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1

CHAPTER 1 INTRODUCTION

With the rapid growth of big data-driven artificial intelligence and cloud based indus-

trial innovations, IT techniques are becoming the most critical factors to booming evolutions

and future success of various industries, which is named the Fourth Industrial Revolution.

Many emerging industries like autonomous cars, blockchain, fintech, new energies, robotics,

quantum information, as well as traditional industries (electric power, manufacturing, med-

ical, finance, biology, biomedical, environment, architecture, catering, retail and estates),

are deeply affected by data and intelligence era. They inevitablly leverage cloud based big

data and artificial intelligence techniques to improve effectiveness, study technological inno-

vations, create new business models and replace original industry chain. For a fast rising

rocket of society, diverse cloud-based big data distributed computing systems turned to be

the engines. Abundant algorithms (machine learning, statistics, control algorithm, game

theory...) are the boosters, while the immeasurable accumulated big data become the fuels.

Generally, big data are being processed by various computing engines running on

the infrastructures of global cloud datacenters, which are becoming fundamental facilities

of society. The infrastructure’s role of cloud datacenter to industry is equal to the essential

status as electricity to human society. The abundant hardware resources, as well as compu-

tation, storage and adatively learning abilities, are most critical for human beings towards

big data-driven intelligent era. As fast evolutions of society utility, its scale would be rapidly

increasing and incredibly tremendous.

Large-scale public or private cloud datacenters spreading millions of servers, as a

warehouse-scale computer [53], are supporting most business of Fortune-500 companies

and serving billions of users around the world. Typical infrastructures construction al-

ways involves tens of billions of capital investment, which accounts for 60% of total IT

budget [53, 56, 66]. Servers purchasing dominate the total cost of ownership (TCO) (50%-

70%) [53, 131]. The operating expenditures including energy cost occupy the rest. During

the limited life span of 5 and 10 years for both servers and datacenters [53, 56], maximize
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resource efficiency is critical to improve return on investments (ROI) and reduce TCO of

infrastructures. Unfortunately, recent studies [60, 69, 74, 75, 126, 131, 135, 150, 165, 179, 185]

reveal that industry-wide average utilization is as low as 6% [66] to 12% [19]. Low uti-

lization not only negatively impacts operational and capital components of cost efficiency,

but also becomes the scaling bottleneck due to the limits of electricity delivered by nearby

utility. Improve resource efficiency of the large-scale fundamental infrastructure of society

would bring unmeasurable values. Our society not only benefits from cost-efficiency and eco-

nomic savings, but also from energy efficiency, environmental protection and emancipation

of labour.

Recently, with the great commercial success of diverse big data analytics services,

enterprise datacenters are evolving to host heterogeneous computation workloads including

online web services [39], machine learning [40, 144, 203], streaming processing [13, 116, 176,

204], interactive query [50, 55, 168, 192] and graph computation [93, 119, 133, 138] on shared

clusters. Unlike the traditional batch jobs [14, 71, 107] that rely on individual short-lived

container (milliseconds to seconds) to run every task, these workloads benefit from long-

lived containers (in the order of hours or months) to execute the entire application. These

containers stay alive until an application’s all subsequent multitier web or across-DAG-stage

tasks scheduled on them are completed, so as to speedup execution by caching iterative

intermediate data and avoid repeated container initialization costs. Generally, there are

two types of long-running workloads. The data-intensive offline computation workloads are

named long-running applications (LRAs) [86, 194, 196]. The online user-facing enterprise

services like eCommerce, maps or finances that run inside non-stopped containers are named

long-running services (LRSs). Observed from public enterprise cluster traces [11, 26] and

analytic results [64,127,128,135,165,185], most workloads in modern datacenters are either

LRAs or LRSs.

Most previous works focus on maximizing the cluster efficiency for short-lived tasks in

batch processing system like Hadoop [14,71] by optimizing scheduling algorithm (reschedule)
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or achieving better resource management mechanisms (capacity planning, resource provision,

auto-scaling, migration) [57,58,69,72,73,75,77,78,94–96,105,109,110,112,113,120,155,156,

160,162,163,173,177,184,185,190,196,209,210]. However, most of them are designed for past

cluster scenarios and do not work well for modern long-running workloads, which have great

spaces to be improved. It is critical and urgent to develop effective scheduling and resource

allocation approaches to maximize efficiency in modern large-scale enterprise datacenters.

In the dissertation, we innovatively define the problems and scenarios of scheduling

and resource sharing for diverse long-running workloads. As our best knowledges, we are

the first of works to abstract and specify the scheduling problems and model of long-running

workloads in modern datacenter. We aim to design and implement a cloud datacenter

scheduling and management mechanism to maximize modern cluster resource efficiency of

multi-dimensions (CPU, Memory, Network, Disk I/O) and strictly guarantee quality of ser-

vices (QoS) for LRAs and LRSs.

Motivation and Background

Evolutions of Resource Management and Scheduling over Decades.

Figure 1.1 demonstrates the evolutions of scheduling problems during decades. Origi-

nally, resource management are focus on scheduling of hardware resources in local operating

system or distributed system (High-performance Computing, Grid Computing, Cluster Com-

puting). Jobs are running inside processes and the scheduling unit is process or threads.

With the emerging of virtualization and conterization techniques, we could achieve

better isolations and convenient management. It significantly increases resource efficiency of

both local OS and cloud datacenter. It motivates the new commercial infrastructure as cloud

computing. In cloud computing era, the scheduling unit are switching to virtual machines

(Hadoop). They are always as black box, and cluster operator usually does not know what

workloads they are running. The scheduling optimization are mainly relying on historical

runtime statistics.
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Figure 1.1: Evolution of Scheduling Problems Over Decades.

With the booming evolution of big data analytics systems and techniques, private

cloud datacenter are becoming the trends adopted by most IT companies. They always hold

a public cloud datacenter as products and services providing for customers, and a private

cloud datacenter used for their workloads and applications (Amazon, Alibaba, Microsoft,

Google, IBM...). There is not a obvious spatial gap between public and private cloud. They

might locate at the same physical global datacenters, just statically segmented by different

cluster managers logically.

Datacenter workloads are towards long running ones. Tasks are running inside an-

other layer of long-lived workers, which cache intermediate data and enable multiplexed

data sharing between tasks from different DAG stages, so as to significantly speedup iter-

ative executions (Spark, Storm, Pregel, Tensoflow, GraphX, Impala or user-facing online

microservices) [40, 55, 93, 138, 138, 149, 176, 203, 204]. Each long-lasting worker is always

running as a process (Java virtual machine) executing multiple concurrent tasks inside a

container. It helps reduce the initial costs of container startup if run one task per container

as in cloud computing era. Services are packed as a complete package (microservices) run-

ning as worker processes inside containers. The scheduling subject and unit of cluster is

switching to workers, and tasks scheduling are managed and handled by each application’s
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master. Schedulers need to pre-provision workers before task scheduling to minimize startup

overheads. Therefore, it needs predictively decide how much resources each worker might

need before execution, and where to dispatch those workers to avoid future potential resource

contentions and interferences. Demands and interference estimation abilities are becoming

Unprecedented important.

As the famous insight that "Any problem in CS can be solved by another layer of

indirection, except the indirection itself" by D. Wheeler. Although virtual machine/container

techniques greatly improves modern system or datacenter efficiency, it incredibly complicates

resource management. Schedulers need to consider and co-tunning different layers together

to guarantee smooth executions of workloads. In modern scheduling model, it requires a

bundle of predictive behaviors like pre-provision, pre-reserve and QoS-aware (interference-

aware) scheduling. It proposes another level requirements for more delicacy Management

and refined techniques of profilings, modeling and predictions.

The booming evolution of datacenter computating engines and resource managers over

last decades force us to explore predictive scheduling methodology by artificial intelligence

technologies, which we named intelligent scheduling.

Challenges, Problems and Scenarios of Scheduling and Resource

Management for Long-running Workloads.

Existing large-scale in-memory computing systems like Spark [203] and Flink [13]

rely on a cluster resource manager like YARN [181], Mesos [103] or Borg [185] to effectively

perform resources sharing between diverse LRA containers of multi-tenants in shared data-

centers. Figure 1.2 exhibits Spark’s two-level scheduling on YARN. It schedules the execution

of tasks in a two-level model: ahead of job execution and task scheduling, Yarn creates con-

tainers for workers and pre-reserves specific amount of CPU and memory resources for them

based on user’s requests (step 1). Every long-lived container only belongs to one application,
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Prometheus: Histogram Analysis of Memory Usages for
Online Estimation of Optimal Demands for Containers in

In-memory Computation

Abstract—Modern resource managers like Yarn or Mesos leave
a non-trivial resource demands declaration problem for users of
data-parallel computation frameworks. A principal challenge is
to determine right amounts of reserved memory capacity to run
applications ahead of execution, so as to avoid over-provisioned
or under-provisioned reservation and minimize both idleness or
insufficient usage of memory. To balance the trade-off between
resource efficiency and application’s performance, and relieve
users’ burden of involvements in resource allocation, we designed
Prometheus, an automatic memory demands estimation system
for large-scale data-parallel workloads. Prometheus achieves
minimal amount of memory reservations (optimal demands) that
achieve nearly optimal application performance.

It is challenging to identify optimal demands online for
new coming applications with low search overheads. Even for
recurring jobs, their optimal memory demands may change over
time due to variations of input datasets and other parameters.
Prometheus uses a twp-step approach to deal with the challenge:
1) Do profiling and histogram frequency analysis of job’s runtime
memory footprints from one pilot run. It achieves a highly
accurate (over 80% accuracy) online initial estimation of optimal
demands per worker. 2) By exploiting self-decay property of the
analytical results, Prometheus performs recursive search over
recurring executions. We validate our design by implementing
Prometheus atop of Spark and Yarn. The experimental results
show that it achieves an ultimate accuracy of more than 92%.
By deploying Prometheus and reserving memory according to the
optimal demands, one could improve cluster memory utilization
by about 40%. It simultaneously reduces individual application
execution time by over 35% comparing to the state-of-the-art
approaches.

I. INTRODUCTION

The great commercial success of popular big data analytics
applications is highly depending on the rapid growth of
large-scale data-parallel computation frameworks like Apache
Hadoop [2], Spark [30] and Flink [1]. These frameworks are
designed to hide underlying parallelisms and detail distributed
executions of workloads, letting users focus on the specific
computation logic instead of additional complexity.

Most existing frameworks rely on a cluster resource man-
ager like YARN [23] or Mesos [15] to effectively perform
resources allocation and sharing among users. They solve the
non-trivial allocation problem of determining right amounts of
memory provision for workloads by requiring users to make
explicit reservations. Since the underlying physical executions,
widely varied load or complex codebases of workloads are
invisible, users tend to over-estimate or under-estimate their
memory demands, leading to over-provisioning or under-
provisioning of memory resources. Recent studies [10], [18],

MachineMachine Machine

YARN (Resource Manager)

Pre-allocate Worker scheduleTask schedule Task schedule

Idle worker One task runs in a worker

12 12

Users Request Resources 
for WorkersApplication Master

Fig. 1: Spark’s two-level scheduling upon Yarn.

[20]–[22] revealed that most cloud facilities and commercial
clusters operate at low utilization states due to this problem.

The issue is becoming even more serious in recent popular
in-memory computation frameworks like Spark and Flink.
To achieve timely results and speedup iterative computa-
tions, these frameworks adequately leverage memory resources
to cache intermediate data across multi-stage tasks in pre-
allocated worker processes. Figure 1 shows the resource
management mechanism of Yarn. It schedules the execution
of tasks in a two-level model: ahead of job execution and
task scheduling, Yarn creates containers for workers1 and
pre-reserves specific amount of CPU and memory resources
for them based on user’s requests (step 1). Every long-lived
container only belongs to one application, and stays alive
until the application’s all subsequent DAG tasks scheduled on
them (step 2) are completed. Since a container is executed
for an entire application and runs multiple batches of tasks
from multi-stages, their memory demands change over time.
Simply adopting a holistic peak memory usage to represent
containers’ widely varying resource demands across stages
would incur extremely large pockets of resource wastes [28].
The problem becomes particularly challenging when users
need to predict and pre-specify future time-varying across-
stage memory demands of runtime instances before execution.

Besides, the effectiveness of in-memory computation frame-
works highly depends on efficient utilization of scarce cluster
memory resources. Since a container (or worker process)
is usually a Java virtual machine (JVM), its over-estimated

1The worker process is called executor in Apache Spark [3], TaskManager
in Apache Flink [1] and container in Yarn. In this paper, we use the terms of
workers and containers interchangeably.

Figure 1.2: Spark’s two-level scheduling upon Yarn.

and stays alive until the application’s all subsequent DAG tasks scheduled on them (step 2)

are completed.

An application of a Spark-like in-memory computing framework, does not expose its

tasks to the underlying resource management system, like YARN and Mesos. Instead, the

concept of worker is introduced as the scheduling instance in these systems. Once workers

of an application are launched on servers by the systemâĂŹs scheduler, the applicationâĂŹs

scheduler is responsible for scheduling its tasks to these pre-allocated workers. Specifically,

an worker is usually a Java virtual machine (JVM) and tasks are threads running on the

JVM. Each Spark application has a set of workers scheduled by the resource manager to

different servers and they stay alive until all tasks of the application are completed. This

two-level scheduling is adopted for two reasons. One is to cache a subset of data in memory

to enable in-memory reuse of data across tasks in an worker in a fault-tolerant manner. The

other is to significantly reduce overhead of launching tasks, which is critical for in-memory

computing. In contrast, in a Hadoop application each task runs on a dedicated JVM, which

is scheduled by the systemâĂŹs resource manager. While there are two levels of scheduling

for in-memory computing, the workersâĂŹ scheduling plays a more performance-critical role

as it represents the resources allo- cation and sharing between applications.
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Traditional batch job releases short-lived container after one task terminates. Task

scheduling binds to container dispatching. Job execution is along with numerous container

placements. Program workflow is specific during resource reservation. Container provision

is relatively easy through profiling [196], and not obtains many attentions since schedulers

have numerous opportunities to reschedule and re-provision to achieve better quality.

Cluster scheduling subject is switching from tasks to workers in LRA. Worker schedul-

ing binds to container placement, which is seperate from task scheduling that managed

by application’s master. Cluster schedulers need to predictively pre-reserve resources for

containers before task scheduling, which always remain unchanged during long-term DAG

execution. Container dispatching per application is one-time at job start, and extremely

critical to ensure smooth execution of the whole application. It needs to consider long-

time varying demands and colocating placements to avoid future potential contentions and

interferences [196].

Tasks per stage are executed in pipeline and multiplexing in container by random

scheduling. They always do not start or end at the same time. Multiple colocating tasks’

combined memory usages (container’s demands) in a container are highly uncertain. Mean-

while, a computation can involve many different tasks from multiple DAG stages that inhabit

a container. The varying number and type of colocating tasks make containers’ memory de-

mands greatly change over time. It is non-trivial to accurately estimate just right memory

reservation when task placements per container are unknown.

These schedulers solve the non-trivial allocation problem of predictably determin-

ing right amounts of memory for workers (containers) by requiring users to make explicit

reservations1 ahead of job executions. Users release the controls of their applications af-

ter submissions and know little about when their workloads to be scheduled and how they

are executed (dataflow, distributed computing, interference, resource contention). Applica-

tions’ time-varying demands, complex codebases or workflows are invisible to users. They
1Containers are being killed if their resource usages exceed reservation limits. Others could not use the

underutilized reserved memory.
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tend to over- or under-estimate application’s demands before execution, leading to over- or

under-provisioned memory reservations.

A container runs multiple batches of tasks from multi-DAG-stages, their memory

demands greatly change over time [194,196]. An insufficient fixed reservation could slow down

the application as much as 12 times in multiple stages or even cause job failures as shown

in following section. In contrast, overprovisioning (e.g. peaks) would occupy substantial

unutilized resources for a long time and leave massive pockets of resource fragmentations.

Most cloud datacenters usually operate at an extremely low memory utilization state (ranging

between 10% and 50%) due to these mis-provisions [53,69,130,131].

To make matters worse, workers2 of in-memory cluster computing are always Java

Virtual Machine (JVM) running inside long-lived containers. Their fixed heap sizes hinder

the effectiveness and feasibility of container auto-scaling mechanism [173] to improve memory

efficiency. Determine a just right memory reservation for long-lived container is extremely

critial to achieve both good performance and memory efficiency in in-memory computing

cluster.

For traditional resource management in operating system or batch processing cluster

(MapReduce) [14, 71], tasks and their runtime environment like containers or processes are

scheduled at the same time. Task runtime demands are specific during resource allocation

for their short-lived containers. They have numerous opportunities to dynamic adjust and

incrementally re-allocate resources to achieve better quality of scheduling. Nevertheless,

long-lived containers of LRAs need to be pre-deployed before task placements to minimize

tail latency [70] and overheads. They require predictable reservations that always remain

unchanged during future long-term execution. Tasks that satisfying data locality [182, 202]

and dependency constraints are random dispatched on these distributed containers later. It

is non-trivial to accurately estimate just right reservation when task placements per container

are unknown beforehand.
2The worker is called executor in Apache Spark [15,203] and TaskManager in Apache Flink [13].
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An efficient reservation estimator provided for cluster scheduler to perform effcient

resource provison is in urgent need. It is critial to accurately infer how much reservations

are just right to achieve the optimal performance for LRAs and LRSs, and which LRA

workers should be co-located together to minimize resource fragmentations and avoid over-

allocations.

Methodology

Inherent Problems and Three Critical Abilities Towards Intelligent

Scheduling and Cluster Delicacy Management to Resolve NP-hard

Cluster Scheduling Problem

Modern datacenter resource scheduling is an online scheduling problem, which is

NP-hard. All of existing works solve the issues by developing heuristic algorithms towards

different objectives like resource efficiency [74,75,77,177,194,196], fairness [87,94–96,108,163]

and quality-of-services (QoS) [46,59,65,86,99,112,115,132,142,147,152,160,193].

User first submits their jobs to the datacenter with constrained resources, and they

release the control of their applications. They fully rely on schedulers to manage and ex-

ecute workloads. Afterwhile, schedulers need to judge how much resources per application

would need, and where to dispatch them. After they scheduled the workloads, they release

the control of jobs and fully rely on local operating system (OS) to run them. However,

local OS always do not total understand the concerns, constraints and objectives of sched-

ulers. The consequence is that it always occur frequent unexpected resource contentions and

intereferences between co-located applications. The runtime results are always out of the

expections of both users and schedulers. So the scheduler should have the predictive ability

to make allocation and placement decisions, and it should also have the ability to control

OS to towards its objectives together.

There are six critical reasons leading to the difficult NP-hard scheduling problems: (1)

We do not know when and what new applications would be submitted to the waiting queue.
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Figure 1.3: Resource management and scheduling temporal workflow.

(2) We do not know how much resources that each application in the waiting queue is just

needed before execution. (3) We do not know which co-located jobs would have resource

contentions and interferences with each other on the same machines, so we do not know

which jobs are best to co-schedule. (4) We do not know when the running jobs would be

completed after scheduled. (5) We do not know if these jobs could be normally executed or

might be disturbed by some runtime exceptions like server failures, out-of-power or network

faults. (6) Since the unknown knowledges of (1) - (5), we do not have a global view and

optimal methodologies to resolve the online scheduling problems.

Scheduling is inherently a predictive behavior. The most critical problems of exist-

ing schedulers are lacking of predictive knowledges and inherent understanding of regular

scheduling patterns and laws, which are the bottlenecks and barriers to resolve above issues.

Normally, jobs are out-of-control once uers submitted them and schedulers dispatched them.

Neither users or the datacenter operators have sufficient abilities to manage and control work-

loads at 100% percentage. Schedulers either do not have a clear judgment if their decisions

are perfect or have some obvious drawbacks or trade-offs. There are not enough confidences
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even in modern mature industry cluster manager like Borg [185], Fuxi [210] or Apollo [57].

We could only rely on runtime results to evalute our solutions as a feed-back control mecha-

nism. Most of the time, we are just performing trial-and-error interaction procedures. Even

prior accumulated successful experiences probably be restrictively effective to some specific

domains such as High-performance Computing (HPC), Grid Computing, Cloud Computing

and Datacenter Computing. When a new field like Edge Computing emerges, our previous

experiences and solutions might be useless and need to repeatively develop new approaches

for these traditional issues. We fall in an infinite loop during last decades in the scheduling

problem field.

We need some general approaches that could be applied to any scheduling scanerio

and domain. Once we could have the abundant and adequate knowledges of workloads and

status of datacenter in a near future, we could have a global view and fully control of both

cluster resource usages and application performance. We are also able to plan ahead to make

an global optimal solution. Data-driven artificial intelligence (machine learning) are shown

to be a powerful solution to fulfill above goals. It is so-called intelligent scheduling.

We listed three critical abilities that taking advantages of intelligent scheduling:

• (a) Scheduler should have the ability to predict resource-to-performance model be-

fore dispatching. The requirements to the ability includes three points: (1) Accurate

profiling workloads. (2) Workloads runtime estimations. (3) Quantify the effects of

interference on performance. It is critical to know how much runtime would be during

interferences.

• (b) Scheduler should have the ability to know which tasks/workers are best to co-

locate on the same server to achieve best utilization (operator-oriented). It needs to

predict which co-located applications have the minimum interferences, resource con-

tentions (utilization, bandwidth, capacity), fragmentations (application performance:

user-oriented).
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• (c) Scheduler should have the ability to predict the performance and utilization effects

of dispatching new coming applications in the existing servers on running workloads.

Schedulers should also predictively locate, discover and predict interferences in real

time. It should also dynamic and adaptively adjust interferences in a feed-back control

format. It should also automatically adjust parameters and setting of operating system

such as memory reclaim ratio.

These three abilities are critical to any methodology. Most of the scheduling mech-

anism need and would benefit from these abilities. Schedulers could perform predictively

scheduling algorithms based on estimated powerful knowledges. For example, auto-scaling

needs (a) and (c) to know how much resources it would need to adjust. Rescheduling and

migration need (b) and (c) to know when and where (machine and server) running tasks

should migrate to, so as to minimize overheads.

Once schedulers have these three abilities, the online NP-hard scheduling problem

would be transferred to a resolvable offline problems. Through the predictive knowledges,

we could have a global view of near-future resource availability and usages, as well as occupied

time. By given any specific objective, we are always capable of offline planning ahead and

finding an optimal solution in polyomial time, and make mathematics proof as we did in

offline scheduling field over last decades.

Therefore, we developed several innovated works by leveraging data-driven intelligent

methodologies as a general solution to resolve the online NP-hard scheduling problems. We

are on the way to rely on sufficient predictive knowledges and general prediction approaches

to transfer online scheduling issues to offline scheduling to thoroughly resolve the NP-hard

problem in any scheduling and resource management scenario or domain. Prophet leverages

the abilities of (a)(b)(c) to perform prediction-based scheduling and develop an optimal

algorithm through global view at a limited time window, so as to resolve the (3)(4)(5)(6)

problems. MEER (Prometheus) employing the abilities of (a)(c) is designed to solve (2)(5)(6)

issues. They make use of intelligent scheduling and resource allocations approaches. They
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are great representative works to resolve the NP-hard scheduling problems for long-running

applications by tranferring the online scheduling issues to offline scheduling problems through

predictive knowledges.

One thing need to be mentioned. Modern artificial intelligence is named weak artificial

intelligence. They could only be an automatic and efficient solution to resolve the problems

that we already know. We do not impractically expect or fully rely on them to resolve the

problems that we do not figure out or understand yet. Above three abilities and six issues are

the inherent problems and essenses that we concluded and abstracted from past experiences

of decades. We leverage artificial intelligent approaches to perform accurate predictions for

specific motivations. That’s why Prophet and MEER work effectively. Intelligent scheduling

is only worked as an efficient solution. The problem solver subject is we domain experts.

How effectively we exploit artificial intelligence techniques mainly depends on how much we

understand the problems and what innovated directions and ideas we could think out to

resolve problems.

Data-driven Intelligent Scheduling Methodology.

Most of existing works either rely on pure black-box solution or specific white-box-

based prediction. Black-box approaches are general, at the cost of long-term exploration,

model adjustment and training. It does not need to figure out the causality of the problem.

White-box solutions are always rapidly effective if we study and understand deeply about

origins and critical issue of problem. We could model the issue by mathematics method.

However, different problems such as capacity planning, scheduling, and runtime migra-

tion, reschedule or preemption in distinct contexts (long-running workloads, virtual machine,

HPC..) are toally different. We need to design and model distinct problems mannually one

by one even for different systems (batch: Hadoop [14], stream: Storm [116, 176]/Flink [13],

graph: Pregel [138], ML: Tensorflow [40]) and workloads under the same context. We detail
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introduces how modern works leverage prediction or other intelligent approach to perform

scheduling in Section .

We developed Prophet annd MEER (Prometheus) to employ above three abilities to

perform intelligent scheduling as a good demonstration. They are both designed to resolve

the allocation and scheduling problems for long-running workloads in modern datacenter.

Prophet predicts resource usages and runtime duration per stage in future execution for

both waitting workers in the queue and running workers on the server. It then has the

abiliti to know future resource availability of the cluster, as well as network and disk I/O

bandwidth usages and capacity. They could prevent over-allocation and perform predictively

I/O contention- and interference-aware intelligent scheduling through prediction approaches.

The prediction technique of Prophet is fully rely on pure black-box estimations of

SVM and logistic regression methods through historical runtime statistics. It works well

since most modern datacenter big data analytics workloads are recurring. Morever, all tasks

from every DAG stage per application execute the exactly same codes and similar amounts

of data. It enables the accurate predictions for repeative tasks by effective profilings. They

naturally has the trend to be accurately predicted. Prophet leverages (a)(b))(c) of above

three abilities to perform predictive scheduling.

MEER (Prometheus) is mainly designed to resolve the optimal memory provision and

reservation problem for long-running workloads. Optimal provision is always motivated to

find the just right resource allocations (minimal necessary ones) that could achieve optimal

performance. We found this problem is different from intelligent scheduling issue itself since

every workload has a unique resource reservation-to-performance model. It is impractical and

infeasible to build black-box models for each one. Moreover, since any new-submitted, non-

recurring or varied workload (variations of input datasets, source code tweaks or parameters

tuning) lacks of aggregated datasets and offline training opportunities, they could not benefit

from the black-box based provisioning solutions and would lose the fundamental ability and

opportunity to achieve best efficiency.
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Additionally, we find a general and critical property for long-running workloads about

the provision elasticity. That is LRAs could execute perfectly even under sizable reducations

of resource reservations. Based on this property, we are able to find a inflection of point

(knee) of the resource-to-performance curve as the optimal reservation that achieves both

best efficiency and optimal runtime. Under this property, any type (graph, streaming, batch,

ml, ad-hoc query) of LRAs could be modeling by a specific white-box approach and a feed-

back control loop to adaptively refine runtime predictions. This property we found for LRAs

enables the white-box approach could be generally suitable for any type of workload. MEER

performs estimation only based on the collected footprint data through two pilot runs without

historical knowledges. It utilizes statistical methods by histogram analysis, expectation and

confidence intervals of usages to effectively find the near-optimal allocation.

