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ABSTRACT

Mathematical models are developed for the prediction of heat
transfer from hot water pipes buried in the soil. Heat transfer in
the absence of moisture transfer is described as a function of the
difference between the temperature of the pipe and the temperature
of the soil surface. The energy balance is used to determine the
longitudinal temperature distribution of the water. The method is
extended to describe a system of equally spaced, parallel buried
pipes. Soil temperature profiles around the pipes are presented.
The model is used to calculate the land area thatlcan be heated
by an underground piping system carrying cooling water from the
condensers of a 1000 MW nuclear-electric plant.

A new development of the phenomenological equations for coupled
heat and moisture flow, based on the theory of Irreversible
Thermodynamics, i1s presented. Solutionsof the equations for boundary
conditions representative of buried piping systems designed for

simultaneous soil heating and irrigation are presented.
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I. INTRODUCTION

The beneficial use of "waste heat'" from electric power
generation facilities is receiving increased attention as a means
of simultaneously reducing the thermal pollution threat to surface
waters and '"recovering'" part of the valuable thermel energy re-
jected from power plant steam condensers. One such beneficial use
is soil heating to increase agricultural crop production. Such an
alternative to current power plant heat rejection practices may be
advantageous where water reserves sufficient to prevent undesirable
temperature increases are not available and where atmospheric
conditions preclude the use of cooling towers for closed loop cooling.
An added advantage could accrue from potential return on investment
from increased crop yields in an integrated power-plant/agricultural
complex.

Boersma (1) proposed an agricultural complex utilizing
waste heat to enhance production of fresh or saltwater fish and
crustaceans, to produce high protein food supplement in warm water
ponds which use waste rejected from animal rearing facilities
as raw material input, and to increase conventional crop production
by soil heating.

The writers' work was initiated in response to a need for better design
tools by which to study the practicality and cost-effective-
ness of soil heating for agricultural purposes. Other investigators have

predicted land area requirements for power plant heat rejection by soil



heating with grossly oversimplified mathematical models. These
models, which perhaps give "order of magnitude'" information useful
for preliminary evaluation of soil heating, are not sufficiently
accurate for design or even cost-study use.

The work performed under this contract can be divided into

three areas.

1) A thorough literature survey was made to determine the

present capability for predicting heat and moisture transfer
through the soil-plant-atmosphere complex from subsurface
conduits carrying warm water from power plant condensers.

This survey included a study of mathematical models previously
proposed for heat and/or mass transfer in soil (and to the

atmosphere from the soil surface) as well as a survey of physical

data required for such models. The latter include determinations of

thermal conductivity, moisture (liquid and vapor) transfer coefficients
(i.e. diffusivity), and heat capacity. Such measurements are very

difficult in some cases, and therefore only scattered,

incomplete data are to be found in the literature. This is

particularly true for the effects on the aforementioned properties of such
factors as surface tension (capillary effects), '"coupled" heat and

moisture flow, simultaneous liquid and vapor flow, and "history-

dependence," all of which are common and may be important in the

soil-water system.

2) Mathematical models were developed for predicting heat transfer

from buried water pipes, by the method of images. The new models



allow for temperature variation of the water along the

length of the pipe, and will predict two-dimensional
temperature fields and accompanying heat transfer for

systems of multiple, parallel, buried pipes.

Unidirectional flow in all pipes as well as flow in alternate
directions in neighboring pipes (useful for partial
elimination of temperature gradients throughout the root
zone) can be modeled. Although the models described

require the assumption of constant soil-surface temperature
and constant soil thermal properties, it is believed that they
can be useful in design of subsurface soil warming systems
when "average values'" of thermal properties are used. The
models allow prediction of land use requirements and

provide a tool useful for optimizing the soil warming
system design with respect to such parameters as pipe size,
burial depth, horizontal spacing, and water flow rates.

3) The last phase of the work was the development of
mathematical models for the description of simultaneous,
"coupled," heat and moisture transfer in soil. The
development is based on the methods of Irreversible
Thermodynamics. Many investigators have studied

unsaturated soil moisture flow in the presence of temperature
gradients, but very little effort has been made to solve the
resulting model equations with boundary conditions similar to
those which would be anticipated in a simultaneous soil

warming-irrigation complex. Furthermore, previous developments



in this area, particularly those based on the methods

of Irreversible Thermodynamics, have not all been
consistent with thermodynamics theory. It is believed
that the development presented here of the so-called
"phenomenological equations," which describe coupled
energy and mass transfer, providesadded insight into these
processes. Although this phase of the work has not been
completed because of unforseen problems which arose in the

numerical solution of the equations, the group at the

University of Arkansas Water Resources Research Center plans

to continue this investigation on a non-funded basis.



BACKGROUND AND
LITERATURE SURVEY

The growing demand for electric power 1is causing concern about
the effect on the environment of the tremendous quantities of heat
that must be rejected from steam generation power plant condensers.

The temperature increase of condenser cooling water averages 15°F (1).

The amount of water withdrawn from U.S. waterways for condenser cooling is
estimated to be 40 trillion gallons per year, or roughly 10 percent of the
total surface water flow in U.S. rivers and streams. The return of this
heated water places a thermal burden of approximately five quadrillion

Btu per year on the environment (1970 figures).

