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This paper studies the bifurcation and chaos phenomena in averaged queue length in a 
developed Transmission Control Protocol (TCP) model with Random Early Detection 
(RED) mechanism. Bifurcation and chaos phenomena are nonlinear behaviour in network 
systems that lead to degradation of the network performance. The TCP/RED model used 

is a model validated previously. In our study, only the average queue size kq
−

 is 
considered, and the results are based on analytical model rather than actual measurements. 
The instabilities in the model are studied numerically using the conventional nonlinear 
bifurcation analysis. Extending from this bifurcation analysis, a modified RED algorithm 
is derived to prevent the observed bifurcation and chaos regardless of the selected 
parameters. Our modification is for the simple scenario of a single RED router carrying 
only TCP traffic. The algorithm neither compromises the throughput nor the average 
queuing delay of the system.  
 
Keywords: Congestion Control; Transmission Control Protocol; Random Early Detection; 
Nonlinear phenomenon; Bifurcation; Chaos. 
 
1. Introduction 

 
The unprecedented growth of Internet, in terms of size and traffic, has given rise to the 
congestion control issue. Poor management of congestion may lead to a network being 
partly or fully inaccessible and degrade the performance of networking applications. 
Therefore, various approaches have been proposed over the years to address this issue. 
One of the approaches is to control the congestion level at each router through active 
queue management (AQM) mechanisms [Barden et al., 1998]. Random Early Detection 
(RED) mechanism is a widely deployed AQM algorithm. The goal of the RED 
mechanism, proposed by Floyd and Jacobson [Floyd et al., 1993], is to detect early signs 
of congestion and provide feedback by either dropping or marking their packets to the 
adaptive sources so that congestion can be avoided. The RED mechanism is conceptually 
simple. However, the interaction between Transmission Control Protocol (TCP) and RED 
at the router’s gateway has at times induced strange behaviour. Such behaviour has been 
generally recognized as nonlinear phenomena. They lead to instability of the system and 
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degradation of the network performance. An accurate model of the nonlinear phenomena 
in TCP/RED systems is essential to investigate the problem [La, 2004], seek out the 
stability margins of the system and provide guidelines for selecting network system 
parameters and RED controller’s parameters [Wang et al., 2005], or establish possible 
solutions to the problem [Ranjan et al., 2004a].  
 
This paper studies the problem of bifurcation and chaos phenomena in averaged queue 
length in a TCP/RED model. Bifurcation and chaos are nonlinear behaviour in network 
systems. The TCP/RED model used is a model validated previously by Liu et al. [Liu et 
al., 2005] and the instabilities in the model are studied numerically using the 
conventional nonlinear bifurcation analysis [Ranjan et al., 2004b]. We also derive a 
modified RED algorithm to control the observed bifurcation and chaos.   
 
The dynamics of the averaged queue size is important to the network engineers. The 
information may help understand and predict the dynamical behaviour of the network. In 
addition, it may help analyze the stability margins of the system and provide design 
guidelines for selecting network parameters and improving network robustness [Zhang et 
al., 2005]. 
 
This paper is organized as follows: In Section 2, we describe the TCP congestion control 
and the RED algorithm. In Section 3, we briefly describe the TCP/RED model under 
investigation. Section 4 explains the origin of the nonlinear phenomena in TCP/RED 
models. The simulation results of bifurcation and chaos phenomena are presented in 
Section 5. Section 6 discusses the modified RED algorithm and section 7 presents the 
simulation results. Section 8 presents the limitations of our model and Section 9 
concludes the investigation. 

 
2. TCP And RED Algorithms 

 
2.1.   TCP Congestion Control Algorithm 
 
The transmission rate of a TCP connection is controlled by its congestion window (cwnd) 
size at the sender end. The cwnd determines the number of segments to be sent to the 
receiver end. The cwnd size is constantly adjusted to maximize the link utilization and to 
avoid congesting the network with large bursts of data at the same time. To adjust the 
window size, TCP congestion control algorithms employ four algorithms: slow start, 
congestion avoidance, fast retransmit, and fast recovery [Zhang et al., 2005; Allman et al., 
1999; Jacobson, 1988, 1990]. The algorithms are shown in Figure 1.  
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Fig 1: Evolution of window size in TCP congestion control algorithms. 