Through a runtime adjustment mechanism to find the knee of the curve (like stochas-

tic gradient descent), we are able to continously provide accurate prediction of optimal

reservations in a short recurring executions. MEER leverages (a)(c) of above three abilities

to perform estimations for right provisioning.

Figure 1.4 illustrates how Prophet and MEER (Prometheus) support intelligent schedul-

ing by predictively network and disk I/O contention-aware scheduling and optimal memory

reservation estimations. Through this two systems, LRAs could be efficiently scheduled

achieving both the best cluster efficiency and optimal performance. These three critical

abilities are as three-steps towards eventual intelligent scheduling.

Dynamic Operating Systems Management and Control.

Modern datacenter infrascttructure technique is far more complicated than scheduling

and resource management, it also involves in the intelligent control over underlying operating

system (OS). There is a gap between cluster scheduler and local OS. OS does not fully un-

derstand the objectives, constraints and consideration of upper schedulers. Scheduler could

also not dynamic adjust OS mechanism (dynamic memory reclaim, CPU throttle, memory
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Figure 1.4: Intelligent Scheduling for LRAs or LRSs by Prophet and MEER (Prometheus).

and network bandwidth control, LLC control by CAT...) during runtime when contentions

or unexpected interference occur. Schedulers lose the control of workload executions after

placements. Current schedulers lack of the ability (c) of intelligent scheduling.

Therefore, we are on the way to abstract another layer of management for local OS,

to provide adequate predictive knowledges to support upper intelligent scheduler. It also

helps schedulers to effectively manage local OS to fulfill their objectives during runtime to

strictly ensure end-to-end objectives achievement. This new layer between local OS and

cluster schedulers is significantly critical to enable fully control by schedulers between jobs

submitted till job completions.

We detail introduced this new layer of infrastructure in Section as part of an enterprise

large-scale datacenter co-location techniques of infrastructure in Alibaba. We are on the way

to thoroughly fulfill this layer of this infrastructure.
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Optimal Resource Provisioning for Long-runningWorkloads (Mem-

ory)

In general, the relationship between resource allocation and performance for any

workload is inherent non-linear and not easy to model as shown in previous works [58,

162], which have been studied for decades. Nevertheless, for long-running workloads, we

found a critical inflection point between resource and performance curve. we discover an

important elasticity property that could help us to stably achieve best efficiency and optimal

performance at the same time.

Most recent works of capacity planning only consider resource usages instead of its

relationship with performance. In our observations, containers of in-memory computing

workloads would trigger modest minor garbage collections (GCs) and execute spilling-to-

disk operations to effectively reclaim spaces and release memory pressures under insufficient

allocation during load spikes or peak usages. Unlike the observations for short-lived batch

tasks [82,106,150,151,187], we found the performance of these containers are not sensitive to

sizable reductions of reserved memory. It is because the increased GC and spill overheads due

to some tasks are only a negligible portion compared to the application’s long-time execu-

tions. A moderate decrease of reservation would have little negative impacts on performance,

but significantly reduces the wastes of excessive memory usages by 5 to 10 times.

That is, containers are allowed to run with significantly less memory reservation than

they would ideally need (peak or average usages) while only paying a moderate performance

penalty. We refer to this property as memory reservation elasticity. It is a general property

for diverse types of in-memory computing workloads. Consequently, applications are able to

achieve nearly optimal performance under a minimum reservation that is just large enough to

satisfy their majorities of base demands. We name these capacities as optimal reservations.

They are capacity cut lines to divide the reservation between over-provisioning and under-
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provisioning. It also provides opportunities to well balance the trade-offs between memory

efficiency and performance.

For recurring applications (periodically run repeated jobs on same or similar newly

arriving data), the procedure to explore optimal reservations is essentially a search process

over correlated memory allocation and performance. Recent studies [42,57,60,69,83,110,112,

196] revealed that a majority of production applications exhibit recurring execution pattern.

The recurrent nature enables the feasibility for searching methods through multiple offline

runs. However, recurring jobs usually encounter variations of input datasets, source code

tweaks or training parameters tuning. Their optimal reservations would change over time

under such variabilities. They need to start all over new searches.

Existing offline searching solutions do not fully address the challenges. For example,

Elastisizer [101], Ernest [183], CherryPick [45] and Clipper [68] offline trained performance

models based on historical executions to search best cloud configurations for recurring jobs.

If simply adopting these model-based searching approaches, we need to retrain models for

every type of variability, which is too expensive and impractical for tens of thousands jobs

in an enterprise cluster.

Estimation of optimal memory reservations for newly submitted or non-recurring

jobs is even more challenging. Due to lack of relevant runtime history information, searching

algorithms become ineffective. Online executing a plenty of profiling runs for searching

is simply too time-consuming and the results would become useless for online scheduling.

Datacenter schedulers are in urgent need for an efficient online estimation approach for

optimal reservations.

Through experiement, we found a reservation size that just accommodates the ma-

jorities of base demands is the optimal one, which is just large enough without unnecessary

wastes. The mathematical expectation of memory usages that implies the average demand

at future executions, are accurate enough to represent base demands. This rationale offers
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opportunities to find optimal reservation of containers on line in one step, by performing

probability density analysis and estimating expectation of footprints in profiling runs.

Due to random scheduling, pipelined executions and staggered aggregate memory

usages of concurrent tasks on containers, the profiled footprints of long-lived containers dis-

play randomness and its expectation lacks of ability for generalization. In comparison, we

observed memory usage patterns per task are highly stable and often in a Gaussian dis-

tribution. Since the usages per container is the aggregate ones of its all co-locating tasks,

we could obtain robust confidence intervals of containers’ random footprints by aggregat-

ing stable confidence intervals of task memory usages. By using confidence levels for the

predictions, we eliminate negative effects of footprints’ randomness on estimations.

We concluded our contributions as followings:

• To our best knowledge, we are the first to specify, identify and demonstrate a general

property of memory reservation elasticity for diverse types of workloads in in-memory

computing. We studied its origins by performing quantitative analysis of benchmarks’

memory footprints.

• We discovered a long-tail relationship between reservation and performance derived

from elasticity, and revealed there exists an optimal reservation for long-lived containers

in terms of maximum memory efficiency and optimal application performance.

• We quantified the relationship between footprints and optimal reservation, and demon-

strated optimal reservations are able to be efficiently predicted by estimating expecta-

tions of memory usages. We use confidence intervals to resolve randomness of container

footprints. Through robust profilings in pilot runs, we perform highly accurate (over

80%) initial estimations through only one-step without runtime history. By exploit-

ing self-decay property and recursive search, the accuracy was improved to over 95%.

MEER should be the first kind of systems to predict optimal memory reservations.
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• We implemented MEER as an extension to YARN. It efficiently assisted YARN to on-

line make optimal reservations and speed up diverse types of in-memory computations

by 2 to 6 times on average, while improving cluster memory utilization by 40%.

Contention and Interference-Aware Co-Scheduling (Co-locating)

for Long-running Workloads (Network and Disk I/O)

Applications running on today’s large-scale data-parallel processing frameworks, such

as Apache Hadoop [14], Dryad [107] and Spark [203], usually have DAG of stages in their

execution durations, such as map and reduce stages. Each stage consists of a number of

tasks conducting the same type of data processing. A task requires multiple resources for

its running, including CPU, memory, as well as disk and network bandwidths. While tasks

belonging to the same stage are of similar demands on each of the resources, those belonging

to different stages can have very different demands on different resources. For example,

machine learning applications, such as K-Means and KVM (Support Vector Machine) [34,

123], tasks of their map stage are I/O- and CPU-intensive while tasks of in the following

reduce stage are only network-intensive. The frameworks, such as Hadoop and Spark, usually

run on the compute platforms, such as YARN [181] and Mesos [103], responsible for resource

allocation and sharing. It is critical for task schedulers on the platforms to efficiently schedule

the tasks of vastly diverse multi-resource demands onto a cluster of servers, so that both

applications’ execution time and the cluster’s throughout can be maximized.

Scheduling tasks with multi-resource demands onto servers of limited amount of re-

sources (CPU, memory, disk, and network) is often formulated as a multidimensional bin

packing problem. As long as these demands are known a priori or can be accurately es-

timated, this problem can be solved heuristically in a polynomial time [94]. A common

technique used for this estimation is to profiling tasks by leveraging the fact that jobs of an

application are recurring and they âĂĲrepeat hourly (or daily) to do the same computation

on newly arriving data [94]âĂİ.
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Such a profiling strategy is not sufficient to fully address the issue by itself in practice,

as the demands measured during a taskâĂŹs run vary (sometimes dramatically). While it is

known that a multidimensional bin packing problem is NP-hard and has to be solved with

heuristics, it is almost impossible to accommodate time-varying demands into the model

to efficiently produce an effective scheduling decision. A conservative alternative is to use

peak usage of a resource to represent the varying demands of a task during running to

prevent resource over-allocation [94]], which occurs when aggregate demand from all running

tasks exceeds available resources. It often leads to interference between tasks and serious

performance degradation. However, this conservative approach generates risk of resource

fragmentation, which occurs when resources are idle but tasks with demands on them that

ready for scheduling cannot use them.

To achieve high scheduling efficiency, a scheduler has to simultaneously minimize

fragmentation and over-allocation of resources [8]. When each application can have a large

number of tasks and each task has a relatively short execution time, using peak demand

may not create extremely large pockets of fragmentation in terms of wasted resource time.

However, this becomes a serious issue with in-memory computing frame- works, such as

Spark and Storm, where scheduling units have long execution time with varying demands.

Long-running workloads’ workers pre-reserve specific amount of CPU and memory

resources as described in Section . However, the network and disk bandwidth could not

be fully isolated. Long-running workloads need a scheduler that could schedule workers

by considering the contentions mitigation of network and disk I/O bandwidth. Only few

previous works [94] consider network and disk bandwidth isolation for short-lived tasks in

Hadoop. Recent work like Tetris [94] exploits the knowledge of future (peak) resource de-

mands of tasks to perform bin-packing algorithm. However, it cannot be applied directly on

workersâĂŹ scheduling. When an worker becomes the scheduling object, the rationale made

by existing schedulers based on peak resource usage to represent the objectâĂŹs varying

resource demand is less likely to be valid. A worker runs multiple batches of tasks belonging
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to different DAG stages may have (very) different resource demands. Therefore, using the

peak demand to represent different demands of a resource during the lifetime of an executor

for resource allocation can cause serious resource fragmentation (or wastage).

Additionally, for a smooth run of tasks in an executor without interference from

other application executors, it might be desired to have all four major required resources

(CPU, memory, disk, and network) pre-allocated or reserved. Users only need to pre-specify

their resource demands on CPU (num- ber of cores) and memory (size of memory) for a

worker. As these demands usually represent the bottom line of a userâĂŹs requirement on

quality of service, the requested resources are pre-reserved at the time of executor scheduling.

However, network and disk resources are shared among workers on a server without isolation

or reservation. They are more likely to incur over-allocation, and tend to cause disk seeks

or network incast that may significantly compromise systemâĂŹs throughput. In addition,

neither users nor current cluster managers [181,185] would specify network and disk demands

of workers, let alone consider their highly variable demands. This may lead to application

performance degradation and poor resource efficiency.

To improve cluster efficiency and speed up individual applicationsâĂŹ performance

for in-memory computation, we design an executor scheduler, namely Prophet, which can

select an executor whose scheduling would result in the smallest amount of fragmentation

and over-allocation of network and disk resources. With the knowledge of an executorâĂŹs

future varying (peak) disk and network demands at any stage during its lifetime and of each

stageâĂŹs start time and its duration, Prophet can estimate resource availability at any time

frame in the near future and make an informed scheduling decision accordingly to minimize

resource fragmentation and over-allocation. To deal with unexpected resource contention,

Prophet selects task(s) in an executor to back off to adaptively ameliorate the contention.

In summary, we make the following contributions in the paper.

• We identify a performance-critical issue about the ex- ecutor scheduling on in-memory

data parallel computing platforms. We show that without considering resource demand
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variation within an executor, one can hardly enable an effective scheduling. By showing

stability and predicability of resource demands in an executor, we make it possible to

take the dynamics on the resource demands into account.

• We design an online executor scheduler, named Prophet, that adopts a greedy approach

by choosing the currently optimal executors in terms of expected resource fragmen-

tation and over-allocation to dispatch. It also dynamically avoids severe resource con-

tention and subsequent dra- matic performance degradation due to unexpected over-

allocation with its task backoff mechanism.

• We have implemented Prophet on YARN and Spark 1.5 to support Spark and evalu-

ated it on a 16-server cluster. Experiments show that Prophet can minimize resource

fragmentation while avoiding over-allocation. It can substantially improve cluster re-

source utilization, minimize application makespan, and speed up application comple-

tion time. Compared to YarnâĂŹs default capacity and fair schedulers, Prophet re-

duces the makespan of workloads in SparkBench [4] by 39

Datacenter Co-locations Techniques for Long-running Workloads

at Large-scale

Besides resource scheduling for LRAs or LRSs as shown in Section and Section ,

a more effective way to improve resource efficiency in modern datacenter is to co-locate

both offline batch jobs, LRAs and LRSs in the unified shared infrastructure. However, it

has another higher level of technique requirements from IDC, network, server hardwares,

storage, virtulization and containerization, co-locating scheduling and so on. We introduced

the background, motivation, feasibility and technique details of an enterprise co-location

techniques at large-scale in Alibaba Group, which daily scheduling tens of millions of diverse

heterogeneous workloads across tens of datacenters and millions of servers. We mainly

introduce how to eliminate or mitigate runtime interferences once contention occurs.
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The resource wastes and inefficiency issues are becoming serious in modern internet

companies like Alibaba Group. The total utilization was even lower than 9% during several

past years. It is due to the over-provisioning of online business services on the dedicated

cluster to guarantee service stabilities. However, recent resource management and scheduling

studies of datacenters mainly focus on supporting offline workloads of big data processing

system, which are data-intensive and naturally have a high average cluster utilization over

60%. Most daily business applications of industry are online long-running services (LRSs)

consisting of a long chain of multiple middleware components like web services, memcache,

RPC (Remote Procedure Call) and databases. They are sensitive to tiny abnormality of

operating system or datacenter network due to resource contentions or faults. One unex-

pected fluctuation of system load could block multiple online processes on that server. It

causes large-scale time out and failures of downstream services, which become unbearable

catastrophes in production environment. How to effectively schedule and run online LRSs

to satisfy their strict requirements of Service Level Agreements (SLAs) while maximizing

resource efficiency should obtain more attentions.

Recent studies [170,185] reveal that co-locate online services and offline data-intensive

workloads on the shared infrastructure is feasible to improve efficiency while guarantee sta-

bilities of LRSs. It brings numerous extra challenges and much higher requirements to

datacenter techniques. In this paper, we introduce a large-scale enterprise-wide colocation

techniques as our solutions to effectively improve datacenter efficiency. It involves in the

upgradation and evolutions of full technique stack of infrastructures across the entire group,

including layers of idc, network, server hardwares and architecture, operating system, re-

source manager and scheduler, containerization and applications.

We concluded contributions of the paper as followings:

• We introduce the evolvement of challenges and architectures of Alibaba including scenes

of "Double 11" in the past years, as well as the detail motivations and techniques of

large-scale colocations. The diverse workloads of both LRSs and offline jobs including
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eCommerce, finance, maps and navigation, digital entertainment and social media are

unique. We also introduce the workload characteristics, resource management and

scheduling scenes of both online LRSs, real-time applications and offline data-intensive

workloads in Alibaba global datacenters and infrastructures.

• We are the first to introduce the characteristics and resource management of on-

line LRSs in industry rather than the offline data-intensive long-running applications

(LRAs) described in recent works [86, 126, 194, 196]. Since online LRSs across 7000+

types of services from 60+ departments in entire Alibaba Group are all containerized,

we have one of the largest scale of LRSs scenes in the world.

• We are the first to introduce how to effectively co-locate our unique and diverse online

LRSs and offline data-intensive workloads in the large-scale shared industry datacenter

in detail. Compared with Borg and Omega [170, 185], we introduce the colocation

technique from the view of workload resource management and scheduling instead of

technique architectures.

• We believe the unique large-scale industry scenes in Alibaba Group could be a great

help to the research field of datacenter architecture and resource management. We

would also continuously provide updated open cluster trace of colocations [38] to en-

courage more studies in this field. It includes diverse online LRSs and data-intensive

workloads running on co-located production cluster of 4000 machines for 8 days [38]. It

includes abundant resource usages data of machines and containers, and runtime statis-

tics of workloads with DAG information. It could be a good verification of Alibaba

co-located datacenter.

We show the colocation techniques could improve utilization from originallly 10%

averagely to stably 50%, and guarantee strict SLAs and stabilities for diverse services. It

saves billions of costs of TCO for Alibaba and becomes the core infrastructure technique for

the next-generation architecture of Alibaba.
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Evaluate the Effectiveness of Long-running Workloads Co-location

Techniques by Analysis of Alibaba Datacenter Trace

To evaluate and demonstrate the feasibility and effectiveness of co-location techniques

between diverse LRAs, LRSs and other short-running applications on improving cluster

efficiecny at large, we perform a deep analysis on a newly released trace dataset by Alibaba

Group in September 2017, consists of detail statistics of 11089 online service jobs and 12951

batch jobs co-locating on 1300 machines over 12 hours. We reveal several critical insights

for co-location techniques of long-running workloads at large-scale production cluster.

Alibaba Cloud is one of the largest public cloud platforms in the world, on which

processing millions of tasks acrossing hundreds of data centers everyday. This trace includes

runtime statistics of a hybrid cluster, on which online service and offline batch jobs are co-

locating. As we know, it is the unique one having hybrid runtime information among all

public traces.

To the best of our knowledge, this is one of the first work to analyze the public Alibaba

trace. We explored runtime status of the hybrid cluster, and showed several important

insights about imbalanced utilization and resource inefficiency in the cloud.

Our analysis reveals several important insights about different types of imbalance

and resource inefficiency in the Alibaba cloud. Such imbalances exacerbate the complexity

and challenge of cloud resource management, which might incur severe wastes of resources

and low cluster utilization. 1) Spatial Imbalance: heterogeneous resource utilizations across

machines and workloads. 2) Temporal Imbalance: greatly time-varying resource usages per

workload and machine. 3) Imbalanced proportion of multi-dimensional resources (CPU and

memory) utilization per workload. 4) Imbalanced multi-resource demands between online

service and offline batch jobs. Additionally, the trace demonstrated that Alibaba cluster

is operating at extremely low utilizations for online services (less than 10% CPU and 45%

memory average utilizations). We believe accomodating such imbalances during resource
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allocation is critical to improve cluster efficiency, and will motivate the emergence of new

resource managers and schedulers.

They are listed as followings:

• Spatial Imbalance: heterogeneous resource utilization across machines and workloads.

• Temporal Imbalance: greatly time-varying resource usages per workload and machine.

• Imbalanced proportion of multi-dimensional resources (CPU and memory) utilization

per workload.

• Imbalanced resource demands and runtime statistics (duration and task number) be-

tween online service and offline batch jobs.

Many modern resource managers are designed under the assumption of ideal cluster

environment. The commonly occurred imbalance phenomenons in Alibaba trace would lead

to significant resource inefficiency and wastes. We believe it is critical to accomodate such

imbalances during resource allocation to improve cluster efficiency. They will also motivate

the emergences of new resource managers and schedulers.

By analysis of the public cluster trace, we demonstrate the large-scale co-location

technique gains a great success to improve average utilization of Alibaba global datacenter

from 10% to 50% averagely, and guarantee the strict SLAs of LRSs.

Dissertation Organization

The rest of this dissertation is organized as follows:

Chapter 2 gives an overview on existing approaches of resource management and

scheduling in distinct contexts over recent decades. We compared the differences between

previous schedulers designed for short-lived tasks or virtual machine dispatch, and scheduling

for long-running workloads (LRAs and LRSs).

In Chapter 3, we introduce our optimal reservation estimation system named MEER

(Prometheus). It could rapidly and efficiently make just right memory reservation for LRAs
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through two pilot runs without historical knowledges. It performs predictions by profil-

ing, histogram analysis, confidence interval infer of task and worker memory footprints. It

achieves the maximal cost-efficiency, resource effieicny and optimal application performance

at the same time for LRAs.

In Chapter 4, we present our worker scheduler named Prophet. It performs bin-

packing-like algorithms to achieve minimal fragmentations and over-allocations by accom-

modating long-lived time-varying demands of LRA workers. It leverages machine learning

based predictable techniques to know workers’ network and disk bandwidth usages ahead,

as well as stage durations of LRAs. By performing a time-space packing algorithm, it could

guarantee best efficiency at the expenses of little ignorable contentions.

In Chapter 5, we study the large-scale co-location techniques of long-running work-

loads to make huge improvements on efficiency in large-scale datacenters. We introduce Al-

ibaba LRAs and LRSs workload characteristics at a full map. We also illustrate motivation,

feasibility, challenges, as well as effective elastic resource sharing and isolation techniques for

co-locations in Alibaba datacenter. We improve average datacenter utilization from 10% to

averagely 50% due to this efficient technique.

In Chapter 6, we demonstrate our evaluation results of large-scale co-location tech-

niques for long-running workloads by analyzing Alibaba public cluter traces. We are the first

work to illustrate the co-location effectiveness of Alibaba global datacenters, and attract a

lot of attentions.

Chapter 7 concludes this dissertation with summaries of our contributions, method-

ologies and directions for future work.
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CHAPTER 2 RELATED WORK

Resource management and scheduling have been studied for decades ranging from

various contexts including High-Performance Computing (HPC), Cluster Computing, Grid

Computing and Cloud Computing. We compare the relevant works of schedulers in large-

scale datacenter.

Figure 2.2 demonstrates the evoluation of scheduling and resource management tech-

niques over decades. They varies along with the evoluation of big data distributed compu-

tation systems in cloud datacenter as shown in Figure 2.1.

Towards Intelligent Scheduling

There have been many studies on task scheduling on the data-parallel computing

platforms. There are also studies on leveraging history resource usage to predict future

resource demands for improved data locality and execution efficiency. In addition, studies

on virtual machine placement and migration are also related on the aspect that Spark’s

executors are actually Java virtual machines. In the below we show how our works are

related to previous works and why it represents a unique contribution.

Cluster Schedulers: The issue of task scheduling in large-scale data-parallel sys-

tems has been extensively studied recently [71, 107, 203]. Quincy and delay schedulers are

designed to improve data locality of individual task while maintain fairness of different

applications [108, 202]. Both Fair and Capacity Scheduler [27, 28] are Yarn’s default sched-

ulers [181] designed for slot-based resource allocation. They conduct tasks for high scalability

and fairness. Dominant Resource Fairness (DRF) utilizes max-min fairness to maximize the

minimum dominant share for all users when allocating multiple resources [87]. Implementa-

tions of DRF or earlier schedulers only consider CPU and memory in their resource alloca-

tion. Tetris is the first task scheduler that packs tasks based on multiple resource demands

including CPU, memory, network, and disk to avoid resource over-allocation and minimize

fragmentation [94]. However, none of existing works are designed for scheduling executors of
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Spark applications. While each executor has many stages with possibly distinctly different

resource demands, their assumption on stables demands in a task does not hold. We show

that scheduling executors with existing task scheduler would incur serious disk and network

fragmentation and over-allocation, leading to poor makespan, application completion time,

and low resource utilization.

Plan-ahead scheduler techniques: While there are a large number of recurring

applications in a large-scale data-parallel production environment, it is known that future re-

source demands and execution times are predictable and there optimization techniques take

advantage this observation to plan ahead and accordingly make scheduling decision. Apollo

estimates task execution time from historical task runtime statistics to perform estimation-

based task delay scheduling for improved data locality and reduced task completion time [57].

Tetris estimates tasks peak multi-resource demand from previous runtime statistics to con-

duct multi-dimensional task-packing scheduling [94]. Both Jockey and ARIA predict the

completion time of a running application through past execution profiles and a control loop

estimating application’s progress, to automatically adjust resource allocation to meet ap-

plication’s SLO [83, 184]. Corral predicts future application arrival time and characteristics

such as input and intermediate data sizes from recurring application statistics, to jointly

coordinate input data placement with task placement to improve data locality and reduce

cross-rack network data transfer [110]. While these works show that prediction on applica-

tion behaviors based its history can be highly effective for informed scheduling, none of these

works apply the technique for scheduling of Spark’s executors. While in-memory computing

platforms, including Spark, are very popular, the efficient scheduling based on prediction is

on high demand, and Prophet makes a timely contribution.

VM Packing/Schedulers: To some extent the issue of virtual machine (VM)

scheduling is similar to the executor scheduling. Both need to consider demands of mul-

tiple resources and both will host multiple processes or tasks to run. Their actual resource

demands can also be highly variable. Both need to avoid resource over-allocation and frag-
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mentation. There have a number of works on VM scheduling. Among them, AutoControl

packs virtual machines with multi-resource demands using dynamic feedback-based VM fine-

grained resource allocation [155]. Sandpiper migrates VM to alleviate overload condition to

maximize resource utilization [191]. It does not adopt predictive plan-ahead packing place-

ment strategy because future resource demands of the VM’s Web-based or interactive appli-

cations are highly unpredictable. However, neither of those approaches could be applied to

scheduling of Spark executors, because it can be too expensive to (frequently) migrate often

data-intensive executors and incur transferring of large volume of data.

Current works solve the problem through different aspects. Modern schedulers frame-

works such as YARN [181], Mesos [103], Omega [170] and Borg [185] adopt centralized or dis-

tributed scheduling with diverse algorithm motivated to improve data locality [202], packing

efficiency [94],fairness and capacity [108].This facilitates vastly concurrent sharing between

diverse types of applications ranging from batch jobs to long running services.

Optimal Provisioning By Intelligent Scheduling

As a core technique in resource management of large-scale datacenter, predictions of

performance or resource demands have been widely studied in various contexts for a long

time. A large number of cluster schedulers [57, 69, 72, 73, 75, 77, 78, 94–96, 105, 109, 110, 112,

113, 120, 155, 156, 160, 163, 177, 184, 185, 190, 196, 209, 210] leverage the knowledge of future

resource availability to perform intelligent scheduling, so as to meet SLOs while achieving

maximum utilization. Other works rely on predictions to speedup execution [42,83,164,183],

assist fault detection [199] or mitigate stragglers [47–49,197] and interferences [74,99]. They

are not aware of the memory reservation elasticity and optimal reservation of long-lived

containers in in-memory computing systems like Spark. MEER is an dedicated prediction

technique to these in-memory computing workloads, which is complementary to previous

works.
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The others that rely on resource-to-performance modeling to support SLO [83, 112,

184] and tunning configurations [45, 101, 102, 160, 183] are complementary to MEER. Mor-

pheus [112], PerfOrator [160], ARIA [184] and Jockey [83] leverage telemetry of historical

runs to estimate SLO and corresponding skyline of demands. They dynamically adjust

allocations in order to meet deadlines. Elastisizer [101], Ernest [183], CherryPick [45], Clip-

per [68] and BestConfig [211] monitor resource usages and use profiling or historical traces

to search optimal configurations. Paragon [74] and Quarsar [75] employ classification tech-

niques and historic runtime data to perform online co-locating, so as to avoid interferences.

