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Abstract

The vapor flow in a heat pipe was mathematically modeled and the

equations governing the transient behavior of the core were solved numerically.

The modeled vapor flow is transient, axisymmetric (or two dimensional)

compressible viscous flow in a closed chamber. The two methods of solution

are described. The more promising method failed (a mixed Galerkin finite dif-

ference method) whereas a more common finite difference method was suc-

cessful. Preliminary results are presented showing that multi-dimensional

flows need to be treated.

A model of the liquid phase of a high temperature heat pipe was developed.

The model is intended to be coupled to a vapor phase model for the complete

solution of the heat pipe problem. The mathematical equations are formulated

consistent with physical processes while allowing a computationally efficient

solution. The model simulates time dependent characteristics of concern to the

liquid phase including input phase change, output heat fluxes, liquid temper-

atures, container temperatures, liquid velocities and liquid pressures. Prelimi-

nary results were obtained for two heat pipe startup cases. The heat pipe

studied used lithium as the working fluid and an annular wick configuration.

Recommendations for implementation based on the results obtained are pre-

sented.

Experimental studies were initiated using a rectangular heat pipe. Both twin

beam laser holography and laser Doppler anemometry were investigated. Pre-

liminary experiments were completed and results are reported.

xii



Chapter I

INTRODUCTION

A heat pipe is a device which transfers heat by evaporating and condensing a

fluid. A wick structure is used to return the liquid to the evaporation zone by

capillary effect. Figure 1 shows a typical sketch of a heat pipe which consists

of the case, the wick structure and the vapor space. The input heat at one end

of the pipe increases the temperature of the liquid in the wick structure. The

liquid then evaporates, the pressure in the vapor core increases and the vapor

flows to the other end. At this end the temperature is lower and the vapor

condenses and releases heat. The liquid, then, flows from the condenser to the

evaporator by capillary action through the wick structure.

The heat pipe is considered as a heat transfer device with very high

conductivity. It can operate in weightless environments and transfer a huge

amount of heat under conditions of very low temperature differences. These

advantages make the heat pipe unique in space applications, electronic cooling

systems and fusion energy systems. Although the steady state operation of

heat pipe is well established, the transient behavior is not entirely well under-

stood.

The reliability of a heat pipe for space applications depends on its ability

to respond to a sudden change in the heat load, and startup and shut down

of the thermal system. A comprehensive experimental and theoretical study is
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Figure 1" A Heat Pipe

needed to understand and properly model the physical phenomena which oc-

cur in heat pipes during operational transients.

The objectives of this work were to investigate the dynamic behavior of the

vapor flow in heat pipes, experimentally and theoretically. Experiments were

to be carried out using a planar heat pipe to examine the transient response

of the vapor core to a sudden increase in the input heat flux. Optical methods,

which do not interfere the physical process, were proposed for measurements

of velocity and temperature fields. The experimental apparatus and the optical

methods are described in Chapter V.

The vapor flow in a heat pipe was mathematically modeled and the

equations governing the transient behavior of the vapor core were solved nu-
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merically. The modeled vapor flow is a transient, axisvmmetric.(or two-

dimensional), compressible, viscous flow in a closed chamber. The boundary

conditions include inflow and outflow of heat and mass which simulate the

boundaries of the vapor core in a heat pipe. The proposed numerical method,

along with preliminary results, are discussed in Chapter Vl. The liquid phase

is considered in Chapter VII.

The proposed objectives of the study were not fully met. Computer models

were developed only to the state where feasibility of an approach was demon-

strated. An experimental apparatus was built and put through some prelimi-

nary shake down testing. Much remains to be done to satisfy" the objectives.

This, of necessity, is left to others.
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Chapter !I

APPLICATIONS OF HEAT PIPES

Gaugler [1-] was the first to develop the concept of a heat pipe in 1942 pro-

posing to apply heat pipes for cooling the interior of an ice box. Later in 1964,

an intensive work in this field was started by Grover and hiscoworkers I'2,]

at the Los Alamos National Laboratory. The objective was the application

of the heat pipe in spacecraft designs. The first quantitative analysis of heat

pipes was performed by Cotter in 1965 [3]. Since then there have been many

advances in theory, design and practice of heat pipes.

The fact that heat pipes are able to operate under very low gravity condi-

tions and that they do not include any moving parts, has motivated the devel-

opment of the heat pipe for space applications. In these applications the

temperature is very. high (1000- 2000"C ) and liquid metals (such as sodium,

lithium) are used as working fluids.

A heat pipe was proposed by Grover [2-] to supply heat to the emitters of

thermionic electrical generators and to remove heat from the collectors of these

devices. In space based nuclear power systems, heat pipes are considered as a

means to transfer heat from the generating point to the radiators and also to

transfer heat throughout the radiators, providing a uniform temperature on

the radiator surfaces [4-].
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Recently heat pipes have been proposed to be used in internal cooling of the

leading edges of reentry vehicles and hypersonic aircrafts to reduce the peak

temperature and alleviate the thermal gradients at the edge [5]. In this case

the working fluid (a liquid metal) which is initially in the solid state, is melted

by the reentry heat load and the heat pipe operation is initiated. The use of

high temperature heat pipes as a heat transfer device has also been considered

in rocket engines to cool and make the nozzles isothermal [6].

In case of a loss of coolant accident in a fusion reactor, it is desirable to

ensure that no first wall melting or evaporation occurs. Such melting or evap-

oration of constituent elements can lead to the dispersal of radioactive waste

hazards. In contrast to fission systems, a fusion power core usually contains

enough thermal capacity to distribute the after-heat efficiently. Since the ma-

jor component of decay after-heat is within a thin zone close to the first wall

structure, a design incorporating heat pipes would result in an effective and

fast redistribution of the decay after-heat. A heat pipe with a proper working

fluid may be chosen such that the mechanism of heat transport through the

pipe will start above a threshold design temperature. This would make the

heat pipe operative only when needed, that is in the case of a loss of coolant

accident.



Chapter II1

THEORETICAL BACKGROUND

Theory of heat pipe operation is briefly outlined in this section. Pressure drop

and heat flux in a heat pipe are discussed for engineering calculations along

with the limits on the heat pipe operation. The section is ended with discussion

of the transient operations of heat pipes. The detailed explanation of heat pipe

theory may be found in Dunn and Reay [73.

3.1 PRESSURE DROP

In order for heat pipes to operate, the capillary driving force in the wick,

Ape,, p , must overcome the pressure drop in the liquid phase, Ap_, in the vapor

phase, Apv, and the gravitational head, if any, Apg. That is

APcap >_ APl + Apv + Apg ( 1)

The pressure difference across the interface of liquid and vapor is

' Ap= 2a cos0 (2)
r

where a is the surface tension, 0 is the contact angle, and r is the radius of

curvature.

Figure 2 illustrates the operational conditions of the vapor-liquid interface.

The radius of curvature in the condenser section is very large, whereas evapo-



ration causes the radius of curvature at the evaporator meniscii to decrease.

The difference between the radii of curvature in condenser and evaporator,

provides the capillary force. Thus, the capillary driving force, using Eq. 2, is

COS0 eAPcap = 2o 7e caste 0 c ,)
(3)

where the subscripts c and c refer to evaportator and condenser, respectively.

and r is the radius of the capillary pore. Usually rc is very large with respect

to re- This yields

2o cos 0 (4)
APcap = re

Vapor

1

/

Evaporator /
Liquid

Condenser

Figure 2: Operational Level of Interface Between Liquid and Vapor

Pressure drop in the liquid phase, Ap_, depends mainly on the structure of

the wick and the properties of the liquid. For engineering calculations the

liquid phase is modeled as a liquid flow in a porous medium. Since the mass



flow in the evaporator and condenser is not constant, an effective length, le:f.

is defined for the porous medium. The effective length, through which the

mass flow is constant, is approximated as

left= l a + (l e + lc)[2 (5)

where la is the length of the adiabatic section which is between the evaporator

and condenser sections, le and Ic are the lengths of the evaporator and

condenser. Thus, Darcy's law is used to relate the pressure drop in the liquid

phase to the wick and liquid properties, i.e.,

u teffm
APl= P l K A w

(6)

where/x_ and p_ are viscosity and density of the liquid, rn is the liquid flow rate,

A,, is the wick cross sectional area and K is the wick permability given by

2 rh z
_ _m

flRel

where e is the wick porosity, rh is the hydraulic radius and f_ Re_ is the friction

factor-Reynolds number product for laminar duct flow. The values of K for

different types of wick structure is tabulated in Chi [-8].

The pressure drop in the vapor phase, Apv, consists of the pressure drop in

the adiabatic section, Ap_, and the pressure drop in the evaporator, Apv e and

in the condenser, Ap_. That is,

Apv = Apv a + Apve + Apvc (7)
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In order to calculate for the pressuredrop in the adiabatic section, the vapor

flow in this region is assumedto be laminar Poiseuille flow in a circular tube

[7]. Then the pressuredrop Apv,_, is given by

8mml (8)
APva = 4

n Pv rv

where rv is the radius of the vapor core. Applying a one-dimensional analysis

Cotter [3] calculated the pressure drop in the evaporator and condenser.

which are formulated as

m- (ga)Apve = 4
SPy rv

,.)

_ td17"

Apv c = (9b)2
2re p v rv4

Upon substituting Eqs. (8) and (9) in Eq. (7), we get

8#v m la & 2
APv = 4 + 0.074

n Pv rv Pv rv

(10)

However, Busse [9], by using a modified Poiseuille velocity profile in Navier-

Stokes equations, has shown that Ap_ can be expressed as

8#v m left

&Pv = 4 ( 1 l)
_ Pvrv

where @ is defined in Eq. (5).
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The hydrostatic head, Apg, is written as

Apg=gplL sin ¢_ (12)

where q_ is the inclination angle of the heat pipe and L is the total length of the

heat pipe.

Upon substituting Eqs. (6), (11) and (12) into Eq. (1), the circulation rate,

m, is given by

Apcap - gp lL sin _o
m = (13)

/_l + 4
left 'P lKA w npvr v

3.2 HEAT FLUX

Neglecting the sensible heat which is small compared to the latent heat, the

axial heat flux rate, q, is given by

q = rh hfg (14)

where, m is the circulation rate of the Working fluid and hfg is the latent heat

of evaporation.

From Eqs. (13) and (14) the heat transfer rate can be expressed as a func-

tion of the capillary driving force, the geometry and the properties of the

working fluid; i.e.,

10



q

(APcap - gpl L sin ¢p) hfg

8tq_......._.)#l + 4
lefj "P lKA w nPvr v

(15)

3.3 LIMITATIONS

There

pipes.

are several limitations on the output heat transported through

These limitations are briefly described below.

heat

1. Viscous limit: In long pipes and at low temperatures, the vapor pressure is

tow and the effect of viscous friction on the vapor flow may dominates over the

inertial forces. In this situation the circulation of the working fluid is limited,

which consequently, limits the heat transfer through the pipe.

2. Sonic limit: At low vapor pressures, the velocity of the vapor at the exit of

the evaporator may reach the speed of sound. Then the evaporator cannot

respond to further decrease in the condenser pressure. That is, the vapor flow

is chocked, which limits the vapor flow rate.

3. Capillary limit: A capillary structure is able to provide circulation of a given

fluid up to a certain limit. This limit depends on the permability of the wick

structure and the properties of the working fluid.

4. Entrainment limit: The vapor flow exerts a shear force on the liquid in the

wick which flows opposite the direction of the vapor flow. If the shear force

exceeds the resistive surface tension of the liquid, the vapor flow entrains small

liquid droplets (Kelvin-Helmholtz instabilities). The entrainment of liquid in-

creases the fluid circulation but not the heat transfer through the pipe. If the

11



capillary force cannot accommodate the increased flow, dryout of the wick in

cvaporator may occur.

5. Boiling limit: At high temperatures, nucleate boiling may take place which

produces vapor bubbles in the liquid layer. The bubbles may block the wick

pores and decrease the vapor flow. _,_,,,,.,rz-,-,h,_,-,_,,,-_',...,,., the _.ic_,_' .,.n_.,...... of bubblcs., de-

creases thc conduction of heat through the liquid laver which limits the heat

transfer from the heat pipe shell to thc liquid which is by conduction onh,.

O
m

It.

