736 research outputs found

    Optimization-based decision support systems for planning problems in processing industries

    Get PDF
    Summary Optimization-based decision support systems for planning problems in processing industries Nowadays, efficient planning of material flows within and between supply chains is of vital importance and has become one of the most challenging problems for decision support in practice. The tremendous progress in hard- and software of the past decades was an important gateway for developing computerized systems that are able to support decision making on different levels within enterprises. The history of such systems started in 1971 when the concept of Decision Support Systems (DSS) emerged. Over the years, the field of DSS has evolved into a broad variety of directions. The described research in this thesis limits to the category of model-driven or optimization-based DSS. Simultaneously with the emergence of DSS, software vendors recognized the high potentials of available data and developed Enterprise Systems to standardize planning problems. Meanwhile, information oriented systems like MRP and its successors are extended by the basic concepts of optimization based decision support. These systems are called Advanced Planning Systems (APS). The main focus of APS is to support decision making at different stages or phases in the material flow, i.e. from procurement, production, distribution to sales (horizontal-axis), on different hierarchical aggregation levels (vertical-axis) ranging from strategic (long-term) to operational (short- term) planning. This framework of building blocks decomposes planning tasks hierarchically into partial planning problems. This basic architecture of the planning processes in APS is known as the Supply Chain Planning Matrix (SCPM). Compared to, for instance, discrete parts manufacturing, planning tasks are much more complicated in processing industries due to a natural variation in the composition of raw materials, the impact of processing operations on properties of material flows, sequence dependent change-over times, the inevitable decline in quality of product flows and relatively low margins. These specific characteristics gave rise to focus on optimization-based decision support in the domain of processing industries. The problems to be addressed in this field call for (inter-related) decisions with respect to the required raw materials, the production quantities to be manufactured, the efficient use of available resources, and the times at which raw materials must be available. Although different APS modules can interact directly, coordination and integration is often restricted to the exchange of data flows between different modules. Given the need for specific integrated decision support, the research presented in this thesis focusses particularly on medium to short term decision support at production stage in processing industry, including the vertical and horizontal integration and coordination with adjacent building blocks in the SCPM. Extensive reviews from literature show that the gap between research and practice of DSS is widening. As the field of DSS was initiated as an application oriented discipline, the strategy of what is referred to as “application-driven theory” was taken as the preferred approach for this thesis. “Application-driven” refers to a bottom-up approach which means that the relevance of the research should both be initiated and obtained from practice. The intended successful use of the proposed approaches should, where possible, be represented by tests of adequacy. Simultaneously, the contribution to “theory” aims to be a recognizable part of the research effort, i.e. obtained understanding and insights from problems in practice should provide the basis for new approaches. Based on the preceding considerations we defined the following general research objective: General research objective To support medium- to short term planning problems by optimization-based models and solution techniques such that: i) The applicability and added value of (prototype) systems is recognized and carried by decision makers in practice ii) The proposed approaches contribute to knowledge, understanding and insights from a model building and – solving point of view. In order to link the general objective with the different studies in the thesis, we defined five, recurring research premises, i.e. Professional relevance and applicability (P1), Aggregation (P2), Decomposition and reformulation (P3), Vertical integration at production level (P4), and Horizontal coordination and integration (P5). The overarching premise P1 refers to the first part of the research objective. All other premises refer to the second part of the research objective, i.e. model building and/or – solving. Several planning issues are studied to give substance to the research objective and each study is connected to at least two research premises. Study 1: Planning and scheduling in food processing industry The main question in Chapter 2 was:” How to apply aggregation, decomposition and reformulation in model-based DSS at planning and scheduling level such that the aspect of decision support is recognized and appreciated by decision makers in practice, and which level of aggregation is needed to integrate production planning (i.e. lot-sizing) and scheduling problems in a single model? The study consists of two parts. The first part of the study refers to a case study for the bottleneck packaging facilities of a large dairy company. The goal was to develop, implement and test a pilot DSS which was able to deliver solutions recognized