PerfOrator [160], Graphene [96] and Apollo [57] make predictions relying on white-box mod-

eling by analyzing sizes of task inputs in disk and reproducing parallelism, which ignores

irregular sizes of in-memory data and uncertain memory demands. Most of these works

build prediction models offline for short-lived tasks of MapReduce based on massive profiling

runs or historical executions statistics of recurring applications. Their methodologies cannot

provide an efficient online estimation of optimal memory reservation for newly submitted

or non-recurring in-memory computing workloads, and are too time-consuming for online

scheduling. Additionally, optimal reservations of recurring applications tend to change over

time with variations of input datasets or algorithmic parameters. Their offline model-based

searching is ineffective. Cloud online schedulers need MEER to perform accurate online

prediction from only two pilot runs and to handle newly submitted applications as well as

the variations of recurring runs.

Under above near-monotonic trend, the procedure to dis- cover optimal memory de-

mands for recurring jobs has been transferred to an online search problem. It seems like

we could naively adopt brute-force or random search used in [101, 102, 201] that randomly

chooses initial allocation and continuously reserves diminishing memory with a fixed step

size. We would find the runtime inflection point beyond which performance starts to drasti-

cally degrade. However, if the chosen starting point is far away from the optimal demands

or the step size is improperly small, it would take hundreds of executions to reach the des-
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tination. Such long-time search means extremely high overheads and becomes impractical

for online configura- tion. In contrast, adopting an improperly large step size might cause

estimations of large errors.

Other Bayesian Optimization [45] or machine learning based [160, 183] search needs

multiple profiling runs or prior historical execution statistics. They may suffer inaccurately

cold-start for new submissions due to lack of relevant history. Further, these methods are

designed to explore best instance configuration within a given space of discrete candidate

choices. They are not applicable to online search of specific targets among such boundless

spaces and consecutively varied candidates of memory capacities. Their loss functions might

take long-time recurring executions to converge with high search overheads.

Moreover, all above searching methods are only effective for recurring jobs without

variabilities. It is time-consuming and infeasible to perform multiple runs for newly submit-

ted or non-recurring jobs to online finding of the optimal memory demands. The recurring

applicationsâĂŹ knees of memory versus performance curves also change over time along

with varia- tions of input datasets, parameters or source code. It becomes too expensive and

infeasible to start over new online recursive searches for every variability.

In this paper, we develop an online histogram frequency analysis algorithm to effi-

ciently infer preliminary optimal memory demands through only one pilot (profiling) run. It

could be applied to newly submitted or non-recurring jobâĂŹs worker demands estimation,

with a high accuracy of more than 80%. Its benefits come from analysis and modeling of

the frequency of past runtime memory footprints per time unit under unconstrained mem-

ory reservation. We could distinguish base demands and unnecessarily excessive memory

usages [106] under such wasteful over-provisioning. Allocation of base demands tend to

achieve near-optimal performance, so as to approach optimal demands.

The histogram analysis algorithm has an intrinsic property of self-decay. We exploit

this property to recursively perform searching during subsequent recurring executions. It

obtains stepwise refinement and rapidly approaches to a near-optimal estimation (over 92%
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accuracy). We demonstrate this online recursive search method outperforms alternative

solutions from both accuracy and overheads.

Other works that rely on resource-to-performance modeling to support SLO [83,112,

184] tuning configurations [45, 101, 102, 160, 183] and perform intelligent scheduling [74, 75]

are complementary to Prometheus. Morpheus [112], PerfOrator [160], ARIA [184] and

Jockey [83] leverage telemetry of historical runs to derive SLO and corresponding skyline of

demand. They dynamically adjust allocations in order to meet deadlines. Elastisizer [101],

SLARM [164], Ernest [183] and CherryPick [45] monitor resource usages and use profiling

or historical traces to search optimal configurations. Paragon [74] and Quarsar [75] employ

classification techniques and historic performance data to perform online scheduling, so as

to avoid inferences.

Most of the previous works build models for tasks based on multiple profiling runs

or historical executions statistics of recurring applications. These methodologies cannot be

directly applied to PrometheusâĂŹs in-memory computation scenarios because the optimal

memory demands for workers of recurring jobs tend to change over time with variability

of input datasets or algorithmic parameters. We need Prometheus, performing accurate

online estimations from one pilot run, to handle these variabilities and newly submitted

applications.

LRA and LRS Scheduling in Large-scale Datacenter

Schedulers for Colocations. Recent studies propose approaches that colocate

latency-critical (LC) and batch applications to maximize efficiency [57,74,75,86,90,122,131,

185]. Borg and its open source version of Kubernetes [51, 185] are the first enterprise-wide

scheduler for colocations, which daily dispatching millions of batch and long-running appli-

cations (LRAs). Bistro [90] introduces a hierarchical of data and computational resources

to enable resource constaints for online cluster and efficient parallel scheduling for offline

workloads. They prefer effective colocations rather than optimal allocation objectives to
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guarantee strict SLAs for LC services as in Sigma. Quasar [75] and Paragon [74] employ

classification techniques and historic performance data to perform online scheduling, so as to

avoid interferences. Medea [86] relies on two types of schedulers to make global optimal de-

cisions and satisfy expressive constraints for LRAs, while guaranteeing low latency for batch

tasks. Apollo [57] uses task-duration estimation and opportunistic executions of best-effort

tasks to plan ahead and boost utilization. None of them are studying scheduling for LC

LRAs during extremly load spikes as in Alibaba. We are facing more challenging industry

issues of scarce resources and low latency requirements.

Deadline-Aware Scheduling and Resource Efficiency. Other works rely on

resource-to-performance modeling and capacity planning to allocate right resources and

tuning configurations, so as to catch deadlines and support SLO. Rayon [69] declares a

reservation-definition language and formalizes planning of future resources as a Mixed-Integer

Linear Programming for batch production jobs on YARN to catch deadlines. TetriSched [177]

leverages runtime estimation and deadline information of to perform space-time-aware global

allocation for data analytics applications upon Rayon. HCloud [77] employs hybrid provi-

sioning of on-demand and reservation to handle sensitive services and insensitive batch jobs,

so as to maximize efficiency while ensure SLA for LC services. Morpheus [112], PerfOra-

tor [160], ARIA [184] and Jockey [83] leverage telemetry of historical runs to derive SLO

and corresponding skyline of demand. Prophet [196] leverages historical profilings to predict

future I/O demands and make efficient packing for batch LRAs. They also dynamically

adjust allocations as in CloudScale [173] to meet deadlines. However, most of these works

are designed for offline analytics products instead of user-facing LC services. They are not

aware of extreme load spikes of production services either.

Offline Batch Scheduling. Since big data analytics workloads become increasingly

popular, the underlying resource management gain a lot of attentions. Quincy [108] and

Firmament [92] regard batch task scheduling as graph and network flow model to provide

fairness and data locality-aware scheduling. Delay Scheduling [202] proactively delays alloca-
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tions to achieve better data locality while guarantee fairness through round-robin allocation.

YARN [181], Mesos [103] and Fuxi [210] are designed to support diverse analytics workloads

such as batch [71, 168, 203], machine learning [40, 144], graph computation [93, 138], ad-hoc

queries [50,55] and stream processing [116,176,204]. They adopt reservation and admission-

control based two-level scheduling to incrementally allocate resources for tasks. They are

focus on throughputs and makespan instead of strict SLA and unpredictable load spikes for

online production services.

Altruistic Schedulers and Efficiency. In multi-tenants cluster environment, fair-

ness becomes increasingly important to guarantee reasonable shares of multi-resources and

prevent starvations. DRF [87] adopts an economics algorithm to satisfy max-min fairness

including sharing incentive, strategy-proofness, envy-freeness and pareto efficient for multi-

dimension resources. Choosy [88] is an evolution version of DRF that takes resource con-

straints such as placement locations and hardwars into account. Tetris [96], Prophet [196],

Graphene [96] and Carbyne [95] extends the fairness of CPU and memory in DRF to I/O

bandwidth. They designed a comprehensive scheduling approach to simultaneously satisfy

fairness, packing efficiency and minimal slow down. These works are designed for short-lived

batch containers and are not friendly to LRAs since shortest job first (SJF) algorithm always

blocks long applications. Sigma prefers load balances to ensure SLAs for LC services, which

against the skew-preferred mechanisms to resolve above bin-packing scenarios.

Distributed Schedulers. Due to modern sub-second task runtime requirement and

large-scale cluster scale, centralized schedulers could not achieve low scheduling latency of

millseconds level. Distributed schedulers start to take over the cluster [57,113,122,153,170].

Omega [170] employs pessimistic lock to resolve the conflicting decisions between distributed

share-state schedulers. Sparrow [153] make opportunistic distributed allocations based on

sample profilings. Mercury [113] and Hawk [73] provide rich resource management API

based on a hybrid design of central and distributed schedulers to balance the trade-offs

between execution and scheduling efficiency. Tarcil [122] leverages sample-based statistical
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approach on loads to allocate resources for long and short jobs, while reconcil scheduling

speed and quality. These works focus on architecture design of distributed schedulers rather

than resolving the non-trivial allocation and placement issues for LRAs as in Sigma.

Data-Driven Intelligent Schedulers. Recent works try to leverage deep reinforce-

ment learning (RL) [139] to adaptively train schedulers and allocate resources. They rely on

runtime rewards inference and benefit from accurate performance estimation. It is designed

for batch analytics jobs. Sigma innovatively uses RL to pack LC LRAs under constraints

during extreme load spikes.

Large-scale Datacenter Trace Analysis

Google released a 29-day trace of over 25 million tasks across 12,500 heterogeneous

machines in 2011 [37]. There are several important works on analyzing Google trace from

different perspectives. Zhang et al., focused on characterizing run-time task resource us-

ages of CPU, memory and disk [206]. Reiss et al., characterized cluster resource requests,

distributions, and the actual resource utilizations. They found heterogeneity and dynamics

are two important characteristics. [167] [166]. Liu et al., characterized how the machines

in cluster are managed and when the workloads submitted during a 29-day period behave.

They focus on the frequency and pattern of machine maintenance events, job and task-level

workload behaviors, and how the overall cluster resources are utilized [129]. Abdul-Rahman

et al., considered user behaviors in composing applications from the perspective of topology,

maximum requested computational resources, and types of workloads [41]. Sharma et al.,

focused on the task placement constraints in Google compute cluster and developed method-

ologies for incorporating task placement constraints and machine properties into performance

benchmarks of large compute clusters [172]. Di et al., compared the differences between a

Google data center and other Grid/HPC systems, focus on loads of jobs and machines [80].

While other works use machine learning method, such as k-means clustering, to study

the workload characteristics. Mishra et al., described an approach to workload classification
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based on k-means and its application to the Google Cloud Backend [145]. Di et al., com-

puted the valuable statistics about task events and resource utilization for Google applica-

tions, based on various types of resources (such as CPU, memory) and execution types (e.g.,

whether they can run batch tasks or not). They also classified applications via a K-means

clustering algorithm with optimized number of sets, based on task events and resource us-

age [79]. Chen et al., identified common groups of jobs by k-means clustering. They also did

correlation analysis between job semantics and job behavior, leading to helpful perspectives

on capacity planning and system tuning [63].

While our work is one of the first analysis on Alibaba trace, which is released in

September 2017. Furthermore, we analyze this dataset from a new perspective and find

several interesting imbalance phenomena in the cloud.
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CHAPTER 3 MEER: Online Estimation of Optimal Memory

Reservations for Long Lived Containers in In-Memory Cluster

Computing

Introduction

Modern in-memory computing systems like Spark create long-lived containers to ex-

ecute diverse types of applications. They rely on a cluster manager like YARN or Mesos

to perform resource allocation to the containers. The cluster manager or scheduler requires

users of the containers to reserve resources beforehand. It is a challenge to estimate just

right amounts of memory to run the applications before execution, so as to avoid over- or

under-provisioning of memory space. We discover a general property of memory reservation

elasticity, which allows applications to run with a reservation limit smaller than they would

ideally need while only paying a moderate performance penalty. Based on the property, we

designed a system, namely MEER, which performs online estimation of minimum necessary

amount of memory limit that achieves nearly optimal performance. We referred to it as

optimal reservation, which divides memory over-provisioning from under-provisioning.

It is non-trivial to efficiently estimate optimal reservations on line through one step

without runtime history. MEER uses a two-step approach to dealing with the challenge: 1)

Do robust profiling and probability density analysis of applications’ memory footprints in two

pilot runs. By using confidence levels for the predictions, we reduce the negative effects of

container footprints’ randomness and achieve a highly accurate online initial estimation (over

80% accuracy) of optimal reservation. 2) By exploiting a self-decay property of the analytical

results, MEER adaptively performs recursive search based on a feed-back control mechanism

over subsequent recurring executions. We implemented MEER atop of YARN and evaluated

the prototype by running 15 benchmark workloads on a 16-node local cluster. Evaluation

results show that it achieves an average accuracy of more than 95%. By deploying MEER on

schedulers and allocating memory according to the optimal reservations, one could improve
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Table 3.1: Experiment configurations of 12 workloads

Benchmarks Input Datasize Benchmarks Input Datasize
Terasort 93GB PCA 184.3GB
SVM 75GB PageRank 15GB

KMeans 87.5GB SVD++ 8GB
LogisticRegression 147GB ConnectedComponent 8GB
LinearRegression 191.6GB TriangleCount 8GB
DecisionTree 95.8GB TPC-DS Query 7 100GB

cluster memory utilization by about 40%. It reduces individual application execution time

by 2 to 6 times on average compared to the state-of-the-art approaches. A 90 times peak

speedup for PageRank in comparison with the default Spark/Yarn is observed.

MEER could be integrated with most in-memory cluster computation frameworks,

without much effort of abstraction modification. We evaluate MEER on a local 16-server

cluster, and compare it to state-of-the-art memory demands estimation systems. We demon-

strate MEER effectively avoids over- and under-provisioning of memory, simultaneously op-

timize application performance while maximizing memory efficiency.

The rest of the paper is organized as follows. Section demonstrates memory elasticity

and its origins. It also identifies optimal reservation. Section illustrates the feasibility of

estimation and challenges due to footprints’ randomness. Section describes the design and

implementation of MEER and the robust two-step prediction approach. Section describes

the evaluation. Section ?? reviews the related works and Section concludes the paper.

Motivation

Balancing the trade-offs between effective resource usages and optimal application

performance is a core challenge in the management of datacenters [75,112,160,196]. Essence

of the issue is to determine the right size of memory reservation. The problem is especially

important for containers due to the long-term static reservations [86,196].

To illustrate the relationship between distinct reservations and performance varia-

tions, we ran 12 representative Spark benchmark workloads as in Table 3.1 on a 16-server
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Figure 3.1: Long-tail varia-
tions of application runtime un-
der degressive reservations.
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local cluster, most belonging to the industrial SparkBench and TPC-DS suite [34, 35, 123,

124,159]. The detailed experiment settings are described in Section .

These diverse workloads range from graph computation (PageRank, SVD++, Con-

nected Component, Triangle Count), machine learning (SVM, KMeans, Logistic and Linear

Regression, Decision Tree, PCA), SQL-based query (TPC-DS) and batch processing (Tera-

sort).

For every workload, we continuously changed memory reservation sizes of workers for

30 times to observe corresponding performance variations in the experiment. The cluster

was dedicated to run each application for a total of 10 times per reservation size. Each

application is set to deploy one worker per server to maximize data locality [182,202].

We used Spark 2.0.2, Hadoop/Yarn 2.7.2 and OpenJDK-1.8.0-amd64. Other settings

such as parallelism (5 cores per worker), input data size, algorithm parameters and program

codes are fixed. We obtain average completion time of ten-times runs per application.

Figure 3.1 presents the execution time of different applications under various memory

reservations. From the figure, it can be seen that there always exists an inflection point of

performance (knee) in applications’ long-tail reservation versus runtime curves. When the

reservation of memory is less than a boundary, like 7 GB for PageRank and 2 GB for

Terasort, a sharp drop of 4 (Terasort) to 20 times (PageRank) performance degradation

and even program failure were observed. The steep decline of performance was caused
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by thrashing under critical shortages of memory. The frequent long and useless garbage

collections (LUGC) [82] are continuously triggered during runs, leaving little time for task

execution. These long-lived containers are unable to effectively release memory in time, and

ultimately crash because of JVM out-of-memory errors.

After exiting the crash region, the performance seldom fluctuates even under tremen-

dous over-provisioning. It means that diverse applications are not very sensitive to the

change of memory reservation. The average runtime variance is around 5% while largest

is no more than 10% in the case of KMeans. It implies that when the majorities of base

memory demands are satisfied, they have little impact on runtime due to the shifting of bot-

tleneck resource types. These kinds of over-provisioned reservations waste resources without

distinguished runtime rewards.

By effectively spilling of data into secondary storage and triggering minor GCs under

moderately insufficient memory, applications only pay moderate performance penalty under

considerable reductions of reservations. It is the memory reservation elasticity that offers

opportunities to achieve maximum memory efficiency and optimal performance at the same

time. The minimal reservation size of the tail is the boundary to divide over-provisioning

from under-provisioning. These desired configurations are named optimal reservations.

Its allocation would achieve the runtime inflection. Figure 3.1 reveals that the turning point

is predictable from multiple runs. As accumulating of recurring executions, we are capable

of recursively searching optimal reservations that just occur before performance dramatically

decreases.

Why elasticity exists: inspiration by footprint. From Figure 3.1, we can see

the runtime of over-provisioned applications differ little from the one of optimal reservation.

The largest 10% variance is insignificantly small and might be caused by systematic errors.

Applications only pay marginal performance penalty under elastic reductions in memory

reservations. Long-lived containers are able to effectively mitigate memory pressures by
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triggering modest GCs and spilling data into disk during load spikes, so as to avoid runtime

degradation.

To better understand elastic and optimal reservation, we compared the memory foot-

prints due to optimal and over-provisioned reservation for diverse workloads. Figure 3.2 gives

the footprints in the execution of Terasort under optimal reservation and over-provisioning.

From the figure, we can observe that the average heap utilization is as high as over 80% un-

der optimal reservation (It is more than 75% in other workloads). Stages are segmented by

time in black dotted lines. Compared to the average of 17.5% and less than 15% utilization

due to over-provisioning, wastes of underutilized memory were significantly reduced.

Additionally, peak demands of Terasort (over 3200MB) only occupied a small fraction

of 3% during execution, which was significantly higher than the average usage µ of 2356 MB.

The standard deviation σ of footprint was as little as 547 MB, indicating the major usages

were located within an interval around µ, from 1809 MB (µ− σ) to 2903 MB (µ+ σ). The

observation is identical for all workloads. Simply adopting unnecessary high reservation to

satisfy peak demands is wasteful and unworthy.

When the peak demands could not be satisfied under a small heap limit, workers trig-

ger moderate minor GCs and spilling operations to effectively reclaim resources and reduce

pressures. Figure 3.3 gives the results about the aggregate GC and spill percentage of total

runtime, and the ratio of GC overheads due to optimal reservation and over-provisioning.

From the figure, we can observe the aggregate GC time of over-provisioning is less than 30%

of the ones under optimal reservation for most workloads. Especially in the cases of KMeans,

TPC-DS and SVM, the GC overheads of over-provisioning were only 13%, 15% and 20% of

the ones under optimal runs respectively.

Despite the GC and spill increase the overheads, their rare trigger frequencies led

to an insignificantly small fraction of total execution time due to the rare peak demands

(3%). Under optimal reservation, the largest GC percentages were only 13%, 12% and 10%

in the cases of Logistic Regression, SVM and KMeans, respectively compared to application
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runtime, while the percentages of spills were as little as 1%, 9% and 2% of SVM, Triangle

Count and TPC-DS. Not every workload relied on spilling-to-disk operations to mitigate

pressures. Different from YARN-ME [106], we showed spills that lead to sawtooth-like shape

of memory elasticity for short-lived MapReduce tasks are not effective for long-lived con-

tainers. In addition, unlike the common observations that GC contributes at least 50% of

execution time in short lived containers of a MapReduce system [82,89,91,136,137,150,151],

we found the increased overheads caused by GCs and spills are only a negligible percentage

for long-lived containers in in-memory computation when their major demands are satisfied.

Motivation. Our motivation is to efficiently estimate optimal reservation size for

long-lived containers, and make schedulers reserve memory accordingly before the applica-

tions get into crash zone. It achieves nearly optimal performance and minimizes unnecessary

memory wastes.

Rationale of Methodology

It is time-consuming and infeasible to execute multiple runs for newly submitted

or non-recurring jobs to online find the optimal memory reservations. Under the long-tail

curves of Figure 3.1, the procedure to find optimal memory reservations for recurring jobs

has been transformed to an online search problem. We could simply use random search as

in [101, 102, 201] to randomly select initial allocation, and continuously reserve decreasing

memory with a fixed step size like random gradient descent. However, if the chosen starting

point is far away from the optimal reservations or the step size is improperly small, it would

take hundreds of executions and search to reach the target. These expensive overheads of

long-time search per application are unaffordable and impractical for online scheduling. In

contrast, adopting an improperly large step size would make the result inaccurately far from

the optimal reservation. An effective online estimation methodology is in urgent need.

Other bayesian optimization [45] or pure machine learning based [68,160,183] search

needs a large number of profiling runs and prior historical statistics. They suffer from cold-
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start and become ineffective for new or non-recurrent submissions due to lack of relevant

history information. Moreover, the recurring applications’ knees of memory limit versus

performance curves also change over time along with variations of input datasets, parameters

or source code. It becomes too expensive and infeasible to retrain models and start over

new searches for every type of variability per application. An effective online estimation

methodology is in urgent need.

In-memory computing systems like Spark are designed to process iterative workloads.

Most Spark workloads consists of repetitive stages with same operations. The memory foot-

prints of these representative stages could effectively reflect the total usages per application.

We summarize memory usages of representative iterative stages per workload under

over-provisioned reservations of motivation experiments in Table 3.23. These statistics are

the average ones of 30 executions and memory limits are recommanded by the benchmark.

It only displays the stage with maximum mean usages among all repetitive ones. It could

accommodate other stages and reflect the maximum requirements of an application. Each

number is an average one of all long-lived containers.

We found the optimal reservation size per representative stage of over-provisioning is

very close to its mean usages. The pattern is similar for all workloads, which quantifies the re-

lationship between footprints and optimal reservation. The average usage of past executions

implies the mathematics expectation of future footprints, that is the probable average base

memory demand at arbitrary future time. By reserving significantly less amount of memory

limit than the peak and even average demands, applications could still achieve near-optimal

performance due to elasticity. All other iterative stages show consistent trends. This ratio-

nale offers opportunities to predict optimal reservation through one step, by estimating an

application’s major base demands.

However, simply relying on profiled average usages to estimate base demands and

optimal reservations would lead to high inaccuracy. The large prediction errors of most
3R, MU, OR, PU (%) and StDev indicate reservation size, mean memory usages per stage, optimal

reservation, peak usages (percentage of frequency) and standard deviation of usages respectively.
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Table 3.2: Container memory usages summary per stage

Benchmarks R (GB) MU (GB) OR (GB) PU (GB) (%) StDev (GB)
Terasort 18 3.2 2 8.2 (4.2%) 2.8
SVM 18 4.2 3 8.4 (5.1%) 3.2

KMeans 18 6.5 5 11.2 (2.4%) 7.1
LogisRegre 8 1.2 0.7 7.3 (3.2%) 2.0
LinearRegre 8 4.2 3 7.6 (4.5%) 4.5
DecisionTree 9 3.9 3 8.2 (2%) 3.5

PCA 18 7.8 6 13.7 (5.3%) 8.1
PageRank 20 8.2 7 17.8 (8.2%) 11.2
SVD++ 18 9.4 7 15.3 (6.2%) 8.6

CC 8 1.8 1 3.6 (8%) 1.95
TriangleCount 18 4.5 3 6.7 (3.3%) 4.6

TPC-DS 18 4.7 3.5 9.5 (4.2%) 3.8

workloads in Table 3.2 are about 30% to 45%. The root causes are followings: (1) We

observed the standard deviations of stage footprints are large and even more than mean

usages. It indicates container footprints are always non-uniform distribution and drastically

fluctuating. Additionally, peak usages are usually 2 to 6 times higher than average ones,

while these peak intervals are only a small proportion of less than 8%. The unstable average

usages of containers’ profiled footprints are far from representing their expectations and

expected base demands. We need to perform probability density estimation of footprints.

(2) Spark tasks are scheduled on long-lived containers based on data locality [182,202].

The co-locating tasks placement per container are random. Despite concurrent tasks of all

containers belong to the same stage with consistent operations, their memory usage behaviors

might be different due to task data skew or variances of shuffled input sizes. Since the

aggregate footprint per container is the sum of its all co-locating tasks’ memory usages, they

would be distinct for every container within the same stage. They are also random under

repeated recurrent executions, as well as the average memory usage.

Additionally, task durations within a stage significantly varied. They are in pipelined

execution and always do not start or end at the same time. The footprint per container

consists of tasks’ aggregate staggered usages would be highly random. The randomness of

footprint per container makes its average usages ineffective to infer base demands. Robust

profilng and effective analysis of random footprints are non-trivial. How to leverage pro-
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filings of tasks’ footprints to subtly handle the randomness and robustly predict optimal

reservation? We answer these in the following section.

Design of MEER

We developed an online estimation system MEER, which employs a combination of

techniques including robust profilings, histogram analysis, self-decay prediction and recursive

search, to provide an accurate and stepwise refined online optimal reservation prediction.

Modeling and Robust Profilings

From Section , we know runtime memory usages per time unit t of every long-lived

container j and individual task i are two sets of random variabile xtj and yti . We define

their conditional probabilities under arbitrary reservation size r as P (xtj|r) and P (yti |
r

m
)

respectively (m is the concurrent task number per container). Since the memory usage per

container is the aggregate ones of its all co-locating tasks that xtj =
i=m∑

i=1

yti , its probability

would also be the sum of tasks as Eq.(3.1):

P (xtj|r) = P (
i=m∑

i=1

yti |r) =
i=m∑

i=1

P (yti |
r

m
). (3.1)

Understanding the memory usage probability distribution per task is critical to predict con-

tainer’s footprints.