O
O

"r"

e_

X

I

I
I
i
I
i

/I
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/ I
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Heat Flow Umits
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(2-3} Sonic
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(4-5) Wicking

(5-6) Boiling

Figure 3:

Temperature

Heat Pipe Operating Limits
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The above limits are fullv explained in sevcral textbooks (for example, Chi

[8]) and are not reviewed here. These limitations dictate the operational en-

velope for a given design of a heat pipe, as shown diagramatically in Fig. 3

[2]. The shape of the operational envelope changes for different working flu-

ids and different wick materials.

3.4 TRANSIENT OPERATION

Transient operation of heat pipes may be considered in terms of three different

regimes: startup, operating transients and shut down. The following is a brief

description of these regimes.

Startup

Heat pipe startup is a transient operation through which the heat pipe starts

its operation from an initial static condition. The working fluid of heat pipe

may initially be very cold or frozen in the wick. Under this condition, the va-

por pressure is very low and the vapor flow is free molecular. The heat

transfered from the evaporator melts the frozen working fluid in the

evaporator and evaporation takes place in the liquid-vapor interface. The va-

por pressure is initially very low and the vapor flow is highly accelerated. Then

the flow may be chocked at the exit from the evaporation zone if its velocity

reaches the sonic velocity. By addition of heat, the frozen working fluid is

completely melted and a continuum vapor flow prevails throughout the vapor

core.

13



Behavior of the vapor flow during the startup of a heat pipe from a frozen

state, may be considered in three distinct phases: (i)free molecular flow

throughout the vapor core, (ii) establishment of continuum flow in the evapo-

ration zone with a front, moving towards the condenser with possibility of

chocked flow at the evaporator exit and (iii) continuum flow of vapor all

through the vapor core.

Operating Transients

Operating transients involve power changes during nominal operating con-

ditions. There are several transient conditions of interest. A heat pipe may

operate in a low power stand-by mode but be required to quickly respond to

reach full power operation. A heat pipe may also be required to perform under

load-following conditions, which depend on changing demands of the power

conversion system. A nuclear reactor control system may also require changes

in heat generation that would have to be handled by the heat pipe system.

The physics of interest for these situations depend on the initial conditions,

the rate of change and magnitude of input power and condenser conditions.

A heat pipe operating in stand-by mode at low vapor pressure may encounter

the sonic limit while powering up. Large temperature gradients and complex

vapor dynamics would develop. After passing through the sonic-limited oper-

ation, or for a heat pipe initially operating at high vapor pressure, the

capillary, entrainment and boiling limits are of concern.

Shut Down

Shut-down of a heat pipe refers to the transient process occurring when the

power of the thermal system is shut-off. The input heat of the heat pipe is

14



suddenly reduced to zero and the pipe cools down to a static condition. There

are several problems encountered with this mode of transient operation. After

the power is shut off, the working fluid of the heat pipe cools down and even-

tually solidifies. This phase change may affect the wick structure. The screen

sheets of the wick are very delicate structures with fine meshes. Freezing of the

working fluid in the screen holes may damage the wick structure by tearing the

screen. Also if for some reason, the working fluid freezes mainly inside the

screen holes, it will cause a major reduction in the driving force of the liquid

flow.

Another possible problem is the appearance of cracks or bubbles in the

solidified mass of the working fluid. The presence of cracks or bubbles can

decrease the conduction of heat in the solidified mass during the startup,

thereby the subsequent startup time increases. Cracks can also cause strain

on the structure of the heat pipe and the screen and fatigue may become a se-

rious problem after many shut downs. A proper heat pipe design must take

into account the problems involved in the shut down transient mode, in order

to have a reliable and long lasting heat pipe.

15



Chapter IV

LITERATURE REVIEW

The heat pipe studies were initiated by the experimental work of Grover et al.

[23 and the quantitative analysis of Cotter [33. Initial qualitative experiments

were performed on heat pipes with water and sodium as working fluids. Cotter

considered a right circular heat pipe with large length-to-diameter ratio. He

performed a simple one-dimensional analysis on the vapor flow to develop the

general basic theory for quantitative engineering calculations of heat pipe op-

erations. These studies have been continued to develop the theory and per-

formance of heat pipes.

The vapor flow in heat pipes is a complicated problem due to high nonlinear

character of the governing equatlons and the inflow and outflow boundaries

in the evaporator and condenser. Different approaches have been used to

simplify the problem. In most of the work done so far, the vapor flow is ana-

lyzed under steady state conditions, as a one dimensional flow [10,11,12,13]

or a two dimensional flow [-14-24-1.

Banskton and Smith [14,15-1 developed numerical solutions for

incompressible, steady state, two dimensional vapor flow in a heat pipe. Their

results show flow reversal in the condenser for radial Reynolds numbers larger

than two. Indication of a reverse flow is important in design of a heat pipe in

calculating the shear forces acting on the wick structure. Flow reversal may

16



also affect the entrainment limit. They also found that the pressure profiles

across the heat pipe were two dimensional. Their studv recommended the

solution of the complete (compressible) two dimensional Navier-Stokes

equations to provide an accurate prediction of the pressure drop along the

pipe.

McDonald et al. [16_] analyzed a vapor flow in an enclosure in the presence

of air as a noncondensible gas. The coupled governing equations for steady

state two dimensional flow were numerically solved to study the effects of air

on the evaporation and condensation rates of the water heat pipe. They con-

cluded that the two dimensionality of the flow field had a very small effect on

the concentration of the noncondensible gas and on the temperature distrib-

utions in the vapor core.

However, Rohani and Tien [17,18"1 showed that in liquid metal gas loaded

heat pipes, a one-dimensional analysis is not adequate. This conclusion was

explained by averaging the two-dimensional results over the cross section, and

comparing these with those of one-dimensional analysis i'15"1. The3; performed

a numerical analysis of the steady state two dimensional heat and mass trans-

fer in the vapor gas region of a gas loaded heat pipe. Their results show that

the vapor flow in the vicinity of the vapor-gas front is negligibly small and the3,"

concluded that heat and mass are transfered only by" conduction and diffusion

at the front. But, in an analysis done by Peterson and Tien E193 it was shown

that natural convection and radial diffusion have a significant effect on the

noncondensible gas distribution in the vicinity of the vapor-gas front.

17



Gas controlled heat pipes (GCHP) were recently investigated by

Galaktionov and his colleagues from the Moscow Energy Institute [20.21].

In their analysis, thev included convection and diffusion acrossthe front under

heat loads considerably smaller than the sonic limit of heat pipe operation.

Galaktionov et al. [20] presenteda mathematical model for incompressible,

steady state, two dimensional problem for the heat and mass transfer in the

region of the vapor-gas front in a GCHP. In their analysis, using boundary

layer assumptions in the evaporator zone, they applied an integra! method and

approximated the axial velocity by a fourth-order polinomial.

The same problem was analyzed by Galaktionov and Trukhanova [21],

taking into account the compressibility of the vapor. By defining a stream

function for the velocity field, the momentum equation was written in terms

of the vorticity and stream function. The governing equations were solved

numerically by the Gauss-Seidelmethod. They also carried out experimental

studies of a planar gas controlled heat pipe. The results show that the vari-

ations of temperature in axial and radial directions are quite comparable,

which clearly demonstrate the two dimensional character of the problem. The

velocity profiles show the reverseflows in the region of the vapor-gas front.

Reverse flow in the condenser section was also observed by Ooijen and

Hoogindoorn [22] who performed experimental and numerical studies on heat

pipe vapor flow. Their analysiswas confined to a steady state, incompressible,

two dimensional flow. They also found that the total pressuredrop over the

heat pipe, for high radial Reynolds numbers, was higher than that approxi-

mated bv a Poiseuille flow model.
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Naravana [23] performed a numerical studv of incompressible, steady

state, two dimensional vapor flow. He showed that the pressure terms in the

Navier-Stokes equations could be eliminated by integrating the momentum

equation in the axial direction, on the pipe cross section. In this analysis, using

boundary layer assumptions, the radial pressure variation was neglected.

A double-walled concentric heat pipe was proposed by Faghri [24]. Two

pipes with different diameters create an annular space for the vapor flow. The

wick structures are attached to the inner surface of the outer pipe and the

outer surface of the inner pipe. In this kind of heat pipe the area of heat

transfer into and out of the pipe is increased and its efficiency of performance

is expected to be higher. Faghri has carried out a numerical study of the vapor

flow in such a double-walled heat pipe. He used an implicit marching finite

difference method to solve the incompressible, steady state, two dimensional

flow problem. His results show that for low Reynolds numbers, viscous effects

dominate. For radial Reynolds numbers greater than one. pressure decreases

in the vapor flow direction in the evaporator section, whereas it increases in the

condenser section due to partial dynamic pressure recovery from the deceler-

ating flow. For high radial Reynolds numbers, flow reversal flow was shown

to occur in the condenser section.

In studies of the dynamic behavior of heat pipes, three different areas of

concern are startup, shut down and operating transients. Among these the

startup mode of transient is the most difficult one. As mentioned above, the

startup of a heat pipe may be encountered with melting of the working fluid
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at solid state, free molecular flow of vapor and dry: out and rewetting of the

wick.

Extensive studies of startup and shut down operations of heat pipes

[25,26,27,28,29] have been carried out at the Los Alamos National Labora-

tory. The objectives were the applications of high temperature, liquid metal

heat pipes to space power system heat rejection. Experiments were performed

on a long heat pipe with a molybdenum container. Using liquid sodium and

potassium as working fluids, design characteristics of high temperature heat

pipes have been evaluated. For the temperature range of 700 to 1600 K, the

useable length of 30rn with length-to-diameter ratio of 300 was found for

potassium heat pipes, whereas for sodium heat pipes useful lengths of more

than 40m with length-to-diameter ratio of 800 were predicted.

In the numerical studies [29], heat pipe performance was modeled to in-

clude startup from the frozen state of the working fluid, with provision for free

molecule flow of the vapor. Vapor core dynamics were simulated by a tran-

sient one dimensional compressible flow with friction and mass flow from the

wick. The governing equations were solved using the KACHINA method

[30]. The numerical code is still under development. In the present status it

requires 30 minutes of Cray computational time per hour of actual time.

Bystrov and Goncharov [-31] performed experimental and theoretical

studies on a heat pipe with and without a foreign gas. The steady state oper-

ation and startup from a frozen state of liquid were analyzed. By averaging

across the axial cross section, they solved unsteady, one dimensional equations

for the vapor and liquid phases. Their numerical scheme could be run only for
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very smalltime steps (10 -s to 10 -v sec) due to stability problems and as a re-

sult needed a large amount of computational time. In order to increase the

time steps, they used a lumped parameter approach for heat balance and

avoided calculations of detailed temperature distributions.

Chang and Colwell [32,33,34] studied the transient operation of low tem-

perature heat pipes experimentally and numerically. Experiments were per

formed with Freon 11 as a working fluid to study the dryout and rewetting of

the liquid phase. In their analysis the vapor core temperature was assumed to

vary only with time, allowing the solution of a two dimensional conduction

problem for the liquid and wick structure.

Ambrose et al. [35] studied pulsed startup of heat pipes. A pulsed startup

refers to applying a step increase in input heat flux to a heat pipe under steady

state conditions. They performed experiments on a simple-screen-wicked

copper-water heat pipe to investigate the transient time and the dryout and

rewetting behavior. The transient time was found to be dependent on the

capillary force, the cooling mechanism and the heat capacity of the pipe.

Dryout of the wick at the evaporator was found to occur only for heat fluxes

greater than the capillary limit. Dryout and rewetting were modeled using a

lumped parameter method. Good agreement between the experimental data

and the theoretical results was reported.

The works done so far on the transient behavior of heat pipes, mainly con-

cern startup and shut down operations. However, these modes of transient are

still not well established. Furthermore, no major work has been done on the

operating transients heat pipes are expected to undergo. For a comprehensive
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study of the dynamics of heat pipes, the vapor flow needs to be thoroughly

investigated both theoretically and experimentally.

Previous theoretical studies of dynamics of compressible vapor flow have

considered a transient one-dimensional model. In these studies the friction co-

efficients of the vapor flow boundaries, have been approximated using a steady

state two-dimensional model. In addition, steady state two-dimensional ana-

lyses have shown that one-dimensional models of the vapor flow are not able

to accurately predict the axial heat and mass transfer and the axial pressure

drops. Furthermore, two-dimensional steady state studies indicate that flow

reversal takes place in the condenser section. It is, therefore, important to es-

tablish the conditions under which this mode occurs during transient oper-

ations.



