture. The 

increase in performance can be directly related to exploiting more data dimensions. As discussed 

previously, the baseline models used only spectral data and texture features at their input and 

they couldn’t use full temporal information.  

Table 4-3: Classification accuracy of benchmark and proposed models 

Classifier 
Test 

acc. 

Avg. 

F1 

Class F1 values 

water developed grass forest bare agri. wetland 

RF(100,50,1) 91.7% 92.9% 97.5% 92.0% 91.3% 89.1% 98.2% 89.5% 92.3% 

MLP(3x1024)+Dropout(0.05) 91.2% 92.2% 97.3% 91.8% 90.3% 89.5% 97.8% 88.7% 90.1% 

T-LSTM 93.2% 93.9% 97.9% 92.5% 91.6% 94.5% 95.9% 92.7% 92.3% 

ST-LSTM 97.1% 97.4% 98.9% 97.1% 96.6% 95.6% 99.0% 97.2% 97.6% 

CNN+ST-LSTM 98.0% 98.2% 99.3% 98.1% 97.5% 96.9% 99.4% 98.2% 98.3% 

Ref. Matching to NLCD*   95.6% 91.9%* 83.6%* 86.3% 76.7% 92.1%* 86.6% 

* We did a comparison of our reference labels with NLCD 2016 labels, which is described in more detail 

in the text. Note that the definition of NLCD for these land cover classes designated with (*) differs 

from our definition. 
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T-LSTM model investigated temporal dimension and gave us one step of enhancement. 

Although T-LSTM did not have access to GLCM texture information, it performed better than 

baseline models and it can show that temporal pattern exploitation is more beneficial than texture 

information. In ST-LSTM model we added selected spatial features and it raised the performance 

considerably. Finally, CNN+ST-LSTM explored full potential spatial-spectral-temporal analysis 

by letting network decide on spatial features as well. It is also notable that the improvement 

came in all metrics of overall accuracy, average F1, and minimum F1. This may credit our initial 

plan for class distribution in training data, where we intentionally favored more difficult classes.  

We also did a comparison of our reference labels to NLCD 2016 land cover. NLCD maps are 

the product of a classification algorithm and we did not have their reference data. As we 

explained in section 4.3.1.1, we developed our own reference data by carefully examining each 

pixel manually and determined our definition of classes (as described in Appendix A), which 

differ slightly from NLCD classification scheme. These differences result in two set of labels 

that are not 100% compatible and also some differences arise due to application of administrative 

data or different class decision making thresholds. However, we still compare NLCD classes to 

our reference labels by setting up a confusion matrix and reporting the results in Table 4-3 (full 

confusion matrix is given in Appendix E). The differences between NLCD 2016 and our 

classification scheme are: 

- NLCD considers lawn grasses, city parks, golf courses, and vegetation planted in developed 

settings as part of its developed class, while we consider it as grass similar to natural settings. 

- NLCD considers pasture/hay in the agriculture class, while we may consider it as grassland if 

there is no evidence of intensive agricultural practices like crops. 
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- NLCD considers grass and shrub vegetation in two different class groups, while we consider 

both of them in the same class. 

- NLCD makes distinction between low, medium, and high density developed areas. We put 

all of them under developed title.  

Investigating the confusion matrix in appendix E, we found moderate to high confusion in below 

cases: 

- NLCD shrub/scrub with our developed, bare, and to a lesser degree with forest 

- NLCD grassland with our agriculture, developed, and to a lesser degree with bare 

- NLCD forest classes with our developed, grass and bare 

- NLCD Pasture/Hay with our developed and grass 

- NLCD agriculture with our developed (high confusion) 

- NLCD woody wetland with our forest (high confusion) 

The last two cases showed considerable confusion, therefore we dropped them and the 

reported results at the end of Table 4-3 are without them. Most of the confusion with developed 

class may come from the fact that NLCD has used roads map and other administrative data for 

mapping the developed class, while we did not do that and just used remote sensing data. We 

also consider tree canopy areas inside urban land as forest land cover. 

4.4.3. Detailed assessment of final deep model 

The selected final deep model is the best model we found in our simulations in terms of 

average F1 value, which is a CNN+ST-LSTM model with configuration shown in Table 4-2 and 

overall performance metrics shown in Table 4-3. In this section we look closer at the model 

performance, both quantitatively and qualitatively. 
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4.4.3.1. Spatial variability of accuracy 

Model assessment in section 4.4.2 was based on aggregate test data by combining test data 

from all blocks. Here we assessed model performance on individual blocks to illustrate its spatial 

variability. For each block, the overall test accuracy, average F1 over classes, and minimum F1 

over classes were calculated and the average value over all blocks is reported in Table 4-4 (we 

also included the same figures based on MLP model for comparison). One important problem we 

found when reporting on individual blocks was low F1 performance on rare classes for 

individual scenes. This is the main tradeoff that exists when mixing local and global targets. We 

can probably get a better local performance by focusing our training on just one block, but we 

will lose the general picture and model will not perform well in other local areas. We also 

dropped classes with less than 500 pixels in any individual block in this section when calculating 

average or minimum F1 values and considered those cases as not enough samples to extract 

reliable information for that class. 

Table 4-4: Best model and MLP model average and range of performance over all 84 blocks 

 Test Accuracy Average F1 Minimum F1 

Model Average (range) Average (range) Average (range) 

CNN+ST-LSTM 97.6% (93.5%-99.7%) 96.5% (92.3%-99.6%) 92.7% (81.1%-99.4%) 

MLP 90.2% (77.2%-98.8%) 84.7% (66.7%-98.8%) 70.1% (28.5%-98.2%) 

 

We also visualized the variation in individual ecoregion classification performance as shown 

in the maps of Figure 4-3. Note that this visualization extrapolates our results from a single block 

falling within each ecoregion. Thus, it is not an extensively tested product, however it can guide 

us roughly on which areas we need additional samples and/or improved algorithms to enhance 

our classification accuracies.  
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(a) 

 

(b) 

Figure 4-3: Visual representation of a) Average F1, b) Minimum F1 over 84 US ecoregions. Red 

color shows the worst and green shows the best performance. The numbers shown on the top figure 

indicates each polygon’s associated ecoregion number, while the numbers shown on the bottom figure 

indicates the worst class number (in the range of 0-6) by F1 statistics for that ecoregion.  
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4.4.3.2. Value of multi-sensor Landsat observations 

It is also important to know how the selected CNN+ST-LSTM model performs under limited 

input data due to either sensor availability or missing information (e.g., cloud coverage). This 

experiment was executed with two main configurations: single-sensor and multi-sensor. For 

single-sensor case, we removed all observations of the other sensors, fed the model with the 

single sensor data, and calculated the performance metrics. It is important to note that no 

retraining took place using the single sensor observations, which could potentially increase 

classification performance. The results for these simulations are provided in Table 4-5. The 

range of difference in overall accuracy, average F1, and most of class F1 values is around 1% 

except wetland class for which this range is 3.6%. Landsat 8 provides the best performance for 

most of the metrics except F1 for forest and bare classes. Landsat 5 stands next to it by 

performing better than Landsat 7 except for developed class F1. Note that the input data 

sequences cover different years from 2005 up to 2019, therefore we did not have all the sensors 

in all the years but the figures are adjusted to account for this change in reference data.  

