
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

AccessBot – Assisted Assessment of Web
Accessibility

Tânia Isabel Gomes Frazão Pina Santos

Mestrado em Informática

Dissertação orientada por:
Prof. Doutor Carlos Alberto Pacheco dos Anjos Duarte

2020

Resumo

A Web é um bem essencial para muitas pessoas com ou sem deficiência e deverá ser
acessı́vel para todos. Existem diferentes formas de deficiencia. Existem as deficiências
visuais, como por exemplo, a cegueira ou daltonismo, as deficiências auditivas como a
surdez ou dificuldade na audição, deficiências motoras que podem causar dificuldades em
usar um rato ou até deficiências cognitivas que levam a uma pessoa ter maior dificuldade
ao executar um ou mais tipos de tarefas mentais. Todas estas deficiências mencionadas
deverão ser tidas em conta no desenvolvimento de websites ou aplicações da web, pois
têm pré-requisitos de acessibilidade diferentes mas que se complementam em tornar um
website acessı́vel.

Para determinar se um website é acessı́vel a todos, este precisa de ser avaliado e tes-
tado. O principal objectivo em testar a acessibilidade é verificar se todas as pessoas con-
seguem usar o website e dar feedback útil para promover modificações na implementação
e no no design que melhore a usabilidade do website e a sua acessibilidade.

A avaliação da acessibilidade é baseada nos standards desenvolvidos pela W3C
(World Wide Web Consortium). Estes standards consistem numa série de linhas de
orientação como as WCAG (Web Content Accessibility Guidelines) que incluem vários
critérios de sucesso e técnicas para tornar os diferentes componentes de desenvolvimento
Web mais acessı́veis; contudo, em certos paı́ses, existem também linhas de orientação
governamentais especı́ficas que complementam os standards da W3C.

As necessidades relativas à implementação de websites mais acessı́veis fez com que,
hoje em dia, a monitorização dos websites de entidades públicas em relação à acessibili-
dade seja obrigatória. No caso de Portugal o sector público deverá corresponder aos req-
uisitos de acessibilidade com a entrada em vigor do Decreto-Lei, nº83/2018. A Agência
para a Modernização Administrativa (AMA) é um instituto público responsável por garan-
tir que os websites públicos governamentais e entidades semelhantes, melhorarão o seu
grau de acessibilidade ao respeitar as regras de acessibilidade exigidas. Neste sentido, a
AMA criou o Observatório Português da Acessibilidade dos Sı́tios Web e das Aplicações
Móveis. A implementação deste Observatório de Acessibilidade leva a uma parceria com
a Faculdade de Ciências da Universidade de Lisboa (FCUL). Neste sentido, o Access-
Bot é um dos projectos sobre acessibilidade em desenvolvimento cujos pré-requisitos e as
melhores práticas de usabilidade são definidas em cooperação com a AMA.

A implementação das linhas de orientação na identificação dos problemas de acessi-

i

bilidade poderão ser feitas de forma automática, usando testes automáticos; contudo, de
acordo com estudos realizados estes apenas conseguem encontrar 30% dos problemas. Os
problemas restantes deverão ser localizados usando testes manuais o que implica recurso
a utilizadores. Estes testes manuais, também chamados de avaliação assistida, necessi-
tarão de mais recursos que a avaliação automática mas têm a vantagem de detectar maior
número de problemas de acessibilidade.

O AccessBot é uma aplicação desenvolvida como extensão do browser Chrome que
tem por objectivo complementar a avaliação automática de acessibilidade feita pelo motor
QualWeb. Este motor é mantido pelo Departamento de Informática da FCUL.

O AccessBot permite avaliar uma página web automaticamente recorrendo ao Qual-
Web mas complementa-a com avaliação assistida num ambiente de extensão do Chrome.
As avaliações assistidas pelo AccessBot podem ser suportadas de diferentes maneiras;
o AccessBot identifica todos os elementos da página web que foram alvo de avaliação
automática e mostra o resultado final ao utilizador (avaliação automática) podendo este
alterar o resultado se o desejar ou apresenta uma lista de passos que guiarão o utilizador
a complementar a avaliação automática até chegar a um resultado final (avaliação semi-
automática e manual). É de notar que a diferença entre avaliação semi-automática e man-
ual, reside no facto de parte da avaliação semi-automática ter uma componente automática
pelo QualWeb mas cuja avaliação precisa também do input do utilizador enquanto a
manual é uma avaliação intrı́nseca e desenvolvida pelo AccessBot sem intervenção de
avaliação do QualWeb. Na avaliação manual o utilizador faz a avaliação na ı́ntegra
seguindo uma série de passos até chegar ao resultado final.

Outro objectivo do AccessBot é permitir a interpretação inequı́voca e implementação
dos métodos de teste usando as regras definidas pela ACT Rules (Accessibility Confor-
mance Testing) Community. Esta comunidade providencia orientação aos desenvolve-
dores em termos de informação e interpretação das linhas de orientação da WCAG. As
ACT Rules permitem maior transparência e harmonização quanto aos métodos de teste.

Preliminarmente ao desenvolvimento do AccessBot, foi feito um estudo que consistiu
na análise das ferramentas automáticas mais utilizadas actualmente e disponı́veis como
extensões do Chrome para os desenvolvedores. Este estudo permitiu atingir uma perspec-
tiva geral sobre o uso destas ferramentos e analisá-las em termos de pontos fortes e pontos
fracos e concluir possı́veis melhoramentos que poderiam ser aplicados na implementação
do AccessBot de forma a suprimir necessidades que os desenvolvedores tenham durante
o uso destas ferramentas.

As ferramentas que foram analisadas foram aXe Chrome Extension, Tenon Check,
Wave Chrome Extension, TotalValidator, ACCESS Assistant Community, Microsoft Ac-
cessibility Insights e ARC Toolkit. O estudo consistiu no uso de cada uma das ferra-
mentas na avaliação de dez páginas. Estas foram selecionadas da lista de top websites
da Alexa. As avaliações decorreram em ambientes de teste com browsers isolados de
possı́veis alterações externas.

ii

No geral, as ferramentas foram de fácil instalação e uso mas não livres de falhas.
Durante as avaliações, algumas funcionalidades de algumas ferramentas quebraram e foi
necessário reiniciar o browser. Os resultados obtidos entre as ferramentas variaram em
termos de critérios de sucesso que as ferramentas aplicam nas avaliações, em termos de
como classificam os resultados da avaliação de acordo com o seu impacto para com o
utilizador, por exemplo, para um mesmo resultado, umas podem atribuir como crı́tico
enquanto outras não e na classificação dos resultados como erro ou alerta. Todas estas
variâncias são uma consequência de como as especificações e as heurı́sticas são imple-
mentadas por cada ferramenta.

O estudo analisou o número de erros encontrados por critérios de sucesso pelas difer-
entes ferramentas. Apesar de haver algumas diferenças entre ferramentas, pois nem todas,
usam os mesmos critérios de sucesso, obtiveram-se algumas semelhanças nos resultados
concluindo que o critério de sucesso 4.1.1. Parsing, foi o mais violado e refere-se à
maneira como os web browsers e tecnologia assistiva (leitores de ecrã) interpretam um
website, pois é importante que diferentes tecnologias possam interpretar o mesmo web-
site sem perda de informação para o utilizador. Problemas neste critério poderão estar
relacionados com o uso indevido dos elementos de HTML.

Foi também demonstrado por este estudo que as ferramentas, quando usadas individ-
ualmente, têm uma cobertura inadequada dos critérios de sucesso da WCAG. Mesmo que
sejam usadas todas as ferramentas para avaliação da uma página web, a cobertura aumenta
apenas com uma variação de 10% a 40% do que se só usar uma ferramenta. E tendo em
conta esta premissa, a melhor opção é usar mais do que uma ferramenta automática para
melhorar a acessibilidade e adesão ao desenvolvimento de websites acessı́veis.

Apesar de não serem perfeitas e com limitações estas ferramentas são essenciais para
ajudar os utilizadores a avaliar os websites de uma forma automática. Contudo, estas
avaliações deverão sempre ser complementadas com procedimentos de testes manuais
e os resultados analisados objectivamente. Os resultados do estudo foram incluı́dos no
design do AccessBot permitindo agregar a informação prévia de forma a preencher as
falhas das outras extensões do Chrome de avaliação de acessibilidade e corresponder às
necessidades do utilizador.

As etapas de planeamento e execução do design, implementação e testes ao utilizador
durante o desenvolvimento do AccessBot foram cumpridas dentro do tempo estimado.
Apesar de ter havido alguns desafios durante o desenvolvimento, como por exemplo, en-
contrar as melhores soluções para integração do AccessBot com o QualWeb, a apren-
dizagem de componentes fundamentais de desenvolvimento de extensões Chrome, entre
outras, estes foram ultrapassadas com sucesso.

A lógica de implementação do AccessBot tem dois aspectos fundamentais. Um as-
pecto é a integração com o QualWeb de forma a que o AccessBot consiga receber e
processar os resultados da avaliação automática; o outro aspecto é a implementação dos
algoritmos semi-automáticos e manuais, que permitem direcionar o utilizador durante a

iii

avaliação assistida. Além desta implementação base do AccessBot e de forma a melho-
rar a interacção com o utilizador e usabilidade, foram também desenvolvidas funcionali-
dades, como por exemplo, a possibilidade de o utilizador escolher que tipo de avaliação
pretende fazer, se automática, semi-automática e manual; opções de filtros que escondem
resultados não pretendidos para visualização; contadores para guardar diferentes resulta-
dos; possibilidade de mudar o resultado das avaliações automáticas; fazer destaque dos
elementos na página web que está a ser avaliada e por fim, guardar o resultado da avaliação
ao fazer export de relatórios em formato CSV e EARL.

Após a implementação seguiram-se testes com utilizadores. Estes foram conduzidos
remotamente devido à pandemia actual COVID-19. Os testes consistiram em duas rondas
distintas com cinco participantes no total. Estes testes facultaram uma visão mais pro-
funda e detalhada dos melhoramentos necessários e providenciaram um estudo sobre os
comportamentos dos utilizadores do AccessBot e as suas preferências. Após a primeira
ronda, melhoramentos em termos de cosmética e funcionalidade foram instituı́dos. Estes
foram testados na segunda ronda verificando que as dificuldades encontradas inicialmente
foram ultrapassadas tendo sido sugeridas novas alterações cosméticas e funcionalidades.
Os testes de utilização do AccessBot permitiram oferecer uma mirı́ade de benefı́cios para
os futuros utilizadores e a identificação de problemas que antes não eram aparentes.

No geral o desenvolvimento da tese permitiu um contributo para campo da acessibil-
idade informática ao incorporar a importância da avaliação de acessibilidade por parte
do utilizador juntamente com o reforço de como é essencial aplicar conceitos de aces-
sibilidade na programação das páginas web desde o inı́cio do seu desenvolvimento. O
projecto AccessBot é um projecto que é de desenvolvimento contı́nuo e actualizado ao
longo do tempo incorporando regras ACT recentes, de forma a conseguir alcançar um
maior número significativo de utilizadores.

Palavras-Chave: acessibilidade, WCAG, avaliação, assistida, QualWeb, ACT-rules,
AccessBot.

iv

Abstract

Nowadays, the World Wide Web is a necessity, and its content should be available to
everyone. People with different types of disabilities have different needs in using the web
and access the content. Developers should fulfill these needs by making websites acces-
sible. Alongside this premise, worldwide government directives oblige public and private
sector websites and apps to meet accessibility requirements. To achieve a determined
level of accessibility conformance, developers should follow the WCAG 2.1 (Web Con-
tent Accessibility Guidelines) and use automatic testing tools to evaluate their websites.
However, while creating an accessible website, they may find difficulties that make this a
laborious process. After studying and comparing eight of the most well-known accessibil-
ity evaluation extensions for the Chrome web browser, I found that these difficulties arise
from various factors. These are subjective guidelines interpretations and implementations,
automatic testing tools that provide limited coverage of the success criteria, different re-
sults displayed for the same website, and some guidelines are not tested automatically,
meaning developers should perform manual testing. After analyzing these results, this
project, with the name AccessBot, tries to cover the automatic accessibility evaluation
gaps. It is an assisted validation tool using the open-source QualWeb accessibility evalu-
ation. AccessBot is a browser extension for Chrome. Being a chrome extension makes it
easy to access, install, and use by developers and more accessible to the general public.
Its implementation aims to help users by visually identifying the problem, and perform-
ing a step-by-step guided evaluation, complementing the automatic evaluation done by
QualWeb. The accessibility testing considers the test rules developed by the ACT-Rules
Community, which makes an effort to create detailed descriptions of WCAG.

Keywords: accessibility, WCAG, evaluation, assisted, QualWeb, ACT-rules, Access-
Bot.

v

vi

Acknowledgements

The completion of the thesis could not have been possible without the participation
and support of people. Their contributions are sincerely appreciated and gratefully ac-
knowledge, particularly to the following:

I am very grateful for the support and readiness to help of my professor adviser, Prof.
Doutor Carlos Duarte. He believed in me as a person and in my capacities to deliver such
important work and contribute to the Accessibility area. He kept me going and helped me
stay positive during the research and writing of the thesis without losing momentum in
difficult times of COVID-19 pandemic.

I’m also very grateful for the companionship and love of my husband, Leandro Reis.
He is also my teacher in the world of computer science. He kept me calm, positive, kept
things in perspective, and had lots of patience in more difficult times. Always there from
day one.

I want to thank AMA accessibility employees, especially Jorge Fernandes, for his
input in the design of AccessBot and out of the box ideas to push AccessBot further.

QualWeb team, António Estriga, João Vicente, and Bruno Andrade for their avail-
abilty in support if needed.

My relatives, especially mother Maria Frazão and cousin Rute Marques, are my num-
ber one fans and always give me faith to trust myself.

Special thanks to my colleague when I was working and studying, Dra Sónia Ribeiro,
who gave me total support financially, physically, and when I needed more time to study
or had an exam. She also gave me the courage to continue. Without her, it was impossible
to be able to take my Master’s in Informatics.

To my friends, Vicky and Lúcia, who in one way or another, shared their support.
To my pets, dog Kruger and cat Alice for always being present with their funny mo-

ments.
It has been an incredible three-year journey, and it is with a great sense of gratitude,

joy, and peace that finally is reaching the end. I overcame my self-doubt in Informatics
and gained the confidence to take action in this new field for me.

Finally, I’m thankful for FCUL for having the Master’s degree in Informatics available
for students from a different background than Informatics. These allow the integration of
computer science with other areas of expertise, which pushes both fields forward.

I thank you all.

vii

viii

Contents

List of Figures xiii

List of Tables xvii

List of Listings xviii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Planning . 5
1.4 Planning Execution . 5
1.5 Contributions . 7
1.6 Document and Organization . 7

2 Related Work 9
2.1 Usability and Accessibility . 9
2.2 Web Accessibility Guidelines . 10
2.3 Problems with accessibility guidelines 12
2.4 ACT Rules . 13
2.5 Accessibility Evaluation Methods . 13
2.6 Introduction to QualWeb . 15
2.7 Introduction to Chrome Extensions . 17
2.8 Portuguese Laws and Obligations . 22

3 Study of Existing Accessibility Evaluation Chrome Extensions 25
3.1 Tools . 26
3.2 Selection of Web Sites . 31
3.3 Testing Environment . 32
3.4 Procedure . 33
3.5 Results . 33
3.6 Discussion . 46

ix

CONTENTS

4 Design of AccessBot 49
4.1 AccessBot Features . 49
4.2 AccessBot Integration with QualWeb . 50
4.3 AccessBot Architecture . 51
4.4 Rules implemented in AccessBot . 52
4.5 Semi-automatic Test Algorithms . 53
4.6 Manual Test Algorithms . 55

5 AccessBot Implementation 59
5.1 Technologies used on AccessBot . 59
5.2 AccessBot Processing . 60
5.3 Updating the Rules on AccessBot . 71
5.4 Difficulties encountered during development 75
5.5 AccessBot User Interaction . 76

6 AccessBot Usability Testing 81
6.1 Usability Testing Method . 81
6.2 Planning process for usability testing . 82
6.3 Usability Research Data Collection . 83
6.4 Analysis of the First Round of User Testing 85
6.5 Improvements after First Round of User Testing 86
6.6 Analysis of the Second Round of User Testing 89
6.7 Improvements after Second Round of User Testing 90

7 Conclusion 93
7.1 Future Work . 95

A Semi-automatic Test Algorithms 101
A.1 R1 - HTML page has title. 101
A.2 R2 - HTML page has a lang attribute . 101
A.3 R6 - Image button has an accessible name. 102
A.4 R8 - Image filename is accessible name for image 102
A.5 R9 - Links with identical accessible names have equivalent purpose. . . . 103
A.6 R10 - iframe elements with identical accessible names have equivalent

purpose. 104
A.7 R11 - Button has an accessible name. 105
A.8 R12 - Link has an accessible name. 105
A.9 R15 - Audio or video has no audio that plays automatically. 106
A.10 R16 - Form control has an accessible name. 107
A.11 R17- Image has an accessible name. 107
A.12 R19 - iframe element has an accessible name. 108

x

CONTENTS

A.13 R21 - svg element with explicit role has an accessible name. 109
A.14 R22 - Element within body has valid lang attribute. 110
A.15 R23 - Video element visual content has an accessible alternative. 111
A.16 R29 - Audio element content has text alternative. 112
A.17 R30 - Visible label is part of accessible name. 112
A.18 R35 - Heading has non-empty accessible name. 113
A.19 R36 - Headers attribute specified on a cell refers to cells in the same table

element. 113
A.20 R37 - Text has minimum contrast . 114
A.21 R40 - Zoomed text node is not clipped with CSS overflow. 114
A.22 R41 - Error message describes invalid form field value. 115
A.23 R42 - Object element rendering non-text content has non-empty accessi-

ble name. 115
A.24 R44 - Links with identical accessible names and context serve equivalent

purpose. 116

B Manual Test Algorithms 117
B.1 Rule id: 80af7b - Focusable element has no keyboard trap. 117
B.2 Rule id: efbfc7 - Text content that changes automatically can be paused,

stopped or hidden . 118

C AccessBot Main Object 119

xi

xii

List of Figures

1.1 Examples of disabilities divided by different types (UXPA International
et al., 2019). 2

2.1 Snapshot of WCAG Quick Reference which presents a summary for
WCAG 2 success criteria and techniques. (W3C Web Accessibility Ini-
tiative, 2019b) . 11

2.2 Representation of chrome browser/action input component. The multi-
colored square to the right of the address bar is the icon for a browser
action. A popup is below the icon. (Google, 2020a) 19

2.3 Communications representation between different scripts. The content
scripts can communicate with the extension by exchanging messages rep-
resented by the envelopes symbols. (Google, 2020f) 22

2.4 Schema showing the different communications API between scripts. The
red color represents the sending Chrome extension APIs for a message,
and the blue color represents the respective message listeners’ Chrome
Extension APIs. Considering the script which sends and which script
receives, some particularities are evident on the notes to take into account. 23

3.1 Screenshot of Microsoft’s Accessibility Insight 27
3.2 Screenshot of ACCESS Assistant Community. 28
3.3 Screenshot of ARC Toolkit . 28
3.4 Screenshot of aXe Chrome. 29
3.5 Screenshot of Lighthouse. 30
3.6 Screenshot of Tenon. 30
3.7 Screenshot of TotalValidator. 31
3.8 Screenshot of WAVE. 32
3.9 Number of success criteria tested by the tools. 36
3.10 Number of checks by success criteria. 37
3.11 Number of errors found by Accessibility Insights. 40
3.12 Number of errors found by ACCESS Assistant Community. 40
3.13 Number of errors found by ARC Toolkit. 41
3.14 Number of errors found by aXe Chrome. 41

xiii

LIST OF FIGURES

3.15 Number of errors found by Lighthouse. 42
3.16 Number of errors found by Tenon . 43
3.17 Number of errors found by TotalValidator. 43
3.18 Number of errors found by WAVE. 44
3.19 Number of violations found by all tools grouped by success criteria. . . . 44

4.1 Representation of AccessBot architecture. The user clicks on the Access-
Bot (orange square), and the subsequent flow follows with the succeeding
output. 52

4.2 Diagram flow of Rule 8. The rule checks that image elements that use
their source filename as their accessible name do so without loss of infor-
mation to the user. 55

4.3 Diagram flow of Rule 17. This rule checks that each image either has a
non-empty accessible name or is marked up as decorative. 56

4.4 Rule ACT ID 80af7b. This rule checks for keyboard traps. This includes
use of both standard and non-standard keyboard navigation to navigate
through all content without becoming trapped. 57

5.1 AccessBot popup that appears when user clicks on the extension icon. . . 76
5.2 AccessBot result window appears when the user selects what type of eval-

uation(s) wants to perform on the page. 77
5.3 Legend and Filter section more detailed. 78
5.4 Form control accessible name rule selected (light blue) under the category

Form. The other rules inside the category Form appear also. 78
5.5 When the rule is selected it appear the tests for the rule and the filter on the

top of the window showing evaluations by result. In this case, it presents
two uncompleted tests for the rule “Form control has accessible name”. . 79

5.6 White card box for each test result of a rule. In the case of the rule “Form
has accessible name” there are two card boxes for uncompleted evalua-
tions that require user input. 79

5.7 Information about the rule selected. 79
5.8 White card box features. 80
5.9 Remove highlights button, Export EARL button and Export CSV button. . 80

6.1 Left: Screenshot of AccessBot application showing the tests by result;
Right: Screenshot of AccessBot application showing the evaluations by
result. 86

6.2 Left: Screenshot of AccessBot application showing the tests by result
after modification; Right: Screenshot of AccessBot application showing
the evaluations by result after modification. In both, the checkboxes are
more visible . 86

xiv

LIST OF FIGURES

6.3 Left: Screenshot of AccessBot application showing Legend and Filter
before modification; Right: Screenshot of AccessBot application show-
ing two buttons “Show Legend” and “Show Filter”. After collapsing the
Legend and Filter section, the area showing the list of tests increased sig-
nificantly. 87

6.4 Left: Legend design before improvement; Right: Legend design after
modification. Icons are bigger and squares around icons removed. 87

6.5 Left: Legend design before improvement; Right: Legend design after
improvement. The “Highlight on page” together with “Manually change
this result” is more noticeable. 88

6.6 Left: The list of tests scroll reaches the end of the window. The user had
to scroll to the end to visualize the buttons; Right: Scroll fixed on the
window. When the window appears, the buttons are immediately visible. . 88

6.7 Left: icons showed, for example, rule “Heading has an accessible name”
before improvement; Right: After modification, the icons are separated,
increasing perception. 88

6.8 Left:Input field for writing observations before improvement; Right: In-
put field informing the user the observation will be automatically saved. . 89

6.9 Left: Popup window before improvement. Right: Popup window with
modifications in the checkboxes to increase contrast and visibility. 90

6.10 Left: Category counters before improvement. Right: Category counters
organized using the traffic light system to be more intuitive for users. . . . 91

6.11 Left: No global counters shown outside ”Show Filters” section. Right:
Global counters shown outside ”Show Filters” section and organized also
by using the traffic lights system. 91

6.12 Left: Alert icon when user changed the result of an automatic evaluation;
Right: modification of the icon to tick sign instead of an alert sign. 91

6.13 Left: Link for the ACT Rule website in white; Right: Link with different
color, in light blue, to help users distinguish better the link and the Rule ID. 92

6.14 Example of tooltip showing that the green circular counter corresponds to
the pass test results. Note that the pointer is not visible when taking the
screenshot. 92

xv

xvi

List of Tables

3.1 Classification (0 min, 5 max) and the number of users of automated tools
according to Chrome Web Store (data collected on Dec 4, 2019). 26

3.2 Web sites selected for the evaluation (data collected on Dec 4, 2019). . . . 32
3.3 Features of evaluated tools. 34
3.4 Behavior information, and tests of evaluated tools. 35
3.5 Number of checks of each tool by the level of conformance. 36
3.6 Number of violations reported by each tool across all pages tested,

grouped by conformance level and principle (P - Perceivable; O - Op-
erable; U - Understandable; R - Robust). 45

4.1 AccessBot rules description for webpages evaluation. Rules are described
by category, id, and what type of tests they address. 54

6.1 The table presents the users’ failures in completing the predetermined
tasks of the first round. Legend: ID - task identification; P(1-5) - Partici-
pants; x - failure to complete the task. 84

xvii

xviii

List of Listings

2.1 Example of HTML test cases for a rule that checks if img elements have
a text alternative. 16

2.2 The listing represents an excerpt of the manifest file where the back-
ground script is defined and is referred automatically in a generated
HTML page with the name background.html. 21

2.3 src attribute specifies the path to the external script in the popup.html. 21
2.4 The listing presents a code excerpt of the manifest file showing the content

script component where js array contains the list of Javascript files to be
injected into matching pages specified in the matches array; in this case
all URLs. 21

5.1 Webpack configuration file. 59
5.2 AccessBot manifest file configuration. 60
5.3 Code excerpt from file content.js that shows the use of the two im-

ported libraries from QualWeb. The code creates a qwpage object using
QWPage library. Then this object is processed by ACTRules library. . . 62

5.4 Part of the function in background.js that modifies the original Qual-
web results in an object containing the properties AccessBot will use. . . 63

5.5 categories.js file containing the object that attributes the rules to
the categories for better organization of the automatic and semi-automatic
rules. 64

5.6 Creating categories object using the function
generateCategoriesData(result, options) 65

5.7 Diagram flow object for R8. 67
5.8 Diagram flow code for keyboard rule (ACT ID 80af7b).. 68
5.9 Defining the categories names in index.js. 72
5.10 R44.js file with code for diagram flow of R44. Serves as an example

for demonstrating how to update a simple semi-automatic rule. 73
5.11 R17.js file with code for diagram flow of R17. Serves as an example

for demonstrating how to update a complex semi-automatic rule. 73
5.12 Part of the index.js Demonstrating how to import a semi-automatic

rule file with the diagram flow.. 74

xix

xx

Chapter 1

Introduction

The Web is an essential-good for many people at work, at home, and on the road. In a
few words, Web accessibility means that people with disabilities can use the Web equally
and on the same level as people without disabilities (W3C Web Accessibility Initiative,
2005). Disabilities come in many forms, as shown in figure 1.1. For example, visually
disabled people such as the blind, colorblind, and people who cannot see very well. When
considering visual disabilities, developers need to think about how to use color; the web-
site should not have a contrast between text and background, making it difficult to see
the text; websites should be usable with screen readers operated by a keyboard and just
read out the website’s content. For the screen reader to read, for example, an image, it is
necessary to specify an alternative text for the image to be read by the screen reader by
using, for example, the alt attribute in the image tag element.