Many warm water utilization schemes have been proposed for beneficial
use of reject heat from steam electric power plants. One such
scheme, proposed by Boersma (2), involves the use of subsurface piping
systems carrying the hot condenser water discharge to heat soil in
agricultural complexes. Soil warming has two attractive benefits:
extension of the growing season (sometimes allowing multiple cropping),
and acceleration of plant growth.

As the first phase of the writers' work, a literature survey was made of
methods applicable to the modeling of subsurface water-pipe soil heating
system design and evaluation. Although none of the previously developed
models were considered satisfactory, a very large body of literature
bearing directly on the problem was identified. Only the more important
examples of previous work which were associated directly with further work

undertaken by the writers' group are dicussed herein. For purpdses of convenience



as well as organization, the previous work is divided into two
groups: (1) heat transfer only and (2) simultaneous heat and moisture
transfer. In addition an extensive list of published literature sur-

veyed which would be of interest to investigators in this field is

included as Appendix I.

HEAT TRANSFER ALONE

The first published study of heat loss from buried pipes appears
to have been by Allen (3) in 1920. Allen developed the following

equation for determining heat loss:

q = 21Tk_ (Tl - T2) [1]

In (ra/R)

where

.

heat flow rate per unit length of pipe

n
"

T, = temperature of the outside of the pipe
assumed equal to that of the fluid in the pipe

T, = average temperature of the ground at a point where
the heat from the pipe does not affect the ground
temperature appreciably

R = outside radius of the pipe

r) distance from the center of the pipe at which the
temperature of the ground becomesT)

k = thermal conductivity of the ground.

Allen concluded from his studies that the heat loss from a buried pipe
is not proportional to the external surface area of the pipe. He also
stated that the burial depth makes little difference in the heat loss,

provided the center of the pipe is two feet or more below the surface.



His model assumes an "infinitely extended isotropic, constant property
soil and can be developed easily by use of an energy balance and
Fourier's Law.

Karge (4) presented the following equation in 1945 for predicting

the temperature drop in oil pipe lines:

1n TI - Ta = 2wRUZ [2]
T - Ty m Cp

where
T = 0il temperature at some distance Z down the line

T, = initial temperature of the oil

T = atmospheric temperature

R = outside radius of the pipe

Z = 1length of pipe

Cp = heat capacity of the oil
m = flow rate of oil

U = heat transfer coefficient, oil to atmosphere.

Karge's model includes the effect of external surface area of the pipe.

A model essentially identical to Allen's (3) was proposed by Kemler
and Oglesby (5) for use in heat pump design.

Andrews (6) described the "shape factor method" for predicting heat
transfer in a solid with complicated boundary conditions. The shape

factor is used in the equation:

q = -k (S.F.) AT (3]
where

q = heat flow rate

k = thermal conductivity of solid



AT = "characteristic'" temperature difference
S.F. = geometrical shape factor.

Using the method of images and the principle of superposition,
Andrews developed shape factors for heat transfer between neighboring
cylinders and from a cylinder to an infinite plate. He used
these shape factors to predict heat transfer between two pipes buried
in the ground. Andrews' method did not account for the effect of the
soil surface boundary condition. He did, however, suggest an iterative
procedure to account for temperature gradients along the length of a
pipe.

Carslaw (7), and more recently Jakob (8) and Kutateladze (9)

used the method of images to calculate heat transfer from a
buried pipe to the surrounding soil. Jakob (8) presented the following
model for the temperature distribution in a homogeneous soil around a

buried pipe or cable:

T(x,y) - Tg = q In x>+ (h—y)2 (4]
TR 2 ()2
where
T(x,y) = temperature at any point in the soil
Ts = surface temperature of the soil
k = thermal conductivity of the soil

q = heat transfer rate per unit length of cable

h = depth of burial, measured to the center line of
pipe or cable

x = horizontal distance from center of cable

y = vertical distance from soil surface .



This model assumes an isothermal soil surface whose temperature
is controlled by external factors independent of the buried pipe
temperature. (This assumption is discussed' in Section V.)
The previous models were developed in all cases with the constraint
that an analytic solution of the model was required. This requirement
led to the assumptions of constant soil thermal properties, constant
soil surface temperature (for the method of images),and one-dimensional
or symmetrical temperature fields. The use of finite difference numerical
methods designed for digital computer simulation allows treatment of
variable thermal properties and more realistic boundéry conditions.
However, computer simulation of heat transfer from buried pipes does
not seem to have been pursued to an appreciable extent, at least not in
the published literature, before 1970. Furthermore, the increased modeling
capability associated with such methods is gained at the expense of ease
of computation and, perhaps more important, with some sacrifice of use-
fulness in cost optimization studies. Because a goal of the present work
i1s to develop mathematical models useful for initial design and cost
evaluation, as well as for use in optimizing design parameters, primary
emphasis was given to '"continuous' (as opposed to finite difference) models.
Thé primary deficiencies in the models previously suggested for
prediction of heat transfer from buried pipes carrying warm water are
1) assumption of constant property, isotropic soil,
2) neglect of temperature variation along the length of the pipe, and
3) neglect (except in the '"method of images' methods) of the effect

of the soil surface boundary condition.
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HEAT AND MOISTURE TRANSFER

It is well known that the "effective thermal conductivity" of
soil increases with moisture content. The early attempts to modify
heat transfer models for application to moist soils merely incorporated
increased "average" thermal conductivity values. Schmill (10) used the
method of images to determine the "effective' thermal conductivity of
soll around a buried cable when moisture migration from the vicinity
of the cable had occurred.