 
Figure 2 is a simple topology of a TCP network. When a new connection is first 
established, the cwnd at the sender end is initialized to one segment. Upon receipt of 
every segment, an acknowledgement (ACK) packet is sent by the receiver to the sender. 
Upon receipt of every ACK, the TCP sender increases the cwnd by one segment. Two 
segments of data can now be sent. When each of those two segments is acknowledged (2 
ACKs received by the sender), the cwnd is increased to four. This is the slow start (SS) 
phase. TCP sender opens up the window exponentially, 1→2→4→8→…., etc. 
 
When cwnd exceeds a threshold ssthresh, the sender enters the congestion avoidance (CA) 
phase. During CA phase, cwnd is incremented by one segment size per round trip time 
(RTT), regardless of the number of ACKs received. TCP sender opens up the window 
linearly, i.e. 1→2→3→4…until it reaches the receiver’s advertised window size (rwnd). 
A retransmission timer is set every time the sender sends a packet. A packet loss is 
detected by the timeout mechanism if the timer expires before the receipt of the packet 
has been acknowledged. In this case, the TCP sender adjusts its ssthresh and switches 
back to slow start phase.   

 
Fig 2: A simple topology of a TCP network. 

 
In CA phase, upon receiving an out-of-order segment, TCP receiver generates an ACK, 
and immediately followed by a duplicate ACK. For each subsequent out-of-order 
segment, the receiver generates a duplicate ACK. When three duplicate ACKS have been 
received by the sender, it is assumed that a segment has been lost. TCP sender halves the 

TCP 
receiver 

TCP 
Sender 

Segmented 
Data 

ACK 

Router 
1 

Router 
2 

RED algorithm 



 4

cwnd and re-transmitting the lost segment without waiting for a retransmission timer to 
expire. The algorithm is called the fast retransmit algorithm. 
 
Until the retransmitted segment is received, receiver will continue to receive out-of-order 
segments and generate duplicate ACKs to the sender. After fast retransmit sends the 
missing segment, TCP sender increases its cwnd for each duplicate ACK received. Each 
duplicate ACK is an indication that one packet has reached the destination and the 
number of outstanding packets has decreased by one, and therefore, the TCP sender is 
allowed to increment its cwnd. This is the fast recovery algorithm. TCP switches back to 
CA phase when the retransmitted segment is received and a non-duplicate ACK is sent to 
the sender. Further details of TCP congestion control algorithm are illustrated by Allman 
et al. [Allman et al., 1999].  
 
2.2.  RED Algorithm 
 
RED algorithm is a gateway based active queue management algorithm [Floyd & 
Jacobson, 1993; Firoiu & Borden, 2000]. It calculates an exponentially weighted moving 
average of the queue size at the router, as depicted in Figure 2. Upon arrival of each 
segment, the RED gateway updates the average queue size as: 
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where pBmaxB is maximum packet drop probability [Floyd & Jacobson, 1993]. The function 
is depicted in Figure 3. 
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Fig 3: Drop probability as a function of average queue size.  

 
3. TCP/RED Model 
 
Liu et al. [Liu et al., 2005] have considered a simple network depicted in Figure 4 and 
developed a nonlinear first-order discrete-time TCP/RED model.  

 
Fig 4: Topology of the modeled and simulated network. 

 
The nonlinear first-order discrete-time dynamic model of TCP/RED is [Liu et al., 2005]:  
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The proposed model takes into account the slow start and timeout events, and the average 
queue size captures the queue dynamics in the RED gateway and reflects the dynamics of 
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the TCP congestion control mechanism. With several assumptions made, the model has 
been validated by varying RED parameters and comparing with ns-2 simulations [Zhang 
et al., 2005]. It has been shown by Floyd and Jacobson [Floyd & Jacobson, 1993] that the 
model follows the ns-2 simulations results closer than other models.  
 