Accessibility seems to more often refer to vision impairment. In reality, accessibility
also considers other disabilities, such as hearing, mobility, speech, and cognitive. Ex-
amples of hearing disabilities are deafness or hard-of-hearing. For these, appropriate
solutions include subtitles for videos or transcripts for podcasts, among others. Motor
disabilities that cause difficulties, such as using a mouse, are why a website should be
completely accessible solely from the keyboard. People with cognitive disabilities are
one of the largest groups of individuals with disabilities. This type of disability is harder
to quantify precisely. However, by making information accessible for people with learn-
ing disabilities, a content author makes it accessible to young children or people who are
not necessarily going to read and understand a long block of text.

To know if a website is accessible, it needs to be evaluated or tested. The principal
objective in accessibility testing is to find errors and give useful feedback to developers to
promote future design and implementation changes that improve the site’s usability and
accessibility. “Test early, test often” is an old software engineering saying. Accessibility
evaluations should start right at the beginning of product design and continue following
development iterations into the final delivery to ensure quality on time and within bud-
get (W3C, 2019b).

1

1. INTRODUCTION

Figure 1.1: Examples of disabilities divided by different types (UXPA International et al., 2019).

1.1 Motivation

The disability market is composed of 1.3 billion people with disabilities glob-
ally (UXPA International et al., 2019), and this is how much will affect developers’ roles
and responsibilities. Moreover, looking at this number, friends, and families with a very
close emotional connection to disability cannot be forgotten. They represent another 2.4
billion consumers (UXPA International et al., 2019). As a support mechanism, they want
to support their friends and families with disabilities and not use an inaccessible website.
Respectively, people with disabilities control $2 trillion in income globally, and friends
and family add $8 trillion in annual disposable income (UXPA International et al., 2019).

When developers design websites and web applications well, they work for all people.
Much accessibility can be built into the underlying code of websites and applications. The
most considered standards to make websites and applications accessible are from the Web
Accessibility Initiative (WAI)1, a unit of the World Wide Web Consortium (W3C)2. The
WAI has various resources to make the web-accessible. By describing real web users’
stories, they acknowledge and formalize a set of disability types, mostly related to hearing,
cognitive, physical, speech, and visual abilities, that usually restrict access to the Web. To
achieve the purpose to make the Web accessible to everyone, the organization developed
a set of guidelines with success criteria and techniques to support several components of
web development (W3C Web Accessibility Initiative, 2019c):

• Web Content Accessibility Guidelines (WCAG) refers to the information on a web
page or web application. The information can be natural information such as text,
images, sounds, or code/markup that defines, for example, the structure and presen-
tation;

• Authoring Tool Accessibility Guidelines (ATAG) refer to how to make the author-

1https://www.w3.org/WAI/
2https://www.w3.org/

2

1.2 Objectives

ing tools themselves accessible so that people with or without disabilities can also
create content for the Web;

• User Agent Accessibility Guidelines (UAAG) for browsers, browser extensions,
and other applications that render web content.

Web standards from W3C, such as HTML, CSS, and many more, provide numerous
accessibility features. For example, textual descriptions for images are read aloud by
screen readers and used by search engines. Also, headings, labels, and other code supports
accessibility and improves the overall quality.

The standards also led to the creation of a variety of Web accessibility evaluation tools
with different characteristics: what guidelines version they cover, its language, type (if it
is an API, Browser Chrome Extensions, Online Tool, along with others), if it generates
reports or not, and so on. Important to note that across different countries, there are spe-
cific government guidelines that complement the W3C standards. The evaluation flow
between tools is similar: they first retrieve the source code of the page, assess the tech-
niques they implement, and output results that users analyze (Matos, 2017). In the end,
the main objective is to help web developers and designers meet accessibility guidelines.
At the moment, there are many applications, such as QualWeb, among others (W3C Web
Accessibility Initiative, 2006) that will be discussed further.

Helping developers construct accessible websites is the motivation of this dissertation,
alongside providing a tool for any user to perform accessibility evaluations on websites.
Building accessible websites can be challenging for developers since they may need help
understanding and implementing WCAG 2.1 guidelines’ success criteria. Accessibility
issues can quickly go unnoticed if the users do not have the correct tools to test for them.
Automatic testing can help identify specific types of web accessibility issues and only
find about 30% on average accessibility problems (Government Digital Service, Uk’s
Cabinet Office, 2018); the rest of the problems must be located using manual methods,
and these developers need assistance to go through manual testing. This thesis’s work
proposes designing and implementing a tool to have a broader coverage of success criteria
combining automatic testing with manual testing.

1.2 Objectives

There are typically two significant ways to evaluate accessibility: automatic and man-
ual (also called assisted). The automatic uses tools from different types. They could be
online tools, API (Application Programming Interface), browser extensions (for example,
AccessBot), CLI (Command Line Tools), desktop applications, and others.

The work to be developed will complement automatic evaluations from the QualWeb
engine with assisted evaluations, in a Chrome extension environment, by creating an au-
tonomous program (“bot”), called AccessBot, that can interact with the webpage and

3

1. INTRODUCTION

the user. The open-source engine QualWeb, which performs the automatic evaluation,
is maintained by the Department of Informatics at the Faculty of Science, University of
Lisbon, Portugal.

The AccessBot will make the engine more useful with a different interface. The as-
sisted evaluation needs more resources than automatic evaluation; however, it can detect
many accessibility problems.

While identifying elements in the code or DOM can be automatically checked, the
validation of how well the success criteria are fulfilled according to the recommendation
is not, in most cases. For example, what appears to exist visually in a website may not
correspond to the same in the code. Visually the website can appear to have headings, but
these may not follow the correct syntax of HTML and be formatted using CSS. Another
example, the 1.1.1 success criteria (WCAG 2.1), states, “All non-text content that is pre-
sented to the user has a text alternative that serves the equivalent purpose.” An automatic
tool can detect if the alt attribute is present and not empty for this success criteria. How-
ever, it cannot evaluate if the textual description of the image is correct. At the present
moment, only a human evaluator can verify the textual meaning of alt. The work will
focus on testing web pages for various Success Criteria to verify if what appears on the
website communicates, using all senses, correctly with all users. The Accessbot will show
results similar to other automatic tools. The added feature will be in helping the developer
with manual procedures. The manual evaluation can be supported in different ways; the
bot can identify all the elements affected by one technique on the webpage or may present
a procedure (list of steps) for a technique, guiding the evaluator during the process.

Another objective of the AccessBot is to enable unequivocal interpretation and im-
plementation of testing methods by using the rules defined according to the Accessibility
Conformance Testing (ACT) Rules Format 1.0 (W3C, 2019a), which defines a writing
format for accessibility test rules. An ACT Rule is an explicit language description of
testing a specific type of content for a specific aspect of accessibility requirement (W3C,
2019a).

These test rules can be used for developing automated testing tools and manual testing
methodologies. It provides a standard format that allows any party involved in accessibil-
ity testing to document and share their testing procedures robustly and understandably. By
using ACT rules description enables transparency and harmonization of testing methods,
including methods implemented by accessibility test tools (Foley, 2019).

The tool is to be available for users as a Chrome extension. This way, it provides easy
access and will not disturb the developer’s workflow. It is essential to mention that the
extension is intended to be used by developers and, for example, by government bodies
to check if overall websites are accessible.

4

1.3 Planning

1.3 Planning

The work was divided into different stages of development to achieve the objectives
mentioned. The plan initially proposed was:

A Architecture definition and implementation support mechanisms for the evaluation
presentation. These include the following steps:

1 Familiarization with the QualWeb engine specifications.

2 Learn how to make a Chrome extension;

3 Develop a Chrome extension;

4 Connect the extension to QualWeb.

5 Implementing Evaluation and Report Language (EARL) for test reporting.

B Identify the ACT Rules that need a semi-automatic or manual evaluation.

C For each one of the rules, define the bot flow, and implement it. Different techniques
have different flows, such as checking if the description of an image matches the
actual image is one flow and checking the tab order is another flow.

D User testing, including preparation, execution, and result analysis of the tests per-
formed to the users.

E The writing of the final report co-occurs with other phases.

1.4 Planning Execution

The planning execution details the steps taken to accomplish the phases listed in the
plan above to accomplish the items referred.

The first phase A), includes the overall research about accessibility to keep up with
state of the art, which is rapidly evolving, and to become acquainted with the accessibil-
ity guidelines of WCAG 2.1. The information sources on accessibility used during the
thesis’s development are the University of Lisbon repository3, proceedings from W4All4,
information online from W3C WAI5, and paper search engines like Google Scholar6. It
also involved learning how to implement a Chrome extension by reading the developer
Chrome extensions documentation7.

3https://repositorio.ul.pt/handle/10451/12140
4http://www.w4a.info/
5https://www.w3.org/WAI/
6https://scholar.google.com/
7https://developer.chrome.com/extensions

5

1. INTRODUCTION

Chapter three has a description of the “Study of Existing Accessibility Evaluation
Chrome Extensions”. I did the study during the dissertation in order to achieve an over-
all perspective of what Chrome extensions exist at the present moment, which ones are
most used by developers, their strengths and weaknesses. The study’s findings are also in-
cluded in the design of the AccessBot, allowing to fulfill the gaps found in other Chrome
extensions and match the user’s evaluation tools needs.

Since QualWeb is the engine of AccessBot, it is vital to familiarize with QualWeb,
to know how the engine works, its architecture, and how it is implemented. The Qual-
Web code is available on Github8. Still, during the first phase, a challenge arose during
integration. The problem resided in the fact that QualWeb is implemented in node.js,
and AccessBot runs in the browser and is supposed to make HTTP requests to QualWeb.
However, although node.js and the browser both run Javascript (ECMAScript), the en-
vironment is different. In the browser, we don’t have all the APIs that Node.js provides
through its modules, like the filesystem access functionality alongside other differences.
This phase involved a new replanning where QualWeb developers’ team needed to find
the best solutions to ensure the Accessbot could integrate with QualWeb. Chapter five
describes more information about this process, and the adaptations needed to complete
the integration.

After the integration of browser extension and QualWeb, the next phases B) and C)
were interchangeably done simultaneously. For each semi-automatic and manual ACT
rule identified, the application flow was designed, and then the code was implemented.
Phases B) and C) occupied a large amount of time of the plan.

The EARL report described in phase A) was postponed to phase C) in order to priori-
tize the implementation of the ACT rules.

The AMA (Agência para a Modernização Administrativa), responsible for developing
administrative modernization in Portugal, uses the QualWeb engine for the accessibility
evaluation of public government websites. Since the Agency is one of the primary users
of QualWeb, they participated in the user testing referred to in phase D). User testing con-
sisted of remote moderated testing of AccessBot because of the pandemic and included
two testing rounds. The first round had three participants, two developers, and one AMA
accessibility evaluator. After completing the modifications resulting from the first-round
user’s insights, the second round had two participants, two AMA accessibility evaluators.

The final months of the work consisted of the majority of the writing. To sum up, the
time for some of the tasks in each phase changed slightly concerning each other, but the
work’s execution was within the estimated time frame.

8https://github.com/qualweb

6

1.5 Contributions

1.5 Contributions

The dissertation starts by offering an analytical approach to the problems of ac-
cessibility evaluation by first studying the accessibility Chrome extensions tools for
accessibility evaluation that exist at the moment for accessibility evaluators. The research
on the most common automatic evaluation tools available as Chrome extensions for
developers lead to publishing the article (Frazão et al., 2020).

Frazão, Tânia and Carlos Duarte (2020). “Comparing Accessibility Evaluation Plug-Ins”.
In: Proceedings of the 17th International Web for All Conference. W4A’20. Taipei,
Taiwan: Association for Computing Machinery. DOI:10.1145/3371300.3383346.

This article reports the results of a study of eight of the most well-known automatic
tools which are free or available under an open-source license. The tools were compared
based on their feature set, their usability and their evaluation results of ten of the Alexa
top websites. It was found that individual tools still provide limited coverage of the suc-
cess criteria; the coverage of success criteria varies quite a lot from evaluation engine to
evaluation engine and what are the most and least covered success criteria in automated
evaluations. After analysing the results, the study recommends to use more than one tool
(with a different engine) and to complement automated evaluation with manual checking
since there is no ideal tool for identifying all the barriers a web page has, and they often
lack human input evaluation.

The thesis then focuses on developing and implementing algorithms for human eval-
uators and uniting them with automatic evaluation based on the previous premise. It cul-
minated in developing the Chrome extension tool, AccessBot. AccessBot extends the ac-
cessibility evaluation capabilities of an automatic evaluation engine, QualWeb, by adding
the algorithms and making it easier to use as a Chrome Extension without complicated
installations. As it is known, there are limitations of what coding can do to evaluate a
web page for some guidelines that govern how accessible a web page has to be. Access-
Bot can surpass these limitations by including in the web page evaluation the user’s input
and appraisal. The tool shows that it is possible to go beyond automatic evaluation and
improve an automated evaluation tool. In the end, this dissertation aims at contributing to
the accessibility field by incorporating an importing dimension such as the manual user
accessibility evaluation.

1.6 Document and Organization

The thesis consists of seven chapters. The first chapter, “Introduction” presents the
context of work, the motivation, the main objectives, and describes the planning and its
execution. The second chapter, “Related Work” provides a topical introduction about

7

1. INTRODUCTION

accessibility, its evaluation methods, discussing several references about problems with
guidelines and accessibility tools that exist for developers to use and develops the theoreti-
cal framework of a Chrome extension. The third chapter, “Study of Existing Accessibility
Evaluation Chrome Extensions” refers to an experimental study using eight browser ac-
cessibility tools, and presents the results obtained. The obtained results are interpreted and
discussed, creating the foundation and need for the implementation of AccessBot. Chap-
ter four refers to the design of AccessBot, describing what AccessBot should do. Chapter
five is about AccessBot implementation. It explains how it was done, the difficulties en-
countered during the process, and at the end of the chapter, the user interaction section
shows how it looks. In chapter six, AccessBot is put to testing by different evaluators.
Some alterations needed to be done after valuable insights from the users. Chapter seven
concludes the work of the thesis summarizing the results obtained during the development
of AccessBot.

8

Chapter 2

Related Work

This section provides the context required to understand the fundamentals for develop-
ing the AccessBot and the parts involved. It begins by examining the concepts of usability
and accessibility, the accessibility guidelines, its problems, the community’s need to cre-
ate ACT rules, and presenting an overview of existing evaluation tools. It also introduces
the QualWeb engine and presents an overall view of a Chrome extension, its architecture,
and how to create one.

2.1 Usability and Accessibility

Usability and accessibility are crucial concepts in the context of user experience. They
are closely related to creating a web that works for people with or without disabilities.
Because their goals and guidelines may overlap significantly, it is most effective to address
them together when designing and developing websites. However, there are few situations
when it is significant to focus on one aspect, for example, when developing standards and
policies (W3C Web Accessibility Initiative, 2016).

Usability is about designing products to be effective and satisfying. It includes user
experience design incorporating general aspects that impact everyone. Usability practice
does not sufficiently address the needs of people with disabilities.

Accessibility addresses discriminatory aspects related to user experience for people
with disabilities. A more accessible website means that people with disabilities can per-
ceive, understand, navigate, and interact with websites and contribute without barriers. It
covers requirements that are technical and relate to the source code rather than to visual
appearance, for example, to ensure that websites work well with assistive technologies
(screen readers, screen magnifiers, or voice recognition software). It also covers require-
ments related to user interaction and visual design, since inadequate design can cause
barriers for people with disabilities (W3C Web Accessibility Initiative, 2016).

Usability and accessibility are closely connected and cannot be considered separately
from each other; being accessibility more important for developers who, while taking into

9

2. RELATED WORK

account accessibility, will at the same time make websites more usable for every people.
Combining accessibility standards and usability methods with real people ensures that
web design is technically and functionally usable by people with disabilities.

2.2 Web Accessibility Guidelines

Over the years, the W3C Web Accessibility Initiative (WAI) has generated sets of
guidelines to systematize what is required to produce and render accessible web con-
tent (W3C, 2019b; Hudson, 2011). These guidelines on accessibility are available in the
form of checklists with hyperlinks to explanations and testing methods. The current set of
guidelines for assessing the accessibility of websites are WCAG 2.1, which are organized
around four accessibility principles (Stephanidis et al., 2009):

• Perceivable, which means that everyone should be able to perceive the information.
Websites should not have any information hidden from a particular class of users;
for example, if people are deaf, they should have transcripts they can read for audio
podcasts. Otherwise, that information would be completely hidden.

• Operable, which means people need to access all information and all websites re-
gardless of disabilities. For example, a button that can only be activated by clicking
on it is undesirable because, otherwise, people that cannot use a mouse as a conse-
quence of a motor disability will not be able to access that button;

• Understandable, which means all the information needs to be understood by the
user and the website should be predictable;

• Robust, which means the website should behave similarly regardless of the user
agent used to render it and still be accessible to everyone.

Each principle mentioned has a set of testable success criteria. The WCAG 2.1, published
in June 2018, extended the number of success criteria in WCAG 2.0 by 17, taking the total
to 78 testable success criteria. Figure 2.1 shows a snapshot of the W3C quick reference
for the WCAG 2 success criteria.

Conformance to a standard means that a web page or website meets or satisfies the
standard’s “requirements”. In WCAG, the ‘requirements’ are the Success Criteria. Con-
forming to WCAG means to satisfy the Success Criteria, and no content violates the
Success Criteria.

Most standards only have one level of conformance. To accommodate different situa-
tions that may require or allow more significant levels of accessibility than others, WCAG
has three conformance levels, and therefore, three levels of Success Criteria. The three
conformance levels are: A (lowest), AA, and AAA (highest), making each level repre-
senting an increasing level of accessibility. Conformance at higher levels indicates con-
formance at lower levels also. For example, a web page that conforms to AA meets

10

2.2 Web Accessibility Guidelines

Figure 2.1: Snapshot of WCAG Quick Reference which presents a summary for WCAG 2 success criteria
and techniques. (W3C Web Accessibility Initiative, 2019b)

both the A and AA conformance levels. Few studies have investigating the impact of the
level of conformance of websites. However, it seems that implementing recommenda-
tions for a high level of web accessibility leads to improved accessibility. Furthermore, a
high level of conformance proves to benefit both users with disabilities and non-disabled
users (Kirkpatrick et al., 2018; Schmutz et al., 2016).

The guidelines provide techniques for developers to help them satisfying the success
criteria’s goals. The techniques are informative, meaning they are not required since suc-
cess criteria can be met through other means. The basis for determining the conformance
to WCAG 2.1 is the success criteria, not the techniques (Accessibility Guidelines Work-
ing Group, 2017). Content authors can implement different techniques; for example,
the developer could develop a technique for HTML5, WAI-ARIA, or other new tech-
nology. W3C acknowledges that any techniques can be sufficient to satisfy the success
criteria (W3C Web Accessibility Initiative, 2017c). If no content to which a success cri-
terion applies fails, the success criterion is considered satisfied (W3C Web Accessibility
Initiative, 2017b).

The three types of techniques described in WCAG 2.1 are sufficient, advisory, and fail-
ures. Sufficient techniques are techniques that, if implemented, means it meets the success
criteria. The advisory techniques are suggested ways to improve web accessibility; they
are helpful to some users accessing some types of content. They are distinct from the
sufficient techniques because they may not be sufficient to meet the success criteria’ full
requirements. They may be based on technology not yet stable, they may not be tested,
or some technologies may not work with them yet. For example, in some circumstances,
assistive technologies may not be applicable or practical. They may increase accessibility

11

2. RELATED WORK

for some users and decrease it to others. They may provide only related accessibility ben-
efits and not address the success criteria itself. Failures are things that cause accessibility
barriers and lead to success criteria failure. If the content has a failure, it does not meet
WCAG success criteria unless an alternate version is provided without the failure. Each
technique has tests to help verify if the technique is correctly implemented. The tests are
not tests for conformance to WCAG. Evaluations must go beyond checking the sufficient
technique tests to evaluate how content conforms to WCAG success criteria. Also, failing
a technique does not necessarily mean failing WCAG because techniques, as said before,
are not required, and content can meet WCAG success criteria in different ways (W3C
Web Accessibility Initiative, 2017c; Accessibility Guidelines Working Group, 2017).

Web accessibility evaluation is an assessment procedure to analyze how well peo-
ple with different disabilities can use the web page. Optimal results for accessibility
evaluation are achieved using different approaches and taking advantage of specific ben-
efits from each of them. The approaches range from automated testing provided by dif-
ferent tools (desktop applications, online tools, APIs, browser chrome extensions, and
command-line tools) to manual inspection from accessibility experts or empirical evalua-
tions. Automated tools can be used in isolation, but automated mechanisms often support
even manual inspections.

2.3 Problems with accessibility guidelines

Different authors argue there are problems with the web accessibility guidelines
(Stephanidis et al., 2009; Brajnik, 2008; Carvalho et al., 2018; Rømen et al., 2012; Vigo
et al., 2013). One perspective that has been studied is the relation between guideline viola-
tions and real accessibility problems. Some studies found that evaluating the accessibility
of web pages just by checking conformance with the WCAG results in overlooking several
accessibility issues. This problem is aggravated if the accessibility check relies solely on
automated tests that cannot validate the full number of success criteria in the guidelines.
Another perspective that has been critiqued by practitioners is the applicability of the
guidelines. Although guidelines would seem to present objective criteria against which
to evaluate a system, they raise several difficulties. A large number of guidelines need
much effort to learn and apply properly. For an accurate evaluation, every page should
be evaluated against every applicable guideline, which would be very time-consuming.
The guidelines help improve a website, but guidelines are generalizations, so there may
be particular circumstances where guidelines conflict or do not apply and may be inter-
preted subjectively. To apply accessibility guidelines appropriately is needed expertise
in the evaluation of detailed characteristics. However, this evaluation alone can never be
sufficient, as this does not provide information to predict user behavior accurately. To be
sure about the outcomes, evaluation of web accessibility also requires manual inspection
and testing with users.

12

2.4 ACT Rules

As stated above, guidelines can be hard to be interpreted or be interpreted in different
ways by testers, organizations, and in different regions around the world.

2.4 ACT Rules

To make it easier for developers to reach consensus and uniformity on WCAG inter-
pretation, the ACT-Rules Community (ACT-R) was created.

The ACT-R is a group of accessibility tool vendors, test procedure authors, and acces-
sibility test experts that created an open community to set up a document and harmonize
the interpretation of W3C accessibility standards, such as WCAG and WAI-ARIA, for
testing purposes. Test rules are defined using the ACT Rules Format and reviewed by
the community. The process of researching, documenting, and sharing knowledge from
different perspectives within the group, builds towards a common understanding. By pub-
lishing such test rules, ACT-R hopes to motivate organizations to share their insights and
adopt commonly agreed test rules. It aims to contribute to more consistent results, re-
gardless of how the testing is done. To understand when something meets a requirement
and when it does not should be clear and consistent. The ACT-R Community has no
standing in the W3C and does not develop W3C recommendations or notes (ACT-Rules
Community Group, 2019).

2.5 Accessibility Evaluation Methods

Success criteria from WCAG guidelines are written as testable criteria for objectively
determining if content satisfies them. Testing the success criteria would involve a com-
bination of automatic testing and human evaluation. Although content may satisfy them
all, it may not be usable by people with a wide variety of disabilities. The W3C advises
to include usability testing and the required functional testing that verifies if the content
functions as expected. Performing usability testing helps determine how well people use
the content for its intended purpose (W3C Web Accessibility Initiative, 2017b).

2.5.1 Expert evaluations

Expert testing is essential because experts understand how the underlying web tech-
nologies operate, and they can act as intermediaries for knowledge about different user
groups (Brajnik, 2008). Expert evaluations should be done when initial prototypes are
available. They serve to identify any accessibility issues in order to eliminate them before
carrying user-based evaluations. These evaluations are also performed because it may
not be possible to obtain actual users for evaluations or insufficient time for testing with
users. Expert-based methods require one or more accessibility domain experts to work

13

2. RELATED WORK

through a website looking for accessibility problems (Brajnik, 2008; Stephanidis et al.,
2009; Kirkpatrick et al., 2018).

Expert testing includes four components:

• The tool-guided evaluation consists of a tool that looks for accessibility problems
and presents them to the evaluator. While beginners may be mostly dependent on
tool-guided evaluation, evaluators of all levels of experience know that even a sin-
gle checkpoint may require several tests to check if it has been passed. Some of the
tests can be automated, and some cannot. An automated tool can check whether
there is an alternative description of every image, which can be a useful function in
evaluating. However, no automatic tool can check whether the alternative descrip-
tions are accurate and useful (Petrie et al., 2005).