and carried by decision makers at lower decision levels. The latter aim implied that a straight-forward aggregation on time, product type, resources or product stage, was not preferred. The key to develop an approach for regular use was to identify and take advantage of specific problem characteristics. Clustering of numerous jobs, while retaining information at order level, could be exploited in a reformulation approach. The inclusion of (combined) generalized- and variable upper bound constraints gave very tight lower bounds and sparse search trees. An extensive test phase in daily practice showed that the main benefit of the DSS was the initial quality of the generated plans including the time needed to generate these schedules. Hence, decision makers could i) postpone their planning tasks, ii) conveniently cope with rush orders or planned maintenance and iii) easily generate alternatives or revised plans when unforeseen disturbances occur. Moreover, the graphical presentation and overview of the (future) working schedule enabled order acceptance to make use of remaining capacity. The study also showed that planning problems in practice cannot be captured exhaustively by a (simplified) model. Decision makers need the opportunity to modify automatically generated plans manually and use human judgement and experience such that the solution is tuned to the actual situation. Hence, the DSS should not be considered as an optimizer but rather as a tool for generating high quality plans to be used for further analysis. Within this context the various options of a user-friendly, graphical, and fully interactive user interface, were of major importance. Although the case study clearly demonstrates the validity of earlier case based DSS research for current days APS, the proposed approach is hardly a generic solution for a complete vertical integration between lot-sizing and scheduling. If lot-size decisions are strongly affected by the sequence of jobs, production planning and scheduling should be performed simultaneously. As the described case refers to an earlier study and today’s APS do not provide modules for integrated lot-sizing and scheduling, the second part of the study gives an overview of developments in literature regarding lot-sizing and scheduling models and assess their suitability for addressing sequence-dependent setups, non-triangular setups and product decay. The review shows a tendency in which so-called Big Bucket (BB) models are currently proposed for short term time horizons too. However, we argue that segmentation of the planning horizon is a key issue for simultaneous lot-sizing and scheduling. The advantage of BB models may become a major obstacle for i) the effectiveness of simultaneous lot-sizing and scheduling, and ii) addressing specific characteristics in food processing industry. Study 2: Vertical integration of lot-sizing and scheduling in food processing industry Chapter 3 focused on a complete integration of lot-sizing and scheduling decisions in a single model. The main question was:” How to integrate production planning (i.e. lot- sizing) and scheduling problems in a single model, such that common assumptions regarding the triangular setup conditions are relaxed and issues of product decay and limited shelf lives are taken into account?” The literature research in Chapter 2 revealed that the computational advantage of time oriented aggregation in BB models may become a major obstacle in addressing the identified characteristics in FPI. In addition, product decay is primarily associated with the “age” of products and consequently relates to the segmentation of the time- horizon. Therefore, two SB models are developed to demonstrate the impact of non- triangular setups and product decay on the generated solutions. Small scale examples were used to demonstrate how a small change in the balance between inventory - and changeover costs may generate significantly different solutions, especially when the triangular setup conditions do not hold. The developed models are potentially very large formulations and, as expected, hard to solve. Exploratory research was conducted with a Relax-and-Fix (R&F) heuristic. The heuristic is based on a decomposition of the time horizon. Numerical results of small to medium sized problem instances are promising. However, solving real-size problem instances is not possible yet. Study 3: Integrated planning between procurement and production The case study in Chapter 4 focussed on the need for horizontal coordination and integration between the phases procurement and production, which is of particular importance in inter-organizational supply chains. The main question was:” How to model and solve an integrated planning problem between procurement and production, both on a mid-term and short-term planning level, in an inter-organizational supply chain? The research question was projected on an illustrative milk collection problem in practice. The aim was to develop a pilot DSS that lifted decision support for a “weaker” partner in a food supply chain to a higher level, and to illustrate the importance of horizontal integration between the phases procurement and production in an APS framework. Problem analysis revealed that the problem can be classified as an extension of the Periodic Vehicle Routing Problem (PVRP). The problem was decomposed into more tractable sub problems on different hierarchical levels, i.e. the daily (vehicle) routing problem was separated from a medium-term planning problem. On the higher planning level, numerous suppliers were aggregated such that total supply within a cluster met (multiple) vehicle loading