Field experiments by Boersma (2) demonstrated migration of
moisture away from warm water lines buried in the groundl This
moisture migration leads to the development of a''dry core'" around the
pipe with substantially reduced thermal conductivity and heat transfer.
It appears at this time that the use of underground soil heating systems
would be impractical without provision for simultaneous irrigation to
prevent drying of the soil in the plant root zone. Thus, although pure
heat transfer models with '"average values" of thermal conductivity may
be useful in determining estimates of the land area required for a
given heat rejection from power plant condensers, models capable of
predicting heat and mass transfer will almost certainly be required
for a final system design.

The published literature on simultaneous heat and mass transfer
is extensive. Attempts to model this kind of process have ranged from
almost totally empirical to state-of-the-art theory. The most common
approach is to combine the classical models of Fourier and Darcy.

Philip and DeVries (11) proposed the following model.



Classical Model

The Philip and DeVries model describes moisture and heat

transfer in porous media under combined moisture and temperature

gradients. The model is said to apply in all ranges of moisture

content:

q,/°,

q,/°,

9
where q, is
DBE is
62 is
DTQ is
K is
i is
q, is
Py 1is
DBV is
DTV is
a, is
A is
L is
C is

x<

the

the isothermal liquid diffusivity of water in soil,

cm?
the
the

the

-Dezvez - DTQ VT - Ki

=D vT

ov' 9 ~ Pry

-(x - LpQDTv)VT + Lg, + CR(T-To)qm

liquid flux, g/cm?sec

/sec

[5]

volumetric water content, cm3 of wat:er/cm3 of soil

thermal liquid diffusivity, cm?/sec®C

unsaturated hydraulic conductivity, cm/sec

a unit vector in the vertical direction

the

the

the

the

the

the

the

the

vapor flux, g/cm?sec

density of liquid water, g/cm3
isothermal vapor diffusivity, cm?/sec
thermal vapor diffusivity, cm?/sec
heat flux, cal/cm?sec

thermal conductivity, cal/cm sec®C
heat of vaporization, cal/g

specific heat capacity of liquid water, cal/g°C

11



T is an arbitrary reference temperature, °C

T is the temperature, °C

q, is the total moisture flux = q, + q,. g/cm?sec
v is the gradient operator.

The various diffusivity values are further given by DeVries (11) as:

DTV

fDatmvBh(vT)a/ORVT

where Datm is the molecular diffusion coefficient of water vapor in
alr, cm?/sec
v is a mass flow factor, dimensionless
B = dp_/dT, g/cm®°C
Py 1is the density of saturated water vapor, g/ cm3

(VT)a is the average temperature gradient in air-filled pores,

°C/cm
£ =S, ez < Ozk
f = a + aell(s-ezk)
a is the volumetric air content, cm3 of air/cm3 of soil

ng is the value of ez at which liquid continuity fails

S - 1is the porosity .
Dpp = Kyy
where vy is the temperature coefficient of surface teansion, 1/°C
] is the matric suction potential, cm,
= g 2V
Dge = ¥ 30

Do, = 2 Datmvgpv(awlaen)/leI

where o is a tortuosity factor for diffusion of gases in soil,

dimensionless



g is the acceleration due to gravity, cm/sec2
2
py 1s the density of water vapor, g/cm”

R is the universal gas constant, erg/g°C.

This model ignores the coupling effects between the liquid
phase moisture transfer and the vapor phase moisture transfer.

Equations [5], with appropriate boundary conditions, could be
solved to predict heat and moisture transfer in a soil warming-
irrigation system. ‘However, measurement of the information re-
quired for specification of the diffusivity coefficient is
difficult.

A model very similar to that proposed by Philip and DeVries
can be ''developed" by the method of Irreversible Thermodynamics
(12, 13, 14). Cary and Taylor (12) presented the following
model for simultaneous heat and moisture transfer in soil, using
this method.

Irreversible Thermodynamic Model

Cary and Taylor (12) used the method of Irreversible Thermo-
dynamics to develop equations describing the transfer of heat and
mass in soil. The equations are applicable only in the high moisture

content (liquid dominant) range:

J = =pD[V8 + B*VLnT]
J = -pDRVe - L v&nT
e qq

where J  is the liquid water flux, g/cm’-day

J_ is the heat flux, cal/cm?-day

3

0 is the volumetric water content, cm® of water/cm3 of soil

13
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qu is a phenomenological coefficient equal to the thermal
conductivity of the soil multiplied by the temperature,
cal/day-cm
T is the temperature, °K
D is the isothermal coefficient of diffusivity of 1liquid water
in soil, cm2/day
P is the density of the system, g/cm3 (assumed constant)
B* 1is a coefficient defined as V0/VAnT at steady state and zero
water flux, dimensionless |

B is a coefficient defined as Vuw/VznT at steady state and zero

water flux, cal/g

u is the chemical potential of water, cal/g (assumed a single
valued function of 6)

v is the gradient operator.