We profiled every task’s memory usages of motivation experiment in Table 3.3 by

setting m as 1 and reservation size as
R

m′
(R and m′ are the ones of Table 3.2). We display

similar statistics like mean µ (MU), standard deviation σ (StDev) and peak (P) of usages

per task in the same representative iterative stage as in Table 3.2. The data are average

ones of all tasks per stage. For robustness, they are obtained from the mean of repeated

30 executions per workload. We also illustrate the coefficient of variation (CoV) of these

statistics among all tasks, as well as the CoV of tasks’ inputs (I) and shuffled (S) sizes per

stage.
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Table 3.3: Task memory usages summary per stage

Benchmarks R (GB) MU (CoV) StDev (CoV) P (CoV) I, S CoV
Terasort 3.5 1.1 (0.042) 0.4 (0.03) 1.5 (0.05) 0.12, 0.35
SVM 3.5 1.4 (0.047) 0.45 (0.06) 1.8 (0.05) 0.38, 0.45

KMeans 3.5 2.2 (0.003) 0.53 (0.008) 2.6 (0.004) 0.08, 0.3
LogisRegre 1.5 0.3 (0.029) 0.1 (0.056) 0.6 (0.05) 0.07, 0.23
LinearRegre 1.5 1.2 (0.012) 0.24 (0.02) 1.56 (0.006) 0.004, 0.44
DecisionTree 2 1.3 (0.054) 0.28 (0.07) 1.7 (0.03) 0.07, 0.52

PCA 3.5 2.4 (0.014) 0.58 (0.03) 2.9 (0.01) 0.28, 0.09
PageRank 4 2.1 (0.092) 0.55 (0.085) 2.5 (0.07) 0.09, 0.3
SVD++ 3.5 2.7 (0.039) 0.32 (0.05) 3.15 (0.06) 0.5, 0.4

CC 1.5 0.4 (0.082) 0.19 (0.09) 0.8 (0.12) 0.63, 0.55
TriangleCount 3.5 1.3 (0.063) 0.54 (0.06) 1.9 (0.06) 0.3, 0.02

TPC-DS 3.5 1.6 (0.055) 0.35 (0.04) 2.1 (0.045) 0.4, 0.52

Probability distribution of task usages. For all workloads, we observed the vari-

ations of dispersion (CoV) of tasks’ MU, StDev and P per stage are significantly small that

less than 0.1. Most tasks have similar footprints with consistent probability distribution.

Despite containers’ footprints are random, the memory usage behaviors of every task within

a stage is in a highly stable and repeated pattern. It is due to the numerous novel sam-

pling techniques and advanced load balance optimization of input and intermediate shuffled

data [43, 47, 81, 84, 98, 110, 117, 118, 161, 174, 182, 189, 205]. We could see the CoV of inputs

and shuffled data sizes between tasks are mostly less than 0.5, one third of which are even

less than 0.1. It indicates the input data skew and imbalanced shuffling problems are well

resolved in modern in-memory computing system.

Additionally, memory usage per task fluctuates little that StDev are as small as one

fifth to one tenth of average usages for all workloads. Peak usages are also close to mean

consumption which are only about 30% higher. Most usages are located around average

ones µ and within an interval of µ± σ. More than 95% usages are within µ± 2σ while 99%

accounts for µ±3σ. We found the probability distribution of footprint per task for arbitrary

over-provisioned workload resembles to Gaussian distribution that ŷti ∼ N(µ̂, σ̂2), where

ŷti , µ̂ and σ̂ are the estimated usages, mathematical expectation and standard deviation of

footprint per task. We could observe it from Table 3.2 and Table 3.3, and have its probability
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density function:

P (ŷti |
r

m
) =

1

σ̂
√
2π
e−

(
ˆ
yt
i
−µ̂)2

2σ̂2 . (3.2)

By our repeated experiments of statistical hypothesis testing by combinations of multiple

methods like u-, t-, F- and Chi-square tests, the Gaussian distribution of memory usages per

task is shown to be robust for arbitrary workload and stage of over-provisioning. Its stable

expectation in normal distribution sufficiently indicates base demands.

Predicting confidence intervals of Gaussian distribution. The tasks of differ-

ent stages have distinct memory requirements and expectations. To predict memory usages

ŷti per task at arbitrary stage, we generate its confidence interval: an estimate of the range

of values within which the true value should lie with a certain confidence level (a probability,

γ) [60]. The higher the confidence level, the wider the confidence interval, and lower the

risks of mis-predictions and mis-provisionings. The confidence interval calculation relies on

the variance of the prediction errors and the confidence level γ. We define the significant

level α = 1− γ, and the prediction interval cik of ŷti at stage k is given by

cik = ŷti ± σ̂ ∗ zα/2, (3.3)

where σ̂ is the estimated standard deviation for the prediction errors, and that is tasks’

StDev per stage in Table 3.3. zα/2 is the value for the 100 ∗ α/2 percentile in the normal

distribution. Since task footprints within a stage are stable, cik represents the intervals of

all tasks per stage. We adopt a general approach to estimate σ̂ by calculating the standard

deviation from the prediction errors (residuals) when applying the fitted forecast model to

the profiled usages data of different tasks per stage used for training.

It is difficult to effectively predict probability distribution of highly random and un-

certain containers’ footprints as shown in Section . However, since memory usages per

container is the aggregate ones of co-locating tasks as in Eq.(3.1), its confidence intervals are
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similar. By estimating cik of task usages, we could accurately estimate confidence intervals

of containers’ footprints at any stage k:

ci(xk,jt ) =
i=m∑

i=1

cik. (3.4)

In MEER, we performed two pilot runs to study footprints for arbitrary newly submitted

application: one under user requested parallelism to collect containers’ footprints, another

under concurrency 1 to profile footprints per task. Compared to the random containers’

profiles, task footprint is stable and its profiling is robust which only needs to be profiled

once per recurring application.

Overview of Workflow and Implementation

MEER adopts a hybrid mechanism by combining an online estimation model of his-

togram frequency analysis and a recursive search loop. We define notations used in this

paper in Table 4.7. Figure 3.4 gives an overview of MEER’s workflow. First, the newly

submitted application executes two pilot runs under over-provisioned reservations (step 1).

We calculate the confidence intervals of containers’ footprints by profiling tasks’ footprints,

and analyze its frequency of memory usages at every sampling point. By accumulation of

usages multiplying corresponding frequency and confidence level, we obtain the expectation

of containers’ footprints, so as to estimate an initial base demand and near-optimal reserva-

tion Rj
∗ per application (step 2) and guide normal executions (step 3). Since tasks per stage

with stable usages are repeated per run, these profilings could be used to effectively predict

demands boundary per container of future recurring executions.

For user’s nth submission in subsequent recurring runs, MEER performs adaptive

predictions and search (inner loop), and recursively adopting last estimation Rj
∗(n − 1) as

next reservation to execute applications (step 4), which generates new estimation Rj
∗(n)

and runtime ET (n) (step 6 & 7). Since the histogram analysis algorithm has an intrinsic

property of rapid self-decay and searching loop starts from a near-target position of Rj
∗(0),
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(a) Applications’ Completion Time of Differ-
ent Configurations

(b) KMeans Stage Duration of Different Con-
figurations

(c) LR Stage Duration of Different Configu-
rations

Fig. 2: Relationship Between Performance and Resource Allocation.

Other works that rely on resource-to-performance modeling
to support SLO [11], [18], [25], tuning configurations [7],
[13], [14], [20], [24] and perform intelligent scheduling [9],
[10] are complementary to Prometheus. Morpheus [18], Per-
fOrator [20], ARIA [25] and Jockey [11] leverage telemetry
of historical runs to derive SLO and corresponding skyline
of demand. They dynamically adjust allocations in order to
meet deadlines. Elastisizer [13], SLARM [21], Ernest [24] and
CherryPick [7] monitor resource usages and use profiling or
historical traces to search optimal configurations. Paragon [9]
and Quarsar [10] employ classification techniques and historic
performance data to perform online scheduling, so as to avoid
inferences.

Most of the previous works build models for tasks based
on multiple profiling runs or historical executions statistics of
recurring applications. These methodologies cannot be directly
applied to Prometheus’s in-memory computation scenarios
because the optimal memory demands for workers of recurring
jobs tend to change over time with variability of input datasets
or algorithmic parameters. We need Prometheus, performing
accurate online estimations from one pilot run, to handle these
variabilities and newly submitted applications.

III. DESIGN OF PROMETHEUS

Prometheus deploys a combination techniques of efficient
initial estimation, recursive search and self-decay derivations,
to provide accurate and stepwise refined online optimal de-
mands estimation per stage.

A. Overview

Prometheus adopts a hybrid mechanism by combining an
online estimation model of histogram analysis and a recursive
search loop. We introduce a number of notations as shown in
Table II. Figure 3 shows an overview of the workflow. First,
the newly submitted application executes a pilot (profiling)
run under over-provisioned reservation (step 1). For a given
time period in a stage, histogram analysis model analyzes the
frequency of runtime memory usage at each sampling point.
By accumulation of memory size multiplying corresponding
frequency in a stage, we derive an initial base demand esti-
mation Rk,j per stage (step 2), to guide further first execution
(step 3).

Histogram Analysis
Model

Memory Footprints

No Yes

R*
j(n)

ETk(0) , ETk(n)

Initial Pilot Run1

2

7

3

4 Run under R*
j(n-1)
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j (0)
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New 
Submissions

Loop 
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Recurring 
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5

6

4 5

Inner Search Loop

7 6

Full Loop
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3
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Fig. 3: Prometheus’ architecture and workflow.

TABLE II: Input Parameters Notations

R⇤j Vectors of Memory Reservation Estimation
in all stages for Worker Process j

PMUk,j
t Practical Memory Usage of Worker Process j

at Sampling Time t in Stage k

Intervalk,j Sampling Interval of Memory Usage Monitor
for Worker Process j in Stage k

Countk,j Sampling Counts of Worker Process j in Stage k

(Number of PMUk,j
t points)

ET k(n) Execution Time of Stage k at nth recurring execution
Rj

⇤(n) Vectors of Memory Reservation Estimation in all
stages at nth derivation guiding (n + 1)th recurring
execution for Worker Process j

peakj
⇤(n) Vectors of Peak Memory Usage in all stages

at nth recurring execution for Worker Process j

For subsequent recurring executions, resource manager
like Yarn performs recursive search (inner loop) and keeps
adopting last derivation Rj

⇤(n � 1) as memory reservation
for workers of current execution (step 4). It derives precise
estimation Rj

⇤(n) and corresponding duration ET k(n) (step 6
& 7). By comparing execution time ET k(n) with upper-bound
performance ET k(0) acquired from first unconstrained allo-
cations, Prometheus determines whether the target is reached
and searching loop is terminated (step 7). Any variability of
recurring jobs would trigger a new searching loop to handle

Figure 3.4: MEER’s architecture and workflow.

MEER always efficiently approaches the optimal reservations in a few recurring executions

with low search overheads. By comparing the execution time ET (n) with upper-bound per-

formance ET (0) acquired from pilot runs, MEER determines whether the target is reached

and searching loop is terminated (step 7). Any variability of recurring jobs would trigger a

new searching loop to handle the migration of performance inflection points (full loop).

Implementation. We implemented MEER using Python as an extension to Apache

Spark and Yarn/Hadoop in a non-intrusive way. Users submit their applications normally

without extra efforts. MEER runs on Linux as a seperate process. It obtains and stores

all metrics of usages and runtimes by communicating with Spark historical web server and

real-time metrics system [16] through RESTFul API and FTP. Histogram analysis model of

MEER spontaneously interacts with resource manager (RM) of YARN to trigger pilot runs

through YARN API. RM relies on the estimated results from MEER to reserve just right

memory for containers.
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Table 3.4: Input Parameters Notations

Rj
∗ Optimal memory reservation estimation

of every container j per application
xk,j
t Memory usage of container j

at sampling time t in stage k

Intervalk,j Sampling intervals of memory usages
for container j at stage k

Countk,j Sampling counts of container j at stage k

(Number of xk,j
t points)

ET (n), ET k(n) The execution time of the application
and stage k at nth recurring execution

Rj
∗(n) nth optimal reservation estimation

of every container j per application,
which guides (n+ 1)th recurring execution

peakj∗(n) Peak memory usages among all stages
and containers at nth recurring execution

HeapUtil∗(n) Average heap utilization among all stages
and containers at nth recurring execution

GCTime∗(n) An application’s aggregate GC time
of all stages at nth recurring execution

Histogram Frequency Analysis

Our goal of building histogram analysis model is to rapidly and accurately provide

online optimal reservations estimation Rk,j per stage for newly submitted and non-recurring

applications through one step. It provides a good start point to facilitate recursive search in

further recurring executions. The model’s initial input data are acquired from only two pilot

runs under over-provisioned reservations. We adopt user’s pre-claimed number of containers

and parallelism for allocation. The real-time memory footprints (sampled at a fixed time

interval, e.g., 1 second in Spark by default.) are obtained from Spark metrics system [16].

They are segmented by stage timestamp that acquired from profiled runs data in historical

log server. We introduce a number of notations as shown in Table 4.7.

To understand applications’ memory usages per stage, we plot one container’s time-

varying footprints of over-provisioned SVM workload in Figure 3.5a as an example. We

could see usages are always unstable and drastically fluctuate at arbitrary stage, and they

seldom reach the peak. The usages between stages are distinct due to different operations.

MEER explores each stage seperately. To better understand its probability distributions, we



54

changes of knee (full loop). Since the histogram analysis
algorithm has an intrinsic property of rapid self-decay and
searching loop starts from a near-optimal initial estimation
Rj

⇤(0), Prometheus always promptly approaches the ultimate
optimal demands after a few recurring executions with low
search overheads.

B. Profiling and Histogram Frequency Analysis

Our goal of building histogram analysis model is to rapidly
and accurately provide online optimal demands estimation per
stage for newly submitted and non-recurring applications from
only one run. It provides a good start to facilitate recursive
search during further recurring executions.

The model’s initial input data are acquired from only one pi-
lot run under over-provisioned memory reservation per worker
process. We adopt user’s pre-claimed number of workers and
CPU cores per instance for allocation. By knowing their real-
time memory footprint (sampling at fixed time interval, e.g.,
default 1 second in Spark.), Prometheus effectively infers
optimal demands Rk,j per stage. All the data are obtained
from Spark’s historical log server and metrics system [4] in
real time.

Histogram Analysis Algorithm. The algorithm sorts mem-
ory usages of each discrete time point within a stage, and
compute their value of mean µ, median ⌫ and standard
deviation �. µ is sensitive to the frequency and value of peak
consumptions while ⌫ remains stable. By comparing the ratio
of µ and ⌫ to a threshold percentage ⇠ (i.e. we observed 30%
perform well in practice), we classify probability distribution
of demands as Eq.(1):

(
Steady Fluctuation Distribution, if |1 � µ

⌫ |  ⇠;

Non-Steady Fluctuation Distribution, otherwise.
(1)

In a stage k, we define the probability of a practical memory
consumption value PMUk,j

t occurs at arbitrary sampling time
t as Probk,j

t . It is calculated by a ratio of its occurrence
frequency to total time-point counts as Eq.(2):

Probk,j
t =

Frequencyk,j
t

Countk,j
,where Countk,j =

ET k

Intervalk,j
.

(2)

Most time, practical memory usages rarely reach the upper
limit (reservation) and leave large pockets of fragmentations.
Conservatively adopting worst-case peak load as demands
like SLARM [21] would incur tremendous wastes. For a
stage with steady demands fluctuation, its gradient of memory
consumption variation is stably small as stage 5 (peak 6.5GB)
in Figure 4. We leverage accumulation of memory size per
sampling point multiplying corresponding probability in a
stage as in Eq.(3) to calculate the realistic base demands Rk,j ,
where wk,j

t represents the weight of influences by subsequent
runtime statistics. wk,j

t is updated by future executions.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Fig. 4: Time-varying memory usages of SVM are marked with red
line, peak usage of each stage is marked with dotted lines.

Rk,j =
X

t

(PMUk,j
t ⇤ Probk,j

t ⇤ wk,j
t ). (3)

In contrast, for a stage with non-steady demands fluctua-
tion, very low or high peak consumptions occupy a certain
proportion. Its gradient drastically varies over time. Figure 4
plots one worker’s time-varying memory consumption of SVM
benchmark mentioned in Section II-A. Typically, stage 2 and 4
(peak 7.5GB and 8GB) have non-steady demands distribution.
We observed that most of the time, memory usages of non-
steady stage 2 are between 3.5GB and 5.5GB (around 40%),
30% from 2GB to 3GB. However, the extra 3% over 7GB peak
demands has a decisive impact on the performance. If simply
adopting derived 4.5GB reservation calculated from Eq.(3) as
the upper-limit memory, most of the tasks would be slowed
down and become stragglers during that high demands period.
It might even cause severe thrashing and program failure due
to insufficient memory allocated.

Thus we split each stage into different intervals. The mem-
ory consumption PMUk,j

t that has similar standard score z
(z = PMUk,j

t �µ
� ) would belong to the same interval. Thereby,

intermediate, low or high peak usages are grouped to different
intervals. Each interval consists of a set of discrete consump-
tion values associated with a specific timestamp. We define
the average value of an interval i as �i. The probability of
an interval value occurs at arbitrary time point t would be

Probi =

iP
t

(Frequencyk,j
t )

Countk,j . The Probi represents occurrence
times of each interval value, and make prediction results
approach the �i of intervals that have largest frequencies.

To compromise the immense effects of peak values on
accurate demands derivation, we highlight the importance of
high peak demands by adding a coefficient ⌘i to the first
N (6 works well in practice) largest �i (�i � µ) intervals,
while put in a penalty ⌘i to the first N lowest �i (�i  µ)
intervals as Eq.(4) (⌘i = 1 for other intervals). Thus ⌘i is
well applicable to arbitrary scopes of extreme peak values.
To do so, estimated results would never be too far from high
peak demands. At the cost of little wasteful over-provisioning,
we maximize application performance and provide guarantee
on Prometheus’s reliability by thoroughly sidestep risks of

(a) Footprint and peak usages
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Figure 3.5: Footprint and histogram of SVM.

transform the time-domain footprints to a frequency-domain histogram. Figure 3.5b plots

the frequency of its 4th stage. We observed the peak usages are usually a small fraction of

the whole stage. The frequencies of peak (more than 7.5 GB) and low usages (less than 1.9

GB) are only 1% and 8% respectively. In comparison, intervals of relatively large usages

(from 5.1 to 6.7 GB) occupy a high percentage of 45%. Peaks are 2 to 6 times larger than

the average ones as shown in Section , which would dominantly result in containers’ wasteful

base demands estimations. All other workloads’ footprints have the consistent trends.

Simply predicting optimal reservations by omitting large usages in case of overstating

their importances on base demands estimation is infeasible. They have a decisive impact on

the performance. Doing so would slow down most tasks and incur massive stragglers during

load spikes, which highly increases risks of out-of-memory problems and program failures.

We need to adopt histogram analysis to perform probability density estimation on containers’

profiled footprints to balance the trade-off between memory efficiency and performance.

We define the probability of xk,jt that occurs at sampling time t is P (xk,jt ):

P (xk,jt ) =
Freq(xk,jt )

Countk,j
, where Countk,j =

ET k

Intervalk,j
, (3.5)

and Freq(xk,jt ) is the occurance times of xk,jt . Since the expectation E(xk,jt ) of all contain-

ers’ footprints reflect the probable average consumption in future executions, it implies the
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majorities of base demands and optimal reservation per stage:

E(xk,jt ) =
∑

t

(xk,jt ∗ P (xk,jt )). (3.6)

From Section , we know containers’ usages xk,jt are highly random and its estimated prob-

ability P (xk,jt ) of one-time profiling is not necessarily applied to future runs. However, we

know its accurate confidence intervals ci(xk,jt ) and levels γ from Section of arbitrary exe-

cution. We add a weight γ to P (xk,jt ) to reflect its true probability. In case of excessively

conservative and useless range, we pick the minimum intervalsmin(ci(xk,jt )) that xk,jt locates.

By using confidence level for the predictions, we eliminate the negative effects of container

footprints’ randomness and achieve stable estimations. For every stage k, MEER predicts

optimal reservation Rk,j per container j 4 as in Eq.(3.7):

Rk,j =
∑

t

(xk,jt ∗ P (xk,jt ) ∗ γ),

where xk,jt ⊆ min(ci(xk,jt )).

(3.7)

Histogram analysis model implicitly emphases the importances of peak usages with high

frequency and compromises their immense impacts on performance. It also avoids empiri-

cally exaggerating the importances of low-frequency peak usages and prevents unnecessarily

excessive base demands estimations.

The reservation is fixed across stages during executions. To guarantee smooth runs

and optimal performance per stage, and thoroughly avoid failures due to insufficient allo-

cations, we pick the largest Rk,j among all stages as the estimated optimal reservation per

application:

Rj
∗ =Max(Rk,j). (3.8)

4The reservations of all containers per application are consistent.



56

The maximum optimal reservations of representative iterative stages could effectively accom-

modate and stand for the whole application. At the cost of little wasteful over-provisioning

in few stages, MEER achieves distinguished reliability and memory efficiency.

Recursive Search Loop

The histogram model provides an accurate estimation of optimal reservation through

one-time estimation. There are still portions of underutilized memory caused by overesti-

mation and over-provisions that could be improved. For further recurring submissions, we

adopt a recursive search loop based on a feed-back control machanism to achieve stepwise

refined estimation, and gradually approach reservation of the optimal one.

Self-Decay Property. For recurring applications, MEER recursively profiles only

containers’ footprints and performs histogram analysis of every execution. We adaptively

adopt last estimation Rj
∗ as next reservation. Since the estimation Rj

∗(n+ 1) represents the

majorities of base demands at (n+ 1)th execution, it would be far less than its peak usages

peakj∗(n + 1). Meanwhile, the peakj∗(n + 1) of arbitrary stage at (n + 1)th execution should

be less than its reserved (JVM heap) size, which is Rj
∗(n) generated from last estimation.

Consequently, the histogram analysis algorithm is shown to have an intrinsic property

of rapid self-decay. This is an implicit relationship as expressed in Eq.(3.9):

Rj
∗(n+ 1) < peakj∗(n+ 1) < Rj

∗(n) < peakj∗(n),

Max(Rj
∗(n)) = Rj

∗(0)� Unlimited Mem Resrv,
(3.9)

where reservation Rj
∗(n) is always significantly larger than its estimated Rj

∗(n + 1). The

estimation Rj
∗(n+1) decreases promptly per round and gradually approaches the vicinity of

optimal reservation. It serves as the basis for rapid and efficient recursive search.

Online Recursive Search. The initially estimated Rj
∗(0) from pilot runs is pro-

vided to resource manager (Yarn) to guide the application’s first-time execution. Afterwards,

we recursively obtain new runtime ET (1) and estimation Rj
∗(1). We observed applications
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achieve a nearly upper-bound performance ET (0) under significantly over-provisioned allo-

cations. Runtime of subsequent reservations are closely approaching ET (0) due to elasticity.

MEER does not need any extra execution and overhead to perform search. Recursive search

loop is inherently robust to the variabilities of recurring jobs. To accommodate the possibil-

ity of knee migration, arbitrary type of input data changes, parameter tuning or code tweaks

would trigger a new search loop.

Terminal Condition. Through self-decay estimations and recursive search, we ul-

timately find performance inflection point ET (n) when it dramatically drops to ET (n + 1)

due to insufficient memory under reservation of Rj
∗(n). It also occurs frequent long and

useless garbage collections (LUGC) [82], leaving little time for task execution. The current

reservation Rj
∗(n) causes significant performance degradation and application gets into the

crash zone. Afterwards, MEER terminates searching loop and adopts last proper estimation

Rj
∗(n−1) as the optimal reservations, which satisfies the termination condition of Eq.(3.10):

if





ET (n+1)−ET (n)
ET (n)

> β,

ET (n+1)−ET (0)
ET (0)

> β,

GCTime∗(n+1)
ET (n+1)

> γ,

HeapUtil∗(n+ 1) > 80%,

(3.10)

Optimal Reservations = Rj
∗(n− 1).

We set the performance degradation threshold to 0.5 for β and 0.7 for γ; These

parameter settings were widely used in previous studies [82, 136, 150, 151, 187]. They are

sufficiently large to differentiate normal slow down from being in crash zone caused by LUGC.

Under allocation of the optimal reservation, arbitrary workload could achieve repeatedly

predictable optimal runtime and best memory efficiency, which is critical to guarantee SLO.
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Table 3.5: Each set of 15 input sizes for 15 benchmark workloads

Benchmarks TeraSort, WC, Sort, Grep SVM KMeans LogisR, LinR Decision Tree
Minimum Input Dataset 50GB 30GB 20GB 30GB 50GB
Incremental Interval 10GB 8GB 6GB 15GB 10GB

Maximum Input Dataset 200GB 150GB 110GB 255GB 200GB
Benchmarks SVD++ PageRank PCA CC TriangleCount

Minimum Input Dataset 0.5GB 1GB 60GB 0.5GB 0.5GB
Incremental Interval 0.5GB 1GB 16GB 0.5GB 0.5GB

Maximum Input Dataset 8GB 15GB 300GB 8GB 8GB
Benchmarks TPC-DS 7

Minimum Input Dataset 50GB
Incremental Interval 10GB

Maximum Input Dataset 200GB

Evaluation

We evaluated MEER on a local 16-server cluster deployed with Hadoop Yarn 2.7.2

and Spark 2.2.0. Each server is configured with 24 cores, 32GB of memory, three 3.5TB 7200

RPM disk drives with a 110MB/s peak bandwidth. It is equipped with a 1Gbps NIC and

runs Linux 3.16. We changed input data sizes (15 settings) of 15 benchmark workloads. In

adddition to the ones listed in Table 3.5, we also included WordCount (WC), Sort and Grep

from BigDataBench [188] by using real Wikipedia and Amazon productions reviews data.

In total, we had 225 distinct applications for evaluation, which were executed one by one for

a total of 15 times.

We separated the experiments into two parts: examine prediction accuracy and evalu-

ate effectiveness of MEER on applications performance and cluster memory efficiency during

batches running. Diverse types of workloads with different inputs have distinct memoy us-

age patterns and optimal reservations. We explored 225 optimal reservations as baselines

manually. We measured how close an optimal reservation estimation is to ground-truth,

which were obtained from manual exhaustive experiments and brute-force search like Sec-

tion . We used the ratio of differences between prediction and ground truth to ground truth
Predicted− Actual

Actual
as error metric.
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Accuracy of Initial Estimations

(a) Variations of under-estimated and over-
estimated errors during recurring executions

(b) Variations of application completion time
during recurring executions

(c) Searching overheads of Prometheus and
random search. The bars show 10th and 90th
percentile.