capacities. The continuous supply of relatively small amounts from many suppliers had to be balanced with strict delivery conditions at processing level. A model was developed to assign a single (stable) collection rhythm to each cluster such that the total, weighted deviation of desired processing levels on various days in the planning horizon was minimized. The applied aggregation on the higher planning level turned out to be very beneficial for the required disaggregation at the lower planning level. Once supplier farms were geographically grouped into clusters and the aggregated supply within a cluster was assigned to a single collection rhythm with fixed collection days, the (initial) daily routing problem was considerably easier to solve for vehicle schedulers. The computational complexity of the problem was reduced by exploiting application-based properties algorithmically in a specific branch-and-bound scheme, i.e. a customized approach of Special Ordered Sets type 1 (SOS1) This approach made it possible to solve the generated problems exactly for real-size problem instances. The various facilities of a user-friendly and interactive man-machine interface (i.e. an input, planning, simulation and analysing module) turned out to be essential. Decision makers could easily change the data, and the generated plans, in a separate simulation module. However, the impact of any modification was immediately visualised by several (conflicting) indicators in the output screens, both on supply and demand level. Study 4: Mixed Integer (0-1) Fractional Programming in Paper Production Industry The study in Chapter 5 focussed on the impact of technical settings of production units on material flows. The main question was:” How to support decision-makers in practice if crucial properties of end products simultaneously depend on (endogenous) types of raw materials with different chemical or physical properties and (endogenous) technical settings of processing units? The goal of the study was to revise and upgrade an existing, locally used DSS, to a tailored and flexible tool for decision support within the enterprise. The study revealed that the aimed extension towards multi-objective decision support, together with new physical insight for calculating properties of end products due to process operations, had a substantial impact on the optimization module. The proposed solution procedure takes advantage of the problem characteristics and gives rise i) to apply and extend a classical reformulation approach for continuous linear fractional programming (FP) problems to a more general class of mixed integer (binary) FP problems and ii) to exploit the special structure between the original non- linear mixed integer model and the continuous, linear reformulation by applying the concept of Special Ordered Sets type 1 (SOS1). Although Chapter 5 focusses in particular on the reformulation and solution approach, the DSS consists of four main building blocks, i.e. the user interface, a scenario manager, a simulation- and optimization routine. The optimization module provides a powerful tool to find feasible solutions and the best (unexpected) recipes for any available set of raw materials. Moreover, it provides an innovative way of decision support for purchasing (new) pulps on the market, for assigning available pulps to different paper grades, and for attuning available stock levels of raw materials to (changing) production targets for different paper grades. The results of the optimization routine are mainly used to obtain alternative recipes for different paper grades. Usually, these recipes are stored as base scenarios and adapted to daily practice in the simulation module. Main conclusions and future research Based on the studies in the Chapters 2 and 3 we conclude that no generically applicable models and/or solution approaches exist for simultaneous planning and scheduling in processing industries. More industry-specific solutions are needed incorporating specificities of different production environments into those models. The key to develop solvable approaches for contemporary practice may be i) to use knowledge and experience from practice and take advantage of specific characteristics in different problem domains during model construction, and/or ii) to identify and exploit special problem structures for solving the related models. We conclude that surprisingly little research has been devoted to issues of coordination and integration between “procurement” and “production”. The studies in the chapters 4 and 5 confirm that sourcing of (raw) materials flows needs more attention in processing industries, particularly in push-oriented, inter-organizational networks. The valorisation of raw materials can be improved even more if the composition of raw materials is considered too in future planning problems at production level. In the second part of this thesis we focused on extensions for the applicability of Special Ordered Sets type 1 (SOS1), both from an algorithmic (Chapter 4) and modelling (Chapter 5) point of view. We conclude that the concept of SOS1 can extend a classical reformulation approach for continuous fractional programming (FP) problems, to a specific class of mixed integer (0-1) FP problems. Moreover, we conclude that a natural ordering of the variables within the sets is not necessary to make their use worthwhile. A separate (user defined) reference row or weights associated to the variables in the sets might be omitted for an efficient use of SOS1 in commercially available mathematical programming packages. However, this requires further research and extensive computational tests.</p