As the set of pixels used in evaluation are the same for all sensors, we may think of better 

Landsat 8 performance due to being more recent with more precise and better-quality 

instruments. But worse performance of Landsat 7 may be a result of its longer mission time, 

which have increased the number of test sequences substantially and may increase observations 

variation for the same point due to phenomena such as climate-induced or anthropogenic 

changes. As for the Landsat 7 SLC failure problem, the invalid data were automatically stripped 

by Google Earth Engine and they were not included in the downloaded data, so it did not affect 

our analysis. The last column of the table shows the average number of scenes per year available 
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in each configuration. This figure was made by counting the scenes available in each year in 

each configuration for each block and averaging it over years and then over all blocks.  

Table 4-5: Summary performance statistics for single-sensor simulations 

Sensor Test acc. Average F1 # test sequences # Scenes/year 

Landsat 5 94.2% 94.8% 1,240,935 30 

Landsat 7 93.8% 94.1% 2,297,126 34 

Landsat 8 94.9% 95.1% 882,002 37 

Sensor Water_F1 Imp_F1 Grass_F1 Forest_F1 Bare_F1 Agri_F1 Wetland_F1 

Landsat 5 98.5% 95.1% 91.3% 94.6% 98.0% 93.4% 93.1% 

Landsat 7 98.1% 95.4% 91.3% 93.4% 97.7% 92.5% 90.6% 

Landsat 8 98.6% 96.3% 91.9% 94.4% 97.0% 93.6% 94.3% 

 

For multi-sensor experiments we considered two cases: Fusion of Landsat 5 and 7, or fusion 

of Landsat 7 and 8. Fusion of Landsat 5 and 8 is impossible due to their non-overlapping mission 

time. For fusion of Landsat 5/7 we picked those sequences that contain both Landsat 5 and 

Landsat 7, then generated two other sets of sequences from it by keeping either sole Landsat 5 or 

sole Landsat 7 observations in each of them. This way, the performance evaluation of individual 

and fused observations can be directly compared. We followed the same process for Landsat 7/8 

assessment. The results are shown in Table 4-6 and Table 4-7, respectively.  

The fusion results are very promising and show the power of combining multiple sensors 

together. Although the difference between individual sensors’ performance was mostly about 

1%, the fusion of Landsat 5/7 or Landsat 7/8 gives us about 4.5% gain in overall accuracy or 

average F1 and up to 8.4% gain in class F1 for wetland class. We also see the maximum class F1 

improvement in Wetland, agriculture and grass classes and least improvement in bare and water 

classes, which is good and what we need because bare and water are the easiest and least 

problematic classes.  
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Increased performance with multi-sensor data can be attributed to two things: 1) having more 

observations and more data to do a better prediction, and 2) having our model trained on multi-

sensor training data. As not all the sensors are available for all periods of time and our aim was 

to have our model as general as possible, we opted to train our model on combination of all 

sensors. 

Table 4-6: Summary performance statistics for Landsat 5/7 fusion 

Sensor Test accuracy Average F1 # test sequences 

Landsat 5 (adjusted) 94.2% 94.8% 1,240,603 

Landsat 7 (adjusted) 93.5% 93.9% 1,240,603 

Landsat 5 and 7 98.0% 98.2% 1,240,603 

Sensor Water_F1 Imp_F1 Grass_F1 Forest_F1 Bare_F1 Agri_F1 Wetland_F1 

Landsat 5 (adjusted) 98.5% 95.1% 91.3% 94.6% 98.0% 93.4% 93.1% 

Landsat 7 (adjusted) 97.8% 95.0% 90.9% 93.5% 97.7% 92.3% 89.9% 

Landsat 5 and 7 99.2% 98.1% 97.5% 97.0% 99.4% 98.3% 98.2% 

 

Table 4-7: Summary performance statistics for Landsat 7/8 fusion 

Sensor Test accuracy Average F1 # test sequences 

Landsat 7 (adjusted) 93.5% 93.7% 881,781 

Landsat 8 (adjusted) 94.9% 95.1% 881,781 

Landsat 7 and 8 98.1% 98.3% 881,781 

Sensor Water_F1 Imp_F1 Grass_F1 Forest_F1 Bare_F1 Agri_F1 Wetland_F1 

Landsat 7 (adjusted) 98.3% 95.5% 90.5% 92.6% 97.3% 91.5% 90.3% 

Landsat 8 (adjusted) 98.6% 96.3% 91.9% 94.4% 97.0% 93.6% 94.3% 

Landsat 7 and 8 99.3% 98.3% 97.4% 96.7% 99.4% 98.2% 98.4% 

 

4.4.3.3. Classification accuracy and scene availability 

We also looked at the variation of classification performance on annual sequences of different 

lengths, in essence the number of valid observations per year. The results are shown in Figure 
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4-4 and Figure 4-5 for different  for different combinations of sensors. In each graph, we 

depicted the distribution of sequence lengths (showing the number of available Landsat scenes 

for each range of lengths in a histogram) over the entire dataset used, and variation of 

performance metrics over sequence length. Note that these graphs cannot be compared, because 

the distribution of points and blocks in each case and in each histogram is different (for example 

sequences of Landsat 5 and 8 have no time overlap). Also note that we have dropped reporting 

F1 for classes with less than 50 members in a bin, therefore the average of individual class F1 

curves may be truncated. The following remarks could be made: 

1- Increasing the sequence length generally enhances the classification performance, which was 

expected. Combining sensors gives us the better and more stable performance over different 

sequence lengths. A critical threshold for single-sensor case seems to be around 10-15 

observations per year, beyond which the accuracy improvements are phasing out. This 

problem is less pronounced in multi-sensor configuration and we get more stable 

performance over all sequence lengths. This better performance in multi-sensor configuration 

may be a result of training the model with sequences containing multi-sensor input data, 

which makes it performing better on multi-sensor test sequences as well. Each bin typically 

contains most of the blocks, but this diversity decreases considerably in the last bins and the 

sequences in these bins mostly come from a few blocks. This may explain the decrease in 

performance in Landsat 5 and 7 at the end of their curve, plus some sudden dips for certain 

curves in the diagrams. However, as noted before, bin-to-bin comparison is not generally 

valid. 