Fig. 5: Evaluation of Recurring Executions.

applications. The error is an average of all applications per
workload. For random search, the accuracy of 10th percentile
is up to 35% worse than Prometheus, over 90% worse on the
median and 2-4 times worse on the tail. This is because the
step size is always improperly large that ultimately far away
from objective. Rapidly selecting proper step size for each spe-
cific application, while balancing trade-offs between searching
overheads and accuracy is non-trivial. Prometheus consistently
delivers a higher stability of low searching overheads and high
accuracy compared to random search.

SLARM adopts a worker’s holistic peak of memory us-
ages as derivations acquired from one insufficient sample
profile run, which tends to induces immense wasteful over-
estimations. It causes errors around 15% for batches jobs, and
reaches around 30% to 40% severe over-estimations for iter-
ative applications. In comparison, Prometheus achieves errors
less than 10% for most applications and within 5% for batches
jobs, which obviously outperforms alternative solutions.

B. Performance on the Batches Running

To evaluate the effectiveness of Prometheus on cluster
performance, we respectively equipped Yarn with Prometheus,
SLARM and default one, and submitted above 4500 applica-
tions in a batch to the system at a time randomly selected
between 0 and 1200 seconds. Yarn reserves memory for each
container (worker) based on outputs of these three works. We
evaluate memory utilization and execution time of applications
and stages.

1) Performance: Figure 6b shows box plot distributions
of execution time per workload. For most applications,
Prometheus (P) performs almost equally as SLARM (S),
and obviously outperform default ones over 30%. Default
configurations (Def) are based on error-prone empiricism,
hence often under-estimate applications’ demands. It slows
down applications due to insufficient memory allocation.

Figure 6c illustrates the cumulative distribution function
(CDF) curves about reductions of stages’ execution time by
Prometheus over default configurations and SLARM. The
results include comparisons of all stages for 4500 applications.
The figure shows substantial gaps on execution time between
different works. There are 50% of stages whose execution time
are reduced by up to 35% if they are assembling Prometheus

over default one. Def has extremely higher risks of under-
estimations which probably cause under-provisioned memory
allocation. It is also interesting to have these two observations.
First, there are a few percentage (about 10%) of stages whose
execution time under SLARM even outperforms Prometheus,
due to under-estimated derivations before search terminates. In
such cases, SLARM may win. Second, SLARM consistently
delivers a comparable execution time to Prometheus (within
11% differences). The reason is SLARM always conserva-
tively adopts over-provisioned reservation based on holistic
peak demands, at the cost of huge memory wastes. Thereby,
its performance is always approximate to the optimal one.

2) Resource Efficiency: To reveal insights into resource
efficiency, we show cluster memory utilization under three
estimators during batches runs in Figure 7. The utilization is
a ratio of actual usages to cluster capacity. As shown, there
are severe over-provisioned memory reservations under default
configurations of error-prone empiricism, which suggest a
low average utilization of 60%. SLARM has a even lower
one around 40%, indicating it yields more serious resource
wastes due to peak reservations. These large proportions of
idle memory (40% to 60%) could not be used by other waiting
applications. In contrast, Prometheus improves utilization to an
average by 80%, and achieves expected high cluster efficiency.

V. CONCLUSION

In this paper, we present Prometheus, a system that accu-
rately and efficiently estimates containers’ optimal memory
demands per stage in in-memory computation. Through pro-
filing and histogram frequency analysis of memory footprints
under only one pilot run, Prometheus accurately achieves
near-optimal online initial estimations for newly submitted or
non-recurring applications. Histogram analysis algorithm has
an intrinsic property of self-decay. Prometheus exploits this
property to perform recursive search during further recurring
executions, and rapidly reaches ultimate optimal demands
with low search overheads. Prometheus is a complementary
technique to existing works that leverage knowledges of future
resource availability [9], [10], [12], [18], [20], [26], [28], to
improve their effectiveness and strengthen benefits. Overall,
the optimal demands knowledge provided by Prometheus

- 6.2%
- 5.5%- 5%

- 6.7%
- 4%

Figure 3.6: Under- and over-
estimated errors during recur-
ring executions.

(a) Variations of under-estimated and over-
estimated errors during recurring executions

25 GB 18.4 GB
21.7 GB

3.2 GB

(b) Variations of application completion time
during recurring executions

(c) Searching overheads of Prometheus and
random search. The bars show 10th and 90th
percentile.

Fig. 5: Evaluation of Recurring Executions.

applications. The error is an average of all applications per
workload. For random search, the accuracy of 10th percentile
is up to 35% worse than Prometheus, over 90% worse on the
median and 2-4 times worse on the tail. This is because the
step size is always improperly large that ultimately far away
from objective. Rapidly selecting proper step size for each spe-
cific application, while balancing trade-offs between searching
overheads and accuracy is non-trivial. Prometheus consistently
delivers a higher stability of low searching overheads and high
accuracy compared to random search.

SLARM adopts a worker’s holistic peak of memory us-
ages as derivations acquired from one insufficient sample
profile run, which tends to induces immense wasteful over-
estimations. It causes errors around 15% for batches jobs, and
reaches around 30% to 40% severe over-estimations for iter-
ative applications. In comparison, Prometheus achieves errors
less than 10% for most applications and within 5% for batches
jobs, which obviously outperforms alternative solutions.

B. Performance on the Batches Running

To evaluate the effectiveness of Prometheus on cluster
performance, we respectively equipped Yarn with Prometheus,
SLARM and default one, and submitted above 4500 applica-
tions in a batch to the system at a time randomly selected
between 0 and 1200 seconds. Yarn reserves memory for each
container (worker) based on outputs of these three works. We
evaluate memory utilization and execution time of applications
and stages.

1) Performance: Figure 6b shows box plot distributions
of execution time per workload. For most applications,
Prometheus (P) performs almost equally as SLARM (S),
and obviously outperform default ones over 30%. Default
configurations (Def) are based on error-prone empiricism,
hence often under-estimate applications’ demands. It slows
down applications due to insufficient memory allocation.

Figure 6c illustrates the cumulative distribution function
(CDF) curves about reductions of stages’ execution time by
Prometheus over default configurations and SLARM. The
results include comparisons of all stages for 4500 applications.
The figure shows substantial gaps on execution time between
different works. There are 50% of stages whose execution time
are reduced by up to 35% if they are assembling Prometheus

over default one. Def has extremely higher risks of under-
estimations which probably cause under-provisioned memory
allocation. It is also interesting to have these two observations.
First, there are a few percentage (about 10%) of stages whose
execution time under SLARM even outperforms Prometheus,
due to under-estimated derivations before search terminates. In
such cases, SLARM may win. Second, SLARM consistently
delivers a comparable execution time to Prometheus (within
11% differences). The reason is SLARM always conserva-
tively adopts over-provisioned reservation based on holistic
peak demands, at the cost of huge memory wastes. Thereby,
its performance is always approximate to the optimal one.

2) Resource Efficiency: To reveal insights into resource
efficiency, we show cluster memory utilization under three
estimators during batches runs in Figure 7. The utilization is
a ratio of actual usages to cluster capacity. As shown, there
are severe over-provisioned memory reservations under default
configurations of error-prone empiricism, which suggest a
low average utilization of 60%. SLARM has a even lower
one around 40%, indicating it yields more serious resource
wastes due to peak reservations. These large proportions of
idle memory (40% to 60%) could not be used by other waiting
applications. In contrast, Prometheus improves utilization to an
average by 80%, and achieves expected high cluster efficiency.

V. CONCLUSION

In this paper, we present Prometheus, a system that accu-
rately and efficiently estimates containers’ optimal memory
demands per stage in in-memory computation. Through pro-
filing and histogram frequency analysis of memory footprints
under only one pilot run, Prometheus accurately achieves
near-optimal online initial estimations for newly submitted or
non-recurring applications. Histogram analysis algorithm has
an intrinsic property of self-decay. Prometheus exploits this
property to perform recursive search during further recurring
executions, and rapidly reaches ultimate optimal demands
with low search overheads. Prometheus is a complementary
technique to existing works that leverage knowledges of future
resource availability [9], [10], [12], [18], [20], [26], [28], to
improve their effectiveness and strengthen benefits. Overall,
the optimal demands knowledge provided by Prometheus
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We compared MEER with alternative solutions, including representative task memory

estimator Elastisizer [101] of MapReduce optimizer Starfish [102] and the most related open

source container demands estimator SLAMR [32, 164] for Spark. We demonstrated MEER

averagely reached up to 5 times lower searching overheads and 8 times more accuracy. We

also compared MEER to default YARN/Spark with user’s empirical memory configurations,

which is estimated based on input sizes per container as recommended by benchmark and

Spark official website [17]. We illustrated MEER speeded up diverse applications by 2 to 6

times on average while improving cluster memory utilization by 40%.

Accuracy of Prediction

Initially, there was no relevant execution statistics in Spark historical server. We

submitted 225 applications one by one, and MEER performed pilot runs. We evaluated

predictions accuracy during executions.

1) Evaluation of MEER: Figure 3.6 presents under- and over-estimated errors

of memory sizes during recurring runs. They are resulted from the executions of median

configurations in Table 3.5.

Accuracy of initial estimations. We observed that all applications have over-estimated

errors (prediction > actual, error is positive) at the beginning after pilot runs. Batches jobs

(WordCount, Grep, Sort, Terasort) get errors within 9% while machine learning jobs around

16%. PageRank reaches almost 30% due to its complicated data parallelism. All workloads
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achieve an accuracy as high as 80% after pilot runs. Since the base demands tend to be

large values, initial under-estimations (prediction < actual, error is negative) seldom occur.

We plan to dynamic adjust memory reservations based on estimation per stage instead of a

static maximum one per application to reduce over-estimated errors in the future.

In the subsequent recurring executions, MEER recursively adopts last estimation to

guide exploration for next reservation. For example, the completion time of the 1st recurring

execution is achieved under reservation of 0th initial estimation, while the 0th performance is

resulted from an over-provisioned reservation (20GB per container). By means of a self-decay

property of recursive search, these progressively diminishing estimations gradually reduce

over-estimated errors until a negative under-estimated one occurs. They are generally as

small as - 6.2%, -5% and -5.5% in SVM, PageRank and SVD++.

Figure 3.7 displays applications’ completion time under the estimated reservations. It

can be seen that around 5% under-estimated errors lead to severe performance degradation

(4 to 10 times longer completion time) of all applications during under-provisioned reserva-

tions. We found most containers sustain thrashing and hovered by frequent long and useless

garbage collections (LUGC) due to these shortages of memory. A portion of containers are

encountering out-of-memory errors that ultimately crash. Since these applications rely on

containers to cache intermediate results to speedup, it would involve high-overhead recoveries

and re-computations. For example, KMeans slows down to 56 minutes when under-estimated

2.7 GB is used from normally near 10-minute completion time under 3.2 GB. These dramatic

drops reveal that applications reach the vicinity of optimal reservations. A slight reducation

of memory provision would make applications get into the crash zone. To avoid such un-

bearable under-provisioned allocations, MEER backtracks to last over-estimation of 3.2 GB

as a near-optimal reservation for future recurring executions. Meanwhile, the search process

terminates with a steady accuracy.

Most batches jobs take 7 to 10 executions to obtain steady optimal reservations while

iterative jobs take longer. Graph applications like Triangle Count have relatively simple
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operations and memory usages patterns. By obtaining estimations after several profiled

footprints, their base demands tend to be stable. The estimations rapidly converge and

searching is terminated faster. But its ultimate 8% over-estimated error might be worse

than others. Although PageRank has a high error rate at initial estimation, it improves the

ultimate accuracy to 91.3% after subsequent 16 recurring executions. The high accuracy of

near 96% (2.3% error for WordCount, 2.9% for Terasort) for batches jobs is outstanding.

Machine learning jobs achieve around 95% and graph computation jobs reach 92%. Observed

from accuracy of initial and ultimate estimations, as well as searching overheads, batches

jobs outperform others. The gain mostly comes from their highly predictable execution logics

and stable footprint patterns. The fewer number of stages than iterative workloads mitigates

their uncertainties of estimations.

Since over-estimated reservations appear at most runs, applications achieve stably

near-optimal performance within 3% variations during recursive search. For example, the

completion time of KMeans is within 3% differences under reservation of initial over-provisioning

(20 GB), 1st estimation (6.4 GB), 2nd estimation (4.2 GB) and ultimately optimal one (3.2

GB).

Consequently, MEER achieves an over 80% accuracy at initial estimations for newly

submitted jobs from only two pilot runs. Through recursive search during a few recurring

executions, errors drastically drop to within 10%, and reach a steady accuracy over 95% for

most workloads in our test cases.

2) Compared with Alternative Solutions: We demonstrate MEER’s online re-

cursive search outperforms alternative solutions from both accuracy and searching overheads

in this experiment. We ran search for above 225 applications under Elastisizer, MEER and

SLAMR. The search per application is executing 15 times and computing the average values.

Elastisizer adopts random search and coordinate descent that used in [102,201]. We executed

it with different seeds of starting points and step sizes.
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Figure 3.8 shows the average, minimum and maximum searching overheads for diverse

workloads with distinct inputs under three estimators. We observed Elastisizer needs to

simultaneously select a best starting point and step size (large enough) to achieve low search

overheads, which is challenging and impractical through a few recurring executions. It

required 3 to 6 times more overheads than MEER on the average, and 4 to 7 times on the tail.

SLAMR performed searching by repeated insufficient sample profilings. It averagely needed

1.5 to 2 times more overheads than MEER, and 2 to 3 times on the tail. Due to the loose and

inaccurate convergence condition, SLAMR always terminates earlier than Elastisizer. Batch

jobs (Terasort, WC, Grep) commonly needs less search runs. MEER obviously achieves 3

and 6 times fewer overheads compared to SLAMR and Elastisizer on them. Since every

type of workload with distinct size of inputs has unique optimal reservations, they need to

start over new searches. The 7 times increased overheads per search means overall tens of

thousands of extra executions for diverse applications in an enterprise datacenter, which is

an unaffordable cost for online scheduling.

Figure 3.9 displays the ultimate average, minimum and maximum accuracy of above

search with different inputs. MEER achieved an error rate of less than 10% for most work-

loads and within 5% for batches jobs even on the tail. In comparison, Elastisizer averagely

reached the accuracy about 80% for most workloads, while the errors were about 30% on

the tail. MEER’s initial estimations even outperformed Elastisizer. This is because the step

size of Elastisizer was always improperly large and ultimately got away from the target.

Rapidly selecting proper step size for each specific application, while balancing trade-offs

between searching overheads and accuracy over a few runs is non-trivial. SLAMR con-

servatively adopted containers’ peak usages across stages as estimations and caused severe

over-estimations. It resulted in average errors of around 18% for batches jobs, and about

30% to 40% for iterative workloads. Despite its search overheads are relatively moderate,

the accuracy is unacceptable that even worse than Elastisizer. MEER obviously outperforms

alternative solutions. It achieves 4 or 7 times less errors on the average, and 6 or 8 times on
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the tail compared to Elastisizer or SLAMR. MEER consistently delivers a stability of low

overheads and high accuracy.
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Figure 3.11: Memory utiliza-
tion during batches runs un-
der various demands estima-
tors.

Performance on the Batches Running

To evaluate the effectiveness of MEER, we respectively equipped Yarn with MEER

and SLAMR, and submitted above workloads in a batch to the system at a time randomly

selected between 0 and 1200 seconds. Each application is submitted for 15 times to obtain

average durations. Elastisizer is designed for the first generation of Hadoop [14] and its

prototype is not applied to Spark workflow. Simply executing it on batches runs of in-memory

computing workloads and making comparisons are unfair. The baselines are executions under

estimated memory reservations by default Yarn/Spark and SLAMR. We evaluated cluster

memory utilization and execution time of applications. We used the runtime ratio of baseline

to MEER (
Baseline

MEER
) per application to measure the performance gains of diverse types of

workloads by MEER.

1) Performance: Figure 3.10 shows the distribution of runtime speedup under

different estimators per application. To show the effectiveness of MEER under various input

sizes and varied knees, every bar indicates the average ratio of applications under 15 distinct

input sizes per workload. It also includes the minimum and maximum ratios of performance



64

gains of different inputs. Each ratio is an average of 15-times runs to preclude effects of

co-locating interferences.

Compared to the default. Default YARN/Spark estimates containers’ memory de-

mands through analysis of task input sizes based on error-prone empiricism. The estimation

is highly inaccurate because the compressed and serialized on-disk format of data is always

3 to 6 times larger in memory, which is uncertain and random. Runtime slow down caused

by insufficient under-provisioning are ubiquitous in cluster. For most applications, MEER

(M) obviously outperforms default reservations (Def) by 2 to 5.9 times. Shuffle-intensive ap-

plications consist of numerous iterative stages like KMeans and graph computing workloads

are sensitive to memory shortage, and would trigger massive time-consuming full garbage

collections and spills during shuffling. When the reservation slightly decreases from optimal 4

GB (M) to insufficient about 3 GB (Def) by 25% under-estimations for large inputs, runtime

would increase from 18, 19 and 23 minutes (M) to 1.5, 2.2 and 2.3 hours (Def) for KMeans,

SVD++, and TriangleCount respectively. The slow down could be as much as 5, 7 and 6

times. Workloads get into a crash zone from a safe tail region under small under-estimations.

For most workloads, the long runtime of applications due to large data inputs degrades more

drastically under mis-provisions.

For PageRank with 15 GB data inputs, an inproper small reservation of 3 GB per

container causes performance degradation from 18 minutes (6 GB of MEER) to 29.3 hours

(Def). Applications are hovered by severe LUGCs and thrashing, with a plenty of container

crashes and massive re-computations. It wastes numerous resources of a cluster for an

abnormally long time, which slow down the entire batch of runs. Other workloads like

KMeans, SVD++ and TriangleCount also have high risks of abnormal long-time executions

in some potential configurations. They tend to have large inflection point values as in

Figure 3.1, leaving substaintial spaces for insufficient under-estimations. They are mixed

with complex transformations like treeAggregate, coalesce and cartesian through complicated

data communications between shuffled tasks of various iterations.
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Batch jobs like Terasort, WordCount, Sort and Grep have relatively small performance

gains that average around 1.8 times. They could be well predicted by default estimator due

to their simple data paths between a few stages. Others like Connected Component, Decision

Tree and Regressions mostly read and write of data by disk or perform common operations

locally. They have similar average gains of about 1.6 times and their runtime decrease

steadily with sizable reductions of reservations. From another view point of maximizing

resource efficiency, they are more friendly to elasticity and able to execute smoothly under

considerably less memory.

Consequently, a slight difference of mis-estimation is as good as a mile. Considering

the tremendous performance loss and the probable programs failures in crash zone, applica-

tions generally achieve about 2 to 6 times speedup under schedulers that assemble MEER,

by thoroughly avoiding under-provisions.

Compared to SLAMR. We have two observations regarding to the performance due to

SLAMR. First, there are a few percentage (about 5%) of executions whose performance due

to SLAMR even outperform MEER. It is due to the minority of under-estimations in MEER

just before termination of the search. In such cases, SLAMR may win. Second, SLAMR

consistently delivers a comparable execution time to MEER (within 10% differences). The

reason is SLAMR always conservatively adopts over-provisioned reservation based on holistic

peak demands across stages, at the cost of huge memory wastes. Thereby, its performance

is always close to the optimal one as MEER. SLAMR is not able to accurately forecast

memory demands of complex data communications in graph computing workloads. The

largest runtime variances are 2.3 times of SVD++ and 1.8 times of Triangle Count.

2) Resource Efficiency: To reveal insights into memory efficiency, Figure 3.11

shows cluster utilization under three estimators during batches runs. The utilization is a

ratio of actual usages to cluster capacity. Default reservations and SLAMR always exagger-

ate the importances of peak demands by significant over-estimations, which are actually an

insignificant small portion and have slight impacts on runtime. As shown, there are severe
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over-provisioned reservations under default configurations by error-prone empiricism, which

suggest a low average utilization of 60%. SLAMR has a even lower one around 40%, indi-

cating it yields more significant wastes of underutilized memory based on peak reservations.

These large proportions of spare memory (40% to 60%) could not be used by other waiting

applications.

In contrast, MEER improves utilization to an average by 80%, and achieves expected

high memory efficiency. The benefits come from tight and just proper sizes of reservations

under accurate initial and refined estimations that accomodate just major base demands.

Average heap utilizations are also shown to exceed 82% under optimal provisions as shown

in Section . Every reservation by MEER maximizes memory utilization while guaranteeing

near-optimal application performance.

Summary

In this paper, we present MEER, a system that assists schedulers to accurately and

efficiently estimate optimal memory reservations for diverse in-memory computing work-

loads. We demonstrate a general property of long-lived containers which referred to memory

reservation elasticity and the concept of optimal reservation. By leveraging robust profiling,

confidence level and probability density analysis for predictions, MEER achieves accurate

initial estimations in one step on line. Because of an intrinsic self-decay property of the his-

togram analysis results, MEER rapidly reaches optimal reservations through a few recursive

search steps in future recurring executions. MEER is an effective tool to promptly accumulate

resource demand knowledge for schedulers, and an essential component towards future data-

driven intelligent scheduling through self-learning. It is also a complementary technique to

existing schedulers that leverage knowledge of future resource availability. It improves their

effectiveness and strengthen benefits. Overall, the optimal reservation knowledge provided

by MEER enable cluster managers to achieve both optimal application performance and

maximum cluster memory efficiency.
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CHAPTER 4 Prophet: Scheduling Containers with Time-varying

Resources Demands on Data-Parallel Computation Frameworks

Introduction

Resource allocation is crucial to data-intensive cluster computation of big data sys-

tems. Efficiently scheduling execution instances of data-parallel computing frameworks, such

as Spark and Dryad, on a multi-tenant computation platform is critical to applications’ per-

formance and systems’ utilization. To this end, one has to avoid resource fragmentation and

over-allocation, so that both idleness and contention of resources can be minimized. To make

effective scheduling decisions, a scheduler has to be informed of and exploit resource demands

of individual execution instances, such as short-lived tasks or long-lived executors. The issue

becomes particularly challenging when resource demands greatly vary over time within each

instance. Prior studies take the convenience of assuming that a scheduling instance is either

short lived or of relatively consistent resource demands.

However, when in-memory computing platforms, such as Spark, become increasingly

popular, the assumption does not hold. The scheduling instance becomes executor for ex-

ecuting an entire application once it is scheduled. Usually It is not short lived and is of

significantly time-varying resource demands. To address the inefficacy of state-of-the-art

cluster schedulers, we propose Prophet, which takes resource demand variation within each

executor into its scheduling decision. To know the varying demands at the time of schedul-

ing, it leverages the fact that execution of a data-parallel application is well pre-defined by

its DAG structure and its resource demands at various DAG stages are highly predictable.

Equipped with this knowledge, Prophet schedules executors aiming to minimize resource

fragmentation and over-allocation. To accommodate unavoidable or unpredicted resource

contention as well as resulting performance degradation, Prophet adaptively backs off se-

lected task(s) to remove the contention. We have implemented Prophet in Apache Yarn

running Spark and evaluated it on a 16-server cluster. Compared to Yarn’s default capacity



68

and fair scheduler, Prophet reduces makespan by up to 39% and reduces median application

completion time by 23%.

Efficiently scheduling execution instances of data-parallel computing frameworks,

such as Spark and Dryad, on a multi-tenant computation platform is critical to applications’

performance and systems’ utilization. To this end, one has to avoid resource fragmentation

and over-allocation, so that both idleness and contention of resources can be minimized. To

make effective scheduling decisions, a scheduler has to be informed of and exploit resource

demands of individual execution instances, such as short-lived tasks or long-lived execu-

tors. The issue becomes particularly challenging when resource demands greatly vary over

time within each instance. Prior studies take the convenience of assuming that a scheduling

instance is either short lived or of relatively consistent resource demands.

Scheduling tasks of multi-resource demands onto servers of given amount of resources

(CPU, memory, disk, and network) is often formulated as a multidimensional bin packing

problem. As long as the demands are known a priori or can be accurately estimated, the

problem has been well addressed [94]. A common technique used for this estimation is to

leverage the fact that jobs of an application are recurring and they “repeat hourly (or daily)

to do the same computation on newly arriving data." [94]. Therefore, tasks’ statistics mea-

sured in their prior runs enable effective estimation. Specifically, “since tasks in a phase

perform the same computation on different partitions of data, their resource use is statisti-

cally similar." [94]. An offline or online profiling of tasks’ runs would provide a scheduler

with knowledge on tasks’ resource demands.

Unfortunately the profiling strategy does not fully address the issue by itself in prac-

tice, as the demand measured during a task’s run varies (sometimes dramatically). While a

multidimensional bin packing problem is NP-hard and has to be solved with heuristics, it is

almost impossible to take time-varying demands into consideration of scheduling decisions. A

conservative and safe alternative is to use the peak usage of a resource to represent the vary-

ing ones to prevent over-allocation. However, this produces risk of resource fragmentation.
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While each application can have a large number of tasks and each task has a relatively short

execution time, using peak demand may not create large pockets of fragmentation in terms

of wasted resource time. However, this becomes a serious issue with in-memory computing

frameworks, such as Spark [203] and Storm [176], and can cause significant performance loss.

To achieve high scheduling efficiency, a scheduler has to minimize fragmentation and

overallocation of resources [94]. When resources are idle with demands on the resources from

tasks to be scheduled, there is resource fragmentation. One scenario where this happens is

when resources, such as CPU and memory, are pre-allocated into slots where tasks are to be

dispatched [27,87]. When aggregate demands from running tasks exceed available resources,

over-allocation of resources occurs and often leads to interference and serious performance

degradation. While a task’s CPU and memory demands are often well pre-specified and met

by resource pre-reservation, the over-allocation usually happens with network or disk and

causes disk seeks or network incast significantly compromising their throughputs.

An in-memory computing framework, such as a Spark application, does not expose its

tasks to the platform it runs on, such as YARN or Mesos, for it to directly schedule. Instead,

it introduces the concept of executor5, which is scheduled by the platform’s scheduler. Once

executors of a framework are scheduled to servers, the framework’s scheduler is responsible

for scheduling its tasks to the executors. Specifically, the executor is usually a Java virtual

machine (JVM) and tasks are threads running on the JVM. Each Spark application has a

set of executors scheduled by the platform’s scheduler to different servers and their stay alive

until all tasks of the application are competed. This two-level scheduling is adopted for two

reasons. One is to cache a subset of data in memory to enable in-memory reuse of data

across tasks in an executor in a fault-tolerant manner. The other is to significantly reduce

overhead of launching tasks, which is critical for in-memory computing. In contrast, in a
5The executor may be named differently. In the YARN environment, it is sometimes called container [181].

In the paper introducing Spark, it is called worker [203], while in the paper describing Mesos [?] and Spark
Apache’s official website [15], it is called executor.
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Hadoop application each task runs on a dedicated JVM, which is scheduled by the platform’s

scheduler.