Chapter V

PROPOSED EXPERIMENTS

Transient behavior of the heat pipe internal flows needs to be examined ex-

perimentally to understand and properly model the physical phenomena gov-

erning their behavior. In applications such as space based nuclear power

systems, it is desirable to know how fast the heat pipe reacts to a sudden ramp

in input power. In this section the experimental setup is described and the

proposed methods of measurement are discussed.

5.1 EXPERIMENTAL APPARATUS

Figure 4 shows a schematic diagram of the experimental apparatus. A rec-

tangular pipe has been designed and built to simulate a heat pipe. The bottom

of the pipe is a plane wide thin channel which contains the working fluid. Two

layers of stainless steel mesh (300 series, 400 mesh) are fixed on top of the liq-

uid channel to serve as the wick structure. The axial sides of the pipe are made

of glass to permit flow visualization. The top of the pipe is insulated. One end

of the bottom plate is heated by patch heaters which supply up to 1.55

w/cm:. The other end is cooled by air flow. The middle region of the bottom

plate is insulated to approximate the adiabatic conditions.

Freon 11 and Freon I13 are chosen as working fluids. These fluids have

low latent heat, low boiling point and are easy to handle. The low latent heat
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allows one to induce a liquid-vapor phasetransition at low applied heat fluxes.

A scaling analysis can be used to generalize the results to other fluids.

Axial and vertical velocity components will be measured using Laser

Doppler Anemometry. The temperature and concentration profiles in the va-

per core are mea:;ured simultaneously using twin beam laser h_q_graphic

interferometrv. These methods are described brieflv in the following sections.

Patch

Insulation

Block Cooling Coils

Instrument Ports

Figure 4: Experimental Rectangular Heat Pipe
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5.2 OPTICAL METHODS

Optical methods have been used for man3: years in heat and mass transfer

measurements due their unique advantages. These methods do not disturb the

examined process and the information of the whole field is recorded on pho-

tographs which has advantages over methods of point by point measurements.

Furthermore, the measurements are inertialess and therefore, very fast phe-

nomena can be investigated [36].

In this section, the use of optical methods in heat pipe experiments are dis-

cussed. Laser Doppler anemometry is proposed for measuring the axial and

vertical velocity components of vapor flow. The advantages of twin beam

holographic interferometry are discussed as a means of simultaneously meas-

uring both the temperature and concentration distributions in the vapor core.

5.2.1 Holographic lntelferometry

Interferometric methods are based on differences in lengths of the optical

paths. Among these methods, holographic interferometry is the least expensive

and easiest to construct with a comparative accuracy [36]. However, a highly

coherent light is needed. The single beam holographic interferometry is first

illustrated. Then it will be shown how this method can be modified to twin

beam interferometry.

Single Beam lnterferometrv

Figure 5 is a schematic diagram of a single beam interferometer. The light

source is a laser. The laser beam is split into an object beam and a reference
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beam. Each beam is passedthrough a microscopeobjective and a collimating

lens and expanded to a parallel beam.The referencebeam falls directly on the

hologram plate, whereas the object beam passesthrough the experimental ap-

paratus and then intersects the referencebeam on the hologram plate.

In rcal-timc holographic interfcrometry the photographic plate is exposed

before the cxpcriment starts, and the comparison wave is recorded. The pho-

tograph plate is developedand fixed whilc it stays in its place. The comparison

beam is then reconstructed by illuminating the hologram with the reference

beam. After the experiment starts a phasechangc occurs in the object beam

r a _ ,o " t ,2Q

v ...... i_t.... 7:;-.)?_-_"rl "4
i _8j5 .. ' a

' " 13

l

Figure 5: Schematic of Single Beam Holographic lnterferometer

1. Helium-Neon Laser, 2. Argon Laser, 3. Variable Beam Splitter,

4. Object Beam, 5. Reference Beam, 6. Microscope, 7. Pinhole,

8. Collimating Lens. 9. Test Section, 10. Holographic Plate,

11. Lens, 12. Camera, 13. Air-Suspension Table, 14. Shutter
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and illumination of this beam on the hologram produces interference fringes.

Changes in the interference pattern due to changes in the process can be con-

tinuously observed or photographed.

lnterferometric methods are based on the measurement of variations of the

refractive index in the test section. These variations may be caused either by

temperature, concentration or pressure gradient fields. Any of these fields

alone can then be determined by evaluation of the interferogram. However,

if the refractive index is changed due to temperature and concentration

changes simultaneously, an interferogram produced by a single beam

interferometer may not be adequate to evaluate the temperature and/or con-

centration fields. This difficulty can be overcome by using two laser beams

with two different wavelengths. This method is called twin beam (or two-

wavelength) holographic interferometry and was first proposed by Mayinger

and Panknin [37].

Twin Beam lnterferometr},

The first accurate results were obtained by Panknin [381. Using twin beam

interferometry he found good results for measurement of the temperature and

concentration in simultaneous heat and mass transfer along a heated vertical

plate and a horizontal cvlinder with sublimation and the temperature and fuel

distributions in a flame.

Figure 6 shows the required experimental arrangement. The twin beam

interferometer is very similar to that of the single beam shown in Fig. 5. Here,

two lasers, an Argon laser (2i=457.9nm) and a Helium-Neon laser

(2k = 632.8 nm) are used as light sources. The two beams lie on a horizontal



plane and are perpendicular to each other when they intersect on the beam

splitter. Therefore, both object and reference beams consist of two different

wavelengths.

The exposure technique in twin beam interferometry is similar to that of the

single beam. Before the experiment is started, the comparison wave, which

now consists of two wavelengths, is recorded on a photograph plate. The

photograph plate is developed and fixed. Now, if the laser beam with the

wavclength, say, 2j , is blocked, both reference and object beams will have

wavelength 2 k . Then by illuminating the reference beam on the hologram, the

ii}j , 5

t ,14

rt
i"

.ta IG II 12
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Figure 6: Schematic of Twin Beam Holographic lnterferometer

1. Helium-Neon Laser, 2. Argon Laser, 3. Variable Beam Splitter,

4. Object Beam, 5. Reference Beam, 6. Microscope, 7. Pinhole,

8. Collimating Lens, 9. Test Section, 10. Holographic Plate,

11. Lens, 12. Camera, 13. Air-Suspension Table, 14. Shutter
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comparison wa\e is reconstructed. The object beam which passesthrough the

test section is illuminated on the hologram and produces an interference pat-

tern for wavelength 2 k . By shining the laser beam of wavelength _.j, another

interference pattern is produced for wavelength 3.j.

The main advantages of this technique is that only one plate is developed

which includes information from both wavelengths, and two interference pat-

terns are produced by shining each laser beam, separately. Two sets of fringes

are, then, evaluated to determine the temperature and concentration profiles

for the tested medium. The evaluation method of fringes is discussed in the

following section.

5.2.2 Theory of Twin Beam lnterferometry

The following assumptions are made in development of the governing

equations 1-38]:

1. The optical system is perfect, the experimental setup is mechanically

stable and the lasers are ideal.

2. The object beams with the wavelengths 2j and ;t k are ideal parallel

waves.

3. The variation of the refractive index is only two dimensional and no

variation in the beam direction.

4. No reflection of beam due to gradients of the refractive index.

5. Refractive indcx is constant outside of the test section and during re-

cording of the comparison waves.
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6. The holographic construction is perfect.

With the above assumptions the interference pattern depends only on the

variation of the refractive index. In holographic interferometry the object

beam, passing through the test section at different times, is superimposed on

the comparison wave, and therefore, reveal the difference in optical

pathlengths in two exposures. Expressed in multiple S of the wavelength 2 ,

this difference is written as

S (x,y,2) • 2 = 1 {n (xd',2) - no_ } (1 6)

where I is the width of the test section, in which the refractive index varies be-

cause of temperature and concentration gradients. The interference pattern

shows the change of the refractive index between the recorded comparison

wave (constant temperature Too and constant concentration Ca , yield a con-

stant refractive noo ) and the "measurement" wave.

An extinction of light occurs for

1 3 5 (dark fringes) (17)Isl =T'T'T""

and an amplification for

S = 1 , 2,3 --" (bright fringes)

The interference fringes are points of the same refractive index change. With

temperature and concentration gradients the refractive index variation de-

pends on both gradients. Therefore. a relationship has to be found between

(18)
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the refractive index changedue to the temperature gradient and that due to the

concentration gradient.

The molar refractivity N(2) , is related to the refractive index by the

Lorentz-Lorenz equation as follows

N(2)= n().y'-I . ,14 (19)

n (_)2 + 2 P

where M is the molecular weight and p is the density. Fortunately the molar

refractivity does not depend on temperature and pressure, but it varies with

wavelength. This is the basis for the twin beam interferometry.

For gases with n- ! , Eq. (19) is approximated quite accurately by the

Gladstone- Dale equation

_x;(,0= 2M t'n(,i)-l]
3p

(2O)

For the ideal gases the density, p , can be replaced by the total pressure, p,

and the temperature, T, to get

N (2)= 2R___._T
3p [n0)-l] (21)

where R is the gas constant.

components is given by

The molar refractivity, N(2), for a mixture of two

x(,_) = c,, x,,(,_)+ cb jvb(_) (22)
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with Ca + Cb = 1 . In the above equation Ca and Cb are the concentration of

the components a and b in the mixture and A'_(,:.) and ,x,:b(2) are the molar

refractivity of the components in their pure form.

Combining Eqs. (16), (21), and (22) yields

, 3pl_. 1 [Na(2 )
S (xy,2)- t_ = 2R (T(x,y) +

with C_ = 1 - Cb, C_,o¢ = 1 and Cb,o_ = 0 (only component a presents in re-

cording the comparison wave). For two different wavelengths ,:.j and 2k we get

two equations from which the temperature and concentration distributions will

be evaluated. These equations are the following

2j 2k

S (x,y,2j) AN(3.j) S (x,Y,2k) AN(_-k)-

_ ]qx_v)- Too 3pl F Na(2J)

T(x_v)'Too 2R L AN(2j)

(24)

# '_k _S
(x,y,2j) Na(2J ) S (x,Y,2k) N_-_k )

[C(x,y) C_] 3pl_AN(2j)
T(x,y) Too "2--'R- L Na(_j) Na(2k)

(25)

where AN(k)= Nb(2 ) -- N_(2).

Figure 7 demonstrates how to evaluate the temperature profile, T(y), and

the concentration profile, C(3'), from two interferograms of a boundary laver

produced by two different wavelengths, 2j and '_k [38]. For a specified direc-

tion along the boundary layer, x = constant, Fig. 7b shows S_, S, , S_- ;_j and
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Sk'2k as functions of y , where Sj = S(x = const,y,2;) and

S k = S(x = constj,.2k) . Accordin{- to Eqs. (24) and (25) the temperature and

concentration profiles at a location are found by the following equations

Sj. 2i Sk • 2k

TO)- T_ __ :, :%_- A,_:k
(26)

Sj. ):i Sk " 2k
CO:)- C_ _. (27)

N; /Vk
./

Q

i,,i I'I,
I

S
S X

sis_ _ %
y--..

b

y

d

e

__%- Cc9 -C.

N

qD

a) Interferograms for 2j and )'k
b) Phase lag S. 2, S

c), e) Difference of modified phase lags

d), f) Temperature and concentration profiles

Figure 7: Evaluation of Interferograms [38]
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where 1\)= A'a(2j) and ,V k = N_(2k). Figures 7c and 7e show the variations of

S. ;_/AN and 5" )tin for ';v and ,_,. Then using these distributions, Eqs. (26)

and (27) yield the temperature and concentration profiles for that location.

These profiles are shown in Figs. 7d and 7f.

5.2.3 Laser Doppler Anemometry

The laser Doppler anemometry allows the measurement of the local, instanta-

neous velocity of tracer particles suspended in a flow without disturbing the

flow. Thus, appropriate particles must exist in the fluid and the relationship

between the particles and fluid velocity must be known. The task of a laser

Doppler anemometer falls into three parts.

• Generating two coherent laser beams which interfere in a probe volume

• Detecting the light intensity scattered by tracer particles crossing the

measuring control volume

• Analysing the Doppler frequency and calculating the velocity of the

particles

Figure 8 shows thc required components of a laser Doppler anemometer and

the following is a brief description of the basic principles of laser Doppler

anemometry which are carefully outlined in Durst et al. 1"39-I.