2- Grass and forest classes are the worst from individual class F1 standpoint, which is also 

confirmed from the full evaluation result for class F1 (table 3). Grass requires longer 
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sequences than any other class to obtain a good F1. It might be because of the high level of 

confusion between grass and agriculture or bare classes when only a few time stamps of 

observations are available. Forest performance deteriorates with too many observations per 

sequence, but we could not identify a clear cause for it.  

3- As expected, water has always been easy to predict with any sensor. Developed class 

performance is also good at all sequence lengths, which is expected because this class 

typically does not experience temporal changes through time for a stable pixel. 

 

Figure 4-4: Model performance metrics for different length of input sequences with  

limiting input observations to a single sensor. In each drawing, left axis corresponds 

to the scene length histogram (blue bars) with the numbers showing the ratio of each bar frequency to the 

total number of sequences in percentage. Right axis corresponds to performance metrics 

(detailed in the legend at bottom right of each drawing) 
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Figure 4-5: Model performance metrics for different length of input sequences by inclusion  

of multiple sensors. Note that the fusion of Landsat 5/7 and Landsat 7/8 involves the dataset 

 adjusting procedure described before in this section, but the last drawing imposes no  

limitation and simply considers all of the sequences and draws the histogram and curves. 

4.4.4. Visual assessment 

We follow the quantitative analysis of our model performance in the previous section with 

visual inspections. We generated wall-to-wall maps for two sample blocks, here we discuss 

details on limited areas (we did it for all blocks for year 2015 and the results for some more 

blocks are provided in appendix F). A wall-to-wall map was generated for a given year, as the 

model input sequences cover maximum one year of Landsat observations. Also, there is no 

sampling and all the block points were used for training. As the training data was just samples 
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over each block’s points within full time range of our study period, only a very small portion (on 

average about 1%) of the above mentioned one-year sequences might be used in the training 

process and the block map was almost completely model generalization. The first block is the 

sample used to represent ecoregion 03, located northwest of Portland, OR. This area is a mixture 

all seven land covers, and the predicted map for full block is shown in Figure 4-6. For this block, 

the test accuracy was 98.6% and average F1 was 95.2%.  

 

 
Figure 4-6: Block 03 classified map 

We also take a closer look by zooming into the area marked with white rectangle. In Figure 

4-7, we provided both high-resolution imagery of this area (provided by Google Earth) and the 

classified map, overlaid on imagery with some transparency. 

Comparing high-resolution imagery and classified map, you can see how different land 

covers delineated and it is mostly in accordance with the actual image. Although it may not be 

evident from high-resolution imagery (as it is just a one-time snapshot), the big blue area in the 

center and right side of the image was a wetland (woody or herbaceous) and we could confirm it 
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by looking at the other images in Google Earth, also by NLCD 2016 land cover map. However, 

the ‘island’ identified in the center of image (polygon #1) showed some evidence of agricultural 

activities and our classifier could separate it well from wetland, while NLCD map showed this 

island as some small, fragmented areas. Evidence of agricultural activities was also the base for 

assignment of undeveloped land inside or around city to grass or agriculture class (some 

examples are marked by polygons #2). We also see how the narrow road connecting island to the 

city has been identified (arrow #3), but there was another narrow road below that one, which is 

missed by the classifier (arrow #4).  
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Figure 4-7: Zoomed area  in Figure 4-6, high-resolution imagery (top) and classified map (bottom)  
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Another case that we show in this section is the block representing ecoregion 23, located 

west of Flagstaff, AZ. The area is home to National Guard camp Navajo, and is dominated by 

forest and grass land cover but a lot of camp access roads, as shown in Figure 4-8. For this block, 

the test accuracy was 96.9% and average F1 was 96.6%. We also took a closer look at the 

marked area in this figure with a snapshot of its high-resolution imagery via Google Earth, as 

shown in Figure 4-9. Here we have the roads network extracted very well, without any external 

information. We can also see in Figure 4-9 that the forest and grass/low vegetation areas are 

accurately delineated in the area marked with #1 (mostly forested), area marked #2 (mostly grass 

or very low vegetation), and the two areas marked # 3 (mixed forest/grass). 

 
Figure 4-8: Block 23 classified map 
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Figure 4-9: Zoomed area in Figure 4-8, high-resolution imagery (top) and classified map (bottom)  

4.4.5. Ensemble of models 

Ensembling is a widely used method of improving model performance in machine learning 

and is based on combination of a set of trained models to get their collective best vote, which 

should be more accurate than any one of them (Random Forest classifier is a well-known 

example of applying the ensembling technique). As our training procedure included a wide range 

of the network parameters, we had many additional models at the end of this procedure which 
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were similar to the selected model in performance but with minor differences. Therefore, it was 

worth looking at their ensemble. 

To do this, we created a pool of 40 best models from our latest simulations. The best selected 

single model was the one that we introduced before, which gave us the best average F1 

performance over the whole evaluation dataset. Then in an iterative loop, we identified the next 

best model to add to it as the next ensemble member to achieve the best collective performance 

on average F1 metric, and continued it up to an ensemble of 10 models. Table 4-8 shows the 

performance statistics for ensembles of 2 to 10 models, generated by testing the models on the 

2.4M test dataset that has been used in the prior single-model experiments in Table 4-3. 

The collective voting can simply be based on majority of classes that are predicted per pixel 

by participating models (i.e., hard-decision making). But we chose a soft-decision approach and 

selected the class that provides the greatest average softmax value over participating models for 

each pixel. Our analysis showed that a soft-decision approach gives better performance than 

hard-decision making.  

Table 4-8: Performance statistics for ensembles of two to ten CNN+ST-LSTM models. Last two 

columns are the difference between Avg F1 or Min F1 of each row and the original CNN+ST-LSTM 

# of models Accuracy Average F1 Minimum F1 

CNN+ST-LSTM 98.0% 98.2% 96.9% 

2 98.4% 98.6% 97.4% 

3 98.5% 98.6% 97.5% 

4 98.5% 98.7% 97.6% 

5 98.6% 98.7% 97.7% 

6 98.6% 98.7% 97.7% 

7 98.6% 98.8% 97.7% 

8 98.6% 98.8% 97.7% 

9 98.6% 98.8% 97.8% 

10 98.6% 98.8% 97.8% 
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As the result shows us, the overall performance improvement is very small as the model 

performance is already very high. One interesting finding was that having the first best model 

(the model used in the previous section) as the best model when measured by average F1, the 

second-best model (used for ensemble of two models) was the model with the best minimum F1. 