• The screening and using of end-user assistive technology by experts can help them
work through task scenarios representing what users would typically do (Stephani-
dis et al., 2009). Screening means experts try to reproduce the experiences of people
with disabilities. They can use assistive technology to interact with a site or try to
restrict one’s abilities in some manner (W3C Web Accessibility Initiative, 2019a).

• Structural inspectors consist of experts’ tools to probe how the various components
of a web site work together. Inspection tools are designed to review the struc-
tures of web content. By definition, structures define the components of a web
page and how they are related to one another. Experts can, by using the structural
inspectors, check the HTML DOM (document object model), which is parsed by
the browser. The browser associates different behaviors with particular compo-
nents. Standard assistive technology does not process web document object models
directly; they utilize the browser’s and plugin’s representation of web content in
terms of structural systems. By using the DOM inspectors, these show the tree of
elements, attributes, and text composed out of the HTML serialization, whereas the
web accessibility inspectors abstract distinct components or relationships and list
them (W3C, 2019b).

• Code review occurs when the evaluator looks directly at the code and assets of a web
site to search for problems. After specific problems are resolved using a checker
tool, the experts can pass on to manual testing and do a detailed inspection. From
the above, it becomes apparent that even for expert evaluation, automated checking
tools are paramount.

2.5.2 Automatic Checking

Although automated accessibility checking has its role in evaluating websites, its
strengths and weaknesses need to be understood because automatic tools cannot check

14

2.6 Introduction to QualWeb

many WCAG checkpoints automatically. According to Vigo et al. (2013), using eval-
uation tools reduces the burden of identifying accessibility barriers. However, an over-
reliance leads to placing aside additional testing that necessitates expert evaluation and
user tests. In a study about the sole reliance on automated tests, the researchers inves-
tigated the effectiveness of 6 state-of-the-art tools (AChecker, SortSite, Total Validator,
TAW, Deque, and AMP). These tools had in common their capability to test web pages
against the WCAG 2.0 guidelines. The coverage obtained was very narrow as, at most,
50% of the success criteria were covered. The most frequently violated success criteria
were “1.3.1 Info and Relationships”, “1.4.3 Contrast”, “1.1.1 Non-text Content”, “1.4.4
Resize Text” and “2.4.4 Link Purpose”.

Therefore, relying on just automated tests entails that 1 out of 2 success criteria will
not be analyzed (Vigo et al., 2013). Using only automated tools is not by itself a viable
answer to the problem of evaluating accessibility. The W3C/WAI states: “Web accessibil-
ity evaluation tools can not determine the accessibility of Web sites, they can only assist
in doing so” (W3C Web Accessibility Initiative, 2017a). Although automated checking
tools are not sufficient to determine the accessibility of a resource, these tools are great
to help developers meet accessibility standards. Developing better, automated, or semi-
automated tools is essential. With the ever-growing dynamics of web pages (e.g., through
AJAX and other JavaScript techniques), the state of a web page’s content, structure, and
interaction capabilities might become different when compared to the initial HTTP com-
munication. Several dynamic content techniques allow for displaying or hiding informa-
tion, injecting new content, and even removing Web pages’ content. According to Fernan-
des et al. (2012) the automated evaluation must be applied to the content web browsers
display, which can be an advantage for tools directly integrated on the browser. WAI
website maintains an updated list of automated accessibility checking tools available to
use (W3C Web Accessibility Initiative, 2006).

2.6 Introduction to QualWeb

QualWeb is an open-source1 automatic accessibility evaluator developed over time by
a group of researchers at LASIGE at the Faculty of Science of the University of Lisbon.
Qualweb incorporates different contributions from different research projects. The first
version is from 2008. It can perform an automatic analysis of the web page’s content
against a set of WCAG 2.1 level AAA standard Techniques and ACT Rules. This text
describes how QualWeb works since it is the engine used and integrated into the javascript
AccessBot project. Qualweb is an automatic evaluation tool. It accesses a representation
of a web page’s DOM after the browser has processed it, runs a series of scripts to obtain
the outcomes of multiple rules and techniques, and outputs the results.

The web page accessibility evaluation by Qualweb presents the test target results with

1QualWeb is open-source and available at https://github.com/qualweb.

15

2. RELATED WORK

fail, pass, cannot tell, and inapplicable. Test targets are specific elements or nodes within
an HTML page under testing. The HTML page is defined as the test subject, and this
includes all embedded scripts, style, and images. Listing 2.1 provides examples for a
rule that checks if image elements img have a text alternative; it presents a passed out-
come on line one, an example of a failed outcome on line two, and an example of an
inapplicable outcome on line three. The results are accompanied by outcome de-
scriptions, informing the user why there is a specific problem with the web page. When
one or more of the outcomes for a test target is failed, it means the accessibility require-
ments of the ACT Rule to test conformance to WCAG are not satisfied for the test subject.
When all of the outcomes are passed or inapplicable (if there are no test targets), the ac-
cessibility requirements could be satisfied, or further testing is needed. In WCAG, success
criteria do not evaluate to passed, failed, or inapplicable. They can be satisfied or not.

Listing 2.1: Example of HTML test cases for a rule that checks if img elements have a text alternative.

1
2

3 <input type="image" alt="W3C Logo" src="image/w3c.png">,

Qualweb syntactically checks the web page. For example, it verifies if images have
an alt attribute. However, it does not verify the semantic relationship between elements.
In the case of images, it is necessary to verify if the information conveyed in the alt text
is related to the image and correctly describes it (Duarte, 2018).

Besides pass and fail outcomes, QualWeb shows possible problems with seman-
tics, with cannotTell results. According to Santos Vicente (2018) this may be seen
as an advantage when comparing with other accessibility evaluation tools. The result
cannotTell points to a possible problem that needs manual assessment.

The integration with Accessbot extends the automatic evaluation by guiding the user
to perform a manually semantic evaluation for some of the results.

QualWeb, in general, comprises the following elements:

• Core - the QualWeb source code receives the URL of the page and processes the
web page for accessibility automatic evaluation. It contains four modules, besides
the ACT-Rules module, which AccessBot uses, has the CSS and HTML techniques
and best practices modules, which help meet WCAG success criteria and confor-
mance requirements. The core can be integrated with any other source code on the
server;

• CLI (command-line interface) - has the same core features but allows the user to
perform an automatic evaluation of a web page from the terminal;

• Online - has the same core features and can be used online at website http://
qualweb.di.fc.ul.pt. It has a graphical user interface to display the content
of the web page evaluation.

16

http://qualweb.di.fc.ul.pt
http://qualweb.di.fc.ul.pt

2.7 Introduction to Chrome Extensions

2.7 Introduction to Chrome Extensions

2.7.1 What are Google Chrome Extensions

Chrome extensions are a viable way of enhancing web browsers’ functionality by
having access to almost all the features provided by the browser (Mehta, 2016). The ob-
jective is to provide targeted functionality to users. In the case of AccessBot to evaluate
Web accessibility. They are built on web technologies such as HTML, Javascript, and
CSS (Google, 2020g). They are also secure since they run in a sandboxed environment.
Sandbox is a software container. It allows the execution of web technologies and also pro-
vides access to features of browsers. The Chrome Extensions framework provides APIs
that help empower web applications by coupling with features provided by the Google
Chrome web browser, for example, tabs, popup, actions, and search. Google Chrome
supports browser extensions since 2010 (Mehta, 2016).

An important point to note is that browser extensions are not browser plug-ins since
they are sandboxed within the host web browser while plug-ins are not. Plug-ins provide
new support for particular media types to browsers. For example, an extension can allow
users to save all the opened tabs, and a plug-in allows reading and rendering PDF files in
the browser.

2.7.2 Advantages of Chrome extensions

Some Google Chrome users rely on extensions for increasing their productivity at
work and solely for getting the most out of their web browser. The extensions provide
a better workflow since they are of easy installation through the Chrome Web Store and
simple access in the Chrome browser. They also provide a single purpose that should
be narrowly defined and easy to understand, even if they include a range of functionali-
ties (Mehta, 2016; Google, 2020g).

2.7.3 Technologies for Extensions Development

The technologies used to create Google Chrome Extensions are vanilla2 HTML, CSS,
Javascript, and JSON. Google Chrome Extensions can be built from any operating system.

HTML and CSS create the user interface (structure and styling, respectively).
Javascript is used to provide the application logic and access the Google Chrome Ex-
tensions framework’s APIs and components. JSON is applied to create the manifest file
for the extensions where it provides information about the extension itself to the Google
Chrome Browser.

2By definition vanilla is a term used in computer science when technologies are not customized from
their original form, meaning that they are used without any customizations or updates applied to them.

17

2. RELATED WORK

2.7.4 Google Chrome Extensions API

As said earlier, Google Chrome Extensions are sandboxed, and this means that
the code runs isolated, implying that different extensions cannot access code or mem-
ory belonging to another extension. Because of this sandboxed environment, there
will not be name conflicts, even if there are extensions and files of different exten-
sions. The Extensions framework provides many special-purpose APIs3, for example,
chrome.runtime API, but extensions can still use the standard APIs4 that the browser
provides to web pages. These are Javascript, and Document Object Model (DOM) APIs,
HTML5 APIs, WebKit5 APIs (for experimental CSS features such as animations, filters,
and transformations), and V8 APIs6 (such as JSON) are supported.

2.7.5 Development of a Chrome Extension

Chrome extensions can be simple or more complicated, depending on their purpose.
Extensions are made of different but cohesive components such as background scripts,
content scripts, options page, user interface elements, and logic files (Google, 2020c).
Depending on the functionality, there will be different components with different options.

2.7.5.1 Components of a Chrome Extension

Various components are used to create Chrome Extensions. They are the building
blocks. In a way, Chrome Extensions are no different from any other software applica-
tion since the user interacts via inputs such as buttons, processes data, and displays the
result. Like other development frameworks, the Google Extensions framework provides
its developers with techniques to provide a user interface and other functionalities such
as messaging or web requests between others. The components that are used to create
Chrome Extensions are:

• Manifest components - every extension has a JSON formatted manifest, named
manifest.json. The manifest provides information about the extension to the
Chrome browser. The manifest contains the features that the extension will use,
such as inputs (for example, Browser-Action), and defines their corresponding val-
ues. In the manifest, it is possible to declare the use of other APIs to access the
Chrome Browser’s functionalities, such as bookmarks, tabs, history, amongst oth-
ers. The manifest file is the only reserved file name in the extensions. The other
files can have different names (Mehta, 2016).

3For more information about these APIs on UR: https://developer.chrome.com/extensions/api index.
4For more information about these APIs on URL: https://developer.chrome.com/extensions/api other.
5WebKit is a web browser rendering engine to draw the HTML/CSS web page.
6V8 is Google’s open source high-performance javascript engine, written in C++ and used in Chrome

and node.js (can execute javascript within or outside of a browser.

18

2.7 Introduction to Chrome Extensions

• Input components - offer interactive functionality consisting of user interface and
non-user interface Input elements (Google, 2020b). These are considered the entry
points to the extensions’ core logic, and they trigger certain responses from the
scripting components or display a popup if the extension has one (figure 2.2). For
example, the input component of choice during the development of AccessBot is
browser/action, which allows putting icons in the Google Chrome Toolbar to the
right. The browser action is used in an extension where common functionality is
desired for every visited page. Note that Browser-Action APIs can be accessed
from all scripting components, except content scripts.

Figure 2.2: Representation of chrome browser/action input component. The multicolored square to the
right of the address bar is the icon for a browser action. A popup is below the icon. (Google, 2020a)

• Scripting components - are the components that contain the application logic re-
quired when users interact with the extension. There are three types of scripting
components: background, popup, and content scripts. Each scripting component
has its separate scope. For example, popup scripts cannot use variables and func-
tions defined in the background and vice-versa. The same happens for other pairs
of scripts such as content scripts and popup scripts or content scripts and back-
ground scripts. The only way the scripts can access each other’s data (variables and
functions) is messaging (Mehta, 2016).

According to Mehta (2016), the characteristics of each script are described in the
following list.

– Background scripts (event scripts):

* Extensions are event-based programs used to modify or enhance the
Chrome browsing experience, and these events are monitored in their
background script, then reacting with specified instructions.

* These events are browser triggers such as events fired from
input components such as Browser-Action, for example,
chrome.browserAcion-onClicked (Google, 2020d); in other

19

2. RELATED WORK

words, in this script there is a listener created to trigger the popup when
users click on the browser icon.

* Another important use for the background script is to listen for events
fired from the extension itself, such as onMessage that are only acces-
sible from the chrome.runtime object. Most of these events are part
of the messaging API provided by the Chrome Extensions framework.

* An event script’s essential characteristic is the persistence of event-script.
It can listen for events in a reliable manner because it is a long-running
script (unlike the popup script, which is only executed when the popup is
opened). Event scripts stay dormant and are automatically loaded when
needed (for example, when the events they are listening to get fired), react
with specified instructions, and are unloaded when they go idle.

* Background scripts are registered in the manifest (listing 2.2) under the
background field and listed in an array, and persistent should be
specified as false to make the event script active only on an event basis
or true if it is always active (Google, 2020e).

– Popup Scripts:

* The HTML file popup.html represents the view the extension’s popup
will have, and the javascript file popup.js will contain the application
logic (listing 2.3).

* They are an option view available to the Browser-Actions input compo-
nents, consisting of an HTML page that only appears when the user clicks
on the toolbar button. (Google, 2020a)

* They have an essential feature: popups can access the Chrome Exten-
sions API and all the Standard Javascript APIs, including listening for
and responding to DOM events fired from the nodes within a popup.

– Content Scripts:

* Type of scripting component that is injected into the visited web page(s).

* Have minimal access to the Chrome Extensions API because they do not
represent the extension runtime; they run in an isolated environment in
the context of a web page and not the extension. They can read, modify
the content, or add content (for example, HTML elements) of visited web
pages using the DOM API.

* They cannot use chrome.* APIs with the exception
of chrome.runtime object, chrome.extension,
chrome.storage provided by the Chrome Extensions framework.

* They are declared in the manifest using the content script component,
as displayed in listing 2.4, which takes the following properties in its
definition - matches, css, and js.

20

2.7 Introduction to Chrome Extensions

Listing 2.2: The listing represents an excerpt of the manifest file where the background script is defined
and is referred automatically in a generated HTML page with the name background.html.

1 ...

2 {

3 "background": {

4 "page": "background.html",

5 "script": "background.js",

6 "persistent": true
7 },

8 }

9 ...

Listing 2.3: src attribute specifies the path to the external script in the popup.html.

1 <script type="module" src="./dist/popup.js" defer></script>

Listing 2.4: The listing presents a code excerpt of the manifest file showing the content script component
where js array contains the list of Javascript files to be injected into matching pages specified in the
matches array; in this case all URLs.

1 {

2 ...

3 "content_scripts": [{

4 "matches": ["<all_urls>"],

5 "js": ["./dist/contentScript.js", "act.js", "qwPage.js"]

6 }

7]

8 }

2.7.5.2 Chrome Extension Lifecycle

The extension’s lifecycle is defined from the moment the extension is executed and
ends when it is closed. The life cycle begins when the browser’s extension loads, then the
manifest is first to be read. The manifest provides permissions to access specific APIs,
such as tabs API. Next, the views and scripts are loaded. Finally, the listener functions
are assigned to input components to listen for events. The scripts that can listen for events
fired from the input components, or other things that happen, represent the extension
runtime. These include popup script and background script. Since the popup script is
only executed when a popup is opened, the background script, a long-running script in
the background, has a significant role since it listens for every event (Mehta, 2016).

2.7.5.3 Messaging API

Scripting components communicate with each other using the messaging APIs pro-
vided by the Google Chrome Extensions framework. To make it more straightforward,

21

2. RELATED WORK

figure 2.3 represents the possible communications between the components but take into
consideration that the extension architectures will vary based on functionality.

Figure 2.3: Communications representation between different scripts. The content scripts can communicate
with the extension by exchanging messages represented by the envelopes symbols. (Google, 2020f)

Figure 2.4 demonstrates the different messages and listeners depending on which
script is sending and which one is receiving.

2.8 Portuguese Laws and Obligations

As seen, making a website accessible means making sure as many people can use it
as possible. The public sector websites are essential to everyone, and people who need
them the most are often the people who find them challenging to use. Public sector web-
sites need to meet accessibility requirements with the Decree-law nº83/2018 (Ministério
da Ciência e da Tecnologia e Ensino Superior, 2018) which introduces in the Portuguese
legislation the European directive of 2016/2102 about the accessibility of websites and
mobile applications of the public sector. This decree states that government websites
and mobile web applications need to be more accessible. The AMA (Agência para a
Modernização Administrativa) should guarantee that the Government and the equal en-
tities should fulfill the deadlines and the rules demanded in the decree to adapt to the
European Union rules. Besides guaranteeing that the government websites comply, AMA
should also create the Portuguese Accessibility Observatory. AMA is creating the Por-
tuguese Accessibility Observatory7 in cooperation with the department of informatics of

7https://observatorio.acessibilidade.gov.pt

22

https://observatorio.acessibilidade.gov.pt

2.8 Portuguese Laws and Obligations

Figure 2.4: Schema showing the different communications API between scripts. The red color represents
the sending Chrome extension APIs for a message, and the blue color represents the respective message
listeners’ Chrome Extension APIs. Considering the script which sends and which script receives, some
particularities are evident on the notes to take into account.

the Faculty of Science of the University of Lisbon (FCUL). AMA is working in partner-
ship with FCUL in other different projects to develop different tools to evaluate website
accessibility. AccessBot is one of those tools in development. The AccessBot prerequi-
sites and usability best practices are implemented in agreement with AMA.

23

24

Chapter 3

Study of Existing Accessibility
Evaluation Chrome Extensions

This chapter presents an experimental study of eight automated web accessibility eval-
uation extensions for the Google Chrome browser: aXe Chrome Extension, Tenon Check,
Wave Chrome Extension, TotalValidator, ACCESS Assistant Community, Microsoft Ac-
cessibility Insights, and ARC Toolkit. These represent the most used tools among devel-
opers that can be freely accessed through the Google Web Store.

By using Chrome Extensions the developers are assisted by an automatic evaluation
that allows them to visualize the webpage under evaluation. It is considered an advan-
tage when comparing with other online automatic evaluation tools that are not Chrome
Extensions. They simplify the work without the need to close the browser.

The initial tool selection criteria included, besides being freely accessible, that they
were available as browser extensions. As depicted earlier, a web page is represented not
just by its HTML source but also by a set of ancillary resources that are processed by
the browser and transform the DOM contents. Using a browser extension to evaluate
accessibility, the evaluator can expect that the content that is evaluated is not only what
is presented to the user, but also that it is evaluated in the same conditions in which it
is consumed by the user (for example, viewport size). Also, these tools might fit better
into an expert evaluation workflow by providing support to the evaluator directly in the
browser instead of requiring the use of additional applications.

The study centers on evaluating differences in the tools such as: how they are im-
plemented, what success criteria they use, how many tests for each success criteria each
one evaluates, the overall differences in the results of the reports generated, if the tools
perform only automated tests or if they guide the developers through manual testing. It
is essential to understand the impact of automatic evaluations of the accessibility of web
pages in the browser environment. Consequently, the study examined the tool’s differ-
ences, strengths, and limitations according to their evaluation results and considered their
usability. The information gathered and its interpretation allows for future improvements

25

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

Table 3.1: Classification (0 min, 5 max) and the number of users of automated tools according to Chrome
Web Store (data collected on Dec 4, 2019).

Tool Classification Users
Lighthouse -accessability 4.5 455,902
WAVE Chrome Extensions 4.2 186,810
aXe Chrome Plugin 4.6 102,196
Accessibility Insights 4.6 34,613
Arc toolkit 4.0 5,897
TotalValidator 2.3 5,239
ACCESS Assistant Community 4.6 3,059
Tenon Check 4.8 2,191
Average 4.2 99,488.38

in the development of accessibility evaluation tools.

3.1 Tools

The criteria used to select the automated tools considered the type of tool. The tool
needs to be available as an extension for the Google Chrome Browser, although some are
also available for Firefox; be available for download in the Chrome Web Store and have
a free or open-source license. Since this resulted in an extensive list of tools, the study’s
tools are the most prevalent among users. The final tool selection list is according to the
tool’s popularity, classification, and number of users. As can be seen in table 3.1, the
most used tool is Lighthouse. However, aXe Chrome Extension has a better score with a
larger number of users than the other tools also classified with the same score. The tools
are listed in the W3C list of web accessibility evaluation tools (W3C, 2019b; W3C Web
Accessibility Initiative, 2006) except for Lighthouse. It is essential to mention that most
of these tools have upgrade products available except Microsoft Accessibility Insights,
Lighthouse, and Wave. The following paragraphs introduce the selected tools.

3.1.1 Accessibility Insights

Microsoft Accessibility Insights supports two primary workflows, as shown in fig-
ure 3.1: FastPass and Assessment. The FastPass workflow helps developers identify
common high impact accessibility issues. In FastPass mode, it begins with automated
checks, and failures are highlighted directly on the target page. Clicking the failures
shows details, including how to fix it and show the DOM errors. The FastPass also has
an assisted manual test for tab stops explaining what problems to look for with a visual
helper’s aid. The second workflow is Assessment. It helps anyone with HTML skills
conduct a thorough accessibility evaluation and has approximately 20 manual tests with
test instructions. It also has detailed information about dos and don’ts, how to fix, and

26

3.1 Tools

links to WCAG success criteria, techniques, and expected failures. The automated tests
with the manual Assessment provide WCAG 2.0 AA coverage.

Figure 3.1: Screenshot of Microsoft’s Accessibility Insight

3.1.2 ACCESS Assistant Community

With over 100 fully automated accessibility checks, Access Assistant Community (fig-
ure 3.2) runs a Quick Test on any web page to view details for all accessibility violations
on the page, along with remediation guidance. This extension accesses URLs for all open
tabs to enable the testing of pages on any open tab. Preview Modes features a guide for
manual testing efforts. Each preview mode applies markup or styling to the page to help
testers identify common accessibility violations at a glance.

3.1.3 ARC Toolkit

The ARC Toolkit (figure 3.3) uses the automated ARC Rules. It has a sidebar that
shows ARC rules engine assertions organized in categories and sub-categories. Types of
results are split into visible and hidden errors and warnings. Hidden are not visible in the
browser but may impact assistive technology users, such as options in a menu that only
appear when the menu is open. Warnings are potential issues that have been flagged but
require manual verification. The test results show code followed by rules and assertions
for the issue, along with a brief description and recommendation. Additional features will
complement the manual accessibility process. For example, the “show and track focus”
checkbox can enhance the visual focus with a bold red outline. It also has a feature for tab
order visualization. When selected, the toolkit represents a keyboard user’s experiences

27

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

Figure 3.2: Screenshot of ACCESS Assistant Community.

when relying on the TAB key to navigate to each active element. It can submit the DOM
or URL to the W3C Markup Validation Service.

Figure 3.3: Screenshot of ARC Toolkit

3.1.4 aXe Chrome

aXe Chrome, as shown in figure 3.4, shows the user the accessibility violations and
their number of occurrences on the page. Each violation includes the actual description of
what is wrong and, if clicked, opens a page from Deque University that contains an even

28

3.1 Tools

more detailed description. Under the actual issue description, there is also an excerpt of
the code causing the issue, information on how it can be fixed, and an indication if it is a
critical issue. The highlight option will highlight the offending component on the page.

Figure 3.4: Screenshot of aXe Chrome.

3.1.5 Lighthouse

Integrated into Dev Tools of the Chrome browser (figure 3.5), Lighthouse is accessed
through the “Audits” option. Lighthouse gives the error results, and after clicking it, it
will explain more about the error and how to fix it. It also provides additional items to
check manually. These items address areas that an automated testing tool cannot cover.
It also informs the user about instances that have passed and also gives information about
not applicable tests.

3.1.6 Tenon Check

Tenon Check operates based on an API and requires the user to sign up and obtain an
API key and then configure the extension with the API key obtained. After clicking the
extension button, Tenon asks the user to sign-in, and after that, the web page is evaluated.
The Tenon website then shows a “prettified” version of the JSON received after the request
is triggered by clicking the extension button, together with a dashboard with the results
(figure 3.6). It presents how many issues were found, the URL, and other information.
The left graph on the dashboard shows the number of tests that run and how many passed.
The right graph shows the relative percentage of failures. The results show code snippets,
which are actual HTML from the DOM. The Tenon pre-defined specifications consider an

29

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

Figure 3.5: Screenshot of Lighthouse.

error as something that has 80% certainty. The priority score also presented is normalized
considering other issues of the page. The users can export the results in .csv format.

Figure 3.6: Screenshot of Tenon.

3.1.7 TotalValidator

After loading the page, the user clicks on the extension, and it opens the pre-installed
Total Validator on the system (figure 3.7). The user has the option to first choose against
which guidelines the page should be evaluated. The browser version is just a summary of

30

3.2 Selection of Web Sites

the issues it finds (total errors and total warnings). In the free version, only the issue’s id is
shown (a number that identifies the issue in the TotalValidator documentation). Clicking
on the id number opens the documentation explaining what the violation is and the success
criteria it violates.

Figure 3.7: Screenshot of TotalValidator.