Two coherent laser beams with wavelength 2. and a diameter d form an

ellipsoidal volume at the beam intersection point (see Figs. 9 and 10L The size

of the measuring control volume is given bv
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a . 6. = .___g__d (2S}
a x= d; 6v= sin 4_ ' _ cos 4_

where _b is the angle between the two beams and 6,, 6y and 6, are the axes of

the ellipsoid. Figure 10 shows the principles of the "interference fringe" model

which was proposed by Rudd [40.].

Two coherent laser bcams having plane wave fronts intersect at an angtc,

6. This yields a pattern of plane interference fringes as shown in Figure 10.

The fringe spacing, Az, is proportional to the wavelength, 2, of the light and

inversely proportional to the half angle between two beams

2
Az = (29)

2sin (6/2)

/

Figure 8: LAD Optics from DANTEC Manual

1. Beam Splitter 2. Bragg Cell Unit 3. Beam Displacer

4. Beam Expander 5. Front Lens 6. Pinhole Unit

7. Photomultiplier Optics 8. Photomultiplier
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As a particle moves through the region of interference fringes it will scatter

light whose intensity will vary according to the light intensity variation inside

the bisector o!" the two beams. These light intensity variations have the

Doppler frequency v_)given by

U 2Usin (_5/2) i30)
VD = Az 2

where U is the particle velocity component perpendicular to the fringes.

The scattered light can be detected by a photomultiplier and the velocity

component normal to the interference fringes can be determined bv analyzing

the Doppler frequency. This frequency is ambiguous because it does not indi-

cate in which direction a particle moves. This lack of information can yield

large errors if the flow direction is not known (e.g. in case of recirculating flow)

I_
!

Z

'sxL. 4

'l
d

Y

i,

-y _Z

Figure 9: Measuring Control Volume
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or if the mean velocity is near-zero and the fluctuations arc larger than the

mean value in turbulent flow.

Frequency shifting allows tile 180 degree ambiguity in the direction of a

measuredvelocity to be resolved.The frequency shift is obtained when the two

intersecting laser-beams have different frequencies. The pre.,,ence of a fre-

quency difference, v s , results in a movement of the fringe pattern with velocitv

Us,

US= - vs Az (31)

A frequency shift, applied to one of the laser beams, will result in an increase

or decrease in the measured velocity of a particle depending on the direction

of the movement. In this case the velocity can be determined clearly from the

detected Doppler frequency, vD . If the velocity of the fringes, caused by the

shift frequency, is greater than the particle velocity

zI
_5

Figure 10: Interference Fringes in the Control Volume

¥
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(_,-)
U = (v o - Vs) 2sin (_/2)

A lower Doppler-frequency than the shift frequency indicates that a particle

moves in the same direction as the fringe pattern. If a particle moves in the

opposite direction, the Doppler frequency will be larger than the shift fre-

quency.

Laser Doppler anemometry depends on signals from particles suspended in

the flow. Thus, it is important to know how well the motion of the particles

represent the motion of the fluid. In our case there are two reasons for velocity

differences:

• The particle terminal velocity is different from the vapor velocity be-

cause of greater gravitational forces on the particle as compared to the

vapor.

• Drag forces caused by accelerations and velocity fluctuations can result

in particle/vapor mismatch.

According to Tchen [41], the terminal velocity, Cr, of a particle in a fluid with

the constant velocity Uf parallel to the gravity g is

2

Up= Uf- C t with Ct= g -_ (pp- pf) (33)

The velocity difference Ct between the particle Lrp and the fluid b)depends on

the density difference, pp - pf, the viscosity of the fluid, #/. and the squared

radius of the particles r2 . For oil droplets (rp-_ l_rn) in gas, at standard state,

Cz_ !.5 • 10 -_ m,"s.
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According to Dring [42] the velocity difference between a particle and fluid

caused by high-frequency velocity oscillations, depends on the Stokes number

Op _ 4rp
St = (34)

18Uf

For Stokes number St < 0.14 the particles follow an oscillation with the fre-

quency o2 with less than 1% velocity difference. For oil droplets in a gas, at

standard states, _Omax--- 12 kHz.

5.3 PRELIMINARY RESULTS

Experiments have been carried out to visualize the vapor flow patterns in

evaporation, adiabatic and condensation regions of the heat pipe after a sud-

den increase in input heat flux has been applied. A boundary layer of vapor

is established very. quickly on top of the wick surface all over the heat pipe.

The thickness of this layer decreases from the evaporation section to the

condensation region. The vapor boundary layer grows quickly and fills the

whole space. Depending on the input heat flux, the whole process takes place

in a few seconds. For low input heat flux, the vapor flow is found to be smooth

and laminar. For higher heat fluxes the vapor boundary layer grows faster. If

the input heat was high enough a few regular vortices were observed on top

of the evaporation part and they expanded to the entrance region of the

adiabatic part. The vapor flow in the adiabatic and condensation regions un-

der a high heat flux are still laminar but reverse flow on top of the condenser

is suspected.
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Transient processes in the vapor core of heat pipes are very fast (few sec-

onds). Therefore, the mentioned optical methods which provide inertialess

measurements, are the proper tools to obtain accurate results. The temper-

ature and concentration profiles are evaluated from the holograms developed

by the twin beam interferometry. In this method, the temperature is evaluated

from the difference between the phase shifts corresponding to two different

wavelengths (see Eq. (26)). This difference is usually very small, therefore, the

two wavelengths used should be as far apart as possible.

In laser Dopplcr anemometry, seeding of particles with proper density and

size is a challenging problem. In systems like heat pipes, in which the working

fluid undergoes a phase change, it is not possible to have particles recirculating

with the fluid flow. In this case, particles can be injected carefully into the

vapor flow in the evaporation end and collected from the condensation end.

But the disadvantage of this technique is that the measured velocities at both

ends are not accurate.

When the evaporation and condensation rates are high, small liquid drop-

lets are prescnt in the vapor flow. These droplets flow with the vapor and are

able to scatter the laser beam. Preliminary velocity profiles in both the

evaporator and condenser have been obtained to demonstrate that the method

will be effective. Therefore, no seeding will be required in this case.
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Chapter VI

THEORETICAL MODEL OF THE VAPOR CORE

Flow patterns found in a heat pipe are shown schematically in Fig. 11. The

working fluid evaporates in the evaporation zone. The local pressure increases

and the vapor flows towards the condensation zone, at which it condenses back

to the liquid phase. The liquid flows from the condenser to the evaporator by

capillary force through the wick structure. The main concern of this analysis

is the vapor core response to changes in the evaporation and condensation

rates due to a sudden increase, or decrease, in the input heat flux, or the

condenser temperature.

In this section the dynamic behavior of the vapor flow is analysed using a

transient two dimensional model. The proper equations which govern the

model problem will be written. A numerical scheme will be proposed to solve

the governing equations. Then, presenting some preliminary, results of the

numerical calculations, the continuation of the analysis to more rather com-

plete solution of the problem, will be proposed.
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6.1 GOVERNING EQUATIONS

Tile vapor flow in the heat pipe vapor core, shown in Fig. 11, is modeled as a

channel flow shown in Fig. 12. The circular boundary oF the channel is a thin

porous medium which contains the liquid. The input heat flux '_o the

evaporator and the temperature of the outer surface of the condenser are

specified. The planar side walls are assumed adiabatic.

The equations governing the vapor flow are time dependent, viscous,

compressible momentum, continuity and energy equations. An equation of

state is used to relate pressure, density and temperature within the vapor core.

These equations in axisymmetric coordinates (r,x) are

Y

0

VAPOR

S
x _L_

t ' tq' I Tc 'r-
--Ce ] ko k c

x=O
x=L

Figure 12: Vapor Core Model of a Heat Pipe
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6.1.1 Bounda13, Conditions

The boundaries of the vapor core are shown in Fig. 12. The nonslip condition

for velocity and adiabatic condition for temperature are assumed on the side

walls, i.e.,

@x=Oandx= L,

c_T
u=0 , v=0 , _=0 (40)

Ox

On the center line the symmetry condition implies,

@r=0,

Ou OT
= 0 v = 0 _ = 0 (41)

Or ' ' Or

The boundary conditions on the liquid-vapor interface are the challenging

ones. The liquid flow is assumed in a porous medium with thickness 6, which

is much smaller than the vapor core radius r0 . The axial velocitv is assumed

zero on this boundary. That is,

@r=r 0 ,

u = 0 (42)

In order to assign boundary conditions for the temperature and vertical veloc-

it3", the liquid-vapor interface is divided into three regions. In the evaporation
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zone the input heat flux, q, is a given parameter and the input flow is approx-

imated as,

@r=r 0 and O<x<L e,

q
pv = th --- (43)

hs¢ 

In the above equation, hfg is the heat of evaporization and conduction in the

liquid layer is ignored. The temperature is assumed to be the saturation tem-

perature of the liquid corresponding to the interface pressure. That is,

@r=r 0 and O<x<L e,

T= Tsar(P) (44)

In the adiabatic zone the boundary conditions are

@r=r 0 and L e < x < (L e + Lc),

Y_-O ,
OT

m = 0 (45)
Or

In the condensation zone the temperature of the outer surface, Tc, is a given

parameter. By equating the heat of evaporation to the heat conduction in the

liquid layer, the outflow from this region is approximated as,

_::r=r 0 and (L e+Lc)<x<_L,
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(46)

T= Tsar(P) (47)

where, keff is the effective conductivity of the liquid layer and the temperature

is assumed to be the saturation temperature corresponding to the pressure at

the interface.

6.2 MIXED GALERKIN-FINITE DIFFERENCE METHOD

A mixed Galerkin-finite difference technique was used for the solution of the

steady state equations, see Ref. E44-1. In each partial differential equation the

equation of state was substituted for the pressure, eliminating the pressure as

a variable. This gave a system of four equations in four unknowns. Galerkin

method was then applied, resulting in a pseudo two dimensional set of

equations. Application of Galerkin method E45] involved choosing trial func-

tions to represent each of the variables and substituting these in the equations.

For the correct implementation of the Galerkin method, the trial functions

chosen must have three requirements met.

1. They must be linearly independent.

2. They are part of a complete set of functions.

3. They must satisfy the boundary conditions exactly.
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In this case the trial functions described the radial variation of the variables

and exactly matched the boundary conditions in the radial direction. The trial

functions used were as follows:

p(x,r,_)= p,..+ _.(x,,g_(r)
17

N

_x,_,r) = _'_%(x,rgl(r)
n

_x,r,z)= Tw + _ Tn(x,z<l(r)
17

where the basis functionsfl(r ) ,f2(r) and f3(r) are defined as:

f,(r)= cos((2n-l) =-@1)

f2(r>=-_l sin(nrc "_1 )

(
A(,) = \-R-T/

Note that the functionsf_ are chosen to satis_ the radial boundary conditions.

Three of the trial functions include a term in front of the summation of coef-

ficients. This additional term, denoted with the subscript w, represents the

known value of the variable at the wall, where r = R_. At the wall the radial

functionality of the trial function becomes zero, so that the variable is com-

pletely defined by the wall term. A function of radius,f3 was included with the

wall term for radial velocity. This was to insure that the radial velocity went

to zero at the centerline.

48



Substitution of the trial functions into the differential equations creates the

residual. R. Finally, weighting functions, F_. are chosen for each equation and

the inner product of each residual and its weighting function is calculated.

Weighting functions chosen for this analvsis are given below:

Mass

Fwl =fl(r)= cos((2k- I) rC__l )

X-Momentum

R-Momentum

Energy

f
. 1 rrrFw-_ = fl(r)= cos,(2k - )"7"g'-'_,

\ "^1/

,Fw3= f2(r)= _ sin krc

Fw4=fl(r)= cos((2k-1) Z-_I )

Ideally the weighting functions should be orthogonal with the trial functions,

but in the problem at hand that was not possible. Here, we define the inner

product as:

(R,Fw)= f FwRrdr

where R is the residual, F_ is the weighting function and the product is inte-

grated over the cross section. These calculations are carried out in detail in

Reference 44. A set of nonlinear differential equations (with respect to the

axial direction) result that can be solved using any of several methods.
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6.2.1 Results

Although more promising than the finite difference method described in sec-

tion 6.3, a number of difficulties were encountered and the press of time con-

straints did not allow them to be overcome. It is still our view that the mixed

finite difference-Galerkin method or full Galerkin method is the only method

that will yield the needed computational speed. The following paragraphs

document some of our struggles to "make it work".