Both the Cary and Taylor and Philip and DeVries models have
been tested in experimental studies involving frozen soil conditions
(15), and evaporation from soil (16), and in sealed laboratory soil columns
(17, 18). The general consensus in the literature seems to be that
the Philip and DeVries model applies but the Cary and Taylor model
does not. Most of the studies, however, were performed with
fairly dry soils. A careful re-evaluation of one of the studies (18)
indicated to the investigators that the Cary and Taylor model
does predict moisture transfer under the influence of both moisture
and temperature gradients. It should be noted that no independent
measurements have been made of the heat flux in any of the experimental
studies found, and the applicability of either model for prediction

of the heat transfer has not been tested.
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The principal investigator believes that the Cary and Taylor
model, or a suitable modification thereof, can be used to predict
heat and moisture transfer in unsaturated soils under conditions
anticipated in subsurface soil warming-irrigation systems.

However, a development of the phenomenological equations is presented

which. is believed to lend further insight into the model.



III. DEVELOPMENT OF THE MATHEMATICAL MODELS FOR HEAT TRANSFER

Consider an arbitrary length of water pipe buried at a
constant depth in the soil. Assume that there is a temperature
variation in the water in the longitudinal di;ection only.

A steady-state energy balance written for the system defined by
the outside boundary surface of the pipe and the ends of a small

length of pipe, 2 and 2 + AZ, gives

- - * H * N =
mHf, At -m 2| z+az At + gqAzAt = O (1)
where m = mass flow rate of water through the pipe

H = specific enthalpy of water crossing the boundary
q = heat flow rate per linear length unit at boundary of system
Z = coordinate on longitudinal axis

AZ = a small length of pipe

At = arbitraxy length of time.
Equation (1) expresses the requirement that at steady state the
net rate of heat transfer across the system boundary is equal to
the net rate of energy transfer associated with mass flow across
the system boundary.

Dividing Equation (1) by A2At, and taking the limit of

the result as AZ approaches zero, gives

. dl;‘ + q = 0. (2)

" az
If the enthalpy of the fluid crossing the boundary is considered

a function of temperature only, then



(3)

where Cp = heat capacity of water at temperature Tw
Tw = temperature of water at coordinate 2.

Using Equation (3), one can write Equation (2) as

Equation (4) is the differential energy balance for any
point in the system., If § can be described as a function of the
temperature of the water in the pipe at any longitudinal position
Z, Equation (4), with appropriate boundary conditions, can be
solved for the longitudinal temperature distribution of the water
in the pipe. The length of pipe which is required to transfer

a given amount of heat to the surrounding soil thus can be determined.

CASE I1:

Consider a single pipe buried in a homogeneous soil at a
constant depth, h. Assume that the water in the pipe is at a
temperature higher than that of the surrounding soil, that there
is no temperature variation in the water in the radial direction,
and that the temperature drop across the pipe wall is negligible.
If the soil medium were infinite, the steady-state radial flow of
heat, at any cross-section of the pipe, from the water into the
soil would be described by Fourier's second law,

- w3 = o | (5)

where k = thermal conductivity of the soil



r radial distance from the pipe center

T

temperature of the medium at any radial distance r.

The boundary conditions are:

ar

dr ) |r=R (6)

q = (-2nrk

where R = outside radius of the pipe, and

T=T at r = R, (7)
w

If one assumes that the thermal conductivity of the soil is
independent of temperature, Equation (5) becomes a linear, ordinary
differential equation and can be solved by standard techniques,

The integrated form of Equation (5) for the stated boundary conditions
is

S
T-1T = 1n (r/R). (8)

w 2

Equation (8) is invalid for points in a semi-infinite soil
medium. However, it can be modified to describe the case of semi-
infinite soil by the method of images (8). Refer to Figure 1.

The method consists of supposing the soil medium to be infinitely
extended. The pipe is represented by a line source of heat, located
at the centerline of the pipe, with the same heat strength, §, as

that of the pipe at the cross-section. A plane of constant temp-
erature, Ts, at a distance h from the line source, is simulated

by the superimposition of the effect of a line source of heat

strength -3 reflected symmetrically to the desired isothermal plane. The

system is now an unbounded soil medium with a heat source, a heat

18
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Figure 1 Configuration Of Heat Source And Fictitious
Heat Sink (Image) For Determination Of
Temperature Distribution Around A Buried
Pipe By Method Of Images
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sink, and an iso;hermal plane representing the surface of the ground.
The effect of the superposition of the heat sink is to cancel any
temperature variation at the plane y = O which results from the
temperature contribution of the positive source.

It is convenient to transform the temperature scale 8o
that Ts is the zero temperature point.  Mathematically, this

transformation is represented as
© = T - Ts (9)

where O = temperature excess above or below the soil surface
temperature.

Equation (8) can be written as
@' = 0 =-—="— 1n (x/R) (10)

where Ow = temperature excess of the water above the soil surface
temperature (T,; - Ts).
The "prime" indicates that the temperature excess is due to the
source without presence of the sink.
The temperature field which would be established by the

heat sink alone is described by the negative of Equation (10),

" . =__ti_
Oi ewi Sk in (ri/R) (11)
where Oi = the temperature excess at radial distance r,
ewi = temperature excess at ri = R
r, = radial distance from image heat sink.