    (Re)design of Complex Manufacturing Supply Chains

    Get PDF

    Proactive management of uncertainty to improve scheduling robustness in proces industries

    Get PDF
    Dinamisme, capacitat de resposta i flexibilitat són característiques essencials en el desenvolupament de la societat actual. Les noves tendències de globalització i els avenços en tecnologies de la informació i comunicació fan que s'evolucioni en un entorn altament dinàmic i incert. La incertesa present en tot procés esdevé un factor crític a l'hora de prendre decisions, així com un repte altament reconegut en l'àrea d'Enginyeria de Sistemes de Procés (PSE). En el context de programació de les operacions, els models de suport a la decisió proposats fins ara, així com també software comercial de planificació i programació d'operacions avançada, es basen generalment en dades estimades, assumint implícitament que el programa d'operacions s'executarà sense desviacions. La reacció davant els efectes de la incertesa en temps d'execució és una pràctica habitual, però no sempre resulta efectiva o factible. L'alternativa és considerar la incertesa de forma proactiva, és a dir, en el moment de prendre decisions, explotant el coneixement disponible en el propi sistema de modelització.Davant aquesta situació es plantegen les següents preguntes: què s'entén per incertesa? Com es pot considerar la incertesa en el problema de programació d'operacions? Què s'entén per robustesa i flexibilitat d'un programa d'operacions? Com es pot millorar aquesta robustesa? Quins beneficis comporta? Aquesta tesi respon a aquestes preguntes en el marc d'anàlisis operacionals en l'àrea de PSE. La incertesa es considera no de la forma reactiva tradicional, sinó amb el desenvolupament de sistemes proactius de suport a la decisió amb l'objectiu d'identificar programes d'operació robustos que serveixin com a referència pel nivell inferior de control de planta, així com també per altres centres en un entorn de cadenes de subministrament. Aquest treball de recerca estableix les bases per formalitzar el concepte de robustesa d'un programa d'operacions de forma sistemàtica. Segons aquest formalisme, els temps d'operació i les ruptures d'equip són considerats inicialment com a principals fonts d'incertesa presents a nivell de programació de la producció. El problema es modelitza mitjançant programació estocàstica, desenvolupant-se finalment un entorn d'optimització basat en simulació que captura les múltiples fonts d'incertesa, així com també estratègies de programació d'operacions reactiva, de forma proactiva. La metodologia desenvolupada en el context de programació de la producció s'estén posteriorment per incloure les operacions de transport en sistemes de múltiples entitats i incertesa en els temps de distribució. Amb aquesta perspectiva més àmplia del nivell d'operació s'estudia la coordinació de les activitats de producció i transport, fins ara centrada en nivells estratègic o tàctic. L'estudi final considera l'efecte de la incertesa en la demanda en les decisions de programació de la producció a curt termini. El problema s'analitza des del punt de vista de gestió del risc, i s'avaluen diferents mesures per controlar l'eficiència del sistema en un entorn incert.En general, la tesi posa de manifest els avantatges en reconèixer i modelitzar la incertesa, amb la identificació de programes d'operació robustos capaços d'adaptar-se a un ampli rang de situacions possibles, enlloc de programes d'operació òptims per un escenari hipotètic. La metodologia proposada a nivell d'operació es pot considerar com un pas inicial per estendre's a nivells de decisió estratègics i tàctics. Alhora, la visió proactiva del problema permet reduir el buit existent entre la teoria i la pràctica industrial, i resulta en un major coneixement del procés, visibilitat per planificar activitats futures, així com