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RESUME 

Cette thèse porte sur la planification des ventes et des opérations (S«&OP) dans une chaîne 

d'approvisionnements axée sur la demande. L'objectif de la S«&OP, dans un tel contexte, est 

de tirer profit de l'alignement de la demande des clients avec la capacité de la chaîne 

d'approvisionnement par la coordination de la planification des ventes, de la production, de 

la distribution et de l'approvisionnement. Un tel processus de planification exige une 

collaboration multifonctionnelle profonde ainsi que l'intégration de la planification. Le but 

étant d'anticiper l'impact des décisions de vente sur les performances de la chaîne 

logistique , alors que l'influence de la dynamique des marchés est prise en compte pour les 

décisions concernant la production, la distribution et l'approvisionnement. La recherche a 

été menée dans un environnement logistique manufacturier multi-site et multi-produit, avec 

un approvisionnement et des ventes régis par des contrats ou le marché. Cette thèse 

examine deux approches de S«&OP et fournit un support à la décision pour l'implantation 

de ces méthodes dans une chaîne logistique multi-site de fabrication sur commande. 

Dans cette thèse, une planification traditionnelle des ventes et de la production basée sur la 

S«feOP et une planification S«fcOP plus avancée de la chaîne logistique sont tout d'abord 

caractérisées. Dans le système de chaîne logistique manufacturière multi-site, nous 

définissons la S«&OP traditionnelle comme un système dans lequel la planification des 

ventes et de la production est effectuée conjointement et centralement, tandis que la 

planification de la distribution et de l'approvisionnement est effectuée séparément et 

localement à chaque emplacement. D'autre part, la S«fcOP avancée de la chaîne logistique 

consiste en la planification des ventes, de la production, de la distribution et de 

l'approvisionnement d'une chaîne d'approvisionnement effectuée conjointement et 

centralement. Basés sur cette classification, des modèles de programmation en nombres 

entiers et des modèles de simulation sur un horizon roulant sont développés, représentant, 



respectivement, les approches de S«&OP traditionnelle et avancée, et également, une 

planification découplée traditionnelle, dans laquelle la planification des ventes est effectuée 

centralement et la planification de la production, la distribution et l'approvisionnement est 

effectuée séparément et localement par les unités d'affaires. La validation des modèles et 

l'évaluation pré-implantation sont effectuées à l'aide d'un cas industriel réel utilisant les 

données d'une compagnie de panneaux de lamelles orientées. Les résultats obtenus 

démontrent que les deux méthodes de S«feOP (traditionnelle et avancée) offrent une 

performance significativement supérieure à celle de la planification découplée, avec des 

bénéfices prévus supérieurs de 3,5% et 4,5%, respectivement. Les résultats sont très 

sensibles aux conditions de marché. Lorsque les prix du marché descendent ou que la 

demande augmente, de plus grands bénéfices peuvent être réalisés. 

Dans le cadre de cette recherche, les décisions de vente impliquent des ventes régies par des 

contrats et le marché. Les décisions de contrat non optimales affectent non seulement les 

revenus, mais également la performance manufacturière et logistique et les décisions de 

contrats d'approvisionnement en matière première. Le grand défi est de concevoir et 

d'offrir les bonnes politiques de contrat aux bons clients de sorte que la satisfaction des 

clients soit garantie et que l'attribution de la capacité de la compagnie soit optimisée. 

Également, il faut choisir les bons contrats des bons fournisseurs, de sorte que les 

approvisionnements en matière première soient garantis et que les objectifs financiers de la 

compagnie soient atteints. Dans cette thèse, un modèle coordonné d'aide à la décision pour 

les contrats est développé afin de fournir une aide à l'intégration de la conception de 

contrats, de l'attribution de capacité et des décisions de contrats d'approvisionnement pour 

une chaîne logistique multi-site à trois niveaux. En utilisant la programmation stochastique 

à deux étapes avec recours, les incertitudes liées à l'environnement et au système sont 

anticipées et des décisions robustes peuvent être obtenues. Les résultats informatiques 

montrent que l'approche de modélisation proposée fournit des solutions de contrats plus 

réalistes et plus robustes, avec une performance prévue supérieure d'environ 12% aux 

solutions fournies par un modèle déterministe. 
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ABSTRACT 

This thesis addresses sales and operations planning (S&OP) in a demand-driven supply 

chain. The aim of S«feOP, in this context, is to profitably align customer demand with 

supply chain capabilities through coordinated planning of sales, production, distribution 

and procurement. Such planning process requires profound cross-functional collaboration 

and decision integration, so that sales decisions can be made taking into account their 

anticipated influences on the supply chain performance, while supply chain production, 

sourcing and shipping decisions can be made taking into account the anticipated market 

dynamics. The research is carried out in a multi-site manufacturing supply chain 

environment in a process industry, where the manufacturer produces different products, 

serves many contract and non-contract customers, and purchases raw materials from many 

suppliers on contract and non contract bases. The objectives of this thesis are to examine 

two different StfcOP approaches and provide decision-support for their implementations in 

this multi-site make-to-order manufacturing supply chain. 

In this thesis, traditional sales and production planning based S«fcOP and more advanced 

supply chain based S&OP are first classified. In the multi-site manufacturing supply chain 

context, we define that the traditional StfcOP is the one where sales and production planning 

is carried out jointly and centrally while the distribution and procurement planning is 

performed separately and locally at each site; the supply chain based StfcOP, on the other 

hand, is the one where the supply chain planning of sales, production, distribution and 

procurement is carried out jointly and centrally. Based on this classification, mixed integer 

programming (MIP) models as well as rolling horizon simulation models are developed 

representing, respectively, the two S&OP approaches as well as a traditional decoupled 

planning approach, in which sales planning is carried out centrally while production, 

distribution, and procurement are planned separately and locally. Model validations and 

pre-implementation evaluations are carried out in a real industrial case using field data from 
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an Oriented Strand Board company. Numerical results show that both S&OP approaches 

performs significantly better than the decoupled planning approach, with expected 3.5% 

and 4.5% profit improvements, respectively. The results are very sensitive to market 

conditions. As market prices decrease or demand increases, greater benefits can be 

achieved. 

In this research, sales decisions include the decisions for both contract and non-contract 

(spot) sales. Sub-optimal contract decisions not only affect the contract and spot sales, 

revenues, but also the production and logistic performances, as well as the contract 

decisions and performances of the raw material supply. The real challenge is to design and 

offer the right contract policies to the right customers so that customer satisfaction can be 

guaranteed, company's capacity allocations can be optimized, and select the right contracts 

from the right suppliers, so that raw material supplies can be guaranteed, and company's 

financial objectives can be reached. In this thesis, a coordinated contract decision model is 

developed to provide decision support for the manufacturer to make integrated contract 

design, allocation and selection decisions in a multi-site three-tier supply chain. Using a 

two-stage stochastic programming with recourse formulation, different environmental and 

system uncertainties are anticipated and robust decisions are obtained. Computational 

results show that the proposed modelling approach provides more realistic and robust 

contract solutions, with expected 12% performance improvement over the solutions 

provided by a deterministic model. 
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Chapter I 

Introduction 

In a manufacturing system, demand and supply are typically managed separately by 

different functional units. Demand is managed by the sales department where sales 

planning is carried out periodically through demand forecast. The supply, on the other hand 

is managed by production that produces products based on the sales plan. Traditionally, the 

decision makers in these two functions make their decisions separately with little 

coordination causing supply either to significantly exceed the demand with excessive 

inventories, or deficient to satisfy the demand resulting in backlogs, or having excessive 

inventory for some products while backlogs in others. The problems associated with this 

unbalanced demand and supply were illustrated by Wallace (2004), which indicated that for 

a business to be strategically competitive and operationally efficient, neither of these cases 

are desirable. Another underlying issue caused by the decoupled sales and production 

planning, in addition to the demand-supply volume unbalancing, is the lack of abilities of 

matching demand with supply capabilities to maximize the values of the supply recourses. 

Over the last two decades, the importance of linking the sales and operation functions, the 

potential values of coordinating sales and operations decisions, and the mechanism to 

achieve such linkage and coordination have been explored by many practitioners. Sales and 

Operations Planning was proposed to provide a practical mechanism for coordinating the 

two functions and decisions. 

1.1 Motivation 

Traditionally, S&OP was developed as a management planning and control process, 

through periodic (monthly) planning, reviewing, and reconciliation, to coordinate sales and 

production decisions in supporting annual business planning process. In this process, sales 
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Chapter I. Introduction 

planning and production planning are performed separately and sequentially. The 

coordination is carried out through management steered S&OP meeting where plan 

conflicts and feasibility issues are evaluated against material, labour, finance and capacity 

resource constraints, resulting in a set of integrated sales and production plans. 

Faced with increasingly competitive markets in a dynamic economic environment, more 

and more organizations are shifting their business views towards supply chain management 

(SCM), seeking additional cost reductions and value creation opportunities through supply 

chain coordination and collaboration. In a manufacturing organization, supply chain 

consists of distributed functional units of sales, production, distribution and procurement 

and SCM is the tasks of integrating these functional units along the supply chain, managing 

and coordinating the flows of goods, services, information and finance to improve the 

business performance and competitiveness of the organization (Stadtler and Kilger 2005). 

As supply chain concept and supply chain management evolve, there is increasing trend of 

applying S&OP into the supply chain environment to coordinate supply chain value 

creation activities (Croxton et al. 2002, Cecere et al. 2006, and Cecere and Hofrnan 2008). 

With the recent development of demand-driven supply chain philosophy, organisations 

have realized that to achieve performance competitiveness, they must improve their 

decision making system to be not only more responsive to customer demand, but also 

proactively to shape demand towards more profitable business. In this context, S&OP 

process should be performed instead of merely matching demand forecast with the capacity 

of the supply chain, but determining the right plans for sales, production, distribution and 

procurement to profitably align customers' demand with the capabilities of the supply chain 

(Cecere et al. 2006). One of the challenges in this demand-driven supply chain S&OP is to 

make the right sales decisions. Sub-optimal sales decisions not only affect the customer 

satisfaction but also have substantial impacts on the supply chain performances, system 

feasibilities, and resource utilization efficiencies. This decision making process, thus, will 

require a greater level of supply chain collaboration to make decisions jointly allowing 

sales decisions being made taking into account their anticipated impacts on the supply 

chain performances while the supply chain planning is carried out taking into account the 
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anticipated market dynamics. Nevertheless, publications on such integrated planning have 

not been found to date. 

Traditional S&OP process relies heavily on spreadsheet-based software packages. Other 

software systems used by many companies include Manufacturing Resource Planning 

(MRPII) and Enterprise Resource Planning (ERP) systems. However, MRPII modules 

provide little support to the S&OP process as they are mainly focused on manufacturing 

process assuming infinite capacity. Rough-cut capacity planning (RCCP) has to be 

performed using RCCP module in ERP systems or spreadsheet based software and 

planner's experiences (Ross 2004). ERP systems were originally developed as enterprise-

wide information systems. Despite their excellent functionalities for recording, reporting 

and retrieving business transaction information with enterprise-wide visibility and 

accessibility, they provide little decision support (Ross 2004). More recently, Advanced 

Planning Systems (APS) modules and S&OP solutions were developed with embedded 

optimization formulations and mathematical algorithms, to support supply chain planning 

and S&OP process (Stadtler and Kilger 2005, Cecere et al. 2006). However, the APS 

modules found in many commercial APS systems support mainly the distinct planning 

tasks in each of the supply chain functions. Integrated planning is largely limited to the 

integrated production and distribution planning to minimize their total cost (Meyr, et al. 

2005). The S&OP solutions, on the other hand, support mainly the individual demand and 

supply planning as well as reviewing and reconciliation processes. They offer little support 

to the cross-functional decision integration (Tohamy and McNeill 2008, Viswanathan 

2009). 

Although the body of publications on S&OP is abundant, the academic contributions on 

S&OP using modeling approaches are scarce. Until now, publications on S&OP have 

mainly focused on its processes, implementation procedures, and post-implementation 

evaluations through case studies and benchmark analysis. Earlier efforts on S&OP 

modeling have been limited to aggregated production planning models determining the 

production, inventory/backlog, and workforce levels for a set of demand forecasts to 

minimize production cost (Olhager et al. 2001, Genin et al. 2005). Related studies are 



Chapter I. Introduction 

found on the integrated marketing and manufacturing modeling where integrated promotion 

and production planning is examined (Lee and Kim 1993, Sogomonian and Tang 1993, Pal 

et al. 2007). 

As organizations are moving increasingly towards supply chain management, 

implementing S&OP and seeking for supply chain performance improvements, it is 

important to carry out pre-implementation evaluations and understand the value creation 

opportunities for the integrated S&OP. Due to the extended decision scope and complexity 

of the cross-functional decision integration, there is also an emerging need for decision 

support systems to assist organizations in the supply chain S&OP process. Motivated by 

these emerging needs and challenges in the integrated supply chain decision-making 

process, the objectives of this thesis are threefold, (1) to develop the methodologies and 

carry out quantitative evaluations for integrated S&OP, (2) to provide insightful analysis 

illustrating the value creation opportunities of integrated S&OP, and (3) to use advanced 

modeling techniques providing decision support for integrated S&OP. 

1.2 Industrial case 

The research is conducted in a multi-site make-to-order (MTO) manufacturing supply chain 

system, specifically, in a real case of a large Oriented Strand Board (OSB) company in 

Quebec, Canada. The methodologies used and the models developed in this thesis, 

however, may be applied to other process industries, including pulp and paper, processed 

food, and aluminium industries, etc. In the following paragraphs, we present first the OSB 

industry followed by the general descriptions of the studying case. 

The OSB industry is an important sector of the wood based panel industry in North 

America. Entering the structural panel market in the early 1980s, OSB has experienced 

exceptional growth in new capacity, shipments, as well as exports, and has virtually 

replaced other structural panels, such as plywood, in the new residential construction 

market in North America. OSB is a structural panel product mainly used as building 

material for wall, roof, and floor sheathings as well as for I-joists. It is made of wood 

strands mixed with synthetic resins and wax compressed under high temperature and 
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pressure in a hot press. The production is carried out typically on a highly automated 

production line, either in batch or in a continuous manner, depending on the type of the hot 

press used. The production line is capable of making a wide range of OSB products 

including specialty and commodity products with different physical and mechanical 

properties. The products are sold to different customer segments, mainly manufacturing 

customers, producing houses or house components, distributors, wholesalers, and retailers, 

on contract and non-contract bases, in different geographical locations across North 

America. The demand is highly seasonal with strong correlations to the activities in the 

residential building industry. 

On the supply side, the raw material is governed by the supply markets of three raw 

materials. Wood material is supplied in the form of wood logs from various sources. It 

includes publicly owned forests, through an agreement, called, in the jurisdiction of 

Quebec, "Contrat d'Approvisionnement et d'Aménagement Forestier" (CAAF), private 

timberland owners through private contracts, and spot market. The supplies from the forests 

(both publicly and privately owned) are affected by long lead-time and seasonality, while 

that from the spot market generally have shorter lead-time but are subject to availability 

uncertainties. The resin and wax are all supplied by private companies, on contract and 

non-contract basis, with short lead-times. 

The case study in this thesis focuses on an OSB manufacturing supply chain. The supply 

chain consists of an alternative multi-site manufacturer, several customers, suppliers and 

third-party distribution centres (DCs). The manufacturer produces many specialty and 

commodity products serving different contract and non contract customers across different 

market regions in North .America. Both contract and spot market demands are highly 

seasonal. Each manufacturing site has a single capacitated production line producing 

different products on an MTO basis with small on-site inventory capacity. The production 

of each product consumes different raw materials with different raw material consumption 

ratios defined by a product recipe. The manufacturer purchases these raw materials from 

different contract and non-contract suppliers. Suppliers have different replenishment lead-

times for raw materials. The raw material inventory is managed internally complying with 
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safety stock policies. The inbound raw material shipments are carried out by the suppliers, 

while the outbound shipments of the products from the manufacturing sites to the 

customers are carried out by third party logistic (3 PL) providers, either directly or 

indirectly via a DC. The manufacturer has an access to several third party DCs which are 

assumed to have unlimited capacity. 

Traditionally, the planning of sales, production, distribution and procurement is made 

separately with different objectives. Sales decisions tend to focus on sales volumes and 

revenues while cost reduction is considered to be the responsibility of other functions such 

as, production, distribution, and procurement, respectively. When products are made with 

different efficiencies and costs and sold to different market locations at different prices, the 

non-collaborative planning often results in sub-optimal decisions, as the highest revenue or 

lowest local cost may not guarantee the best overall economic return. The supply chain 

planning problem is further complicated by the contract/spot options, capacity limitations, 

and various uncertainties in the economy, market, supply, and system reliability. 

1.3 Research scope and methodologies 

With the problems faced by the OSB companies in their traditional decision making 

process, and the opportunities of the integrated supply chain S&OP, in this thesis, we first 

tackle the problem of evaluating quantitatively the value of integrated S&OP in a multi-site 

make-to-order (MTO) manufacturing supply chain. We pursue the problem using a 

modeling approach. The models developed may serve to provide decision support for 

general S&OP implementations and practices. Note that contract sales are an important part 

of sales decisions for many manufacturing companies, and sub-optimal contract decisions 

may have substantial impacts on the performance of the supply chain. Thus, a coordinated 

contract decision model is developed later on to support such decisions. 

Indeed, S&OP process covers a broad array of business functionalities in the supply chain 

decision-making process, from sales and marketing to manufacturing, logistics, supplies; 

from financial budgeting to cash flows, and from strategic planning to operational planning. 
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According to the definition of S&OP provided by APICS Dictionary (2002), three 

fundamental elements can be identified: 

i. S&OP is a cross functional integrated tactical planning process, that integrates sales, 

marketing, finance and supply chain of manufacturing, distribution, procurement, 

into an integrated set of plans; 

ii. S&OP is a routine on-going planning, reviewing and reconciliation process that 

covers an intermediate term of 1 to 2 years; and 

iii. As a tactical planning process, S&OP facilitates the hierarchical coordination 

coordinating the business strategic plan with the detailed operational plan. 

This thesis will focus on the first two elements of S&OP, the supply chain cross-functional 

planning process. As regards to the hierarchical functionalities of S&OP, coordinating 

strategic and operational planning represents, by itself, a large field of research and it 

deserves, therefore, to be treated as such separately. 

Based on the different S&OP practices with respect to the level of coordination, as 

documented in several cases (Hardison and Bettini 2002, Wood and Boyer 2002, Wallace 

2004, Elbaum 2004, Elbaum 2005, Reyman 2005, Cecere et al. 2006), two classes of 

S&OP will be evaluated, one being the fully integrated multi-site supply-chain-based 

S&OP (SC-S&OP), and the other being the partially integrated multi-site sales-production 

planning based S&OP (SP-S&OP). In the SC-S&OP, integrated cross functional planning 

of sales, production, distribution and procurement is carried out centrally by a central 

decision-making unit. The plans are then passed to each manufacturing site for the detailed 

operational planning and execution. In the SP-S&OP approach, sales and production 

planning is carried out jointly and centrally by the central decision-making unit. The sales 

and production decisions are then passed to each manufacturing site where distribution and 

procurement planning is carried out locally. 

The initial evaluation is carried out in a deterministic environment where demand and 

market prices are dynamic with contract decisions being predetermined. Three sets of 

mixed integer programming (MIP) models are developed, respectively, representing the 
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SC-S&OP and SP-S&OP approaches as well as the traditional decoupled planning (DP) 

approach where the sales planning is carried out centrally while the production, distribution 

and procurement planning is carried out separately and locally at each site. The evaluations 

of SC-S&OP and SP-S&OP approaches are carried out against the traditional DP approach 

using the three sets of models. 

Given that S&OP is a routine periodic planning process, a more comprehensive evaluation 

method is developed in which rolling horizon planning simulation is introduced. In this 

method, three sets of rolling horizon simulation models are developed representing, 

respectively, the SC-S&OP, SP-S&OP, and DP planning approaches. The demand of the 

current period is assumed to be known with certainty in advance while the future demand is 

probabilistic and is forecasted subject to forecast errors, which augment with time. Again, 

the market price is dynamic and contract decisions are predetermined. 

For a capacitated make-to-order manufacturing system, optimal contract decisions involve 

offering the right contract policies to the right customers and selecting the right contracts 

from the right suppliers, so that customer satisfaction is guaranteed, manufacturer's 

capacity allocation is optimised, raw material supplies are secured, and the organization's 

financial performance is optimised. In this context, the multi-site three-tier supply chain 

contract decision model is developed. Since during the contract duration term, many 

uncertain events may happen related to the economic conditions, market prices, customer 

demand, supply availabilities, and system reliability, the model is formulated as a scenario 

based two-stage stochastic program. 