Summing the separate temperature fields represented by



Equations (10) and (11) gives

Q=T Ts = —2-%; n  (x;/7) (12)

_Noting that r, =//x2 + (h-y)2 , and that r =//x2'+ (h+y)2 , One can

write Equation (12) as

W e
T(x)'““?%c"l“\/z e (13)
24 x° + (hty)
where x = horizontal distance from source or sink
h = distance from soil surface to source

(h+y)= vertical distance from source
(h-y)= vertical distance from image sink.
Temperatures calculated from Equation (13) for points inside
the radius r = R have no physical meaning because it is assumed ini-
tially that there is no temperature variation in the water in
the radial direction.
The temperature calculated at the point (0,-h+R) approximates

the water temperature. This temperature is, from Equation (13),

- q 2h-R
Tw Ts + ok In ¢ R

). (14)

It is important to note that § is not constant along the length
of the pipe.

Equation (14) may be solved for q,

. 21k (Ty~Ts)
g = bl

2h—R)
R

. (15)

iIn (
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Substituting q from Equation (15) into Equation (4) yields

d(Tw-Ts) 21k (Tw-TS) .
mCp 3 + ShoR = 0. (16)
In (—-;;—)

Equation (16) is a first order ordinary differential equation.

The initial condition is

T =T at 2 =0 (17)

where TI = initial water temperature.

Solving Equation (16) by standard techniques yields

Tw = Ts + (TI-Ts) exp “2kZ heR .] (18)
mCp 1n( )
or, solving for 2z, T -Ts '
In ( L )xth i (2R
TW-TS R
Z = STk . (19)

For a required temperature drop of the water, the necessary length

of pipe can be calculated from Equation (19).

CASE II:
Consider a system of equally spaced parallel pipes, all

buried at the same depth below the surface of a homogeneous soil.

The arrangement is illustrated in Figures 2-a and 2-b. There are N
pipes on either side of the center pipe, for a total of (2N+l) pipes
in the system, all having the same radius R. Water flows in the same
direction at equal velocity in all pipes. The center pipe in the
layout is taken for analysis.

Because Equation (13) is the solution to an ordinary,

linear differential equation with linear boundary conditions,



r ¢
) J
N Ua ¥ N N
L N \ ~r ~
— T —_ ——t
s 2NS
cooling w_otor _ cooled water
e —— — —_— —_— e —t EEEE——
from condenser s
[ -~ on
™ ~ 'ﬂﬂ ~
— A 2 _
o C
J J

x

Figure 2-a Top View Of Soil Warming System With
Water Flowing In The Same Direction In

Neighboring Pipes

1 X4



SOIL_SURFACE = L
.. A .
—‘Y o
R CENTER PIPE I

/v,
l,’_
/1ty

ppe——"

Figure 2-b Cross-Sectional View Of Soil Warming
System With Water Flowing In The Same
Direction In Neighboring Pipes

2¢



the temperature field established by each pipe (considered to be
a line source) at an arbitrary cross-section is independent of
all the other pipes (line sources) in the field. Thus, the effects
of all sources can be superimposed to determine the temperature
at a given point. The temperature field established by a single
source was derived in CASE I (Equation (13)).
The temperature established at an arbitrary point P
(refer to Figure 2-b) by the nth source (numbered from the

center source) on the positive x-direction side is

. 2 2
(n8-x)" + (h-y)
T -Ts = =3 1n (20)
(x,y) 2nk ﬁw//:ns-x)z + (h+y)2

where (nS-x)

the horizontal distance from the source to point P

S

lateral distance between sources.
The temperature established at point P by the nth source on the
negative x-direction side is

> s = <9 1p (nS+x) + (h-y) 2 (21)
(x,y) 27k 2
(ns+x) + (h+y)

where (nS + x) = the horizontal distance from the source to point P.
All sources are of the same heat strength §. Superimposition

of the fields established by all the sources, at point P, ylelds

— > =
_ X + (h-y) {ns-x) "+ (h~y)
- 5L Il\/_—r_ . 1nJ

T -T
(x,y) x“+ (ht+y) n=1 (nS-x)2+(h+Y)2
. - -
+ 3 /ﬁs+x) +(h-y) 2 :]. (22)
n=1 ‘\/(nS+x) +(h+y)

25
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As in CASE I, the temperature at-'the point (0,-h+R)

approximates the. watéxr temperature, This temperature is, from Equation (22),

. - N 2 - 2
Tw = Ts + —- [ln 2h-R + I 1n (nS) _+ (2h-R) ] . (23)

2nk
R n=1 (nS)2 +,R2

It should be noted that all sources were taken to be of
equal heat strength. The logarithmic series in Equation (23)
converges rapidly. For a large number of pipes, the equal source
strength analysis is a valid simulation for all pipes except those
very near the sides of the field. The variation in the boundary
area pipes can be ignored without significant error for the
application considered here.

Equation (23) can be solved for g4,

2nk (T_-Ts)
g = - (24)

- N 2 _ 2
l:m (——22 By + 3 ln( (nS) "'(212‘ R) )]
n=l

(nS)2+ R

Substituting q from Equation (24) into Equation (22) yields

(Tw-Ts)
T(x Y)-Ts - N 2 2
[m (2h;R) + 2 In ( (ns)2+(2121—R) )]
n=1 (nS) "+ R

[ 1n '\/x2+(h-x)2 L J(ns-x)2+(h-y)2 N /(ns+x)2+(h-2)2]
. 2 .

x%+(h+y)2 =l (nS-x) %+ (hty) nel (nS+x) 2+ (h+y) 2

(25)
Equation (25) can be used to calculate the temperature at any
point in the cross-section, with the exception of points . inside

a circle of radius R around each soﬁrce. Temperatures inside
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these circles have no physical meaning because of the initial assumption
of no temperature variation in the water in the radial direction.