3.1.8 WAVE

This tool presents the page with embedded icons and indicators using a color system
(figure 3.8). Red icons indicate accessibility errors that need to be fixed. Green icons
indicate accessibility features – things that probably improve accessibility (though these
should be verified). The other icons and indicators, particularly the yellow alert icons,
highlight other elements that the user should evaluate. The sidebar has a summary of the
errors that were detected, alerts, and structural elements. It also provides manual contrast
testing: by changing the color, the tool immediately tells us if it passes contrast checks.
There is a “No Styles” option in the sidebar that will disable all original page styles. This
option can help pinpoint where errors occur and ensure that the page’s reading order is
logical. Users can view a brief overview of what each icon means by clicking it and
viewing its documentation.

3.2 Selection of Web Sites

A sample of web sites from the Alexa Top Sites list1 was picked to compare the differ-
ent tools’ coverage. For each website, the page analyzed is the home page. Home pages

1https://www.alexa.com/topsites

31

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

Figure 3.8: Screenshot of WAVE.

Table 3.2: Web sites selected for the evaluation (data collected on Dec 4, 2019).

Site Language
1 google.com English
2 youtube.com English
3 tmall.com Chinese
4 wikipedia.org English
5 yahoo.com English
6 amazon.com English
7 reddit.com English
8 live.com English
9 netflix.com English

10 blogspot.com English

with merely a login page are discarded for the study (for example, Facebook). From the
global list mentioned, the study consisted of selecting the first nine web sites using the En-
glish language and the first non-English language web site that met the criteria mentioned
above. Table 3.2 presents the web sites studied.

3.3 Testing Environment

The testing environment uses a Chrome extension to trigger the execution of the eval-
uation within the browser. The version of the browser used is Version 78.0.3904.108 (Of-
ficial Build) (64-bit). In order to have a fair comparison, two requirements were raised:

A All tools should evaluate the same web page. Given the fact that the web sites are
dynamic, the evaluation started for all the tools within an interval of a few seconds.

32

google.com
youtube.com
tmall.com
wikipedia.org
yahoo.com
amazon.com
reddit.com
live.com
netflix.com
blogspot.com

3.4 Procedure

I inspected the loaded pages to ensure there were no differences between them.

B There should be no external interference changing the page’s DOM, apart from the
testing tool’s eventual scripts. There was a necessity to create 8 sandboxes to meet
this requirement. In each sandbox, the only installed software was the browser
(in the default configuration) with the corresponding extension (plus any additional
software required by the extension). For the sandboxes, it was used Sandboxie
(version 5.31.6).

3.4 Procedure

Before starting the evaluations, each tool is analyzed for its success criteria, and infor-
mation is gathered. Then, one of the selected web pages is loaded in all browsers. Each
browser contains one of the tools under testing. After the execution of the evaluations
from all the tools, their outputs are collected. The remaining web pages repeat the same
procedure. Once the collection of all webpages results, analysis is followed according to
the accessibility violations found and success criteria coverage.

3.5 Results

3.5.1 Feature Analysis

Tables 3.3 and 3.4 present a comparison of the evaluated tool’s features. The collec-
tion of the tool’s information comes from the W3C list of accessibility evaluation tools,
the tool’s online website, and the usage to evaluate the sample of web pages. Notice that
some tools are directly integrated into development tools (dev tools) of the browser and
to access them, the user needs to click Inspect on the dev tools console. In contrast, oth-
ers activate when the user click the extension button. Only TotalValidator required the
pre-installation of software outside the browser environment. When the user starts the
TotalValidator extension, it opens the pre-installed application. Some tools use the same
engine, like Accessibility Insights and Axe-chrome, which use the aXe engine.

Tools differ in specifications concerning which success criteria they evaluate, how they
implement the tests to analyze each success criteria, and how they classify the violation
into error. On this topic, it is crucial to notice that one tool, Tenon, distinguishes between
errors and warnings based on a predefined threshold percentage of uncertainty about the
evaluation result. When the evaluation falls below the threshold, the tool is unsure if it
identified a real issue and advises the user to do an additional manual evaluation. Some
tools also classify the severity of the violation (for example, from minor to critical). This
classification is based on the weight given to each test. The heavier-weighted tests have
a more considerable impact on the overall accessibility of the web page. The weights

33

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

Table 3.3: Features of evaluated tools.

Automated
tools

Vendor Version
(Last
Update)

Compliance Browsers Supported
Formats

Types of
Support

Can Check Engine

aXeChrome
Extensions

Deque
Systems

4.1.0 (24th
October
2019)

WCAG 2.0,
Section 508

Chrome HTML,
XHTML

Generating
reports.

Single web
pages;
Restricted or
password
protected
pages

axe-core

Tenon
Check

Tenon LLC 2.0.4(12th
October
2019)

WCAG 2.0,
Section 508

Chrome HTML, CSS Generates
report.
Ability to
export report
in csv
format.

Single web
page and
code snippet

tenon

WAVE
Chrome
Extension

WebAIM.org. 3.0.3 (3rd of
November
2019)

WCAG 2.1,
WCAG 2.0,
Section 508

Chrome,
Firefox

CSS,
HTML,
XHTML,
Images

Generating
reports;
Displaying
information
within web
pages
Modifying
the
presentation
of web
pages.

Single web
pages;
Restricted
password
protected,
locally
stored, or
highly
dynamic
pages.

wave

TotalValidator Total
Validator

5.0 (5th of
April 2019)

WCAG 2.0,
WCAG 1.0,
Section 508,

Chrome,
Firefox

HTML,
XHTML

Generating
reports of
evaluation
results

Single web
pages,
Groups of
web pages;,
Restricted or
password
protected
pages

TotalValidator

ACCESS
Assistant
Community

Level
Access

7.8.0.344 (
31th
October
2019)

WCAG 2.1,
WCAG 2.0,
Section 508

Chrome,
Firefox

WAI-ARIA,
HTML

Generating
reports.

Single web
pages,
Restricted or
password
protected
pages

Level Access

Accessibility
Insights

Microsoft 2.10.3 (28th
October
2019)

WCAG 2.1,
WCAG 2.0,
WCAG 1.0
Level AA.

Chrome,
Edge

HTML Generating
reports;
Providing
step-by-step
evaluation
guidance;
Displaying
information
within web
pages

Single web
pages

axe-core

ARC toolkit The Paciello
Group

3.2.0.0 (4th
July 2019)

WCAG 2.0,
WCAG 2.1,
Section 508.

Chrome WAI-ARIA,
CSS,
HTML,
XHTML,
SVG,
Images,
SMIL

Displaying
information
within web
pages

Single web
pages

ARC

Lighthouse -
accessibility

Google 5.6.0 (18
October
2019)

WCAG 2.0,
WCAG 2.1,
Section 508.

Chrome HTML Generating
reports.

Single web
pages,
Restricted or
password
protected
pages

axe-core

34

3.5 Results

Table 3.4: Behavior information, and tests of evaluated tools.

Tool Behavior How to fix
issues

Highlights
issues in the
code

Severity
Classifica-
tion

Information
about the
violated
check

Upgrade
version

Performs
Semi-
Automatic
Evaluation

Provide best
practices
evaluation

Provide
manual
evaluation

aXe Chrome
Extension

Integrated in
developer
tools

Yes Yes Yes Yes (Plus
Other
Resources)

Yes Yes Yes No

Tenon
Check

Displaying
information
within
Tenon web
app

Yes Yes Yes Yes Yes No (If Using
Only
Extensions);
Yes (If
Using The
Tenon)

No No

WAVE
Chrome
Extension

Click on the
extension

Yes No No Yes No Yes Yes Yes

TotalValidator Click on the
extension to
open Total-
Validator
desktop app.

No.
(Redirects
To W3c)

No No Yes Yes Yes Yes No

ACCESS
Assistant
Community

Clicking the
extension to
test all open
tabs.

Yes Yes No Yes Yes No No Yes

Accessibility
Insights

Integrated in
developer
tools

Yes Yes No Yes No Yes No Yes

ARC toolkit Integrated in
developer
tools

Yes Yes No Yes Yes Yes Yes Yes

Lighthouse -
accessibility

Integrated in
developer
tools

Yes Yes No Yes No No Yes Yes

are based on heuristics defined by the tool vendors. When tests identify a problem, some
tools help developers correct it by giving extra information on how to solve it.

A few tools also give information about instances that are considered as “Pass”, mean-
ing that the website passed the test because the instances are present and correct. For some
tools, like Accessibility Insights, they state that “Pass” also means there are “No match-
ing/failing” instances, so the absence of a feature is considered a “Pass” in the results.

Besides automatic tests, tools may provide a semi-automatic evaluation where the
tests identify elements or conditions to which success criteria apply but cannot evaluate if
it is a “pass” or a “fail”. In these instances, tools indicate the instance is present and ask
the user to check whether there is a violation of the success criteria.

Another category of tests is the manual checks. These are not tests made by the tools,
but instead, are instructions to assist their users in conducting the evaluation, for example,
to verify the site with keyboard-only navigation. The tools that provide manual procedures
are Accessibility Insights, ARC Toolkit, Access Community, Lighthouse, and Wave. The
procedures range from manual contrast evaluation in Wave to more elaborated and guided
procedures in Accessibility Insights.

Some tools also provide “Best Practice” tests. They are not checks of success criteria
but are tests to identify valid and “well-formed” HTML and CSS code. When the code is
not up to the standard, the tools give suggestions on modifying it. Standards abiding code
is halfway to implement the WCAG standards and design accessible websites (Hudson,

35

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

Table 3.5: Number of checks of each tool by the level of conformance.

Tool A AA AAA Total

aXe Chrome Plugin 35 7 2 44

Tenon Check 103 5 23 131

Wave Chrome Extension 152 28 0 180

TotalValidator 108 11 20 139

ACCESS Assistant Community 215 37 0 252

Accessibility Insights 55 7 2 64

ARC toolkit 136 9 0 145

Lighthouse -accessibility 39 4 4 47

2011).
All tools have unlimited use, except Tenon, limiting the number of requests by month

to the API, besides being the only tool requiring the user to sign up and obtain an API
key. All the tools, except TotalValidator, do not provide information on how well they
support accessibility. TotalValidator informs that the creators regularly test if the tool can
be used entirely by keyboard and the results generated are accessible. It also states to
support screen readers.

Table 3.5 presents the number of tests each tool implements grouped according to the
WCAG level of conformance. This information was gathered from the documentation
available for each tool online. It is possible to analyze that ACCESS Assistant Commu-
nity, ARC toolkit, and WAVE do not evaluate AAA success criteria. However, for A and
AA levels, ACCESS Assistant Community provides a higher number of checks.

It is also essential to examine what the checks validate. Figure 3.9 presents a chart
displaying the number of success criteria for each tool test. It is interesting to note if a
user employs all tools, the total of individual success criteria tested is 62, still well below
the total of 78 success criteria in WCAG. The previous observation is an example of the
problems of over-reliance on automated tools.

Figure 3.9: Number of success criteria tested by the tools.

36

3.5 Results

The study analyzed which success criteria were overall most checked. Figure 3.10
presents a treemap where the areas are related to the number of checks across all tools
that test that success criterion. Only success criteria with over 15 checks were included in
the treemap in order to improve legibility.

Figure 3.10: Number of checks by success criteria.

Most tested success criteria belong to the Perceivable principle. The other most tested
principles are Operable, Robust, and Understandable by this order. Three success cri-
teria stand out by the number of checks related to them: 1.3.1 Info and Relationships,
1.1.1 Non-text Content, and 4.1.2 Name, Role, Value. Perceivable is the principle with
most checks only because of 1.3.1 and 1.1.1. In addition to those two, it has only one
more success criterion with more than 15 checks. The Operable principle coverage is
more uniform, with seven success criteria, each one between 16 and 51 checks. Both the
Understandable and Robust principles have only two success criteria with more than 15
checks. For the Robust principle, this could be expected since it has only three success cri-
teria (one of those was only introduced in WCAG 2.1, which is not covered by all tools).
However, the Understandable principle has 17 success criteria, hinting at the difficulty of
automating these success criteria. A similar argument can be made for the Perceivable
principle that has 29 success criteria with only 3 having more than 15 checks and for the
Operable principle with 29 success criteria also, although for this one the situation is not
as pronounced.

3.5.2 Usability Analysis

In the following paragraphs, the strengths and limitations of each tool from my us-
ability perspective are discussed.

37

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

3.5.2.1 Accessibility Insights

Strengths: Easy to use; Excellent user interface; Explanations about errors excellent
and easy to follow; Manual testing procedures with visual help present; Good coverage
of automated tests and approximately 20 manual guided tests.

Limitations: Sometimes, the tool crashed, and it was necessary to do a browser re-
fresh.

3.5.2.2 aXe Chrome Extension

Strengths: Easy access to success criteria documentation; has good material about
what is an issue and how to fix it; gives the possibility to save results; good, intuitive user
interface; if tests are semi-automatic, asks and guides the user to evaluate the result.

Limitations: The extension stopped working a few times, especially when testing
pages dense in information.

3.5.2.3 ARC Toolkit

Strengths: Easy access to success criteria documentation; Includes easy tests for
focus order and new WCAG 2.1 success criteria Reflow and Text spacing and buttons
to validate the code through the W3C Nu HTML validator.

Limitations: The user interface can be difficult to understand initially.

3.5.2.4 Tenon

Strengths: An id identified the errors; Possible to export results in CSV format; Good
documentation available about how to use and success criteria evaluation.

Limitations: Necessary configuration of API password previously to use; when click-
ing on the browser extension button, it opens multiple browser windows with the reports
instead of only one; results not aggregated by error.

3.5.2.5 WAVE

Strengths: Easy access to success criteria documentation; Simple results report; Pos-
sibility to turn-off CSS of the page; Direct contrast evaluation where user can manipulate
colors and check for contrast directly with tool.

Limitations: Uses many icons on the page to help users locate instances, however
with pages with many errors, this can be very confusing; Most of the information pre-
sented are alerts that there is content that can be a possible accessibility issue which it
cannot evaluate automatically and needs user evaluation which is time-consuming.

38

3.5 Results

3.5.2.6 TotalValidator

Strengths: Easy access to success criteria documentation; Possibility for a user to
validate HTML; very concise information about errors and success criteria; Provides also
information about best practices.

Limitations: Difficult to work with the extension because it needs to pre-install an
application on the computer; Often, the extension, when clicked, cannot connect to the
app to start evaluating the web page; Does not show the failing instances in code or how
to solve it since it is a free version.

3.5.2.7 ACCESS Assistant Community

Strengths: Easy user interface; Provides manual testing guidance.
Limitations: Very difficult to access the documentation for the extension and success

criteria; Does not show the count of instances failing per error.

3.5.2.8 Lighthouse

Strengths: Easy access to success criteria documentation; Easy to use; Generates a
report that gives information on all of the tests that passed in addition to the ones that
failed.

Limitations: Does not show the count of failing instances per error.

3.5.3 Web Pages Evaluation Analysis

The analysis begins by verifying the differences between the errors identified by each
tool in the web pages evaluated. The failed checks are grouped by their success criteria to
facilitate the analysis. The following charts present the results. The charts use logarithmic
scales to accommodate the broad range of errors found.

Figure 3.11 presents the number of errors found by Accessibility Insights in all web
pages evaluated, grouped by success criterion. Most errors were found on success criteria
4.1.1, 1.4.3, and 4.1.2. The errors mostly address the Robust and Perceivable principles
and level A of conformance in what concerns principles and conformance levels. The web
pages with more errors found by Accessibility Insights were youtube.com, reddit.com,
and tmall.com.

Figure 3.12 presents the number of errors found by the ACCESS Assistant Commu-
nity in all web pages evaluated, grouped by success criterion. The success criterion with
more errors was 4.1.1, mainly due to the evaluation of youtube.com. The success criteria
1.1.1 and 3.2.2 are the following criteria with more errors found on all pages. The princi-
ple violated more frequently is Robust, with level A conformance being dominant in the
criteria violated. The web page with more errors found was youtube.com.

39

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

Figure 3.11: Number of errors found by Accessibility Insights.

Figure 3.12: Number of errors found by ACCESS Assistant Community.

Figure 3.13 presents the number of errors found by ARC Toolkit in all web pages
evaluated, grouped by success criterion. The success criteria with more errors are 1.4.3,
1.1.1, and 4.1.2. Although youtube.com is present with many errors, in the ten websites,
ARC found 1.4.3 as the most common violation with more incidence for blogspot.com
and amazon.com. For ARC Toolkit, Perceivable is the principle more frequently violated
with several level A and AA criteria violated.

Figure 3.14 presents the number of errors found by aXe Chrome in all web pages eval-
uated, grouped by success criterion. For aXe Chrome, the most frequent violation happens
for success criteria 4.1.1, 4.1.2, 1.1.1. Robust is the principle, and conformance level A

40

3.5 Results

Figure 3.13: Number of errors found by ARC Toolkit.

success criteria are the most violated. The websites with more errors are youtube.com,
tmall.com, and reddit.com. aXe Chrome and Accessibility Insights use the same engine.
Even though there are small differences, the results are similar.

Figure 3.14: Number of errors found by aXe Chrome.

Figure 3.15 presents the number of errors found by Lighthouse in all web pages eval-
uated, grouped by success criterion. Lighthouse also uses the same aXe-core engine. As
aforementioned, when tools use the same engine, the implementation and heuristics can
be slightly different, but the results tend to be similar. In this case, the criteria found

41

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

to have more errors are very similar to Accessibility Insights: 4.1.1, 1.4.3, and 4.1.2.
The web pages evaluated with more errors are youtube.com, reddit.com, and tmall.com.
Robust is the principle more violated and A the conformance level.

Figure 3.15: Number of errors found by Lighthouse.

Figure 3.16 presents the number of errors found by Tenon in all web pages evaluated,
grouped by success criterion. The success criterion with most errors found by this tool
was 1.1.1 followed by 2.4.9 and 2.4.4. The principles most violated were Perceivable
and Operable, and the conformance level with more errors is A. Tenon evaluates more
frequently conformance level AAA than the other tools. For Tenon, youtube.com is the
website with more errors, followed by yahoo.com and live.com.

Figure 3.17 presents the number of errors found by TotalValidator in all web pages
evaluated, grouped by success criterion. The success criterion with more errors detected
by the tool was 1.4.3 followed by 2.4.6 and 1.1.1. The website with more errors is red-
dit.com, followed by youtube.com and amazon.com. More errors were found for confor-
mance level AA than A. The principles violated more frequently were Perceivable and
Operable.

Figure 3.18 presents the number of errors found by WAVE in all web pages evaluated,
grouped by success criterion. The most prevalent errors are in success criteria 1.4.3,
1.1.1, and 2.4.4. The web pages evaluated by this tool with more errors are reddit.com,
youtube.com, and tmall.com. The principle most often violated is Perceivable, and the
level conformance most violated is A. It is important to recall that WAVE does not perform
level AAA evaluations.

By inspecting the numbers of violations on all pages evaluated (table 3.6), a tendency
of the current state of automated accessibility evaluation tools can be inferred. The con-

42

3.5 Results

Figure 3.16: Number of errors found by Tenon

Figure 3.17: Number of errors found by TotalValidator.

formance level A is the one with most violations found, corresponding to a higher num-
ber of checks targeting this level’s success criteria. On what concerns principles, Robust
emerges as the one with more violations found. However, this is a direct result of a sin-
gle page/tool combination. If the violations from ACCESS Assistant Community found
on youtube.com are removed, then Perceivable becomes the more violated principle fol-
lowed by Operable. The low number of violations in the Understandable principle should
be highlighted due to the low number of checks in this principle.

43

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

Figure 3.18: Number of errors found by WAVE.

Figure 3.19 provides an overview of what success criteria are most violated across
all the pages tested, taking into account all tools’ results. This, together with each tool’s
outcomes, paints a picture of the current coverage of automated accessibility evaluation
tools.

Figure 3.19: Number of violations found by all tools grouped by success criteria.

Analyzing the success criteria evaluated by tools, some criteria were unique to some
tools. The unique success criteria are 3.1.2 and 3.2.2 for ACCESS Assistant Community;

44

3.5 Results

Table 3.6: Number of violations reported by each tool across all pages tested, grouped by conformance
level and principle (P - Perceivable; O - Operable; U - Understandable; R - Robust).

Conformance Principle

A AA AAA P O U R

Accessibility Insights 179 75 114 26 5 109

ACCESS 4114 7 261 52 53 3755

ARC 190 110 201 40 1 58

aXe 187 30 71 24 6 116

Lighthouse 131 56 73 15 6 93

Tenon 808 110 306 574 546 49 55

TotalValidator 339 508 12 455 298 23 83

Total 5948 896 318 1749 1001 143 4269

2.4.3 for ARC Toolkit; 3.3.1 for aXe Chrome; 2.1.3, 3.2.4 and 2.5.5 for Tenon; 2.5.3,
2.2.2 and 1.2.1 for TotalValidator; and 3.3.3 for WAVE. Lighthouse and Accessibility
Insights do not have any unique success criteria as expected since they share the same
engine (aXe Chrome probably as a different version of the engine, justifying its unique
success criteria). On the other side of the spectrum, the success criteria that appear in
every tool are 1.1.1, 4.1.2, and 2.4.4. Success criteria 1.3.1 and 2.4.4 appear in all but one
of the tools. The success criteria with more errors are 4.1.1, 1.4.3, and 1.1.1. However,
different tools find more violations in different sets of success criteria. One distinguish-
ing factor between tools seems to be their level of support for the success criteria of the
“Robust” principle. One group of tools composed by Accessibility Insights, aXe Chrome,
Lighthouse (the three sharing the same engine), and ACCESS Assistant Community edi-
tion all find several errors for criteria 4.1.1. The remaining tools, ARC Toolkit, Tenon,
TotalValidator, and WAVE, find a much smaller number of violations for the success cri-
teria 4.1.1. Three of these tools (ARC, TotalValidator, and Wave) find more for 1.4.3, and
Tenon finds more errors for 1.1.1.

Only five of the eight tools presented had results specifying warnings, and these were
Accessibility Insights, Axe, ARC Toolkit, Wave, TotalValidator. Warnings are tests that
only identify the instance but request manual testing by the user. The success criteria with
more warnings are 4.1.1, 4.1.2, and 2.4.1. The conformance level with the higher number
of warnings is A with a total warning of 6263; AA had only 1170 and 2 for AAA. With
more warnings, the WCAG principle is Robust with 2672 in total, followed by operable
with 2524, perceivable with 2177, and understandable with 62.

45

3. STUDY OF EXISTING ACCESSIBILITY EVALUATION CHROME
EXTENSIONS

3.6 Discussion

There have been discussions and arguments about how to measure the accessibility
of websites (Brajnik et al., 2007). Ideally, any thorough accessibility evaluation should
involve automatic and manual approaches, but that is not always possible due to different
constraints (for example, time, cost, expertise). Automatic approaches use automatic
tools. Some of these are available for the browser. After triggering the evaluation, the
tool evaluates the web page and generates a report. An ideal report flags accessibility
issues, describe them, and gives guidance on how to fix them.

In this experimental study, accessibility tools freely available as browser extensions
were analyzed. Browser extensions are easily accessible and do not require the instal-
lation of additional software. For that reason, it is paramount that these extensions are
easy to use since they can be found and installed by users without previous accessibility
expertise. Such tools facilitate developers and the general public’s workflow, for exam-
ple, government bodies that need to verify if public websites are corresponding to the
mandatory accessibility directives.

Overall, the tools were easy to install and use but not flawless since during evalua-
tions, they crashed, and it was necessary to refresh the browser. In these instances, care
was taken to check if the reloaded page was still unchanged compared to the pages evalu-
ated by the other tools. However, of the tested chrome extensions, the one that demanded
the user to install an application in addition to the chrome extension was TotalValidator.
The results obtained between tools varied in what success criteria they evaluate (for ex-
ample, WAVE does not evaluate level AAA conformance criteria), varied in classifying
the results according to its impact on the user, and classifying the result as an error or a
warning. All these variances are a consequence of how specifications and heuristics are
implemented for each tool. This study analyzed the number of errors found per success
criteria by the different tools. Although there were some differences in success criteria
evaluated between tools, some similarities in the results could be found, with 4.1.1 being
the most violated success criteria. The analysis showed that individual tools have low cov-
erage of the WCAG 2.1 success criteria. If all are used together, the coverage increases,
affording approximately 10% to 40% more coverage than using only one tool. To improve
the evaluation performance, developers should fill the gaps between tools using more than
one. There are tools, for example, TotalValidator or ARC Toolkit who can perform, be-
sides accessibility evaluation related to success criteria, a validation of the HTML code
evaluation in order to leverage the evaluation. A well-written code (for example, abiding
by standards) is halfway to meet accessibility requirements also. Considering the us-
ability issues found during this study and the results of the tools’ evaluations, users may
struggle with accessibility evaluations because of the inherent variance between imple-
mentations, how to use the tools, and how to interpret the results. Given that the best
option seems to be to use more than one tool to improve accessibility and adherence to

46

3.6 Discussion

developing accessible websites, there should be more consensus on how tools are devel-
oped, concepts defined, and results presented. In what regards concepts, semi-automatic
tests need human intervention. However, this can be due to tools only being able to detect
an instance of the tested elements without being able to evaluate if the element meets the
criteria (for example, Wave); or a tool may need human intervention because it detects a
failing instance but with an uncertainty factor too high to be sure about the correctness of
its decision (for example, Tenon). Another example is pass or fail: some tools consider a
pass even when the instance is absent (for example, Accessibility Insights). Others, like
Lighthouse, consider a pass only if the instance is present and passed the test. In this situ-
ation, the other tests that were not performed because the instance is absent are considered
“not applicable”. All these differences in concepts impact how results are presented and
interpreted. Overall, automatic tools available as browser extensions allow users to assess
accessibility quickly. Although not perfect and with limitations, they remain essential
to help users evaluate websites to find most of those violations of success criteria that
can be automated. However, they should always be complemented with manual testing
procedures, and the results need to be analyzed objectively with reasoned judgment.