It makes sense that these two be the best first and second models. There was no apparent 

specification that we could attach to the next models. 

It would be also interesting to look at the performance of ensemble models on individual 

blocks quantitatively and visually. We calculated the achieved gain in average and minimum F1 

by ensembling of 2, 3, 4, 5, and 10 models and the results are shown in Figure 4-10 and Figure 

4-11. In these figures, the horizontal axis shows base model performance (average F1 or 

minimum F1) and the vertical axis measures ensembling difference compared to it. Each block in 

each ensemble is depicted by a symbol and the regression line for each ensemble is also drawn. 

Both diagrams show a similar trend and the most important feature is that due to negative slope 

of regression line, the ensembling gain is more pronounced for blocks where the single model is 

not performing very well. This is good news, as the ensemble gives us better gain where we need 

it the most.  

As seen in Figure 4-10, the maximum ensembling gain is about 2.5% for ensemble of 10 

models but it can also be as high as about 2% for just two models. Therefore, the improvement 

on average F1 is marginal.  The calculated R2 value for the ensemble regression lines in figure 10 

is between 0.6 (for 2 model) to 0.75 (for 10 models), which is not very high but shows moderate  

linear relationship. For minimum F1 as you see in Figure 4-11, we have the maximum 

ensembling gain about 6.5%, achieved by ensemble of 4, 5, or 10 models. In this case the two-

model ensemble will give us improvement less than 3.5%. The regression line, however, is 
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almost identical for ensemble of 5 and 10 models, suggesting there is no benefit for going further 

than 5 models. The calculated R2 value for the ensemble regression lines in Figure 4-11 are 

similar to Figure 4-10, ranging between 0.57 (for 2 model) to 0.70 (for 4 models). 

 

Figure 4-10: Comparison of ensemble of 2, 3, 5, and 10 models to the base model  

for individual 84 blocks on average F1 
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Figure 4-11: Comparison of ensemble of 2, 3, 5, and 10 models to the base model  

for individual 84 blocks on minimum F1 

Note that the above improvement in block classification accuracy may not be evident from 

visual examination as the improvement is marginal. We have provided an example of predicted 

ensemble map in appendix G using 1, 2, and 3 models.  

4.5. Conclusion 

In this paper we applied state-of-the-art deep learning methods to global land cover 

classification and presented the steps that we designed and implemented for this purpose. In our 

approach we used LSTM-type recurrent networks complemented with additional multilayer 

perceptron and convolutional networks. The model is fed and trained with rich spectral-spatial-

temporal features by combining different globally free available medium-resolution datasets. To 

the best of our knowledge, this is the first application of recurrent deep learning methodology in 

large-area land cover classification, which was typically done by conventional classifiers and 
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with additional input data (e.g., road vectors). We tested three different network configurations 

and tuned many hyperparameters and feature combinations through numerous simulations and 

achieved outstanding performance and very high accuracy of above 98% (for both overall 

accuracy and average F1) for our most complete convolutional spatio-temporal LSTM model 

based on a selected number of input features. These values were limited to around 93% (overall 

accuracy) and 94% (average F1) when not employing spatial features (temporal LSTM model). It 

was also around 92% (overall accuracy) and 93% (average F1) with the best random forest 

classifier in our tests even though we used all of the spectral and spatial features as their input. 

We also showed that although providing more time stamps is beneficial, the best model will 

maintain a stable performance with only about 10 time stamps per year. Although the limited 

resolution of Landsat data to a medium level of 30 meters hides fine details from the observing 

model, we showed that our model can employ temporal profile of data to distinguish similar land 

covers such as grassland and cultivation. As another enhancement, ensembling some of the best 

achieved models increased the performance statistics, particularly minimum F1, substantially for 

some blocks.        

The wide geographical coverage of our sample data is another strength of our study and 

provided us with good insight on the pros and cons of our model. As we discussed, there is a 

tradeoff between local and global performance and we were more interested in having a global 

model, only based on remote sensing data and no auxiliary administrative information and 

therefore easily deployable in any other location in USA or abroad.  

There are still some limitations and caveats in the model, and we have ideas to enhance the 

work. For example, we need to assess the model performance by a complete random sampling 

over whole CONUS, and to evaluate more blocks in each ecoregion to identify local 
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performance issues. The class imbalance and its effect on the model performance is also a well-

known issue that is inevitable unless some special measures are taken to combat it. There are 

well-known approaches such as increasing the weight of rare classes in the classifier 

optimization algorithm or generating synthetic data to increase rare class presence. Preliminary 

efforts applying these ideas did not enhance the performance in our experiments, but this remains 

an open area for further exploration. 

There are some immediate next-step enhancements to the model architecture as well. One of 

the most useful enhancements – especially for reducing the required computing budget – is to 

transform the model processing to a fully convolutional architecture. The current problem is that 

the reference data is not available for all pixels in any block, therefore there are a lot of “invalid” 

pixels in the reference map that makes fully convolutional processing problematic. Another 

drawback of the current patchy reference data and the subsequent pixel-based classification is 

that we cannot perform any object-based analysis or employ segmentation techniques to make 

the output map smoother and less noisy. As the model is already a very high performance one 

with accuracy of over 98% on aggregate dataset, modifying its architecture to use proprietary 

modules, optimizers, or layer connections does not seem to be a vital need. However, improving 

the local block-level performance is a major issue that needs further investigation. Migrating to 

finer resolution data such as Sentinel-2 may help, and as it is available on the same platform as 

we used for this work, the transition can be seamless. And last but not least, adding some pre-

processing steps such as spectral unmixing might be helpful to reduce class confusion.     
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Appendices 

Appendix A: Land cover labels inspection and editing procedure and rules 

The land cover class definition and general rules governing the class assignment are 

summarized in table A-1. Although we did our best to minimize mistakes and confusion, 

subjective decision making is inevitable in such a process and it will make the dataset not 100% 

error-free (for example judgement on majority rule or distinguishing farmland from pasture by 

eye). General considerations are:  

- Only pixels that could be confidently labeled from high resolution Google Earth imagery 

were selected. 