també millora l'efectivitat de les tècniques reactives i de tot el sistema en general, característiques altament desitjables per mantenir-se actiu davant la globalitat, competitivitat i dinàmica que envolten un procés.Dynamism, responsiveness, and flexibility are essential features in the development of the current society. Globalization trends and fast advances in communication and information technologies make all evolve in a highly dynamic and uncertain environment. The uncertainty involved in a process system becomes a critical problem in decision making, as well as a recognized challenge in the area of Process Systems Engineering (PSE). In the context of scheduling, decision-support models developed up to this point, as well as commercial advanced planning and scheduling systems, rely generally on estimated input information, implicitly assuming that a schedule will be executed without deviations. The reaction to the effects of the uncertainty at execution time becomes a common practice, but it is not always effective or even possible. The alternative is to address the uncertainty proactively, i.e., at the time of reasoning, exploiting the available knowledge in the modeling procedure itself. In view of this situation, the following questions arise: what do we understand for uncertainty? How can uncertainty be considered within scheduling modeling systems? What is understood for schedule robustness and flexibility? How can schedule robustness be improved? What are the benefits? This thesis answers these questions in the context of operational analysis in PSE. Uncertainty is managed not from the traditional reactive viewpoint, but with the development of proactive decision-support systems aimed at identifying robust schedules that serve as a useful guidance for the lower control level, as well as for dependent entities in a supply chain environment. A basis to formalize the concept of schedule robustness is established. Based on this formalism, variable operation times and equipment breakdowns are first considered as the main uncertainties in short-term production scheduling. The problem is initially modeled using stochastic programming, and a simulation-based stochastic optimization framework is finally developed, which captures the multiple sources of uncertainty, as well as rescheduling strategies, proactively. The procedure-oriented system developed in the context of production scheduling is next extended to involve transport scheduling in multi-site systems with uncertain travel times. With this broader operational perspective, the coordination of production and transport activities, considered so far mainly in strategic and tactical analysis, is assessed. The final research point focuses on the effect of demands uncertainty in short-term scheduling decisions. The problem is analyzed from a risk management viewpoint, and alternative measures are assessed and compared to control the performance of the system in the uncertain environment.Overall, this research work reveals the advantages of recognizing and modeling uncertainty, with the identification of more robust schedules able to adapt to a wide range of possible situations, rather than optimal schedules for a hypothetical scenario. The management of uncertainty proposed from an operational perspective can be considered as a first step towards its extension to tactical and strategic levels of decision. The proactive perspective of the problem results in a more realistic view of the process system, and it is a promising way to reduce the gap between theory and industrial practices. Besides, it provides valuable insight on the process, visibility for future activities, as well as it improves the efficiency of reactive techniques and of the overall system, all highly desirable features to remain alive in the global, competitive, and dynamic process environment