While there are two levels of scheduling for in-memory computing, the platform’s

scheduler plays a more performance-critical role by being responsible for resources allocation

and sharing between applications. While executors take the place of tasks to become the

platform scheduler’s scheduling objects, the rationale made by existing schedulers on using

peak resource usage to represent an object’s varying resource demand is less likely to be

valid. An executor runs multiple tasks belonging to different DAG stages and having possibly

very different resource demands. Therefore, using the peak demand to represent different

demands of a resource during the lifetime of an executor for resource allocation can cause

serious resource fragmentation (or wastage), if we assume the resource is allocated according

to the peak demand (e.g. in Tetris cluster scheduler [94]).

For a smooth run of tasks in an executor without interference from other executors

belonging to other applications, it might be desired to have all four major required resources

(CPU, memory, disk, and network) pre-allocated or reserved. Actually users only specify

their resource demands on CPU (number of cores) and memory (size of memory) for an

executor, which is implemented as a Java virtual machine (JVM). As these demands usually

constitute the bottom line of meeting user’s requirement on service quality, the requested

resources are reserved at the time of executor scheduling. However, how to allocate disk

and network to executors or tasks is also critical to applications’ performance and system’s

efficiency, especially considering their highly variable demands.

Our objective is to dynamically adapting the resource configuration for applications of

big data systems running on clusters, guarantee the resource allocation for each application

match their multi-dimensional resource demand such as CPU,Memory,Network and Disk,

while avoiding resource over-allocation and fragmentation.In addition, optimize performance

through schedulers, storage, memory resource management aspects for big data system such

as Spark and Hadoop in cluster computation.
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(a) K-means (b) SVM (c) Pagerank (d) SVD++

Figure 4.1: Disk bandwidth usages of four Spark benchmarks (K-means, SVM, PageRank, and
SVD++). DAG stages are marked with dotted lines.

Motivation

To illustrate the potential efficiency loss, we use four Spark enbenchmarks and cor-

responding input data generators available in SparkBench [123], a public available Spark

specific benchmarking suite, to reveal their executors’ resource demand variations. Among

the four benchmarks, two (K-means and SVM) represent machine learning workloads, and

the other two (PageRank and SVD++) represent graph computation workloads.

• K-means is a machine learning workload clustering adataset into K clusters.

• SVM (Support Vector Machine), is a machine learning classifier workload analyzing

data and recognized patterns of high dimensional feature spaces while efficiently con-

ducting non-linear classifications.

• PageRank is a graph computation workload ranking website pages and estimating their

importance.

• SVD++ is a graph computation collaborative filtering workload improving the quality

of recommendation system based on the users’ feedbacks.

Figures 4.1 and 4.2 show the disk and network bandwidth demands of the four Spark

benchmarks (Spark 1.5.0) on Hadoop Yarn 2.4.0, respectively. Each executor is exclusively

run on a server of 24 cores, 32GB of memory, three 7200 RPM disk drives, and 1Gbps NIC. It

is obvious that for both disk and network usages the amount of bandwidth requested varies

from almost 0 MB/s to around 300MB/s for disk or around 160MB/s for network. Their
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(a) K-means (b) SVM (c) Pagerank (d) SVD++

Figure 4.2: Network bandwidth usages of four Spark benchmarks (K-means, SVM, PageRank, and
SVD++). DAG stages are marked with dotted lines.

very low resource demands can stay for more than half of some executors’ lifetimes, such as

for network usages of K-means and SVM, while their peak demands are still very high, such

as around 160MB/s. Should the resources be allocated according to peak demands, they

would be significantly wasted due to the serous fragmentation. Even worse, starvation may

occur on applications with both high peak network and disk demands as servers may not

have available resources to meet both peak demands simultaneously (even though such an

availability is not necessary). On the other hand, if they were not pre-allocated, executors

on the same server may simultaneously experience high demand on the same resource and

cause resource over-allocation. This can lead to severe interference (disk seeks or network

incast) between the executors, which can sharply degrade applications’ performance.

It is necessary to take resource variation of executors into their scheduling decision

so that both resource fragmentation and overallocation can be minimized. This is a highly

challenging issue considering even scheduling objects with constant resource demands (e.g.,

using peak demands) can be NP-hard [94].

Fortunately, recent studies on large-scale data-parallel systems have revealed that

most applications in production clusters have recurring characteristics, with predictable fu-

ture resource demands and mostly constant execution time in each DAG stage for given

CPU cores and with sufficient memory [42, 57, 83, 94, 110]. To illustrate this, in addition

to the aforementioned four benchmarks, we select another six Spark benchmarks. Three of

them (LR, TriangleCount, and TeraSort) are from SparkBench [123], and the other three

(WordCount, Sort, and Grep) are from BigDataBench [188].
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• Logistic Regression (LR) is a machine learning classifier benchmark to predict contin-

uous or categorical data.

• TriangleCount is a fundamental graph analytics counting the number of triangles in a

graph to detect spam or hidden structures in web pages.

• TeraSort is a sorting benchmark using map/reduce to sort input data into a total

order.

• WordCount reads Wikipedia text entries as input, and counts how often words occur.

• Sort is a benchmark designed for sorting the words from a Wikipedia dataset.

• Grep is a benchmark filtering and finding the specified words from a Wikipedia dataset.

Foe each of ten benchmarks, we supply 9 setups, which are formed by three differ-

ent CPU core numbers for each executor (one, three, and five) and different different input

dataset sizes (small, medium, and large). The dataset sizes for each benchmark and cate-

gories are shown in Table 4.6. Each of the setups run five times with different input datasets

(of the same size). For each of the five runs in a dedicated cluster of 16 nodes, we collect

each stage’s start time and peak disk/netowrk bandwidths of an executor and compute their

relative standard errors over the five runs. Figure 4.3 plots the errors with CDF (cumulative

distribution function) curves. As shown, the relative errors are mostly smaller than 10%.

Though dataset has a potential to affect executor’s behavior, such as number of iterations to

reach a convergence in machine learning applications, the impact is small. More importantly,

each stage’s start time is very stable (with a 5% or smaller relative standard error),

Because usually the same setup (CPU cores for each executor and input dataset size)

remains in use for an application for an extended time period [42,83,110], profiling results on

stage start time and peak resource demands of one run is sufficient for an executor scheduler

to make an informed decision. When an application constantly changes its setup, we adopt a

supported vector machine (SVM) with linear regression technique, and feed results from 25
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Benchmarks SVM KMeans LR PageRank SVD++
Large Input Dataset 38.3G 21.9G 37.1G 4.0G 365.6M
Medium Input Dataset 19.2G 10.9G 18.5G 1.9G 163.3M
Small Input Dataset 9.6G 5.5G 9.3G 933.1M 78.1M
Benchmarks TriangleCount Terasort WordCount Sort Grep
Large Input Dataset 364.7M 37.3G 44G 44G 44G
Medium Input Dataset 167.2M 18.6G 22G 22G 22G
Small Input Dataset 86.5M 9.3G 11G 11G 11G

Table 4.6: Three categories of input dataset sizes for each of 10 benchmarks.
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profiling runs covering representative setups into the machine to build the prediction model.

The model then can take in a new setup about CPU cores and dataset size) and produce its

predicted stage start time and peak resource demands. Because changing CPU core count

and input size usually does not lead to disruptive change of an executor’s behaviors, the

model consistently provides high-quality prediction (mostly less than 10% errors).

With the knowledge on an executor’s peak disk and network demands at any stage

during its lifetime and on each stage’s start time (and its duration), a scheduler can estimate

future resource availability at any time frame in the near future and make an informed

scheduling decision accordingly to minimize resource fragmentation and over-allocation. We

design an executor scheduler, named Prophet, that selects an executor whose scheduling

would result in the smallest amount of fragmentation and over-allocation. To accommodate

unavoidable or unpredicted resource contention, Prophet backs off selected task(s) in an

executor to adaptively remove the contention.

In summary, We make the following contributions in the paper.

• We identify a performance-critical issue about the executor scheduling on in-memory

data parallel computing platforms. We show that without considering resource demand

variation within an executor, we can hardly enable an effective scheduling. By showing

stability and predicability of resource demands in an executor, we make it possible to

take the dynamics on the resource demands into account.

• We design an online executor scheduler, Prophet, that adopts a greedy approach by

choosing the currently optimal executors in terms of expected resource fragmenta-

tion and over-allocation to dispatch. It also dynamically avoids dramatic performance

degradation due to severe resource contention with its task backoff mechanism.

• We have implemented Prophet on YARN and Spark 1.5. to support running Spark

and evaluated it on a 16-server cluster. Prophet has minimized resource fragmentation

while avoiding over-allocation, simultaneously improving cluster resource utilization,
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minimizing application makespan and speeding up application completion time. Com-

pared to Yarn’s default capacity and fair scheduler, Prophet reduces the makespan of

workloads by 39% and the median job completion time by 23%.

Design of Prophet

As an executor scheduler, in addition to its main objective of minimizing resource

fragmentation and over-allocation, Prophet has two other objectives. One is fairness across

applications, and the other is load balance across servers running applications, In the schedul-

ing, all arriving applications will be placed into a waiting queue. When an application is

submitted, its required CPU, memory, and number of executors are specified. When there

are applications whose specified resource demands can be met by currently available re-

sources in the cluster, Prophet greedily chooses one that results in minimal fragmentation

and over-allocation for dispatching. Then the required number of executors are created on

different servers. Note that for load balance across servers in an application’s execution,

Prophet always creates the required number of executors at the time when the application is

scheduled. It does not create executors fewer than the required ones when resources are not

sufficient. Otherwise, if executors are allowed to increase, newly created executors will all

request data from existing ones and make them become performance bottleneck. For fair-

ness and avoiding starvation, Prophet chooses an application for scheduling from a subset

of pending applications that have waited for the longest time (by default 50% of all pending

ones). Each application is also assigned a deadline when it arrives at the queue. It will be

scheduled immediately when its deadline is passed. The deadline can be assigned according

to current average waiting time, such as three times of its average.

Prophet’s Scheduling Algorithm

Prophet’s scheduling algorithm is designed with assumption that future peak resource

demand of an executor, either one that has been scheduled and is running or one that is

candidate for scheduling, is known (or can be predicted). By knowing demands of executors
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Figure 4.4: Illustration of predicting available disk bandwidth. With known demands on disk
bandwidth from executors (see (a) and (b), the shaded area in (c) between their combined demand
and the disk’s capacity represents the disk bandwidth to be available.
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Figure 4.5: Illustration how fragmentation area (FA) and over-allocation area (OA) of disk band-
width are formed for two executors. For each executor (see (a) or (b)), the up graph shows its
demand on disk bandwidth, and the bottom graph shows the demand and the available disk re-
source (shaded area computed in Figure 4.4) overlap with each other to form FAs, such as A1, A2,
and A3, and OAs, such as B1 and B2.

currently running at a server, Prophet can compute how much the resource would be still

available in the near future. This is illustrated in Figure 4.4 for disk bandwidth of a server

with two executors being scheduled on it. In the shown example, each executor has two stages

of distinct disk bandwidth demands. However, their combined effect leaves the available

resource of four distinct values, or four resource availability stages. At this time we have two

candidate applications’ executors for Prophet to decide which one to schedule, as shown in

Figures 4.5(a) and (b), respectively.

If only disk bandwidth is considered, Prophet needs to examine the future fragmen-

tation areas (FAs) and over-allocated areas (OAs) in Figure 4.5. FA or OA refers the area

between the two lines for available bandwidth and the demand in the figure. If available

bandwidth is larger than the demand, it is FA, such as Ai(i = 1, 2, ...5). Otherwise, it is OA,

such as Bi, (i = 1, 2, 3).. A good scheduler should minimize the two areas, FA represents

wasted resource and OA represents resource contention and performance degradation. In this

example, Prophet will schedule executor in Figure 4.5(a), as it has much smaller aggregate
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Cr
i capacity of Resource r on Server i

P r,j
k Peak demand of Resource r from Executor j at its Stage k

Ar,i
s Available Resource r of Server i at resource stage s

Di
s Duration of resource stage s

ti,startk ,ti,endk Start and end times of stage k at Executor i
T i,start
s ,T i,end

s Start and end times of resource stage s at Server i

Table 4.7: Notations in the Prophet’s scheduling algorithm

FA/OA area than that in Figure 4.5(b). This example also indicates a scheduler unaware

of future resource demands and availability might schedule the executor in Figure 4.5(b)

leading to much worse performance.

To formally describe the design of the scheduling algorithm, we introduce a number of

notations as shown in Table 4.7. Note that in the notations, quantities about duration and

times ( Di
s, t

i,start
k , ti,endk , T i,starts , and T i,ends ) are not defined specifically for certain resource.

Instead, they are specified according to change of stages for any resources.

To quantify fragmentation and over-allocation for candidate application’s executors,

we might simply add FA or OA of an executor’s every stage, and consider the sum as

the executor’s fragmentation score or over-allocation score, or Fscore and Oscore in short,

respectively. However, for an executor of many stages, prediction on demands and resource

availability at the earlier stages, or those closer to the current time, is usually more accurate

than that on later stages, as the latter is more likely to be influenced by unaccounted noises.

To this end, we give earlier stages a higher weight. Specifically, if the executor has n stages,
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the weight for Stage i (i = 0, 1, ..., n − 1) is wi = 1 − i/n. Therefore, the two scores can be

computed for Resource r as below.

Fscorer =
∑

k

{∑

s

[(
Ar,is − P r,j

k

)
∗Di

s

]
∗ wk

}

for anyP r,j
k < Ar,is , as long as




T i,starts ≥ tj,startk

T i,ends ≤ tj,endk

(4.1)

Oscorer =
∑

k

{∑

s

[(
P r,j
k − Ar,is

)
∗Di

s

]
∗ wk

}

for anyP r,j
k > Ar,is , as long as




T i,starts ≥ tj,startk

T i,ends ≤ tj,endk

(4.2)

In theory, to minimize both fragmentation and over-allocation in the selection of

applications for scheduling, we might simply use the sum of the two scores as the metric

for the selection. However, resource over-allocation can cause contention among executors

and slow down all involved ones. More seriously, the slowdown may lead to more idleness

(fragmentation) of other resources. To address the issue, we give Oscore a higher weight

when computing the overall score.

OverallScorer = (1− η)Oscorer + η ∗ Fscorer (4.3)
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In our prototype, we set η as 0.3 by default, which is experimentally determined to

balance the risks of severe performance degradation and wastage of resources. We leave a

comprehensive study of this factor as a future work.

While for each resource (disk or network resources) Prophet can compute an overall

score, for all resources it obtains a vector of overall scores for an application’s executor. To

convert the vector into one-dimension quantity for comparison across candidate applications,

we use the Euclidean norm of the vector. Accordingly Prophet selects application whose

executors have the smallest norm. The scheduling algorithm is described in Algorithm 1.

Algorithm 1 Prophet Scheduling Algorithm
Require: Denote the Available Resource of Server i as: ARi

Require: Denote the Resource Demand of Executor j as: RDj

Require: Denote the Overall Score Vector of Executor j as: OSVj
1: When Executor j of application p is added to queue
2: Offline Predictor predicts its P r,j

k

3: When a hearbeat is received from Server i
4: while there is ARi{cpu,memory} on Server i do
5: for each Executor j in the queue do
6: if RDj{cpu,memory} < ARi{cpu,memory} then
7: Acquire latest predicted P r,j

k , Ar,is , Di
s

8: Compute OSVj of Executor j
9: else
10: ISVj = NULL
11: end if
12: end for
13: Launch Executor j whose norm of OSVj is minimum and not empty on Server i
14: Update ARi{cpu,memory}, Ar,is , Di

s of Server i
15: end while

Ameliorating Contention with Task Backoff

While Prophet attempts to avoid expected over-allocations, there still can be un-

expected ones or expected minor ones turn out to be major over-allocation. As we have

indicated in Section 1, severe over-allocation leads to intensive interference. For disk and

network, such an interference can cause the effective bandwidths to be much lower than their

normal peak ones due to reasons such as random access and incast, respectively. When inter-
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Figure 4.6: The framework of Spark applications running on a Yarn cluster, in which Prophet
modules are included (shown as shaded boxes).

ference essentially blocks tasks of an executor from moving forward, the executor’s reserved

CPU cores and memory are also wasted. To address the issue, Prophet has an emergency

handling mechanism built in the Spark’s task scheduler. When it is observed that effective

disk or network bandwidth is substantially lower than their peak one while it stays busy

to serve requests at a server, a serious over-allocation is detected at the server. Prophet

will examine the profiled resource demands of each executor on the server and identify ones

that are most likely to overuse the contested resource. Then it activates a backoff mecha-

nism by reducing number of tasks dispatched to the executors until the effective bandwidth

approaches the peak one or the resource is not busy anymore. Note that the mechanism

is enabled only temporarily, usually lasting for only a few task scheduling rounds, as an

overaction could compromise utilization of CPU and memory.
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Implementation and Evaluation of Prophet

We have implemented Prophet executor scheduler on Hadoop YARN 2.4.0 and task

backoff mechanism in Spark 1.5.0. In addition, we implemented a resource usage monitor on

each server to detect over-allocation. In this section, we will provide implementation details,

system setups for performance evaluation, and evaluation results.

Prophet’s Implementation

Figure 4.6 depicts where the Prophet modules are situated in the framework of Spark

applications running on a YARN cluster. Yarn’s cluster-wide resource manager is responsible

for receiving executors’ resource request from each Spark application master, and commu-

nicating with node manager on at each server to decide if there are sufficient resource to

meet the resource request. If yes, corresponding resources will be allocated, and the Spark

application master and its executors would be running as containers on servers managed by

node manager. On this framework we made a few instrumentations.

• The resource demand predictor runs as a separate process on the Yarn’s master node

hosting its resource manager. In the background it continuously learn and predict

executors’ resource demands.

• The executor scheduler is enabled as Yarn’s plug-in scheduler. It communicates with

the predictor before making its scheduling decisions..

• The task backoff mechanism is implemented in Spark’s scheduler, which runs with each

Spark application master and communicates with the resource monitor to decide if task

backoff should be enabled for an application and if yes, for how long.

• The main resource monitor running as a separate background process on the master

node communicates and collects information from those resource monitors running on

worker nodes.
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These changes are lightweight. They do not increase complexity and scalability of

Yarn’s scheduling framework. The profiling and prediction workload is run in the back-

ground.

Experiment Setup

We deployed our implementation of Prophet in Hadoop Yarn 2.4.0 and Spark 1.5.0

on a 16-server cluster. Each server has 24 cores, 32GB of memory, three 3.5TB 7200 RPM

disk drives with a 110MB/s peak bandwidth for each one. It has a 1Gbps NIC and runs

Linux 3.16. We use the 10 benchmarks that were described in Section 1. In the same as

we ran the benchmarks in Section 1, for each benchmark, we vary its input size as listed in

Table 4.6 and its CPU core count (1, 3, or 5). So essentially we have 90 applications to run

in the evaluation. Each application is submitted to the system at a time randomly picked

between 0 second (experiment start time) and 1200 seconds.

The input dataset of the machine learning and graph computation benchmarks (K-

means, SVM, Pagerank, SVD++, LR, and TriangleCount) kept in memory as Spark RDD

abstraction to support the later parameter vector calculation, update and broadcast of each

iteration.

We compare Prophet to three state-of-the-art Spark scheduling algorithms imple-

mented in Yarn, which are Dominant Resource Fairness(DRF) scheduler [87], the capacity

scheduler(CS) [27,28] and Tetris [94]. The capacity scheduler is designed to achieve fairness

on memory allocation based Hadoop’s slot-based resource management, while DRF consid-

ers fairness for both CPU and memory. In addition to CPU and memory, Tetris considers

network and disk bandwidths. It tries to efficiently pack tasks/exectors when resources are

sufficient to accommodate their peak demands. Nevertheless, to the best of our knowledge,

all the existing schedulers are designed for task-grained scheduling without considering the

resource demand variation within scheduling objects.
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Figure 4.7: CDF curves for reductions of execution times by Scheduler X over Scheduler Y, shown
as X vs. Y. X can be Prophet and Tetris, and Y can be CS, DRF, and Prophet.

Experiment Results

Figure 4.7 shows cumulative distribution function (CDF) curves of application’s exe-

cution time reduction by Prophet over CS, by Prophet over DRF, and by Tetris over Prophet.

An application’s execution time is measured from the time its executor are scheduled to its

completion. For example, the figure shows that there are 50% of applications whose exe-

cution times are reduced by 31% or less they are scheduled by Prophet over those by CS,

reduced by 40% or less by Prophet over those by DRF, or by 18% or less by Tetris over those

by Prophet.

While CS consider only memory and DRF considers only memory and CPU, it is

a surprise to see Prophet generally performs better than them in terms of execution time.

Prophet uses prediction and task backoff to avoid over-allocation of disk and network band-

width. In contrast, CS and DRF experience (much) more serious interference between ex-

ecutor at a server, and take longer time to complete. However, it is interesting to have these

two observation. First, There are a few percentage of applications whose CS/DRF execution
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Figure 4.8: CDF curves for reductions of completion times by Scheduler X over Scheduler Y, shown
as X vs. Y. X is Prophet, and Y can be CS, DRF, and Prophet.

Scheduler CS DRF Tetris Prophet Propeht w/o Backoff
Makespan (s) 16604 18369 25537 11290 15707

Table 4.8: Makespans produced by various schedulers for running the 90 applications.

times are shorter than those of Prophet. This is because Prophet also makes effort to reduce

fragmentation, which may increase risk of interference. In such cases, CS and DRF may win.

Second, Tetris consistently has a shorter execution time than Prophet. Execution time can

only compromised by over-allocation, and not by fragmentation. Tetris uses an executor’s

peak resource demands for allocation. So it is less likely to have an over-allocation. However,

Prophet also needs to consider reducing fragmentation, which does not help with execution

time. However, a metric more meaningful to users is completion time, which is measured

from the time when the application is submitted to its completion.

Figure 4.8 shows CDF curves of application’s completion time reduction by Prophet

over CS, by Prophet over DRF, and by Prophet over Tetris. For this metric, Prophet is

better than Tetris. For example, there are 50% of applications whose completion times

are reduced by 36% or more, and 10% of applications whose times are reduced by 12% or
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Figure 4.9: Disk utilizations during running 90 applications under various schedulers.

more. If we read makespans of the executions under different schedulers listed in Table 4.8,

it is clear that Prophet is much better than other schedulers. The makespan measures the

total time period used to complete all the 90 applications under a scheduler. It is directly

correlated to the system’s resource efficiency. Prophet reduces the makespan by 32%, 39%,

and 56% compared to CS, DRF, and Tetris, respectively. The reduction over Tetris is the

most significant, while Tetris produces the best application execution time.

These results reveal the strength of Prophet, which is aware of varying future re-

source demands and takes them into scheduling decision. If a scheduler does not have the

knowledge, it has two options. One option, that is taken by Tetris, conservatively uses ex-

ecutors’ peak demands for scheduling. While this minimizes possibility of over-allocations

and helps with the execution, it would leave significant fragmentations, which compromises

resource efficiency. Therefore, it is expected to see that Tetris has the worst makespan. The

option, that is taken CS and DRF, simply does not consider disk and network demands in

the scheduling. So they are more likely to have serious interference than Tetris and Prophet.

That is why their execution times are worse. In the meantime, they are less likely to have

fragmentations than Teris. That is why their makespans are shorter than Tetris. By ex-

plicitly considering varying resource demands, Prophet can address both over-allocation and

fragmentation issues.

To reveal insights on how disk and network resource bandwidths are actually con-

sumed, we use their utilizations under the four schedulers in Figures 4.9 and 4.10. The

utilization is the ratio between aggregate demands on a resource from all executors at a
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Figure 4.10: Network utilizations during running 90 applications under various schedulers.
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Figure 4.11: CDF curves for reductions of execution and completion times by Prophet over Prophet
without task backoff mechanism.

server and the server’s capacity of the resource. As shown, for CS and DRF, there are many

significant over-allocations, which suggests that much lower effective (disk or network) band-

width. In contrast, Tetris and Prophet have little over-allocation. However, there are much

more high utilization values in Prophet than those in Tetris (for either disk or network) ,

indicating that Tetris has much more serous fragmentation issue.

While Prophet has two components to achieve its scheduling objectives, we would like

to see the contribution made by each of the components (prediction-based scheduling policy

and task backoff mechanism). Figure 4.11 shows CDF curves for reductions of execution

and completion times by Prophet over Prophet without task backoff mechanism. While the
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prediction-based scheduling policy tries to minimize both fragmentation and over-allocation,

the task backoff mechanism basically addresses only the over-allocation issue. Application

execution time is directly by affected by interference caused by over-allocation. With the

backoff mechanism, applications’ execution time is more significantly compromised than

the completion time. This experiment also reveals that in a shared execution platform, it is

necessary to have a backup mechanism to keep the system from unavoidable or unpredictable

resource usages.

Summary

We have demonstrated that existing task schedulers are not suitable for scheduling

executors with time-varying resource demands on an in-memory data-parallel computing

platform, such as Spark. They suffer from serious over-allocation and fragmentation prob-

lems and can substantially compromise application performance and system resource utiliza-

tion. Motivated by observations on recurring resource usage patterns in the platform, we

propose a scheduling algorithm, Prophet, to learn and leverage the patterns in the execu-

tors’ scheduling. In particular, Prophet predicts detailed resource availability at a server and

varying demands from executors in the near future, and takes efforts to make the demands

best match the available resources. This will help with both the application performance

and system efficiency. To be robust, Prophet has a task backoff mechanism to accommodate

unexpected over-allocation.

We have implemented Prophet on Yarn and Spark. Extensive experiments with pub-

licly available benchmarks show that Prophet could reduce makespan by up to 39% and

median application completion time by 23%, compared to Yarn’s default capacity and fair

scheduler.
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CHAPTER 5 Large-scale Datacenter Co-location Techniques

Introduction

we concluded several critical datacenter technique challenges and root causes in Al-

ibaba that lead to severe inefficiency during past years. We also introduce the feasibility and

challenges of an enterprise-wide co-location techniques at large scale to effectively improve

datacenter efficiency. It involves in the evolutions of infrastructures in Alibaba during recent

5 years.

Challenges of Datacenter Inefficiency

C1: Over-provision and over-purchases in terms of stringent SLAs and

extremely peak traffic bursts. In Alibaba, the dominant user-facing products are online

latency-critical (LC) services such as online shopping, advertising, search, financing and

online payment of eCommerce. They require stably low latency (mostly within 100 ms as

shown in Figure 5.3) under stringent service level agreements (SLAs) (variances within 99%)

to prevent abnormally terminated transactions or unacceptable data loss due to services

time out. These faults are intolerable for eCommerce workloads and would lead to enormous

economic losses [31,143,158].

Moreover, there are several famous annual promotion events such as "Double 11"

(Nov.11) or "618" (Jun. 18). They bring 10+ times higher traffics, loads and transactions in

a few minutes. Figure 5.1 shows the peak transanction per second (TPS) of "Double 11" in

recent years. We observed the peak TPS rapidly increases since 2009 and is almost double

in 2017. It incredibly reached 325000 and might be double in 2018. The TPS and resource

requirements of "Double 11" are hundreds of times higher than day-to-day periods.

