598 research outputs found

    Component-aware Orchestration of Cloud-based Enterprise Applications, from TOSCA to Docker and Kubernetes

    Full text link
    Enterprise IT is currently facing the challenge of coordinating the management of complex, multi-component applications across heterogeneous cloud platforms. Containers and container orchestrators provide a valuable solution to deploy multi-component applications over cloud platforms, by coupling the lifecycle of each application component to that of its hosting container. We hereby propose a solution for going beyond such a coupling, based on the OASIS standard TOSCA and on Docker. We indeed propose a novel approach for deploying multi-component applications on top of existing container orchestrators, which allows to manage each component independently from the container used to run it. We also present prototype tools implementing our approach, and we show how we effectively exploited them to carry out a concrete case study

    Orchestrating Complex Application Architectures in Heterogeneous Clouds

    Full text link
    [EN] Private cloud infrastructures are now widely deployed and adopted across technology industries and research institutions. Although cloud computing has emerged as a reality, it is now known that a single cloud provider cannot fully satisfy complex user requirements. This has resulted in a growing interest in developing hybrid cloud solutions that bind together distinct and heterogeneous cloud infrastructures. In this paper we describe the orchestration approach for heterogeneous clouds that has been implemented and used within the INDIGO-DataCloud project. This orchestration model uses existing open-source software like OpenStack and leverages the OASIS Topology and Specification for Cloud Applications (TOSCA) open standard as the modeling language. Our approach uses virtual machines and Docker containers in an homogeneous and transparent way providing consistent application deployment for the users. This approach is illustrated by means of two different use cases in different scientific communities, implemented using the INDIGO-DataCloud solutions.The authors want to acknowledge the support of the INDIGO-Datacloud (grant number 653549) project, funded by the European Commission's Horizon 2020 Framework Program.Caballer Fernández, M.; Zala, S.; López, Á.; Moltó, G.; Orviz, P.; Velten, M. (2018). Orchestrating Complex Application Architectures in Heterogeneous Clouds. Journal of Grid Computing. 16(1):3-18. https://doi.org/10.1007/s10723-017-9418-yS318161Aguilar Gómez, F., de Lucas, J.M., García, D., Monteoliva, A.: Hydrodynamics and water quality forecasting over a cloud computing environment: indigo-datacloud. In: EGU General Assembly Conference Abstracts, vol. 19, p 9684 (2017)de Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39(8), 2579–2590 (2013). http://www.sciencedirect.com/science/article/pii/S0045790613001365Amazon Web Services (AWS): Amazon Web Services (AWS). https://aws.amazon.com/ (2017)Amazon Web Services (AWS): CloudFormation. https://aws.amazon.com/cloudformation/ (2017)Apache Software Foundation: Apache Mesos. http://mesos.apache.org/ (2017)ARIA, ARIA. http://ariatosca.incubator.apache.org/ (2017)Bumpus, W.: NIST Cloud Computing Standards Roadmap. Tech. rep., National Institute of Standards and Technology (NIST). https://doi.org/10.6028/NIST.SP.500-291r2 (2013)Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. J Grid Comput. 13(1), 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5Campos Plasencia, I., Fernández-del Castillo, E., Heinemeyer, S., López García, Á., Pahlen, F., Borges, G.: Phenomenology tools on cloud infrastructures using OpenStack. Eur. Phys. J. C 73(4), 2375 (2013). https://doi.org/10.1140/epjc/s10052-013-2375-0Celar: Celar. http://www.cloudwatchhub.eu/celar (2017)Chen, Y., de Lucas, J.M., Aguilar, F., Fiore, S., Rossi, M., Ferrari, T.: Indigo: building a datacloud framework to support open science. In: EGU General Assembly Conference Abstracts, vol. 18, p 16610 (2016)Chronos: Chronos. https://mesos.github.io/chronos/ (2017)Cloudify: Cloudify. http://getcloudify.org (2017)Davidović, D., Cetinić, E., Skala, K.: European research area and digital humanitiesDistefano, S., Serazzi, G.: Performance driven WS orchestration and deployment in service oriented infrastructure. J Grid Comput. 