Converged results from the analysis have not provided any more insight

into heat pipe vapor dynamics than was previously known. Several types of

vapor flow in the heat pipe have been input to the code to see if accurate and

meaningful results could be obtained. Solutions used for checkout corre-

sponded to a "zero solution', a stagnant tube, fully developed pipe flow and

finally the heat pipe operating mode.

Corresponding to a 'zero solution' are Dirichlet boundary conditions of zero

for density, radial velocity and temperature at the wall. The corresponding

internal coefficients for the Galerkin representation should then be calculated

to be zero as well. A stagnant tube corresponds to the geometry, of a sealed

tube at constant, uniform temperature and density. Hence, values for density

and temperature through the pipe are equal to the wall value. Coefficients for

the Galerkin representation of these variables should be zero. Consistent with

the stagnant tube, all vapor velocities should also be zero.

Determining boundary conditions consistent with flow in a pipe required

that the program be modified slightly. Modifications were primarily in regards

to the axial boundary conditions on axial velocity. Previous conditions stated
i
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that all velocity components at x = 0 and x = L were zero due to the solid

boundary at the ends. For pipe flow, it was intended to model a small section

cut from a long, straight pipe. Thus, in the model, a fully developed for the

axial velocity could be used at x = 0, and at first was also used at x = L.

However, the conditions proved to be inconsistent because vapor flow was be-

ing forced through a tube, but with constant density and temperature there

was no pressure drop. A remedy to this problem was to use a Neumann

boundary condition at the right end of the pipe, du = 0 at x = L and set ei-
dx

ther density or temperature to be decreasing axially from x = 0 to x = L, with

a linear profile. In this manner, the actual value of the axial velocity was not

set, so it could adjust to the changing pressure along the pipe.

Finally the heat pipe operation was implemented. Under this mode of op-

eration, the axial velocity is set equal to zero at all the boundaries while the

radial velocity is set equal to zero at the two ends, x = 0 and x = L. In the

evaporator the radial velocity is set equal to a finite negative value at the wall,

and to a finite positive value at the wall in the condenser. At the wall in the

adiabatic section a zero radial velocity was assumed corresponding to no mass

evaporation or condensation. Because this was a steady state analysis, the

total mass flow in the evaporator was equal to the total mass flow in the

condenser. Density at the wall was held constant for this try and the wall

temperature was given a profile which decreased axially toward the condenser.

This was consistent with a heat pipe operating under a steady heat flux and

allowed for decreasing pressure in the direction of flow.
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An instance may be documented in which the current equation set will fail

as it is. For the "zero solution', i.e., all boundary conditions are zero, so the

coefficients of the Galerkin trial functions are also zero, the equation vector

on the right hand side of the iteration equation is indeed zero, but for a sol-

ution, the Jacobian must be calculated and non-zero terms must be obtained.

Jacobian elements for all terms on the diagonal may be determined for the

energy equation and the two momentum equations. However, the conserva-

tion of mass equation will have no non-zero terms, because all Jacobian de-

rivatives of this equation still have a coefficient of wall term which is zero.

The code was run for the 'zero solution'. Two sets of initial conditions were

used for the Galerkin coefficients. As a first guess the coefficients were initially

set to zero. This proved to exactly soh'e the set of equations, as only one iter-

ation was used and the zero solution was returned. Then the initial guess for

the coefficients was set to 0.0005. With this guess the program required two

iterations to converge with a maximum iteration error of 6.5- 10 -5 on the

temperature. In this case, however, the coefficients were non-zero, with the

largest magnitude being 5.0" 10 .4 for the density, 3.1 • 10 .8 for the axial ve-

locity, 1.0 • 10 .8 for the radial velocity and 8.4 • 10 .4 for the temperature.

Solution for a stagnant tube required 21 iterations from an initial guess of

0.0005. The maximum iteration error was 9.6 • 10 .5 . Again, this obtained for

the temperature. The maximum magnitude of the converged values was

1.5- 10 .4 for the density, 2.5" 10 .7 for the axial velocity, 1.7- 10 .6 for the ra-

dial velocity and 4.7- 10 .4 for the temperature. For comparison, wall values
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for density and temperaturc were 1.0 and 3.0, respectively, and the calculated.

normalized sonic \elocity was 2.8.

These two cases are the only ones the code would definitely converge on.

They were obtained on an eleven grid matrix with a spacing of 0.01. Following

these two cases, the pipe fl0w configuration was attempted. Using the same

grid network with Dirichlet boundary conditions at x = 0 and Neumann con-

ditions at x = L for the axial velocity, no solution was obtained. In this con-

figuration only the axial velocity coefficients were updated. Radial velocity was

ever_vhere set equal to zero as were the coefficients of the density and tem-

perature. Hence, the density and temperature were axially and radially con-

stant. Iterations on the axial velocity diverged slowly at first, then rapidly

around the 18th iteration.

An additional pipe flow case was considered in which both axial and radial

velocities were updated at each iteration. Using the same grid network the

solution diverged again, this time after 32 iterations.

Finally, the code was run for the heat pipe configuration, using constant

density and injected vapor velocity of-0.01. Condensing vapor in the

condenser was given a velocity of +0.01. Wall temperature varied axially

from 3.2 in the evaporator to 2.8 in the condenser. Updating all variables and

using an initial guess of of 0.0 for all coefficients, the solutions diverged after

9 iterations. A damping factor of 0.77 was included. Here, the calculated co-

efficients after the 9th iteration displayed a noticeable amount of cell Reynolds

number problems. To try and correct the problem, the grid spacing was cut in
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half. Using the same boundary' conditions and the initial guess, the solution

appeared to be oscillating after 40 iterations and failed to converge.

In general, results from using the code for the heat pipe configuration have

all failed. One problem evident from the output has been a cell Reynolds

problem. However, increasing the number of nodes, although permitting more

iterations without diverging, still does not allow consistent, meaningful results

to be calculated.

Although grid spacing and the resulting cell Reynolds problems may have

been a problem, it does not appear to be the only one. Some equation formu-

lations have instabilities within them and one way to arrive at consistent sol-

utions is by including damping. A method of upwind differencing was utilized.

This too seemed to make little difference to the computed solutions.

Completeness of the basis functions used to represent the variables in the

Galerkin expansion is another point in question. For the cylindrical coordinate

system it probably would have been better to use Bessel functions as the basis

functions.

It looks like the boundary conditions themselves may have caused problem

which the mixed Galerkin-finite difference method does not handle well.

Boundary conditions on the radial velocity are sharply discontinuous, with the

velocity being negative in the evaporator, zero in the adiabatic region and

positive in the condenser. Changes between the regions occur as sharp jumps.

Trial functions chosen to represent this variable could not satis_ these condi-

tions with a single basis function alone, but relied on the constant term added

to this basis function to match the requirements completely. However. con-
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stant term still posessharp discontinuities in the axial direction. It max be that

the failure of the basis functions alone to satisfy the boundary conditions

causes the Galerkin method to not converge to a solution. It appears the

Galerkin method is not weli suited to handle the boundary conditions associ-

ated with this type of a compressible flow problem.

In conclusion, there are several aspects of this work that could have been

valuable, had a solution be obtained. The basic problem studied, compressible

heat pipe vapor dynamics in two dimensions, is a topic of current interest in

many communities around the world and a capability of detailed analysis is

needed. Secondly, the method of solution, mixed Galerkin-finite difference

method, is not one that is often applied to a compressible flow problem. Suc-

cessful application of this method as well as the direct solution of the steady

state equations could have been a contribution of interest to the field of nu-

merical fluid mechanics.

6.3 PROPOSED SOLUTION METHOD

Equations (35) to (39) are five equations in five unknowns, namely, p , u, v,

T and p. The boundary conditions associated with these equations are Eqs.

(40) to (47). The boundary conditions on the vapor-liquid interface depend on

the interface pressure and pressure is not available on the boundaries. How-

ever, in the numerical method described below, the pressure does not need to

be specified on the boundaries. Then, after completion of the calculations, an

interpolation method is used to determine the pressure on the boundaries.
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Figure 13: Staggered Grid

The numerical scheme used here is based on the SIMPLE method described

by Patankar 1-43]. In this method all the variables are not evaluated on the

same point, but a staggered grid, as Shown in Fig. 13, is used. By choosing

control volumes which have the cell centers at their center, the velocity com-

ponents are evaluated for the points that lie on the faces of the control vol-

umes. The locations for u and v are shown by short arrows in the Figure. The

other dependent variables, namely, p , T and p , are calculated for the cell

centers shown by small circles. The boundaries do not lie on the cell centers.
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The algorithm for calculations is the following •

The system pressure is assumedto be composedof two parts

t_x,r,t) = fi(t) + p(x,r,t) (48)

where fi(t) is the space averaged system pressure whereas p(x,r,t) includes the

space variation of the pressure. Assuming a pressure distribution, the mo-

mentum equations (Eqs. (36),(37)) are solve for velocity components u and v

at a time step. Then using the continuity equation and density p from the last

iteration on temperature, the pressure is corrected to be used again in mo-

mentum equations. Upon accomplishing these iterations, the velocity field and

p(x,r,t) will be found.

Using the velocitv field, the energy equation (Eq. (38)) is then solved for

temperature. In order to calculate density from the equation of state, and to

evaluate the boundary conditions, we need the absolute value of the pressure.

Global mass balance is used to calculate the absolute pressure. The total mass,

for an ideal gas, m, is related to the pressure by

where V is the volume.

i|

m = fodV = P---_dV
Jv V RT

The increase in the total mass in one time step is

(49)

m(t + At)- m(t)= (thin -- mout)At (50)

57



where m;,, and too,, ¢ are the input and output mass fluxes, respectively, and are

calculated from the boundary conditions. Equations (49) and (50) are com-

bined to yield

/'/

(rain- mout) At= I( Pit+At

RTI t+At
Pit )dVRTIt

(51)

Thus Eq. (51) is used to evaluate the absolute pressure of the system. For a

real gas, using an equation of state, the above procedure is followed to calcu-

late the total pressure.

6.4 PRELIMINARY RESULTS

The computational procedure described above was implemented for a two di-

mensional time dependent compressible flow with the same type of heat pipe

boundary conditions as those meniioned above. The computations were per-

formed for several evaporator heat fluxes with water as the working fluid and

pipe dimensions of r0 = 2.5 cm and L = 3r 0. The computational grid spacings

were Ax/ro = 0.1 and &V/ro = 0.05. The temperature and pressure variations,

and consequently, the density variation, were found to be quite small inside the

pipe. This is expected of systems in which condensation takes place without a

non-condensible gas.

The steady state results are shown in Figs. 14, 15 and 16. The steady state

was assumed to be reached when the relative change of all variables (error
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Figure 14: Axial Velocity Profiles

(a) low input heat flux (Re = 1),

(b) high input heat flux (Re = 1000).
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Figure 15: Schematic of Flow Streamlines

(a) low input heat flux, (b) high input heat flux.

norm) within a time step was less than 0.5%. Figures 14 show the axial veloc-

ity profiles at different axial cross sections along the pipe, for low input heat

flux, Fig. 14(a), and for high input heat flux, Fig. 14(b). The flow stream lines

for these two cases are shown schematically in Fig. 15.
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Figure 16: Vertical Velocity Profiles

When the input heat flux is relatively low, the evaporation rate is low and

the vapor flows smoothly towards the condensation region (Figs. 14(a) and

15(a)). However, with high input heat flux the evaporation rate is high, the

vapor is ejected with a high momentum from the evaporator and under steady

state conditions, condenses at a high rate at the condenser. The high momen-

tum flow at two ends of the adiabatic section causes a circulation flow in this

region. That is, on the adiabatic surface there is a reverse flow. In addition,

in the condensation region the high momentum vapor flow impacts the rigid

end wall, returns and then condenses in the liquid region. This return flow is
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Figure 17: Axial Velocity Profile at Different Time Steps

shown in Figs. 14(b) and 15(b). The vertical velocity profiles for different ver-

tical cross sections are shown in Fig 16. The flow is clearly two dimensional.