47

48

Chapter 4

Design of AccessBot

AccessBot is an extension for Chrome that helps users find and fix accessibility issues
in web pages. This chapter introduces AccessBot and presents its features. Since Qual-
Web is the engine behind AccessBot, an important step is to integrate AccessBot with
QualWeb. After this section, and taking into account AccessBot’s features, the architec-
ture of AccessBot is described in detail. Since AccessBot performs semi-automatic and
manual evaluations, it is necessary to design the algorithms for these tests to complement
the automatic evaluation tests. These are also presented in this chapter, along with the
automatic tests.

4.1 AccessBot Features

AccessBot allows users to verify that a web page is compliant with WCAG. The tool
supports the ability for the user to choose between three types of accessibility evaluations.
The user can pre-select before starting an evaluation, an automatic, a semi-automatic, and
manual evaluation. AccessBot allows the user to select all types at the same time or a
specific type. QualWeb is the engine that performs automatic evaluation where the tool
automatically checks for compliance. The semi-automatic and manual evaluations need
user input in order to achieve a final result. To accomplish this, AccessBot provides exact
questions to orientate the user in identifying critical accessibility issues with additional
rule descriptions and test instructions. After all questions for a test have been answered,
AccessBot notifies the user with a final result.

Currently, the number of semi-automatic rules is twenty-four, and the number of man-
ual rules is two. More information about the rules is located at the end of this chapter. It
is essential to point out that there are rules with automatic tests and semi-automatic tests
simultaneously.

After clicking on the button start evaluation, a result popup window provides the user
with a result analysis dashboard.

The rules are aggregated in categories to be easier to identify. AccessBot also allows

49

4. DESIGN OF ACCESSBOT

the user to filter the rules according to the result of all the rules; for example, list only
rules that have passed or failed. The user also has the information about what type of rule
is, if it is automatic, semi-automatic, or manual. Inside each rule, the user can filter tests.
The filter shows the rules with tests that have passed, for example.

For all the evaluations’ results, AccessBot provides a visual helper that identifies the
element that is being evaluated quickly and more straightforward. The visual helper ap-
pears as a red square around the element on the web page that is being evaluated. If there
is more than one element highlighted on the evaluated web page, there is a feature to
remove all highlights using the “Remove highlights” button.

For every evaluation, even for the automatic tests, the user can manually change the
outcome of the test and can add an observation for a test result. These changes are auto-
matically saved. After an evaluation, the user can also insert the evaluator’s name and save
the results by exporting them in two formats, EARL (Evaluation and Report Language)
and CSV (Comma-Separated Values) for later analysis.

4.2 AccessBot Integration with QualWeb

QualWeb is the accessibility evaluation engine of AccessBot. It is an evaluator im-
plemented in noje.js. As is known, both the browser and Node use javascript as their
programming language. However, building AccessBot that runs in the browser is differ-
ent since there is no access to node.js APIs like the filesystem access functionality.
Since AccessBot is designed to work as a Chrome extension, it can only use javascript
to run in the browser. QualWeb uses several libraries to execute its logic, so instead of
using the entire QualWeb application, AccessBot uses the critical libraries that evaluate
the HTML and CSS. This decision not only allows AccessBot to be lighter but also allows
AccessBot to work completely independent of any external call necessary, meaning that
it can be used to evaluate web pages offline.

There are three libraries that Accessbot uses from QualWeb; these are:

• qw-page1 - qw-page exposes a class with the same name qwpage that takes as
arguments the document object and the window object. It generates a new object,
which is sent to the execute method provided by the act-rules library.

• act-rules2 - is the main library responsible for doing the evaluation of the
qw-page object that it receives. It has as a dependency on the entire list of evalu-
ations for each ACT rule. act-rules processes the HTML and CSS, and returns
an object that comprises all the elements tested and their results. This object is re-
sponsible for all the automatic evaluations on the page and is also a starting point
to further enhance it with semi-automatic and manual tests.

1Code hosted in https://github.com/qualweb/qw-page.
2Code hosted in https://github.com/qualweb/act-rules .

50

4.3 AccessBot Architecture

• earl-reporter3- EARL is a vocabulary to describe test results in a machine-
readable format. Developed by the W3C, it allows applications to interchange an
XML format that describes accessibility evaluation results. Both QualWeb and
AccessBot allow users to export an EARL report file. AccessBot uses this library
developed for QualWeb as the basis for generating an object with all the information
required to be EARL compliant. AccessBot uses this object to generate HTML,
JSON, and CSV files to save on their machine.

4.3 AccessBot Architecture

Here is presented the AccessBot web application architecture’s blueprint, which de-
scribes its components, their relations, and how they interact with each other. It is a
client-side process, meaning its processes take place on the user’s computer without need-
ing access to a web server. The absence of a web server can be seen as an advantage since
the AccessBot application can run the same scripts on an HTML page even if the user is
disconnected from the internet.

The AccessBot analyzes the webpage in the opened tab of the Chrome Browser. Fig-
ure 4.1 represents the flow between the architecture’s components.

When the user clicks to start the evaluation, a message is sent to background.js
from popup.js with the selected options. The background.js script is responsible
for keeping communication with the entire system. When receiving the message from
the popup.js, background.js verifies the user clicked options, in this case, if the
user selected automatic, semi-automatic, and manual tests to perform the accessibility
evaluation. If the user requires automatic and semi-automatic tests background.js
then communicates with content.js to get the content of the tested page. The
content.js script then fetches and manipulates the active page. When content.js
gets this event, it creates a qw-page object with the document and window object. The
qw-page object is generated from a class in the imported library qw-page.js, as
shown in figure 4.1. The qw-page object is used as an argument for the execute

method from another imported library called act-rules that resides in act.js file.
The method then generates the accessibility evaluation result object. The resulting ob-
ject from act-rules method is used as an argument of the callback function defined
in background.js but used in the content.js. This callback function allows the
background.js to handle the content.js response.

The object received has much information that we do not require for AccessBot. When
background.js gets this information, it filters the original object received to build a
new object with selected properties. With this process completed, background.js
creates a call to the browser to open result.html as a popup. If the user only requires

3Code hosted in https://github.com/qualweb/earl-reporter.

51

4. DESIGN OF ACCESSBOT

Figure 4.1: Representation of AccessBot architecture. The user clicks on the AccessBot (orange square),
and the subsequent flow follows with the succeeding output.

manual tests, background.js does not need to communicate with content.js, and
it jumps straight to calling the browser to open result.html.

As soon as result.html is fully loaded, it notifies background.js and
background.js sends the filtered object result.js. result.js is responsible
for the entire upkeep of AccessBot, meaning it is the main file that presents the result
and is also responsible for AccessBot’s user interaction. result.js will modify the
active page when the user decides to highlight an element that is being evaluated. For
that to happen, it will send an event to background.js, and background.js will
notify content.js of the necessary change. The same is true when the user removes
the highlight. The highlights are visible as red borders around the selected element on the
evaluated web page.

4.4 Rules implemented in AccessBot

The rules for accessibility testing implemented on AccessBot are detailed in table 4.1.
In this table, QualWeb rules identified with code QW-ACT-Rxy can be used for devel-
oping automated and semi-automatic testing methodologies. One rule can have multiple
automatic or semi-automatic tests applied to different elements, but each element being

52

4.5 Semi-automatic Test Algorithms

evaluated by the rule can only have one test.
The QualWeb rules are based on ACT Rules identified by an ACT Rule ID in the third

column of table 4.1. Each rule also has a description that provides a brief explanation of
what the rule does.

In table 4.1 and AccessBot, the rules are divided into categories to organize rules and
ease access to them by identifying the rules with shared characteristics, namely the suc-
cess criterion and guideline group they belong. Each guideline corresponds to a different
type of content. In the end, several categories emerged. Each category contains multiple
rules, and each rule can only be in one category.

In the last column of table 4.1, each rule has the information if it has automatic and
semi-automatic tests or if it is manual. Each rule’s source code of automating testing
has exit points in QualWeb called “result code” (RC), which means the exit code status
to obtain a final result of a pass, fail, inapplicable, or cannot tell. The semi-automatic
test algorithm picks on the result code that needs user evaluation and prompts a series
of questions before obtaining a final result. After the user answers the questions, the
algorithm reaches a final evaluation result for the tested element. The manual tests do not
require result codes since they are only questions made to guide the user and independent
from the QualWeb result evaluation.

Semi-automatic and manual algorithms examples are presented in the next section.

4.5 Semi-automatic Test Algorithms

This section illustrates how semi-automatic algorithms were designed by introducing
a couple of examples. Figure 4.2 is the algorithm for R8. R8 belongs to the category
Image, and this rule checks if image elements that use their source filename as their ac-
cessible name do so without loss of information to the user. As presented in the figure, this
is a simple diagram representing a semi-automatic rule. It indicates that, although Qual-
Web evaluates the element and finds instances of images with an accessible name equal
to the filename, the machine code cannot determine if the image filename has a loss of in-
formation or not and consequently gives the result “Cannot Tell”. The result corresponds
to the result code (RC) RC1. The resulting code is the starting point for user evaluation
and decision making. The decision represented by a rhomboid shape with white back-
ground has a query to the user, and depending on the answer, the final result will be a pass
(green square) or a fail (red square). The other semi-automatic rules’ algorithms are in
the appendix A of the thesis.

Figure 4.3 represents a more complex algorithm. This algorithm is for Rule 17, which
verifies if an image has an accessible name. In this algorithm, the automatic evaluations
performed by QualWeb are represented by rhomboid shapes colored with a gray back-
ground representing machine code decision making. In this particular case, there are two
different result codes, RC1, and RC3, that result from the decision-making code of R17.

53

4. DESIGN OF ACCESSBOT

Table 4.1: AccessBot rules description for webpages evaluation. Rules are described by category, id, and
what type of tests they address.

Category QualWeb Rule ID ACT Rule ID ACT Rule Name Type of tests

Title QW-ACT-R1 2779a5 HTML Page has a title
Automatic
Semi-automatic

Language QW-ACT-R2 b5c3f8 HTML has lang attribute
Automatic
Semi-automatic

Language QW-ACT-R3 5b7ae0 HTML lang and xml:lang match Automatic
Time QW-ACT-R4 bc659a Meta-refresh no delay Automatic
Language QW-ACT-R5 bf051a Validity of HTML Lang attribute Automatic

Image QW-ACT-R6 59796f Image button has accessible name
Semi-automatic
Automatic

Orientation QW-ACT-R7 b33eff Orientation of the page is not restricted using CSS transform property Automatic
Image QW-ACT-R8 9eb3f6 Image filename is accessible name for image Semi-automatic

Link QW-ACT-R9 b20e66 Links with identical accessible names have equivalent purpose
Automatic
Semi-automatic

iFrame QW-ACT-R10 4b1c6c iframe elements with identical accessible names have equivalent purpose
Automatic
Semi-automatic

Button QW-ACT-R11 97a4e1 Button has accessible name
Automatic
Semi-automatic

Link QW-ACT-R12 c487ae Link has accessible name
Automatic
Semi-automatic

ARIA QW-ACT-R13 6cfa84 Element with ARIA-hidden has no focusable content Automatic
Sensory and Visual Clue QW-ACT-R14 b4f0c3 meta viewport does not prevent zoom Automatic

Audio and Video QW-ACT-R15 80f0bf audio or video has no audio that plays automatically
Automatic
Semi-automatic

Form QW-ACT-R16 e086e5 Form control has accessible name
Automatic
Semi-automatic

Image QW-ACT-R17 23a2a8 Image has accessible name Semi-automatic
Parsing QW-ACT-R18 3ea0c8 id attribute value is unique Automatic

iFrame QW-ACT-R19 cae760 iframe element has accessible name
Automatic
Semi-automatic

ARIA QW-ACT-R20 674b10 role attribute has valid value Automatic

Image QW-ACT-R21 7d6734 svg element with explicit role has accessible name
Automatic
Semi-automatic

Language QW-ACT-R22 de46e4 Element within body has valid lang attribute
Automatic
Semi-automatic

Audio and Video QW-ACT-R23 c5a4ea video element visual content has accessible alternative
Automatic
Semi-automatic

Form QW-ACT-R24 73f2c2 autocomplete attribute has valid value Automatic
ARIA QW-ACT-R25 5c01ea ARIA state or property is permitted Automatic
Audio and Video QW-ACT-R26 eac66b video element auditory content has accessible alternative Automatic
ARIA QW-ACT-R27 5f99a7 This rule checks that each ARIA- attribute specified is defined in ARIA 1.1. Automatic
ARIA QW-ACT-R28 4e8ab6 Element with role attribute has required states and properties Automatic
Audio and Video QW-ACT-R29 e7aa44 Audio element content has text alternative Semi-automatic

Form QW-ACT-R30 2ee8b8 Visible label is part of accessible name
Automatic
Semi-automatic

Audio and Video QW-ACT-R31 c3232f Video element visual-only content has accessible alternative Automatic
Audio and Video QW-ACT-R32 1ec09b video element visual content has strict accessible alternative Automatic
ARIA QW-ACT-R33 ff89c9 ARIA required context role Automatic
ARIA QW-ACT-R34 6a7281 ARIA state or property has valid value Automatic

Heading QW-ACT-R35 ffd0e9 Heading has accessible name
Automatic
Semi-automatic

Table QW-ACT-R36 a25f45 Headers attribute specified on a cell refers to cells in the same table element
Automatic
Semi-automatic

Contrast QW-ACT-R37 afw4f7 Text has minimum contrast
Automatic
Semi-automatic

ARIA QW-ACT-R38 bc4a75 ARIA required owned elements Automatic
Table QW-ACT-R39 d0f69e All table header cells have assigned data cells Automatic
Sensory and Visual Clue QW-ACT-R40 59br37 Zoomed text node is not clipped with CSS overflow Semi-automatic
Form QW-ACT-R41 36b590 Error message describes invalid form field value Semi-automatic

Object QW-ACT-R42 8fc3b6 Object element has non-empty accessible name
Automatic
Semi-automatic

Keyboard QW-ACT-R43 0ssw9k Scrollable element is keyboard accessible Automatic

Link QW-ACT-R44 fd3a94 Links with identical accessible names and context serve equivalent purpose
Automatic
Semi-automatic

Parsing QW-ACT-R48 46ca7f Element marked as decorative is not exposed Automatic
Keyboard - 80af7b Elements focusable with keyboard Manual
Time - efbfc7 Text content that changes automatically can be paused, stopped or hidden. Manual

54

4.6 Manual Test Algorithms

Figure 4.2: Diagram flow of Rule 8. The rule checks that image elements that use their source filename as
their accessible name do so without loss of information to the user.

Consequently, each RC leads to a different pathway of questions to the user. The questions
are represented by the rhomboid shape but with the white background color. Depending
on the answer of the user, this will lead to a pass or fail result.

4.6 Manual Test Algorithms

The algorithm represented in figure 4.4 is for a manual test. As stated, for these tests,
QualWeb does not intervene, and they are composed of a series of instructions to guide
the user. Figure 4.4 represents the algorithm for keyboard manual test to verify if the web
page is operable using a keyboard. A series of questions and instructions are presented to
the user, reaching a final result of pass or fail. There is another manual algorithm test, but
this is presented in the appendix B.

55

4. DESIGN OF ACCESSBOT

Figure 4.3: Diagram flow of Rule 17. This rule checks that each image either has a non-empty accessible
name or is marked up as decorative.

56

4.6 Manual Test Algorithms

Figure 4.4: Rule ACT ID 80af7b. This rule checks for keyboard traps. This includes use of both standard
and non-standard keyboard navigation to navigate through all content without becoming trapped.

57

58

Chapter 5

AccessBot Implementation

This chapter provides an understanding of all significant aspects of the implementation
of AccessBot. First, the technologies used are described, then the development process,
including a description of the main and features logic, and lastly, it presents the difficulties
encountered during the development process.

5.1 Technologies used on AccessBot

For implementing the AccessBot Chrome extension, the Javascript programming lan-
guage is used as the scripting language without frameworks, alongside HTML, CSS,
and JSON. For compiling Javascript modules, the tool used is Webpack1. It generates
a few files that run AccessBot besides bundling the resources and compiling TypeScript
to Javascript. The libraries of QualWeb mentioned in the previous chapter are written in
TypeScript resulting in more robust software. Webpack needed configuration, which was
done during the development of the project. Listing 5.1 represents the configuration of
Webpack with its entry points and the output results. For version control, Git is used.

Listing 5.1: Webpack configuration file.

1
2 const path = require('path')

3
4 module.exports = [{

5 entry: {

6 result: './result.js',

7 popup: './popup.js',

8 background: './background.js',

9 contentScript: './contentScript.js',

10 },

11 output: {

12 filename: '[name].js',

1For more information https://webpack.js.org/ .

59

5. ACCESSBOT IMPLEMENTATION

13 path: path.resolve(__dirname, 'dist'),

14 libraryTarget: 'var',

15 library: ["[name]"],

16 },

17 optimization: {

18 minimize: false
19 },

20 }]

5.2 AccessBot Processing

This section describes the code implementation process of AccessBot. For the im-
plementation to be straightforward, the logic is going to be divided into smaller sections.
Note that these sections may not be sequential. During development, some coding overlap
exists; for example, a feature is developed, but new functionalities are implemented and
added, or the feature needs correction.

The implementation is divided into automatic logic, which deals with manipulation
of QualWeb automatic results; semi-automatic and manual logic, which refer to the im-
plementation of the algorithms and how these are presented to the user; and finally, the
features logic that provides a more easy interpretation and manipulation of the results
by the user. It is also mentioned the setup of the manifest file, which is the JSON file
that specifies the assets of AccessBot. The popup section refers to the entry point of the
AccessBot.

5.2.1 Setup of manifest file

The creation of any Chrome extension always starts with the manifest file. This file
contains all the information needed to create AccessBot, as shown in the listing 5.2. The
manifest file is updated as needed during the AccessBot coding. It is a JSON file that
contains all the information that defines the extension: the description of AccessBot; a
content security policy that introduces strict policies that make the extension more se-
cure; permissions which is the information AccessBot can access; and allows to specify
also aspects of AccessBot functionality such as background scripts, content scripts, and
browser actions.

Listing 5.2: AccessBot manifest file configuration.

1
2 {

3 "name": "AccessBot",

4 "version": "1.1.6",

5 "description": "Assisted Evaluation powered by QualWeb.",

6 "manifest_version": 2,

60

5.2 AccessBot Processing

7 "content_security_policy": "script-src 'self'; object-src 'self'"

,

8 "permissions": ["storage", "tabs", "activeTab", "http:

//127.0.0.1:9222/*"],

9 "background": {

10 "page": "background.html",

11 "script": "background.js",

12 "persistent": true

13 },

14 "browser_action": {

15 "default_popup": "popup.html"

16 },

17 "icons": {

18 "48": "icons/robot_48.png"

19 },

20 "content_scripts": [{

21 "matches": ["<all_urls>"],
22 "js": ["./dist/contentScript.js", "act.js", "qwPage.js"]

23 }

24]

25 }

5.2.2 Popup

After reflecting on how the user would interact with the extension, the best solution
was to implement a browser action. An icon on the Google Chrome toolbar is created for
the user to click. When the user clicks the icon, a popup appears, which corresponds to
the file popup.html, allowing the user to define the options that will control the evaluation
and start the evaluation itself. When the user clicks the button to start the evaluation on
the popup, an event is triggered. An object that stores the user options for the evalua-
tion (manual, semi-automatic, and automatic) is sent to background.js. The user is
required to select an option; otherwise, the start evaluation button is disabled. Chrome
uses an observer pattern with events and listeners to communicate between different parts
of the application. In this case, chrome.runtime.sendMessage() with options
object as an argument has a listener on background.js that is waiting to receive the
object once it is created.

Upon receiving the event from the popup, in the background.js listener de-
fined using chrome.runtime.onMessage.addListener(), the options object
received is verified to find if the user selected manual, semi-automatic, or automatic.

This step is essential because it will determine if we need to use QualWeb to generate
an evaluation for us to display to the user in semi-automatic and automatic evaluations,
contrary to manual evaluations.

61

5. ACCESSBOT IMPLEMENTATION

5.2.3 Automatic and Semi-automatic Shared Logic

There are a few steps that are common to both logics. In background.js, steps
consist of determining the active chrome tab’s id, which corresponds to the web page
that will be evaluated. With that information, an event message to the corresponding
content.js of the tab is sent from background.js.

With chrome.tabs.sendMessage() the code can communicate with the open
tab on Chrome, bearing in mind that in order to do that, we are required to create a
content.js file. The chrome.tabs.sendMessage() has three arguments. The
first argument is an integer value corresponding to the tab id we wish to communicate. The
second, the object we wish to send, and the third is an optional callback function. We use
this callback when sending the message to the content.js to ease the communication
process between background.js and content.js by reducing listeners’ number.

The code can never directly manipulate a page with Chrome Extension. Chrome
requires to define on the manifest JSON a content_script with a rule for URLs
that will load the content.js file. In the case of AccessBot, we applied the rule
all_urls on the manifest. Every website that users open when we have the AccessBot
extension enabled will have the defined content.js loaded to manipulate the page.
The content.js from the tab that gets this message will create a qwPage object,
by using the imported library with the same name qwPage, from the page Document
and Window object (listing 5.3). The Window object represents an open window in a
browser, while the Document object represents the HTML displayed in that window. The
Document object has various properties that refer to other objects which allow access and
modification of the document content.
Listing 5.3: Code excerpt from file content.js that shows the use of the two imported libraries from
QualWeb. The code creates a qwpage object using QWPage library. Then this object is processed by
ACTRules library.

1
2 if(request.message === "getDocument") {

3 const result = new QWPage.QWPage(document, window);

4 let act = new ACTRules.ACTRules()

5 const actResult = await act.execute({},result,[]);

6 sendResponse(actResult);

7 }

With qwPage object, the code executes the QualWeb assertions for the evalua-
tion web page using another library named ACTRules. This logic needs to be inside
content.js because we can only access the document and the window object inside
the tab execution context. After we get the final result, in this case, variable actResult
from the rules assertions, we use the callback defined in the background.js with the
actResult as an argument.

An example of console-log of the original QualWeb object obtained after the
evaluation of the webpage https://ciencias.ulisboa.pt/ is presented:

62

https://ciencias.ulisboa.pt/

5.2 AccessBot Processing

Object

assertions:

QW-ACT-R1: {

name: "HTML Page has a title",

code: "QW-ACT-R1",

mapping: "2779a5",

description: "This rule checks that the HTML page has a title.",

metadata: {...},

...}

QW-ACT-R2: {

name: "HTML has lang attribute",

code: "QW-ACT-R2",

mapping: "b5c3f8",

description: "This rule checks that the html element has (...) attribute.",

metadata: {...},

...}

QW-ACT-R3: {

name: "HTML lang and xml:lang match",

code: "QW-ACT-R3",

mapping: "5b7ae0",

description: "The rule checks that for the html element, (...) are used.",

metadata: {...},

...}

(...)

The callback function saves on a variable, accessible throughout background.js,
a simplified object used for the application (listing 5.4). As the name says, this simplified
object is a simplified modification of the original QualWeb evaluation result that contains
all the selected properties used in AccessBot. Afterward, the code asks Chrome to create
a new popup window where it will display the interface for the user to interact with the
evaluation results.

Listing 5.4: Part of the function in background.js that modifies the original Qualweb results in an
object containing the properties AccessBot will use.

1 ...

2 return {

3 code: rule.code,

4 description: rule.description,

5 results: results,

6 name: rule.name,

7 id: rule.mapping,

8 url: rule.metadata.url,

9 accessiblename: rule.accessiblename

10 }

11 });

12 ...

As soon as the popup opens (which corresponds to the file result.html),
it notifies background.js using the same event system previously mentioned.
Background.js will then send back the filtered results, the user-defined options, the
website URL, and the original QualWeb result. The original QualWeb result is going to be
used to export the EARL report. Inside result.js resides the logic to present the eval-

63

5. ACCESSBOT IMPLEMENTATION

uation of the results to the user, update the DOM that is representative of result.html
when the user interacts with it, and export reports of evaluations. A new object is cre-
ated to make this happen. For clarity reasons, it is called the main object (Appendix C).
The first thing result.js does when it gets the information from background.js

is to generate the main object responsible for the result.html state using the function
generateCategoriesData(result, options). This object contains the en-
tire state of the result.html meaning it contains the information result.js needs
to manipulate the DOM.

The updating process of the DOM is continuous because when it needs to be updated,
most of the HTML is removed, and multiple functions containing various parts of the
HTML are called to add HTML back to the DOM. The process of continuously “destroy-
ing” and “recreating” all HTML nodes simplifies the updating process since AccessBot is
not using any particular javascript framework for DOM manipulation. This logic is used
to avoid potential issues with updating multiple parts of the DOM at the same time due
to a change of state. In sum, interactions with result.html can lead to update of a
property of the main object; everytime a part of the main object is altered a function is
called to destroy and reconstruct DOM again.

The main object created contains the counters for the multiple results of each eval-
uation, the remaining tests to be completed (this is especially important for the semi-
automatic evaluation), and the total number of tests. It also stores an attribute called
categories. The categories were created to organize better the many rules required for
semi-automatic and automatic evaluations. They are not part of the QualWeb object, and
they exist only on AccessBot. A separate javascript file was created to map the categories
to the rules as shown on listing 5.5.

Listing 5.5: categories.js file containing the object that attributes the rules to the categories for better
organization of the automatic and semi-automatic rules.