- The labeling process first prioritized the developed class. This approach was taken because of 

the importance of the effects of anthropogenic changes to the environment, and it is also the 

approach taken in NLCD class specification. If not labeled developed, the cropland class and 

water continuity (i.e., rivers) were considered. Otherwise, the class was assigned based on the 

majority class of the pixel area. 

- For a pixel to be assigned to a given class it had to remain unchanged for the 2005-2015 

period. For developed, water, and forest classes this temporal consistency was easily 

enforced as exceptions were rare (e.g., a forest is clear cut, a water body dried up, a building 

was abandoned). For grass, barren, cropland and wetland temporal consistency was 

challenging due to the expected within class dynamics (e.g., expanding/shrinking wetland, 

postponing cultivation for some period of time, drought conditions). For these cases, a class 
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was assigned when it was present for 2/3 of the available observations through the 2005-2015 

period.3   

- Class expected dynamics such as leaf dropping, grow/decline of grassy areas in prairies and 

agriculture were considered natural changes keeping the class label unchanged. However, 

other unexpected changes, for example clear cutting within the above time period, 

disqualified pixels from inclusion. 

- Wetland is by far the trickiest class because technically we should know the soil moisture to 

label it correctly, which we cannot measure from the aerial optical natural color imagery. So, 

for this class, reference assignment was done very conservatively and almost always only the 

inner parts of the area designated in USGS trends map as wetland was preserved and the rest 

was removed. 

 

  

 
3 The reason to keep land cover unchanged over many years was mostly to have a good temporal diversity and be 

able to employ all three Landsat satellites (5/7/8). If we had chosen a shorter period such as 2008-2012, we might 

have more pixels included but less temporal diversity. Actually we didn’t even limit ourselves in practice to 2015 and 

included more recent years if we were sure of land cover stability. 
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Table A-1: Land cover class definitions and class-specific considerations in reference assignment 

 

Water 

(class 0) 

Ponds, lakes, rivers, oceans that are persistently filled by water.  

For lakes, ponds, and oceans, only the pixels demonstrating a persistent water presence were 

included. For streams/rivers, a pixel was assigned to the water class when deemed necessary to 

preserve the spatial continuity (i.e., avoid river breaks), even if the water occupied less pixel area 

than other classes). Water presence was required to be persistent through time, therefore seasonal 

water presence (e.g., seasonal streams, limited flooding) did not qualify a pixel for the water 

class. Presence of algae on the water surface did not disqualify a pixel from water class 

assignment.  

Developed 

(class 1) 

Built-up area including houses, factories, barns, parking lots, roads (paved or dirt), railroads.  

The developed class was prioritized over all other classes. When 20% or higher of the pixel area 

was deemed developed the pixel was assigned to the developed class. Road pixels, even when 

occupying less than 20% of pixel area were still assigned as developed when it was necessary to 

preserve their spatial continuity. Dirt roads were considered falling in the developed class, but 

irregular/temporary tracks and trails/footpaths were not. 

Grass/Shrub 

(class 2) 

Low vegetation that is not cultivated, including natural patches, pasture and grazing land, and 

man-made patches. 

Man-made patches including yard lawns, city parks, golf courses, and soccer fields were assigned 

to this class. Pasture and Grazing lands that are not intensely cultivated were also included here. 

Forest 

(class 3) 

Tall vegetation (taller than typical grass/shrubs) that is not intensely cultivated.  

All tree types, including forest plantations, were assigned as forest. Tree orchards were not 

assigned as forest. 

Bare 

(class 4) 

Soil, rocks, mining land, or land with very limited vegetation. 

If vegetation was identified as majority for a pixel area even for a short time period it was labeled 

as grassland and not barren. Sand dunes and dry sandy areas were assigned in the barren land. 

This class includes Barren, mechanically disturbed, and nonmechanically disturbed classes of the 

original 11-level Anderson classification scheme. 

Agriculture 

(class 5) 

Cultivated areas demonstrating distinct agricultural parcel shapes and tilling lines, including 

orchards and vineyards.  

For designation as cropland, these characteristics were sought for at least 20% of the pixel area: 

1) row pattern of tilling/cultivation, 2) temporal high contrast color transition from green to 

yellow, 3) regular rectangular shape with clear farm edges. 

Wetland 

(class 6) 

A typically vegetated area that is periodically saturated or covered with water.  

For designation as a wetland (that may have low plants or high trees mixed with water) water 

should be present mixed with vegetation most of the time. There should be no clear water 

boundary as the boundary may change every year (unlike a lake or a pond). For woody wetlands, 

where water was difficult to identify under thick canopy, wetlands were assigned when high 

vegetation turnover was present. Examination of these challenging pixels during winter months 

was a critical decision component. Muddy, vegetation-free areas in lake borderlines or seashores 

were assigned as wetland, not barren land.  

Ice/Snow Permanent coverage by ice/snow. This class was not present in our dataset. 
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Appendix B: General workflow and reference maps generation procedure 

General steps in dataset and simulation tasks in our work is depicted in figure B-1. The 

inspection and editing of land cover labels were a very labor-intensive work that was done by a 

team and the work was checked by different people in various stages to minimize the human 

error. We used Google Earth high-resolution imagery to review pixels by executing below steps 

for each block: 

1. Converting the original USGS land cover map to several layers per class and creating a 2D 

mesh over the area to designate 30mx30m squares. 

2. Loading the above set of layers on Google Earth and enable its historical imagery. 

3. Sliding time back and forth and decide on each square class correctness and keep it (if we 

were certain) or drop it (if it was incorrect or we were uncertain).  

4. We also assign a time tag to each pixel to designate the time period in which the pixel had its 

stable land cover. This feature is necessary because we do not have full 2005-2015 high-

resolution imagery for every block available on Google Earth.  

5. Each block is edited by one person and then reviewed by another person and the final 

inspector. 

6. The final layers are merged to make the final corrected map and saved in the repository for 

the next stage (sampling and building training dataset). 
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Figure B-1: Flow diagram of the processing steps in data generation and simulation/testing in our 

project 
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Appendix C: Details of land cover class distribution for each of 84 selected blocks 

For each sample block we chose the pixels that we confirmed as stable for our reference 

labels. Based on that, we picked all available developed, bare, and wetland pixels (as they were 

more difficult to classify or rare) and a subset of the pixels for other labels to keep their 

frequency between the other classes. The final result is shown in table C-1.  