Figure 5.2 and Figure 5.3 display the comparisons of total query per second (QPS)

and response time (RT) of critical eCommerce services like buy, cart and tradeplatform

between "Double 11" and daily peak periods. The average QPS of core components (Http,
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HSF, Tair, TDDL6) of critical services in "Double 11" are always 5 to 10 times higher than

daily ones. It incredibly reached 4600,000 QPS for Tair (memcache) of cart service, 1020,000

QPS for HSF (RPC) and 640,000 QPS for TDDL (database) of tradeplatform service. There

are a bunch of capacity re-planning, load balance and auto-scaling techniques designed for

"Double 11". They amortize the extreme TPS pressures and make QPS of services fall in

an almost bearable scope. The average RT of service components should still be within 95%

variances as those in daily periods, which are 0.3ms, 7.2ms and 0.7ms respectively. Strictly

guarantee service stability within millseconds-level latency under such extreme load spikes

while maintaining high resource efficiency is non-trivial.

In the past years, we planned capacities and resource demands according to peak

traffic bursts and load spikes during big events in advance, and wastefully purchased extra

massive servers to satisfy an annually rapid growth of peak traffics in "Double 11", leaving

tremendous underutilized resources during the rest of the year. We also over-provisioned LC

services separately on dedicated clusters to ensure stringent SLAs. It left spare resources of

most clusters, whereas others suffered starving during peak periods in the unshared envi-

ronment. The daily enterprise-wide average CPU utilization was even lower than 10% over
6In Alibaba, we develop high-speed industry RPC, memcache and database components. We contributed

them to Alibaba Cloud and open source community. They are named HSF [4], Tair [23] and TDDL [24]
respectively.
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past years, which significantly threatens ROI. Unrestrained scaling up with huge unnecessary

costs is unaffordable and unsustainable as the rapid growth of business and datacenter scale.

The Motivation and Feasibility of Colocations

Recent studies showed that an effective approach to improve efficiency is to co-locate

data-intensive workloads on the same servers of LC services to fully exploit their underutilized

resources [57, 74, 75, 131, 140, 141, 185, 200, 207]. Due to above chanllenges and status of

Alibaba datacenters, we leverage the benefits of colocation techniques to maximize datacenter

efficiency. It includes two scenarios:

1. In day-to-day periods, we co-locate mixed types of workloads in a global shared

resource pool. Data-intensive jobs fully utilize the spare resources of servers left by LRSs.

2. During big events, we lend capacity from data-intensive workloads to LRSs in a

short spike period (one peak hour), to accommodate extremely peak traffic pulse bursts of

LRSs while avoiding extra server purchases of C1.

The co-location techniques are naturally feasible due to four reasons as followings:

Complementary resource demands. Figure 5.4 and Figure 5.5 display the aggra-

gate average CPU and memory utilization of two types of clusters during a month. Online

LRSs constently operate at a low utilization of 10% CPU and 20% memory, whereas data-

intensive jobs at average of 40% and 50% respectively with stable periodic variations. Over
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70% of data-intensive jobs are short temporary queries that executed within 3 minutes.

Differ from the common assumptions that long-running production jobs take up at least

70% of the cluster [69, 73, 86, 177, 185], data-intensive jobs that regarded as best-effort ones

overwhemingly take advantage of most resources.

Virtually, LRSs reserved and hold 90% of available resources in online cluster, and

leave 95% of them spare during day-to-day period. It is because schedulers always over-

provision LRSs to handle spikes and strictly ensure SLAs while capacity planning is also

difficult to be accurate. The amortize, load balance and affinity constraints aggrevate the

inefficiency issues of most commercial production datacenters, leading to 6% to 12% utiliza-

tion.

Accordingly, the stably low usages of LRSs and large proportions of best-effort jobs

with high demands are naturally complementary, and could be efficiently co-located on the

same servers without overloading in day-to-day period.

Complementary runtime characteristics. Table 5.9 displays the characteristics

of two types of workloads. They are fully complementary to each other. By over-committing

mechanism, data-intensive workloads could sufficiently utilize the spare resources reserved

by LRSs during daily periods. Since they do not require real-time responses and are not

sensitive to interferences, they are friendly to co-locations. Additionally, most data-intensive

workloads are best-effort ones that are preemptible and could tolerate re-computations. They

could efficiently and rapidly return resources and make spaces for LRSs by preemption

and reclaimation when LRSs request scaling-up during contentions or traffic bursts periods.

With the prerequisite of complementary characteristics and multiplexing of resources, we

could guarantee high priority and stability of LRSs without wasteful over-provisioning under

colocations.

Complementary diurnal usage patterns. Figure 5.6 exhibits the daily ratio

of resource reservations to quota limit of data-intensive applications, which demonstrates

obvious periodical diurnal usage patterns. Most daily recurring workloads like analytic
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Table 5.9: Workload Characteristics

Characteristics LRSs Data-intensive Applications
Type Production services Batch jobs mostly

Priority High and non-degradable Best-effort and preemptible
Real-time Response Yes No
Latency Sensitive Yes No

SLA Requirement (Stability) Strict Loose
Recomputation No Yes
Load Spikes Unpredictable and frequent Predictable and few
Day-to-Day Daytime high, midnight low Daytime low, midnight peak
Big Events Short pulse bursts Degradable

Resource Usages Daily low, events high Constantly high

reports that reserve 90% of cluster resources are auto-submitted at 1pm and always finish

by 8am as shown in Figure 5.6. On the contrary, peak traffic periods of all LRSs like

eCommerce, O2O or digital entertainments always happen on daytime that started from

9am to 11pm, when the usage pressures of data-intensive jobs are slight. The complementary

peak periods and diurnal usage patterns of two types of workloads naturally enable the time

division multiplexing sharing of resources. It also implicitly mitigates the extent of co-located

interferences during daytime.

Enable resources rent during big evets. The pulse bursts sustained only minutes

to one hour after mid-night. By co-locate two types of workloads in the unified shared

clusters, LRSs could borrow a majority of resources from data-intensive workloads during

that short pulse periods. We are capable of temporarily degrading quota of batch jobs, and

resume it in time when peak demands of periodical analytic jobs come. The short-term

resources rent could make immeasurable savings that avoiding annual tremendous over-

purchases, at the tiny costs of negligible impacts on batch makespans.

Accordingly, we could effectively boost datacenter utilization in day-to-day periods,

and stand up to extreme pulse bursts during big events without extra purchases by workloads

colocations.
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Challenges of Co-locations

However, the performance interferences between colocated workloads caused by con-

tentions of shared hardware resources still threaten service stability. Traditional QoS-aware

(quality-of-service) scheduling and isolation techniques [57,74,75,131,140,141,185,200,207]

are not sufficient for eCommerce workloads with strict SLA requirements of millseconds-level

latency. We introduce several critical challenges of colocations.

C3: Ineffective traditional colocation techniques due to sensitive latency

and long chains. Online services in Alibaba always have a long transaction chain that

consists of dozens of cascaded services across diverse middlewares including web services,

memcache, RPC and database. Figure 5.7 shows a complete shopping process (these services

might not be directly linked.). The fundemental components such as memcache (Tair) or

RPC (HSF) of core services like cart and TP are always visited 1200,000 or 240,000 times

per second in daily requests as shown in Figure 5.2. The normal RT per request are within

0.4ms and 9ms. The tail latency [70] caused by slight interferences would incur service time

out and is not tolerable for eCommerce workloads.

For example, if one slight server load spike occurs, the latency-sensitive and fre-

quent access components like Tair running on it could be blocked by a large number of

time out threads. Several cart services on that server would be time out, and the con-

sequence is magnified several orders of magnitude to the block of HSF components for

downstream services. It causes significant SLA violations and faults for hundreds of buy

and tradeplatform services on other servers that depending on these upstream cart data.

It eventually spreads tens of thousands of users and prevents them from creating orders

normally or even makes duplicated payments. The prior isolation solutions that resolving

web search [57,74,75,122,131,140,141,148,150,180,185,207,208] or social media [90] based

industry scenes are not sufficient for long-chain and interference-sensitive eCommerce work-

loads in Alibaba. Moreover, the resource contentions would be amplificated several times

during extremely high QPS of "Double 11". We need to ensure stability and strict SLAs
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of arbitrary service under such significant interferences in the long chain, which hinders the

feasibility of traditional colocation techniques.

C4: Inefficient traditional colocation and resource provision techniques due

to the extreme complexity and large scale of diverse workloads. Modern technique

ecosystem of Alibaba is far more complicated than traditional stacks of eCommerce services

or big data computations [14, 15, 71, 203]. We have a universal set of existing world-wide

industry workloads as shown in Figure 5.8. We classify four main categories of workloads as

followings:

Latency-critical long-running services (LC LRSs) serve online requests using

long-standing (e.g. weeks or months) containers to achieve low latency. Alibaba has one of

the largest-sacle LRSs in the world. There are more than 60000+ types of online services

(e.g. buy, tp, cart..) ranging from 60+ business departments (e.g. Taobao, Alipay, Map..),

which constitutes of dozens of middleware components (e.g. HSF, Tair, TDDL..). They are

running inside daily millions of non-stopped containers [29,52] as stateless microservices [149]

on hundreds of thousands of servers, and supporting the largest-scale eCommerce business

in the world. They have strict SLA requirements of latency and are sensitive to performance

interferences.

Data-intensive offline computing (DIOC) applications7 typically take minutes

to a few days to run to completion. There is a broad category of big data warehousing

workloads ranging from MapReduce [14, 71], DAG-based processing [107, 203], MPI [97],

graph computing [93,119,133,138], interactive ad-hoc query [50,55,168,175,192] and machine

learning jobs [40, 61, 111, 144, 157, 203]. They are running inside tens of millions short- or

long-lived workers [86, 194, 196], which stay alive until applications complete. They could

tolerate moderate performance fluctuations, and focus on throughputs and makespan instead

of strict latency.
7Datawork is an integrated platform providing data lakes services like ETL, data pipelines and storage to

support unified big data warehouse, machine learning and real-time computation engines of MaxCompute [5],
PAI [6] and Blink [12]. It has the similar role to Google Cloud Dataflow [44] and Microsoft Naiad [146].
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Figure 5.8: The global view of Alibaba technique stack and architecture.

Data-intensive real-time computing (DIRC) jobs provides services based on

consuming data in real-time. It includes diverse types including end-to-end [21, 116, 176]

or batch streaming processing [13, 204] and search [3, 7] atop of unified lambda [36] engine

Blink [12]. They require both low latency and high throughput.

Storage services and system daemon process are agents running in the back-

stage. They provide many distinct large-scale massive storage and database services like

distributed file system [2], relational [1,22,25], key-value store [23], object storage [9,10] and

time series [8] databases. They serve the whole categories of above workloads as seperate

agents. The stabilities of these agents are critical to ensure SLAs of other applications.

Various categories of workloads from different systems have totally distinct execution

and scheduling workflow, resource usage pattern and SLA objectives. For example, web

(http) and communication (HSF) components of online LRSs need substantial stateless CPU

computations and low network latency, cache components (Tair) rely on high-speed memory

and network bandwidth with large capacities while database services (TDDL) require high
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IOPS and low latency. The different combination manners of these components by LRSs as

shown in Figure 5.7 aggravate the complexity of resource demands. Even same LRSs belong

to different departments have fully unique traffics, loads and resource patterns. Most services

(e.g. tp, buy..) from new retail offline stores have several magnitudes lower computation

and concurrency requirements than ones of eCommerce.

Moreover, we need to process millions of applications across the entire group per day,

50% of which are non-recurring and random interactive queries. Accordingly, taking diverse

workflows of a wide variety of distributed data-intensive computing systems and such large-

scale workloads into account, it is impractical to perform QoS-aware scheduling by precise

profilings or runtime predictions for arbitrary workload through historical telemetry that

commonly adopted in recent works [67, 75, 112,160]. Other application-oriented methodolo-

gies to mitigate interferences [74,75] under co-locations are ineffective in this scene either.

It brings huge challenges to co-locations. How to select appropriate applications and

efficiently co-locate massive scopes of workloads without prior knowledges of their charac-

teristics, while ensuring SLAs and millsecond-level latency for interference-sensitive LRSs

during long-chain and peak traffic bursts, is becoming a world-wide challenge. Additionally,

it also becomes a barrier for accurate capacity planning and just right allocations due to

the difficulty and inaccuracy of resource-to-performance modeling. It always leads to severe

resource inefficiency and SLA violations.

In this unique scene, we need some runtime dynamic adjustment and control tech-

niques from scheduler and operating system layer that introduced later. We rely on priority-

based elastical management and multiplexing of resources to offset the passable quality of

scheduling. We refine over- or under-provisioning by overcommitment, reclaimation and pre-

emption based on actual usages to maximize efficiency. We continously ensure SLAs through

dynamic auto-scaling and isolation approaches based on a feed-back control loop.

C5: Unified scheduling challenges due to conflicts of scheduling objectives

and workflows for co-located LRSs and data-intensive jobs.
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The dominate production services are recurring LRSs that execute for weeks or

months with strict SLA requirements of latency. Since these long-lived containers need

to be pre-deployed before task executions and seldom migrate once dispatched, LRSs have

significant fewer opportunities to be scheduled. They require predictable reservations of

specific number of resources (CPU cores, capacities of mem, disk and IO bandwidth..) that

always remain unchanged during future long-term executions. They could tolerate expensive

scheduling and planning overheads to achieve better placements and global optimization ob-

jectives, as well as satisfying complex multi-constraints of affinity and anti-affinity, fairness,

fragmentations and load balance [86,196].

On the contrary, there are tens of millions of daily data-intensive applications. More

than 70% of them are short-running non-recurring interactive jobs that execute within 3 min-

utes. The millsecond-level task duration [57,73,113,122,153,170] and high throuputs require

schedulers to rapidly make millsecond-level decisions. They naturally have a vast number

of allocation opportunities to compensate poor scheduling qualities through dynamic adjust

and incrementally re-allocate resources to numerous short-running tasks. They need low

scheduling latency and accommodate passable qualities, whose effects sustain only minutes.

The scheduling objectives of diverse workloads are conflictive. Even different data-

intensive systems have distinct scheduling workflows (e.g. Tensorflow and MPI: gang-

scheduling with asynchronizaed communications, Spark and Graph: DAG-based scheduling

under BSP [178] barriers.). How to design a unified resource scheduler to co-locate vari-

ous workloads, while satisfying conflictive objectives and workflows in a large-scale shared

resource pool is extremely challenging.

C6: Inefficient colocations due to heterogeneous I/O and storages devices

in two types of clusters. Additionally, data-intensive workloads [14, 15, 71, 203] and LC

services were originally designed to run in seperate clusters with heterogeneous storage and

network devices. Batch clusters use hard disks to satisfy massive storage and coarse-grained

throughputs of I/O, whereas LC ones are leveraging SSD to achieve strict low latency. A
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large number of offline workloads depend on network-intensive shuffling operations to perform

data communications. Co-locate LC workloads on batch cluster with congested network and

slow disk I/O would violate their SLAs. The limited storage capacities of SSD in online

cluster could not accommodate data of batch workloads either. The massive data copy

needs between two types of clusters during colocations are unaffordable.

Envolvement of Infrastructure in Alibaba

To maximize efficiency and sufficiently utilize spare resources (C1), hundreds of thou-

sands of servers across 18 global datacenters of modern Alibaba infrastructure constitute a

large-scale shared resource pool as a private cloud coordinated by an unified resource man-

agement system, instead of separately dedicated clusters. Online LRSs of all buisness are

containerized and running inside Linux containers (LXC) [29, 52, 185] to achieve better iso-

lations and utilization. We developed scheduling system for LRSs named Sigma [39] and

container management tool named PouchContainer [134] 9 year ago to manage millions of

containers uniformly. We also built Fuxi [210] to schedule diverse data-intensive workloads

since 2009.

Solutions of C6. To enable colocations, we started to decouple computation and

data storage three years ago. Most applications are re-written to remove dependency be-

tween execution logics and data path to support stateless services. All hard disks and SSDs

constitute an unified distributed storage cluster [2] as software-defined storage (SDS) [33].

Co-located LC and data-intensive workloads read and write data to remote storage cluster

through network I/O, eliminating barriers of heterogeneous devices and data movement.

We also upgrade network bandwidth from 10Gbps to 25Gbps and 100Gbps to overcome

increased I/O pressures, which is prove to be able to effectively resolve significant network

congestion in disaggregate datacenter [85, 100, 121, 125, 171]. Other techniques and designs

from hardwares, racks, physical datacenter and various systems also make huge contributions

to support colocations.
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Solutions of C1-C4. Five years ago, we started to co-locate diverse workloads and

leverage elastic resource sharing to maximize efficiency, and take adequate advantages of

large-scale resource pool satisfy demands of big events. We relied on priority-based elastic

resource manager and isolation techniques from scheduler, architecture and operating sys-

tem layer such as flexible cgroup management, reclaimation and preemption, LLC isolation,

memory bandwidth control, customerized CFS scheduling [18,154] to ensure stringent SLAs

for interferences-sensitive and long-chain services without over-provisioning and getting rid

of long-tail latency. We developed a customized and open source version of Linux kernel and

OpenJDK named Alikernel [20] and AJDK to support above changes.

Unified Resource Scheduling at Large Scale

The number of data-intensive workloads overwhelmly surpassed LRSs while occupied

at least half of resources and machines of global datacenters in recent years. Daily tens

of millions of workloads with distinct workflows and objectives are managed by two fully

different schedulers Sigma and Fuxi seperately over ten years. Scheduling for online LRSs

depend on various constraints [86, 88] and elastic re-planning [57, 112, 170, 185], whereas

dispatching for data-intensive workloads rely on heuristics algorithms involving in multi-

resource fairness and bin-packing [87, 94–96, 196]. There is a bunch of particular designs

and accumulated placement experiences for distinct schedulers in Alibaba like distinctive

reservation and admission-control mechanisms, the same as most internet companies. It is

impractical and unaffordable to replace them by re-designing an unified one, which needs to

be immoderately complicated to satisfy various objectives. It also brings enormous risks of

architecture re-design and stabilities degradation of production systems that were running

over dozen of years.

Solutions of C4-C5. We designed a hybrid two-level architecture that combines

Sigma and Fuxi in a shared-state [170] way. Sigma is designed to be compatible with APIs

of kubernetes [51] and they share common design patterns and similar architectures, whereas
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Figure 5.9: Alibaba unified resource management.

Fuxi [210] resembles to Yarn [181] as a two-level scheduler. LRSs and data-intensive work-

loads are dispatched by original respective algorithms constantly. However, resource alloca-

tions are uniformly controlled by a Level0-manager as shown in Figure 5.9. Level0-manager

coordinates, synchronizes and notifies the state and usages updates for two schedulers. Be-

sides, Level0-manager also provides abilities of elastic multiplexed, auto-scaling and isolation

controls during runtime. This unified management has been adopted by each cluster for three

years and effectively supported big events like "Double 11". Through efficient communica-

tion and coordination design, it has no obvious drawbacks compared to centralized schedulers

like Borg [185].

Elastic Resource Sharing

In this section, we would discuss unified elastic resource management of colocations

(Level0-manager). The capacity planning and scheduling, container orchestration, and ar-
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chitecture of Sigma and Fuxi are beyond our contents, which could be discussed in the future.

We rely on priority-based quota allocations, overcommitment, preemption and reclaimation

to fulfill elastic multiplexing of resources and maximize utilization. We also have auto-scaling

approach to rapidly make peak shifts during big events.

Priority-based Quota, Overcommitment, Preemption and Reclaima-

tion

Essentially, there are two prominent elastic allocation approaches that have been

widely used in large-scale production datacenters: priority-based quota [57,108,170,185] and

hierarchical max-min fairness [30,87,94–96,114,181,202,210]. Since data-intensive workloads

managed by Fuxi naturally have lower priority than production LRSs of Sigma, Level0-

manager adopts the former to fast take back overcommited resources in time and guarantee

strict SLAs of LRSs by restrict resource contentions even under pulse bursts of big events.

Fuxi adopts the latter to sufficiently share resources between various organizations with

identical priorities.

Quota Allocation

Virtually, quota is a medium of admission control to decide which types of workloads

to admit for acquiring resources. The vector of actual dynamic available resource (CPU,

RAM, disk, I/O..) per machine is divided as quotas by Sigma and Fuxi. Applications

are admitted only if quotas of their groups (Sigma or Fuxi) are sufficient enough to fit in

their reservation demands. Jobs under insufficient quota group are immediately rejected

upon submission to avoid server overload. In the representative datacenter scheduler like

Borg [185], priority-based quotas are simply divided as production and non-production ones

that non-production quota is never guaranteed in the face of resource contention. However,

there is a brunch of critical daily data-intensive analytics jobs that owning high priority

managed by Fuxi. The quotas of Sigma and Fuxi are both production ones that need to be

strictly guaranteed rather than overselling lower-priority ones of batch jobs [185].
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Table 5.10: Priority and QoS Guarantee of Resources and Workloads

Resource Priority Workload Type
Gold (S1) sensitive LC LRSs
Silver (S2) most LRSs, DIRCs, and some DIOCs (normal)
Copper (S3) most DIOCs (overcommitment)

Resource Priority QoS Guarantee
Gold (S1) CPU: 100% reserved guarantee, exclusively occupied cores, no overlap with silver,

overlap with copper through preemption by CPU share
and HT (Hyper Thread) isolation;

Memory: most page caches, reclaimation and OOM kill at the end.
Silver (S2) CPU: specific share proportion guarantee, ms-level scheduling latency,

not exclusively occupied, system daemon agents,
no overlap with gold, overlap with copper through preemption

by CPU share without HT isolation;
Memory: medium page caches, reclaimation and OOM kill in the middle.

Copper (S3) CPU: uncertain share proportion without guarantee, used for peak load shaving,
overlap with gold and silver, preemptible anytime with least share proportion;

Memory: least page caches, reclaimation and OOM kill at first.

Nevertheless, strict quota allocation incurs inefficient resource sharing since dynamic

remaining quotas are calculated based on reserved resources instead of actual usages. The

large proportion of reservations are always underutilized due to over-provisioning and ca-

pacity mis-estimation [74, 75, 86, 112, 126, 160, 185, 194, 196]. We mainly rely on runtime

overcommitment based on usages as a critical supplementary mechanism to sufficiently uti-

lize resources.

Priority-based Overcommitment and Preemption

Persistently preempt resources of data-intensive jobs to make spaces for LRSs would

prevent high-priority batch jobs being normally executed, which violating their fairness con-

straints. To enable effective overcommitment and ensure minimal resource availability for

critical workloads, we set fine-grained priority and QoS guarantee for runtime resources as

shown in Table 5.10. Applications request types of resources based on their SLA require-

ments.

We divide every hardware resource by three bands: gold, silver and copper. Different

priorities indicate distinct runtime QoS guarantee of allocated resources managed by operat-

ing system and cluster manager. It affects hardware management like CPU (e.g. quota and
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priority of CFS [18] scheduling and preemption), memory (reclaimation and OOM kill), I/O

(IOPS rate of blkio and network bandwidth control) and other controls (hyper thread, LLC

cache..). The aggregate gold and silver resources per server are less than its capacity to avoid

over-allocation [94–96, 196]. Kernel and schedulers always rapidly reclaim low-priority re-

sources to make space for high-priority jobs during contentions by task preemption, schedul-

ing blacklist and migration. Workloads that employ these resources are named as S1, S2 and

S3 respectively.

Only a small portion of critical LRSs request gold resources, which are always exclu-

sively occupied by latency-sensitive services and never shared with other S1 or S2 workloads

to guarantee strict SLAs. Most LRSs like buy or cart, DIRCs and portions of important

DIOCs belong to silver types. These silver resources are always multiplexed and shared by

workloads with same priorities. To prevent preemption cascades 8 and service cascade fail-

ures (C3), gold and silver resources are never preemptible. Both of them are scarce and be

applied within the respective quota limit of Sigma and Fuxi. The quota proportions of online

and offline groups are dynamic planned ahead based on historical usages and controlled by

level0-manager. Most of the time, available gold and silver resources providing for Sigma

online group are sufficient enough.

There are two types of offline resources: normal (silver) and overcommitment (cop-

per). Normal ones are applied within the quota limit of Fuxi offline group, whereas overcom-

mitted ones depend on actual usages that are not related to quota reservation. Most latency

tolerant batch jobs are using best-effort copper resources to execute, which are underutilized

ones of gold and silver quota reservations. They tolerate lower-quality resources, and could

be preempted and reclaimed anytime during contentions when S1 or S2 jobs need. They

resume later by efficient rescheduling and recomputations.

Since offline data-intensive workloads always make use of 5× to 8× more resources

than online LRSs as shown in Section , the average 60% utilization of Fuxi quota group is
8A high-priority task bumped out a slightly lower-priority one, which bumped out another slightly-lower

priority task.
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quite higher than 5% of Sigma. The prominent overcommited resources come from Sigma

group. To avoid quite frequent and wasteful evictions, Level0-manager continuously profiles

and estimates how many resources LRSs will use in a near-future time window. We set

the rest of Sigma quota as available copper resources and dispatch proper offline workloads

whose profiled usages just fit in these free resources to minimize fragmentations and avoid

server overloading [196]. We also add a safety margin to usage predictions of LRSs to decide

the limit of total overcommited resources, so as to accommodate unexpected load spikes and

mis-estimations. The overcommited silver resources of offline quota group are similar and

controlled by Fuxi [210].

Overcommitment and preemption are key to improve efficiency. There are more

application-oriented fine-grained priorities within each category for delicacy management

(system, monitoring, production, batch...). By priority-based rules, we are capable of co-

locating diverse workloads under two different schedulers to achieve both high efficiency and

stringent SLA guarantee for LC LRSs during long chains (C1-C3).

CPU

We introduce detail management of CPU resources in this section. Generally. there

are two modes of CPU usages:

CPU set: Workloads are binding to some specific logical cores of CPU. The con-

tentions are easy to locate and control at the expenses of inefficient sharing and load imbal-

ances.

CPU share: Workloads could utilize any spare core within the shared group based

on time-slice. It provides flexible and sufficient sharing of CPU, but needing complicated

management and isolation techniques to elimanite uncertain contentions or monopolism by

inappropriate allocations.