1
2 import category from "./const.js";

3
4 export default {

5 [category.IMAGE]: ["R6", "R8", "R17", "R21"],

6 [category.TITLE]: ["R1"],

7 [category.KEYBOARD]: ["R43"],

8 [category.LANGUAGE]: ["R2", "R3", "R5", "R22"],

9 [category.TIME]: ["R4"],

10 [category.ORIENTATION]: ["R7"],

11 [category.SENSORYVISUALCLUES]: ["R14", "R40"],

12 [category.AUDIOVIDEO] : ["R15", "R23", "R26", "R29", "R31", "

R32"],

13 [category.PARSING] : ["R18", "R48"],

14 [category.ARIA] : ["R13","R20", "R25", "R27", "R28", "R33", "

R34", "R38"],

15 [category.FORMS]: ["R16", "R30", "R24", "R41"],

64

5.2 AccessBot Processing

16 [category.HEADINGS]: ["R35"],

17 [category.TABLES]: ["R36","R39"],

18 [category.CONTRAST]: ["R37"],

19 [category.LINKS]: ["R9", "R12", "R44"],

20 [category.IFRAMES]: ["R10", "R19"],

21 [category.BUTTONS]: ["R11"],

22 [category.OBJECT]: ["R42"],

23
24 }

The original object received from background.js and obtained after the evalua-
tion done by QualWeb, contains a list of rules and their results, as exemplified before.
Each rule contains a list of test results.

The function generateCategoriesData(result, options) is used to
generate the categories array in the main object (listing 5.6). The function takes each
object member from the original object and evaluates it for its rule code. The rule code is
obtained from the QualWeb Rule ID, for example, QW-ACT-R42, then the string is split
to obtain R42 to map the categories to the rules.

Listing 5.6: Creating categories object using the function generateCategoriesData(result,

options)

1 if (getCategoryIndex === -1) {

2 semiManualTests.categories.push({

3 name: currentCategory,

4 fixedName: currentCategory.replace(/ /g, '').replace(/[ˆ

A-Za-z0-9]/g, ''),

5 total: total,

6 count: 0,

7 pass: 0,

8 fail: 0,

9 inapplicable: 0,

10 warning: 0,

11 missing: 0,

12 selected: false,
13 index: categoryNextIndex,

14 rules: [

15 {

16 rule: ruleCode,

17 name: ruleName,

18 description: ruleDescription,

19 id,

20 url,

21 total: total,

22 count: 0,

23 pass: 0,

24 fail: 0,

25 inapplicable: 0,

26 warning: 0,

65

5. ACCESSBOT IMPLEMENTATION

27 missing: 0,

28 questions: questions,

29 selected: false,
30 plusRule: manualRule && manualRule.plusRule ?

manualRule.plusRule : [],

31 index: 0

32 }

33],

34 });

Then the code searches for a match in the categories imported from
rules/categories.js. If it finds a match, it adds a category object to the cate-
gories array. Each category object inside the categories array will contain information
such as the category.name, the counters for that category (total, count, pass, fail, in-
applicable, warning, missing) rules attribute array. The rules array will store the rules that
will belong to that category. If the category already existed in the categories array, the
rule will be added to that category’s rules array attribute.

The rules object that is added to the rules array also stores similar information to the
category object. It contains the ruleCode, ruleName and counters for that rule. The
rules array will also contain an array that will store all the evaluations for that rule. These
evaluations or tests are the smallest units in the structure. They will contain automatic and
semi-automatic evaluations, besides the manual evaluations, which will be discussed next.
The object also contains test results for each rule. These are inside the rules array with
the array designated by “questions”. When all the rules have been added, the categories
are sorted alphabetically. The result of all these operations is stored on a global variable
to be accessible throughout result.js.

With the main object created, the function updateResults() is then called. This
function is called every time a change occurs on the main object. It contains many other
functions that are required to update the result.html. This leads to result.html
being updated continuously, as aforementioned; for example, a semi-automatic evaluation
that just got completed is followed by updating the main object. The semi-automatic
evaluations are the results of completed automatic tests deemed to require user input to
deliver an accurate result. Concisely, any changes in the results outcomes can happen in
two ways: the user completes an evaluation or can change the automatic result manually.
These changes will affect the counters of the corresponding rules and categories. The
previously mentioned actions will increment the counter on the rule, and in turn, it will
increment the counter on the category to which the rule belongs.

Every time a change occurs, for example, the user manually changes the result of
an automatic evaluation, the function updateResults() is called, that treats HTML
like a blank slate, evaluates the main object, and reconstructs the HTML based on the
updated main object. This also helps in making sure that a change that requires updates
on multiple parts of the HTML happens with no side effects.

66

5.2 AccessBot Processing

5.2.4 Semi-automatic Logic

The semi-automatic logic evaluations consist of a system created to check the result
on an automatic test to see if it needs to be semi-automatic evaluated. As described in
the previous chapter, every rule can be translated into an algorithm diagram flow, which
takes into account decision points called the result codes. From these decision points, the
sequential questions and their outcomes are included in the diagram.

The code implements these diagrams. The diagram flow implementation consists of
an array of objects that describe the sequential questions and the order they should appear
based on the user decision. The listing 5.7 presents the code for the diagram flow of the
rule R8. The diagram flow can be consulted figure 4.2.

Listing 5.7: Diagram flow object for R8.

1 import categoryConst from "./const.js";

2
3 export default {

4 code: 'QW-ACT-R8',

5 category: categoryConst.IMAGE,

6 tree: [{

7 prerequisite: 'RC1',

8 flow:[

9 {

10 key: '1A',

11 title: 'Does accessible name #{a} describes purpose?',

12 answerYes: 'Pass',

13 answerNo: 'Fail',

14 },

15 {

16 key: 'Pass',

17 title: "The element's accessible name uses the filename

which accurately describes the image and purpose",

18
19 },

20 {

21 key: 'Fail',

22 title: "The presence of the file extension in the

accessible name does not accurately describe purpose

of the image",

23 }

24]

25 }]

26 }

Every rule flow is represented in a separate file that resides on a project folder called
rules. The rules folder also contains a file called index.js that imports all the in-
dividual rules and exports them inside a single array. The index.js is imported unto
results.js.

67

5. ACCESSBOT IMPLEMENTATION

When checking the evaluations for their type, first is checked if an algorithm for the
rule exists. If it exists, it means that every evaluation under this rule needs to be verified
against the algorithm. The result code of the evaluation is used. If a match is found on
the property prerequisite that resides inside the algorithm, the semi-automatic evaluation
flow is retrieved.

A class was created to store all data information to help keep track of the flow’s current
state. The class name is called DecisionTree. The diagram flow array is used as an
argument for the DecisionTree constructor.

The DecisionTree class implements methods such as next(), prev(),
current() and revert() for controlling the state of the flow that is stored on the
object instance of that class. All the interactions done by the user when providing infor-
mation during a semi-automatic evaluation will be using this class.

5.2.5 Manual Logic

Suppose only manual tests were selected in the popup. In that case, Access-
Bot provides its own set of tests to present to the user and we can skip some
of the steps common to automatic and semi-automatic logic previously mentioned.
The code opens the popup (result.html) without the QualWeb evaluation to
perform only manual tests. However, to simplify the code’s execution, the man-
ual evaluation results are also added to the main object obtained from the function
generateCategoriesData(result, options). The manual evaluations are
done entirely on the side of AccessBot.

As mentioned previously, manual tests do not use the QualWeb result. The approach
to generate the manual evaluation results added to the main object is slightly different
from a semi-automatic. The manual diagram flow implementation (listing 5.8) is also
different from the semi-automatic diagram flow implementation. The main difference is
that it does not have a result code as a prerequisite from QualWeb and has more text
properties. The diagram flow for the manual rule Keyboard can be consulted in figure 4.4.

Listing 5.8: Diagram flow code for keyboard rule (ACT ID 80af7b)..

1 import CategoryConst from "../const.js";

2
3 export default {

4 code: '80af7b',

5 url: 'https://act-rules.github.io/rules/80af7b',

6 name: 'Are elements focusable with keyboard?',

7 category: CategoryConst.KEYBOARD,

8 whyImportant: 'Users must be able to access and interact with

interface components using only the keyboard because using a

mouse is not possible when the user has no vision or low

vision or does not have the physical capability or dexterity

to effectively control a pointing

68

5.2 AccessBot Processing

9 device.',

10 descriptionTest:'Users must be able to navigate away from all

components using a keyboard.',

11 tree: [

12 {

13 key: '',

14 title: 'Tab through content from start to finish by

using standard keyboard commands (Tab key; Shift+

Tab; Arrow keys; Esc key; Enter key; Space key) to

navigate through all the interactive interface

components in the target page. Check to see that

keyboard focus is not trapped in any of the content.

',

15 question: 'Can you navigate?',

16 answerYes: 'Pass',

17 answerNo: 'nextStep1'

18 },

19 {

20 key: "nextStep1",

21 title: 'If you can not navigate away from a component

using standard keyboard commands (keyboard focus

appears to be trapped in any of the content), check

that help information is available explaining how to

exit the content and can be accessed via the

keyboard. Examine the component`s accessible name

and accessible description to determine whether they

describe an alternative keyboard command. If an

alternative keyboard command is documented, test

whether it works.',

22 question: 'Could you find an alternative way to

navigate?',

23 answerYes: "Pass",

24 answerNo: "Fail"

25 },

26 {

27 key: 'Pass',

28 title: 'No trap for keyboard navigation.',

29 },

30 {

31 key: 'Fail',

32 title: "There are traps in keyboard navigation",

33 }

34],

35 }

69

5. ACCESSBOT IMPLEMENTATION

5.2.6 Features Logic

Other features implemented on AccessBot are: the possibility to highlight the tested
element, remove the highlight selected, remove all highlights at once if more than one
highlight option is selected, ability to write observations in each test, change the automatic
result evaluation if the user disagrees with the result and the possibility to export the final
evaluation in EARL and CSV format.

The code relies on the chrome event system to communicate between result.js

and contentScript.js to implement the highlight feature. The API used is
chrome.runtime.sendMessage() from result.js to a listener defined us-
ing chrome.runtime.onMessage.addListener() in contentScript.js.
QualWeb stores a pointer reference string on its object for each evaluation that describes
a path from the root DOM element to the evaluated element. The pointer string is sent
on the event message to background.js, and when background.js receives this
event, it sends it to the active tab on the user browser. contentScript.js will take
this pointer string and invoke a function called pointerToElement(). The function
will check if the path is for an element present in the body element of the HTML and if
true, use document.querySelector function with the pointer. A thick red border
style is added to the results of querySelector. The opposite result also exists that
takes the highlighted element and removes the thick red border style.

AccessBot also allows the user to remove all highlights that are currently selected. An
array that stores all currently selected highlights is updated every time a user checks or
unchecks for a highlight. When the user clicks on the “Remove Highlights” button, the
remove highlight event is triggered for each highlight on the array, and then the array gets
cleared.

When an evaluation has a completed state, a text area element appears, allowing the
user to write a text about that evaluation results. That text is stored on a property inside
the evaluation object that resides on the main object. Every time a change is detected in
the text area, that property gets updated with the text’s current value.

For the automatic tests, the user can modify the evaluation result if he believes it is not
correct. The main object also contains a property called manualAnswer, which saves
the modification to an automatic evaluation. A select HTML element is presented to the
user, and if he selects an option other than an empty or the same result as evaluation, that
option value will be stored on the property.

To create an EARL report for the user to export the AccessBot results, a file
called earl.js contains all the logic necessary. This file exports a single function
called resultToEarl() imported on result.js when the user makes a request
to generate an EARL export. After the user inputs his name, this function is called.
resultToEarl() takes care of the code required to return an EARL report object
that will then be used to create the export files. It uses the same functionality developed
for QualWeb to deliver an EARL report called function generateEARLreport().

70

5.3 Updating the Rules on AccessBot

Nevertheless, because AccessBot also adds manual testing and modifies some automatic
tests to become semi-automatic, it is necessary to expand upon the result the function
generateEARLReport() delivers. The original QualWeb result object is used as an
argument to generateEARLreport(). This ensures that the object the function re-
ceives is correct according to the function expectations. The function returns an object
prepared to be interpreted by an EARL compatible application in JSON format. The func-
tion adds to the report the new information from AccessBot. The human assertor and the
information of all the manual assertions that AccessBot introduced are inserted into this
object. When this process is complete, it follows by determining the automatic assertions
modified by AccessBot to become semi-automatic. All automatic assertions on the EARL
object are evaluated and changed with the new semi-automatic type and evaluation result
that AccessBot has stored.

Two properties that are not part of the EARL standard are added to each assertion (be
it manual, semi-automatic, or automatic). These properties store information about user
manually modified results, which will only be relevant for automatic tests and the user’s
notes. These additions will be relevant when exporting the result on the AccessBot side,
especially for the CSV export.

The EARL object with all the additions and modifications is the result of the function
resultToEarl(). With this object, depending on the user’s choice in exporting to
a JSON or a CSV, result.js processes it to create a downloaded file to the user’s
machine.

5.3 Updating the Rules on AccessBot

AccessBot has a determined number of rules. However, the ACT Community contin-
ues to develop more rules for implementation. Considering how AccessBot was imple-
mented, it is easily updated to take into account the new rules that are being developed.
This segment presents how to update automatic, semi-automatic, and manual rules.

The automatic and semi-automatic evaluations are based on the QualWeb engine that
evaluates the target web page. At the moment, AccessBot “connects” to QualWeb through
two libraries act.js and qw-page.js. Updating these two files will be enough to
include the new ACT rules as they become supported by QualWeb.

5.3.1 Updating Automatic Rules

In this case, since evaluation, as its name says, is automatic, the only steps required to
add a new automatic rule that the developer wants AccessBot to use and show are done on
file categories.js. The developer should add the rule to the correspondent category
array if the category is already on the default object. For example, to add a new rule R47
that belongs to category Spacing, first, the developer should verify if the category exists

71

5. ACCESSBOT IMPLEMENTATION

(listing 5.9). If not, on the file const.js, the developer should add the new category
SPACING: “Spacing” to the object. The property value is the string that will appear on
the new AccessBot category. After that, the developer should add the new category to the
categories.js and add the rule to that category.

Listing 5.9: Defining the categories names in index.js.

1 export default {

2 IMAGE: "Image",

3 TITLE: "Title",

4 KEYBOARD: "Keyboard",

5 LANGUAGE: "Language",

6 TIME: "Time",

7 ORIENTATION: "Orientation",

8 SENSORYVISUALCLUES: "Sensory and Visual Clue",

9 AUDIOVIDEO: "Audio and Video",

10 PARSING: "Parsing",

11 ARIA: "ARIA",

12 FORMS: "Form",

13 HEADINGS: "Heading",

14 TABLES: "Table",

15 CONTRAST: "Contrast",

16 LINKS: "Link",

17 IFRAMES: "iFrame",

18 BUTTONS: "Button",

19 LABEL: "Label",

20 OBJECT: "Object",

21 TEXT: "Text",

22 SPACING: "Spacing"

23 }

5.3.2 Updating Semi-Automatic Rules

The steps described for updating the automatic rules are also needed in the semi-
automatic rules. Part of the semi-automatic evaluation is automatic since AccessBot
checks the result code that needs to be complemented with user evaluation. To update
a semi-automatic rule, the developer needs to create a new file with questions to ask the
user. Listing 5.10 presents an example of the file R44.js. The developer needs to fill
the object with the property values for the new rule. code is the QualWeb code, the
category is the category of the rule, and tree is the array with the object with pre-
requisite or result code from where the flow starts. flow is an array of steps objects; in
this case, there are three steps. Each step is identified with a unique key. In this example,
1A is where the flow starts. From here, the first object is linked to the next using keys. If
the user answers “Yes”, the next key is “Pass”, which is the second object. Nevertheless,
if the user answers “No”, the next object is the third with the key “Fail”. The property

72

5.3 Updating the Rules on AccessBot

title corresponds to the question to why it is a “Pass” or a “Fail”, depending on the
step.

Listing 5.10: R44.js file with code for diagram flow of R44. Serves as an example for demonstrating
how to update a simple semi-automatic rule. .

1 export default {

2 code: 'QW-ACT-R44',

3 category: CategoryConst.LINKS,

4 tree: [{

5 prerequisite: 'RC3',

6 flow: [

7 {

8 key: '1A',

9 title: 'Do the links have the same purpose?',

10 answerYes: 'Pass',

11 answerNo: 'Fail',

12 },

13 {

14 key: 'Pass',

15 title: "The \`links\` with the same accessible name

have equal purpose."

16
17 },

18 {

19 key: "Fail",

20 title: "`The \`links\` with the same accessible

name have different content."

21 },

22]

23 }]

24 }

Some rules can be more complicated when they have more than one prerequisite,
which means there may be more than one flow path for the rule. For example, rule R17
has two flows, as seen in listing 5.11, and the second flow starts with two prerequisites.
The procedure is the same when it comes to constructing the object.

Listing 5.11: R17.js file with code for diagram flow of R17. Serves as an example for demonstrating
how to update a complex semi-automatic rule. .

1 export default {

2 code: 'QW-ACT-R17',

3 category: CategoryConst.IMAGE,

4 tree: [{

5 prerequisite: 'RC1',

6 flow: [

7 {

8 key: '1A',

9 title: 'Is the image decorative?',

10 answerYes: 'Pass',

73

5. ACCESSBOT IMPLEMENTATION

11 answerNo: 'Fail',

12 },

13 {

14 key: 'Pass',

15 title: "The test target is decorative.",

16 },

17 {

18 key: 'Fail',

19 title: "The presence of the file extension in

the accessible name does not accurately

describe purpose of the image",

20 }

21]

22 },

23 {

24 prerequisite: 'RC3, RC6',

25 flow: [

26 {

27 key: '1B',

28 title: 'Is image a complex image (for example,

a graph)?',

29 answerYes: '2A',

30 answerNo: '2B',

31 },

32 {

33 key: '2A',

34 title: "Does accessible name #{a} describe purpose?"

,

35 answerYes:"3A",

36 answerNo: "2AFail"

37 },

38 ...

After the object is created, it needs to be imported on the file dedicated only to the
semi-automatic rules with name index.js (listing 5.12).

Listing 5.12: Part of the index.js Demonstrating how to import a semi-automatic rule file with the
diagram flow..

1 import R1 from './R1.js';

2 import R2 from './R2.js';

3 import R6 from './R6.js';

4 import R8 from './R8.js';

5 import R9 from './R9.js';

6 import R10 from './R10.js';

7 import R11 from './R11.js';

8 (...)

74

5.4 Difficulties encountered during development

5.3.3 Updating Manual Rules

Manual rules are distinct from automatic and semi-automatic since there is no in-
volvement of QualWeb libraries in their evaluation. They only depend on the user.
Considering this important point, manual rules are placed in a separate folder called
assessments. The developer should create a file with the manual rule flow, as seen
in listing 5.8. The manual object is also slightly different from the semi-automatic ob-
ject since it has more properties with information: code, url, name of the rule,
why it is important to test and the description of the test. The category is
from the const.js file. The tree does not need to have the prerequisite code and has
only the flow with its unique keys linking the steps. The file with the manual rule should
then be imported in index.js, which is inside the folder assessments.

5.4 Difficulties encountered during development

Building a Chrome extension is different from building a web app since the extension
runs along with the web page it evaluates; it requires learning core components and their
relationships. Another difficulty encountered was bundling and debugging.

5.4.1 Bundling

One of the bundling issues was that the QualWeb libraries required had dependencies
to node.js only libraries. This was one reason it was communicated to the QualWeb
team that they needed to remove Puppeteer from the libraries that did not require us to use
it directly. Puppeteer is a headless browser application meant for automation and testing.
It is still used on the QualWeb core to retrieve and evaluate the user’s web page when the
QualWeb application is running on a server.

Initially, the QualWeb application used the resulting object from Puppeteer on all its
libraries besides core. Now qw-page is used to wrap the retrieved document and window
from Puppeteer, and qw-page does not have dependencies of node libraries. QualWeb
application now uses the qw-page library for generating results. First, it is imported
the qw-page library in background.js, since according to chrome extension logic,
background.js should be responsible for the majority of the work of the extension.
To communicate between content.js and background.js, it is necessary to use
event systems that only allow sending data in JSON format. In order to send the document
object and window object of the page (which are not in JSON) to the background.js
(be used by qw-page to generate a qw-page object), before sending it, the HTML was
processed to a string with JSON content and then it is sent through an event.

background.js received the string, then used a DOMParser() to recreate the
page and use that page to reconstruct document and window object. However, this in-
termediate step caused inconsistencies in the page evaluation. The next alternative was

75

5. ACCESSBOT IMPLEMENTATION

to eliminate this step and work with qw-page and act-rules imports directly in
content.js and remove them from background.js. In the content script, the
document and window objects are manipulated, and the result object, which is already
in JSON then sent to background.js. However, some problems arose during the
bundling with Webpack with the surge of circular dependencies while importing act.js
and qw-page.js (Webpack was importing twice). To resolve this situation, the imports
were not made in content.js but added directly to the manifest as a dependency to
the AccessBot Chrome extension.

5.4.2 Debugging

Extensions carry unique behavior properties. Extensions are just like web pages that
can be debugged using the built-in tools of Google Chrome. In this case, the difficulties
encountered are related to the location of the logs. Since extensions are made of different
components, and each component has individual responsibilities, AccessBot logs could
be localized in the background.html, on popup.html, on result.html and in
the page under evaluation to access content.js. This is mentioned because debugging
chrome extensions takes a longer time than typical web applications considering where
the different log may appear.

5.5 AccessBot User Interaction

This section presents the user experience when interacting with the AccessBot user
interface.

After the user clicks on the Chrome extension icon, a popup window appears and
asks the user what the user wants to do, if it is a manual, semi-automatic, or automatic
evaluation of the webpage, as seen in figure 5.1.

Figure 5.1: AccessBot popup that appears when user clicks on the extension icon.

After pressing the button “Start evaluation”, another popup window with the evalua-
tion results appears (figure 5.2).

76

5.5 AccessBot User Interaction

Figure 5.2: AccessBot result window appears when the user selects what type of evaluation(s) wants to
perform on the page.

On top, the user has the option to access the Legend and the Filter section (figure 5.3).
The Legend section presents to the user a description of the icons that appear on Access-
Bot. The filter, which is below the label “Show tests by result”, presents the user options
to filter the test results according to the status: pass, fail, inapplicable, cannot tell, and
uncompleted tests that need user input.

The test results are presented in accordion as collapsible content. There is a clear
hierarchy presented. First, the user sees the different categories. When clicked, each
category presents a set of rules, and each rule has a certain number of tests. Figure 5.4
shows the category Form selected exhibiting all the rules inside this category. In this case,
the user selected the rule “Form control has an accessible name”. According to the legend,
it is a semi-automatic rule and has two evaluations that the user needs to complete.

Each evaluation, automatic, semi-automatic, and manual, is identified with specific
symbols.

Each section in the hierarchy has individual counters beside the filter’s global coun-
ters. The category counter gives the totals of tests of the rules of that category in the
different states. The rule counter, which can be found on the right side of the window
after the rule has been selected, gives information about the total tests and their states
(figure 5.5).

When the user clicks in the rule, the elements that were evaluated are presented as
enumerated card boxes (figure 5.6).

There is the name of the rule that was selected on the top of the right window, the

77

5. ACCESSBOT IMPLEMENTATION

Figure 5.3: Legend and Filter section more detailed.

Figure 5.4: Form control accessible name rule selected (light blue) under the category Form. The other
rules inside the category Form appear also.

QualWeb rule ID and ACT rule ID with its link to redirect the user to the rule’s page on
the ACT Rules-Community website (figure 5.7). The website has more detailed, easy to

78

5.5 AccessBot User Interaction

Figure 5.5: When the rule is selected it appear the tests for the rule and the filter on the top of the window
showing evaluations by result. In this case, it presents two uncompleted tests for the rule “Form control has
accessible name”.

Figure 5.6: White card box for each test result of a rule. In the case of the rule “Form has accessible name”
there are two card boxes for uncompleted evaluations that require user input.

understand, and complete information about the rule. Immediately below, the user has a
brief description text of what the rule checks.

Figure 5.7: Information about the rule selected.

Each card box (figure 5.8) can highlight the element on the web page to be more easily
identified by the user. It also has the HTML code for the evaluated element and the reason
that justifies the evaluation’s result state. For the automatic evaluations, the user can write
notes that are automatically saved, and, in case of disagreeing with the result, the user
can change the automatic result manually. Manually changing the result will alter the

79

5. ACCESSBOT IMPLEMENTATION

counters. Writing notes is also available in the semi-automatic and manual evaluations at
the end of the evaluation.

Figure 5.8: White card box features.

According to the algorithm defined for that test, semi-automatic and manual evalua-
tions present questions to the user in the form of yes or no answers. At the end of the
semi-automatic or manual evaluation appears a final result. This result is then updated in
the counters. If the user makes a mistake, the answer can be reverted.

All the tests results for a particular rule on the right side also can be filtered according
to the state selected by the user.

Suppose the user, during his evaluation of the web page, leaves numerous elements
highlighted from different rules. In that case, there is an option to remove all highlights
simultaneously using the button “Remove highlights” (figure 5.9).

After all the evaluations are performed, the user can export a report in CSV or EARL
format (figure 5.9).

Figure 5.9: Remove highlights button, Export EARL button and Export CSV button.