The thesis is organized as follows. In Chapter 2, a comprehensive literature review is 

presented, which covers broad areas of research relevant to this thesis. Chapter 3 provides 

the research on the initial S&OP evaluations in the deterministic environment which forms 

the first article entitled "The value of sales and operations planning in Oriented Strand 

Board industry with Make-to-Order manufacturing system: Cross functional integration 

under deterministic demand and spot market recourse ". Chapter 4 addresses the more 

comprehensive S&OP evaluation method using rolling horizon simulation models. This 

research forms our second article entitled "Simulation and performance evaluation of 
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partially and fully integrated sales and operations planning ". Chapter 5 focuses on 

contract decisions in S&OP where coordinated contract design, allocation and selection 

decision model is developed. This research forms our third article entitled "A stochastic 

programming approach for coordinated contract decisions in a make-to-order 

manufacturing supply chain ". The concluding remarks are highlighted in Chapter 6 with 

future research opportunities being provided in Chapter 7. Figure 1 presents graphically an 

overview of the scope and contributions of this thesis. 
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1.4 Contributions and limitations 

As S&OP is moving towards demand-driven supply chain coordination and integration, 

optimisation based technology will inevitably play an increasingly important role to the 

success of the deployment of S&OP. This thesis, by applying the concept, knowledge and 

techniques from operations research to integrated supply chain S&OP, made distinct 

contributions in two broad areas, pre-implementation evaluation and decision support, as 

shown in Figure 1. The specific contributions are highlighted in the following sections. 

1.4.1 Mathematical representation of S&OP 

This contribution focuses on the evaluation of the values of cross-functional integration in 

the supply chain S&OP. Based on the different S&OP approaches defined in Section 1.3, 

this thesis proposed and developed mathematical representation of S&OP for both SC-

S&OP and SP-S&OP in a real industrial supply chain environment. Two sets of MIP based 

optimisation models are developed representing the multi-site SC-S&OP and SP-S&OP 

approaches assuming perfect integration can be reached within their defined scopes. In 

order to provide the benchmark evaluation, similar modelling approach is carried out for 

the traditional decoupled planning (DP) approach where a set of four MIP based sub­

models are developed representing the decoupled planning of sales, production, 

distribution, and procurement, respectively. Sales decisions are introduced as decision 

variables so that optimal sales decisions can be derived from each of the planning 

approaches. This innovative pre-implementation evaluation methodology allows different 

planning approaches being evaluated, under the same business environment, at their 

optimal performance platform with unbiased evaluation results. Through the evaluation, it 

is indicated that both SP-S&OP and SC-S&OP approaches can achieve performance 

improvements comparing to the decoupled planning approach, with expected 1% and 2% 

profit improvements, respectively. The results are very sensitive to market conditions. As 

demand increases or market prices reduce, greater benefits can be obtained. SC-S&OP 

provides the best trade-off decisions among revenue, supply chain cost, profitability, and 

efficiencies. It is found that solutions that provide the lowest supply chain cost may not 

necessarily yield the highest profit. Some solutions that increase supply chain cost slightly 
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may increase revenue significantly and result in greater profitability. Similarly, solutions 

that generate the highest revenue may not necessarily provide the highest profit. Some 

solutions may reduce the sales revenue slightly but reduce the supply chain total cost 

significantly and yield an increased net profit. The models developed may be used as 

decision-support tools for organizations using different planning approaches. 

1.4.2 Comprehensive evaluation of S&OP through simulation 

Since S&OP is a periodic planning process, this contribution focuses on the development of 

simulation models in a real industrial supply chain environment to simulate and evaluate 

the performances of the S&OP process. In this regard, three sets of rolling horizon 

simulation models are developed representing, respectively, the SC-S&OP, SP-S&OP, and 

DP approaches. This contribution is important in several aspects. First of all, traditional 

applications of rolling horizon simulation have mainly focused on dynamic lot sizing, 

scheduling, and more recently on partially integrated production-distribution systems. This 

thesis involves a real multi-site industrial supply chain with both fully integrated supply 

chain planning, such as SC-S&OP as well as multi-stage supply chain planning, such as 

SP-S&OP and DP. Secondly, the real supply chain issue caused by raw material 

replenishment lead-time on the solution feasibilities of rolling horizon simulation is 

addressed. Thirdly, while this methodology provides us with a more realistic platform for 

the evaluation of three different planning approaches, it also allows us to cross examine and 

identify the weakness of the MIP based deterministic models. Using the rolling horizon 

simulation models, the results show that greater benefits can be obtained by SP-S&OP and 

SC-S&OP models in the rolling horizon environment, with potential 3.5% and 4.5% profit 

improvements, respectively, over the decoupled planning model. The impacts of demand 

uncertainties and forecast errors on the performances of the different planning approaches 

are also examined. The results indicate that the forecast biases affect not only the 

performances of the models, but also the stated benefits of the SC-S&OP and SP-S&OP 

models, while forecast deviations have insignificant effect, as shown in Chapter 4. 

Similarly to the MIP models discussed earlier, these simulation models may be used as 

decision-support tools to support organizations with different planning approaches. With 
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their inherited ability of coping with demand uncertainties, different scenarios may be 

tested. These models may also be used to test other parameter uncertainties to obtain 

important insights. 

1.4.3 Decision support for coordinated supply chain contract problems 

In many manufacturing companies, sales decisions involve both contract and non-contract 

sales. Sub-optimal contract decisions not only affect contract and nonTcontract sales 

revenues, but also impact the production and logistic performances, as well as the contract 

decisions and performance of the raw material supply. The real challenge is to design and 

offer the right contract policies to the right customers and select the right contracts from the 

right suppliers, so that customer satisfaction is guaranteed, capacity allocation is optimized, 

raw material supplies are secured, while the company's financial performance is optimized. 

Until present time, most of supply chain contract design problems are tackled using agent-

based approach focusing on a contract between a single buyer and a supplier. When a 

manufacturing company serves several customer-product-locations competing for the 

limited capacity resource, such as experienced in our case, contract decisions becomes 

much more complex. One of the difficulties of addressing the contract decisions in this case 

is the ability to understand the possible reactions of the customers to the contract(s) offered. 

Another limitation with the existing contract analysis and design models is that most of the 

models are developed based on deterministic assumptions. 

This thesis presents a coordinated contract decision model that integrates the contract 

design, allocation, and selection decisions from the manufacturing company point of view 

in a multi-site three-tier supply chain system. In the modeling, instead of anticipating 

possible customer reactions to the contract offered based on a single cost factor, like what 

has been assumed in most of the contract analysis and design problems, we addressed the 

customer-contract reactions as a probabilistic discrete choice problem. In this context, 

whether or not the customer will choose a contract offered is a probabilistic event, 

depending on the economic evaluation of the customer, as well as his perceived qualities of 

the products and services, and socio-economic considerations. At the time contract 

decisions are made and contracts are signed, many uncertain events may happen, during the 
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contract duration term, related to economic conditions, market prices, customer demand, 

supply availability and system reliability. In order to improve the robustness of the 

decisions, a scenario based two-state stochastic programming formulation is developed so 

that various environmental and system uncertainties can be anticipated. The computational 

results show that the proposed model provides more robust and realistic contract solutions, 

with expected 12% performance improvement over the solutions provided by a 

deterministic model. 

1.4.4 Domain knowledge contributions to the OSB industry 

The OSB industry is an important sector of the wood based panel industry in North 

America. Since entering the structural panel market in the early 1980s, it has experienced 

exceptional growth and has become a significant player in the Canadian economy. Despite 

the current economic downturn experienced in the forest products industry, it is expected 

that the OSB industry will continue to develop and grow through improved products, 

manufacturing capacities and technological innovations. 

On the other hand, with the rapid advancement of supply chain management, S&OP 

process and optimization based decision-making technologies, applications and academic 

supports have been found for many companies in different industries, such as sawmill, pulp 

and paper, steel, automobile, and airline, etc. Few contributions have been found supporting 

the OSB industry. This thesis provides a distinct contribution for the OSB industry. 

In this thesis, a detailed case study is carried out in collaboration with a large OSB 

manufacturing company. In order to investigate and evaluate the value creation 

opportunities of supply chain S&OP process, current operational and decision making 

process is examined through interview with the decision makers and planners on functional 

basis from sales, to production, shipping, and raw material procurement. This current 

decision making process is mapped to the traditional decoupled planning approach and is 

mathematically formulated to the decoupled planning (DP) model. While this domain 

knowledge presents a distinct contribution by itself, it also contributes significantly to the 
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process and modeling developments of the partially and fully integrated supply chain 

S&OP. 

Due to the large scale of the problem covering different functions of sales, production, 

distribution, and raw material procurement, one of the challenges face in the modeling and 

solving process is the data collection and transformation, from the available information 

and raw data to a unified data that are accessible and usable. Extended data analysis is 

carried out to provide the right data for the model. A relational database is developed to 

host the data and facilitate the automatic data input and solution output for the models. This 

underlying work forms a unique contribution which is presented in greater details in 

Chapter 3. 

1.4.5 Limitations of the thesis 

As it was explained earlier, S&OP process consists of a broad array of fundamental 

elements in the supply chain decision making process. This thesis, however, is limited to 

the cross-functional coordination and integration of the supply chain S&OP. Its hierarchical 

functionalities of coordinating the operational planning with strategic planning in a supply 

chain context, which represent a large field of research, by themselves, remain under 

developed. Recent publications on S&OP have also identified the new trend of 

development from the traditional S&OP moving towards the new concept of "integrated 

business planning", coordinating not only the cross-functional demand and supply 

planning, but also the strategic financial and downstream operational planning (Tohamy 

and McNeill 2008, Viswanathan 2009). This new movement presents many important and 

challenging opportunities for the future research development. 

With regard to the cross-functional coordination and integration of the supply chain S&OP, 

this thesis is limited to the integration of sales decisions with the supply chain of 

production, distribution and procurement decisions. Marketing decisions on promotion 

strategies are not included in the integrated planning process, as in our case, there is no 

marketing function. Since marketing promotion and pricing decisions are critical and 

challenging parts of the decisions in many industries, integrated marketing and supply 
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chain planning remain as another important research opportunity for the research 

community. Furthermore, this thesis has focused on profit maximization with the given 

supply chain capabilities and capacity constraints, assuming unconstrained budget and cash 

flow availabilities. In the cases where supply chain imposes financial constraints, financial 

planning and budget allocation decisions must be included in the formulation. 

Concerning the implementations of the models developed in this thesis, although they are 

developed for multi-site manufacturing supply chain, numerical validations and evaluations 

are limited to a single mill manufacturing supply chain. As the models are applied to multi-

site environment, model solvability may impose a real problem owing to the large problem 

sizes, which require further investigation. 

Lastly, this thesis has focused on MTO system where the production is carried out based on 

the accepted demand with limited on site inventory capacity. It is possible to apply these 

models to make-to-stock (MTS) environment, particularly the fully integrated SC-S&OP 

and coordinated contract decision models, where the inventory, inventory allocation among 

different DCs, and the associated distribution decisions can be made jointly. For the SP-

S&OP and DP models, since the DCs are formulated as transhipment centres only, some 

modifications would be required in order to properly address the inventory, inventory 

allocation, and distribution issues of the MTS system. 

1.5 Conclusions 

In this Chapter, we have provided a general introduction for the thesis. We started by 

presenting the motivations for the thesis, in which the emerging needs for the successful 

S&OP implementations and practices are highlighted. We then introduced the OSB 

industrial case which set the business environment for development of this thesis. The 

scope of the thesis and the methodologies employed are defined in the third section 

followed by the contributions and limitations of this research summarised in the fourth 

section. 
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Literature Review 

In this Chapter, we first review the literature on S&OP to understand the characteristics, 

functionalities, and works that have been carried out to date. In order to address adequately 

the integrated supply chain S&OP, we extend the literature review to the general topics of 

coordinated and integrated planning to identify the opportunities of applying operations 

research techniques in S&OP modeling. We pursue with a literature study on rolling 

horizon planning approaches to investigate the opportunities of modeling S&OP process in 

a more realistic business environment where demand is non-deterministic and forecast is 

subject to forecast errors. In order to support contract decision modeling, the literature 

addressing supply chain contract decisions is reviewed. Last but not least, recent work 

regarding modeling techniques under uncertainties and solution robustness is studied. 

2.1 Sales and Operations Planning 
The concept of S&OP was originally found in the articles concerning MRPII, where some 

authors used it interchangeably with aggregated production planning (APP) (Olhager et al. 

2001). Since then, S&OP has experienced serious developments. Traditional S&OP 

focuses, more or less, on two basic issues, sales planning (based on forecasted demand) and 

production planning, which determines the capacity requirements, inventory level and/or 

backlog level (Ling and Goddard 1988, Olhager et al. 2001, Wallace 2004). This sales-

production planning based S&OP (SP-S&OP) is still adopted practically by many 

researchers and practitioners today. 

The linkage between the sales and operations functions as well as its importance in 

organizational performance was addressed by Wahlers and Cox (1994). They described that 
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the linkage between the sales and operations functions can be established by competitive 

factors and performance measures. The goal of joining sales and production plans is to 

balance the demand and production capacity. In order to achieve this goal, there are two 

types of planning decisions, one that tries to modify demand to match the production 

constraints (also called the "aggressive" approach), and the other that modifies supply to 

match the demand (also called the "reactive" approach) (Krajewski and Ritzman, 1996). 

Olhager et al. (2001) discussed the "reactive" S&OP where supply capabilities are 

modified to match the demand. To this end, the authors regarded S&OP as long-term 

planning strategies for production in relation to sales, inventory and/or backlogs. They also 

established the connections and interactions of S&OP with the long-term capacity 

management strategies. 

In contrast, other authors considered S&OP as a tactical planning process. These authors 

defined S&OP as a periodic planning process at the tactical level that vertically links the 

long-term strategic and business plans with the short-term operational plans, while 

horizontally linking demand with supply capabilities, where the supply capabilities mainly 

refer to the production and inventory capabilities (Ling and Goddard 1988, Wallace 2004). 

In 2002, the Association for Operations Management, also known as American Production 

and Inventory Control Society (APICS), generalized the definition of S&OP as follows: 

"Sales and operations planning is the process with which we bring together all 

the plans for the business (customer, sales, marketing, development, 

manufacturing, sourcing, and financial) into one integrated set of plans. It is 

done at least once a month and is reviewed by management at an aggregate 

(product family) level. 

The process must reconcile all supply, demand, and new product plans at both 

the detail and aggregate level and tie to the business plan. It is a definitive 

statement of what the company plans to do for the near to intermediate term 

covering a horizon sufficient to plan resources and support the annual business 

planning process. Executed properly, the sales and operations planning process 
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links the strategic plan for the business with execution and performance review 

measures for continuous improvement. " (APICS dictionary 2002, Ling 2002). 

The S&OP process was studied by several authors (Ling and Goddard 1988, Raeker 2002, 

Taunton 2002, Lapide 2004, Wallace 2004, Bower 2005). Generally, the process consists of 

five steps as shown in Figure 2, where demand (or initial sales) planning and supply 

planning are performed separately and sequentially. Coordination and integration are 

carried out through management steered S&OP meetings where planning issues and 

conflicts are reviewed and reconciled, resulting in a set of integrated sales and operations 

plans. Note that the term "reconcile", means to bring to a state free of conflicts, 

inconsistencies or differences, based on Merriam-Webster dictionary. Thus, according to 

the S&OP definition, three fundamental elements of S&OP can be identified. Firstly, 

S&OP is a cross functional integrated tactical planning process, integrating customer, sales, 

marketing, development, manufacturing, sourcing, and finance into an integrated set of 

plans. Secondly, it is a routine on-going planning, reviewing and reconciliation process 

covering an intermediate term planning horizon of 1 to 2 years. Thirdly, it facilitates the 

hierarchical coordination with the detailed operational planning to support strategic and 

business planning. 
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Figure 2. The S&OP process 
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Recent studies present the trend of applying S&OP to the SCM context to coordinate 

supply chain value creation activities. Croxton et al. (2002) discussed, conceptually, the 

functionality of S&OP in supply chain environment, in which S&OP is regarded as a 

synchronization mechanism matching demand forecast with supply chain capabilities 

through the coordination of marketing, manufacturing, purchasing, logistics and financing 

decisions and activities (Croxton et al. 2002). Cecere et al. (2006) extended the idea 

towards the demand-driven supply chain concept and suggested that S&OP should 

profitably align the customers' demand with supply according to the defined business 

strategy. The plans should reflect supply chain constraints of moving, making, and buying 

capabilities of the company, and these constraints should be linked with the account 

strategies for demand shaping and product allocation strategies. This planning process, 

needless to say, will require a greater level of supply chain collaboration to make integrated 

decisions allowing sales decisions being made taking into account their anticipated impacts 

on the supply chain performances while the supply chain planning is carried out taking into 

account the anticipated market dynamics. 

Traditional S&OP process relies mainly on spreadsheet-based software packages. Taunton 

(2002) reviewed this S&OP process and implementation methodologies and identified that 

the lack of technology support is one of the issues limiting the potential performances of 

S&OP. Despite the fact that ERP and supply chain systems have evolved rapidly to enable 

business process deployment, the basic process and tools that support S&OP have remained 

largely unchanged. Among many other reasons, ERP systems are known to be developed 

originally as enterprise-wide information systems, based on a common database and 

modular software design for recording, reporting and retrieving transactional information. 

They are excellent for providing the cross enterprise visibility, accessibility and consistency 

for what has happened, but unfortunately, insufficient to provide decision support (Ross 

2004). More recently, ERP providers have started developing and implementing Advanced 

Planning Systems (APS) modules, as ERP add-ons, with embedded optimization 

formulations and mathematical algorithms, to support supply chain planning (Stadtler and 

Kilger 2005). Typical APS modules found in commercial APS systems include mid-term 

and short-term demand, production, distribution, purchasing, and material requirements 

22 



Chapter II. Literature Review 

planning modules to support their distinct planning tasks. Integrated planning tasks are 

possible at mid-term planning level through master planning module. However, the integral 

functionality is largely limited to the integrated production and distribution planning (Meyr, 

et al. 2005). Many ERP providers also started developing S&OP solutions, as add-ons to 

provide technology support for the S&OP deployment (Cecere, et al. 2006). Tohamy and 

McNeill (2008) examined the functionalities of S&OP solutions offered by 16 vendors in a 

recent survey. The authors found that none of them offers end-to-end cross-functional 

integration. These solutions, according to Viswanathan (2009), support S&OP process in 

two ways: 

Operational S&OP: Supporting the process in the steps prior to the executive S&OP 

meeting (Figure 2) including product review, demand review and supply review; 

identifying demand from sales, marketing and customer inputs and matching it with 

supply of materials and capacity; 

Executive S&OP: Supporting the executive S&OP meeting where plans developed in 

the demand and supply planning are reviewed, reconciled and finalized among the 

various stakeholders, including sales, marketing, finance and supply chain, etc. 

Other publications on S&OP are mainly conceptual and descriptive focusing on its 

processes (Ling and Goddard 1988, Gips 2002, Raeker 2002, Taunton 2002, Lapide 2004, 

Wallace 2004, Bower 2005), implementation procedures and post-implementation based 

evaluations, through case studies (Hardison and Bettini 2002, Wood and Boyer 2002, 

Reyman 2005) and benchmark analysis (Elbaum 2004, 2005). 

Earlier efforts on S&OP modelling have been limited to APP-based models determining the 

production, inventory/backlog, and workforce levels for a set of forecasts with the objective 

function being to minimize production cost while subject to appropriate constraints 

(Olhager et al., 2001; Genin et al., 2005). More recently, Chen-Ritzo et al. (2010) 

addressed, using modeling approach, the configure-to-order problem in S&OP context. In 

the problem, the demand planning of the S&OP process is assumed to have been 

completed. Given the initial demand plan, the decisions faced in the supply planning and 
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demand-supply reviewing steps of the S&OP process are modeled, respectively, using 

stochastic programming method taking into account order configuration uncertainties, 

which are commonly faced by the computer and automobile companies. Other related 

studies are found addressing the integration of marketing/sales and manufacturing 

decisions. In this direction, Eliashberg and Steinberg (1987) presented one of the first 

marketing-operations interface models, which examined the coordination of pricing and 

production decisions between a manufacturer and a retailer. Sogomonian and Tang (1993) 

using modeling approach examined the benefit of integrating promotion and production 

plan assuming that demand is a decreasing function of the time elapsed since the last 

promotion. It was found that significant profit increase can be achieved by the integrated 

promotion and production planning. Lee and Kim (1993) developed partially and fully 

integrated production and marketing planning models for a single item and a single firm 

problem in which the marketing mix decisions (selling price, marketing expenditure, and 

demand/production quantity) are determined assuming the demand rate is a deterministic 

function of the selling price and marketing expenditure. Pal et al. (2007) focused on 

partially integrated production and marketing planning for a single item and a single firm 

case where the marketing and production decision models are formulated separately and 

solved heuristically. These works motivated us to examine further the literature in the 

general coordinated and integrated planning. 

2.2 Coordinated and integrated planning 

The idea of coordinated planning can be traced back to as early as 1960 by Clark and Scarf 

(1960), who studied multi-echelon inventory / distribution systems. Since then, research 

has been carried out on coordinated planning of various partially sectioned functions of 

supply chain. 

Williams (1981) studied the coordinated scheduling of production and distribution using a 

dynamic programming approach, which simultaneously determines the production and 

distribution batch sizes to minimize the costs in an assembly and distribution network. 