Table C-1: Individual blocks class final distribution after adjusting class distribution 

Block# Water developed Grass/Shrub Forest Bare Agriculture Wetland Total points 

01_0438 8972 3653 1133 1005 938 138 698 16537 

02_0049 1851 19794 74 1308 3 756 4058 27844 

03_0003 3595 8452 294 423 212 3178 10127 26281 

04_0030 241 1914 249 3302 37 352 893 6988 

05_0247 2243 544 1513 1914 896 0 290 7400 

06_0258 140 25263 3851 2699 0 577 845 33375 

07_0016 0 37250 2467 37 0 10346 0 50100 

08_0017 0 2552 9837 858 0 0 0 13247 

09_0275 151 2121 2014 2407 569 0 617 7879 

10_0096 296 17452 13057 520 86 1133 0 32544 

11_0083 53 2056 4087 1475 25 2135 0 9831 

12_0116 4564 5841 553 147 85 12508 1226 24924 

13_1185 0 766 17385 0 21961 0 8149 48261 

14_0493 803 5206 11440 0 29891 0 0 47340 

15_0266 4449 1242 10573 2002 135 278 0 18679 

16_0061 0 1276 11712 2424 0 553 219 16184 

17_0013 38 5681 2762 5237 46 3146 14 16924 

18_0143 0 4193 21215 99 177 595 639 26918 

19_0276 56 1722 3440 4299 0 0 0 9517 

20_0031 145 432 9454 3083 640 0 0 13754 

21_0235 132 2639 8878 4978 0 344 466 17437 

22_0303 0 4313 4195 1167 2145 0 0 11820 

23_0135 9 3967 2088 2823 0 0 0 8887 

24_0315 76 10036 11590 0 1211 0 232 23145 

25_0049 0 1013 10029 2812 15 1551 0 15420 

26_0265 46 2100 12902 5 14 5117 0 20184 

27_0101 211 7678 1369 270 99 18632 0 28259 

28_0005 36 1960 9127 749 0 10839 534 23245 

29_0124 509 9330 1211 1755 0 3580 0 16385 

30_0080 73 1212 4885 1123 42 728 0 8063 

31_0021 48 2411 966 2629 0 7906 0 13960 

32_0075 114 1829 1292 2112 0 2460 6435 14242 
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Block# Water developed Grass/Shrub Forest Bare Agriculture Wetland Total points 

33_0005 5346 2596 280 1472 4 1648 842 12188 

34_0002 269 3071 309 2651 0 1507 236 8043 

35_0171 37 3801 640 2405 2 1605 567 9057 

36_0009 4 1478 780 5830 0 566 9 8667 

37_0015 291 5536 620 3190 108 1598 0 11343 

38_0088 624 2483 682 5379 0 2541 54 11763 

39_0058 1354 2802 79 3411 37 10539 20 18242 

40_0153 400 1211 663 3114 0 11497 0 16885 

41_0034 1367 518 1326 5467 21943 0 8 30629 

42_0787 2098 2591 5636 68 0 12885 395 23673 

43_2156 49 588 14807 919 73 4060 537 21033 

44_0040 142 715 16466 1361 0 976 0 19660 

45_0059 133 2412 316 4476 0 1403 0 8740 

46_0205 42 2061 8329 310 0 5852 3156 19750 

47_0572 3408 10611 260 152 0 16358 679 31468 

48_0017 164 4023 316 1547 25 11292 881 18248 

49_0030 49 993 1331 1911 0 3899 17466 25649 

50_0140 3026 1212 57 5964 0 145 4355 14759 

51_0016 325 3947 522 2732 0 3287 5411 16224 

52_0005 421 5267 153 2405 0 11437 1911 21594 

53_0161 2925 16296 120 533 40 5075 149 25138 

54_0017 2430 18215 345 569 149 2496 3720 27924 

55_0195 194 3848 421 1453 13 18690 169 24788 

56_0005 34 6126 84 1795 0 10610 2523 21172 

57_0051 14509 3250 78 85 0 6811 2043 26776 

58_0576 250 2988 409 7361 113 648 1494 13263 

59_0140 8661 9143 132 548 330 83 1124 20021 

60_0059 252 3458 0 6233 0 4785 0 14728 

61_0005 153 5433 0 5621 0 4808 653 16668 

62_0007 1420 5554 0 8133 0 0 453 15560 

63_0031 68 4808 0 4380 0 5033 0 14289 

64_0018 464 26194 0 1721 0 405 59 28843 

65_0451 279 1083 137 1745 0 6456 0 9700 

66_0021 283 2396 16 5529 0 697 0 8921 

67_0029 426 25079 116 3272 0 3352 0 32245 

68_0034 158 3323 26 6161 0 438 0 10106 

69_0111 10 3511 341 6924 0 1940 0 12726 

70_0015 91 1669 1008 4452 0 3347 0 10567 

71_0042 29 11848 130 2946 320 2891 0 18164 

72_0060 2957 3246 272 1468 0 12188 161 20292 

73_0786 882 20353 160 1989 0 742 141 24267 

74_0176 54 4215 251 3546 28 3738 0 11832 

75_0747 10738 1923 97 369 0 603 3727 17457 
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Block# Water developed Grass/Shrub Forest Bare Agriculture Wetland Total points 

76_0047 759 13767 132 52 0 4218 13416 32344 

77_0057 365 1845 318 3975 60 763 340 7666 

78_0007 24 1871 2396 2406 0 501 0 7198 

79_0018 255 0 21039 150 2893 0 0 24337 

80_0039 0 1278 11879 1194 806 0 0 15157 

81_0469 5 4768 10129 35 918 337 0 16192 

82_0004 289 2192 407 2688 35 5691 1044 12346 

83_0346 217 18532 223 3712 900 2503 840 26927 

84_0024 2379 40745 80 486 0 162 2798 46650 

sum 99,960  522,771  299,960  199,957  88,024  299,958  106,823  1,617,453  
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Appendix D Definition of spectral indices used in this research 

Below you will find formulas for the eight spectral indices we used in this work, divided into 

4 categories. Unless otherwise stated, the index definitions are taken from L3Harris Geospatial 

Alphabetical List of Spectral Indices4. 

 

➢ To better delineate vegetation, we looked at below three indices: 

1. NDVI: This is the basic and most widely used vegetation index. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

2. Modified Soil Adjusted Vegetation Index 2 (MSAVI2): This index is also well known and 

has more discrimination power to highlight vegetation and as the name suggests corrects 

some of NDVI dependency to the soil type and inclusion of bare soil in pixel. 

