34,577 research outputs found

    Design of an Annular Disc-shaped Heat Pipe for Air-cooled Steam Condensers

    Get PDF
    Limitations on water utilization are turning into an expanding issue for the power and electricity generation industry. As a contribution to the solution of water consumption problems, utility companies are shifting toward using air-cooled condensers (ACC) in replace to the typical water-cooling methods of once-through cooling and the surface condenser/wet-cooling tower combination. Although the ACC is a dry cooling method, the industry is quite hesitant to switch over to ACC mainly for three reasons: (a) lower power output, (b) higher capital cost, and (c) larger physical footprint. All these drawbacks are because of the high overall thermal resistance of condensing steam to the ambient air compared to condensing it to water. In this study, detailed mathematical equations were derived to model the heat transfer process through the fined tubes of the ACC. The total thermal resistance model was analyzed and investigated theoretically. The model was used to identify the design components with the most significant effect on the overall thermal resistance of the ACC system. This study proposed a feasible cooling system based on heat pipe technology, using a novel disc-shaped heat pipe design. The solution addresses the three problems highlighted in using the air-cooled condensers in steam powerplant condensers. The analysis covered design and manufacturing considerations, in addition to the thermal performance and the limitations of the proposed annular disc-shaped heat pipe. The proposed annular disc-shaped heat pipe was investigated using three analysis techniques. The first is a theoretical investigation of the heat transfer limitations of the proposed annular disc-shaped heat pipe. This analysis was used to predict the capillary and boiling thermal limitations of the proposed heat pipe design. Secondly, an annular disc-shaped heat pipe was designed and built for the experimental investigation using de-ionized water as the working fluid. The results obtained by the parametric analysis were used as the input for the experimental design. Third, A detailed mathematical set of equations was derived to model the heat pipe thermal resistance. The experimental setup was validated by comparing the results to well-referenced experimental results of similar disc-shaped heat pipe with different evaporator configurations. The experimental results were compared to the thermal resistance model developed in this study. The results showed a starting regime of the heat pipe, where the thermal resistance is decreasing until it reaches a steady performance before it starts to increase again when it reaches the heat transfer limits. The experimental results showed a good agreement with the model prediction in the steady-state regime for heat inputs over 300 w. The data identified two thermal performance regimes of the heat pipe, a single-phase, and a two-phase regime. The second regime starts when the vapor region reaches the isothermal state

    Identification of heat exchange process in the evaporators of absorption refrigerating units under conditions of uncertainty

    Get PDF
    Проведено аналіз функціонування випарників абсорбційно-холодильних установок блоку вторинної конденсації типового для України агрегату синтезу аміаку. Обґрунтована необхідність мінімізації температури вторинної конденсації за рахунок створення автоматизованої адаптивної системи оптимального програмного управління. Встановлені рівняння для чисельної оцінки невизначеності теплового навантаження випарника та коефіцієнту теплопередачі. Розроблено алгоритмічне забезпечення щодо розв’язання задач ідентифікації та створення математичної моделі. Визначена технічна структура автоматизованої системи для їх реалізації

    Heat and Moisture Conduction in Unsaturated Soils

    Get PDF
    Mathematical models are developed for the prediction of heat transfer from hot water pipes buried in the soil. Heat transfer in the absence of moisture transfer is described as a function of the difference between the temperature of the pipe and the temperature of the soil surface. The energy balance is used to determine the longitudinal temperature distribution of the water. The method is extended to describe a system of equally spaced, parallel buried pipes. Soil temperature profiles around the pipes are presented. The model is used to calculate the land area that can be heated by an underground piping system carrying cooling water from the condensers of a 1000 MW nuclear-electric plant. A new development of the phenomenological equations for coupled heat and moisture flow, based on the theory of Irreversible Thermodynamics, is presented. Solutions of the equations for boundary conditions representative of buried piping systems designed for simultaneous soil heating and irrigation are presented

    A study of start-up characteristics of a potassium heat pipe from the frozen state

    Get PDF
    The start up characteristics of a potassium heat pipe were studied both analytically and experimentally. Using the radiation heat transfer mode the heat pipe was tested in a vacuum chamber. The transition temperature calculated for potassium was then compared with the experimental results of the heat pipe with various heat inputs. These results show that the heat pipe was inactive until it reached the transition temperature. In addition, during the start up period, the evaporator experienced dry-out with a heat input smaller than the capillary limit calculated at the steady state. However, when the working fluid at the condensor was completely melted, the evaporation was rewetted without external aid. The start up period was significantly reduced with a large heat input

    Heat pipe dynamic behavior

    Get PDF
    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported

    Modeling of transient heat pipe operation

    Get PDF
    The overall goal is to gain a better understanding of the transient behavior of heat pipes operating under both normal and adverse conditions. Normal operation refers to cases where the capillary structure remains fully wetted. Adverse operation occurs when drying, re-wetting, choking, noncontinuum flow, freezing, thawing etc., occur within the heat pipe. The work was redirected towards developing the capability to predict operational behavior of liquid metal heat pipes used for cooling aerodynamic structures. Of particular interest is the startup of such heat pipes from an initially frozen state such as might occur during re-entry of a space vehicle into the Earth's atmosphere or during flight of hypersonic aircraft

    Catalog of selected heavy duty transport energy management models

    Get PDF
    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle
    corecore