Chandra and Fisher (1994) investigated the value of coordinating production scheduling 

and multi-stop vehicle routing to minimize set-ups, inventories and transportation costs. 
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Youssef and Mahmoud (1996) proposed a non-linear programming model that considers 

production economies of scale to study the trade-offs between production and 

transportation costs and their impact on the facility centralization-decentralization 

decisions. Fumero and Vercellis (1999) proposed a MIP model for integrated production 

and distribution planning in order to optimally coordinate the capacity management, 

inventory allocation, and vehicle routing in a capacitated lot-sizing and multi-period vehicle 

routing problem. The feasible solution is compared with the solution generated by an 

alternative decoupled approach in which the production plan is developed first and the 

distribution schedule derived subsequently. The research indicates a substantial advantage 

of the integrated approach over the decoupled approach. Park (2005), using a mixed-integer 

programming model, investigated the effectiveness of the integrated production-

distribution planning in a multi-plant, multi-retailer, and multi-period logistic environment 

under capacity constraints in order to maximize the total net profit. The results confirm 

again that the integrated planning approach provides superior performance to the decoupled 

one. Cohen and Lee (1988) presented a supply chain modelling framework and an analytic 

procedure that addresses the operating policies of material control, production, and 

distribution using a hierarchical heuristic approach. 

The applications of coordinated and integrated production-distribution planning in an 

industrial environment have been documented in various publications. Klingman et al. 

(1988) presented an optimization programming-based production-distribution planning 

system for W.R. Grace, a company making multi-commodity chemical products. Haq et al. 

(1991) proposed an integrated production-inventory-distribution model in a multi-stage 

manufacturing system using mixed-integer programming and applied to a real case of a 

company manufacturing urea fertilizer. Martin et al. (1993) presented a large-scale linear 

programming model of the production, distribution, and inventory operation for a flat glass 

business, Libbey-Owens-Ford, in a multi-facility, multi-product, multi-demand-centre and 

multi-period environment. The case study shows again significant savings from the 

integrated planning approach. Chen and Wang (1997) developed a linear programming 

model to solve the integrated procurement, production, and distribution planning problem 

of a single planning period for a Canadian steel-making company in a multi-echelon 
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logistic network under deterministic demand. Flipo (2000) addressed the production and 

distribution planning problem in a can manufacturing system involving several 

geographically dispersed manufacturing sites, each having multiple unrelated production 

lines. A hierarchical spatial decomposition approach is proposed that decomposes the 

overall industrial problem into several sub-problems enabling the global production 

allocation problem, as well as the short-term job-scheduling problems, to be treated in a 

coordinated fashion. 

The contributions on coordination and integration of SCP in the forest products industry 

have been found more recently. Maness and Norton (2002) carried out research on the 

integrated lumber sales, sawing, inventory, and boom usage planning in sawmills. They 

developed a linear programming based multi-period planning model for the problem and 

tested it on a sawmill in British Columbia assuming mill capacity, lumber prices, market 

demand, raw material supply are static over the planning period. Rizk et al. (2006) studied 

the dynamic production-distribution planning problem in the pulp and paper industry 

between a paper mill and a distribution centre with transportation costs subject to 

economies of scale following general piecewise linear functions. Ouhimmou et al. (2007) 

presented an integrated planning model for the furniture industry addressing the multi-site 

and multi-period planning of procurement, sawing, drying, and transportation. The MIP-

based model is solved both optimally using a CPLEX engine and approximately using time 

decomposition heuristics assuming known and dynamic demand over the planning horizon. 

Based on this literature review, we applied and developed two sets of MIP based models 

for a partially-integrated sales-production planning based S&OP (SP-S&OP), and a fully-

integrated supply chain based S&OP (SC-S&OP), respectively, as shown Chapter 3. A set 

of traditional decoupled planning (DP) model is also developed serving as a benchmark, 

against which quantitative evaluations of SP-S&OP and SC-S&OP are carried out. In the 

models, the sales decisions are incorporated as decision variables allowing them to be 

mathematically determined under each of the corresponding planning approaches. 

Numerical evaluations and sensitivity analyses are carried out which show that both SP-
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S&OP and SC-S&OP perform significantly better than the DP under various market and 

cost conditions. 

2.3 Rolling horizon planning 

Despite the valuable insights obtained from the quantitative evaluations based on the 

deterministic models (presented in Chapter 3), the study is limited to the fixed horizon 

deterministic case, which assumes the demand for the entire planning horizon is given a 

priori. In real business environment, demand in future periods is seldom known with 

certainty in advance, hence forecasting is often used to predict future demand while subject 

to forecast inaccuracy. To effectively cope with demand uncertainty and forecast 

inaccuracy, rolling horizon planning is widely used in practice. 

In rolling horizon planning, a multi-period model is solved while the plan is implemented 

only for the immediate decision period. As the horizon rolls forward to the next decision 

period, information regarding the latest demand is updated and the model is resolved again. 

This ongoing planning process allows future demand to be anticipated in the current period 

decisions, while postponing future decisions as late as possible (Baker and Peterson 1979, 

Stadtler 2000, Venkataraman and DTtri 2001, Chand et al. 2002, Dellaert and Jeunet 2003, 

Clark 2005, Van den Heuvel and Wagelmans 2005). Literature on rolling horizon planning 

can be found as early as the 70s. The focus has mainly been on dynamic lot sizing and 

scheduling problems. Early studies reveal that optimal methods with fixed planning horizon 

may not provide optimal solutions in a rolling horizon environment, particularly when short 

forecast windows are used, even when the data set is totally deterministic (Baker 1977, 

Blackburn and Millen 1980, Baker 1981, Blackburn and Millen 1982, Aucamp 1985, Gupta 

et al. 1992, Simpson 1999, Dellaert and Jeunet 2003, Clark 2005). One of the possible 

explanations is that when solving the multi-period model to its optimality, it may sacrifice 

the performance of certain period(s) to yield global optimization. When rolling horizon 

planning is based on such an optimization model, it is not necessarily the optimal periodic 

solutions that are actually implemented, but rather it is the first period solutions in 

succession of the optimal solutions (Baker 1981). This phenomenon, the truncated horizon 
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effect, is also observed in different planning environments including aggregate planning 

(Baker and Petersen 1979, McClain and Thomas 1977). 

Given the sub-optimal performance related to the rolling horizon procedure, research has 

been carried out to develop strategies for improving its performance. One of the strategies 

is to increase the forecast window length so as to stabilize the first lot size, since forecast 

window length dramatically affects the first optimal lot size (Baker 1977, Blackburn and 

Millen 1980, Carlson et al. 1982, Campbell 1992, Dellaert and Jeunet 2003). Baker (1977) 

suggested that for rolling schedules to be used most effectively, the forecast window length 

should be at least as large as the natural economic replenishment cycle, based on economic 

order quantity (EOQ). Longer forecast horizons achieve monotonie improvements in 

performance, but with diminishing returns (Baker and Peterson 1979). Russel and Urban 

(1993) confirmed that with extended forecast windows, the optimization based Wagner-

Whitin algorithm performs better than the Silver-Meal heuristic for moderate to large 

forecast window values. Clark (2005) argued that given the uncertainty of the future 

demand, if the forecasts are of poor quality, then longer period scheduling might be 

unnecessary. Since there is no established guideline for determining the optimal forecast 

window interval, which is largely dependent on the forecast quality on the one hand, and 

the characteristics of the system on the other, it remains an important factor to be 

investigated in this study. 

Another strategy is to set terminal conditions so as to minimize the associated costs of the 

current planning horizon. Baker and Peterson (1979) found that imposing a terminal 

condition, which constrains inventory in the final period of a finite horizon model, can 

improve performance significantly. McClain and Thomas (1977) and Baker (1981) 

examined different choices of terminal conditions for the fixed-horizon model to be 

implemented in rolling scheduling environment. Their conclusion was that good terminal 

conditions can be more effective in rolling schedules than increasing horizon lengths. 

Although this strategy can limit the costs incurred to cover the demand beyond the current 

planning horizon, the unrealistic terminal condition may result in undesirable inventory 

states as a system moves from one planning horizon to the next in real business 
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environments, especially if the manufacturing is conducted continuously. Stadtler (2000) 

presented a method in which positive ending inventory is allowed at the end of planning 

horizon to cover the demand beyond the horizon. However the associated lot-size cost, 

including the set-up and inventory holding costs, is considered, in proportion, only for the 

decisions satisfying the demand falling within the current planning horizon. This method is 

reported as providing superior cost performance to the Silver-Meal technique and the 

heuristic of Groff (1979). Similar methods were provided by Fisher et al. (2001) and Van 

den Heuvel and Wagelmans (2005) in which the set-up and inventory holding costs 

associated to the demand beyond the current horizon were subtracted from the costs 

covering the extended planning horizon. Their methods were reported as performing at 

least as well as the Stadtler's method for almost all the demand patterns. 

The application of rolling horizon planning in supply chain environment has been emerging 

in recent research. Cho et al. (2003) applied a rolling horizon procedure in a multi-factory 

supply chain system based on a virtual factory job-shop scheduling model. Seferlis and 

Giannelos (2004) developed a two-layered optimization based model for a multi-product, 

multi-echelon supply chain network focusing on the operational planning and control of 

integrated production-distribution systems in which the rolling horizon procedure is used to 

incorporate the past and present control actions with the future predictions. 

2.4 Demand uncertainties and forecast errors 

In rolling horizon planning, as demand uncertainty is presented with forecast that is subject 

to errors, the problem becomes more complex. De Bodt et al. (1982) examined the effect of 

forecast errors on the cost effectiveness of a single-level lot-sizing problem in a Belgian 

firm. They found that even small forecast variance can cause significant cost increase, and 

this cost increase tends to homogenize for various lot-sizing techniques as forecast variance 

increases further. A similar conclusion was found in Wemmerlov and Whybark (1984) who 

evaluated 14 different single stage lot-sizing problems. Jeunet (2006) extended the research 

of De Bodt et al. to a multi-level lot-sizing problem in which a positive lead-time is 

considered. The simulation study showed that forecast errors have a significant impact on 

cost performance of all the studied lot-sizing techniques. Significant cost increase is found 

29 



Chapter II. Literature Review 

when the forecast deviation increases up to 10%, and levels off as deviation increases 

further. 

Zhao and Lee (1993) examined the impact of forecasting errors on the selection of master 

production schedule (MPS) freezing parameters and cost performance in a make-to-stock 

(MTS) based multi-level system. They found that forecast errors not only increase total 

cost, but also increase schedule instability and reduce service level. It was discovered that 

while prolongation of the planning horizon can improve the performance of material 

requirements planning (MRP) when demand is free from forecast errors, it can actually 

worsen the performance when demand is uncertain. This finding is confirmed by Sridharan 

and Berry (1990) and Clark (2005) that longer planning horizon reduces costs when 

demand is deterministic, but increases costs, as demand forecast variance increases. 

Lee and Adam (1986) found both forecast deviation and bias affect the MRP performance, 

while bias has greater impact comparatively. However, in contrast to what is intuitively 

believed, higher forecast error may not result in higher total cost, in fact, slight bias 

(positive or negative) may result in better performance for the different lot-sizing rules. 

Continuing in this direction, Venkataraman and Nathan (1999) studied the effect of forecast 

bias, in terms of demand overestimation and underestimation, on rolling horizon MPS cost 

performance. They found that positive forecast bias or demand overestimation can result in 

significantly higher cost than demand underestimation. 

Zhao et al. (2002) investigated the impact of forecast errors on early order commitment 

where a retailer commits to purchase a fixed-order quantity at a fixed delivery time from a 

supplier before the real need takes place in a supply chain environment. Their study shows 

that both forecast bias and forecast deviation are important factors affecting the supply 

chain total system cost. 

Having realized the limitations of using the deterministic planning models in the real 

business environment and given the fact that S&OP is an ongoing planning, reviewing, and 

reconciliation process, we extended the research and developed three sets of rolling horizon 

simulation models for the partially-integrated SP-S&OP, fully-integrated SC-S&OP, and 
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traditional DP approaches, respectively, as shown in Chapter 4. Using the simulation 

models, the performance evaluations of SP-S&OP and SC-S&OP approaches are carried 

out against the DP approach in rolling horizon environment and comparisons are also made 

with those in the deterministic environment. From the results, we observed greater benefits 

of SP-S&OP and SC-S&OP over DP in rolling horizon environment than in the 

deterministic environment. The impacts of forecast errors on the financial performances of 

the different planning approaches are also examined as shown in Chapter 4. 

2.5 Supply chain contract 

In a multi-organizational supply chain environment, effective contract decisions create 

opportunities for supply chain coordination with customers and suppliers along the supply 

chain. A contract is an agreement between a buyer and a supplier for a fixed duration, 

which comprises various attributes specifying certain terms and conditions. Typical 

attributes, depending on the context, may include contract duration, price, discount, fixed 

charge, minimum quantity commitment, flexibility, lead time, quality, capacity, etc. These 

attributes define the commitments required as well as price and service incentives offered. 

Since these attributes may interact or conflict with one another, it is a challenging problem, 

for a supplier to design the contracts with the right mix of attributes, and a buyer to select 

the contracts with the best combination of these criteria such that the supply chain may be 

coordinated and its performance optimized. Even when coordination is not achieved, it is 

suggested that contracts may serve to provide Pareto optimal solutions for the two parties 

(Anupindi and Bassok 1999). 

Since the 1990s, extensive works have been carried out in the general area of supply chain 

contracts. According to Lariviere (1999), the contributions can be broadly classified into 

two classes. The first takes a particular contract and determines what optimal actions are 

assuming that the contract terms are fixed. Examples of this class of research can be found 

in Bassok et al. (1997) and Tsay (1999). The second class focuses on an agent approach 

through negotiation to seek for optimal, or at least Pareto optimal policies, if not 

coordinated, under a given contract. This stream of research can be found in Corbett and 

Tang (1999) and Schneeweiss et al. (2004). More recently, a third line of research emerged 
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that examines several forms of contracts, contract terms and conditions, to determine the 

optimal contract(s) among others. Bansal et al. (2006) provided an example that falls within 

this class. In this research, a multi-period MIP model was developed for a two-tier supply 

chain of one buyer and multiple suppliers each offering different contract policies of three 

contract forms (total minimum quantity commitment with flexibility, total minimum dollar 

volume purchase commitment, and periodic minimum quantity commitment). This research 

is closely related to ours. However unlike what have been done in Bansal et al. (2006), we 

focus on a three-tier customer-manufacturer-supplier supply chain. Specifically, we address 

the coordinated contract design, allocation and selection problem, from the manufacturer's 

point of view, to design the right contract policies to be offered to the right customers so 

that customer satisfactions are guaranteed, manufacturer's capacity allocation is optimized, 

and select the right contract(s) from the right suppliers, so that the raw material supplies are 

guaranteed, and the manufacturer's financial performance is optimized. In this section, a 

general review of literature on various forms of supply chain contracts, their analyses and 

designs is presented. 

2.5.1 Contract analysis 

Among many forms of contracts found in the literature and existing in practice, price-only 

contract is probably one of the simplest and the dominant form of contract. In this contract, 

a manufacturer quotes a unit wholesale price to a customer. The customer has the flexibility 

to order any quantity in each period during the contract term. Lariviere and Porteus (2001) 

studied the price-only contract in a two-echelon distribution channel with a supplier selling 

to a single retailer facing a newsvendor problem in a single period setting. It was concluded 

that price only contract cannot provide supply chain coordination. The phenomenon that by 

selling at a wholesale price above the production marginal cost, the supplier induces the 

retailer to set a retail price above what an integrated firm would charge, this is known as 

double marginalization, resulting in lower sales and system profits than what an integrated 

channel could achieve (Lariviere 1999). 

Another widely applied form of contract is quantity discount contract. Quantity discount 

contract focuses on determining the discount schemes by introducing price incentives so as 
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to stimulate sales and maximize supplier's profit. Monahan (1984) studied a single period 

quantity discount contract between a buyer and a supplier assuming the buyer is likely to 

react on any supplier's discount proposal. Weng (1995) presented a single period quantity 

discount model to investigate its effect on channel coordination and profit maximization. 

The analysis shows that quantity discount contract does not guarantee joint profit 

maximization. However, channel coordination can be reached by employing quantity 

discounts and franchise fees simultaneously. Munson and Rosenblatt (2001) studied a 

quantity discount model in a three-echelon supply chain with the middle echelon being the 

decision maker offering different discount schemes. Clearly, price discount can be offered 

in combination with different contract forms where price incentives are necessary. 

Despite these contracts being able to attract larger sales quantities by price incentives, no 

commitment is required from the buyers, and suppliers face significant demand 

uncertainties. The most simple form of contract with attached certain quantity commitment 

is known as the total minimum quantity commitment contract. Under this form of contract, 

while a supplier offers a discounted price, a total minimum quantity commitment is 

imposed and as the total minimum commitment increases, the unit price decrease. The 

buyer commits to purchase, during the entire contract horizon, at least the minimum 

quantity at the discounted price. There is no restriction on the maximum amount that can be 

purchased, nor requirement on the exact amount purchased in each period. Observations 

found that in stochastic demand environment, the buyer inclines to purchase exactly his or 

her demand requirement, subsequently, the uncertainties in the demand process is likely 

passed onto the supplier, and the total minimum quantity commitment contract can offer 

little help to reduce such uncertainties. One reason for the existence of total minimum 

commitment contracts is to ensure markets that lock-in buyers by providing them with an 

incentive to commit to purchase goods for a longer term. Alternatively, if there is any 

uncertainty in the supply process, then a buyer may wish to enter into such a contract with a 

supplier to ensure supply (Anupindi and Bassok 1999). Bassok and Anupindi (1997) 

provided early work on supply contract with total minimum quantity commitment for a 

single product-periodic review inventory problem assuming the demand for the product is 

uncertain. By studying a multi-period setting, Anupindi and Bassok (1999) argue that 
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although the total minimum quantity commitment provides the buyer the quantity 

flexibility at discounted price, it may lead to losses at the supplier's side. 

One of the remedy to this contract is the periodical commitment contract. Unlike the total 

minimum commitment contract, the periodical commitment contract imposes restrictions 

on periodical purchases and thus, reduces the uncertainty in the order process. This contract 

may take various forms depending on the nature of periodical commitments and the 

flexibility offered. Broadly, the commitments could be stationary or dynamic. Stationary 

commitment contract was analysed by Moinzadeh and Nahmias (2000) and Anupindi and 

Akella (1997). In a stationary commitment, a buyer is required to purchase a fixed 

minimum amount in each period, similar to forwards contract. Discounts are given based 

on the level of minimum commitment. Additional units can be purchased but at an extra 

cost and the delivery may be delayed. This contract provides a greater level of demand 

certainty for the supplier and just-in-time delivery for the customer. In dynamic 

commitment, the commitment can be updated periodically in a rolling horizon manner. 

Using rolling horizon procedure in contract based planning was earlier investigated by 

D'Amours et al. (2000) in a manufacturing supply chain system. More recently, Lian and 

Deshmukh (2009) studied a rolling horizon planning contract with dynamic commitment 

and quantity flexibility between a buyer and a supplier for a single product. The flexibility 

of the contract can be offered in the form of order bands, where all order quantities are 

required to be within exogenously specified lower and upper limits that are stationary over 

time. The order-band contract was initially studied by Kumar (1992) and Anupindi (1993) 

in a game-theoretic setting where a unit price is determined depending on the difference 

between the upper and lower limits (band-width). Scheller-Wolf and Tayur (1998) extended 

the study in a Markovian demand environment. It can also be offered in the form of 

quantity flexibility, where the minimum and maximum limits can be updated in percentages 

that vary in accordance with the number of periods away from the delivery (Bassok et al. 

1997). Earlier study on quantity flexibility contract was provided by Bassok et al. (1997) 

and later by Tsay (1999) and Tsay and Lovejoy (1999). The study performed by Bassok et 

al. (1997) was focused on a multi-period between a single buyer and supplier, where the 

buyer made purchasing commitments to the supplier at the beginning of the contract 
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horizon for each period of the horizon and had some flexibility to purchase the quantities 

that deviate from the original commitments. Moreover, as time proceeds and more 

information about the actual demand is available, the buyer may update the previous 

commitment within the flexibility range. Using a heuristic approach, the worth of flexibility 

is evaluated enabling the buyer to negotiate for flexibility with a given unit cost or vice 

versa. Tsay (1999) analysed the quantity flexibility contract between a manufacturer and a 

retailer in a single period problem. By examining the incentives on each side of the 

relationship, the author indicates that with appropriate negotiation and choice of 

coordinating parameters (such as the wholesale price and flexibility coefficient), quantity 

flexibility can achieve supply chain efficiency for the two parties. Tsay and Lovejoy (1999) 

extended the study to a multi-period quantity flexibility contract by assuming a rolling 

horizon and a stochastic demand. 

Recent research has seen increasing trends towards buyback and revenue sharing contracts. 

These contracts are reported to have the ability for channel coordination (Cachon and 

Lariviere 2005). Greater details on these contracts can be found in Gerchak and Wang 

(2004), Cachon and Lariviere (2005), and Zou et al. (2008). 