The limited CPU cores per machine are not sufficient enough to simultaneously satisfy

reservation demands of S1, S2 and S3 workloads under pure CPU set mode. Additionally, a

portion of data-intensive workloads require high-priority guarantees of resources with strong



108

0 1 2 3 4 5 6 7

Online LRS Container A (S1)  
Gold Resources 
CPU SET Mode  

Request: 8 CPU, CPUSET: 0-7 
plan: 800, exclusively reserved, not share 

with other S1 or S2 workloads

Offline Data-intensive Job C (S2):  
Silver Resources 

CPU SHARE Mode 
Request: 16 CPU, share group: 8-23 

plan: 200, cpushares: 2 * 1024

Online LRS Container B (S2):  
Silver Resources 

CPU SHARE Mode 
Request: 16 CPU, share group: 8-23 

plan: 800, cpushares: 8 * 1024

8 9 10 11 12 13 14 15 17 18 19 20 21 22 2316

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 2316

Gold

Many Offline Data-intensive Jobs (S3): 
Copper Resources 
CPU SHARE Mode 

 Request: 16 CPU, share group: 0-23 
plan: 1000, cpushares: 1 * 1024

Silver

Copper

share: 20 * 1024 share: 20 * 1024

share: 1 * 1024

Figure 5.10: CPU elastic management.

isolations. Best-effort S3 jobs are also friendly to CPU share with short-term contentions.

Therefore, we adopt a priority-based hybrid mode of both set and share to fully utilize CPU

while strictly control contentions.

Discussion and Future

The scheduling and resource management of Sigma are not discussed in this paper.

We focus on colocation of LRSs and offline data-intensive workloads in this paper and leave

LRSs scheduling introduction to future work. We also characterize dependencies and diverse

chains of different LRSs and data-intensive workloads in other papers.

We already publish two public traces [38] to quatitively demonstrate the scanerios

and status of Alibaba datacenter. They include resource usages and execution time for

both online services and offline jobs, as well as detail system metrics involving interferences

such as CPI, cache miss per thousands of instructions, memory access frequency. We would

continuesly update traces to reflect the status of Alibaba datacenter.
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CHAPTER 6 Imbalance in the Cloud: an Analysis on Alibaba Cluster Trace

Introduction

To improve resource efficiency and design intelligent scheduler for clouds, it is neces-

sary to understand the workload characteristics and machine utilization in large-scale cloud

data centers. In this paper, we perform a deep analysis on a newly released trace dataset by

Alibaba Group in September 2017, consists of detail statistics of 11089 online service jobs

and 12951 batch jobs co-locating on 1300 machines over 12 hours. To the best of our knowl-

edge, this is one of the first work to analyze the Alibaba public trace. Our analysis reveals

several important insights about different types of imbalance and resource inefficiency in the

Alibaba cloud. Such imbalances exacerbate the complexity and challenge of cloud resource

management, which might incur severe wastes of resources and low cluster utilization. 1)

Spatial Imbalance: heterogeneous resource utilizations across machines and workloads. 2)

Temporal Imbalance: greatly time-varying resource usages per workload and machine. 3)

Imbalanced proportion of multi-dimensional resources (CPU and memory) utilization per

workload. 4) Imbalanced multi-resource demands between online service and offline batch

jobs. Additionally, the trace demonstrated that Alibaba cluster is operating at extremely low

utilizations for online services (less than 10% CPU and 45% memory average utilizations).

We believe accomodating such imbalances during resource allocation is critical to improve

cluster efficiency, and will motivate the emergence of new resource managers and schedulers.

Cloud datacenters usually comprise thousands of machines, providing highly reliable,

efficient and scalable services. Examples of typical cloud services including web search,

e-commerce systems, and social networks. With the increasing popularity of cloud and

data center computation, users tend to share large hardware platforms. However, effective

resource management is very important to guarantee both quality of service and high resource

utilization [54] [186] [169] [104] [196] [181] [57] [210].
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Recent studies [75] [112] [160] [167] [195] revealed that most cloud facilities and com-

mercial clusters are operating at low utilization. According to the data of Geithner and

McKinsey several years ago, the global server utilization seems to be very low, which is only

6% to 12%. Even leveraging virtualization technology, the utilization is still below 17%. It

probably incurs low cost-efficiency, energy-proportional and scalability challenges of clouds.

Co-locating online service and offline batch jobs on the same cluster is shown to be an

efficient approach to improve cluster utilization in modern cloud data centers [198] [62] [186].

However, the trace demonstrated that Alibaba cluster reserved fix amounts of resources

for online services rather than elastical allocations. Under such reservation mechanism,

traditional co-locating strategy is ineffective because batch jobs could not leverage reserved

idle resources of service jobs. Additionally, contention and interference on shared resources

can cause latency spikes that violate the service-level objectives of service jobs. Ensuring

quality of service (QoS) for latency-sensitive job is non-trival in such environment.

By understanding the workload characteristics and machine utilization in large-scale

cloud data centers, we could provide predictable knowledges to cluster manager. Through

planning ahead and performing intelligent scheduling, we could improve resource efficiency

and avoid such interferences.

In this paper, we perform a deep analysis on a newly released trace dataset by Alibaba

Group in September 2017, covering 1300 servers over 12 hours [38]. Alibaba Cloud is one

of the largest public cloud platforms in the world, on which processing millions of tasks

acrossing hundreds of data centers everyday. This trace includes runtime statistics of a

hybrid cluster, on which online service and offline batch jobs are co-locating. As we know,

it is the unique one having hybrid runtime information among all public traces.

To the best of our knowledge, this is one of the first work to analyze the public

Alibaba trace. We explored runtime status of the hybrid cluster, and showed several im-

portant insights about imbalanced utilization and resource inefficiency in the cloud.
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Figure 6.1: The heat maps of CPU and memory utilization of machines in the cluster. The
white portion indicates the lack of data in the trace. Red color indicates high utilization
while blue color indicates low utilization.

Such imbalances exacerbate the complexity and challenge of cloud resource management. It

includes:

• Spatial Imbalance: heterogeneous resource utilization across machines and workloads.

• Temporal Imbalance: greatly time-varying resource usages per workload and machine.

• Imbalanced proportion of multi-dimensional resources (CPU and memory) utilization

per workload.

• Imbalanced resource demands and runtime statistics (duration and task number) be-

tween online service and offline batch jobs.

Many modern resource managers are designed under the assumption of ideal cluster

environment. The commonly occurred imbalance phenomenons in Alibaba trace would lead

to significant resource inefficiency and wastes. We believe it is critical to accomodate such

imbalances during resource allocation to improve cluster efficiency. They will also motivate

the emergences of new resource managers and schedulers.
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Figure 6.2: The CPU and memory utilization of machines during execution. The red line
indicates the maximum utilization of all machines in the cluster, the blue one indicates the
average utilization and green one means minimum utilization of all machines.

The Dataset

Alibaba released a new dataset ClusterData201708 in September 2017, which contains

a production cluster runtime information during 12 hours period, and includes 1.3k machines

that run both online service and offline batch jobs [38]. The data is motivated to address

the low utilization and resource inefficiency challenges of Alibaba cluster when co-locating

online services and batch jobs.

There are three types of data in the trace: machine utilization and runtime infor-

mation of both batch and online service workloads. For confidentiality reasons, portion

information in the trace is obfuscated.

Machine utilization is described as two tables: the "machine events" table and the

"machine resource utilization" table. Capacities reflect the normalized multi-dimension phys-

ical capacity per machine. Each dimension (CPU cores, RAM size) is normalized indepen-

dently.

Batch workloads are described as two tables: "instance" table and "task" table. The

user submits a batch workload in the form of Job (which is not included in the trace). Each

job cocnsists of multiple tasks, each forming a DAG according to the data dependency. They
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are consisting of multiple instances and executing different computing logics. Instance is the

smallest scheduling unit of batch workload. All instances within a task execute exactly the

same binary code with identical multi-resource demands, but processing different portions

of data.

Online service jobs are described by two tables: "service instance event" and "service

instance usage". The trace includes only two types of instance events. One event for creation,

and another for finish. Event of creation records the startime of a service instance, and event

of remove indicates the finish of an service instance. Each instance is the smallest scheduling

unit and running in a lightweight virtual machine of Linux container (LUX). It could also

be regarded as a complete service job.

Either intances of batch or service workloads express their resource demands in the

form of reservation, which is commonly used in modern resource managers [186] [181] [104]

[169] [57] [210]. And their cluster manager of Fuxi [210] leverages admission-control strategy

for resource allocation. The combination of above two mechanisms is regarded to be the

essential cause of low cluster utilization and resource inefficiency in recent studies [196] [195]

[76]. In the following sections, we introduced several imbalanced phenomenons in Alibaba

cloud.

Imbalances of Machines

Figure 6.1 plots the resource utilization per machine in the cluster during 12 hours.

The trace provided normalized CPU and memory usages infomation per sampling time for

each machine. All the data are retrieved from "machine events" and "machine resource

utilization" table.

We had an interesting observation that CPU utilizations of portion of machines (id

from 400 to 600 and 900 to 1100) are always higher than others while their memory utiliza-

tions are relatively lower. And CPU utilizations of most machines are gradually increasing

during cluster running while memory utilizations are decreasing. Thus we could always ob-
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serve the highest CPU utilization and lowest memory utilization of machines at the end of

trace period (from 11 to 12 hour). In contrast, CPU is always idle at the begining (from 0

to 3.5 hour) while memory keeps high load.

It demonstrated that there exists significant spatial imbalance (heterogeneous re-

source utilization across machines) and temporal imbalance (time-varying resource usages

per machine) of utilization for machines in cloud data center.

From Figure 6.2, we saw more fine-grained information of resource usages per machine.

We summaried average, minimum and maximum utilization among 1300 machines at each

sampling time. Both the CPU and memory usages are normolized.

The average CPU utilization per machine is within 40% and maximum maintains

about 60% along the sampling period. Average memory utilization per machine is within

60% and maximum about 90%. The green line plots utilizations of the machine whose uti-

lization is the minimum among all machines per sampling time. Both CPU and memory

utilization of such minimum usages are nearing zero. From hour 8 to 10, the maximum CPU

utilization rapidly spikes, reaching over 90%, while the average CPU usages maintain stable.

By comparing these huge gaps between minimum, average and maximum usages of ma-

chines, we observed tremendous spatial imbalance of utilization in cluster. It demonstrated

that cloud data centers need new schedulers to balance the load and avoid hot spot of machine

utilization, so as to improve cluster efficiency. Differ from CPU usages, memory usages main-

tain steady during that period. It also indicates the proportion of multi-dimensional

resources utilization (CPU and memory) of workloads is imbalanced.

Additionally, we observed severe wastes and resource inefficiency of CPU and

memory resources in cluster. However, due to relatively low maximum usages of machines,

CPU utilization has the opportunity to be greatly improved through comprehensively un-

derstanding workloads’ resource demands and making proper reservations. Nevertheless,

improving memory utilization is challenging since job performance is sentitive to the rela-

tively high maximum usages of machines. Simply decreasing the reservations to improve
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cluster memory efficiency might lead to serious performance degradation due to thrashing.

Recent study [195] proposed one solution by making better demands estimations. In conclu-

sion, the cloud data center needs new resource managers and schedulers to improve cluster

resource efficiecny by avoiding above imbalanced and low utilization.

Imbalances of Workloads

In the trace, workloads are classified into two categories. One is long-term service job,

another is short-term batch job. Each service instance belongs to one job, and is running

within a Linux container for 12 hours. While each instance of batch jobs belongs to one

task, and is running for seconds or minutes. Multiple tasks compose of one batch job. Detail

runtime statistics of batch workloads are shown in Table 6.11.

Each job commonly has several tasks, but the maximum one has 156. There are three

types of status for batch tasks, including normally terminated, failed and waiting due to

preemption. Most tasks are normally terminated, while over 2000 are waiting. The majority

of tasks own hundreds of instances, while some has an extremely large number of 64486. The

corresponding average durations of instances and tasks are 129 and 192 seconds respectively.

The maximum durations are 29558 and 29585 seconds, while both of the minimum durations

are less than 1 second. By diving into the task execution infomation, we found the longest

task that ran over 8 hours was consisting of several longest instances that were executing at

the same time. Thus their maximum durations are similar.

In constrast, each service job consists of only one long-term instance. There are totally

11089 service instances (jobs) running for the whole 12 hours (43200 seconds). It illustrates

the imbalanced numbers and durations of runtime instances for service and batch

jobs. By leveraging such imbalanced knowledges, one could schedule and co-locate batch

and service instances in a more efficient way.
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Table 6.11: Statistics of Batch Jobs

Status Number
Failed tasks 1126
Terminated tasks 67013
Waiting tasks 8847
Average instance number per task 152
Maximum instance number per task 64486
Minimum instance number per task 1
Average task number per job 6
Maximum task number per job 156
Minimum task number per job 1
Total instances 15186017
Total tasks 76986
Total jobs 12951
Average instance duration 129 (seconds)
Maximum instance duration 29558 (seconds)
Mimimum instance duration ≤ 1 (seconds)
Average task duration 192 (seconds)
Maximum task duration 29585 (seconds)
Mimimum task duration ≤ 1 (seconds)

To make efficient resource reservations, it is necessary to understand the workload

characteristics and demands. We studied the distribution of resource requests, actual usages

and corresponding utilization in the following subsections.

Imbalances of Resource Demands

Batch Workloads

For each job, we summaried its average requested and used CPU numbers per task

in Figure 6.3. We accumulated the CPU and normalized memory requests of all instances

within a task. And accumulated requested resources of all tasks within the same job, then

divided by corresponding task numbers to get the average values. However, the scale of the

normalized memory size per task would not be from 0 to 1, which we ignored.

We could see most of the batch jobs requested 1 to 100 cores of CPU for each task,

while the maximum requested number is more than 1000. In contrast, we observed most jobs

used 0.01 to 1 core CPU per task while very few used more than 100 cores. Additionaly, we
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Figure 6.3: Job counts by average CPU request numbers (left) and average CPU used
numbers (right) per task. Note the log-scale on the plot’s x-axis.
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Figure 6.4: Task counts by average CPU request numbers (left) and used numbers per
instance (right). Note the log-scale on the plot’s x-axis.

observed many jobs are waiting for resources while few jobs occupied overwhelming cluster

CPU resources (more than 100 cores per job). Such spatical imbalance of CPU usages

across workloads probably leads to the bottleneck of cluster throughput, while exacerbating

ineffieicny of resources. New scheduling algorithms are essential to accomodate imbalanced

loads and demands of workloads.

In Figure 6.4 and Figure 6.5, we summaried the average requested and used CPU

numbers per instance for each task, as well as normalized memory sizes. We accumulated
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Figure 6.5: Task counts by normalized average memory request sizes (left) and used sizes
(right) per instance. Note the log-scale on the plot’s x-axis.

all the CPU numbers and normalized memory sizes of instances within a task. And retrieve

the average value through dividing the sum by corresponding task’s instance numbers.

Most tasks request either 0.5 or 1 core CPU per instance, while few requests 6 or 8

cores (hard to distinguish in figure). The used CPU numbers are mainly between 0.1 and

0.7. Small portion of tasks’ average used CPU numbers per intance are between 0.7 and 1.2.

As we can see, most tasks’ instances are operating at half of the CPU utilization (used to

requests). Due to the mechanism of resource reservation, Alibaba cluster are suffering severe

inefficiency and wastes of resources.

From Figure 6.5, the majority of tasks requested normalized memory sizes between

0.05 and 0.15 per instance. While they commonly used 0.001 to 0.05 sizes. However, since

the request and used memory sizes per instance are normalized independently in two seperate

tables, it is not accurate to observe memory utilizations by comparing them directly. It’s

shown that most tasks are consuming only small portions of memory, while few occupied the

majorities. It confirms the existences of spatial imbalance across workloads, and highlights

the motivation to design new allocation mechanisms to handle complexity of scheduling.
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Figure 6.6: The ratio of used CPU and memory to requested per sampling time. The red,
blue, green lines indicate the maximum, average and minimum ratio of all service instances
respectively.

Service Workloads

Each service instance is running within one Linux container for 12 hours. Figure 6.6

shows the average, maximum and minimum ratio of resource used to requests of all instances

at each sampling time. It indicates the average time-varying utilization of CPU and memory

per service instance.

Most service instances stably used less than 10% CPU resources they requested during

executions. However, there were always some portions of instances consuming 60% to 90%

resources (red maximum line), while some used near-to-zero cores (green minimum line).

Such spatial and temporal imbalances across service instances make it knotty to make

proper reservations. Balance the trade-offs between performance and resource efficiency

would be the principal challenge for cluster managers. The normalized average memory

utilization is stably 45%, while maximum keeps 79% and minimum maintains 1%. Unlike

resources of CPU, it is shown that there are opportunities to make better reservations to

improve memory utilization [195].

Differ from the time-varying average utilizations of all instances in Figure 6.6 (spatial

average), Figure 6.7 plots the CDF of instances’ average CPU and memory utilizations of

12 hours (temporal average). The traces provides average CPU and memory utilization
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Figure 6.7: CDF of instances’ average resource utilizations of 12 hours.

every 5 mintue per instance. We list the maximum and minimum values of 5-minute average

utilization during 12 hours per instance, and plot the CDF. Similarly, we sumed all 5-minute

utilizations of 12 hours, and dividing it by intervals (12 ∗ 60 ÷ 5 = 144) to achieve the

average CDF curve.

There are 50% of instances whose average CPU utilization of 12 hours reached up to

0.05, maximum 0.2 and minimum 0.02. There are even 90% of instances whose maximum

CPU utilization of 12 hours only reached up to 0.4, which illustrates extremely huge wastes

of reserved CPU numbers. Unlike the idle of most CPU cores, memory utilization is a little

bit higher. There were 50% of instances reaching about 0.45, 0.5 and 0.35 respectively.

Comparing with Figure 6.6, it identifies imbalanced proportion between CPU and

memory utilization for service instances. Resource allocation strategy should take such

imbalance into account, and design better fair share algorithm of multi-dimensional resources.

Users always tend to over-provision resources to guarantee SLA for latency-sensitive

production services. However, such extremely low utilizations would lead to incredible high

costs for large-scale cloud data center. Meanwhile, online service jobs reserved and hold

resources forever, which might cause imbalanced cluster loads (hot spots) or job starvation

due to insufficient resources on constrainted hosts. By considering the results of Section and

Table 6.11, batch and online service jobs are shown to have serious imbalanced instance
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Figure 6.8: Hourly average and maximum CPU loads of all service instances (top) and
machines (bottom). The sampling interval is one minute, five minutes, and fifteen minutes
from left to right. The dashed line represents the total capacity of each machine.

numbers, resource utilization and duration. Modern schedulers could take above

runtime phenomenons of hybrid cluter into account, and adopts sphotistical co-locating

strategy to avoid imbalance and maximize resource efficiency.

The top of Figure 6.8 shows the hourly average and maximum CPU loads of all service

instances. We observed the maximum CPU loads are below 60% while the average are below

10%. Additionally, CPU loads are about 60% at beginning and drastically drop to 20% one

hour later. Afterwards, the maximum loads fluctuate over time while average ones keep

stably few. Most instances are idle in cluster. We could see obvious spatial and temporal

imbalances across service workloads, which increase the complexity of scheduling.

The bottom of Figure 6.8 displays the hourly average and maximum CPU loads of

all machines. The fluctuation trends of both maximum and average loads are similar to

containers’. However, the gaps between highest and lowest usages are even bigger. At

beginning, the machine’s maximum CPU loads are even over 1. While the minimum ones

are still close to 0. The average CPU loads are about 20%. It confirmed the existenses of

spatial and temporal imbalances across machines.
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Figure 6.9: CDF of job durations. We only count the terminated jobs.

Imbalances of Batch Job Durations

Figure 6.9 plots the duration distributions of batch jobs. We exploited the difference

between durations of earliest created task and latest finished task within the same job, to

indicate job running time. 90% of jobs run less than 0.19 hours, while the longest one is

running up to 10 hours. In detail, over 12481 jobs run less than half of an hour and over 12705

jobs run less than 1 hour. Short jobs overwhelmingly occupied the cluster. It also identifies

the imbalances of job durations. One could take these phenomenons into account, and

leverage proper scheduling algorithm such as SJF (Shortest Job First) to speedup executions

of short jobs, while maximizing cluster makespan.

In addition, the large proportion of short jobs give us opportunities to improve quality

of co-locating choices in hybrid cluster. We have more opportunities to select other proper

jobs to avoid interferences and contentions between batch and service jobs. A scheduler that

adequately exploiting such imbalances could greatly improve cluster efficiency and guarantee

SLA for service jobs.

Discussion

Due to the reservation machanism and imbalanced phenomenons in Alibaba cloud

data center, co-locating service and batch jobs is ineffective to improve cluster efficiency. In
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the future, one could leverage elastical allocations of containers and knowledges of imbalances

to greatly improve resource efficiency in hybrid cluster.

In addition, by considering data locality, the imbalance phenomenons would be aggra-

vated during scheduling. How to make proper resource allocation and scheduling decisions

to balance the trade-offs between imbalance relief, data locality and SLA (performance) is

challenging. It also becomes our future research direction.

Summary

Understand machine characteristics and workload behaviors in large-scale cloud data

centers is critical to maximize cluster resource efficiency. In this paper, we performed a deep

analysis on a newly released trace dataset by Alibaba Group in September 2017, covering

1300 servers over 12 hours. To the best of our knowledge, this is one of the first work to

analyze the Alibaba public trace.

We explored detail runtime characteristics of a hybrid cluster that co-locates both

online service and offline batch jobs. And discovered several interesting insights about im-

balance in the cloud. Such imbalances exacerbate the complexity and challenges of cloud

cluster management, incurring severe resource inefficiency. We believe accomodating imbal-

ances of both machines and workloads is critical to cluster efficiency, and will motivate the

design and emergences of new resource managers and schedulers.
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CHAPTER 7 CONCLUSION AND FUTURE WORK

Conclusions

We concluded the evolution of resource scheduling and datacenter computation en-

gines over decades. We demonstrated the motivation and trend to force us towards intelligent

scheduling. We showed the inherent NP-hard online scheduling problems could be transferred

to resolvable offline scheduling issue, which has global optimal solution rather than a heuris-

tic algorithm. By obtaining three critical abilities of intelligent scheduling, we are capable

of efficiently manage datacenter in modern complicated architecture.

We also illustrated the long-running workloads overwhelminngly occupy most modern

commercial datacenters. The characteristics of LRAs or LRSs bring new challenges, and we

need rely on contention (QoS)-aware predictive scheduling (Prophet) and optimal reserva-

tion estimation (MEER/Prometheus) to perform efficient scheduling, so as to achieve both

best datacenter efficiency and optimal application performance for both users and cluster

operators.

We summaried the evolutions and development of resource scheduling filed from dif-

ferent perspectives and observations. We compare them with our motivation of intelligent

scheduling, to learn the unique observations from them and identify their drawbacks. By

abstract and conclude from the whole filed, we think out the trends and directions of future

next-generation predictive datacenter resource management and scheduling.

We also introduced a complex enterprise datacenter co-location techniques at large

scale of Alibaba Group. It is far more complicated than scheduling, but also involved in

evolutions of IDC, physical datacenters, racks and cluster topology, network and storage,

server hardwares and local operating system. Modern infrastructure motivates us to manage

global datacenters from top to bottom.

We evaluated the efficiency and effectiveness of modern infrastructure of Alibaba

equipped with co-location techniques through data analysis of newest public Alibaba dat-

acenter trace. We gained several interesting insights and observations of enterprise global
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datacenters at large scale, and motivate us toward next-generation of architectures by con-

sidering solutions of these issues.

Improve multi-resource efficiency in modern complicated global datacenter infrastruc-

ture is non-trivial, especially when considering emerging long running workloads. It proposed

higher level requirements of techniques. It is necessary and general trend to leverage artificial

intelligence to explore next-generation intelligent scheduling methodology.

Future Directions

We are developing the new layer of managing local OS efficiently, to act in concert

with cluster schedulers to better achieve their objectives. It would also provide abundant

knowledges of both profilings and predictive ones, so as to assist schedulers towards intelligent

scheduling. It enables the end-to-end guarantee that schedulers could have the ability to fully

control workloads since they are submitted by users till the completion, even during runtime

to prevent unexpected contentions or interferences.

We are also refining the profilings, predictions and other techniques to achieve better

and more accurate results of three necessary and critical abilities (a)(b)(c). We are straightly

on the way to intelligent scheduling.
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Cloud computing is becoming a fundamental facility of society today. Large-scale

public or private cloud datacenters spreading millions of servers, as a warehouse-scale com-

puter, are supporting most business of Fortune-500 companies and serving billions of users

around the world. Unfortunately, modern industry-wide average datacenter utilization is

as low as 6% to 12%. Low utilization not only negatively impacts operational and capital

components of cost efficiency, but also becomes the scaling bottleneck due to the limits of

electricity delivered by nearby utility. It is critical and challenge to improve multi-resource

efficiency for global datacenters.

Additionally, with the great commercial success of diverse big data analytics services,

enterprise datacenters are evolving to host heterogeneous computation workloads including

online web services, batch processing, machine learning, streaming computing, interactive

query and graph computation on shared clusters. Most of them are long-running workloads

that leverage long-lived containers to execute tasks.

We surveyed datacenter resource scheduling works over last 15 years. Most previous

works are designed to maximize the cluster efficiency for short-lived tasks in batch processing

system like Hadoop. They are not suitable for modern long-running workloads of Microser-

vices, Spark, Flink, Pregel, Storm or Tensorflow like systems. It is urgent to develop new
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effective scheduling and resource allocation approaches to improve efficiency in large-scale

enterprise datacenters.

In the dissertation, we are the first of works to define, specify and identify the prob-

lems, challenges and scenarios of scheduling and resource management for diverse long-

running workloads in modern datacenter. They rely on predictive scheduling techniques

to perform reservation, auto-scaling, migration or rescheduling. It forces us to pursue and

explore more intelligent scheduling techniques by adequate predictive knowledges. We inno-

vatively identify what is intelligent scheduling, what abilities are necessary towards intelli-

gent scheduling, how to leverage intelligent scheduling to transfer NP-hard online scheduling

problems to resolvable offline scheduling issues.

We designed and implemented an intelligent cloud datacenter scheduler, which au-

tomatically performs resource-to-performance modeling, predictive optimal reservation es-

timation, QoS (interference)-aware predictive scheduling to maximize resource efficiency of

multi-dimensions (CPU, Memory, Network, Disk I/O), and strictly guarantee service level

agreements (SLA) for long-running workloads.

Finally, we introduced a large-scale co-location techniques of executing long-running

and other workloads on the shared global datacenter infrastructure of Alibaba Group. It

effectively improves cluster utilization from 10% to averagely 50%. It is far more complicated

beyond scheduling that involves technique evolutions of IDC, network, physical datacenter

topology, storage, server hardwares, operating systems and containerization. We demon-

strate its effectiveness by analysis of newest Alibaba public cluster trace in 2017. We are

the first of works to reveal the global view of scenarios, challenges and status in Alibaba

large-scale global datacenters by data demonstration, including big promotion events like

"Double 11".

Data-driven intelligent scheduling methodologies and effective infrastructure co-location

techniques are critical and necessary to pursue maximized multi-resource efficiency in mod-
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ern large-scale datacenter, especially for long-running workloads.
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