80

Chapter 6

AccessBot Usability Testing

This chapter describes the usability testing of the AccessBot interface by users, specif-
ically how it was performed, the behavior and reactions to the test, the results analysis,
and the insights from users which lead to improvements to the interface. Usability testing
is necessary to ensure that AccessBot is an effective, efficient, and enjoyable experience
for users.

6.1 Usability Testing Method

The user testing method chosen was remote-moderated usability testing since I, the
evaluator, cannot be present with the participants due to the COVID-19 pandemic. The
user will share its screen while performing the test by using a video communication plat-
form. It is a way to perform a qualitative “direct observation”. Before the beginning of
the test, users are asked to install the latest version of AccessBot. I introduce the test to
participants, answer their queries, and ask them follow-up questions to perform specific
prearranged tasks. The tests are recorded, under user authorization, to give the chance to
review them later.

The process is standardized for all users in order to end up with consistent and reli-
able results. The answers to the questions asked, how they perform the tasks, and think
aloud give a better understanding of their difficulties and allowed me to obtain the most
information possible and include the user in the decision-making process.

The AccessBot user testing had two rounds. The first round had three participants, two
developers, and one AMA accessibility evaluator. The second round had two participants,
two AMA accessibility evaluators. After the first round, the problems users uncovered
during testing were fixed and then revised. AccessBot interface is tested again in the
second round. Not stopping after a single test, according to (Bevan et al., 2003; Nielsen
et al., 1993), is a better use of limited resources than running a single usability test with
the total number of users, in this case, five users.

This testing is one of the most thorough and in-depth methods for gaining user in-

81

6. ACCESSBOT USABILITY TESTING

sights. It has some advantages, such as being less expensive, less time-consuming, and
more convenient for the participants. The downside is the preparation of tasks to per-
form, questions to ask by being careful to not indirectly give the answers or influence
results, setting up the tool used, and guide the users on how to install the application in
the development phase.

6.2 Planning process for usability testing

Planning the details of the AccessBot usability testing is the most crucial part of the
entire process. The purpose of the plan is to document what tools is going to use, the
number of participants, and how the test will be administered. Each task is successfully
completed when the participant indicates they have found the answer or completed the
task goal.

The elements of the test plan are the following:

A The tools used for communication are the ZOOM1 and Skype2 communication plat-
forms that allow the participants’ screen and audio sharing. The participants should
select a tool and be comfortable with the tool of choice.

B The tasks will be given to the participant by using the screen-sharing tool chat
window during the session. Additionally, the evaluator reads the task out loud to
the participant.

C The session is for one participant at a time, at a given hour and date. Since there
is only one evaluator, this is a way to focus on one participant and focus on its
behavior and thoughts.

D The participants should consent for their screen and audio to be recorded. The
recording testing session gives a chance to review the participant’s test later and
capture data that the evaluator may miss.

E The participants are software developers or accessibility evaluators, considering the
target users for AccessBot. The total number of participants is five, divided into two
groups, one group per round. The total number of rounds is two. The first group
has three participants and includes one accessibility evaluator but not a software
developer. The other two participants do not have experience with accessibility but
are software development students. The second group has two participants who
are accessibility evaluators but not software developers. One of the participants
in this group has a visual impairment expanding the testability of AccessBot by
using a screen magnifier during the test. During the early stages of the design and

1The ZOOM application website: https://zoom.us/
2The Skype application website: https://www.skype.com/pt/

82

https://zoom.us/
https://www.skype.com/pt/

6.3 Usability Research Data Collection

development process, a constructive approach is considered. This approach requires
fewer participants than the summative, which requires a large number of users since
the objective is to identify the main problems with the design, help figure out which
features are useful and which are not, to improve the design. In the future, to collect
an extensive amount of data and evaluate the design, a summative test will probably
be required (Bennett, 2020).

F The website to be used during the testing is previously selected and the same for all
five participants. The website URL is https://ciencias.ulisboa.pt/.

G The estimated total time is approximately one hour.

H Participants should perform the following tasks during the test:

1 Open the website URL to start to perform an accessibility evaluation;

2 Open AccessBot Chrome Extension;

3 Evaluate the webpage with all options selected;

4 Specify how many tests succeeded;

5 In the category Contrast indicate the number of total evaluations;

6 Select from the list the tests that failed;

7 In the category Language, observe the rules and point out the number of semi-
automatic rules in that category;

8 Complete all the tests from the Language category;

9 Highlight the element on the uncompleted tests on the rule “Form control has
an accessible name”;

10 Look for the element that corresponds to the 13th fail result of the rule “Link
has an accessible name”;

11 Change the result of the element found in the last task to pass and add the
observation “I changed the result to pass”;

12 Remove the highlight of all elements highlighted;

13 Look up and specify one manual evaluation;

14 Export report CSV, open the file to check the content, and verify if the file
contains the observation the tester has written and the changed result;

6.3 Usability Research Data Collection

The approach for organizing usability issues is to plot the data (Sauro et al., 2016) with
issues in the rows and participants in the last columns. Table 6.1 represents the usability

83

https://ciencias.ulisboa.pt/

6. ACCESSBOT USABILITY TESTING

Table 6.1: The table presents the users’ failures in completing the predetermined tasks of the first round.
Legend: ID - task identification; P(1-5) - Participants; x - failure to complete the task.

ID WHERE TASK DES. P1 P2 P3 P4 P5 OBS.

6 List of category
of tests on the
result window

Select from the
test list which
failed

Did not use the filter test
option to select the tests
that failed, instead used
scroll

x x x Filters not easily
identified in the
description, appears the
word show instead of
filters; Low contrast
between the check boxes
and the background
colour

7 Category
language tests
on the result
window

Indicate how
many
semi-automatic
rules exist in
the category
language

The users did not give the
correct answer. One user
did not notice the
semi-automatic icon on
the legend while other
noticed but did not make
the association with the
icon on the rule

x x Icons should be bigger in
the legend or more
distinct.

8 Category
language tests
on the result
window

Complete all
the tests from
the Language
category

Did not use the highlight
option while completing
the tests or used only for
some tests.

x x x x Make the highlight option
more visible.

10 List of test
results of the
rule “Link has
an accessible
name”.

Identify the
13th element
fail of the rule
“Link has an
accessible
name”

Did not use the filter
option to filter results that
failed and gave wrong
answer and scroll to
search for the 13th of all
results instead of the 13th
of only the fails

x x x x Filters not easily
identified in the
description; appears the
word show instead of
filters; low contrast
between the check boxes
and the background
colour.

12 Button
“Remove
highlights” on
the left bottom
of the results
window.

Remove the
highlight of all
elements
highlighted;

Did not use the button
“Remove highlights” and
opted to do it manually
by searching for the
elements that were
previously highlighted

x x x Change the location of
the button to a more
visible location.

research data collection from the first and second rounds of the usability AccessBot test.
The first round includes participants P1, P2, P3. The second round includes participants,
P4, and P5. Each issue presented in the tables has: the “ID” information column which
corresponds to the number of the task in the planning process; the column “Where” locates
where the task is performed in the AccessBot interface; the column “Task” is the task
the participant should have completed successfully; the column “Description” (DES.),
describes what the participant(s) did that lead to the failure to complete the task; the
columns “P1”, “P2”, “P3”, “P4”, “P5” refer to the participants and if the column has a
cross symbol (x), it means that particular participant failed to complete the task. The last
column, “Observations” (OBS.), identifies the observations made by participants during
the think-aloud test process.

84

6.4 Analysis of the First Round of User Testing

6.4 Analysis of the First Round of User Testing

By analyzing the results representing the participants’ responses, behavior, and ob-
servations, it is possible to verify that the tasks with the highest completion rates are
the most straightforward ones, such as tasks 1, 2, 3, 4, 5, 9 and 11. These tasks briefly
correspond to initiate AccessBot Chrome Extension and start evaluation and to specify,
from direct observation of the counters, the totals of how many tests passed or the total
evaluations performed for a specific category. Asking to highlight one element directly
was another easy task performed by all users compared to not using the options highlight
by themselves to help them perform other tasks. Writing observations in the text area
was immediately performed by all the participants, although for two participants, there
were some doubts if the observation written was saved. They were expecting to find,
for example, a button that said “Submit” observation or the information that it had been
saved.

The tasks that failed, meaning that one or more participants did not perform the task
correctly, were 6, 7, 8, 10, and 12. Comparing these tasks, the tasks which all users
failed were 6 and 10. The others had at least one participant that performed correctly.
Task 6 and 10 are related to using the filters option to find the results to answer the tasks.
The participants didn’t use any of the filters available at all. By observing them and
talking to the participants, they thought the filters were not there. Some possible reasons
like the name “Filter” do not explicitly appear; low contrast with the background and
input checkboxes that seemed like tick checkmarks which do not perform any action may
have contributed to the participants not using the checkboxes. To perform these tasks, all
participants chose to use the scrollbar.

By examining task 7, the icons corresponded to the automatic, semi-automatic, and
manual rules in the legend, generated confusion for two participants. Somehow they could
not correlate the legend to the icons in the rule. They noted that the icons were small and,
because of that, seemed different.

Considering task 8, only one participant opted to use the highlight option to highlight
the element being pointed for evaluation to answer the questions. The other participants,
probably because they thought the answers to the category Language tests were more
noticeable on the web page even without highlighting the element, they opted to infer the
answers. The task to remove all previously highlighted elements was not done using the
button “Remove Highlights”. When the participants viewed the result.html window
of AccessBot, they needed to scroll to the end to find the button; instead, they manually
opted to turn the highlight off element by element. Only when they were asked to export
the final evaluation report in CSV format (task 14), the participants explored better the
interface to find the button to export. When they did that, they noticed other buttons such
as “Remove Highlights” or “Export EARL”.

Overall the participants concluded the usability test, on average, in one hour. They

85

6. ACCESSBOT USABILITY TESTING

Figure 6.1: Left: Screenshot of AccessBot application showing the tests by result; Right: Screenshot of
AccessBot application showing the evaluations by result.

were also generally satisfied with AccessBot functionalities. One of the participants said
it was delighted and was going to use AccessBot in his work. The other said that al-
though other evaluation tools pointed to the need to perform manual testing, the manual
evaluations with questions to the user helped guide and save time on performing manual
evaluations.

Taking these results into account and the recommendations for each issue presented,
improvements to the AccessBot interface were implemented to make the user experience
better and then re-tested.

6.5 Improvements after First Round of User Testing

After user testing and analysis, it is necessary to perform optimizations in user expe-
rience according to the observations findings. This section presents screenshots before
AccessBot user testing and after to illustrate the improvements made.

Considering issues 6 and 10 of table 6.1, the users did not use the filter option to filter
tests or obtain quick answers. Instead, the users opted to scroll and check item by item.
The issue was potentially caused by the low contrast between the input checkboxes in
the filters and the background, as seen in figure 6.1, which made it difficult for users to
realize that there is a filter option they can use to filter tests and tests’s results. This issue
is resolved by increasing contrast with a white background box in the filters section, such
as in figure 6.2.

Figure 6.2: Left: Screenshot of AccessBot application showing the tests by result after modification; Right:
Screenshot of AccessBot application showing the evaluations by result after modification. In both, the
checkboxes are more visible

To expand the visual area of “List of tests”, the Legend and Filter were collapsed to a
button triggered accordion to hide them but also redirect the user more easily to Legend

86

6.5 Improvements after First Round of User Testing

and Filter options. The scroll now also starts at the same level of the test results. For the
same window size, figure 6.3 on the right shows a clear improvement, compared with the
figure on the left, in user presentation of categories.

Figure 6.3: Left: Screenshot of AccessBot application showing Legend and Filter before modification;
Right: Screenshot of AccessBot application showing two buttons “Show Legend” and “Show Filter”. After
collapsing the Legend and Filter section, the area showing the list of tests increased significantly.

For task 7, two of the three users had difficulty giving the correct answer besides
checking Legend a few times. They pointed out that the Legend was too small to be
perceptible. To change this, the border squares were removed, and the size increased by
approximately 10 pixels (figure 6.4).

Figure 6.4: Left: Legend design before improvement; Right: Legend design after modification. Icons are
bigger and squares around icons removed.

Considering task 8, most of the time, the users did not use the highlight option to
identify the elements on the web page that is being evaluated. However, when asked to
highlight in task 9, all the users completed the task successfully. When discussing this
issue with the users, some pointed out that the highlight option could be more visible, but
overall, they did not need it to perform task 8. Probably this happened since the semi-
automatic evaluation on task 8 was considered manageable. Either way, the option to
highlight the element was increased in size and font-weight. This modification was also
done to the option to change the result manually (figure 6.5).

87

6. ACCESSBOT USABILITY TESTING

Figure 6.5: Left: Legend design before improvement; Right: Legend design after improvement. The
“Highlight on page” together with “Manually change this result” is more noticeable.

Considering task 12, the “Remove highlights” button and other buttons at the end
of the scroll on the left side of the window were not easily accessible. To change this
situation, the buttons are now fixed to be readily available to the user when the result
window pops up, so the user does not need to scroll to the end of the window to see the
buttons (figure 6.6).

Figure 6.6: Left: The list of tests scroll reaches the end of the window. The user had to scroll to the end
to visualize the buttons; Right: Scroll fixed on the window. When the window appears, the buttons are
immediately visible.

Other usability suggestions by the participants that was implemented was the broader
separation of automatic and semi-automatic icons when a rule has automatic and semi-
automatic tests (figure 6.7).

Figure 6.7: Left: icons showed, for example, rule “Heading has an accessible name” before improvement;
Right: After modification, the icons are separated, increasing perception.

The text written in the input field for observations, although automatically saved, left
the users wondering if they needed to perform an action after writing their observation.

88

6.6 Analysis of the Second Round of User Testing

To change this, the input field gives information that the observation will be automatically
saved (figure 6.8).

Figure 6.8: Left:Input field for writing observations before improvement; Right: Input field informing the
user the observation will be automatically saved.

6.6 Analysis of the Second Round of User Testing

The second round included two experienced accessibility evaluators. The evalua-
tors had a few minutes (approximately five minutes) to engage with the interface, which
seemed to decrease the distress in completing the tasks and increased confidence and
calmness. Time for engagement with the interface did not happen in the first round, where
evaluators received the tasks soon after starting the evaluation. They generally were more
anxious looking for the answers to the tasks, and that is why in the second round, I made
this adjustment to get a more in-depth level of insight on how to improve the content. The
problems identified in the first round were mostly solved as shown by the analysis of the
second-round results after implementing the improvements described.

To complete task 8, the evaluators used the highlight option to highlight some tests
but not all. The occasional use of the highlight option probably happened because they
could infer the semi-automatic evaluation’s answers by only reading the element HTML
code.

Task 10 failed to one participant on the second round while the other completed suc-
cessfully. The earlier participant did not use the filter option and instead used the scroll to
find the result that failed between all the total results instead of using the filter; the other
participant used the filter to select the results that failed and found the required element.

Both of the users completed task 13, but there is still some frustration and much
time spent searching for a manual evaluation icon when all the evaluation types are pre-
selected. This means that probably some improvement concerning this aspect could also
be made.

For participant 4, there was disorientation regarding the result window’s left side and
the tests shown on the window’s right side. Although on top of the right side of the
window there is the description of the rule which the results are being presented and the
rule selected is in different color light blue, the participant sometimes felt lost. Probably
there should be a stronger view association between the rule that is being evaluated and
the right side of the window.

All the participants in the first round completed the tasks on Windows. One of the
participants of the second round tested AccessBot on Mac. The possibility to use Mac
is significant since browser Chrome may behave differently depending on the operating

89

6. ACCESSBOT USABILITY TESTING

system. The behavior of AccessBot during user testing was stable without any differences
from Windows participants.

In the second round, one participant has visual impairment which provided another
critical perspective of the AccessBot interface. A screen magnifier was used during test-
ing. The main difficulty was when the participant’s mouse cursor clicked on the button
“Show Legend” or “Show Filters”, a toolbar of the screen magnifier appeared, and the
participant was unable to click the buttons. To increase the readability of the interface
elements was suggested to add tooltips to the interface.

Overall, the tests performed were satisfactory. According to the evaluator’s feedback,
they are pleased with AccessBot functionalities and features, including the manual and
semi-automatic evaluations and how the data is presented to the user. The less positive
aspects were mainly cosmetic, and the future changes will increase the usability of us-
ing AccessBot to reach a more significant number of users with or without disabilities.
Some minor cosmetic improvements will still be made before the completion of the the-
sis. However, additional design changes and new suggested features will be considered
in the future due to time constraints. The interface is a continuous work in progress, and
more usability tests are necessary to keep up the development.

6.7 Improvements after Second Round of User Testing

The improvements made after the second round are mainly cosmetic to increase the
visibility and usability of features.

Besides optimizing color contrast, the participants noted the font size was small. In
the context of accessibility, to improve it for those who experience a visual impairment
that is not color blindness, optimizing font sizes also benefits users. Although there is no
official WCAG font size standard, the font size 15px was suggested through all AccessBot
application.

The popup.html also improved the checkboxs to be according to the other check-
boxes in AccessBot by putting the checkbox before text and increasing the contrast with
the background’s gray square box (figure 6.9).

Figure 6.9: Left: Popup window before improvement. Right: Popup window with modifications in the
checkboxes to increase contrast and visibility.

90

6.7 Improvements after Second Round of User Testing

When the result.html appeared to participants, the buttons “Show Legend” and
“Show Filters” were collapsed and the content was hidden by default. The user needed to
click buttons in order to see the content. However, it was a suggestion by one of the par-
ticipants to have the “Show Legend” automatically visible when the user clicks in “Start
Evaluation” in order to be readily visible to the user. If the user wanted to hide informa-
tion, he only needed to click the button. The button “Show Filters” remained collapsed by
default to reduce information clutter and allow good visibility of the Accessbot interface.

It was suggested to change the counters’ visual appearance in Accessbot to increase
the visual difference between success, alert, and fail. To make it more intuitive and im-
prove user experience, it was decided to use the traffic light colors order: green for a pass,
yellow as an alert of uncompleted evaluations, and red for fail, followed by cannot tell,
inapplicable and total evaluations. The space between the circles and square shapes was
increased to distance the total evaluations from the individual evaluations visually. These
changes are shown in figure 6.10.

Figure 6.10: Left: Category counters before improvement. Right: Category counters organized using the
traffic light system to be more intuitive for users.

To note that the global counters, although located inside the filters option, are also
visible outside this option, so the user can immediately observe the counters without the
need to click the button “Show Filters” (figure 6.11).

Figure 6.11: Left: No global counters shown outside ”Show Filters” section. Right: Global counters shown
outside ”Show Filters” section and organized also by using the traffic lights system.

When changing manually the result of the automatic evaluations, one of the partici-
pants was blocked after getting the alert yellow sign, thinking that he should do some-
thing. To make it more straightforward, the alert sign was changed to a tick sign to denote
choice and indicate the concept “yes, it is done” (figure 6.12).

Figure 6.12: Left: Alert icon when user changed the result of an automatic evaluation; Right: modification
of the icon to tick sign instead of an alert sign.

91

6. ACCESSBOT USABILITY TESTING

Contrast helps the design to be organized and to emphasize a focal point. In this case,
although the links of AccessBot, which redirect the user to ACT-Rules Community, have
not been evaluated directly in user testing, it was proposed to change the color of links in
order to be more noticeable. This change is indicated in figure 6.13.

Figure 6.13: Left: Link for the ACT Rule website in white; Right: Link with different color, in light blue,
to help users distinguish better the link and the Rule ID.

Tooltips were added to better identify the counter elements when the user hovers over
or focuses on, as suggested by one of the participants. They contain the text information
matching the circular counter symbol to the status they represent, as seen in figure 6.14,
without the need to consult the legend.

Figure 6.14: Example of tooltip showing that the green circular counter corresponds to the pass test results.
Note that the pointer is not visible when taking the screenshot.

92

Chapter 7

Conclusion

The web is an essential-good for all people with or without disabilities and it should be
accessible to everyone. Different forms of disabilities should be taken into account such
as visual, hearing, motor, and cognitive disabilities. To know if a website is accessible to
everyone it needs to be evaluated or tested. The principal objective in accessibility testing
is to identify errors and provide information to developers. This will promote future
design and implementation changes that improve the site’s usability and accessibility.

Nowadays, the monitoring of public websites accessibility is mandatory. It guarantees
that the Government and similar entities should fulfill the rules demanded by decrees of
law.

Accessibility testing relies on standards W3C. The standards provide success criteria
and techniques that support several components of web development. Some countries
also have specific government guidelines that complement the W3C standards and the
websites should fulfill both of these standards.

The implementation of these guidelines on identifying web accessibility issues can
be done using automatic testing, however, it can only found about 30% of the problems.
The rest of the problems must be located using manual testing which can detect a bigger
number of accessibility problems. AccessBot was created to have a broader coverage of
success criteria combining automatic testing with manual testing. It complements auto-
matic evaluations from the QualWeb engine, in a Chrome extension environment.

The assisted evaluation by AccessBot can be supported in different ways. It can iden-
tify all the elements affected by the automatic evaluation from QualWeb and the user can
alter its results manual, or presents a procedure (list of steps) for a technique, guiding
the user during the process. The process of guiding the user can have a semi-automatic
component if AccessBot relies on automatic evaluation by QualWeb but needs the input
of the user to reach a final result or manual, where there is no interference from QualWeb
and the manual evaluation is intrinsic to AccessBot.

Besides providing an assisted evaluation, another objective of the AccessBot is to
enable unequivocal interpretation and implementation of testing methods by using the

93

7. CONCLUSION

rules defined according to ACT Rules. This enables transparency and harmonization of
testing methods and resolves some of the problems with the interpretation of the WCAG
success criteria and techniques.

Preliminary to the development of AccessBot, a study was done to obtain an overall
perspective of what Chrome extensions exist at the present moment, which ones are most
used by developers, their strengths and weaknesses. Overall, the tools analyzed were easy
to install and use but not flawless, since during evaluations, for example, they crashed and
it was necessary to refresh the browser. The results obtained between tools varied in what
success criteria they evaluate (for example, WAVE does not evaluate level AAA confor-
mance criteria), varied in classifying the results according to its impact on the user, and in
classifying the result to be an error or a warning. All these variances are a consequence of
how specifications and heuristics are implemented for each tool. The analysis showed that
individual tools have poor coverage of the WCAG 2.1 success criteria. If more than one
tool is used together the coverage increases, affording approximately 10% to 40% more
coverage than if using only one tool. Given that the best option seems to be to use more
than one tool, to improve accessibility and adherence to developing accessible websites.

Although not perfect and with limitations, the automatic tools remain important to
help users evaluate websites to find most violations of success criteria that can be auto-
mated. However, they should always be complemented with manual testing procedures
and the results are analyzed objectively with reasoned judgment.

The planning execution of design, implementation, and user testing of AccessBot were
performed in the time frame planned, although there were some challenges.

The implementation logic for AccessBot has three fundamental aspects. The connec-
tion to QualWeb, the implementation of the semi-automatic and manual algorithms for
the assisted evaluations, and the development of features to improve users’ usability. The
features developed are, for example, the possibility for the user to choose which type of
evaluations he wants to perform such as manual, semi-automatic, and automatic; filter op-
tions to hide unwanted result states on tests and tests results; counters to store the different
state values; the possibility to change the result of automatic evaluations; highlighting of
elements and to export the final evaluation report in CSV and EARL format.

The AccessBot user testing consisted of two rounds with a total of five participants.
It gave a deep insight into improvements that needed to be done to learn about users’
behaviors and preferences while using AccessBot. After the first round, cosmetic and
functionality improvements were made. These were tested in the second round and the
difficulties of the first round were overtaken and new suggested cosmetics and features
were also made.

In general, the development of the thesis contributed to the accessibility field in in-
formatics, since AccessBot received positive feedback from AMA, the public institution
responsible to guarantee that the public government websites and similar entities will im-
prove their accessibility by respecting the accessibility rules demanded. It also became

94

7.1 Future Work

apparent that assisted evaluation is of major importance; it helps overtake a consider-
able part of the accessibility problems that automatic tools have and should complement
automatic evaluations.

The project AccessBot intends to be continually updated to have the more recent ACT
rules and to be continually developed to reach a greater number of users.

7.1 Future Work

After user testing additional changes were made. However, other user interface and
features suggestions were not considered high priority but are presented here and may be
considered future work.

• AccessBot revealed to have contrast problems. Some of the problems were cor-
rected, but others still need to be addressed, such as modifying background color
to increase contrast. An example given was to change the background to the dark
blue color; another example was to have an icon to increase contrast if needed. Ac-
cessBot contrast is vital since it is meant to be used by many users or accessibility
evaluators that may have low vision, low contrast vision, or color vision deficiency
that require sufficiently-contrasting colors.

• Improvement of visual information content, for example, apply a filter icon. Visual
communication is about sharing information in an exact accurate way that involves
visual elements. Nowadays, since users are used to much visual stimulation, some
users may prefer icons and skip text information, which may cause loss of content.

• Although AccessBot is designed to be easy to understand, one of the user testing
participants referred that a popup tip was useful to provide helpful and additional
content on how to use AccessBot. This feature will help users eventually not used
to accessibility evaluations since it has the main objective of thoroughly explaining
how the evaluation is done together with accessibility definitions.

• Create a Portuguese version of AccessBot; as said, AccessBot intends to reach a
broader audience, and in the future, a translation to Portuguese will be considered;

• Export button feature in HTML besides CSV and EARL format. The structure
would be different from the CSV and EARL that present results according to the
rules. The HTML structure would aggregate results according to their status; for
example, for all the tests that passed or failed independently of the rules, the user
would have access to the list.