Transient behavior of vapor flow was studied by using a steady state sol-

ution as the initial conditions for different input parameters. As an example,

Fig. 17 shows the axial velocity profiles at the middle of the pipe, x/L = 0.5,

at different time steps. Curve 0 on this Figure is the steady state solution for

Re = 100, where Reynolds number is defined as
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thin ro
Re =

P

and mi, is the input mass flux. Curves 1 to 4 show this velocity profile at dif-

ferent time steps after a sudden increase in input heat flux for Re = 200. At

the outset, the increase in input heat flux overcomes the reverse flow, see curve

1. As the velocity profile develops with time, the steady state profile, curve 4,

shows a higher reverse flow at the liquid-vapor interface.

6.5 PROPOSED ANALYSIS

The dynamic behavior of vapor flow in heat pipes is studied for transient op-

erations. The above analysis needs to be modified as follows:

1. The existing computer code is able to handle two dimensional transient

vapor flow in Cartesian coordinates. The code must be modified to

axisymmetric coordinates for analyzing circular heat pipes.

2. Interesting phenomena have been detected in the adiabatic and

condensation regions. In these regions high input heat flux may cause

a reverse flow. The reverse flow results in negative shear force on the

wick structure. A parametric study is needed to explore the reverse flow

versus design parameters like the evaporator, condenser, adiabatic and

total length of the heat pipe for different input heat fluxes and

condenser temperatures.

3. Effects of the presence of a non-condensible gas in the vapor core on the

condensation rate and the heat pipe operation will be also investigated.
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4. Many heat pipe applications result in irregular geometries. Grid gen-

eration techniques need to be incorporated into the code to accommo-

date them.

5. The vapor flow has been dealt with using simplified boundary condi-

tions. The liquid phase model, see Chapter VII, needs to be used to

generate the proper boundary conditions.
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Chapter VIi

THEORETICAL MODEL OF THE LIQUID PHASE

As previously discussed, most research in heat pipe dynamics has focused

on the startup transient. An experimental investigation has also been per-

formed for the shutdown transient. Only modest efforts have been expended

to date that consider operational transients. These efforts generally address

two issues: the capability to achieve nominal operation under specified condi-

tions, and the resulting axial temperature distribution. The processes are as-

sumed to occur quasisteadily such that time dependent characteristics are not

considered. Despite these research efforts, a comprehensive analytical model

does not exist that captures the physical processes while being economical

enough for required computations.

The objective of this part of the study is to develop an analytical model of

the liquid phase of a high temperature heat pipe. The model is intended to be

coupled to a vapor phase model for the complete solution of the heat pipe

problem. The mathematical equations are formulated consistent with physical

processes while allowing a computationally efficient solution. The model sim-

ulates time dependent characteristics of concern to the liquid phase, including:

input, phase change, and output heat fluxes, liquid temperatures, container

temperatures, liquid velocities, and liquid pressures.
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This research considers requirements for high temperature, high thermal

flux operation with heat transport over long distances and small temperature

drops. These requirements indicate the need for a heat pipe with a high per-

formance composite wick. A composite wick consists of small pores at the

liquid-vapor interface and large pores in the direction of bulk liquid flow.

Recal! that the maximum capillary pumping capability is limited by the largest

capillary surface at the liquid-vapor interface as shown by Eq. (4). The small

pores at the liquid-vapor interface establish a high capillary pumping capabil-

ity that drives the circulation of working fluid. The larger pores in the direc-

tion of flow provide a low resistance flow path for the liquid.

The heat pipe selected for this study uses an annular wick configuration as

shown in Fig. 18. The annular wick is an excellent configuration for liquid

metals, is popular for experimental work, and involves geometry easily mod-

eled in cylindrical coordinates [27,28]. The wick configuration consists of se-

veral layers of fine pore screen pressed together and concentrically installed in

the pipe to form an annular flow channel as shown in Fig. 19. The annulus

forms the low resistance flow channel while the fine pore screen tube forms the

high pumping capability boundary between the liquid and vapor regions.

The capillary, wick introduces some analytical although not conceptual dif-

ficulty. A thin screen tube consisting of several layers of pressed screen forms

a tortuous flow channel with no slip conditions on the surface of the screen

wires. Explicit analysis of the flow including consideration of the large number

of w-ire surfaces involved would be difficult if at all practical considering the

goal of performing transient analysis. A macroscopic approach such as
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Figure 19: Cross Section of High Performance Annular Wick Configuration
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Darcv's Law for flow in a porous medium could be used to alleviate the com-

plexity. Howe\'er the axial flow in the pressed screen is expected to be small

relative to axial flow in the open annular channel. Indeed. the very purpose

of the annular composite wick configuration is to provide a low resistance flow

channel in the annulus for circulation of liquid. The screen tube is used only

to provide a fine capillary surface at the liquid-vapor interface. The screen

tube can then be approximated as a single layer of screen with a characteristic

pore size. Flow normal to the screen is restricted by a characteristic specified

porosity, while tangential flow is governed by alternating free slip and no slip

conditions. The free slip condition provides the tangential shear communi-

cation between the liquid and vapor phases. The wick is approximated then

as an infinitesimally thin porous surface.

7.1 THE LIQUID PHASE MATHEMATICAL FORMULATION

7.1.1 Assumptions

The governing equations to be presented below will be reduced by recog-

nizing unique characteristics of the system to be analyzed. The system is as-

sumed to operate in an essentially gravity free environment. Other body forces

such as those due to translational and rotational acceleration will also be neg-

lected.

The heat pipe is assumed to be installed with azimuthal symmetry in the

particular application. The thermal energy source adds heat uniformly around
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the evaporator circumference while the heat sink extracts heat uniformly

around the condenser circumference. The resulting uniform conditions in the

azimuthal direction imply there are no velocity components or gradients in the

azimuthal direction.

Liquid flow in a heat pipe wick is generally low speed, laminar, and

incompressible. Since the liquid flow field is relatively simple and the cross-

stream dimension of the liquid region is much smaller than the streamwise di-

mension, the cross-stream (i.e., radial) pressure gradient is assumed to be

negligible. Also since the flow is low speedand incompressible, viscous energy

dissipation can be neglected.

In summary, the assumptions to be used for reducing the governing

equations are:

1. Negligible body forces:

2. Azimuthal symmetry

a. No azimuthal flow:

.

4.

5.

f,=£=o

w=O

b. No azimuthal gradients: --= 0
o0

Negligible radial pressure gradient: c_--7 = 0

.

Negligible viscous dissipation

3p_
Incompressible liquid:

c_p

Laminar liquid flow

--=0

Thermophysical properties are considered to be uniform functions evaluated

at a reference temperature. The reference temperature is assumed to change

slowly with time such that properties can be treated as constants in the gov-

erning equations.
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7.1.2 Governing Equations

Temperatures of the heat pipe container and the temperatures, pressures,

and velocities of the liquid phase are required to describe the dynamic behavior

of the liquid phase of a high temperature heat pipe under transient operating

conditions. The governing equations describing the behavior of these param-

eters consist of the conservation of mass, momentum, and energy.

The full condition governing conservation of mass of an incompressible fluid

is

0u 0v 1 0w v
+ --'z + + = 0 (52)

Ox or r Odp

where u is the velocity in the axial (x) direction, v is the radial (r) velocity, and

w is the azimuthal direction (_b)velocity. Imposing the assumption of

azimuthal symmetry reduces Eq. (52) to the familiar two dimensional form

Ov v
Ou + --:--- + "7" = 0 (53)
Ox Or

Full conservation of radial momentum for an incompressible fluid with con-

stant properties is given by

_v Ouv Ov 2 1

+ + --S7 + r

1 OP +v 02v + 0"__vv

P Or \ Ox 2 Or 2

C WF W V

Oq_ r r

1 _2v + 1 0v 2 0w v '_+ +fr
r- O(p 2 Or r- r" )

(154)
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where t is the time, p is density, P is pressure, and v is kinematic viscosity.

By assuming negligible radial pressure gradient, the conservation of radial

momentum equation is replaced bv

3P
--=0 (55)

fir

Under this approximation the radial momentum equation is not used to define

liquid dynamics so that pressure is determined from the continuity equation

and the axial momentum equation.

Conservation of axial momentum for an incompressible fluid with constant

properties is given by

au 2 auv 1 Ouw uvau +--'7----+-7--+ +--=
at Ox or r 04) r

v( a2u 02u 1 a2u1 OP +_ +__+

P c3x k_ Ox 2 Or 2 r 2 c3(p2
(56)

l au +fx+W a-7

Assuming negligible body forces, azimuthal symmetry and no radial pressure

gradient reduces Eq. (56) to

au Ou_.._2 + Our uv 1 dP
77 + ax --ST-r+-7-= p ax v/"a2" a2" l o_)+ \ax 2 +--fir 2 +--r --ar (57)

Full conservation of energy for an incompressible, constant property fluid

is given bv
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w _'T 1cFaT _ueT +veT + 7 "_ -P"LTT' a,- Or

_.L77-x + arj _ r

i)]+ v -i-

aq_ r O0 "O'er\-7-/

(58)

Neglecting viscous dissipation and assuming azimuthal symmetry results in

07" + uOT + rOT = =( a2T + e2T

Ot Ox Or \ Ox 2 Or 2 + r Or
(59)

The conservation of mass and momentum equations are solved subject to

the boundary conditions using an integral method, whereas the conservation

of energy equation is solved using the finite difference method. The computa-

tional implementation of the solution approach will be discussed in section 7.3.

7.1.3 Boundary Conditions

The heat pipe boundary conditions can be considered as either external or

internal. The external conditions refer to the communication of the heat pipe

external surface with the surrounding environment. The internal conditions

are of two types: fluid-solid and fluid-fluid. The fluid-solid conditions refer to

thc interaction between the liquid and either the pipe internal surface or the

wick. Fluid,fluid conditions govern the interaction between the liquid and

vapor phases.

The heat pipe external boundary can be divided into three convenient re-

gions as shown in Fig. 18. The evaporator region absorbs heat from the envi-
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ronment, the adiabatic region exchangesno heat with the environment, and

the condenser rejectsheat to the environment. The evaporator surface is as-

sumed to be exposed to a known surface heat flux condition, while the

condenserexchangesheat through radiation _ to a sink of known temperature

[26]. The conditions on the pipe external wall are then

AXIAL RANGE RADIAL RANGE CONDITION

0_< x < i e r = R_ -k OT
Or = qi"(x' t)

L e < x < L e + L a

Le+ La <_x < L

= 0
r = R_ Or

r = R w -kO, T = qrad
or

where qi,, is specified and qraa is to be determined from q_,,a = sa(Ta* - T_) as-

suming environmental sink temperature Te is known.

The condenser could generally exchange heat With the environment

through conduc4ion, radiation, and convection. However, the study of

radiation loaded elements is of current research interest for space based

applications [25].
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Long heat pipes with large evaporator and condenser circumferential sur-

face areas relative to the surface area of pipe endcaps will normally have neg-

ligible effects due to conduction in the end caps. With this assumption, the

boundary conditions are:

AXIAL RANGE RADIAL RANGE CONDITION

x=O R t<_r< Rw _7" =0
Ox

x = L Rt<_ r<_ R., _'I'= 0
Ox
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Solid-fluid surfaces correspond to the heat pipe container internal wall

interface with the working fluid, and the capillary wick interface with the fluid.

The pipe wall conditions are no slip and matching temperature gradient. The

conditions are:

AXIAL RANGE RADIAL RANGE CONDITION

x = 0 Rv<r<R_ u=0

1,'= 0

o7",
0x

x = L R,,<_ r< Rt u=O

l'= 0

_---0
_x

O<x_< L r= R l u=O

v=O

OT,= k
kl

Or _ Or

O<x<_L r=R_,

The liquid-vapor interface of the heat pipe is the most difficult feature to

analyze. The interface serves as the medium for communication between the
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liquid and vapor along the entire axial length of the pipe. The flow charac-

teristics are distinctly different between the respective liquid and vapor sides

of the interface. The interface is subjected to physical phenomena through the

action of surface tension that is generally not considered in the liquid or vapor

flow fields.-" The general liquid-vapor interface conditions are as the following:

Kinematic Surface Condition

= o (60)

where Uzv is the velocity of the liquid-vapor interface surface.