    ADVANCED PLANNING SYSTEMS (APS) FOR SUPPLY CHAIN PLANNING: A CASE STUDY IN DAIRY INDUSTRY

    Get PDF
    This paper discusses which benefits the use of APS may bring to the S&OP, and the critical factors for the successful implementation. A case study was conducted in a major dairy company in the Brazilian food industry. Positioned in an environment of high market competition and narrow profit margins, the company strives for operational excellence, aimed at inventory reduction and increased service level. This supply chain includes several plants and has recently been through the deployment of an APS to support its S&OP process. The research has identified the main benefits of the APS: greater confidence and accuracy in planning, and better balancing of inventory throughout the supply chain. The deployment project went through specific difficulties that delayed its schedule. The study reinforces the importance of fully support from senior managers and the commitment of the planning staff to meet the challenges of customization and integration of the new system

    Evaluation of sales and operations planning in a process industry

    Get PDF
    Cette thèse porte sur la planification des ventes et des opérations (S±&OP) dans une chaîne d'approvisionnements axée sur la demande. L'objectif de la S±&OP, dans un tel contexte, est de tirer profit de l'alignement de la demande des clients avec la capacité de la chaîne d'approvisionnement par la coordination de la planification des ventes, de la production, de la distribution et de l'approvisionnement. Un tel processus de planification exige une collaboration multifonctionnelle profonde ainsi que l'intégration de la planification. Le but étant d'anticiper l'impact des décisions de vente sur les performances de la chaîne logistique , alors que l'influence de la dynamique des marchés est prise en compte pour les décisions concernant la production, la distribution et l'approvisionnement. La recherche a été menée dans un environnement logistique manufacturier multi-site et multi-produit, avec un approvisionnement et des ventes régis par des contrats ou le marché. Cette thèse examine deux approches de S±&OP et fournit un support à la décision pour l'implantation de ces méthodes dans une chaîne logistique multi-site de fabrication sur commande. Dans cette thèse, une planification traditionnelle des ventes et de la production basée sur la S±feOP et une planification S±fcOP plus avancée de la chaîne logistique sont tout d'abord caractérisées. Dans le système de chaîne logistique manufacturière multi-site, nous définissons la S±&OP traditionnelle comme un système dans lequel la planification des ventes et de la production est effectuée conjointement et centralement, tandis que la planification de la distribution et de l'approvisionnement est effectuée séparément et localement à chaque emplacement. D'autre part, la S±fcOP avancée de la chaîne logistique consiste en la planification des ventes, de la production, de la distribution et de l'approvisionnement d'une chaîne d'approvisionnement effectuée conjointement et centralement. Basés sur cette classification, des modèles de programmation en nombres entiers et des modèles de simulation sur un horizon roulant sont développés, représentant, respectivement, les approches de S±&OP traditionnelle et avancée, et également, une planification découplée traditionnelle, dans laquelle la planification des ventes est effectuée centralement et la planification de la production, la distribution et l'approvisionnement est effectuée séparément et localement par les unités d'affaires. La validation des modèles et l'évaluation pré-implantation sont effectuées à l'aide d'un cas industriel réel utilisant les données d'une compagnie de panneaux de lamelles orientées. Les résultats obtenus démontrent que les deux méthodes de S±feOP (traditionnelle et avancée) offrent une performance significativement supérieure à celle de la planification découplée, avec des bénéfices prévus supérieurs de 3,5% et 4,5%, respectivement. Les résultats sont très sensibles aux conditions de marché. Lorsque les prix du marché descendent ou que la demande augmente, de plus grands bénéfices peuvent être réalisés. Dans le cadre de cette recherche, les décisions de vente impliquent des ventes régies par des contrats et le marché. Les décisions de contrat non optimales affectent non seulement les revenus, mais également la performance manufacturière et logistique et les décisions de contrats d'approvisionnement en matière première. Le grand défi est de concevoir et d'offrir les bonnes politiques de contrat aux bons clients de sorte que la satisfaction des clients soit garantie et que l'attribution de la capacité de la compagnie soit optimisée. Également, il faut choisir les bons contrats des bons fournisseurs, de sorte que les approvisionnements en matière première soient garantis et que les objectifs financiers de la compagnie soient atteints. Dans cette thèse, un modèle coordonné d'aide à la décision pour les contrats e développé afin de fournir une aide à l'intégration de la conception de contrats, de l'attribution de capacité et des décisions de contrats d'approvisionnement pour une chaîne logistique multi-site à trois niveaux. En utilisant la programmation stochastique à deux étapes avec recours, les incertitudes liées à l'environnement et au système sont anticipées et des décisions robustes peuvent être obtenues. Les résultats informatiques montrent que l'approche de modélisation proposée fournit des solutions de contrats plus réalistes et plus robustes, avec une performance prévue supérieure d'environ 12% aux solutions fournies par un modèle déterministe