2.5.2 Contract design 

Although the topic of supply chain contract has attracted a lot of attention in the research 

community, the contributions on supply chain contract design are rather limited. In supply 

chain contract design, a supplier has to determine what form of contract he can offer, under 

what terms and conditions, and what the possible reactions are from the customers towards 

the contract offered. To tackle these questions, most of the researchers adopted the "agent" 

approach, which focuses on a contract between two parties, a buyer and a supplier, with 

asymmetric information. The buyer's optimization problem is solved first to determine his 

optimal order quantity according to the contract offered by the supplier. Then the supplier's 

optimization problem is solved accounting for the buyer's optimal order quantity and 

determine the optimal supply contract. A Nash equilibrium is reached and the costs (or 

profits) of the buyer, supplier, and both are examined to determine the optimal contract 

settings (Corbett and Tang 1999, Schneeweiss et al. 2004). 
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Corbett and Tang (1999) provided a framework on supply chain contract design examining 

the interactions between the types of contracts a supplier can offer and his knowledge about 

the buyer's cost structure, in a single supplier-buyer supply chain facing price-sensitive 

deterministic demand. Three types of contracts are proposed, (1) the one-part linear 

contracts, where the supplier charges a constant unit wholesale price; (2) two-part linear 

contracts, the supplier charges a constant unit wholesale price with a fixed amount (such as 

franchise fee), or offers a fixed payment to the buyer (such as slotting fee); and (3) two-part 

non-linear contracts, where the supplier offers various pairs of unit wholesale price and 

fixed charge/payment. Using the "agent" approach, six cases were examined and the 

impacts of the contract types and information asymmetry on the supplier's and the buyer's 

profits were evaluated. 

Based on a hierarchical distributed decision making framework, Schneeweiss et al. (2004) 

presented a two-stage modeling approach to design the optimal contracts for a single 

producer-supplier supply chain who agree to set a contract while maintaining their private 

information and autonomous decision rights. The impacts of different types of contracts on 

operational performance are anticipated using the proposed modeling framework. Two 

types of contracts are discussed: (1) the total order-delivery commitment (M-contracts), 

where the producer and supplier agree to purchase and deliver a commitment quantity over 

the entire contract term, however either party may vary their quantities in each period; and 

(2) the delivery reliability (B-contract), where an incentive is offered to the supplier for any 

in full on time delivery. 

When a manufacturer serves several customers-products-locations competing for the 

manufacturer's limited capacities, such as what has been experienced in the context of this 

study, to coordinate the contract design and allocation decisions becomes critical and 

challenging. Unfortunately, such problem, to our best knowledge, has not yet been 

addressed from the publications found to date, since these articles focus mainly on supply 

chains with a single customer and a supplier having unlimited capacity (Tsay et al. 1999). 

Two exceptions are found in Cachon and Lariviere (1996 and 1997) that modeled supply 

contracts taking into account the design of allocation policies. The study in Cachon and 

36 



Chapter II Literature Review 

Lariviere (1996) is focused on a single-period, single-supplier, multi-retailer supply chain 

where the supplier's production capacity is limited and each retailer's inventory level is 

private information. In Cachon and Lariviere (1997) the study extended to a single-

supplier, two retailer supply chain in a two-period context. 

One of the difficulties of addressing the coordinated contract design and allocation problem 

in a single supplier serving multiple customers is the ability to understand the possible 

reactions of the customers to the contract(s) offered. Consider, instead of addressing the 

supplier's contract design problem based on a single factor of customer's cost structure, 

like what has been assumed in most of the contract analysis and design problems, it is 

possible that the customer's choice of a contract is affected by several factors, the 

combined attributes of the contract policy, for instance. In this regard, whether or not the 

customer will choose an offered contract policy is a probabilistic discrete choice problem, 

which can be determined by the economic evaluation of the customer as well as his 

perceived qualities of the products, the services provided, and socio-economic 

considerations. According Ben-Akiva and Lerman (1994) and Vila et al. (2007), such 

probability may be determined based on random utility theory and logit discrete choice 

model. Vila et al. (2007) applied this method to determine the customer-contract choice 

probabilities for several customers where the customers' reactions to the contracts offered 

are anticipated in a strategic supply chain design problem. A similar approach was adopted 

in bidding problems where a manufacturer faced multiple customer classes, as shown in 

Easton and Moodie (1999) and Watanapa and Techanitisawad (2005). 

2.6 Optimization under uncertainty 

Classical method in supply chain contract modelling generally assumes that the input 

parameters are deterministic and equal to some nominal values. In real business 

environment, however, contract decisions are typically made at the beginning of the 

planning horizon. During the contract term, many uncertain events may happen, related to 

the economic environment, market price, customer demand, material supply and system 

capacity. It is therefore conceivable that the optimal contract solutions found using nominal 
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data may no longer optimal or even feasible as environment change, and the projected 

supply chain performance might be significantly affected by the signed contract. 

To make robust contract decisions that are immune to data uncertainty, it requires a 

mathematical model that can anticipate the system performance under various uncertainties. 

Among the literature found to date, most of the models presented in the contract analysis 

and design have adopted deterministic structure, with two exceptions in Zou et al. (2008) 

and Xu and Nozick (2008). Zou et al. (2008) proposed a backward stochastic dynamic 

programming approach in the supply contract analysis between an assembler and two 

suppliers in an assembly system. Xu and Nozick (2008) proposed a two-stage stochastic 

model for facility location and network design problem with an extension of using options 

contract to hedge against uncertain events, which could cause capacity loss at one or 

several suppliers in a geographic area. 

Despite the limited publications in the area of robust contract decisions, the importance of 

planning under uncertainty has been widely recognized. There are several techniques to 

incorporate uncertainties in optimization problems. The main techniques include stochastic 

programming and robust optimization. 

2.6.1 Stochastic programming 

Traditionally, optimization problems with probabilistic information is handled using 

stochastic programming (SP). Since first introduced by Dantzig in the 1950s, SP has 

experienced tremendous progress in its theoretical development, solution methodologies, 

and applications (Mak et al. 1999, Shapiro 2003, Higle 2005, Santoso et al. 2005, Vila et al. 

2007). SP can be regarded as an artful combination of a traditional mathematical 

programming model, a linear programming (LP) model, for instance, assuming all 

parameters are deterministic, and a stochastic model where some of the parameters are 

replaced by random variables (Higle 2005). Indeed, in real business environments, many 

data elements in LP are more appropriately described using random variables, such as 

customer demand, cost parameters, etc., hence stochastic linear programming (SLP) is 

required to properly address the stochastic characteristics of the problem. A detailed 
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description of SP can be found in Sen and Higle (1999) and Higle (2005) while its 

theoretical development can be found in Shapiro (2003). 

The application of SP is mostly found in supply chain network design and production 

planning problems. Santoso et al. (2005) proposed a two-stage SP model for a supply chain 

network design problem and applied it to two real supply chain networks. Vila et al. (2007) 

extended the supply chain network design problem by taking into account market 

opportunities. In the proposed two-stage stochastic programming model, the impacts of the 

network design decisions on the tactical operations as well as the potential contracts, 

vendor managed inventory (VMI) agreements, and spot market sales were anticipated. 

Azaron et al. (2008) presented a multi-objective stochastic programming model for supply 

chain design under uncertainty. In the study, demand, supply, processing, transportation, 

shortage and capacity expansion costs are considered as the random variables. A goal 

attainment technique is used to solve the model in order to find Pareto-optimal solutions. 

Huang and Ahmed (2010) using stochastic programming framework studied the planning 

horizon of capacity planning problems. Kazemi et al. (2010a) developed a two-stage 

stochastic programming model in a saw-mill manufacturing system context with non-

homogeneous raw materials, and consequently random process yield. 

In most of these publications, the SP models are solved using the sample average 

approximation (SAA) algorithm. SAA is a statistical estimation and numerical 

approximation method that, instead of solving an original problem under infinite number of 

scenario samples and non-linear expected value function of SP, solves the problem using a 

sub-set of randomly selected samples from the sample population. Monte Carlo sampling 

method is typically used in the sampling process. The SAA approach was earlier proposed 

by Mak et al. (1999) and developed further with statistical proofs by Shapiro (2003) and 

applied in various applications as shown in Santoso et al. (2005), Vila et al. (2007), and 

Kazemi et al. (2010a). An accelerated Benders decomposition solution algorithm was also 

developed by Santoso et al. (2005) to enhance the solution speed for high quality solutions 

of large-scale stochastic supply chain design problems. 
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2.6.2 Robust optimization 

Robust optimization was developed more recently to optimize the worst case performance 

of a system under uncertainties using mini-max cost objective function. In this approach, 

the exact probability information about the uncertain parameters is unknown, and the 

parameter values are generally assumed to be bounded within some pre-specified interval 

(Kouvelis and Yu 1997, Snyder 2006, Klibi et al. 2010). Another commonly used criterion 

in the robust optimization is the mini-max regret that minimizes the maximum regret across 

all possible scenarios (Averbakh and Berman 1997, 2000). The regret criterion is generally 

calculated as the difference (absolute or percentage) between the cost of a solution in a 

given scenario and the cost of the optimal solution of that scenario. It can often be 

transformed into equivalent mini-max cost problems and vice-versa (Snyder 2006). 

Unfortunately, due to the mini-max structure of the problems, the robust counterpart of 

many polynomially solvable optimization problems becomes NP-hard and the problems are 

generally solved heuristically (Sim 2004). Furthermore, since the mini-max cost (regret) 

criterion focuses on worst possible scenario, the solutions tend to be overly conservative, 

which may perform poorly for scenarios other than the worst case (Snyder 2006). 

To address the issue of over-conservatism, several authors proposed less conservative 

models by considering uncertain linear problems with ellipsoidal uncertainties (El-Ghaoui 

and Lebret, 1997, El-Ghaoui et al. 1998, Ben-Tal and Nemirovski 1998, 1999, 2000). It is 

suggested that ellipsoidal uncertainty tends to represent better the possible interactions 

among the different data parameters and potentially avoids the worst case scenario. The 

problem involves solving the robust counterparts of the nominal problem in the form of 

conic quadratic problems, which leads to non-linear models (Ben-Tal and Nemirovski 

2000). More recently, Bertsimas and Sim (2004) proposed a new approach for the robust 

optimization modeling that offers some controls on the degree of conservatism for each 

constraint, while preserving the linear structure of the original model. More specifically, it 

introduces a protection parameter for each constraint to provide a protection against the 

violation of the constraint. This approach is applied to several problems, including a 

portfolio problem, a knapsack problem (Bertsimas and Sim 2004) and a timber harvest 
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planning problem where timber growth uncertainties under different age-classes are taken 

into account (Ouhimmou et al. 2010). 

Mulvey et al. (1995) developed a different robust optimization framework. In this 

framework, the goal programming approach is applied to the stochastic programming 

formulations, where the recourse cost variability and model infeasibility are penalized 

using goal programming weight to simultaneously trade-off between solution and model 

robustness. It is reported that this framework can generate solutions that are progressively 

less sensitive to the realizations of the scenarios. This robust optimization framework has 

been applied in several cases including industrial capacity expansion (Paraskevopoulos et 

al. 1991), energy systems design (Malcolm and Zenios 1994), Production planning 

(Escudero et al. 1993, Leung et al. 2007, Kazemi et al. 2010b), air craft scheduling (Mulvey 

and Ruszczynski 1995, Mulvey et al. 1995), health care services (Soteriou and Chase 2000) 

and supply chain analysis (Yu and Li 2000, Pan and Nagi 2010). However, depending on 

the risk level of the problem and risk aversion of the decision makers, robust optimization 

generally yield solutions more conservative and thus, potentially more expensive than the 

stochastic programming approach (Mulvey et al. 1995). 

In this thesis, we pursue the coordinated contract decision problem using scenario based 

stochastic programming approach. The investigations of using robust optimization 

approach in the general applications of supply chain contract decisions may be carried out 

as a future contribution. As shown in Chapter 6, a two-stage stochastic programming model 

with fixed recourse is developed for the coordinated contract design, allocation, and 

selection problem. The uncertainties of economic environment, market price, customer 

demand, customer-contract choice, raw material supply, and system capacity, are taken into 

consideration. The model is solved using an SAA solution approach. Comparisons of the 

contract solutions and the expected performance value (profit) of the stochastic model are 

made with those of the mean value based deterministic model. The computational analyses 

show that the stochastic programming model provides significantly superior solutions to the 

MIP based deterministic model. 
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2.7 Conclusions 

In this Chapter, we presented a wide range of literature studies to establish the research 

background for the development of this thesis. We reviewed first the concept, development 

and work conducted in the area of S&OP followed by a literature study in the domain of 

coordinated and integrated planning in the supply chain context. These two reviews 

provided important support for the development of the integrated supply chain S&OP in 

Chapter 3. In the third and forth Sections, we reviewed the publications in the areas* of 

rolling horizon planning as well as demand uncertainties and forecast errors, which 

provided valuable guidance for the development of the S&OP simulation models in 

Chapter 4. The fifth section provided comprehensive review of the literature in contract 

analysis and design, and the sixth section presented the works that are carried in the 

problem optimizations under uncertainties, which provided valuable scientific foundation 

for the development of the coordinated contract decision model in Chapter 5. 
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Résumé 

La planification des ventes et des opérations (S&OP) est un processus de planification de la 

chaîne logistique reconnu. Cependant, jusqu'à maintenant, l'évaluation de ses bénéfices a 

principalement été faite par l'étude de cas après implantation. Cet article explore les 

fondements des processus de la S&OP et présente une approche de modélisation pour 

évaluer son impact avant l'implantation. Trois modèles de programmation en nombres 

entiers ont été formulés pour représenter respectivement : la S&OP basée sur d'une chaîne 

logistique multi-site (SC-S&OP), qui intègre la planification transversale centralisée des 

ventes, de la production, de la distribution et de l'approvisionnement; la S&OP basée sue la 

planification des ventes et de la production multi-sites (SP-S&OP), dans laquelle la 

planification des ventes et de la production est effectuée conjointement et centralement, 

alors que la distribution et l'approvisionnement sont gérés indépendamment par chaque 

site; et finalement, une planification découplée, où la planification des ventes est 

centralisée, mais où la planification de la production, de la distribution et de 

l'approvisionnement est effectuée séparément et localement. Les modèles sont développés 

pour un système manufacturier multi-site ayant plusieurs fournisseurs, fabriquant plusieurs 

produits différents et fournissant plusieurs clients dans un contexte de production sur 

demande (MTO) dans lequel les retards sont permis. Afin d'illustrer la méthodologie, les 

modèles sont appliqués à une compagnie de panneaux OSB située à Québec, Canada. Les 

bénéfices de la SC-S&OP sont évalués par la comparaison de Sa performance financière 

avec celle de la SP-S&OP et de la DP, considérant une demande et un prix du marché 

saisonnières déterministes. Les résultats ont démontré que la SC-S&OP avait une 

performance supérieure à l'approche de SP-S&OP et significativement meilleure que 

l'approche de DP, avec une amélioration des bénéfices prévue de 1% et de 2%, 

respectivement. L'analyse de sensibilité montre que les résultats sont très sensibles aux 

conditions de marché. Lorsque les prix du marché descendent ou que la demande 

augmente, de plus grands bénéfices peuvent être obtenus. 
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Abstract 

Sales and Operations Planning (S&OP) has become a widely recognized process of supply 

chain planning. However, until the present time, the evaluation of its benefits has been 

conducted mainly through post implementation case studies. This paper explores the 

fundamentals of the S&OP process and presents a modeling approach to evaluate its impact 

before implementation. Three MIP based models are formulated representing, respectively, 

a multi-site supply chain based S&OP (SC-S&OP), that integrates the cross functional 

planning of sales, production, distribution, and procurement centrally; a multi-site sales-

production planning based S&OP (SP-S&OP), in which the joint sales and production 

planning is carried out centrally while the distribution and procurement are planned 

separately in each site; and a decoupled planning (DP), in which the sales planning is 

carried out centrally while the production, distribution, and procurement planning are 

performed separately and locally. The models are developed for an alternative multi-site 

manufacturing system that has different suppliers, produces different products and serves 

different customers on a make-to-order (MTO) basis where backlogs are allowed. To 

illustrate the methodology, the models are applied to an Oriented Strand Board (OSB) 

manufacturing company in Quebec, Canada. The benefits of SC-S&OP are evaluated by 

comparing its financial performance over that of SP-S&OP and DP under deterministic 

seasonal demand and market price conditions. The results demonstrated that SC-S&OP 

performs superior to the SP-S&OP and significantly better than DP with expected 1% and 

2% profit improvements, respectively. The sensitivity analysis shows that the results are 

very sensitive to market conditions. As market prices reduce or demand increases, greater 

benefits can be obtained. 
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3.1 Introduction 

Faced with increasingly competitive markets within a dynamic economic environment, 

more and more enterprises have turned their attention to supply chain management (SCM). 

The concept of SCM serves to bring the traditionally non-coordinated business units along 

the supply chain together to effectively coordinate the business processes and activities 

from the suppliers to the customers. Along with SCM and supply chain planning (SCP), 

S&OP is gaining increasing recognition. 

S&OP is a monthly-based tactical planning process. Led by senior management, it is 

performed to balance demand and all the supply capabilities of production, distribution, 

procurement, and finance to ensure the plans and performances of all business functions are 

aligned to support the business strategic plan. It is an integrated planning process that 

gathers all the plans from different functional units, evaluates, revises, and brings to 

consensus any conflict in order to generate a unique set of plans to orchestrate and control 

performance (Ling, 2002; Aberdeen Group, 2004). S&OP as a concept has experienced a 

series of developments from an aggregated production planning (APP), to a joint sales-

production planning based S&OP (SP-S&OP), and more recently to a supply chain based 

S&OP (SC-S&OP). Up to present time, research on S&OP has focused on its definition, 

processes, activities, implementation procedures, and case studies addressing the benefits 

after its implementation. Very few contributions have addressed the S&OP problem using 

modeling approach to reveal its value creation opportunities before implementation. The 

aim of our research is to fill in this gap by presenting a modeling approach that represents 

the fundamentals of the S&OP process to quantitatively evaluate the impact of S&OP 

program before implementation. We illustrate the methodology through a real case study 

in the OSB industry and carry out the evaluation using the field data. 

The OSB industry is the largest sector of the wood-based panel industry in North America. 

Entering the structural panel market in the early 1980s, OSB has virtually replaced other 

structural panels in the new residential construction market in North America. OSB is 

mainly used as building material for wall, roof, and floor sheathings as well as I-joists. It is 

made of wood strands mixed with synthetic resins and wax compressed under high 
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temperature and pressure in a hot press. The production is carried out on a highly 

automated production line, either in batch or in a continuous manner, depending on the type 

of the hot press used. The production line is capable of making a wide range of OSB 

products with different physical and mechanical properties. The products are sold to 

different customers, mainly manufacturing customers (producing houses or house 

components), distributors, wholesalers, and retailers, in different geographical locations. 

The demand is highly seasonal with strong correlations to the activities in the building 

construction industry. Whereas on the supply side, particularly the wood supply in the 

form of wood logs from the forests, it is affected by long lead-time and seasonal harvesting 

operations. Traditionally, the planning of sales, production, distribution and procurement is 

made separately with different objectives. Sales decisions tend to focus on sales volumes 

and revenues while cost reduction is considered to be the responsibility of other functions 

such as, production, distribution, and procurement, respectively. When products are made 

with different costs and sold to different market locations at different prices, the decoupled 

planning often results in sub-optimal decisions, as the lowest local cost may not guarantee 

the best economic return. Joint sales and operations planning in a supply chain context 

presents potential opportunities. 

In this article, we proceed first with a literature review to establish the fundamentals of 

S&OP and examine the current research on integrated planning. Then a generic case of an 

alternative multi-site manufacturing network in an MTO environment is described. Based 

on the case, three mathematical models are formulated representing, respectively, the multi-

site SC-S&OP, SP-S&OP, and DP. An application of the models in a real OSB industrial 

case is described in Section 3.4. The evaluation results and sensitivity analysis are 

presented in Section 3.5 followed by concluding remarks and future research opportunities 

in Section 3.6. 

3.2 Literature review 

Sales and operations are two core business functional units in a company whose decisions 

significantly impact the company's financial performance, operational efficiency, and 

service level. Traditionally, these two functional units make decisions separately with little 
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coordination. Sales decisions typically focus on sales volume of products having greater 

profit margins without explicitly regarding global organizational profit. Production 

decisions, on the other hand, are focused on production costs, material efficiency, 

equipment utilization, and labour requirements. They have different responsibilities and 

performance measures which tend to seek local performance improvements with little 

emphasis on the profitability of the entire organization. (Wahlers and Cox, 1994). 

Sales and operations planning (S&OP) as a terminology was originally found in the articles 

concerning MRPII, the manufacturing resource planning, or similar systems, where some 

authors used it interchangeably to refer to the term aggregated production planning (APP). 

Since the 1980s, the meaning of S&OP has been extended and sales planning has been 

included in the S&OP process. Hence, the S&OP has two components, notably sales 

planning (based on forecasted demand) and production planning, which determines the 

capacity requirements, inventory level and/or backlog level (Ling and Goddard, 1988; 

Olhager et a l , 2001; Wallace, 2004). This sales-production planning based S&OP (SP-

S&OP) is still used by many researchers and practitioners today. The linkage between the 

sales and operations functions as well as its importance in organizational performance are 

addressed by Wahlers and Cox (1994). They propose that the linkage between the sales 

and operations functions can be established by competitive factors and performance 

measures. The goal of joining sales and production plans is to balance the demand and 

production capacity. In achieving this goal, there are two types of planning decisions, one 

that tries to modify demand to match the production constraints (also called the 

"aggressive" approach), and one that modifies supply to match the sales plan (also called 

the "reactive" approach) (Krajewski and Ritzman, 1996). Olhager et al. (2001) discuss the 

"reactive" SP-S&OP where supply capabilities are modified to match demand. To this end, 

the authors regarded S&OP as long-term planning strategies for production in relation to 

sales, inventory and/or backlogs. They also established the connections and interactions of 

S&OP with the long-term capacity management strategies. In contrast, some other articles 

consider S&OP a tactical planning process. These articles define S&OP as a periodic 

planning process at tactical level that vertically links the long-term strategic and business 

plans with the short-term operational plans, and horizontally links demand with supply 
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capabilities, where the supply capabilities mainly refer to the production and inventory 

capabilities (Ling and Goddard, 1988; Wallace, 2004). 