4. Bifurcation Analysis 
 
We try to investigate bifurcations and chaos in the TCP/RED model using the nonlinear 
analysis in [Ranjan et al., 2004b]. By referring to the drop probability function in (2) and 

substituting the drop probability with average queue size at previous RTT period, kq
−

, (3) 
can be rewritten as  

),(1 ρkk qgq
−

+

−

=            (4) 

where ρ summarizes all parameters except for kq
−

. 
 
The average queue size at period k is mapped to the average queue size at period k + 1. 
The fixed point of the map is an average queue size q* such that q* = g(q*, ρ). If the 
RED parameters are properly configured, the fixed point should fall between qBmin B and 
qBmaxB. Therefore, the only area of interest is the equation where the average queue size is 
greater than q Bmin B. Deriving from (4), the fixed point of the map is  
 

..
*

.*
M

dC
p
KNq −=      (5) 

 
The corresponding p* is given as the square of the positive real solution of the 
polynomial  
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where v = pBmaxB/(qBmax B-qBmin B). 
 
Local stability in the neighborhood of the fixed point is determined by the associated 
eigenvalue of the map 
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The linear stability condition is  
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When the eigenvalue becomes -1, it gives a period-doubling bifurcation (PDB) leading to 
oscillatory behaviour in the system [Alligood et al., 1996]. The critical value of wBqB for 
which the eigenvalue becomes -1 is the bifurcation point of the system and is expressed 
as  
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5. Bifurcation Analysis Simulation Results 
 
5.1.  Queue weight factor, wBq B as a bifurcation parameter 
 
We investigate the bifurcation in the TCP/RED model using the following system 
parameters and RED parameters:  
 

Table 1: System parameters. 
Parameter Value 

Number of TCP connection, N 1 
Link capacity, C (bit/s) 1.54e+6 

Packet size, M (bits) 4,000 
Round trip propagation, d (s) 0.0228 

Constant, K 23  
Receiver’s advertised window size, rwnd 1,000 

 
Table 2: RED parameters. 

Parameter Value
Maximum drop probability, PBmaxB 0.1 
Minimum queue threshold, qBmin B 5 
Maximum queue threshold, qBmaxB 15 

 
Numerically, using (4) and parameters from Table 1 and Table 2, the fixed point of the 
system is approximately 5.712 packets. The bifurcation point is determined by using (9) 
and is found to be approximately 0.1794. Eigenvalues have been calculated using (8) to 
verify the PDB, they are shown in Table 3 and Figure 5.  
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Table 3: Eigenvalues computed for various values of wBq B. 
wBq B λ Legend 

0.1792 -0.9973 Close to PDB
0.1793 -0.9984 Close to PDB
0.1794 -0.9996 Close to PDB
0.1795 -1.0007 After PDB 
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(a)                                                                    (b) 
Fig 5: (a) Graphical presentation of real eigenvalues for wBqB = 0.14 to wBq B = 0.19, with 
step 0.001, crossing the boundary of stability at -1 of the unit circle from right to left. 
(b) Zoom-in of (a). 

 
The calculations of the non-linear analysis are further verified by the simulation results. 
We use wBq B as the bifurcation parameter and vary it from 0.01 to 0.27, with step 0.001. 
The simulated results in Figure 6 show that the system transits from stable fixed point to 
chaos via a period doubling route. The inception point of the period doubling route is the 
bifurcation point at approximately 0.18. Oscillation between 2 points (period-2 orbit) is 
observed up to wBq B = 0.221 approximately. It then exhibits period doubling bifurcations 
and chaos. A small period-3 periodic window is embedded in the chaos region, when wBq B 
∈  [0.244, 0.246]. 
 

   
(a)      (b) 
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Fig 6: (a) Bifurcation diagram with queue weight, wBqB as a parameter. (b) Zoom-in of the 
bifurcation diagram. 
 
5.2.  Minimum average queue threshold, qBmin B as a bifurcation parameter 
 
Minimum average queue threshold qBmin B is varied from 0 to 20, with step 0.001, for 
various values of wBq B. As recommended by Floyd [Floyd, 1997], qBmaxB is set to three times 
of qBmin B.  
 

  
(a)       (b) 

Fig 7: Bifurcation diagrams with qBmin B as a parameter, with various values of wBq B. (a) wBq B = 
0.15. (b) wBqB = 0.20. 
 