    Integrating revenue management and sales and operations planning in a Make-To-Stock environment : softwood lumber case study

    Get PDF
    Most research regarding revenue management in manufacturing has considered only a short-term planning horizon, assuming supply and production data exogenously given. Motivated by the case of the Canadian softwood lumber industry, this paper offers additionally a medium-term visibility for firms with limited capacity and faced with seasonal markets. We propose a demand management process for Make-To-Stock environments, integrating sales and operations planning (S&OP) and order promising based on revenue management concepts. Given heterogeneous customers, divergent product structure and multiple sourcing locations in a multi-period context, we first define a multi-level decision framework in order to support medium-term, short-term and real-time sales decisions in a way to maximize profits and to enhance the service level offered to high-priority customers. We further propose a mathematical formulation integrating an S&OP network model in the Canadian softwood lumber industry and an order promising model using nested booking limits. This new formulation allows reviewing previous order promising decisions while respecting sales commitments. A rolling horizon simulation is used to evaluate the performance of the proposed process in various demand scenarios and provides evidence that better performances can be achieved compared to common demand management practices by integrating S&OP and revenue management concepts

    A Review of Production Planning Models: Emerging features and limitations compared to practical implementation

    Get PDF
    In the last few decades, thanks to the interest of industry and academia, production planning (PP) models have shown significant growth. Several structured literature reviews highlighted the evolution of PP and guided the work of scholars providing in-depth reviews of optimization models. Building on these works, the contribution of this paper is an update and detailed analysis of PP optimization models. The present review allows to analyze the development of PP models by considering: i) problem type, ii) modeling approach, iii) development tools, iv) industry-specific solutions. Specifically, to this last point, a proposed industrial solution is compared to emerging features and limitations, which shows a practical evolution of such a system

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications

    A conceptual framework for crop-based agri-food supply chain characterization under uncertainty