The definition of S&OP was recently documented in APICS dictionary (2002). From the 

definition, three fundamental elements of S&OP can be identified. First, it is a cross 

functional integrated tactical planning process, that integrates customer, sales, marketing, 

development, manufacturing, sourcing and finance into one integrated set of plans; second, 

it facilitates the hierarchical coordination with the detailed scheduling and supports the 

strategic and business planning; and third, it is a routine on-going planning, reviewing and 

evaluation process that covers a planning horizon of one to two years. 

Recent studies present the trend of applying S&OP into the SCM context to coordinate 

supply chain value creation activities. They regard S&OP as a synchronization mechanism 

that matches the demand forecast with supply chain capabilities through coordination of 

marketing, manufacturing, purchasing, logistics and financing decisions and activities 

(Croxton et al., 2002). Cecere et al. (2006) extend the idea and suggest that S&OP should 

profitably align the customers' demand with supply according to the defined business 

strategy. The plans should reflect supply chain constraints of moving, making, and buying 

capabilities of the company, and these constraints should be linked with the account 

strategies for demand shaping and product allocation strategies (the "aggressive" strategy 

as defined by Krajewski and Ritzman, 1996). 

Although the S&OP has experienced rapid development in recent years, little research has 

been carried out that systematically explores the fundamentals of S&OP (either SC-S&OP 

or SP-S&OP) using a modeling approach in a pre-implementation analysis. To date, the 

models found that present S&OP are mainly APP based models that determine the 

production, inventory/backlog, and workforce levels for a set of forecasts with the objective 

function being to minimize production cost while subject to appropriate constraints 

(Olhager et al., 2001; Genin et al., 2005). As the knowledge and understanding about 

S&OP is extended, a more comprehensive modeling approach is required that represent the 

fundamentals of the S&OP process, allowing companies to observe the potential value of 

the S&OP process prior to its implementation. The limited research in this area stimulates 
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us to study the literature that addresses the coordination and integration of SCP to discover 

the possibilities of applying operational research techniques and modeling approach into 

the S&OP process. 

In a broad sense, the supply chain consists of four fundamental stages: procurement, 

production, distribution and sales (Fleischmann et al., 2002). Traditionally, these stages 

have been managed independently, buffered by inventories. In this decoupled management 

context, decisions are made within each of the functional departments independently of 

each other. Although this approach reduces the complexity of the decision process, it 

ignores the interactions of the different stages, limits the potentials of further cost reduction 

and/or global profitability, and in the worst case scenario, it results in infeasible solutions. 

Confronted by increasing competition, companies are moving from decoupled decision 

making processes towards more coordinated and integrated planning and control for their 

supply chain activities in order to reduce total costs, improve performance, and increase 

service levels. 

Fleischmann et al. (2002) develops a two dimension based SCP matrix which classifies the 

planning tasks by planning horizons and supply chain stages of procurement, production, 

distribution, and sales as presented in Figure 3. Although the concepts of SCP and S&OP 

are relatively new, the idea of coordinated planning can be traced back to as early as 1960 

by Clark and Scarf (1960), who studied multi-echelon inventory/distribution systems. 

Since that time, research on coordination of various partial sections of the supply chain has 

been conducted. However, very few models have attempted to address the integration of 

sales, production, distribution and procurement simultaneously. The reasons are reported 

to be due to technological limitations, as such a complete integration problem is difficult to 

solve. Most articles found so far focus on the integration of partially selected functions, 

typically production and distribution, in the supply chain, at planning or scheduling levels. 
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Figure 3. Supply chain planning matrix (Fleischmann et al. 2002) 

Williams (1981) studies the coordinated scheduling of production and distribution using a 

dynamic programming approach which simultaneously determines the production and 

distribution batch sizes that minimize the costs in an assembly and distribution network. 

Chandra and Fisher (1994) investigate the value of coordinating production scheduling and 

multi­stop vehicle routing to minimize set­ups, inventories and transportation costs. 

Youssef and Mahmoud (1996) propose a non­linear programming model that considers 

production economies of scale to study the trade­offs between production and 

transportation costs and their impact on the facility centralization­decentralization 

decisions. Fumero and Vercellis (1999) propose a MIP model for integrated production 

and distribution planning in order to optimally coordinate the capacity management, 

inventory allocation, and vehicle routing in a capacitated lot­sizing and multi­period vehicle 

routing problem. The feasible solution is compared to the solution generated by an 

alternative decoupled approach in which the production plan is developed first and the 

distribution schedule is derived consequently. The research indicates a substantial 

advantage of the integrated approach over the decoupled approach. Park (2005), using a 

mixed­integer programming model, investigates the effectiveness of the integrated 

production­distribution planning in a multi­plant, multi­retailer, and multi­period logistic 

environment under capacity constraints in order to maximize the total net profit. The 
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results confirm that the integrated planning approach provides a superior performance to 

the decoupled one. Cohen and Lee (1988) present a supply chain modeling framework and 

an analytic procedure that addresses the operating policies of material control, production, 

and distribution using a hierarchical heuristic approach. 

The applications of coordinated and integrated production-distribution planning in an 

industrial environment have been documented in various publications. Klingman et al. 

(1988) present an optimization programming based production-distribution planning 

system for W.R. Grace, a company making multi-commodity chemical products. Haq et al. 

(1991) propose an integrated production-inventory-distribution model in a multi-stage 

manufacturing system using mixed integer programming and applied to a real case of a 

company manufacturing urea fertilizer. Martin et al. (1993) present a large scale linear 

programming model of the production, distribution and inventory operation for a flat glass 

business of Libbey-Owens-Ford, in a multi-facility multi-product, multi-demand centre, 

and multi-period environment. The case study shows again a significant saving from the 

integrated planning approach. Chen and Wang (1997) developed a linear programming 

model to solve the integrated procurement, production and distribution planning problem of 

a single planning period for a Canadian steel-making company in a multi-echelon logistic 

network under deterministic demand. Flipo (2000) addresses the production and 

distribution planning problem in a can manufacturing system involving several 

geographically dispersed manufacturing sites, each having multiple unrelated production 

lines. A hierarchical spatial decomposition approach is proposed that decomposes the 

global industrial problem into several sub-problems enabling the global production 

allocation problem as well as the short-term job scheduling problems to be treated in a 

coordinated fashion. 

The coordination and integration of SCP in the forest products industry have been studied 

intensively in recent years. Maness and Norton (2002) carry out research on the integration 

of lumber sales, sawing, inventory, and boom usage planning in sawmills. They develop a 

linear programming based multi-period planning model for the problem and tested it in a 

prototype sawmill assuming mill capacity, lumber prices, market demand, raw material 
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supply are static over the planning period. Rizk et al. (2006) study the dynamic production-

distribution planning problem in the pulp and paper industry between a paper mill and a 

distribution centre with transportation costs subject to economies of scale following general 

piecewise linear functions. Ouhimmou et al. (2007) present an integrated planning model 

for the furniture industry that addresses the multi-site and multi-period planning of 

procurement, sawing, drying, and transportation. The MIP based model is solved both 

optimally using a CPLEX engine and approximately using time decomposition heuristics 

assuming a known and dynamic demand over the planning horizon. 

Building on these earlier works, we propose a modeling approach to evaluate the value of 

S&OP. Inspired by the SCP matrix developed by Fleischmann et al. (2002) and based on 

the analysis of the fundamental elements of S&OP, the S&OP in the supply chain context 

can be expressed graphically as the integrated SC-S&OP in Figure 4. This framework can 

be extended to accommodate an alternative multi-site organization where a centralized SC-

S&OP is implemented. In this case, the SC-S&OP model can be expressed as a multi-site 

MIP model representing the centralized collaborative effort in the sales, production, 

distribution and procurement planning seeking for organization-wide global performance 

optimality. Unsatisfied demand due to capacity limitations of one site can be satisfied from 

another sites and production allocation can be rationalized taking into consideration the 

cost tradeoffs between production and distribution. Thus, greater value is expected in a 

multi-site organization using the multi-site based SC-S&OP. The centralized SC-S&OP 

model generates a set of plans specific for each production site. Based on the site-specific 

plans, each production site develops schedules locally for its own operations (Figure 5). 

The scope of this article is limited to the cross function integration of S&OP, while its 

hierarchical coordination and routine planning process will be treated separately. The SC-

S&OP and SP-S&OP are distinguished in this study with DP being the control case. The 

three planning approaches are summarized in Table 1. 
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Table 1. The three planning approaches to be studied 

Code Name Planning structure 
SC-S&OP Supply Chain based S&OP 

SP-S&OP Sales-Production planning 
based S&OP 

DP Decoupled Planning 

Integrated sales-production-distribution-
procurement planning 
Integrated sales-production 
planning with separated 
distribution and procurement planning 
Separated sales, production, distribution, and 
Procurement planning 

3.3 Model formulation 

In model formulation, we consider a case in the process industry. An enterprise has several 

alternative mills m in different geographical locations (Figure 6). It has a centralized sales 

department responsible for multi-site sales decisions while the production, distribution, and 

procurement decisions are made locally by each mill. The enterprise serves different 

customers, contract and non-contract, including spot market, in different regions at different 

market prices. With a contract customer, a contract is signed at an agreed price and 

quantity for a planning horizon T. Although the enterprise must satisfy the contract 

demand, they reserve the right of not satisfying or postponing the part that is beyond the 

agreed quantity, upon capacity shortage in the demand period. With a non-contract 

customer, including spot market, their demand may be either not satisfied or satisfied fully, 

when capacity is not available in the demand period. Unsatisfied demand may be served in 

a future period as backlog. When there is surplus capacity, the spot market, in the form of 

non-contract customers, is sought to absorb remaining capacities in a loosely "push" mode 

based on flexible demand. Both contract and non-contract demands are deterministic and 

dynamic with seasonality over the planning horizon. 
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demand ( d°,) 

raw material purchase f-^ïU„.J 
sales (S I ) 
backlogged sales (SSif 

lotsize (Xj^) 
inventory/backlog (!&, •' I^m) 
raw material inventory (IrmumJ) 

S: raw material suppliers, M: manufacturers, DC distribution centers, C: customers Material flow 

Information flow 

Figure 6. The supply chain network of the alternative multi-site OSB manufacturing 

company 

The sales decisions are passed to each mill. We consider that each mill has a single 

capacitated production line and production is carried out in batch. Each mill produces a 

number of product families. Each product family is produced using different raw materials 

at a specific quantity mix and production rate. Changing product families from one to 

another requires a sequence dependent set-up time which is independent of the volume 

produced. Due to the small and insignificant differences at the aggregated level, the set-up 

time will be approximated as fixed and a fixed set-up cost will be considered. From each 

product family, different product items can be produced. The operation is on a MTO basis 

and limited warehouse capacity is available at each mill. 

Shipping is carried out by a number of third party logistic companies using different 

transportation modes (rail and truck) and vehicle types. A fixed truckload cost per 

destination is charged for the rails, and a variable rate, for trucks. Final products are 

shipped to the customers either directly or indirectly via distribution centres (DCs) as 

shown in Figure 6. The enterprise has access to several third party DCs which are assumed 

to have unlimited capacity. 

The enterprise procures raw materials from a set of contract and non-contract raw material 

suppliers. With a contract supplier, a minimum purchasing quantity must be complied 
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under the agreed price over a planning horizon T. Some raw material supplies are subject 

to long lead-time, seasonality, and variability. Large raw material inventory capacity is 

available at each site to absorb the seasonality and variability of the supply. The raw 

material inventory is maintained and managed internally complying with safety stock 

policy. Inbound raw material shipping cost is included in the procurement cost. 

3.3.1 Multi-site SC-S&OP model 

Following the case described above and the illustrations made in Section 3.2 (Figure 4), we 

can formulate the multi-site SC-S&OP model using a multi-site MIP model with integrated 

sales, production, distribution, and procurement decisions representing the enterprise wide 

collaborative planning process. The objective is to maximize the global net profit by 

balancing the sales revenue and supply chain cost of the enterprise subject to the aggregated 

supply chain capacities over a planning horizon T. The data inputs and decision outputs are 

shown in Figure 7. The indexes, sets, parameters, and decision variables are listed below, 

followed by the model formulation. 

Multi-site cantrali2a<i SC-S&OP 

t 1 

demand (c& J, price (b,'J 

salas ( S I ) , backlogged sales (BSD 

lawmater ia l inva i to iyf /^ , ; * * * * * * * ( H ^ — A H m < » m J backlogged sales (BS$ ) 
dc invenioiy/J iAi,> mventoiy/backlog f j£, 1 1 ^ ) 

Figure 7. Centralized SC-S&OP model with joint sales, production, distribution, and 

procurement planning 

Indexes and sets 

me M Set of manufacturing mills 

i e I Set of product families 
1 e T Set of time periods 
c e c Set of customers 
c&cc Set of contract customers 
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c e N C Set of non-contract customers, (C = CC U NC) 

s e S Set of raw material suppliers 

s e CS Set of contract raw material suppliers 

s e NS Set of non-contract raw material suppliers, (s = CS U NS ) 

rmeRM Set of raw materials 

rmce RMC Set of raw material categories, (rm e rmc) 

s e S H Set of outbound shipping suppliers 

de e DC Set of distribution centres 
v e v Set of vehicle types 

K Set of vehicle categories vc— 

r e / £ . Set of routes from mill m to distribution centre dc 

r>sRmc Set of routes from mill m to customer c 

r e R d c c Set of routes from dc to customer c 

r e R Set of all routes, R = Rmdc \ j R ^ [j R ^ 

Parameters 

Sales 

b t
c

t Sales price of product family / to customer c (c e C) in period / 

d, c
t Demand from customer c ( c e C ) for product family i in period / 

dminc
it Minimum demand quantity from customer c ( c e C C ) for product family i in 

period t 

Production 

K M Production capacity of mill m in period / 

Kmt Estimated production capacity of mill m in period t 

fc^ Estimated product cost of producing unit quantity of product family i at mill m 

pjm Capacity consumption for producing one batch of product family i at mill m 
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P i m Product ion batch size of product family i at mill m 

c ^ Unit product ion cost to produce product family /' at mil l m 

scm Expected set-up cost at mill m 

stm Expected set-up t ime at mill m 

him Inventory ho ld ing cost for unit quanti ty of product family / at mill m 

b o i m Backlog cost for unit quant i ty of product family /' at mill m 

I~ m 0 Initial backlog quantity of product family i in mill m at period t=0 

KIm Warehouse inventory capacity of mill m 

G Big number 

Distribution 

f£ Shipping fixed cost of supplier s (se SH) on route r using vehicle type v 

es
i rv Shipping var iable cost of supplier s ( s e S H ) for product family i on route r using 

vehicle type v 

a. Vehic le capaci ty absorpt ion coefficient per uni t o f product family i 

h{ dc Inventory hold ing cost for unit quanti ty of p roduc t family i at distr ibution centre 

dc 

trt dc T ransh ipment cost of uni t quanti ty of product family i through distr ibution centre 

dc 

KSHS
V Shipping capaci ty o f supplier s ( s e S H ) wi th vehicle v 

KVV Vehic le capaci ty of vehicle type v 

K D m v c Expedi t ion capaci ty of mill m for vehicle ca tegory vc 

P r o c u r e m e n t 

urm,m Consumpt ion of r a w material rm for p roduc ing unit quant i ty of product family i 

at mill m 

Kl rme m Inventory capaci ty of r a w material ca tegory r m c at mil l m 
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KS? Supply capacity of supplier 5 ( s e S ) in period / 

q min 5 Min imum contract purchase quantity from supplier 5 ( s e C S ) 

s srm.m Safety stock of raw material rm at mill m 

m s
m , Unit purchase cost of raw material rm from supplier s (s e S) in period t 

s c ' rm Set-up cost of purchasing raw material rm from supplier 51 ( s e S ) 
nrm m Unit inventory holding cost of raw material rm at mill m 

L'm Lead-time of procuring raw material rm from supplier s ( s e S) 

Decision variables 

Sales 

SI Sales quantity of product family /' to customer c (c e C) in period / 

BS-, Backlogged sales quantity for product family i to customer c ( c e C ) in period t 

Product ion 

X m l Production quantity of product family i at mill m in period t 

N m Number of production batches of product family i at mill m in period t 

I*mt Inventory quantity of product family i in mill m at the end of period t 

l ~ m t Backlog quantity of product family i in mill m at the end of period t 

siM Binary variable being " 1 " if set up is required to produce product family i at mill 

m in period t, " 0 " otherwise 

Distribution 

X *vl Shipping quantity of product family i by supplier s ( s e SH) on route r using 

vehicle v in period t 

N'n, Number of truckload requirements from supplier s ( s e SH) on route r using 

vehicle v in period t 
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li.da Inventory of product family i in dc at the end of period / 

Procurement 

yrm.t 

Purchasing quantity of raw material rm from supplier s (se S) by mill m in 

period t 

Inventory of raw material rm at mill m at the end of period t 

Binary variables being " 1 " if a purchase is made for material rm from supplier s 

(seS) in period t, "0" otherwise 

Objective function: 

Max Z Z Z KSÛ "j E Z Z {cimXm< + ««*ù* + hm­Ilmt + K ­ ' i . ) 
ceC / « / j­eT 7 \ m e M t e l t eT J 

e S / / Je/ refl veP reT j e S / / fc / reR„ dc veC reT i e / c 

2 ­ , 2­ i Z J 2 J m r m . l ^ r m . m . l + 2 j 2 J 2 J ^rrnVrmJi + 2 J 2 ­ , 2 ­ , Km.mfm.m, l 

te l d a DC le7" 

^ j e S rmeRM meM leT .te.Y rmeRM teT rmeRM meM /e7" 
O) 

Constraints concerning the sales: 

S y B S Ç y d m i n l 

SlZdl 

B S l < S 
it — " i l 

VceCC,i , t 

\ /ceC,i , t 

VceC,i,t 

(2) 

(3) 

(4) 

Constraints concerning the production: 

Z (*m + C l ­ C l ­ C + Im ) + Z i1^,,­, ~ I,de, ) = Z Su V i ' ' 
dee DC c tC 

Z ' i . = Z *s; 
meW ceC 

■̂ ­ iml ' " *" imr " / m 

V/,/ 

Vi,m,t 

(5) 

(6) 

(7) 
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Gs,mt ~X™ Vi,m,t (8) 

E/>/­"<«<+ E*'«W**.,, Vm,/ (9) 
i e l t e l 

Z '­;, ^ KIm Vm,, (10) 
i e l 

fml=0 ~ 1 iml =T = ' im 0 V / / M ( 1 1 ) 

Constraints concerning the distribution: 

S?t + fl5­_y ­ 5 S ; = E Z Z *<*v, VceC,^ (12) 

j ^ + / + , _ / + = y y y jr.* \/i,m,t (13) 
■/x imt T 1 i m t ­ l l imt / j / _ , , £ j ■"■ irvt ' ' v 7 

Z Z Z *J«+ /.*/­/­'..*, « E Z Z^.>w VI,* , I (i4) 
s e S H r e R m d c v * V s e S H r z R d c c veV 

N , Y S & L VseSH,r,v,t (15) 

X w;v, < *$#,' VS e SH,v,t (16) 
ref i 

Z Z Z N' r v ,^KDm v c Vm,/ (17) 

Constraints concerning the procurement: 

/ . rm m t ­ L ' tm,m, t­1 rm ,m ,t / . rm.i.m imt 

" " '«' Vrw,m,r=l­4w,...,r (18) 

C M ­ » , « . . * 0 Vrw,m,i (19) 

^ ^ rm,m,t rmc,m 

E Zi; , , ,^ ; 
rmeRM meM 

Gvs > y x s 

^*S mi,/ — ^ j ^ v rm,m,t meM 

\frmc,m,t (20) 

\/s 6 S,t (21) 

Vs eS,rm,t (22) 

74 



Chapter III. The Value of Sales and Operations Planning in Oriented Strand Board... 

E E E * ~ . . M ^ m i n ' 
■«"«■««f «r VseCS (23) 
S«. ̂  Ximt, II , , i;m,, XU,, Iidcl, X'rmmf, Irmmt > 0, Niml, NU are positive integers, and 

siml e {0,l},ys
rml e {0,1} Vc,i,m,t,r,v,dc,rm,s(s e S{J SH) (24) 

In objective function (1), the first set of brackets represents the total revenue from the 

contract and non­contract sales. The second set of brackets describes the production, set 

up, inventory and backlog costs. The third set of brackets states the sum of variable and 

fixed transportation costs, the dc transhipment cost and dc inventory cost. The inventory in 

DCs is included in the integrated model in order to provide flexibility with additional 

inventory capacity to absorb unused production capacity and to improve capacity 

management upon dynamic demand. It can be set to zero to represent strict MTO operation 

with DCs being used as transhipment centres only. The last set of brackets presents the 

total cost of purchasing, order set­up, and raw material inventory. 