Conservation of Mass

where V0v is the vapor radial phase change velocity and V0_ is the liquid radial

phase change velocity. In future uses, V 0 will refer to the liquid phase change

velocity unless for clarity V0_ is used.

Continuity of Tangential Stress

The tangential stress condition provides an important coupling relation be-

tween the liquid and vapor phases. Since the vapor phase solution is not in-

cluded in this study, as a first approximation the vapor tangential shear stress

will be neglected and replaced with the axial velocity no slip condition

z The vapor and liquid regions are each assumed to be a single phase such

that multi-phase phenomena in these bulk flow regions are not consid-

ered. Entrainment of liquid by shearing action of the vapor,

condensation in the bulk vapor, and vapor bubble formation in the liquid

are common examples of departures from the single phase assumption.
These phenomena are outside the scope of the present analysis.
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u 0 = 0 (62)

Continuity of Normal Stress

2 _ OVl °vv I (1 1 "'Pv-PI+PvVov(Vov-Vol)+ Ll_l'-_'r -lay 0--7 =a _1+--_2) (63)

Continuity of Thermal Flux

aT/
CwPv Vovhfg= - kl Or (64)

where

Cw= Dp¥Dw

The term Cw accounts for the effective liquid-vapor interface surface area due

to the presence of the wick pores of diameter Dp and of the screen wires of di-

ameter O w.

Supplemental Relations

Supplemental relations can be used to derive relations between the liquid

and vapor at the interface. Using the kinetic theory for interphase mass

transfer [46] and the Clausius-Clapeyron Equation [47], the radial liquid ve-

locity at the liquid-vapor interface is

\/ _,1 I PV hfgl[Tv3/2](Tv_ Ts)
V° = 2_zRu 77 (65)

= hlET_-3/2](T v - Ts)
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The interphase heat flux can be expressed by using the continuity, equation and

substituting Eq. (65) in Eq. (64)

_f M ", (66)

7.2 THE VAPOR PHASE MATHEMATICAL FORMULATION

Heat pipe dynamics are strongly dependent on the vapor phase so that

complete solution of the heat pipe problem requires solution of the full system

of vapor phase governing equations. The intent of this research was to develop

a computational algorithm for liquid phase dynamics that would be combined

with a vapor phase algorithm. Development of the vapor phase algorithm

encountered extreme difficulties such that a vapor code was not available for

complete checkout of both the liquid and vapor codes at the time this work

was done, see [44]. An approximation of the vapor phase was developed to

permit demonstration of the liquid phase code operation.

The characteristics of vapor flow allow some simplification in developing

the approximate model. In general the vapor response is orders of magnitude

faster than the liquid response such that the vapor can possibly be treated as

quasisteady in a liquid time scale reference [31]. The vapor is also assumed

to be uniform in a selected control volume. A mass balance on the control

volume for a single arbitrary, time step gives

,vV+ = - a,my (67)
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where ,fly is the total vapor mass at a given discrete time. 6t is the time step

size, and rn_. is the net mass flux due to evaporation and condensation. The

sign of m,. is taken such that evaporation, which has a negative velocity,

produces mass addition, while condensation produces mass extraction from the

vapor space.

Solution of Eq. (67) can be used to fix the vapor state. The solution is de-

pendent on the phase change process, which is a function of the heat pipe op-

erating limits. This studv will consider restriction onlv due to the sonic limit.

The solution is then dependent on whether the pipe operation is subsonic or

sonic limited.

7.2.1 Subsonic Vapor Operation

Subsonic operation is assumed to occur such that the vapor is uniform at a

given time step. The mass balance control volume is then the entire vapor

space. The net phase change mass transfer can be expressed as

m v = pvVovC_ n R_ztx (68)

Using the continuity equation (Eq. (61)) and the kinetic energy formulation for

V 0 (Eq. (64)) gives

(69)
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where T, is the uniform vapor temperature, 7", is the liquid-vapor interface

surface temperature, and Rg is the gas constant for the working fluid of inter-

est. As a first approximation, all parameters except the temperatures in Eq.

(69) are assumed to be at time level t_").

Substituting Eq. (69) in Eq. (67) and dividing by the fixed volume of the

vapor space ¥ gives

(70)

The Clausius-Clapeyron Equation can be solved for the vapor density to give

I 1-1r(5-T) +77
(71)

All parameters except temperature are again assumed to be from time level

t(n).

Equations (70) and (71) can be equated to produce a nonlinear expression

for T_ in terms of time level t_") properties and time level t_"+_) liquid-vapor

interface surface temperatures. The equation can be solved using Newton's

method.
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7.2.2 Sonic Limit Operation

The sonic limit condition is a restriction on axial mass and heat transfer.

This restriction implies that the entire vapor space cannot be treated as uni-

form. The vapor space will be approximated as two control volumes. The first

control volume is the vapor space of the evaporator. The second control vol-

ume consists of the combined vapor space of the adiabat and condenser re-
w

gions. The two control volumes communicate

transport corresponding to sonic limited operation.

balance for the evaporator is

through the axial vapor

The control volume mass

hi, n+ 1): M_en) 3 trhve - _t mzon

and for the adiabatic-condenser is

(72)

M ,7+')= - , + , ,nso. (73)

where rnso _ is the sonic limit axial vapor flux. The heat flux associated with the

sonic limit as a function of vapor properties at the point of sonic velocity is

approximated by [8]

Pv hfg A v c
Qson = (74)

,/2(I + ?.)

The sonic limit mass flux can be derived from the sonic limit heat transfer

given by Eq. (74). Solving for mass transfer of sodium vapor produces

2 /SRg

mson= :zRvk/-_ pv.,,/Tv (75)
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with limits of integration corresponding to the respective control volume.

evaporator control volume has phase change mass flux of

The phase change mass flux for each control volume is found from Eq. (68)

The

_0 Le
rove = Pv VOvCw2 n Rvdx (76)

or

mve=C Rv   ILe  - 3/2 e  1
Phase change mass flux for the adiabatic-condenser control volume is

(77)

m_c = u0vc_2,_&ax (78)

or

mvc = CwRv__._g pvhfgI(L . .__ lALe)lv_ Tv3/2 £ TsdXlLeL
(79)

Equations (72) and (73) can be solved using Eqs. (75), (77) and (79) for the

vapor density during sonic limit conditions for each of the control volumes.

Using the Clausius-Clapeyron Equation as in the subsonic case produces a

nonlinear expression for vapor temperature in each control volume that can

be solved with Newton's method.
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7.3

The governing equations, boundarv conditions,

supplemental equations were coded for solution in a

THE COMPUTATIONAL IMPLEMENTATION

property relations, and

Fortran computer pro-

gram. The calculations are performed at discrete grid points in the liquid and

pipe wall. For clarity, the program first will be presented in a top level sense

to establish the overall sequence of calculation. The detailed algorithm will

then be discussed. Equations presented in other sections of the thesis are re-

peated when discussed below for convenience.

Overall organization of the program is shown in the flowchart in Figure 20.

The algorithm begins by setting various parameters and initializing conditions.

The time stepping section is then entered. Operating limits and property de-

pendent parameters are updated. The input heat flux is updated as is the va-

por regime. The iteration section is then entered. The first partial time step

(t*) is solved for liquid and pipe temperatures, vapor temperature, and liquid

velocities. The same steps are then repeated for the second partial time step

(t_"+_)). Iterations are repeated on the first and second time split equations

until temperatures of the liquid surface and container wall have converged to

a user specified tolerance. After time step convergence the thermophysical

properties are updated. Heat transfer limits are determined. Input, output,

evaporation, and condensation heat transfer rates are calculated. The

capillary limit heat transfer is calculated and compared to evaporation heat

transfer. A stop flag is set if the limit is exceeded. A steady state test is per-

formed bv comparing input and output heat fluxes. Flags are set if steadv

state is reached. The liquid pressure gradient and liquid pressures are evalu-
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Figure 20:
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ated. The capillary radii are determined from vapor pressure, liquid pressure.

and phase change velocities. Capillary radii are checked for the capillary

pumping limit. A stop flag is set if the capillary limit is exceeded. Time step

data are printed, and the program advances to the next time step unless a stop

flag was issued or time has expired. If calculations are to be terminated, re-

start data are printed to a restart file which can be used to continue the cal-

culations in a later run.

7.3. I Details of the Numerical Procedure

The detailed program can be considered in three broad sections: the startup

section, the iteration section, and the completion section. The startup section

shown in Figure 21 begins the calculation cycle. Calculations can be per-

formed beginning from a time zero condition or in restart mode to continue

calculations of a previous case. The algorithm begins by setting common and

dimension areas, and reading input data. Input data consist of the restart

option flag, time step size, grid step sizes, vapor space radius, wick pore radius,

screen wire radius, environment heat sink radiation temperature, and initial

heat pipe temperature. The restart option flag controls the program initial-

ization steps so that for a restart case, the program will initialize with the ap-

propriate data from the previous case. Geometry parameters .are calculated.

Time parameters controlling the duration of the calculations are set. Data

output print control parameters are set. Heat pipe surface radiation charac-

teristics are set as are input heat flux control parameters used in Eqs. (80) and
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(81).

fluid properties are initialized.

peatedly throughout the code

Peaceman-Rachford ADI

Thermophysical properties of the pipe wall material and sodium working

Combinations of various constants used re-

are calculated to reduce total arithmetic.

parameters, operating limits and temperature and

velocity fields are initialized. Startup data are printed, and control passesto

the beginning of the time steps in the iteration section.

The iteration section shown in Figure 22 begins the time step and performs

iterations between temperatures and velocities until acceptable convergence is

achieved. Property dependent operating limits and ADI parameters are up-

dated. Input heat flux is updated for the new time step. The input heat flux

profile and time dependenceare user defined functions

t_<T

given by Eqs. (80) and (81)

1 {qin = 7 qmax l-sin Irr(+ + +)]} (80)

and for

t>g

rqno(81 )qin = qmax

An option is included to smooth the abrupt step change of heat input at the

evaporator-adiabatic boundary. The vapor operating regime is checkcd using

Eq. (75). Operation is subsonic if axial heat transfer is below the sonic limit

and is sonic limited otherwise.

2 ¸`
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Figure 21: Algorithm Startup Flowchart
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Figure 22: Algorithm Time Step Iteration Flowchart
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Iterations are set up bv saving data from the just completed time step and

using these data as the initial guess for the next time step. Iterations are per-

formed by first solving for time t* liquid and container temperatures. The fi-

nite difference Peaceman-Rachford Alternating Direction Implicit method is

used to solve the energy equation in two partial time steps. The method es-

sentially involves solution by integrating the energy equation for a partial time

.step (time t*) in the radial direction, and then integrating for the remaining

time step (time t_"+_)) in the axial direction.

The first time split liquid temperatures are then used to find time t" vapor

temperatures. Depending on whether the vapor is subsonic or sonic limited,

control passes to the appropriate subroutine to use Newton's method to solve

the vapor temperature equation. Subsonic vapor temperature is determined

from Eqs. (70) and (71). Sonic limited vapor temperatures are determined

from Eqs. (71), (72), and (73). Based on vapor temperatures and liquid-vapor

interface surface temperatures the liquid phase change velocity is calculated

from Eq. (65). The bulk axial velocity distribution is calculated from the con-

tinuity equation and the liquid phase change velocity using the following

equation.

I ]- I Aa, Vo(l)+ 2 Vo(n)+ Vo(i) (S2)
U(i)= 2 A a n=2

Bulk axial

equation

velocity is transformed to a velocity, profile using the following
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• ,3
u =a+bl"*+cr *2+dr (83)

Finally, the radial velocity distribution is found from an equation given below

CwVoRv ( 26

= _ 1r Rl + Rv

+ c-z-)-7- + c +6 2 _J4

Then, calculations for the first time split are completed.

The second time split is set up by setting the temperatures and velocities for

the first iteration of the (t _"+I)) time split equal to the time t* values. The liquid

and container temperatures, vapor temperatures, and velocities for the second

partial time step (tv,+_)) are found as in the first time split with liquid and

container temperatures found using the ADI equation

A -r.(n+ 1) 1) A -r.(n+ 1) (85)4'i--ld + A5T_/_ + q-"16"i+lj = B4T;j-I + B5Z;d+ B6T;.j+I

The energy equation and the flow dynamics equations are tightly coupled

at the liquid-vapor interface such that the solutions of each are interdependent.