Substituting ¢ from Equation (24) into Equation (4)

yields
d(T -Ts) 21k (T -Ts) _
fiCp ——— + — - > = % (e
[ln (ZE-R) + I 1n ((n5)2+(2h;R) ﬂ
n=1 {(nsS)” + R

This is a first order ordinary differential equation. The initial

condition is the same as in CASE I,
T =T at Z=0. (17)

Solving Equation (25) by standard techniques ydelds

_ _ -21kZ
T, = Ts + (TI Ts) exp ek N (ns)2+(2h—R)2 (27)
ﬁCp[ln )+ L In ( 3 2
— n=1 (ns) + R

or, solving for 2z,

T_-Ts N 2 2,
_ 1 1 . 2h-R (nS) "+ (2h-R)
2 = Sk 1n (E;:E;)me [in ( R )} + nil 1n ( > > )] . (28)

(nS) "+ R

For a required temperature drop of the water, Equation (27)
can be solved for the necessary length of pipe. By ignoring
the variation in the boundary area pipes, one obtains the total area heated,
AREA = 2NSz* (29)
where Z* = length of pipe necessary to drop the water temperature

a required amount.



CASE III:

Consider a system of equally spaced parallel pipes, all
buried at the same depth below the surface of a homogeneous soil.
There 1is a total of (2N + 1) pipes in the system, all having the
same radius R. Water flows in opposite directions, at equal
velocity, in neighboring pipes. The arrangement is illustrated
in Figures 3-a and 3-b, In Figure 3-b, the symbols H and C
represent the relative temperatures of the water in each pipe at
an arbitrary cross-section. The center H and C pipes are
taken for analysis,

The H and C pipes in the system are simulated by line
sources of heat strength 4 and qp , respectively. As in CASE II, the
temperature field established by each source is independent of
all other sources, Thus, the contributions of all sources at a
given cross-section to the temperature at an arbitrary pointcan
be superimposed to determine the temperature at that point, The
temperature field established by a single source was derived
in CASE I (Equation 13).

The temperature established at point P (referring to
Figure 3-b) by the nth H source in the positive x-direction

(numbered from the center H source) is

q 2 2
1 - -
T('x )—Ts = S lrj\/(h y)2 + (2ns x)2 (30)
24 (h+y)< + (2nS-x)

where (2nS-x) = the horizontal distance from the nth H source to

point P

(h+y) = the vertical distance from the nth H source to point P.
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The temperature established at point P by the nth H source in the

negative x-direction is

) 2 2 _
T ixyyy~ T8 = Y 12\J/Qh"¥)2 * (203 + X)z (31)
Yy 21k (h+y)* + (2nS + x)

where (2nS + x) = the horizontal distance from the nth H source to
point P.
The temperature established at point P by the nth C source in the

positive x-direction is

4 2 .2
T(x y T = -—-—2“)2( ~1n /(h y)z t_(2nS-S x)2 (32)
¥ . ~/ (h+y)“ + (2nS=-S=-x)

where (2nS-S-x) = the horizontal distance from the nth C source to
point P,

The temperature established at point P by the nth C source in the

negative x-direction is

g 2 _ 2
T(x - Ts = 2"12( in th y)2 + (2ns S-!-x)2 (33)
'Y (h+y)° + (2nS-S+x)

where (2n-S+x) = the horizontal distance from the nth C source to
point P,
Superimposition of all temperature fields established by the

sources, at point P, yields

' - | ‘ T Tme—— 2 2
q 2, .2 N/2 Ah-y) +(2nS-x)
T - Tg = -——1— l—l/l:/x + (h-y) + r 1l
(x,y) 2rk |_ 2

n 2 2
N +(h+y)2 n=1 AV/(h+y) +(2ns~-x)

. Néz L (h-y) %+ (2ns+x) %), 92 [N/2 (h-yf. +(2ns-S-x) 2
n 2 2tk | B0 ) 7t
n=1 (h+y) "+ (2nS+x) =1 (h+y) “+ (2nsS~-5~x)
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-

N/2 /(h--y)2 + (2ns—s+x)2 J.

+
nfl 1n (h+y)2 + (2ns--s+x)2

(34)

It should be noted that all H sources were taken to be of equal
heat strength, and that all C sources were taken to be of equal
strength. For a large number of pipes, this is a valid simulation
for all pipes except those near the sides of the field, because all
the logarithmic series in Equation (34) converge rapidly. The
variation in the boundary area pipes can be ignored without
significant error for the application considered here.

Application of Equation (34) to the point (0, -h + R)

yields
q - N/2 vy 2 2
n=1 R” + (2ns)
_EE V2 (2h-R)2+(2ns—S)2
MY I 1n— > (35)
n=1 R” + (2ns-s)

where Twl = temperature of water in H pipe.