The Constraints (2) and (3) describe the sales decisions for contract and non­contract 

demand stating that sales decision must satisfy the contract demand that is within the base 

amount for period t (2), however, the demand quantity that is above the base amount as 

well as the non­contract demand may not be satisfied within the demand period if the 

aggregated capacity is insufficient (3). In this case, the sales decision may decide to accept 

them and serve them in future period as backlogs \I~mt ), or, reject them. In either case, the 

backlogged sales quantity [BS*) should not be greater than the sales quantity (S°) (4). 

Upon satisfaction of the base amount (2), the company may continue serving the contract 

demand up to the capacity limit, or switch to serve non­contract demand, whichever is 

more profitable. 

Constraints (5) are the coupling constraints that connect the production, distribution and 

sales decisions together and define the global flow conservation at the aggregated multi­site 

level. They state that the sales quantities should be satisfied by the aggregated multi­site 

production as well as the inventories from production sites and DCs. The backlogs are 

converted into backlogged sales (BS.,) (6), which will be subtracted from the shipping 
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quantity of period t as shown in constraints (12). Constraints (7) ensure the production is 

always in full batches. Constraints (8) imply that if there is a production of product family 

i, there must be a set-up for it. Constraints (9) are the production capacity constraints 

stating that the total production and set-up time should not exceed the total available time in 

the planning period t. Constraints (10) define the warehouse inventory capacity. The 

beginning and ending backlog conditions are described in constraints (11). 

Constraints (12) connect the sales and distribution decisions describing the flow balance at 

a customer node (Figure 6). They state that the shipment to the customer should equal the 

sales quantity to the customer plus the backlogged sales quantity of the previous period 

minus the one of the current period. Constraints (13) connect the production and 

distribution decisions to illustrate the flow balance at a mill node (Figure 6). They state 

that the shipments out of the mill must be equal to its production quantity plus the 

beginning inventory minus the ending inventory. Constraints (14) are the flow balance 

constraints at a DC node describing that the shipment into the DC plus its beginning 

inventory minus the ending inventory must be equal to the shipment out of the DC. 

Constraints (15) calculate the number of truckload requirements for each vehicle type from 

each supplier. They describe that each load may contain multiple products for the same 

destination. Less than truckload shipment is possible, however, the objective function 

forces this variable to take the smallest integer value that satisfies the constraints. 

Constraints (16) are the shipping supplier capacity constraints, and (17), the mill dispatch 

capacity constraints. 

Constraints (18) connect the procurement and production decisions through raw material 

flow balancing at a mill node. They describe that the raw material deliveries, which is the 

purchasing quantity in period t-Ls
m , plus the beginning inventory minus the ending 

inventory should be equal to the material usage in the production. The raw material safety 

stock policies are stated in constraints (19) and the raw material inventory capacity 

constraints are provided by constraints (20). Constraints (21) describe the raw material 

supply capacity constraints. The supplier capacity is presented as a function of t in order to 

incorporate the seasonal variability of the supply. Constraints (22) are the order set-up 
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constraints which assume that orders for multiple sites can be coordinated to reduce the 

order set-up cost. Constraints (23) state that the material procured from a contract supplier 

must satisfy the contract quantity commitment. Constraints (24) define the domain of the 

decision variables. 

3.3.2 Multi-site SP-S&OP model 

The multi-site SP-S&OP model represents the planning approach where the sales and 

production are planned jointly in a multi-site environment while the distribution and 

procurement planning is carried out separately in each mill as shown in Figure 8. Thus the 

model consists of three sub-models, the multi-site based sales-production sub-model, 

single-site based distribution and procurement sub-models. Each sub-model has its own 

objective function seeking for its own local optimality as described in each sub-model 

formulation. The enterprise performance is measured as the multi-site revenue minus the 

total costs of production, distribution, and procurement of the all sites. The inputs and 

outputs of each sub-model and information flows between them are illustrated in Figure 8. 

The site-specific sales and backlogged sales decisions (sïmt,BSfml) are determined by the 

multi-site based sales-production sub-model in order to be used by the distribution sub­

model. In the distribution sub-model, the distribution centres are used as transhipment 

centres only. Although all mills have access to the common DCs, each mill manages its 

own shipments through DCs. The three sub-models are described as follows. 

lot size (Xf m ) 

Procurement 
planning 

Distribution 
planning 

s a k s f S £ j 
backlogged 
stàas(BSfm) 

SP-S&OP 

demand (d% ) , price (h's) 

sales ( S t ) , backlogged sales (BSD 

lawinaterialpiiffihase ( K ^ . , 1 shipment ( X ^ j lot size ( X , m ) sales f ^ . ) 
raw material invaitory ( I ^ ^ . j no. truck loads f.Y^,.I no. batches ( X y backioged safes (BS* j 

mventoryjfcaeklog (ILj i IL\ t) 

Figure 8. SP-S&OP model with centralized sales-production and localized distribution and 

procurement planning 

Sales-production joint sub-model 

77 



Chapter III. The Value of Sales and Operations Planning in Oriented Strand Board... 

The objective of sales-production sub-model is to maximize the enterprise wide net profit 

through contract and non-contract sales, taking into consideration the production, set-up, 

inventory and backlog costs. 

Objective function: 

f 
MaX : E E E E bUSL> ~ CimXim, ~ SCmSim, ~ K J L ~ b°imf 

tel meM teT 
imt 

\ceC J 
(SPI) 

Subject to following constraints plus (7), (8), (9), (10) and (11): 

^(s^-BSi^dmml 
meM 

E SL < dl 

\ / ceCC, i , t (SP2) 

meM 

B SL - SL 

imt 
ceC 

X- imt + * imt- l f m l - l ' imt + fmt ~' 7 . " 

I'm, = Y B S l 

VceC,i,t (SP3) 

\fceC,i,m,t (SP4) 

Vi,m,t (SP5) 

imt 
eeC Vi,iw, t (SP6) 

SI,, BSl„Xim„ I L J L * 0> Nim, ispositiveintege^ands;,,,, G {0,l} VC,Ï,/ÏI,/ (SP24) 

Constraints (SP2), (SP3), (SP4) are the modified constraints (2), (3) and (4) where sales and 

backlogged sales variables are site specific. Constraints (SP5) and (SP6) modified 

constraints (5) and (6) that remove the DC inventories while focusing on the flow balance 

of each production site with the site specific sales and backlogged decisions. Constraints 

(S24) are the modified non-negative constraints pertaining only to the sales and production 

decision variables. 
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Distribution sub-model 

Based on the sales and backlogged sales information (S^.BS^,), the single site based 

distribution sub-model decides the number of vehicles required from each shipping supplier 

and the shipment quantity for its own site. The objective is to minimize the total cost of 

shipping and transhipment. 

Objective function: 

Min : I £ I I I (eLxL + W L ) + E ***'*« 
seSH ie l veV leT y reR reR m d c J 

Subject to following constraints plus (15), (16), and (17): 

Vm (Dl) 

Sim, + B S L-\ ~ B S L = E E E Xi> 
seSHre(Rm.cUR«,cher- VC € C,/,W,f (D12) 

irvt 

Z Z H * L , - E E E *£« v < ^ > ' (D14> 
i eS iV r e R m d c veV s e S H r e R J c c veV 

XL, > 0, and NL is positive integer Vs e 5//, i, r, v, r (D24) 

Constraints (D12) are the modified constraints of (12) where the sales and backlogged sales 

variables are site specific. Constraints (D14) modify constraints (14) by removing the DC 

inventories. Constraints (D24) define the domain only for the distribution decision 

variables. It is noted that the sales and backlogged sales quantities in constraints (D12) are 

parameters determined previously by the sales-production sub-model to which the 

distribution model has no further influence. 

Procurement sub-model 

Based on the production information (x iml) from the sales-production sub-model, the 

procurement sub-model decides which material, from whom, at what quantity to purchase 

and how many inventories to keep. The objective is to minimize the total cost of raw 

material purchasing, ordering and inventory of the mill. 
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Objective function: 

Min{ Z EE"C*«+ Z EZ<-C + Z E w « ] v™ (Bi) 
\ m e R M seS teT rmeRM seS teT rmeRM teT ) 

Subject to constraints (18), (19), and (20) plus: 

Y 4 X s
m m t <KS: 

™eW VseS,m,t (B21) 

GyL,t^Km.m, VseS,rm,m,t (B22) 

E E xrm,m,, ^¥min J, 
m,ew ,.r \fseCS,m (B23) 

^™,m,,^™,m,i ^ °> and yL, e {0,l} ^ g 5 r m ^ , ( B 2 4 ) 

Constraints (B21) are the modified constraints of (21) having the procurement quantity 

calculated on a single mill basis. The order set-up costs in constraints (B22) are now 

charged for any purchase order made from a single mill. The parameter qmirf in 

constraints (23) now becomes ^mir^, representing an estimated share of the contract 

commitment of mill m. Constraints (B24) are the modified constraints (24) pertaining only 

to the procurement decision variables. 

3.3.3 Multi-site DP model 

The multi-site DP model represents the traditional decoupled planning approach where the 

sales planning is carried out centrally while the production, distribution, and procurement 

planning are performed separately at each site. The model consists of four sub-models, 

corresponding to the four planning units of sales, production, distribution, and procurement. 

Each planning unit seeks optimal decisions locally and global performance of the enterprise 

is the global revenue minus the cost performance of the all sites. Figure 9 presents the four 

planning units showing the data inputs and decision outputs of each unit and information 

flows among them. In this section, only the sales and production sub-models are presented. 
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The distribution and procurement sub­models, which are the same as the ones in the SP­

S&OP model, will not be repeated here. 

lot size ( X i M ) 

Procuremant 
planning 

Distribution 
plaanime 

j] backlogged L: 
« W s s ? « 'Redact ion 

P 

^ s ( S U 
1 sales 

%(SL) 
demand f«Ç ) , price (b ' t) 

sales ( S D 

i ♦ ♦ * 
raw material purchase ("J^w, ^ shipment ( X ? y lot size ( X i M ) sales (S%) 
raw material inventory ( I ^ ^ J no. feuck loads f#X4,J no. batches O f ^ 

mventoiy/backlog f J^. / 1 7 ^ ) 

Figure 9. DP model with centralized sales and localized production, distribution, and 

procurement planning 

Sales sub­model 

In DP, the sales decision is made based on the aggregated demand, the estimated product 

(family) cost and estimated production capability (typically volume based) of each mill. 

The objective is to increase the sales quantity, up to the estimated production capacity of 

each mill, so as to maximize the expected net profit. The cost reductions are considered the 

responsibilities of each mill and each planning unit. Backlog is inevitable, which is 

determined in the production model. 

Objective function: 

M^­ZZZZ(^­/^K 
iel meM teT ceC 

(SI) 

Subject to following constraints plus (SP3): 

y s? > 
A­i imt — 

d min c 
II 

meM 

Z J Z J S iml < Km, 
t e l ceC 

SL * o 

\ / ceCC, i , t 

Vm,t 

VceC,i,m,t 

(S2) 

(S9) 

(S24) 

81 



Chapter III. The Value of Sales and Operations Planning in Oriented Strand Board... 

Constraints (S2) are the modified constraints (SP2) that remove the backlogged sales 

variables. Constraints (S9) state that the total sales quantities allocated to a mill should not 

exceed the estimated production capacity of that mill. Constraints (S24) define the domain 

for the sales decision variables. 

Production sub-model 

Based on the sales decision \SL)i m e production sub-model decides the production lot size 

and inventory levels, backlogs/backlogged sales [ i^ /BSL), while subjecting to the time 

based production capacity constraints. Due to the decoupled planning approach where 

sales decision is made based on estimated production capability, backlog is inevitable. 

Production has no influence on sales decision. Out-sourcing is not allowed. The objective 

of this sub-model is to minimize the total production, set up, inventory, backlog costs and 

revenue loss of any unsatisfied sales (BS°imT ) at the end of the planning horizon T. 

Objective function: 

( f ) 
Min : E E c , m x t m , + sc m s i m t + h;mi;m , + h;mi;m, + E bïrBS ,C

mT 
tel teT \ \ ceC ) 

Vw (PI) 

Subject to constraints (SP4), (SP5), (SP6), (7), (8), (9), and (10) plus: 

E ( * - + c - c h Td 
min 

meM 

* imt = 0 * im 0 

ceCC V/,/ 

Vi,m 

BSc
imlXiml, IL,i;mt > 0 , Nimt is positive integer, and simt e {0,1} Vc e C,i, m,t 

(P2) 

(Pll) 

(P24) 

Constraints (P2) reinforce the constraints (S2) to ensure that the contract demand within the 

base amount is satisfied within the demand period. Constraints (Pll) modify the 

constraints (11) to define only the beginning backlog condition where the ending backlog 

(I~mT) is uncontrollable. The ending backlog in T (I~mT) will be regarded as lost and the 

lost sales penalty, calculated as the lost sales revenue in (PI) will force the backlogged 
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sales ( B S y ) , i.e. (I~mT), to be minimal within the production capabilities. Constraints 

(P24) are the modified non-negative constraints pertaining only to the production decision 

variables. 

3.4 Application to an OSB industry case 

3.4.1 Case description 

The models described in Section 3.3 were developed in the context of a project that was 

carried out in collaboration with a large OSB manufacturing company. The company has 

11 manufacturing mills across North America and Europe. As a prototype, the models are 

applied to one of its OSB mills, in Quebec, Canada. This section describes how the S&OP 

concept and models are applied to this single mill environment. 

In a single mill case, the SC-S&OP follows the framework shown in Figure 4. It is a 

special case of the multi-site SC-S&OP, where the set of manufacturing mills "M' consists 

of only one mill. The integration of sales, production, distribution and procurement, as 

shown in Figure 7, is carried out within the mill. The aggregated demand(de
lt) and 

decision variables (Sc
u) and ( BSc

it) are for the single mill. Following the same logic, the 

SP-S&OP and DP models as illustrated by Figure 8 and 9 are also for a single mill facing 

the mill specific demand. The multi-layers of production, distribution, and procurement 

planning, as shown by the dotted rectangular shapes, should now be single layer, 

representing the planning of the single mill. 

The problem scope consists of one manufacturing mill producing 11 product families using 

8 raw materials supplied by 19 raw material suppliers. Products are shipped to 140 

customers across 5 different regions by 4 shipping companies using 5 different vehicle 

types via 2 distribution centres. Taking into consideration the sparsity, the problem size for 

the SC-S&OP model is approximately 16000 decision variables and 17000 constraints. 

The mill has a single production line which is operated round the clock and constrained by 

the multi-daylight hot press. In the production line, the wood logs of different species 
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(Aspen, Birch, and Balsam Poplar) are fed into the system according to specific 

proportions. These logs are debarked and stranded. The wood strands are separated into 

two streams of face and core materials that are dried to different moisture content 

specifications, respectively. The dried wood strands are mixed with wax and different 

resins, in liquid and powder forms, specially formulated for use in the face and core layers, 

respectively. The mixture of the wood strands is then formed into mattresses that are 

pressed under high temperature and pressure by the hot press to produce well bonded and 

consolidated structural panels. In each pressing cycle, a batch of full press load panels of 

the same product family must be produced. These panels are then cut into different sizes, 

packed and stored in warehouse to be shipped to the customers. The company has an 

internal warehouse with constrained inventory capacity. The process is illustrated in Figure 

10. 
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Figure 10. The OSB manufacturing process 

The production line produces 11 different product families. Each product family requires a 

unique quantity mix of raw materials [u rmim j and is produced based on a defined 

production (pressing) cycle time (p im ) . A change of product family from one to another 

requires a set-up time which varies depending on the product family being produced before 

and immediately after. A fixed set-up cost is estimated based on the production loss due to 
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the set-up time and its expected market value. A weighed average of product market values 

is used to determine the set-up cost. From each product family, depending on the cutting 

pattern used, different cut-to-size panels (product items) can be produced that are packed 

and sold to customers in different market locations at different prices [be
u j (Figure 11). In 

this case, sales decision plays an important role, since it not only impacts the revenue, but 

also the productivity, as well as the total cost of production, distribution and procurement. 

The company has two categories of demand, contract and non-contract. In this industry, 

companies generally have annual contracts or agreements for a percentage of annual 

capacity. Remaining sales are made by selling to non-contract customers and spot markets 

in different regions at dynamic regional market prices. Contract sales provide regular sales 

at a pre-negotiated price. However, it locks the capacity and price that limits the company 

from getting greater revenue when the market price is high. Non-contract and spot market 

sales, on the other hand, although usually with higher prices, are riskier, since prices may 

substantially decrease and quantities are not guaranteed. In this industry, both contract and 

non-contract demands are highly seasonal which influences spot market prices. Therefore, 

it is important to decide what percentage of the capacity should be allocated to contract 

sales and what percentage to the non-contract sales, with the aim being to secure the market 

yet have the flexibility of taking advantage of the favourable spot market price. 

Raw Product Cuttme Product Product 
materials families patterns Items packet 

Figure 11. Product structure 

Shipments are made using both rail and trucks of different vehicle types, by a number of 

third party shipping companies. For the purpose of this numerical study, a flat truckload 
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rate is used for all shipments. Orders are shipped either directly to the customers or 

through DCs. The DCs are used for reloading purposes i.e., to divide large loads into 

smaller loads or combine smaller loads into large ones. 

Wood is supplied from various sources. Approximately 50% of the wood is supplied from 

Canadian Crown land through an agreement called CAAF (Contrat d'approvisionnement et 

d'aménagement forestier). A CAAF authorizes the company to harvest, in a set of 

territorial land areas, the agreed volume and species of tree stems for a period of one year at 

an agreed price. The company must comply with the agreement. Harvesting operations 

and inbound transportation are carried out by contractors. The other 50% is procured from 

private timberland owners (contract based) and spot market. Wood supply from Crown land 

and private timber lands generally has a long lead-time of one month on average, while 

from the spot market the delivery can be made immediately after the purchase. Although 

the spot market generally has lower prices and shorter lead-time, availability is not always 

guaranteed. Wood supply in Quebec is affected by seasonality that varies considerably 

over the year due to changes in the weather. In the forest, more wood is harvested during 

winter when the ground is frozen. In April and May, wood supply is scarce because log 

transportation in the forest is prohibited due to thawing. During summer, operations are 

focused on silvicultural management and relatively less wood is harvested (Carlsson et al., 

2007). Resin and wax supplies are not affected by seasonality and have a short lead-time. 

Both contract and non-contract suppliers are used for resin and wax supply. While the 

contract supply provides the guarantee for the material availability, the non-contract supply 

helps to balance the prices and provides volume flexibilities. We consider that all raw 

material inbound transportation is provided by the suppliers. The shipping cost is included 

in the procurement cost. 

3.4.2 Data collection 

Due to the large scale of the models, covering different supply chain functions, data 

collection is a very challenging task. Different functions maintain their data locally. Most 

of the data exist in the form of Microsoft Excel file while some in the form of text file, 

reports, logbooks, etc. The data collection involves interviewing the employees responsible 
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for each of the functional units. To obtain the data required by the models, both electronic 

data as well as hard copies of reports, plans, schedules, etc. are collected. One challenge 

faced in data collection and preparation is the inconsistency of the data unit used in 

different files and reports by different departments. A common set of units has to be 

determined in order to create standard measures across the supply chain to be used by the 

models. Another problem is that some of the data are not available, such as demand, price, 

and backlog cost. 

Company normally does not record the customer original orders, nor any changed orders, 

except those that are accepted and served, which are typically known as the shipping data. 

In our case, both contract and non-contract orders arrive on a weekly basis. Because 

manufacturing is conducted on a MTO basis, customer orders are accepted and confirmed a 

week ahead. Production is carried out based on the confirmed orders. It is possible that a 

customer orders more than what is accepted, and/or an accepted order has to be postponed 

to the following week(s) as backlogs. The orders or ordering quantities that are refused or 

changed are not recorded in the system. To carry out numerical analysis, as we are doing in 

this paper, customer original orders need to be generated. 

The shipping data, obtained from the company, consists of shipment quantity of each 

product to each customer in each week for a horizon of one year. These data represent the 

customer orders that are accepted and served in each week. The analysis shows that 

although the shipping data removed the unaccepted demand and possibly shifted a demand 

to a different period, it preserved a significant amount of demand information including 

seasonality as indicated by Figure 12. Based on this analysis, customer weekly ordering 

behaviour (the products that a customer normally orders, the ordering frequency, mean 

demand level, total demand, lower bound, upper bound, variability) and seasonality are 

derived from the shipping data. While the original ordering data is not available, we 

assume that the customer ordering behaviour obtained from shipping data is valid, and can 

be used as a basis to regenerate randomly the customer ordering data. A similar approach 

is found in Lemieux et al. (2008) where shipping data is used in determining the parameters 

for modeling the customer demand in the sawmill industry. For our purposes, a generalized 
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variability of 30% mean demand is assigned to each customer ordering behaviour in order 

to represent the original customer ordering variability. The demand generation is described 

in Section 3.4.3. 

For the pricing data, due to the sensibility of the data, the exact pricing data is not collected. 

Rather, the market price from Random Lengths Price report, 2005, is obtained from the 

company. The Random Lengths report is a widely circulated and respected source of 

information for the wood products industry. It is used as a guideline by many companies to 

price their commodity products for non-contract sales. To reflect the stochastic nature of 

the market price, the price behaviours (market location, product, mean price, variability) as 

well as the price seasonality are determined. Based on the price behaviours and 

seasonality, market prices are generated using the method described in Section 3.4.3. 