12(2), 347–369 (2014). https://doi.org/10.1007/s10723-014-9293-8EGI FedCloud: EGI FedCloud. https://www.egi.eu/federation/egi-federated-cloud/ (2017)Eucalyptus: Eucalyptus. https://www.eucalyptus.com/ (2017)Fiore, S., D’Anca, A., Palazzo, C., Foster, I., Williams, D.N., Aloisio, G.: Ophidia: toward big data analytics for eScience. Procedia Comput. Sci. 18, 2376–2385 (2013). https://doi.org/10.1016/j.procs.2013.05.409Fiore, S., Palazzo, C., D’Anca, A., Elia, D., Londero, E., Knapic, C., Monna, S., Marcucci, N.M., Aguilar, F., Płóciennik, M., et al.: Big data analytics on large-scale scientific datasets in the indigo-datacloud project. In: Proceedings of the Computing Frontiers Conference, pp 343–348. ACM (2017)Fiore, S., Płóciennik, M., Doutriaux, C., Palazzo, C., Boutte, J., żok, T., Elia, D., Owsiak, M., D’Anca, A., Shaheen, Z., et al.: Distributed and cloud-based multi-model analytics experiments on large volumes of climate change data in the earth system grid federation eco-system. In: 2016 IEEE International Conference on Big Data (Big Data), pp 2911–2918. IEEE (2016)Galante, G., Erpen de Bona, L.C., Mury, A.R., Schulze, B., da Rosa Righi, R.: An analysis of public clouds elasticity in the execution of scientific applications: a survey. J Grid Comput.,1–24. https://doi.org/10.1007/s10723-016-9361-3 (2016)Google Cloud Platform (GCP): Google Cloud Platform (GCP). https://cloud.google.com/ (2017)Hochstein, L. (ed.): Ansible: Up and Running, Automating Configuration Management and Deployment the Easy Way. O’Reilly Media (2014)Idabc: European Interoperability Framework for pan-European eGovernment Services. European Commission version 1, 1–25. https://doi.org/10.1109/HICSS.2007.68 (2004)IM: IM. http://www.grycap.upv.es/im (2017)INDIGO-DataCloud: D1.8 - General Architecture. Tech. rep., INDIGO-DataCloud Consortium (2015)INDIGO-DataCloud: Ansible Galaxy repository for INDIGO-DataCloud. https://galaxy.ansible.com/indigo-dc/ (2017)INDIGO-DataCloud: Disvis/Powerfit Ansible Role in Ansible Galaxy. https://galaxy.ansible.com/indigo-dc/disvis-powerfit/ (2017)INDIGO-DataCloud: INDIGO-DataCloud. https://www.indigo-datacloud.eu/ (2017)INDIGO-DataCloud: INDIGO-DataCloud DockerHub application repository. https://hub.docker.com/u/indigodatacloudapps/ (2017)INDIGO-DataCloud: INDIGO-DataCloud PaaS Orchestrator. https://github.com/indigo-dc/orchestrator (2017)INDIGO-DataCloud: INDIGO-DataCloud RepoSync. https://github.com/indigo-dc/java-reposync (2017)INDIGO-DataCloud: INDIGO-DataCloud TOSCA templates. https://github.com/indigo-dc/tosca-templates (2017)INDIGO-DataCloud: TOSCA Across Clouds. https://github.com/indigo-dc/tosca-types/blob/master/examples/web_mysql_tosca_across_clouds.yaml (2017)INDIGO-DataCloud: TOSCA template for deploying an Elastic Mesos Cluster. http://github.com/indigo-dc/tosca-types/blob/master/examples/mesos_elastic_cluster.yaml (2017)INDIGO-DataCloud: TOSCA template for Powerfit application. https://github.com/indigo-dc/tosca-types/blob/master/examples/powerfit.yaml (2017)Kacsuk, P., Kecskemeti, G., Kertesz, A., Nemeth, Z., Kovȧcs, J., Farkas, Z.: Infrastructure aware scientific workflows and infrastructure aware workflow managers in science gateways. J Grid Comput., 641–654. https://doi.org/10.1007/s10723-016-9380-0 (2016)Korambath, P., Wang, J., Kumar, A., Hochstein, L., Schott, B., Graybill, R., Baldea, M., Davis, J.: Deploying kepler workflows as services on a cloud infrastructure for smart manufacturing. Procedia Comput. Sci. 