Application of Equation (34) to the point (S, -h + R) yields

q - N2 or 2 2
(T,,=T8) = 50| 1n BBy 4§ gp (ZBoR) +0nS) ]
— n=1 R + (2nS)
4 V2 (2h-R) >+ (2ns-8) 2
+ 7k T 1n > 5 (36)
n=1 R + (21S-5)

where Tw = temperature of water in C pipe.

2



Let
_ N/2 o2, gy 2
A= [ln (2hRR) + 1§ 1n ‘.’:*‘2“’ *‘2"% ] (37)
- ' n=l R” + (2ns)
and
N/2 2 2
B= £ In (2h;R) +(2ns-sg2 (38)
n=1 R™ + (2ns-s)

Equations 35) and (36) them can be written, respectively, as

‘ <$'1 ':_12
(Twl- Ts) = m A+ m B (39)
and
c'*2 g
(Twz- TS) = Dy A+ Cyny B. (40)

These equations can be solved simultaneously for &1 and éz. The

result is

271k l:A(T -Ts) - B (T -TS)]
‘31 - wl > > w2 1 (41)
A - B

and 271k [A ('l‘w2 - Tg) - B (Twl - Tsi]

g, = 22 _ g2 (42)

Substitution of c'll and c'{z from Equations (41) and (42) into

Equation (34) yields

"A (Twl-Ts) - B (TWZ_TS)J[: x2 + (h_y)z
T - Tg = 1n
(x,y) - 2 _ g2 2

N x2 + (hey)?

N/2 Jth-y) %+ (2ns-x) 2 . Ngz L il\/(1u-5{)2+(2ns+x)2‘

+ nﬁ . 18 /[ (hty) 2+ (2ns-x) 2 n=1 (h+y) 2+ (2ns+x) 2

A (Twz—Ts) - B (TW].-TS) ] N/2 (}LY) 2+ (2nS=-S-x) 2 .
+ 2 2 J z 1n

- A" - B n=1 (h+y) 2+ (2ns-s-x) 2

33



N/2 2 . 2
. 5 1n (h-y)2+(2ns—s+x)2 ] . 43)
" n=1 (h+y) "+ (2nS-S+x)

Equation (43)can be used to calculate the temperature
at any point in the cross-section, with the exception of points

inside a circle of radius R around each scurce. Temperatures

inside these circles have no physical meaning because of the initial

assumption of no temperature variation in the water in the radial
direction.
Substituting ql and 62 from Equations(4l) and (42),

respectively, into Equation (4) yields

d(Twl-Ts) 2rk [A(Twl—Ts) -B(Twz-Ts)J

dz a2 - g2 .
and [ J
a(T _-Ts) 2wk | A(T .-Ts) ~B(T . -Ts)
-#Cp Zi + W Wi =0. (45)
A - B
The initial conditions are
'I‘wl - TI at 2 =0 (46)
and
Tw2 = TF at Z = 0, | (47)

Because of the symmetrical layout of the soil warming system,

wl F : ( )
and
w2 I ( )

where Z* = length of pipe required to drop the water temperature

from TI to TP'

34
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The minus sign on the first term in Equation (45) is due to the
fact that the mass flow in the pipe is in the opposite direction
of the mass flow used in the derivation of Equation (4).
Laplace Transforming of Equations (44) and (45) and rearranging

give , respectively,

£(s) | s + 31'&2—-2—] = (r,-Ts) + “.'M;"T gts) (50)
me (A" ~B") mCp (A" ~B")
and
g(s) [8 - ;—C-:)—';—:ti)] = (T~Ts) - :‘1:)12_82) £(s) (51)
where f(s) = Laplace Transform of (Twl-'rs)
g(s) = Laplace Transform of (Twz-Ts)

8 = Transformation variable.

Solving these equations simultaneously for f(s) and g(s) yields

(T_-Ts) (s 2mkA ) ) + (TF-TS) .2.1'1.‘9__2_.2_.
f(s) = hep (A°-B7) RCp(A“-B7)  (52)
2 _[2mx 1 2
mCp AZ_p2
and
(T,~Ts) (s + _ﬂ_k;\_z_) - (r,~18) 21rk123 .
mCp (A°-B“) mCp (A“-B%)  (53)
als) = .2 _(21rk [ 2
xi\Cp,\/ a2_p2

Inversion of Laplace Transforms f(s) and g(s) gives, respectively,

B(T_-Ts)-A(T_-Ts)
21k2Z 1 F 1
T .-Ts = (T_~-Ts) cosh(. '\/ )+[ ]
wl I mCp A2-132 Az_Bz

21kZ 1
sinh ( 2 J ) (54)
mCp Az__Bz
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and
P A(T_-Ts)~B(T_~Ts)
21kZ 1 F I

T .~Ts = (T_-Ts) cosh (. )+l; ]

w2 F mCp a2_p2 A2_p2
2rkz /1

sinh (f - ), (55)

mCp ”V/Az-Bz

The graph of Equation (55) is the translation by Z* of the mirror

image of the graph of Equation (54) between the limits of Z=0 and Z*.
For a required temperature drop, Equation (54) or Equation

(55) must be solved by trial and error for Z*, By ignoring the

variation in the boundary area pipes, one obtains the total area heated,

AREA = 2NSZ* , (56)



Iv. APPLICATIQN OF MATHEMATICAL MODELS FOR HEAT TRANSFER

To calculate the land area that can be heated by an
underground piping system carrying cooling water from the con-
densers of a 1000 megawatt nuclear-powered steam generation electric
power plant, it is necessary to specify the physical conditions
under which the system is to operate. For purposes of illustration,
the following conditions are assumed.