𝑀𝑆𝐴𝑉𝐼2 =  
2𝑁𝐼𝑅 + 1 − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
 

3. Non-Linear Index (NLI): This index aims to help model nonlinear relationships between 

vegetation indices and surface parameters, and defined as: 

𝑁𝐿𝐼 =  
𝑁𝐼𝑅2 − 𝑅𝑒𝑑

𝑁𝐼𝑅2 + 𝑅𝑒𝑑
 

 

➢ To better delineate bare soil and wetland class, we looked at below three indices: 

4. Bare Soil Index (Sahana, Sajjad, and Ahmed 2015): The higher the BSI, there will be more 

bare areas and less vegetation. 

𝐵𝑆𝐼 =  
(𝑆𝑊𝐼𝑅1 + 𝑅𝑒𝑑) − (𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)

(𝑆𝑊𝐼𝑅1 + 𝑅𝑒𝑠) + (𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
 

 
4 https://www.l3harrisgeospatial.com/docs/alphabeticallistspectralindices.html 

https://www.l3harrisgeospatial.com/docs/alphabeticallistspectralindices.html
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5. Drought Distance index (Sadeghi et al. 2017): This index measures the distance of pixel to 

the origin in NIR-Red space and normalizes it w.r.t NDVI. The lower the index, the wetter or 

less vegetation canopy is the area. I dropped the denominator and only used the numerator in 

my calculations because for wetland I am more concerned about wetness (being close to the 

origin) than vegetation. 

𝐷𝐷 =  
√𝑅𝑒𝑑2 + 𝑁𝐼𝑅2

1 + 𝑁𝐷𝑉𝐼
 

6. Visible and Shortwave infrared Drought Index (Sadeghi et al. 2017): This index is 

theoretically based on the difference between moisture-sensitive bands (SWIR and red) and 

moisture reference band (blue) to account for different sources of moisture (soil or 

vegetation). The higher the VSDI, the wetter the soil or vegetation. 

𝑉𝑆𝐷𝐼 = 1 − [(𝑆𝑊𝐼𝑅1 − 𝑏𝑙𝑖𝑒) + (𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒)] 

 

➢ And for delineating water bodies, we used below index: 

7. Modified Normalized Difference Water Index (Guo et al. 2017): It is reported that this 

modified water index picks water bodies more precisely than its former variants.  

𝑀𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1
 

 

➢ To help identify built-up and impervious land cover, we used below index: 

8. Enhanced Normalized Difference Impervious Surfaces Index (Junyi Chen et al. 2019)  has 

been introduced recently and it is reported to have  better performance compared to other 

available index, NDBI (normalized difference built-up index). 

𝐸𝑁𝐷𝐼𝑆𝐼 =  
𝐵𝑙𝑢𝑒 −  𝛼 [

𝑆𝑊𝐼𝑅1
𝑆𝑊𝐼𝑅2

+ 𝑀𝑁𝐷𝑊𝐼2]

𝐵𝑙𝑢𝑒 +  𝛼 [
𝑆𝑊𝐼𝑅1
𝑆𝑊𝐼𝑅2

+ 𝑀𝑁𝐷𝑊𝐼2]
 , 𝛼 =

2𝐵𝑙𝑢𝑒𝑀𝑒𝑎𝑛

(
𝑆𝑊𝐼𝑅1
𝑆𝑊𝐼𝑅2

)
𝑀𝑒𝑎𝑛

+ 𝑀𝑁𝐷𝑊𝐼𝑀𝑒𝑎𝑛
2
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Appendix E: Comparing our reference data to NLCD 2016 data 

We did a comparison of the labels for the same points (our evaluation dataset) and the 

resulting confusion matrix is shown in table E-1. Class titles are: 

Our land cover classes NLCD classes (Alaska-specific classes not included) 

0: Water  11: Water 42: Evergreen forest 

1: Developed  21: Developed, open space 43: Mixed forest 

2: Grass/shrub  22: Developed, low intensity 52: Shrub/scrub 

3: Forest  23: Developed, medium intensity 71: Grassland 

4: Bare  24: Developed, high density 81: Pasture/Hay 

5: Agriculture  31: Barren land 82: Agriculture 

6: Wetland  41: Deciduous forest 90: Woody wetland 

   95: Herbaceous wetland 

 

Classes that cross to each other are shown by diagonal red-font numbers and major confused 

classes are highlighted yellow. We tried different options of including or dropping the confused 

classes in our calculations and found that the best performance (on overall accuracy and average 

F1) by dropping two cases marked by red rectangles. 

 

Table E-1: comparison of our labels and NLCD labels extracted for points in our evaluation dataset 

  Our class 

   0 1 2 3 4 5 6 

N
L

C
D

 cla
ss 

11 11034 59 5 11 14 13 532 

21 41 14084 267 196 2 383 47 

22 10 19324 39 17 10 119 27 

23 5 12464 6 2 11 18 5 

24 1 3795 0 0 6 0 0 

52 50 2336 18739 712 1914 378 152 

71 25 1249 11568 130 896 1565 287 

41 44 1028 442 8174 1 280 210 

42 41 786 744 7469 502 166 54 

43 9 564 60 3850 0 96 24 

31 6 291 324 2 6660 29 119 

81 8 2229 1354 103 4 4518 194 

82 0 1094 157 39 15 26364 91 

90 61 219 161 2031 0 65 2204 

95 43 169 379 76 5 257 8241 
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Appendix F: Selected blocks imagery and land cover maps 

We provide in this appendix some selected blocks high-resolution imagery (screenshot taken 

from ArcMap’s imagery base map), NLCD 2016 map (snapshot taken from ArcMap’s NLCD 

2016 base map), and our CNN+ST-LSTM model prediction. According to the ESRI web site, the 

ArcMap’s imagery base map is updated to 2021, but we cannot get a historical map of 

2015/2016 in ArcMap. We also left NLCD map with its original colormap and provided below 

the color legend for different classes, plus our own legend.   

 

 

Figure F-1: NLCD 2016 legend (left) and our predicted map legend (right) 
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Figure F-2: Selected blocks high-resolution imagery, NLCD map, and our predicted map 
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Figure F-2 (continued): Selected blocks high-resolution imagery, NLCD map, and our predicted map 
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Appendix G: Visual inspection of ensemble models 

In this appendix we provide visualization of ensemble models performance by showing full 

and zoomed image of the prediction map for block representing ecoregion 37 (Arkansas Valley). 

This block is located north of the city of Clarksville, AK, and the predicted map for the whole 

block and a zoomed rectangle in its lower right part are shown in figure G-1. As you see, very 

little change is visible by looking at the predicted map for base model and two ensemble models 

and the change actually happens in very fine details. The only distinct change that we found in 

this figure is the area marked with white polygon in the zoomed image, which shows the 

correction of some pixels that has been incorrectly classified as agriculture and return it back to 

the forest class. The high-resolution imagery of the zoomed area is also provided in figure G-2 

for reference. 