29, 2254–2259 (2014)Koski, K., Hormia-Poutanen, K., Chatzopoulos, M., Legrė, Y., Day, B.: Position Paper: European Open Science Cloud for Research. Tech. Rep. october, EUDAT, LIBER, OpenAIRE, EGI, GĖANT Bari (2015)Krieger, M.T., Torreno, O., Trelles, O., Kranzlmüller, D.: Building an open source cloud environment with auto-scaling resources for executing bioinformatics and biomedical workflows. Futur. Gener. Comput. Syst. 67, 329–340 (2017). https://doi.org/10.1016/j.future.2016.02.008Kurkcuoglu Soner, Z., Bonvin, A.: Science in the clouds: virtualizing haddock powerfit and disvis using indigo-datacloud solutions (2016)Lipton, P.C.T., Moser, S.I., Palma, D.V., Spatzier, T.I.: Topology and Orchestration Specification for Cloud Applications. Tech. rep., OASIS Standard (2013)Liu, C., Mao, Y., Van der Merwe, J., Fernandez, M.: Cloud Resource Orchestration: a Data-Centric Approach. In: Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR), pp 1–8. Citeseer (2011)López García, Á., Fernández-del Castillo, E.: Analysis of scientific cloud computing requirements. In: Proceedings of the IBERGRID 2013 Conference, p 147 158 (2013)López García, Á., Fernández-del Castillo, E., Orviz Fernández, P.: Standards for enabling heterogeneous IaaS cloud federations. Comput. Standard Inter. 47, 19–23 (2016). https://doi.org/10.1016/j.csi.2016.02.002López García, Á., Zangrando, L., Sgaravatto, M., Llorens, V., Vallero, S., Zaccolo, V., Bagnasco, S., Taneja, S., Pra, S.D., Salomoni, D., Donvito G.: Improved cloud resource allocation: how INDIGO-datacloud is overcoming the current limitations in cloud schedulers. arXiv: 1707.06403 (2017)Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput. 12(4), 559–592 (2014). https://doi.org/10.1007/s10723-014-9314-7Marathon: Marathon. https://mesosphere.github.io/marathon/ (2017)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-Infrastructure. Tech. rep., Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-RESTful HTTP Rendering. Tech. rep., Open Grid Forum (2011)Microsoft Azure: Microsoft Azure. https://azure.microsoft.com/ (2017)Moltó, G., Caballer, M., Pérez, A., Alfonso, D.C., Blanquer, I.: Coherent application delivery on hybrid distributed computing infrastructures of virtual machines and docker containers. In: 2017 25Th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). https://doi.org/10.1109/PDP.2017.29 , pp 486–490 (2017)Monna, S., Marcucci, N.M., Marinaro, G., Fiore, S., D’Anca, A., Antonacci, M., Beranzoli, L., Favali, P.: An Emso data case study within the indigo-Dc project. In: EGU General Assembly Conference Abstracts, vol. 19, p 12493 (2017)Nyrén, R., Metsch, T., Edmonds, A., Papaspyrou, A.: Open Cloud Computing Interface–Core. Tech. rep., Open Grid Forum (2010)OASIS: Organization for the Advancement of Structured Information Standards (OASIS). https://www.oasis-open.org (2015)Open Telekom Cloud (OTC): Open Telekom Cloud (OTC). https://cloud.telekom.de/en/ (2017)OpenNebula: OneFlow. http://docs.opennebula.org/5.2/advanced_components/application_flow_and_auto-scaling/index.html (2017)OpenNebula Project: OpenNebula. https://www.opennebula.org (2017)OpenStack Foundation: Heat Orchestration Template (HOT) Guide. https://docs.openstack.org/heat/latest/template_guide/hot_guide.html (2017)OpenStack Foundation: OpenStack. https://www.openstack.org (2017)OpenStack Foundation: Openstack Heat. http://wiki.openstack.org/wiki/Heat (2017)OpenStack Foundation: OpenStack Heat Translator. https://github.com/openstack/heat-translator (2017)OpenStack Foundation: OpenStack heat-translator project contribution statistics. http://stackalytics.com/?release=all&metric=commits&module=heat-translator (2017)OpenStack Foundation: OpenStack Tacker. https://wiki.openstack.org/wiki/Tacker (2017)OpenStack Foundation: OpenStack tosca-parser project contribution statistics. http://stackalytics.com/?release=all&metric=commits&module=tosca-parser (2017)OpenStack