    Get PDF
    [EN] Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015Alemany Díaz, MDM.; Esteso, A.; Ortiz Bas, Á.; Hernández Hormazabal, JE.; Fernández, A.; Garrido, A.; Martin, J.... (2021). A conceptual framework for crop-based agri-food supply chain characterization under uncertainty. Studies in Systems, Decision and Control. 280:19-33. https://doi.org/10.1007/978-3-030-51047-3_2S1933280Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manage. 11, 379–384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manage. 12, 177–186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1–20 (2009)Iakovou, E., Vlachos, D., Achillas, C., Anastasiadis, F.: A methodological framework for the design of green supply chains for the agrifood sector. Paper presented at the 2nd international conference on supply chains, Katerini, 5–7 Oct 2012Manzini, R., Accorsi, R.: The new conceptual framework for food supply chain assessment. J. Food Eng. 115, 251–263 (2013)Shukla, M., Jharkharia, S.: Agri-fresh produce supply chain management: a state-of-the-art literature review. Int. J. Oper. Prod. Manage. 33, 114–158 (2013)Lemma, Y., Kitaw, D., Gatew, G.: Loss in perishable food supply chain: an optimization approach literature review. Int. J. Sci. Eng. Res. 5, 302–311 (2014)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47–64 (2014)Van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial Supply Chain Management: Concepts and Applications. FAO (2007)Hernandez, J., Mortimer, M., Patelli, E., Liu, S., Drummond, C., Kehr, E., Calabrese, N., Iannacone, R., Kacprzyk, J., Alemany, M.M.E., Gardner, D.: RUC-APS: enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems. In: 11th International Conference on Industrial Engineering and Industrial Management, Valencia, Spain (2017)Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage Publications, Thousand Oaks (1994)Alemany, M.M.E., Alarcón, F., Lario, F.C., Boj, J.J.: An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Comput. Ind. 62, 519–540 (2011)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76–92 (2016)Zhang, W., Wilhelm, W.E.: OR/MS decision support models for the specialty crops industry: a literature review. Ann. Oper. Res. 190, 131–148 (2011)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of mathematical models for supporting the order promising process under lack of homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Blanco, A.M., Masini, G., Petracci, N., Bandoni, J.A.: Operations management of a packaging plant in the fruit industry. J. Food Eng. 70, 299–307 (2005)Grillo, H., Alemany, M.M.E., Ortiz, A., Fuertes-Miquel, V.S.: Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Appl. Math. Model. 49, 255–278 (2017)Verdouw, C.N., Beulens, A.J.M., Trienekens, J.H., Wolferta, J.: Process modelling in demand-driven supply chains: a reference model for the fruit industry. Comput. Electron. Agric. 73, 174–187 (2010)Amorim, P., Günther, H., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89–101 (2012)Nahmias, S.: Perishable inventory theory: a review. Oper. Res. 30, 680–708 (1982)Mowat, A., Collins, R.: Consumer behavior and fruit quality: supply chain management in an emerging industry. Supply Chain Manage. 5, 45–54 (2000)Kazaz, B., Webster, S.: The impact of yield-dependent trading costs on pricing and production planning under supply uncertainty. M&SOM Manuf. Serv. Oper. Manage. 13, 404–417 (2011)Van der Vorst, J.G.: Effective food supply chains: generating, modelling and evaluating supply chain scenarios (2000)Fuertes-Miquel, V.S., Cuenca, L., Boza, A., Guyon, C., Alemany, M.M.E.: Conceptual framework for the characterization of vegetable breton supply chain sustainability in an uncertain context. In: 12th International Conference on Industrial Engineering and Industrial Management, XXII Congreso de Ingeniería de Organización, Girona, Spain, 12–13 July 2018Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J.: Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012)Hoekstra, S., Romme, J.: Integral Logistic Structures: Developing Customer-Oriented Goods Flow. Industrial Press Inc., New York (1992)Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348–359 (2016)Handayati, Y., Simatupang, T.M., Perdana, T.: Agri-food supply chain coordination: the state-of-the-art and recent developments. Logist. Res. 8, 1–15 (2015)Mintzberg, H.: The Structuring of Organisations. Prentice-Hall, Upper Saddle River (1979)Keuning, D.: Grondslagen Van Het Management. Stenfert Kroese, Houten (1995) (in Dutch)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. Int. J. Prod. Res. (2018)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agr. Sci. 45, 307–328 (1997)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for managing uncertainty in a collaborative agri-food supply chain context. In: IFIP Advances in Information and Communication Technology, vol. 506, pp. 715–724 (2017)Mundi, I., Alemany, M.M.E., Poler, R., Fuertes-Miquel, V.S.: Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. Int. J. Prod. Res. (2019)Grillo, H., Alemany, M.M.E., Ortiz, A., De Baets, B.: Possibilistic compositions and state functions: application to the order promising process for perishables. Int. J. Prod. Res. (2019)Soto-Silva, W.E., Nadal-Roig, E., González-Araya, M.C., Pla-Aragones, L.M.: Operational research models applied to the fresh fruit supply chain. Eur. J. Oper. Res. 251, 345–355 (2016)Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45, 92–118 (2014)Banasik, A., Bloemhof-Ruwaard, J.M., Kanellopoulos, A., Claassen, G.D.H., van der Vorst, J.G.: Multi-criteria decision making approaches for green supply chains: a review. Flex. Serv. Manuf. J. 1–31 (2016)Paam, P., Berretta, R., Heydar, M., Middleton, R.H., García-Flores, R., Juliano, P.: Planning models to optimize the agri-fresh food supply chain for loss minimization: a review. In: Reference Module in Food Science (2016)Soysal, M., Bloemhof-Ruwaard, J.M., Meuwissen, M.P., van der Vorst, J.G.: A review on quantitative models for sustainable food logistics management. Int. J. Food Syst. Dyn. 3, 136–155 (2012
    corecore