When wBq B is not fine tuned, Figure 7 (a) and (b) show that the system bifurcates and enters 
chaos via a period doubling route, when qBmin B is set to be too small or too large. For wBq B = 
0.15, Figure 7 (a) shows that a small period-3 periodic window is observed in the chaos 
region when qBmin B ∈[17, 17.3]. For Figure 7(b), a period-3 periodic window is observed at 
qBmin B = 11.3. A period-13 periodic window is observed when qBmin B ∈  [15.3, 17.3]. When 
qBmin B ∈  [19.0, 20.0], a period-20 periodic window is found in the midst of chaos. There are 
other various periodic windows in the chaos region that are too small to be observed.  
 
The bifurcation and chaos reveal the limitation in setting RED parameters at the router. 
The average queue threshold is not allowed to be set above a certain value and that may 
result in desired throughput of the system to be compromised.  

 
5.3.  Maximum drop probability, pBmax B as a bifurcation parameter 
 
Maximum drop probability pBmaxB is varied from 0.1 to 0.9, with step 0.001, for various 
values of wBq B. For both cases, the instability is observed mainly in the region where values 
of pBmaxB are high. This is expected as it is indicated by (2) that pBmaxB is proportional to the 
actual drop rate, and high drop rate will cause the system to become unstable.  
 
However, according to Floyd [Floyd, 1997], it is not necessary to set or to optimize pBmaxB 
to anything higher than 0.1. In actual network, if a router is operating with steady-state 



 10

packet drop rates of 20-30%, it is assumed that something is wrong in the engineering of 
the network and it is not a region that we would like to optimize.  
 

  
(a)        (b) 

 
Fig 8: Bifurcation diagrams with pBmaxB as a parameter, with various values of wBq B. (a) wBq B = 
0.03. (b) wBqB = 0.04. 
 
6. Modified RED algorithm 
 
As RED parameters vary, the average queue size drifts from the fixed point, bifurcation 
and subsequently chaos occur. Therefore, if an average queue size can be set at the fixed 

point, i.e., 1+

−

kq  = q*, regardless of how the RED parameters change, it is possible to 
avoid bifurcation and chaos phenomena in the averaged queue length.  
 
Here, we will illustrate how it is possible to achieve that. First and foremost, the prior 
knowledge fixed point, q*’s corresponding p* is required. It can be calculated using (6) at 
the routers of the system.  
 
Initially, we assume the averaged queue size is in stable period-1 steady state. There are 
different routes to chaos in TCP dynamics [Liu et al., 2005; Chen et al., 2004; Wang, 
2002; Gao et al., 2005], period-doubling route to chaos remains a very common one. In 
this particular case, the period-2 state is the first indication of oscillation. Once we detect 
this periodic-2 pattern for a sufficiently large time window, we will invoke the modified 
RED algorithm.  
 
In simulation environment, the system parameters and queue weight, wBq B of (3) are 

constant. Therefore 1+

−

kq  is only dependent on the drop probability, pBkB. It is apparent in (3) 

that if kp = p*, 1+

−

kq  = q*.  Therefore, our approach is to set p constant in the bifurcating 
and chaotic regions, and to keep the average queue size at the fixed point, to avoid 
bifurcation and chaos. 
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where  2>l  is an even constant.  
Fig 9: The modified RED algorithm. 

 
The algorithm keeps track of the trend in average queue size. If oscillation occurs, 
the p is fixed to p*, else p is calculated using (2) at the router. The idea of detecting 
oscillation is proposed by Wang [Wang, 2002; Chen et al., 2004]. 
 
7. Modified RED Algorithm Simulation results 
 
7.1. Queue weight factor, wBq B as a bifurcation parameter 
 

  
(a)          (b) 
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Fig 10: Bifurcation diagram of average queue size with respect to queue weight. (a) 
Original RED algorithm. (b) Modified RED algorithm. 
 