1. The thermal efficiency of the power plant is 34 per cent.

2. The cooling water flow rate from the condensers is
39.6 million gallons per hour.

3. The cooling water is discharged from the condensers
at a temperature of 1000F.

4. The cooling water must be cooled to a temperature of
80°F before it is returned to its natural origin,

5. The underground piping system consists of two-inch
diameter pipes. The pipe wall thermal conductivity is
large compared to the soil thermal conductivity.

The pipes are buried at a depth of two feet and are
spaced three feet apart.

6., The average velocity of the water in each pipe is
five feet per second.

7. The thermal conductivity of the soil to be heated is
1.0 Btu/ft.-hr.-°F.

The total number of pipes in the system can be calculated

by dividing the total water flow rate by the water flow rate

capacity of a single pipe. The total number of pipes is 2N+l, where



N is the number of pipes on either side of the center pipe in the

field. Therefore

Total Water Flow Rate

+ =
et Water Flow Rate per Pipe

- (3.96 x 107 gal/hr) (1 ft3/7.48 gal) (62,1 lbm/ft3)

(w'l.o iK° )(s.o £t ) (3600 sec/hr) (62.1 1b/ft>)
144 in’/ft? sec-pipe

3.29 x 10° 1bm/hr
2.44 x 104 lbm/hr-pipe

13,500 pipes.

The total land area heated can be calculated by using
the results of CASE II or CASE III.

CASE II: The water flows in the same direction in all
pipes (see Figure 2-a). The length of the center pipe can be
calculated from Equation (28):

(100°F-64°F
in |2 2

80°F-64°F

21 (1.0 Btu/ft.-hr.-°F)

) (2.44 x 104 lbm/hr) (1.0 Btu/lbm OF)

Z* =

4.0-0.0833 6750 (3n) %+ (4.0-0.0833)2
1n o.0833 ) = I 1n 2 2
. n=1 (3n) %+ (0.0833)

= 18,400 feet.

The total area heated is:

2(6750) (3.0 ft) (18,400 ft)

AREA = 2NSZ* = 2
(43,560 ft" /acre)

= 17,095 acres.
The longitudinal temperature profile of the water in the

pipe is given by Equation (27):
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T, = 64.0 °F + (36.0 °F) exp (-4.48 x 107 2).

The longitudinal water temperature profile is shown in Figure 4.

The temperature of the soil at any point in a given cross-
section can be calculated from Equation (25). The corresponding
water temperature at that cross-section to be used in Equation (25)
can pe obtained from Figure 4. Figures 5,6, and 7 are graphic
representations of Equation (25) at longitudinal distances of
0, 7400, and 18,400 feet, respectively. 1In these figures, soil
isothemms are plotted versus x and y.

As can be seen from Figures 5,6, and 7, the temperature
distribution in the soil varies from one end of the field to the
other. This variation is shown in Figure 8, a plot of the
average temperature of the soil one foot below the surface of the
ground versus longitudinal position in the field. The maximum
and minimum temperatures of the soil at the one foot level also are
shown in Figure 8.

CASE III: The water flows in opposite directions in
neighboring pipes (see Figure 3-a). The length of the center pipe

can be calculated from Equation (54) or Equation (55):

4.0-0.0833 3375 (4.0-0.0833) %+ (6n) >
A=1In"goe3 )t I " 2, (om 2
. n=1 (0.0833) %+ (6n)
= 4.464
3375

4.0-0.0833) %+ (6n-3) 2
B= 1L 1n > >
n=1 (0.0833) 2= (6n-3)

= 1.365
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(80°F-64°F) = (100°F-64°F) cosh (6.05 x 10 >z*)

) sinh (6.05 x 10 °z*) .

. 1.365 (80°F-64°F)-4.464 (100°F-64°F)
3,255

Solving for 2*, by trial and error,
Z2* = 19,360 feet.
The total area heated is:

2(6570) (3.0 ft) (19,360 ft)

AREA = 2NSZ* = 5
(43,560 ft“/acre)

I

18,035 acres

.

The longitudinal temperature profiles of the water in

neighboring pipes are given by Equations (54) and (55):

T, = 64.0°F+(36.0%F) cosh (6.05 x 10°°2)
o, . -5
- (32.64°F) sinh (6.05 x 10 °2)
T , = 64.0°F + (16.0°F) cosh (6.05 x 10"°2)

- (5.24°F) sinh (6.05 x 10 °2).
The longitudinal water temperature profiles in neighboring pipes are shown
in Figure 9.

The temperature of the soil at any point of a given cross-
section of the field can be calculated from Equation (43). The
corresponding water temperatures at that cross-section, to be ﬁsed
in Equation (43), can be obtained from Figure 9. Figures 10, 11,
12, and 13 are graphic representations of Equation (43) at
longitudinal distances of 0, 6000, 9680, and 19,360 feet. 1In
these figures, soil isotherms are plotted versus x and y.

As can be seen from Figures 10, 11, 12, and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>