Although backlogs are used in the company, the backlog cost does not exist. In order to 

express the undesirability of having backlog over inventory and ensure that the backlog and 

inventory cannot both be positive values in the mathematical models, a unit backlog cost is 

required. This cost, in practice, should reflect any tangible or intangible effect on 

customers' perceptions of the company's service standard. To this end, a company may 

determine this cost accordingly. For the purpose of this study, a unit cost of $0.50 is used. 

Increasing this cost further is found to have insignificant effect on backlog quantity. 
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Figure 12. Annual shipping data of the OSB company 
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3.4.3 Demand generation 

Following the discussion in Section 3.4.2, it is noted that both contract and non-contract 

customers exhibit seasonality in their orders. However, they follow different behaviours. 

Contract demands usually arrive at a regular frequency. Although the expected annual 

demand is known with high certainty, the exact ordering quantity varies randomly and is 

influenced by seasonality. The seasonality, described by a set of seasonal factors, is 

determined using seasonal decomposition method (Nahmias, 1989) on a group of 

customers exhibiting similar seasonality. Orders with trend are regarded as a special case 

of seasonality composed with a level and a set of seasonal factors representing the trend. 

Demand generation involves determining the ordering interval, generating the un-

seasonalized orders and applying seasonal factors. A lower bound (LB) is applied to the 

ordering quantity based on the ordering behaviour. The algorithm for the contract demand 

generation is described as follows: 

Algorithm A: 

1. Determine a starting week r 0 , an ending week r e , and an ordering interval /," of 

customer c (c e CC) for product family i. 

2. Set T <- r0 . 

3. Generate an ordering quantity d,ct ' (>LB- ) of customer c for product family /' in week 

T, following normal distribution N\u%,ac
tr), where p,cix is the mean demand and 

< =0 .3 /4 . 

4. Increment r to r <- r + Ie, and check if r < ve, if yes, go to step 3; if no, go to step 5. 

5. Apply seasonal factors sc
ir to the generated ordering quantities to derive the 

seasonalized demand d°T = sc
ird,cT'. For customers having no seasonality, their seasonal 

factor sc
iT = 1. 

6. Aggregate the weekly ordering quantity d.\ to derive the monthly demand quantities 

dl to be used as demand input for the mathematic models. 
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1. Repeat the procedure from step 1 to 6 for every customer c e CC and product family 

i e I . 

Unlike the contract demand, non-contract orders arrive randomly with some influences 

from seasonality. The ordering quantity is also stochastic influenced by seasonality. Hence, 

the generation of non-contract customer orders requires a different procedure. It involves 

generating a customer's annual demand, determining the seasonality probability 

distribution, generating order arriving period based on the seasonality distribution, and 

generating the ordering quantity following normal distribution. The seasonality distribution 

is assumed to be discrete determined by calculating the probability f ( r ) of demand 

occurring in week r for a group of customers having similar seasonal behaviour. The 

probability of a demand occurring in the entire period T (one year) is P\} < X <T) = l. The 

seasonality distribution is thus,F(r) = E f{Tj )> J: = 1>—,T • For those without 

seasonality, a uniform distribution il/(0,l) is used. Similar to the contract demand, an LB 

is applied to the ordering quantity based on the non-contract customer ordering behaviour. 

The algorithm for the non-contract demand is: 

Algorithm B: 

1. Generate annual demand quantity diT of a customer c (ce NC) for product family i 

during planning horizon Tfollowing normal distribution N\jilT,<rc
iT), oc

iT =0.3//,crand 

set remaining quantity R <- dlT. 

2. Select a starting week T0 and ending week r, for 7jr0,re]. 

3. Flip an ordering week T following the seasonality distribution F ( T ) , or U(0,\) within 

the planning horizon T[T 0 , r e ] . 

4. Generate an ordering quantity d°ix (> LB,c) for week r from customer c ordering 

product family /' following normal distribution N\/nc
lT,ae

lt), a°ix =0.3//,c
r. Calculate 

the remaining quantity R<r- R-d,c
T, and check if R < o. If yes, go to Step 5, 

otherwise got to Step 3. 
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5. Aggregate the weekly ordering quantity d% to derive the monthly demand quantities 

dc
it to be used as the demand input for the mathematic models. 

6. Repeat the procedure from step 1 to 6 for every customer c e NC and product family 

i e l . 

It is worth noting that using this method, non-contract order (d] t ) does not arrive every 

week, especially in low demand season. In the high season, it may arrive several times in 

the same week from the same customer and the same product family. When this happens, 

the multi-orders are added to derive the weekly order quantity reflecting one order per week 

practice. Moreover, it is possible that more orders (both contract and non-contract) are 

generated ("received") in one period, causing capacity shortage, while fewer orders are 

generated ("received") in another causing capacity surplus. This reflects the real demand 

situation faced by the company. 

3.4.4 Market price generation 

The market price generation can follow the contract demand generation procedure 

described in algorithm A. It has a fixed weekly interval ( I ' ) for region r and product 

family i. The un-seasonalized weekly price b'lt ' for product family i in region r and week 

T is generated following normal distribution N{fj,r
jT,<jy, where (i'ix is the mean price 

and (JI = 0.3//.'r. A set of seasonal factors is then applied to the weekly price to derive 

the seasonal price br
iT = s'ixbr

it ' . Based on the weekly seasonalized price br
it, the monthly 

market price br
lt is calculated by averaging the weekly prices of region r within the month. 

The monthly market price for a non-contract customer c (c E NC) in region r for product 

family / is derived as bc
n. The contract price is determined based on the most current three 

month rolling average of the spot market price for the region where the customer belongs. 

All demand and spot market prices are generated using the FOR@C experimental platform. 

A Microsoft Access database is developed to host the data and facilitate the automatic data 
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input and solution output for the models. Due to a confidentiality agreement, the data are 

not presented in this article. 

The MIP models are programmed using Optimization Programming Language OPL5.0 and 

solved by CPLEX 10.0 optimizer. The Microsoft Access database is connected to the OPL 

models through ODBC connectivity to read and write the data directly. The programs are 

run on Windows Platform using Intel Pentium 4 workstation with CPU 2.40 GHz, 512 MB 

of RAM, and Windows XP Home Edition Version 2002. 

3.4.5 Experimental design 

For numerical analysis purposes, all models, SC-S&OP, SP-S&OP, and DP, are validated 

using the real system data, the actual shipping data, and Random Length price data 2005. 

Following the validation, model evaluations are carried out using generated demand and 

market price data with five replicates. The performance measures, in terms of net profit, 

revenue, and total supply chain cost of each model are recorded. Comparisons are made 

and the benefit of SC-S&OP over SP-S&OP and DP are obtained. Following the 

performance evaluation, sensitivity analysis is performed on some of the key factors each 

having five levels as shown in Table 2. The level 0% represents the base level of the factor, 

while the -10%, -20%, 10% or 20% represent the factor being reduced by 10%, 20% or 

increased by 10% or 20% respectively. 

Table 2. Sensitivity analysis testing plan 

Factors Levels 
Unit market price 
Demand 
Unit production cost 
Unit shipping cost 
Unit raw material purchase cost 
Unit raw material inventory cost 

-20% ■10% 0% 10% 20% 
-20% -10% 0% 
-20% -10% 0% 
-20% -10% 0% 
-20% -10% 0% 

10% 20% 
1.0% 20% 
10% 20% 
10% 20% 

-20% -10% 0% 10% 20% 
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3.5 Computational results and discussions 

3.5.1 Model validation 

The model validation results are presented in Table 3. Due to the confidentiality 

agreement, only the volume based results are presented. The "nominal capacity" is the 

designed capacity of the facility and the "actual demand quantity 2005" is the company's 

actual shipping quantity as explained earlier in Section 3.4.2. The sales, production, and 

shipping quantities are derived from the models satisfying the demand subject to multiple 

system constraints. From Table 3, it shows that all three models yield satisfactory results 

with sales, production, and shipping quantities being very close to the mill nominal 

capacity and demand quantity, the sales/demand ratio being very close to 100%. The slight 

differences in sales quantities are due to the different planning approaches resulting in 

different sales decisions. The insight of these sales decisions as well as their financial 

implications will be discussed in the following sections. Finally, the capacity utilizations 

are very close to 92% in all cases indicating 8% of capacity is not used which is in 

agreement with the expected unplanned downtime. These results confirm the validity of 

the models. 

Table 3. Volume based validation results 

Decoupled SP-S&OP SC-S&OP 

Nominal capacity (sqf 1/16")' 2,100,000,000 2,100,000,000 2,100,000,000 

Actual demand quantity 2005 (sqf 1/16") 2,127,882,660 2,127,882,660 2,127,882,660 

Total sales quantity by model (sqf 1/16") 2,127,882,660 2,123,850,870 2,120,937,582 

Total production quantity by model (sqf 1/16") 2,127,882,664 2,123,850,870 2,120,937,582 

Total shipment quantity by model (sqf 1/16") 2,127,882,659 2,123,850,863 2,120,937,583 

Sales/demand 100.0% 99.8% 99.7% 

Capacity utilization 92.0% 91.7% 91.7% 

sqf 1/16" is a volume based unit used in OSB industry being the square feet on 1/16-inch (thickness) bases. 

3.5.2 Benefit evaluation 

The benefit evaluation of the SC-S&OP model against SP-S&OP and DP models is made 

by comparing the following performance criteria: annual profit, revenue, and total cost of 
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production, distribution, and procurement. The evaluation is carried out using real system 

parameter data and generated demand and market price data. Experiments are carried out 

with five replicates. Table 4 shows the mean benefit of SC-S&OP model over DP and SP-

S&OP models in $CAD value and percentage. The benefit in $CAD value is the difference 

of the SC-S&OP value minus the DP value (or SP-S&OP value), while the benefit in % is 

calculated by 100*(SC-S&OP value - DP value (or SP-S&OP value))/DP value (or SP-

S&OP value). As expected, the SC-S&OP model generates the highest annual profit in all 

cases. The higher profit over the DP model is a result of the increased revenue and reduced 

total cost from the improved sales decisions. The large standard deviation on revenue and 

total cost reflects ihe wider spread of the results owing to the fact that in some cases, the 

SC-S&OP model incurred higher production, distribution, and procurement costs due to 

increased sales quantities in order to generate greater revenue and profit. The illustration of 

this explanation can be found in Appendix A, Table A-l. 

The benefit of SC-S&OP over SP-S&OP model is relatively moderate because of the 

improved performance from the joint sales-production planning. The benefit largely results 

from the cost reduction rather than revenue increase as can be seen in Table 4. The 

negative revenue difference indicates that the SC-S&OP model made further modifications 

on sales decisions, that although overall revenue was reduced, total cost was reduced more 

significantly resulting in a net profit improvement. In other words, if those "unjustified" 

sales had been accepted, it would have resulted in a total net profit loss. With the 

modification of the sales decisions, the service level, calculated as 100* (sales quantity-

backlogged sales quantity)/sales quantity, was not affected, the capacity utilization was 

slightly reduced as shown in Table 4. It is important to note that by altering sales decision, 

the market share may be affected with the given demand population. To maintain the same 

level of market share or to increase it will have economic implications. The modeling 

approach allows the company to balance the different decision options through cost-benefit 

analysis and find the most appropriate business solutions. 
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Table 4. The benefit of SC-S&OP model over DP and SP-S&OP models 

Profit Revenue Total cost Service level Cap. utilization 

Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdcv. 

Benefit over DP (SCAD) 1,203,761 313,801 847,687 612,052 -356,063 331,717 

Benefit over DP (%) 1.9% 0.4% 0.6% 0.4% -0.5% 0.5% 0.0% 0.0% 0.5% 0.5% 

Benefit over SP-S&OP (SCAD) 560,818 94,343 -610,420 95,982 -1,171,227 81,033 

Benefit over SP-S&OP (%) 0.9% 0.2% -0.5% 0.1% -1.7% 0.1% 0.0% 0.0% -0.4% 0.1% 

3.5.3 Sensitivity analysis 

In this section, we carried out the sensitivity analysis to discover how the individual factors, 

outlined in Table 2, affect the benefit of the SC-S&OP model. The results are shown in 

Appendix A, Table A-l and A-2, which demonstrate, respectively, the benefit (%) of the 

SC-S&OP model over DP and SP-S&OP models on profit, revenues, and costs under 

different scenarios. A break down of contract and non-contract revenues as well as supply 

chain costs of production, distribution, procurement and raw material inventory are 

presented allowing for close examination of the model performance. 

The benefit of SC-S&OP model over DP model is greater in all cases, ranging from 1.1% 

to 4.7%, than that over the SP-S&OP model, ranging comparatively from 0.5% to 2.2%. 

As discussed earlier, the benefit of SC-S&OP is mainly contributed from the revenue 

increase and/or cost reduction. The break-down of contract and non-contract revenues 

indicates that SC-S&OP model tends to favour contract sales as it can significantly reduce 

transportation cost, among others, to increase overall net profit, as shown in Table A-l and 

A-2. The reduction in transportation cost from the integrated model has been reported in 

numerous publications addressing the coordination and integration of production-

distribution planning (Chandra and Fisher, 1994; Fumero and Vercellis, 1999). However, 

the benefit of the integrated model where sales decisions are addressed in a supply chain 

context has not been well documented. Our study indicates that in a case where products 

are made with different costs and sold dynamically to different locations and markets at 

different prices, the integrated production-distribution model would not be sufficient since 

solutions with the lowest production and distribution cost may not necessarily bring the 
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best financial return. The SC-S&OP model, incorporating the sales decisions with the 

production, distribution, and procurement planning, is therefore required. 

The benefit of the SC-S&OP model varies in relation to the market conditions and supply 

chain costs as shown in Figure 13 to 18. Market price has the greatest impact on the benefit 

of the SC-S&OP model over the DP and SP-S&OP models, particularly when price 

decreases (Figure 13). When the market price decreases, the revenues of both contract and 

non-contract sales decrease. With the total cost unchanged, unjustified sales will emerge. 

SC-S&OP model will drop those unjustified sales that would have been accepted by DP or 

SP-S&OP models to reduce the profit loss. Therefore, when market price decreases, the 

benefit of SC-S&OP model tends to increase. As the spot market price increases, the sales 

revenue increases that reduces the unjustified sales quantities. Therefore, the benefit of SC-

S&OP model reduces. 

Demand is another factor that shows significant impact on the benefit of SC-S&OP. 

However, the impact is limited to the one over the DP model mainly (Figure 14). This is 

due to the integrated sales and production planning inherited in the SC-S&OP model and 

time based capacity constraint that improves the capacity utilization allowing more demand 

to be accepted, as shown by the increased revenues and total costs in Table A-l. It also 

explains the insignificance of the demand factor on the benefit of the SC-S&OP model over 

the SP-S&OP model because both models have the integrated sales and production 

planning component. 

Compared to market price and demand factors, cost factors have a less significant impact. 

As shown in Figure 15, the benefit of SC-S&OP over DP model increases slightly as unit 

production cost increases. This slight increase in benefit is due to the improved sales 

decisions from the SC-S&OP model through integrated planning in reflection of the unit 

production cost. However, in the DP model, since the sales decision, made by the sales 

sub-model, considered the product cost that, in effect, anticipated the estimated production 

and raw material costs, the impact of the unit production cost has thus been reduced. The 

benefit of SC-S&OP over SP-S&OP is not affected by the unit production cost change 

owing to the fact that both models integrated sales and production planning together. 
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The unit shipping cost affects the benefit of the SC-S&OP over SP-S&OP as expected 

(Figure 16), since the SP-S&OP model makes sales and production decisions separately 

from the distribution sub-model. The distribution sub-model will therefore have to find 

solutions to satisfy the upstream sales decisions at all costs. As unit shipping cost 

increases, the distribution cost to satisfy the upstream sales decisions will also increase, 

resulting in the net profit of the SP-S&OP model decreasing. Consequently the benefit of 

SC-S&OP over SP-S&OP increases (Figure 16). With the same principle, it is expected the 

benefit of SC-S&OP model over DP model would follow the similar trend. However, it 

unexpectedly plateaued at the level of 2.1%. By examining the results more closely, it is 

evident that as the unit shipping cost increases, the distribution cost of the DP model 

increases causing its net profit to decrease. The revenues and costs of production, 

procurement, as well as raw material inventory, on the other hand, remain constant because 

the sales decision, determined by the sales sub-model, is unaffected by the unit shipping 

cost. In contrast, the sales decisions in the SC-S&OP model are affected accordingly every 

time the unit shipping cost changes as indicated by the revenues (contract and non-contract) 

and costs (production and procurement) changes in Table A-l. While SC-S&OP model 

seeks different solutions in optimizing the profitability, its profit decreases as the unit 

shipping cost increases. The net effect is that the profit decrease of the SC-S&OP model is 

at a similar rate as that of the DP model resulting in a relatively insignificant increase in the 

benefit of SC-S&OP over the DP model. In other words, it is less sensitive to the unit 

shipping cost at this range of change. 

For the unit purchase cost, the benefit of SC-S&OP model increases as the unit purchase 

cost increases over both DP and SP-S&OP models (Figure 17). This result indicates that 

although the estimated raw material cost has been anticipated in both DP model (though the 

product cost) and SP-S&OP model (through the unit production cost), which has possibly 

improved their sales decisions, the SC-S&OP model has the potential to make further 

improvements as unit purchase cost increases. 

Comparatively, the benefit of the SC-S&OP model over DP and SP-S&OP models is less 

sensitive to unit raw material inventory cost as shown by the flat curves in Figure 18. This 
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result owes largely to the smaller weight of the unit raw material inventory cost in the 

system making its impact less significant. 

­20% 20% ­10% 0% 10% 
% Change in market price 

SC­S&OP over DP ­ * ­ SC­S&OP over SP­S&OP 

Figure 13. The benefit of SC­S&OP at different market price levels 
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Figure 14. The benefit of SC­S&OP at different demand levels 
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Figure 15. The benefit of SC­S&OP at different unit production cost levels 
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Figure 16. The benefit of SC-S&OP at different unit shipping cost levels 
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Figure 18. The benefit of SC-S&OP at different unit raw material inventory cost levels. 

3.6 Conclusions and future research 

In this article, we have distinguished two S&OP approaches: a supply chain based S&OP 

(SC-S&OP) that integrates the cross functions of sales, production, distribution and 
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procurement in the planning process, and sales-production based S&OP (SP-S&OP), in 

which the sales and production planning are carried out jointly while the distribution and 

procurement are planned separately. We developed mathematical models to represent these 

two planning approaches for an alternative multi-site manufacturing network in an MTO 

environment where backlogs are allowed. A DP model is also developed representing the 

traditional decoupled planning approach. Sales decisions are treated as decision variables 

to be determined optimally. Evaluations are performed through an industrial case of an 

OSB company using the field data. The results show that SC-S&OP provides superior 

performance to the SP-S&OP and DP in all cases particularly in a varying demand and/or 

market price environment. Solution time for the SC-S&OP model is 219 seconds on 

average (ranging from 179 to 332 seconds). Solution gap is 0.27% on average ranging 

from 0.19% to 0.42%. 

Our models presented here are developed based on an MTO case where demand and market 

price are deterministic. It is possible to apply these models to an MTS environment, 

particularly the SC-S&OP model, where the inventory, inventory allocation among 

different DCs, and the associated distribution decisions are made jointly within the model. 

For the SP-S&OP and DP models, since the DCs are used as transhipment centres only, 

some modifications will be required in order to properly address the inventory, allocation, 

and distribution issues of the MTS system. At tactical planning level, production decisions 

in both MTO and MTS systems are based on forecast in real business environment, hence 

one of the extensions of this research would be to investigate the impact of forecast 

inaccuracy on the benefit of SC-S&OP (over SP-S&OP and DP) in stochastic demand 

environment. Dynamic pricing in S&OP presents another research challenge in this 

direction. 
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Résumé 

Cet article présente des modèles de simulation avec horizon roulant et une analyse de la 

performance de la planification des ventes et des opérations (S&OP) entièrement ou 

partiellement intégrée, par rapport à la planification traditionnelle découplée dans une 

chaîne logistique multi-sites en production sur commande. Trois modèles de simulation ont 

été développés pour illustrer respectivement : le modèle de S&OP entièrement intégré, qui 

comprend la planification transversale centralisée des ventes, de la production, de la 

distribution et de l'approvisionnement; le modèle S&OP partiellement intégré, dans lequel 

la planification des ventes et de la production est effectuée conjointement et centralement, 

alors que la distribution et l'approvisionnement sont gérés indépendamment par chaque 

site; et finalement, une planification découplée, où la planification des ventes est 

centralisée, mais où la planification de la production, de la distribution et de 

l'approvisionnement est effectuée séparément et localement. Une procédure de résolution 

est fournie pour chacun des modèles, permettant la simulation de processus de planification 

plus réalistes. Les évaluations numériques ont démontré que les modèles de S&OP 

partiellement et entièrement intégrés obtenaient une performance significativement 

supérieure à l'approche de planification découplée avec une amélioration des bénéfices 

prévue de l'ordre de 3,5% et de 4,5%, respectivement. Les performances des modèles avec 

horizon roulant sont également comparées aux performances des modèles déterministes à 

horizon fixe. Les résultats ont démontré que malgré l'importance des modèles déterministes 

pour la recherche théorique, ils ne sont pas suffisants pour le support à la décision et 

l'évaluation des performances dans un environnement d'affaires réel. Un modèle de 

simulation à horizon roulant est nécessaire pour obtenir des solutions plus réalistes. Les 

effets des inexactitudes de la prévision et de l'incertitude de la demande sont inclus dans 

l'évaluation. Cette étude est menée sur la base du cas industriel réel d'une entreprise 

canadienne de fabrication de panneaux OSB. 