In addition, the equations contain nonlinear terms that required

quasilinearization treatment, which requires iterations. Iterations are per-

formed between temperatures and velocities until an acceptable convergence

is achieved.

The complction section of the program shown in Figure 23 includes all re-

maining functions to complete the time step calculations and send control to

the next time step or terminate execution. Thermoplaysical properties are up-
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dated basedon the temperature conditions. A mass balance is performed to

track working fluid inventory. The sonic limit heat transfer is determined from

Eq. (74). Capillary limit heat transfer is determined from

AP]I =- FlOca p (86)
Ax cap

Input, output, evaporation, and condensation heat transfer rates are evalu-

ated. A stop flag is issued if the capillary limit is exceeded. Input heat transfer

is compared with output heat transfer, and a steady' state flag is issued if thev

are approximately equal.

Liquid pressures are found from the following equation which is found from

the axial momentum integral equation

p{n+l) o(n+l) D(n) _ p_n)t = 1i+ 1 + 1i+ 1

(- _ Ui_l+ _,h_- k h_ Ui

- _ U/-I+ Yhx+ k h x

(n+ 1)/_ --

+ "_x Ui+I

/_ U, (,7)
+ "_-x i+1

(87)

The integration is performed by assuming liquid pressure and vapor pressure

are equal at the end of the condenser (x = L). The liquid-vapor interface ra-

dial momentum condition given b37 Eq. (63) can be solved for the capillary

radii of curvature to give

2a (88)

Pv- Pl + (plVo) 2 1 i +2#!#. Pl Or
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Figure 23: Algorithm Completion Flowchart

The total liquid pressure drop is compared to the maximum possible capillary

pumping capability of the wick.is given by

2_

APca p = _ (89)

92



A stop flag is activated if the limit is exceeded. Data from the time step are

printed, and the next time step is initiated unlessa stop flag hasbeenactivated

or time for the casehasexpired. Data from the final time step are dumped to

a restart file, and execution is terminated.

7.4 SOME RESULTS

Capabilities of the computational algorithm were tested by running two

heat pipe startup cases. The heat pipe dimensions were chosen to be consistent

with the experimental device described by Merrigan et al. up to the limit of the

uniform grid used in this analysis [27,28]. The experimental heat pipe in that

study used lithium as the working fluid and an annular wick configuration.

The annular region for liquid flow was formed between the pipe interior wall

and a porous concentric tube constructed of 7.25 layers of pressed screen. The

high temperatures involved required the container to be constructed from the

refractory alloy molybdenum. The heat pipe geometry parameters used in this

analytical study compared to the actual parameters are (see Figs. 18 and 19):

Parameter Actual

Heat Pipe Internal Length (L) 4.0

Evaporator Length (Le) 0.4 m

Condenser Length (Lc) 3.0 m

External Diameter (mw) 1.90 cm

Internal Diameter (ml) 1.60 cm

Vapor Space Diameter (my) 1.49 cm

Approximate

4.0 m

0.4m

3.0 m

I. 886 cm

1. 598 cm

1.490 cm
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Effective Wick Pore Diameter (mp} 53 Itm 53 _m

where the effective wick pore diameter was experimentally determined from

surface tension measurements.

An axial grid step size

hr = 1.1 x 10 .4 m were used.

of hx= 0.2 m and a radial grid step size of

The computational grid consisted of 21 axial grid

steps and 20 radial grid steps. The grid mapping to the heat pipe configuration

is:

Radial Liquid Space

Radial Pipe Wall

l<j<6

6_<j_<20

Axial Evaporator Region

Axial Adiabatic Region

Axial Condenser Region

I<i<3

3<i<6

6<i<21

Numerical experimentation showed that the code is highly sensitive to time

step size. Too large a time step produced an inconsistent temperature at the

liquid-vapor interface. The temperature was inconsistent in that the temper-

ature gradient at the surface changed sign relative to the gradient of the inte-

rior liquid. For example, in the evaporator energy is conducted from the pipe

wall to the liquid-vapor interface. The liquid-vapor surface temperature

should be the lowest temperature in the radial conduction path in order for the

energy to reach the surface. Too large a time step will produce a physically
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questionable surface temperature that is greater than the temperature of the

interior liquid. Too large a time step wasalso found to causeoscillations in the

pressurecalculations.

The time step sizewas selectedby running a seriesof calculations for three

hundred time stepseach with gradually decreasingstep sizes.A time step size

of 6t = 2 x 10-3 second was found to eliminate inconsistent liquid-vapor inter-

face temperatures, but did not completely remove pressureoscillations. A time

step sizeof 6 t = 1 × 10 -3 second removed the pressure oscillations for the three

hundred time steps calculation. This time step was used in the calculations.

7.4.1 Slow Startup Test

A startup test was devised to supply input energy to the evaporator such

that the heat pipe would warm up without reaching the sonic limit. This test

was to check overall program implementation. Input heat flux was supplied

according to the function
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t_<z

qin = _ qmax 1 -- sin n +

t>T

 90)

(91)qin = qmax

where qrnax is the maximum input heat flux and 7 is the time stretching pa-

rameter that controls how quickly qi,_ reaches qm_x" In this test,

qm_x = 1 x 106 l't"/'m 2 and r = 300 seconds corresponding to a five minute pe-

riod for the input heat flux to reach the maximum.

Calculations were performed for 114,193 time steps, or a period slightly

greater than 114 seconds. The run was terminated at this time since the liquid

pressure drop exceeded the capillary pumping limit. Thc liquid pressure drop

and the capillary pumping limit as functions of time are shown in Figure 24.

Analysis of the results shows that the capillary pumping limit was exceeded

due to a large jump in pressure drop at a single time step. Figure 24 also

shows that the pressure calculations had been experiencing oscillations with

usually small amplitudes of approximately 2.5 Pa. The oscillations began after

the 300 time steps used to veri_' the adequacy of the time step size of

1 x 10 -3 second. The liquid pressure drop curve is drawn through the centers

of the oscillation ranges in Figure 24. The oscillations become vcrv large at

t = 90 seconds, but begin to decoy until the large jump occurs at approximately

I14 seconds.
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Figure 24: Slow Startup Pressure Drop Results

The pressure oscillations are presented in detail in Figure 25.

pressure drop is plotted for eleven consecutive time

The liquid

steps for
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19,990 < k < 20,000, corresponding to the time around time t = 20 seconds in

Figure 24. The oscillations are of essentiallv constant amplitude and well be-

hayed until time t > 80 seconds as shown in Figure 24.
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Slow Startup Liquid Pressure Drop Oscillations

Power transfer as a function of time is shown in Figure 26. While the input

power briefly exceeds the sonic limit line, the phase change heat transfer re-

mains below the sonic limit. At approximately 103 seconds into the transient,

the sonic limit exceeds the capillary limit so that the capillary limit becomes the

controlling heat transport limit. At approximately 105 seconds, the unlikely

result is produced that the phase change heat transfer exceeds the input heat
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transfer. With the exceptionof this anomaly, the heat transfer curves are well

behaved,smooth functions of time. In addition, the phasechange heat trans-

fer is well below the capillary limit heat transfer at the point when liquid

pressure drop jumps to exceedthe capillary pumping limit. The cause of the

liquid pressuredrop jump is not apparent from the heat transfer curves.

The vapor temperature as a function of time is shown in Figure 27. The

vapor temperature is also a smooth, although rapidly increasing, function of

time. The causeof the jump in liquid pressuredrop is also not apparent from

vapor temperature.

The pressure drop calculation can be seen in Figure 24 to produce

oscillatory behavior with large sporadic oscillations for time greater than 80

seconds. The pressurecalculations are a sensitive function of time step size.

Numerical experimentation also showed that the pressure calculations are

sensitive to property updates and changes in the liquid-vapor interface

boundary conditions corresponding to the change between subsonic and sonic

limited operation. Sensitivity to property updates was identified by varying

the frequency at which updated properties are calculated.

There are many potential causes for the pressure oscillations. The pressure

oscillations may be physical, but this possibility is remote considering the nu-

merical sensitivities of the method. The time step size of 1 × 10 -3 second may

have been too large. If this is the case, a smaller time step may not be ac-

ceptable considering the cost of computations for a transient process that oc-

curs over a period of tens of minutes. The oscillations may hax'e resulted from

the derivation of the axial velocity profile in which the shape is determined by
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neglecting the temporal terms in the momentum equation. The pressure cal-

culations are also based on the convenient assumption that the minimum liq-

I00



1100

800

Figure 27:

0 20 40 60 80 100

Time, t (sec)

Slow Startup Vapor Temperature Results

120

uid pressure occurs at the end of the condenser, although this assumption is

not generally valid for the wide range of operating conditions encountered

during a startup transient.
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7.4.2 Sonic Limit Startup Test

A startup test was performed to test algorithm calculation of sonic limited

operation. Using again r = 300 seconds, the maximum input heat flux was

increased to qm_ = 1.5 x 106 1,17m 2 to assure the phase change heat transfer

would reach the sonic limit. Heat transfer results are shown in Figure 28.

Input power exceeds the sonic limit at 20 seconds, and remains above the

sonic limit through the duration of the test of 130 seconds. The evaporation

and condensation heat fluxes are essentially equal as the sonic limit is reached

at approximately 40 seconds. Evaporation and condensation follow the sonic

limit curve until 80 seconds. After 80 seconds, condensation heat flux in-

creases above the sonic limit, while evaporation heat flux continues to follow

the sonic limit curve. This unlikely result is a result of the inadequacies of the

simple vapor model used to perform calculations. The vapor model uninten-

tionally forces a high condensation rate, which forces the condenser temper-

ature to increase rapidly due to the high thermal resistance of the radiation

boundary condition on the condenser. This temperature effect is shown in

Figure 29. The evaporator vapor temperature smoothly and gradually in-

creases with time, while the condenser vapor temperature rapidly increases.

The condenser temperature eventually increases sufficiently so that radiation

heat transfer from the condenser becomes very efficient. At approximately 93

seconds, the output heat transfer exceeds the evaporation heat transfer, which

is another unlikely result. Calculations are terminated at 130 seconds due to

thc condensation hcat transfer exceeding the capillary heat transfer limit.

While the capillary limit is not strictly a limit on condensation, calculations
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had already passed beyond physical significance and the computational im-

plementation had been demonstrated.
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7.5 CONCLUSIONS AND RECOMMENDATIONS

The heat pipe is a very complex device such that performing analysis of heat

pipe transients is a difficult venture. The difficulty is due to the coupled liquid

and vapor dynamics, the phase change process, the coupled heat transfer

problem with nonlinear boundary conditions, the physical geometry, and the

transient time requirement. This study has presented the full system of gov-

erning equations, including boundary conditions, required to solve the liquid
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phase heat pipe problem. A simplified solution was formulated bv using cer-

tain assumptions and integrating the liquid dynamics equations.

The resulting formulation identified a key requirement for future research

in solving the heat pipe problem. This study used a kinetic theory approach

to model the phase change processas expressed by Eq. (65). The model con-

sists of a large coefficient multiplying a yew small temperature difference. The

model requires a very small time step for stability even with the simplifications

used in this analysis. The large coefficient also transforms temperature differ-

ences that are otherwise beyond machine accuracy into computationally sig-

nificant terms. Future research should investigate an alternative model for the

phase change process.

Difficulty with geometry was encountered due to the widely disparate

length scales in the different coordinate directions. The radial dimension

across the liquid is much smaller than the radial dimension across the pipe

wall, which in turn is much smaller than dimensions in the axial direction.

One approach to address this problem is to assume radial gradients are negli-

gible. The radial pressure gradient was neglected in this study. This study also

found small radial temperature gradients indicating that the radial thermal

resistance is small. The drawback of this approach is the loss of fidelity with

the true physics of the problem. A preferable approach may be to use a vari-

able mesh grid with a to-be-determined simplified treatment of radial gradi-

ents. The variable mesh grid allows fine resolution in important regions with

coarse resolution in the other regions. The simplified treatment of radial gra-

dients would take advantage of the small radial gradients.
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The long duration of transients presents a competing concern with model

complexity. An overly complex model with high fidelit\ may be too computa-

tionally expensive for practical calculations of transients.

This study has also shown that the transient heat pipe problem is not ame-

nable to a straightforward simplification such as is used for the vapor phase.

The solution of the heat pipe transient problem requires a full solution of the

liquid and vapor phases. This elusive solution is left to future efforts.
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