Foundation: TOSCA Parser. https://github.com/openstack/tosca-parser (2017)OpenTOSCA: OpenTOSCA. http://www.opentosca.org/ (2017)Owsiak, M., Plociennik, M., Palak, B., Zok, T., Reux, C., Di Gallo, L., Kalupin, D., Johnson, T., Schneider, M.: Running simultaneous kepler sessions for the parallelization of parametric scans and optimization studies applied to complex workflows. J Comput. Sci. 20, 103–111 (2017)Palma, D., Rutkowski, M., Spatzier T.: TOSCA Simple Profile in YAML Version 1.1. Tech. rep., OASIS Standard. http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html (2016)Petcu, D.: Consuming resources and services from multiple clouds: from terminology to cloudware support. J Grid Comput. 12(2), 321–345 (2014). https://doi.org/10.1007/s10723-013-9290-3Plóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level dynamic workflow orchestration in the INDIGO DataCloud for large-scale, climate change data analytics experiments. Procedia Comput. Sci. 80, 722–733 (2016). https://doi.org/10.1016/j.procs.2016.05.359Płóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level dynamic workflow orchestration in the indigo datacloud for large-scale, climate change data analytics experiments. Procedia Comput. Sci. 80, 722–733 (2016)Python: Python Package Index (PyPI). https://pypi.python.org/pypi (2017)Ramakrishnan, L., Jackson, K.R., Canon, S., Cholia, S., Shalf, J.: Defining future platform requirements for e-Science clouds. In: Proceedings of the 1st ACM Symposium on Cloud Computing - SoCC ’10. https://doi.org/10.1145/1807128.1807145 , p 101 (2010)Ramakrishnan, L., Zbiegel, P.T.T.T.: Magellan: experiences from a science cloud. In: Proceedings of the 2Nd International Workshop on Scientific Cloud Computing. http://dl.acm.org/citation.cfm?id=1996119 , pp 49–58 (2011)Salomoni, D., Campos, I., Gaido, L., Donvito, G., Antonacci, M., Fuhrman, P., Marco, J., Lopez-Garcia, A., Orviz, P., Blanquer, I., et al.: Indigo-datacloud: foundations and architectural description of a platform as a service oriented to scientific computing. arXiv: http://arXiv.org/abs/1603.09536 (2016)Sánchez-Expósito, S., Martín, P., Ruiz, J.E., Verdes-Montenegro, L., Garrido, J., Sirvent, R., Falcó, A.R., Badia, R.M., Lezzi, D.: Web services as building blocks for science gateways in astrophysics. J Grid Comput. 14(4), 673–685 (2016). https://doi.org/10.1007/s10723-016-9382-ySlipStream: SlipStream. http://sixsq.com/products/slipstream/ (2017)Stockton, D.B., Santamaria, F.: Automating NEURON simulation deployment in cloud resources. Neuroinformatics 15(1), 51–70 (2017). https://doi.org/10.1007/s12021-016-9315-8Teckelmann, R., Reich, C., Sulistio, A.: Mapping of Cloud Standards to the Taxonomy of Interoperability in Iaas. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (Cloudcom), pp 522–526. IEEE (2011)Toor, S., Osmani, L., Eerola, P., Kraemer, O., Lindén, T., Tarkoma, S., White, J.: A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system. J Phys.: Conf. Ser. 513(6), 062,047 (2014). https://doi.org/10.1088/1742-6596/513/6/062047 . http://stacks.iop.org/1742-6596/513/i=6/a=062047?key=crossref.84033a04265ce343371c7f38064e7143UK Government Cabinet Office: Open Standards Principles. https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles (2015)Yangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: Compatibleone: the open source cloud broker. J Grid Comput. 12(1), 93–109 (2014)Zhao, Y., Li, Y., Raicu, I., Lu, S., Tian, W., Liu, H.: Enabling scalable scientific workflow management in the cloud. Futur. Gener. Comput. Syst. 46, 3–16 (2015). https://doi.org/10.1016/j.future.2014.10.023van Zundert, G., Trellet, M., Schaarschmidt, J., Kurkcuoglu, Z., David, M., Verlato, M., Rosato, A., Bonvin, A.: The DisVis and PowerFit web servers: explorative and integrative modeling of biomolecular complexes. J. Mol. Biol. 429(3), 399–407 (2013). http://www.sciencedirect.com/science/article/pii/S002228361630527