• During web page testing, users cannot interact with the web page because they
can change the web page and need to restart the AccessBot evaluation. To avoid

95

7. CONCLUSION

this, it is necessary to implement an event with the information “Assessed page has
changed. The results are not up to date.” in order to inform users.

• An option to “check/uncheck all” options if the user needs to select or deselect
various result states in the filters section.

• Ability to use CSV upload in order to pre-fill AccessBot results evaluation. If neces-
sary, this step would be useful to divide the evaluation between different evaluators
and continue a previous evaluation session.

• Unite AccessBot with machine learning by helping AccessBot finding patterns in
results. This solution is useful in case of having more than hundreds of test results
for one rule and the users, instead of evaluating all of them, start by evaluating a few.
AccessBot recognizes there is a pattern and concludes all the rest of the evaluations.

96

Bibliography

Accessibility Guidelines Working Group (2017). Techniques for WCAG 2.1. Updated 10
July 2020. URL: https://www.w3.org/WAI/WCAG21/Techniques/.
(accessed: 15.08.2020).

ACT-Rules Community Group (Apr. 2019). About Us — ACT-Rules Community. URL:
https://act-rules.github.io/pages/about/. (accessed: 30.12.2019).

Bennett, Jessica (Jan. 2020). Formative Vs Summative : The User Testing Battle. URL:
https://usabilitygeek.com/formative- vs- summative- the-

user-testing-battle/. (accessed: 20.09.2020).
Bevan, Nigel et al. (2003). “The “Magic Number 5”: Is It Enough for Web Testing?” In:

CHI ’03 Extended Abstracts on Human Factors in Computing Systems. CHI EA ’03.
Ft. Lauderdale, Florida, USA: Association for Computing Machinery, pp. 698–699.
ISBN: 1581136374. DOI: 10.1145/765891.765936. URL: https://doi.
org/10.1145/765891.765936.

Brajnik, Giorgio (2008). “Beyond Conformance: The Role of Accessibility Evaluation
Methods”. In: Web Information Systems Engineering – WISE 2008 Workshops. Ed. by
Sven Hartmann, Xiaofang Zhou, and Markus Kirchberg. Lecture Notes in Computer
Science. Berlin, Heidelberg, pp. 63–80. URL: https://doi.org/10.1007/
978-3-540-85200-1_9.

Brajnik, Giorgio, Andrea Mulas, and Claudia Pitton (2007). “Effects of sampling meth-
ods on web accessibility evaluations”. In: Proceedings of the 9th international ACM
SIGACCESS conference on Computers and accessibility - Assets ’07. DOI: 10 .
1145/1296843.1296855. URL: https://dl.acm.org/doi/10.1145/
1296843.1296855.

Carvalho, Michael Crystian Nepomuceno et al. (2018). “Accessibility and Usability Prob-
lems Encountered on Websites and Applications in Mobile Devices by Blind and
Normal-Vision Users”. In: Proceedings of the 33rd Annual ACM Symposium on
Applied Computing. SAC ’18. Pau, France: Association for Computing Machinery,
pp. 2022–2029. ISBN: 9781450351911. DOI: 10 .1145 / 3167132. 3167349.
URL: https://doi.org/10.1145/3167132.3167349.

Duarte, Carlos Miguel Ribeiro (2018). “ISIAAW - Interpretação Semântica de Imagens
na Avaliação da Acessibilidade Web”. MA thesis. Lisboa: Faculdade Ciências, Uni-
versidade Lisboa.

97

https://www.w3.org/WAI/WCAG21/Techniques/
https://act-rules.github.io/pages/about/
https://usabilitygeek.com/formative-vs-summative-the-user-testing-battle/
https://usabilitygeek.com/formative-vs-summative-the-user-testing-battle/
https://doi.org/10.1145/765891.765936
https://doi.org/10.1145/765891.765936
https://doi.org/10.1145/765891.765936
https://doi.org/10.1007/978-3-540-85200-1_9
https://doi.org/10.1007/978-3-540-85200-1_9
https://doi.org/10.1145/1296843.1296855
https://doi.org/10.1145/1296843.1296855
https://dl.acm.org/doi/10.1145/1296843.1296855
https://dl.acm.org/doi/10.1145/1296843.1296855
https://doi.org/10.1145/3167132.3167349
https://doi.org/10.1145/3167132.3167349

BIBLIOGRAPHY

Fernandes, Nádia et al. (2012). “Evaluating the Accessibility of Rich Internet Applica-
tions”. In: Proceedings of the International Cross-Disciplinary Conference on Web
Accessibility. W4A ’12. Lyon, France: Association for Computing Machinery. ISBN:
9781450310192. DOI: 10.1145/2207016.2207019. URL: https://doi.
org/10.1145/2207016.2207019.

Foley, E (July 2019). W3C Publishes Draft of Standard Format for Writing Accessi-
bility Test Rules - Level Access. URL: https://www.levelaccess.com/
w3c - publishes - draft - of - standard - format - for - writing -

accessibility-test-act-rules/. (accessed: 30.12.2019).
Frazão, Tânia and Carlos Duarte (2020). “Comparing Accessibility Evaluation Plug-Ins”.

In: Proceedings of the 17th International Web for All Conference. W4A ’20. Taipei,
Taiwan: Association for Computing Machinery. ISBN: 9781450370561. DOI: 10.
1145/3371300.3383346. URL: https://doi.org/10.1145/3371300.
3383346.

Google (2020a). chrome.browserAction. URL: https : / / developer . chrome .
com/extensions/browserAction. (accessed: 16.03.2020).

— (2020b). Design User Interface. URL: https://developer.chrome.com/
extensions/user_interface. (accessed: 16.03.2020).

— (2020c). Getting Started Tutorial. URL: https://developer.chrome.com/
extensions. (accessed: 15.03.2020).

— (2020d). Manage Events with Background Scripts. URL: https://developer.
chrome.com/extensions/background_pages. (accessed: 16.03.2020).

— (2020e). Manage Events with Background Scripts. URL: https://developer.
chrome.com/extensions/background_pages. (accessed: 16.03.2020).

— (2020f). Overview. URL: https://developer.chrome.com/extensions/
overview. (accessed: 20.03.2020).

— (2020g). What are extensions? URL: https://developer.chrome.com/
extensions. (accessed: 15.03.2020).

Government Digital Service, Uk’s Cabinet Office (Apr. 2018). Accessibility tools audit re-
sults - Overview - GDS accessibility team. URL: https://alphagov.github.
io/accessibility-tool-audit/. (accessed: 10.12.2019).

Hudson, Roger (Nov. 2011). Measuring accessibility. URL: https://usability.
com.au/2011/11/measuring-accessibility/. (accessed: 30.12.2019).

Kirkpatrick, Andrew et al. (June 2018). Web Content Accessibility Guidelines (WCAG)
2.1. W3C Recommendation. URL: https://www.w3.org/TR/WCAG21/.
(accessed: 30.12.2019).

Matos, Inês (2017). “SCREW - Semantic Content Analysis for Repair and Evaluation of
Web Accessibility”. MA thesis. Lisboa: Faculdade Ciências, Universidade Lisboa.

Mehta, Prateek (2016). Creating Google Chrome extensions. Apress.

98

https://doi.org/10.1145/2207016.2207019
https://doi.org/10.1145/2207016.2207019
https://doi.org/10.1145/2207016.2207019
https://www.levelaccess.com/w3c-publishes-draft-of-standard-format-for-writing-accessibility-test-act-rules/
https://www.levelaccess.com/w3c-publishes-draft-of-standard-format-for-writing-accessibility-test-act-rules/
https://www.levelaccess.com/w3c-publishes-draft-of-standard-format-for-writing-accessibility-test-act-rules/
https://doi.org/10.1145/3371300.3383346
https://doi.org/10.1145/3371300.3383346
https://doi.org/10.1145/3371300.3383346
https://doi.org/10.1145/3371300.3383346
https://developer.chrome.com/extensions/browserAction
https://developer.chrome.com/extensions/browserAction
https://developer.chrome.com/extensions/user_interface
https://developer.chrome.com/extensions/user_interface
https://developer.chrome.com/extensions
https://developer.chrome.com/extensions
https://developer.chrome.com/extensions/background_pages
https://developer.chrome.com/extensions/background_pages
https://developer.chrome.com/extensions/background_pages
https://developer.chrome.com/extensions/background_pages
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions
https://developer.chrome.com/extensions
https://alphagov.github.io/accessibility-tool-audit/
https://alphagov.github.io/accessibility-tool-audit/
https://usability.com.au/2011/11/measuring-accessibility/
https://usability.com.au/2011/11/measuring-accessibility/
https://www.w3.org/TR/WCAG21/

BIBLIOGRAPHY

Ministério da Ciência e da Tecnologia e Ensino Superior (2018). “Decreto-Lei n.º
83/2018”. In: Diário da República n.º 202/2018, Série I de 2018-10-19.

Nielsen, Jakob and Thomas K. Landauer (1993). “A Mathematical Model of the Finding
of Usability Problems”. In: Proceedings of the INTERACT ’93 and CHI ’93 Confer-
ence on Human Factors in Computing Systems. CHI ’93. Amsterdam, The Nether-
lands: Association for Computing Machinery, pp. 206–213. ISBN: 0897915755. DOI:
10.1145/169059.169166. URL: https://doi.org/10.1145/169059.
169166.

Petrie, Helen, Ra Harrison, and Sundeep Dev (2005). “Describing images on the web: a
survey of current practice and prospects for the future”. In: Proceedings of 3rd Inter-
national Conference on Universal Access in Human-Computer Interaction.

Rømen, Dagfinn and Dag Svanæs (2012). “Validating WCAG versions 1.0 and 2.0
through usability testing with disabled users”. In: Universal Access in the Informa-
tion Society 11.4, pp. 375–385. DOI: 10.1007/s10209-011-0259-3. URL:
https://doi.org/10.1007/s10209-011-0259-3.

Santos Vicente, João Afonso Leal dos (2018). “Migração do Observatório Português de
Acessibilidade Web”. MA thesis. Lisboa: Faculdade Ciências, Universidade Lisboa.

Sauro, Jeff and James R. Lewis (2016). “Chapter 2 - Quantifying user research”. In: Quan-
tifying the User Experience (Second Edition). Ed. by Jeff Sauro and James R. Lewis.
Second Edition. Boston: Morgan Kaufmann, pp. 9–18. ISBN: 978-0-12-802308-2.
DOI: https://doi.org/10.1016/B978-0-12-802308-2.00002-
3. URL: http://www.sciencedirect.com/science/article/pii/
B9780128023082000023.

Schmutz, Sven, Andreas Sonderegger, and Juergen Sauer (2016). “Implementing Recom-
mendations From Web Accessibility Guidelines”. In: Human Factors: The Journal
of the Human Factors and Ergonomics Society 58.4, pp. 611–629. DOI: 10.1177/
0018720816640962. URL: https://www.ncbi.nlm.nih.gov/pubmed/
27044605.

Stephanidis, Constantine, Helen Petrie, and Nigel Bevan (2009). “The Evaluation of
Accessibility, Usability, and User Experience”. In: The universal access hand-
book. Vol. 20091047. Human Factors and Ergonomics. Taylor & Francis Group,
pp. 1–16. URL: http : / / www . crcnetbase . com / doi / abs / 10 .

1201 / 9781420064995 - c20 % 20http : / / dx . doi . org / 10 . 1201 /

9781420064995-c20.
UXPA International, Eduardo Meza-Etienne, and Kara Zirkle (June 2019). WCAG 2.1:

What You Need to Know About the Most Recent Accessibility Standards. UXPA
International Conference. URL: https : / / pt . slideshare . net / UXPA /
wcag-21-what-you-need-to-know-about-the-most-recent-

accessibility-standards. (accessed: 30.12.2019).

99

https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://doi.org/10.1007/s10209-011-0259-3
https://doi.org/10.1007/s10209-011-0259-3
https://doi.org/https://doi.org/10.1016/B978-0-12-802308-2.00002-3
https://doi.org/https://doi.org/10.1016/B978-0-12-802308-2.00002-3
http://www.sciencedirect.com/science/article/pii/B9780128023082000023
http://www.sciencedirect.com/science/article/pii/B9780128023082000023
https://doi.org/10.1177/0018720816640962
https://doi.org/10.1177/0018720816640962
https://www.ncbi.nlm.nih.gov/pubmed/27044605
https://www.ncbi.nlm.nih.gov/pubmed/27044605
http://www.crcnetbase.com/doi/abs/10.1201/9781420064995-c20%20http://dx.doi.org/10.1201/9781420064995-c20
http://www.crcnetbase.com/doi/abs/10.1201/9781420064995-c20%20http://dx.doi.org/10.1201/9781420064995-c20
http://www.crcnetbase.com/doi/abs/10.1201/9781420064995-c20%20http://dx.doi.org/10.1201/9781420064995-c20
https://pt.slideshare.net/UXPA/wcag-21-what-you-need-to-know-about-the-most-recent-accessibility-standards
https://pt.slideshare.net/UXPA/wcag-21-what-you-need-to-know-about-the-most-recent-accessibility-standards
https://pt.slideshare.net/UXPA/wcag-21-what-you-need-to-know-about-the-most-recent-accessibility-standards

BIBLIOGRAPHY

Vigo, Markel, Justin Brown, and Vivienne Conway (2013). “Benchmarking Web Acces-
sibility Evaluation Tools: Measuring the Harm of Sole Reliance on Automated Tests”.
In: Proceedings of the 10th International Cross-Disciplinary Conference on Web Ac-
cessibility. W4A ’13. Rio de Janeiro, Brazil: Association for Computing Machinery.
ISBN: 9781450318440. DOI: 10.1145/2461121.2461124. URL: https://
doi.org/10.1145/2461121.2461124.

W3C (Oct. 2019a). Accessibility Conformance Testing (ACT), Rules Format 1.0. URL:
https://www.w3.org/TR/act-rules-format/. (accessed: 30.12.2019).

— (May 2019b). Accessibility Testing. URL: https : / / www . w3 . org / wiki /
Accessibility_testing. (accessed: 30.12.2019).

W3C Web Accessibility Initiative (Feb. 2005). Introduction to Web Accessibility. URL:
https://www.w3.org/WAI/fundamentals/accessibility-intro/.
(accessed: 18.11.2019).

— (Mar. 2006). W3C Web Accessibility Initiative Web Accessibility Evaluation Tools List.
Information on specific evaluation tools is updated frequently. URL: https://www.
w3.org/WAI/ER/tools/. (accessed: 05.12.2019).

— (2016). Accessibility, Usability, and Inclusion. URL: https://www.w3.org/
WAI / fundamentals / accessibility - usability - inclusion. (ac-
cessed: 05.01.2021).

— (Dec. 2017a). Selecting Web Accessibility Evaluation Tools. Ed. by Shadi Abou-Zahra,
Nicolas Steenhout, and LauraEditors Keen. URL: https://www.w3.org/WAI/
test-evaluate/tools/selecting/. (accessed: 30.12.2019).

— (2017b). Understanding Conformance. Updated 10 July 2020. URL: https : / /
www.w3.org/WAI/WCAG21/Understanding/conformance. (accessed:
15.08.2020).

— (2017c). Understanding Techniques for WCAG Success Criteria. Updated 10 July
2020. URL: https://www.w3.org/WAI/WCAG21/Understanding/
understanding-techniques.html. (accessed: 15.08.2020).

— (2019a). Evaluating Web Accessibility Overview. Ed. by Shawn LawtonEditor Henry.
Updated 19 October 2020. URL: https : / / www . w3 . org / WAI / test -
evaluate/. (accessed: 25.11.2019).

— (Oct. 2019b). How to Meet WCAG (Quick Reference). URL: https://www.w3.
org/WAI/WCAG21/quickref/. (accessed: 25.11.2019).

— (Mar. 2019c). W3C Accessibility Standards Overview. URL: https://www.w3.
org/WAI/standards-guidelines/. (accessed: 24.11.2019).

100

https://doi.org/10.1145/2461121.2461124
https://doi.org/10.1145/2461121.2461124
https://doi.org/10.1145/2461121.2461124
https://www.w3.org/TR/act-rules-format/
https://www.w3.org/wiki/Accessibility_testing
https://www.w3.org/wiki/Accessibility_testing
https://www.w3.org/WAI/fundamentals/accessibility-intro/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/fundamentals/accessibility-usability-inclusion
https://www.w3.org/WAI/fundamentals/accessibility-usability-inclusion
https://www.w3.org/WAI/test-evaluate/tools/selecting/
https://www.w3.org/WAI/test-evaluate/tools/selecting/
https://www.w3.org/WAI/WCAG21/Understanding/conformance
https://www.w3.org/WAI/WCAG21/Understanding/conformance
https://www.w3.org/WAI/WCAG21/Understanding/understanding-techniques.html
https://www.w3.org/WAI/WCAG21/Understanding/understanding-techniques.html
https://www.w3.org/WAI/test-evaluate/
https://www.w3.org/WAI/test-evaluate/
https://www.w3.org/WAI/WCAG21/quickref/
https://www.w3.org/WAI/WCAG21/quickref/
https://www.w3.org/WAI/standards-guidelines/
https://www.w3.org/WAI/standards-guidelines/

Appendix A

Semi-automatic Test Algorithms

This section presents the semi-automatic test algorithms for the rules defined as semi-
automatic. The QualWeb Rule ID (R#) is presented together with the ACT Rule Name.
The representation of the rules is according to the ACT rules published on 31th of July
2020.

A.1 R1 - HTML page has title.

A.2 R2 - HTML page has a lang attribute

101

A. SEMI-AUTOMATIC TEST ALGORITHMS

A.3 R6 - Image button has an accessible name.

A.4 R8 - Image filename is accessible name for image

102

A.5 R9 - Links with identical accessible names have equivalent purpose.

A.5 R9 - Links with identical accessible names have
equivalent purpose.

103

A. SEMI-AUTOMATIC TEST ALGORITHMS

A.6 R10 - iframe elements with identical accessible
names have equivalent purpose.

104

A.7 R11 - Button has an accessible name.

A.7 R11 - Button has an accessible name.

A.8 R12 - Link has an accessible name.

105

A. SEMI-AUTOMATIC TEST ALGORITHMS

A.9 R15 - Audio or video has no audio that plays auto-
matically.

106

A.10 R16 - Form control has an accessible name.

A.10 R16 - Form control has an accessible name.

A.11 R17- Image has an accessible name.

Continues next page.

107

A. SEMI-AUTOMATIC TEST ALGORITHMS

A.12 R19 - iframe element has an accessible name.

108

A.13 R21 - svg element with explicit role has an accessible name.

A.13 R21 - svg element with explicit role has an accessi-
ble name.

Continues next page.

109

A. SEMI-AUTOMATIC TEST ALGORITHMS

A.14 R22 - Element within body has valid lang attribute.

110

A.15 R23 - Video element visual content has an accessible alternative.

A.15 R23 - Video element visual content has an accessible
alternative.

111

A. SEMI-AUTOMATIC TEST ALGORITHMS

A.16 R29 - Audio element content has text alternative.

A.17 R30 - Visible label is part of accessible name.

112

A.18 R35 - Heading has non-empty accessible name.

A.18 R35 - Heading has non-empty accessible name.

A.19 R36 - Headers attribute specified on a cell refers to
cells in the same table element.

113

A. SEMI-AUTOMATIC TEST ALGORITHMS

A.20 R37 - Text has minimum contrast

A.21 R40 - Zoomed text node is not clipped with CSS
overflow.

114

A.22 R41 - Error message describes invalid form field value.

A.22 R41 - Error message describes invalid form field
value.

A.23 R42 - Object element rendering non-text content
has non-empty accessible name.

115

A. SEMI-AUTOMATIC TEST ALGORITHMS

A.24 R44 - Links with identical accessible names and
context serve equivalent purpose.

116

Appendix B

Manual Test Algorithms

This section presents the manual test algorithms for the rules defined as manual. The
rule id from ACT-Rules is presented. The representation of the rules is according to the
ACT rules published on 31th of July 2020.

B.1 Rule id: 80af7b - Focusable element has no keyboard
trap.

117

B. MANUAL TEST ALGORITHMS

B.2 Rule id: efbfc7 - Text content that changes automat-
ically can be paused, stopped or hidden

118

Appendix C

AccessBot Main Object

An example of a main object console.log of the webpage
https://ciencias.ulisboa.pt/ accessibility evaluation is presented:

Object
categories: Array(18)

0:
count: 15
fail: 0
fixedName: ”ARIA”
inapplicable: 9
index: 0
missing: 0
name: ”ARIA”
pass: 6
rules: Array(8)
0: rule: ”QW-ACT-R13”, name: ”Element with

‘aria-hidden‘ has no focusable content”,
description: ”This rule checks that elements with
an aria-hidden attribute do not contain focusable
elements.”, id: ”6cfa84”, url:
”https://act-rules.github.io/rules/6cfa84”, . . .
1: rule: ”QW-ACT-R25”, name: ”ARIA state or
property is permitted”, description: ”This rule
checks that WAI-ARIA states or propertie. . . re
allowed for the element they are specified on.”,
id: ”5c01ea”, url:
”https://act-rules.github.io/rules/5c01ea”, . . .
2: rule: ”QW-ACT-R27”, name: ”aria-* attribute is
defined in WAI-ARIA”, description: ”This rule

119

C. ACCESSBOT MAIN OBJECT

checks that each aria- attribute specified is
defined in ARIA 1.1.”, id: ”5f99a7”, url:
”https://act-rules.github.io/rules/5f99a7”, . . .
3:

count: 5
description: ”This rule checks that
elements that have an explicit role also
specify all required states and
properties.”
fail: 0
id: ”4e8ab6”
inapplicable: 4
index: 3
missing: 0
name: ”Element with role attribute has
required states and properties”
pass: 1
plusRule: []
questions: Array(5)

0:
complete: true
description: ”The test target
explicit role equals the
implicit role.”
elements: [. . .]
index: 0
manualAnswer: ””
note: ””
resultCode: ”RC2”
selected: false
type: ”auto”
verdict: ”inapplicable”

proto : Object
1: verdict: ”inapplicable”,
description: ”The test target
explicit role equals the implicit
role.”, resultCode: ”RC2”, elements:
Array(1), selected: false, . . .
2: verdict: ”passed”, description:
”The test target ‘role‘ doesn’t have

120

required state or property”,
resultCode: ”RC5”, elements:
Array(1), selected: false, . . .
3: verdict: ”inapplicable”,
description: ”The test target
explicit role equals the implicit
role.”, resultCode: ”RC2”, elements:
Array(1), selected: false, . . .
4: verdict: ”inapplicable”,
description: ”The test target
explicit role equals the implicit
role.”, resultCode: ”RC2”, elements:
Array(1), selected: false, . . .
length: 5

proto : Array(0)
rule: ”QW-ACT-R28”
selected: false
total: 5
url:
”https://act-rules.github.io/rules/4e8ab6
warning: 0

proto : Object
4: rule: ”QW-ACT-R34”, name: ”ARIA state or
property has valid value”, description: ”This rule
checks that each ARIA state or property has a
valid value.”, id: ”6a7281”, url: ”https://ac (...)

121

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Objectives
	Planning
	Planning Execution
	Contributions
	Document and Organization

	Related Work
	Usability and Accessibility
	Web Accessibility Guidelines
	Problems with accessibility guidelines
	ACT Rules
	Accessibility Evaluation Methods
	Introduction to QualWeb
	Introduction to Chrome Extensions
	Portuguese Laws and Obligations

	Study of Existing Accessibility Evaluation Chrome Extensions
	Tools
	Selection of Web Sites
	Testing Environment
	Procedure
	Results
	Discussion

	Design of AccessBot
	AccessBot Features
	AccessBot Integration with QualWeb
	AccessBot Architecture
	Rules implemented in AccessBot
	Semi-automatic Test Algorithms
	Manual Test Algorithms

	AccessBot Implementation
	Technologies used on AccessBot
	AccessBot Processing
	Updating the Rules on AccessBot
	Difficulties encountered during development
	AccessBot User Interaction

	AccessBot Usability Testing
	Usability Testing Method
	Planning process for usability testing
	Usability Research Data Collection
	Analysis of the First Round of User Testing
	Improvements after First Round of User Testing
	Analysis of the Second Round of User Testing
	Improvements after Second Round of User Testing

	Conclusion
	Future Work

	Semi-automatic Test Algorithms
	R1 - HTML page has title.
	R2 - HTML page has a lang attribute
	R6 - Image button has an accessible name.
	R8 - Image filename is accessible name for image
	R9 - Links with identical accessible names have equivalent purpose.
	R10 - iframe elements with identical accessible names have equivalent purpose.
	R11 - Button has an accessible name.
	R12 - Link has an accessible name.
	R15 - Audio or video has no audio that plays automatically.
	R16 - Form control has an accessible name.
	R17- Image has an accessible name.
	R19 - iframe element has an accessible name.
	R21 - svg element with explicit role has an accessible name.
	R22 - Element within body has valid lang attribute.
	R23 - Video element visual content has an accessible alternative.
	R29 - Audio element content has text alternative.
	R30 - Visible label is part of accessible name.
	R35 - Heading has non-empty accessible name.
	R36 - Headers attribute specified on a cell refers to cells in the same table element.
	R37 - Text has minimum contrast
	R40 - Zoomed text node is not clipped with CSS overflow.
	R41 - Error message describes invalid form field value.
	R42 - Object element rendering non-text content has non-empty accessible name.
	R44 - Links with identical accessible names and context serve equivalent purpose.

	Manual Test Algorithms
	Rule id: 80af7b - Focusable element has no keyboard trap.
	Rule id: efbfc7 - Text content that changes automatically can be paused, stopped or hidden

	AccessBot Main Object