7.2. Minimum average queue threshold, qBmin B as a bifurcation parameter 
 

   
(a)     (b) 

   
(c)     (d) 

Fig 11: Bifurcation diagram of average queue size with respect to minimum average 
queue threshold. (a) Original RED algorithm (wBq B = 0.03). (b) Modified RED 
algorithm (wBq B = 0.03). (c) Original RED algorithm (wBq B = 0.04). (d) Modified RED 
algorithm (wBq B = 0.04). 
 
7.3. Maximum drop probability, pBmax B as a bifurcation parameter 
 

   
(a)     (b) 



 13

   
(c)      (d) 

Fig 12: Bifurcation diagram of average queue size with respect to drop probability. 
(a) Original RED algorithm (wBq B = 0.15). (b) Modified RED algorithm (wBq B = 0.15). (c) 
Original RED algorithm (wBq B = 0.2).  (d) Modified RED algorithm (wBq B = 0.2). 
 
7.4.Variation in system and RED parameters 
 
System and RED parameters are selected according to parameters in [Ranjan et al., 
2004b]:  

Table 4: System parameters. 
Parameter Value 

Number of TCP connection, N 250 
Link capacity, C (bit/s) 75e+6

Packet size, M (bits) 4,000 
Round trip propagation, d (s) 0.1 

Constant, K 23
Receiver’s advertised window size, rwnd 1,000 

 
 

Table 5: RED parameters. 
Parameter Value

Maximum drop probability, PBmaxB 0.1 
Minimum queue threshold, qBmin B 250 
Maximum queue threshold, qBmaxB 750 
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(a) (b) 

Fig 13: Bifurcation diagram of average queue size with respect to the averaging 
weight. (a) Original RED algorithm. (b) Modified RED algorithm. 
 
The results from Figures 10-13 indicate that the modified algorithm successfully 
prevents bifurcation and chaos regardless of the system and RED parameters chosen. 
It thus removes the limitation in setting the parameters and restriction on desired 
throughput of the system. 
 
The algorithm does not change the dynamic in the transient region (when a 
connection is first detected). The drop probability is only fixed to p* when the router 
detects oscillation in the average queue in the “supposed” steady state. It does not 
therefore suppress the throughput of the system. The algorithm has no negative 
impact on the average queuing delay either.  
 
8. Limitations 
 
There are some limitations of our model: 
 

• Even if the average queue length kq
−

 is non-chaotic, there are no guarantees that 
the actual queue length is not chaotic. 

 
• TCP has many parameters such as congestion window size and average packet 

delay. Even if the average queue length kq
−

 is non-chaotic. The other parameters 
could be. For example, if RED employs a fixed p*, the congestion window cwnd 
could be chaotic for certain values. As shown in [Rao et al., 2005], the fixed 
random drop rate of packets could result in chaotic cwnd trajectories. Even under 
the condition that the proposed RED modification stabilizes the average queue 

length kq
−

, TCP dynamics can be chaotic in terms of other parameters.   
 

• TCP measurements collected over Internet connections could be much more 
complicated than traces considered in this paper because typically there are 
multiple routers on TCP paths and there is significant amount of non-TCP traffic. 
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In fact, the measurements typically have both chaotic and stochastic components 
[Gao et al., 2005] even without random drops of RED routers. 

 
9. Conclusion 
 
Performance of current version of RED is restricted by the traffic and its parameter 
configuration. Bifurcation and chaos phenomena in the averaged queue length are 
observed when parameters are not set appropriately. It thus poses limitations in 
selecting parameters, as well as compromises throughput for stability.  
 
Our modified RED algorithm succeeds in preventing bifurcation and chaos in the 
averaged queue length, regardless of parameters chosen. It removes the limitation of 
configuring parameters. The algorithm does not suppress the throughput and has no 
impact on average queue delay either.   
 
In the original map of the system, to update the average queue size, a router requires 
knowledge of the system parameters such as number of connections, capacitor link, 
round trip propagation delay and packet size. Therefore, it should not be a concern 
that the router is not capable of computing the corresponding drop probability of the 
fixed point, p* and the fixed point, q*, which rely on both the system and RED 
parameters. 
 
For the future work, the system parameters are not constant and this may affect the 
effectiveness of the algorithm in a real network. The algorithm should be further 
tested and clarified in various environments to investigate its feasibility to be 
deployed in the real network. 
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