    Benchmarking and performance modelling of MapReduce communication pattern

    Get PDF
    Funding: UK EPSRC EP/R010528/1 and IsDBUnderstanding and predicting the performance of big data applications running in the cloud or on-premises could help minimise the overall cost of operations and provide opportunities in efforts to identify performance bottlenecks. The complexity of the low-level internals of big data frameworks and the ubiquity of application and workload configuration parameters makes it challenging and expensive to come up with comprehensive performance modelling solutions. In this paper, instead of focusing on a wide range of configurable parameters, we studied the low-level internals of the MapReduce communication pattern and used a minimal set of performance drivers to develop a set of phase level parametric models for approximating the execution time of a given application on a given cluster. Models can be used to infer the performance of unseen applications and approximate their performance when an arbitrary dataset is used as input. Our approach is validated by running empirical experiments in two setups. On average, the error rate in both setups is ±10% from the measured values.Postprin

    Data-Driven Intelligent Scheduling For Long Running Workloads In Large-Scale Datacenters

    Get PDF
    Cloud computing is becoming a fundamental facility of society today. Large-scale public or private cloud datacenters spreading millions of servers, as a warehouse-scale computer, are supporting most business of Fortune-500 companies and serving billions of users around the world. Unfortunately, modern industry-wide average datacenter utilization is as low as 6% to 12%. Low utilization not only negatively impacts operational and capital components of cost efficiency, but also becomes the scaling bottleneck due to the limits of electricity delivered by nearby utility. It is critical and challenge to improve multi-resource efficiency for global datacenters. Additionally, with the great commercial success of diverse big data analytics services, enterprise datacenters are evolving to host heterogeneous computation workloads including online web services, batch processing, machine learning, streaming computing, interactive query and graph computation on shared clusters. Most of them are long-running workloads that leverage long-lived containers to execute tasks. We concluded datacenter resource scheduling works over last 15 years. Most previous works are designed to maximize the cluster efficiency for short-lived tasks in batch processing system like Hadoop. They are not suitable for modern long-running workloads of Microservices, Spark, Flink, Pregel, Storm or Tensorflow like systems. It is urgent to develop new effective scheduling and resource allocation approaches to improve efficiency in large-scale enterprise datacenters. In the dissertation, we are the first of works to define and identify the problems, challenges and scenarios of scheduling and resource management for diverse long-running workloads in modern datacenter. They rely on predictive scheduling techniques to perform reservation, auto-scaling, migration or rescheduling. It forces us to pursue and explore more intelligent scheduling techniques by adequate predictive knowledges. We innovatively specify what is intelligent scheduling, what abilities are necessary towards intelligent scheduling, how to leverage intelligent scheduling to transfer NP-hard online scheduling problems to resolvable offline scheduling issues. We designed and implemented an intelligent cloud datacenter scheduler, which automatically performs resource-to-performance modeling, predictive optimal reservation estimation, QoS (interference)-aware predictive scheduling to maximize resource efficiency of multi-dimensions (CPU, Memory, Network, Disk I/O), and strictly guarantee service level agreements (SLA) for long-running workloads. Finally, we introduced a large-scale co-location techniques of executing long-running and other workloads on the shared global datacenter infrastructure of Alibaba Group. It effectively improves cluster utilization from 10% to averagely 50%. It is far more complicated beyond scheduling that involves technique evolutions of IDC, network, physical datacenter topology, storage, server hardwares, operating systems and containerization. We demonstrate its effectiveness by analysis of newest Alibaba public cluster trace in 2017. We are the first of works to reveal the global view of scenarios, challenges and status in Alibaba large-scale global datacenters by data demonstration, including big promotion events like Double 11 . Data-driven intelligent scheduling methodologies and effective infrastructure co-location techniques are critical and necessary to pursue maximized multi-resource efficiency in modern large-scale datacenter, especially for long-running workloads

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa

    AccessBot – Assisted Assessment of Web Accessibility

    Get PDF
    Tese de mestrado, Informática, Universidade de Lisboa, Faculdade de Ciências, 2020Nowadays, the World Wide Web is a necessity, and its content should be available to everyone. People with different types of disabilities have different needs in using the web and access the content. Developers should fulfill these needs by making websites accessible. Alongside this premise, worldwide government directives oblige public and private sector websites and apps to meet accessibility requirements. To achieve a determined level of accessibility conformance, developers should follow the WCAG 2.1 (Web Content Accessibility Guidelines) and use automatic testing tools to evaluate their websites. However, while creating an accessible website, they may find difficulties that make this a laborious process. After studying and comparing eight of the most well-known accessibility evaluation extensions for the Chrome web browser, I found that these difficulties arise from various factors. These are subjective guidelines interpretations and implementations, automatic testing tools that provide limited coverage of the success criteria, different results displayed for the same website, and some guidelines are not tested automatically, meaning developers should perform manual testing. After analyzing these results, this project, with the name AccessBot, tries to cover the automatic accessibility evaluation gaps. It is an assisted validation tool using the open-source QualWeb accessibility evaluation. AccessBot is a browser extension for Chrome. Being a chrome extension makes it easy to access, install, and use by developers and more accessible to the general public. Its implementation aims to help users by visually identifying the problem, and performing a step-by-step guided evaluation, complementing the automatic evaluation done by QualWeb. The accessibility testing considers the test rules developed by the ACT-Rules Community, which makes an effort to create detailed descriptions of WCAG
    corecore