215,763 research outputs found

    A cross-layer approach to increase spatial reuse and throughput for ad hoc networks

    Get PDF
    Ad hoc networks employing adaptive-transmission protocols can alter transmission parameters to suit the channel environment. Channel-access mechanisms are used to govern temporal use of the transmission medium amongst nodes. Effective operation of a channel-access mechanism can improve the ability of an adaptive-transmission protocol to accommodate changing channel conditions. The interoperability of these two mechanisms motivates cross-layer design of adaptive-transmission protocols. In this thesis we examine the integration of a new channel-access mechanism with a physical-layer adaptive-transmission protocol to create a cross-layer protocol with enhanced capabilities. We derive specific physical-layer measurements which are used to control channel-access behavior in a distributed manner. We propose a distributed heuristic using cross-layer information to drive a channel-access protocol which works in conjunction with an adaptive-transmission protocol. We show that the new protocol outperforms statically configured transmission protocols as well as protocols which act independently of cross-layer enhancements

    Transport Protocol Throughput Fairness

    Get PDF
    Interest continues to grow in alternative transport protocols to the Transmission Control Protocol (TCP). These alternatives include protocols designed to give greater efficiency in high-speed, high-delay environments (so-called high-speed TCP variants), and protocols that provide congestion control without reliability. For the former category, along with the deployed base of ‘vanilla’ TCP – TCP NewReno – the TCP variants BIC and CUBIC are widely used within Linux: for the latter category, the Datagram Congestion Control Protocol (DCCP) is currently on the IETF Standards Track. It is clear that future traffic patterns will consist of a mix of flows from these protocols (and others). So, it is important for users and network operators to be aware of the impact that these protocols may have on users. We show the measurement of fairness in throughput performance of DCCP Congestion Control ID 2 (CCID2) relative to TCP NewReno, and variants Binary Increase Congestion control (BIC), CUBIC and Compound, all in “out-of-the box” configurations. We use a testbed and endto- end measurements to assess overall throughput, and also to assess fairness – how well these protocols might respond to each other when operating over the same end-to-end network path. We find that, in our testbed, DCCP CCID2 shows good fairness with NewReno, while BIC, CUBIC and Compound show unfairness above round-trip times of 25ms

    Analysis and control of bifurcation and chaos in averaged queue length in TCP/RED model

    Get PDF
    This paper studies the bifurcation and chaos phenomena in averaged queue length in a developed Transmission Control Protocol (TCP) model with Random Early Detection (RED) mechanism. Bifurcation and chaos phenomena are nonlinear behaviour in network systems that lead to degradation of the network performance. The TCP/RED model used is a model validated previously. In our study, only the average queue size k q − is considered, and the results are based on analytical model rather than actual measurements. The instabilities in the model are studied numerically using the conventional nonlinear bifurcation analysis. Extending from this bifurcation analysis, a modified RED algorithm is derived to prevent the observed bifurcation and chaos regardless of the selected parameters. Our modification is for the simple scenario of a single RED router carrying only TCP traffic. The algorithm neither compromises the throughput nor the average queuing delay of the system

    High-speed analysis of SMB2 file sharing traffic without TCP stream reconstruction

    Get PDF
    Trabajo presentado a la 5th IEEE International Symposium on Measurements and Networking (M&N) 2019. Italia, 2019This paper presents a file sharing traffic analysis methodology for Server Message Block (SMB), a common protocol in the corporate environment. The design is focused on improving the traffic analysis rate that can be obtained per CPU core in the analysis machine. SMB is most commonly transported over Transmission Control Protocol (TCP) and therefore its analysis requires TCP stream reconstruction. We evaluate a traffic analysis design which does not require stream reconstruction. We compare the results obtained to a reference full reconstruction analysis, both in accuracy of the measurements and maximum rate per CPU core. We achieve an increment of 30% in the traffic processing rate, at the expense of a small loss in accuracy computing the probability distribution function for the protocol response times.This work was supported by Spanish MINECO through project PIT (TEC2015-69417-C2-2-R)

    A Packet-Switching Strategy for Uncertain Nonlinear Networked Control Systems

    No full text
    International audienceThis paper addresses the problem of stabilizing uncertain nonlinear plants over a shared limited-bandwidth packet-switching network for which both the time between consecutive accesses to each node (MATI) and the transmission and processing delays (MAD) for measurements and control packets are bounded. While conventional control loops are designed to work with circuit-switching networks, where dedicated communication channels provide almost constant bit rate and delay, many networks, such as Ethernet, organize data transmission in packets, carrying larger amount of information at less predictable rates. To avoid the bandwidth waste due to the relatively large overhead inherent to packet transmission, we exploit the packet payload to carry longer control sequences. To this aim we adopt a model-based approach to remotely compute a predictive control signal on a suitable time horizon, which leads to effectively reducing the bandwidth required to guarantee stability. Communications are assumed to be ruled by a rather general protocol model, which encompasses many protocols used in practice. As a distinct improvement over the state of the art, our result is shown to be robust with respect to sector-bounded uncertainties in the plant model. Namely, an explicit bound on the combined effects of MATI and MAD is provided as a function of the basin of attraction and the model accuracy

    Exploiting Packet Size in Uncertain Nonlinear Networked Control Systems

    No full text
    12International audienceThis paper addresses the problem of stabilizing uncertain nonlinear plants over a shared limited-bandwidth packet-switching network. While conventional control loops are designed to work with circuit-switching networks, where dedicated communication channels provide almost constant bit rate and delay, many networks, such as Ethernet, organize data transmission in packets, carrying larger amount of information at less predictable rates. To avoid the bandwidth waste due to the relatively large overhead inherent to packet transmission, we exploit the packet payload to carry longer control sequences. To this aim we adopt a model-based approach to remotely compute a predictive control signal on a suitable time horizon, which leads to effectively reducing the bandwidth required to guarantee stability. We consider networks for which both the time between consecutive accesses to each node (MATI) and the transmission and processing delays (MAD) for measurements and control packets are bounded. Communications are assumed to be ruled by a rather general protocol model, which encompasses many protocols used in practice. As a distinct improvement over the state of the art, our result is shown to be robust with respect to sector-bounded uncertainties in the plant model. Namely, an explicit bound on the combined effects of MATI and MAD is provided as a function of the basin of attraction and the model accuracy. A case study is presented to appreciate the improvements induced by the packet-based control strategy over existing methods
    corecore