 

Figure G-1: Full (top) and zoomed rectangle (bottom) of block representing ecoregion 37 for one 

model and ensemble of two and three top models. 
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Figure G-2: High-resolution imagery of zoomed block in figure G-1 
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CHAPTER 5: CONCLUSION 

5.1. Summary 

This work advances the integration of deep networks in remote sensing. To this end, we 

developed the full chain of remote sensing data extraction, reference data generation, model 

optimization, final model evaluation, and additional model enhancements, all in the scope of 

mapping blocks from each ecoregion in the conterminous United States. Our model’s very high 

achieved accuracy shows the great potential of deep learning models for other applications in any 

geographical scope. 

As described in the introduction chapter, we considered three research objectives and 

formulated the three main hypotheses as listed below:  

Hypothesis 1: Deep networks do not provide practical improvement in classification 

performance over conventional classifiers when datasets are small or only spectral data 

dimension is used. 

This hypothesis was discussed in the second chapter and our results on 26 Landsat scenes 

(tested separately and then the results aggregated) showed no gain in using neural networks 

compared to established conventional classifiers such as SVM, KNN, or tree ensembles. We did 

an extensive grid search of the most important parameters in our simulations to obtain their best 

performance. We also tried increasing the neural network layers to test the promised capability 

of deep learning methodology but it did not improve classification performance.  As discussed in 

the paper, we think this can be attributed to the small datasets with low feature dimension that 

prohibit full deployment of deep networks potential. As the results of chapter 4 show, deeper 

networks with big and rich input data will pass conventional methods with considerable margin.  
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We also showed in the first chapter how overall performance metric is dependent on class 

distribution and how either calibration or test data class distribution affects the simulation results. 

This suggested that we better to try another metric to assess our networks during optimization in 

chapter 4, which led to reliance on F1 instead of overall accuracy for model comparison and 

selection.  

Hypothesis 2: Our proposed network architecture for processing temporal-spectral-spatial 

Landsat data can achieve better accuracy than its companion spectral-spatial or spectral-only 

variants, and performs better than currently available global land cover products (over 

conterminous US). 

This was the main hypothesis in our study and we answered it through analysis in chapters 3 

and 4. We first conducted a review on current applications of mono-temporal deep networks over 

more than 100 papers in chapter 3 and showed the existing problems with lack of big datasets, 

and possible close competition from conventional methods when they are fed with feature-rich 

datasets. In other words, with mono-temporal implementation and existing datasets, the deep 

networks still may not provide significant gain. However, we showed that using our large area 

dataset containing samples from all ecoregions in conterminous US and employing full spectral-

spatial-temporal dimensions of data, processed by our complex hybrid deep network structure, 

we can achieve considerable gain relative to both our baseline benchmarks and other available 

global land cover products. Although the developed network was highly accurate, we showed 

that the test performance in local areas still have significant variations and needs to be improved.  

Hypothesis 3: There is considerable improvement is fusion of different Landsat sensors in 

terms of achieved accuracy and minimum number of requires scenes. 
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This hypothesis was also covered in analyses conducted in chapter 4, and we showed that 

fusion of Landsat 5 and 7 or Landsat 7 and 8 (over their overlapping mission times) considerably 

improves the overall performance metrics, compared to single-sensor data. We attribute this to 

increase in available data by combining observations by multiple sensors in the same input 

sequence. It may also be due to the fact that the model has been trained on fused sequences. 

Interestingly, our study showed that the multi-sensor response is more stable and keeps its good 

performance in shorter sequences compared to single-sensor input data. Our study also showed 

that comparing single sensors, Landsat 8 provides the best performance, then Landsat 5, and then 

Landsat 7. The performance of model under single-sensor or fused data varies between different 

land cover classes, but the worst class under fused data has still better performance than the best 

class under single-sensor scenario.   

5.2. Future work 

Our proposed network with 2.6 million parameters is a complex model with very good 

performance, but there are still many other possibilities for continuing this study in different 

aspects. First of all, model assessment over whole conterminous United States should be 

executed. Improving model performance on local scope and improving its generalization is 

another important extension. The idea of transfer learning and fine-tuning a pre-trained model 

seems promising in this regard and these ideas have been presented in recent studies. 

The current model has been developed over a simplified general land cover scheme, suitable 

for regional and global studies. However, given the model high power, we can proceed to higher 

levels of detail and develop our model based on a more detailed land cover / land use 

classification scheme or set of models for different applications, same as a coarse/fine approach. 

Both of these maps are much needed in any resource management administration and remote 
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sensing technology is the only viable approach to solve these sort of problems, particularly over 

large areas. 

Apart from model application, there are many areas of further work and improvement with 

the model itself. For example, other possibilities for network design and feature combination 

strategies can be considered.  

The most important improvement in the model, however, may be transition to a fully 

convolutional model. Such a change may greatly improve model computing budget in terms of 

storage, memory, and simulation time. But it requires our reference labels to be available wall-

to-wall in training areas. It might be possible to adapt the fully convolutional network to ignore a 

few pixels without reference labels but our current dataset is too patchy, and our limited tries for 

implementing fully convolutional network resulted in performance drop.    

Along with transition to fully convolutional model, there is a strong desire for integration of 

object-based methods with pixel-based classifiers in the remote sensing field. For example, other 

researchers have tried to combine the classifier output with another output generated by 

segmentation algorithms to enhance the object boundaries. Being itself a rich field of study, 

object-based classification can offer many possibilities to join and enhance our model output. 

Some pre- or post-processing can also be automated and done by network which we did it 

ourselves. A simple example is cloud filtering, which we did separately and masked pixels 

covered by cloud or cloud shadow (based on Landsat quality bit setting). As some other research 

showed, this task can also be handled by deep networks themselves and may provide a higher 

level of accuracy when done by the model itself. Fusion of other sensors in addition to Landsat – 

particularly Sentinel, due to its free global data availability – may be very helpful. 
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One of the direct benefits of this research was to employ advanced hardware resources such 

as GPUs, cloud-based resources and parallel computing, and latest machine learning scripting 

platforms. This will serve as a benchmark to have a better estimate on needed resources for 

research in this field and to enrich the skills on using the more advanced technology in the 

department. Deep learning provides many opportunities for processing of different data 

dimensions in specialized structures, and it will allow scientists to concentrate on the network 

design instead of dealing with custom feature extraction methods. Our hybrid network is a 

simple example in this regard, and the possibilities ahead are unlimited. 
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