105 



Chapter IV. Simulation and Performance Evaluations of Partially and Fully Integrated... 

Abstract 

This article presents rolling horizon simulation models and performance analysis of 

partially- and fully- integrated sales and operations planning (S&OP) against traditional 

decoupled planning in a multi-site make-to-order (MTO) based manufacturing supply 

chain. Three simulation models are developed illustrating, respectively, the fully-integrated 

S&OP model, which integrates cross-functional planning of sales, production, distribution, 

and procurement centrally; the partially- integrated S&OP model, in which the joint sales 

and production planning is performed centrally while distribution and procurement are 

planned separately at each site; and the decoupled planning model, in which sales planning 

is carried out centrally while production, distribution, and procurement are planned 

separately and locally. A solution procedure is provided for each of the models so that a 

more realistic planning process can be simulated. The numerical evaluations demonstrated 

that partially- and fully-integrated S&OP approaches perform significantly better than the 

decoupled planning approach with expected 3.5% and 4.5% profit improvements, 

respectively. The performances of the rolling horizon simulation models are also evaluated 

against those of the fixed horizon deterministic models. The results show that while 

deterministic models are important for theoretical studies, they are insufficient for decision 

support and performance evaluations in real business environment. A rolling horizon 

simulation model is required to provide more realistic solutions. The effects of demand 

uncertainties and forecast inaccuracies are incorporated in the evaluation. The study is 

carried out based on a real industrial case of a Canadian-based Oriented Strand Board 

(OSB) manufacturing company. 
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4.1 Introduction 

With the recent advances in supply chain management, opportunities have opened up for a 

demand-driven supply chain philosophy that synchronizes supply with demand so as to 

maximize their financial success and customer satisfaction. However, as companies 

become more demand driven, challenges are increased for decisions at the front-end - the 

sales decisions, to be operationally feasible and financially profitable. This is the primary 

driver for sales and operations planning (S&OP), which addresses the issue of profitably 

aligning demand with supply to support business strategy (Cecere et al. 2006). 

Since the concept of S&OP was proposed in the late 1980s, it has experienced rapid 

development from an earlier stage of aggregated production planning (APP) to a 

coordinated sales-production planning based S&OP, and more recently to the supply chain 

based S&OP (Feng et al. 2008a). Although the body of literature on S&OP is abundant, the 

contributions on S&OP modelling are scarce. Earlier efforts on S&OP modelling have 

been limited to APP-based modelling that determines the production, inventory/backlog, 

and workforce levels for a set of forecasts with the objective function being to minimize 

production cost while subject to appropriate constraints (Olhager et al. 2001, Genin et al. 

2005). At the same time, studies on the integration of marketing/sales and manufacturing 

decisions emerge. Partially and fully integrated production and marketing planning models 

were found for single item and single firm problem in which the marketing mix decisions 

(selling price, marketing expenditure, and demand/production quantity) are determined 

assuming the demand rate is a deterministic function of the selling price and marketing 

expenditure (Lee and Kim 1993, Pal et al. 2007). 

Recent research formalized the classification of S&OP into two distinct categories, one 

focusing on fully integrated supply-chain-based S&OP (SC-S&OP), which integrates the 

cross-functional planning of sales, production, distribution, and procurement; and one 

focusing on sales and production coordination, the partially integrated S&OP (SP-S&OP), 

in which sales and production planning are carried out jointly while distribution and 

procurement are planned separately (Feng et al. 2008a). In the research, three sets of mixed 

integer programming (MIP) models were proposed for SC-S&OP, SP-S&OP, as well as a 

107 



Chapter TV. Simulation and Performance Evaluations of Partially and Fully Integrated... 

traditional decoupled planning (DP), where all the plans are defined following a 

hierarchical planning approach. Sales decisions were introduced as decision variables so 

that optimal solutions could be sought within the given planning scopes. The results 

demonstrated that SC-S&OP performs superior to SP-S&OP and DP under different market 

and cost conditions. Despite the valuable insights this research has provided, the models 

are limited to the fixed-horizon deterministic case (or fixed-horizon case for simplicity) 

where the models are solved to optimality for a finite planning horizon and the demand for 

the entire planning horizon is assumed to be known with certainty in advance. The fact that 

S&OP is a routine periodic planning, reviewing, and evaluating process (Gips 2002, 

Taunton 2002, Wallace 2004, Cecere et al. 2006), raises the need for more appropriate 

evaluation methods such as rolling horizon simulation. 

In practice, rolling horizon planning is widely used to effectively cope with demand 

uncertainty and forecast inaccuracy. In rolling horizon planning, a multi-period model is 

solved while the plan is implemented only for the immediate decision period. As the 

horizon rolls forward to the next decision period, information regarding the latest demand 

is updated and the model is resolved again. This ongoing planning process allows future 

demand to be anticipated in the current period decisions, while postponing future decisions 

as late as possible (Stadtler 2000, Chand et al. 2002, Dellaert and Jeunet 2003, Clark 2005). 

Early studies discovered that optimal methods with fixed planning horizon may not provide 

optimal solutions in a rolling horizon environment, particularly when short forecast-

windows are used, even when the data set is totally deterministic (Baker 1981, Blackburn 

and Millen 1982, Gupta et al. 1992, Simpson 1999, Dellaert and Jeunet 2003, Clark 2005). 

One of the possible explanations is that when solving the multi-period model to its 

optimality, it may sacrifice the performance of certain period(s) to yield global 

optimization. When rolling horizon planning is based on such an optimization model, it is 

not necessarily the optimal periodic solutions that are implemented, but rather it is the first 

period solutions in succession to the optimal solutions (Baker 1981). This finding raises 

concerns whether the performance evaluations from the deterministic method are valid 

when applied to a more realistic environment. 
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This study is an extension of the previous study by Feng et al. (2008a and 2008b) to 

evaluate the financial performances of SC-S&OP, SP-S&OP, and DP in a rolling planning 

environment. The aims of the study are to (1) compare the performances of each planning 

model in fixed and rolling horizon environments; (2) evaluate the benefits of SC-S&OP and 

SP-S&OP over DP in fixed and rolling horizon environments; and (3) examine the impact 

of forecast inaccuracy on the financial performance of each model in a make-to-order 

(MTO) system. In this study, we present a rolling horizon framework and a solution 

procedure for each planning model, and through the simulation analysis, empirically 

answer these questions. The simulations are conducted using the field data from a real 

industrial case of an oriented strand board (OSB) company in Quebec Canada. 

OSB is a wood based structural panel widely used in North America as building material 

for wall, roof, and floor sheathings as well as I-joists. It is made of wood strands mixed 

with synthetic resins and wax compressed under high temperature and pressure in a hot 

press. The production is carried out on a highly automated production line, either in batch 

or in a continuous manner, depending on the type of hot press used. The production line is 

capable of making a wide range of OSB products with different physical and mechanical 

properties. The products are mainly sold to four categories of customers, the 

manufacturing customers (producing houses or house components), the distributors, the 

wholesalers, and retailers, on contract and non-contract basis, in different markets. The 

demand is highly seasonal with strong correlations with the activities in the building 

construction industry, whereas the supply, particularly the wood supply in the form of 

wood logs from forests, is affected by seasonal harvesting operations and long 

replenishment lead-times. 

This article begins with a review of the characteristics of the SC-S&OP, SP-S&OP, and DP 

models in Section 4.2 followed by the case description in Section 4.3 where a modified SC-

S&OP model is presented in order to effectively incorporate the replenishment lead-time 

and safety stock behaviours in rolling planning environment. The SP-S&OP and DP 

models, whose formulations have not been significantly affected, are provided in Appendix 

B, B-l and B-2. The rolling horizon framework and solution procedure of each model is 
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presented in Section 4.4, followed by the presentation of the simulation plan in Section 4.5. 

The results and discussions are provided in Section 4.6 with concluding remarks and future 

research directions summarized in Section 4.7. 

4.2 The characteristics of SC-S&OP, SP-S&OP, and DP 
models 

In Feng et al. (2008a), the SC-S&OP, SP-S&OP, and DP models are developed for a 

manufacturing supply chain where the manufacturer has several alternative mills that are 

located in different regions. Each mill produces various products, serves many customers, 

and purchases raw materials from different suppliers. All models address the planning of 

sales, production, distribution, and procurement along the supply chain in a multi-site 

environment, however each has its own unique characteristics. Under the traditional DP 

approach, the sales planning is performed centrally, at head office, based on the estimated 

capacities of the facilities in each site, while the production, distribution, and procurement 

planning is carried out separately by each planning unit at each site. In this distributed 

planning approach, upstream planning unit, such as sales, passes its decisions to down 

stream planning units, the production, for instance, and further down to distribution and 

procurement planning units which make decisions accordingly seeking for local optimality 

without bottom up influences. This planning approach is characterized by four 

uncoordinated sub-models representing, respectively, the planning of sales, production, 

distribution, and procurement (Table 5). The global financial performance (profit) of the 

manufacturer is the combined performance of each site, which is determined by the total 

revenue generated from the site minus the total cost of the production, distribution, and 

procurement of the site. 

110 



11 

s 

e 
— o 

ii 

c 
o 

ao 
(Ll 

o 
c 

r/3 
*—J 

a l 
.32 o 
o Ç 
S i 
' 3 

X J en 

l l 
3 cd 

. O "> 

EOS' 
w — i CO 

«■8 "8 
Ë rS 

•S
 3 

3 VJ 
cfl «_, 

­ § s 

i|i 
s . l a 
Q ­ T 3 D . 

O 
CJ 
c j « 

•
s
s 

0 0 ­ 3 
_*! O 

S
 S 

■3 O 
W 3 
O T 3 
fe O 

co
 & 

N T 3 

'S H 
. 3 t j 

i * 
C co 

.S ­S « 
^ « ^ c/J 

g o o 
n § S 
.2­S e 
i i i 

• O h U 

S.a S 
Q . T 3 Q . 

1 1 :§ 
S E S 

1 
I 
t 
1 
t 
I 

J 

K 

S5 

I 
5 

<u 
­o 
o 
S 

O H 

Q 

P r 

O 
«y 
w 
O H 
C/J 

o­
O 
<* j 

on 
■ 

C/J 
<+H 

O 
c/J 
O 

JP 
o 
CD 

H 

1 
H 

'"S 
a 

0 ­

O 
<*S 
ai 
oo 

3 

I fi 

'"g 
S 

C H 

O 3 
i 

U 
0 0 

11 

c j 

ra 

n. £ 

c. 
oo 
CD 

TD 
O 

XI 
3 

CQ 

c 
o 
CJ 

■ • 3 

.23 ­5 
0) o 

2 ?" 
H co 
V eo 

•S " i 
3 co 
en ^ 
« S S I 

— co 
CO T3 

il 
X J 3 
3 en 
cfl ,_, 

II 
i s 

C 

o 
3. ts 
T3 C 

e CD _ _ 
. * i ­ T ; 

— o 
ca o 
Cfl ! _ 

Cl­ ! O . 

=> ­a 
o 53 

i s" 
i ­ o 
où­s 
B 3 
.S­­2 
—. cn 
c3 '"5 

eu 
­a 
o 
E 

CM 

O 
OO 

ù 
0 0 
JU 
OJJ 

.S 

o 

p VJ 

CJÛ 

u 
­M. 

(Ll 
■ a 
o 

CJ 

­3 
r . 
C 
3 
O 
O 

C 
3 
O 
O 

. — ■ . 

Q m 
CJ 

ra 
ï—> 

.E .S 
o 

ï—> 

.E r j 
■ — . ■ w cfl 
.S C/Î 

O 
O 
O 

0 0 y—s CJ 
.­< .s 

"ra 
a. 
OO 

C 
O 
­t—• 

CJ 

E 
y—• 

O 

.S 
■4­> 
en 
O 
O 

3 
X l 

'S 
Ifl 

CJ 
u ­
3 
U 

o 
nx c '•B D­

.9 o CJ c j .9 
o 
3 

.y .ïï 

'i o !s is 
£ I H 

5, Ë Ê 

.S 
ra 

o ­c 
u .S _>> 

OJJ a. 
.s a. i 3 

cfl 
■ * ­ » 

OJ 
4—* 

r . 
O 
CL 

C 

o 

1 fi 
2 c 
M S 
2 3 
ou y 

Ci­ P 
.5 ­s o S. 

CJ 

> 

X 
O 

22 «­> 
cfl " O 
P ÇJ 



Chapter TV. Simulation and Performance Evaluations of Partially and Fully Integrated... 

In the multi-site SP-S&OP approach, the sales and production decisions are coordinated as 

represented by the joint sales and production planning in a multi-site environment, while 

the distribution and procurement planning is carried out separately and locally at each site. 

This partially integrated planning approach is described by three sub-models, notably the 

multi-site based sales-production sub-model, single-site based distribution and procurement 

sub-models. Each sub-model has its own objective function seeking its own local 

optimality. The global performance is determined by combining the performances of the 

multiple sites. 

The multi-site SC-S&OP approach represents the centralized collaborative effort in 

coordinating the sales, production, distribution, and procurement planning seeking 

organization-wide global performance optimality. This planning approach is characterized 

by a single integrated SC-S&OP model, which integrates the decisions of sales, production, 

distribution, and procurement together. This multi-site MIP model provides potential 

benefits through improved sales decisions and production allocation taking into account the 

tradeoffs for revenue, cost, and productivity. The centralized SC-S&OP model generates a 

set of aggregated plans specific for each production site based on which specific schedules 

can be developed locally at each site. 

4.3 Case description and SC-S&OP formulation 

The case involves a manufacturing supply chain network consisting of a manufacturer, 

many customers, suppliers, third-party logistic companies, and distribution centres. The 

manufacturer has M production sites (meM), scattered in different market locations. Each 

production site has a single capacitated production line producing /product families ( ie l ) 

on an MTO basis, with small on-site inventory capacity. We assume all product families 

may be produced by either site, however with different efficiencies, due to the different 

configurations of the facility possessed by each site. The manufacturer serves C customers 

(ceC), including many contract customers CC (ceCC) and non-contract customers as well 

as spot market NC (ceAC), where C=CCuM_\ Both contract and non-contract demands 

are dynamic and highly seasonal. The products are shipped to the customers either directly 
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or indirectly through a distribution centre dc (deeDC), by a logistics company s (seSH), 

using a vehicle type v (veV), following a route r within a set of defined routes from an 

origin o to a destination d (reRgj). The production of each product family i consumes 

RM raw materials (rm e RM) at different ratios defined by a product recipe. The raw 

materials are supplied by S suppliers ( s e S ) , including contract suppliers CS (s eCS) and 

non-contract suppliers NS ( seNS) , where S-CSuNS. The replenishment of raw 

materials is subject to lead-time Ls
m, which is supplier and raw material related. For 

instance, logs supplied from Crown forest, Canada, usually have long lead-time, while 

supplied by the spot market, the lead-time is substantially shortened which can be 

neglected. In the system studied, the raw material supply is also seasonal as indicated by 

the supplier's seasonal capacity KS?. This is particularly true in the case of the forest 

industry where the harvest operation and log transportation from the forest in Canada is 

strongly affected by the seasonality. We consider the planning horizon to be T (t e T) . 

With the positive raw material replenishment lead-time and seasonality, it complicates the 

process considerably in rolling planning environment. Jeunet (2006) illustrated how 

positive lead-time causes stock-out even when demand is deterministic and worsens when 

forecast errors are presented. The most natural solution to cope with stock-out is to 

introduce safety stocks. Wemmerlov and Whybark (1984) implemented a search routine 

for determining the values of safety stock in order to achieve 100% service level in all 

cases. Jeunet (2006) adopted the same strategy as Wemmerlov and Whybark to determine 

the values of safety stock. However the routine was reported to have no practical 

implementation as safety stock values are computed a posteriori (Jeunet 2006). 

In this case, we consider the safety stock is determined a priori, which provides sufficient 

inventory buffer to ensure that raw material availability would not impose further 

constraints on the already constrained production capacity. However, the safety stock 

behaviour has to be incorporated in the models, as the formulations of the fixed horizon 

models presented in Feng et al. (2008a) will no longer guarantee feasible solutions. In 
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rolling horizon environment, it is possible that the raw material ending inventory I is 

lower than the safety stock target ssm m at any given period, which causes conflict when 

requiring Im m l - ssm m > 0 , for all rm, m, and t, as stated in the deterministic model. For 

illustration purposes, let us assume there is a single raw material supplier in the system 

whose replenishment lead-time is Lrm. At the beginning of each period t, a purchase 

decision Xm m, is made for rm based on the anticipated production demand during t to 

t+l^ , the anticipated reception during t to t+L^-1, and the inventory on hand at the 

beginning of the current period /. This purchase order Xrm m, will arrive at the beginning of 

the period t+L^ as reception quantity Rrmml+L (Figure 19). (Note that the reception 

quantity is assumed to arrive at the beginning of the period to signify the notion that it 

always arrives before it is required). When the planning horizon rolls to period t=t+Lm, 

the real demand drm m, is revealed and the purchased quantity is received. If demand drm m, 

is less than the received quantity R^ m l+L , the material surplus will be added to stock as 

inventory. If it is greater, the shortage will need to be drawn from the inventory. 

Depending on the beginning inventory quantity on-hand, it may cause the inventory level at 

the end of period t+L^ to become lower than the safety stock target for the period. The 

used safety stock quantity must be refilled which should be included in the current period 

(t+Lj) purchase decision. This mechanism is realized by introducing a variable called 

tentative purchase quantity TXm m,, which calculates the purchase quantity based on the 

anticipated production demand and reception quantity during the lead-time, as well as the 

inventory on hand at the beginning of the current period, and inventory target, which is the 

safety stock target at the end of the current period. The tentative purchase quantity 

provides theoretical information for the purchase decision Xrm m,. The tentative purchase 

quantity may take a negative value, meaning no purchase is necessary. This calculation is 

embedded in the model presented in constraints (18) and (19) where multiple raw material 

suppliers are resumed. 
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Figure 19. The illustration of replenishment lead­time 

We define the decision variables concerning (1) sales as S„ and BSl, being the sales and 

backlogged sales quantities of product family i to customer c in period t; (2) production as 

Xtmt ' îmt ' I imt > I L m d Simi t being the production quantity, the number of production 

batches, the inventory level, the backlog level, and the binary set up variables for product 

family /' at mill m in period /; (3) distribution as XL,, NU, and I l d c l , being, respectively, 

the shipping quantity of product family i by shipping company s (s e SH) on route r using 

vehicle type v in period t, the number of truckloads required from shipping company s on 

route r for vehicle v in period t, and the inventory level of product family i in distribution 

centre dc at the end of period /; and (4) procurement as TXs
rm m t , Xs

rm m , , RL,mj » Dem8> 

respectively, the tentative purchase quantity, the actual purchase quantity and the reception 

quantity of raw material rm from supplier s (s e S) for mill m in period t. Irm m t is the 

inventory level of raw material rm in mill m at the end of period / and y'rm t is the (0,1) 

fixed purchasing variable for raw material rm with supplier s in period /. 

Multi­site SC­S&OP model: 

( > f 

Max : 
\ e e C iel teT 

( 

X X Z KK ~ Z Z X [cimximt + scmsiml + h J L + boimrimt ) ­
\ m e M iel teT 

Z Z Z Z Z k ^ ­ + / ^ ) + Z Z Z ZZ»wc+Z Z HKdJ,,e.t 
\ s eSH iel reR veV teT seSH iel reR„d c veV teT iel dceDC teT 

Z Z Z Z ^ C ­ C m . ' + Z Z Z 5 C ™ ^ + Z YYuKmtrm.m.t 0 ) 
\ s e S rmeRM meM teT seS rmeRM teT rmeRM meM teT J 
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This objective function is to maximize the global net profit taking into account the entire 

supply chain cost. The first set of brackets represents the total revenue from the contract 

and non-contract sales, where b't is the selling price of product family i to customer c 

(c e C) in period /. The second set of brackets describes the total cost of production, set­

up, inventory, and backlog with c^, h^, and boim being the unit production, inventory 

holding, and backlog costs, while scm is the expected production set-up cost. The third set 

of brackets states the sum of variable and fixed transportation costs, the dc transhipment 

cost, and dc inventory holding cost with es
irv and f£ being the unit variable and fixed 

shipping costs, while tridc and hidc are the unit transhipment cost through dc and inventory 

holding cost at dc. DCs inventory is included in the integrated model in order to provide 

flexibility with additional inventory capacity to absorb unused production capacity upon 

varying dynamic demand. It can be set to zero to represent the strict MTO operation with 

DCs being used as transhipment centres only. The last set of brackets is the sum of raw 

material variable and fixed purchasing costs as well as inventory holding cost, where ms
m, 

and scs
m are the unit variable and fixed purchasing costs, and h m m , the unit inventory 

holding cost. Note that the variable purchasing cost is now calculated based on the raw 

material quantities that are received rather than ordered, hence only the cost that is 

associated to the operations within the planning horizon, T, is considered in the objective 

function. This model is subject to the following constraints: 

Constraints concerning the sales: 

S l - B S l > d m m l VCeC,i , t (2) 

S - ' - d - ' VceC,i,t (3) 

BS°>^S*> VceC,i,t (4) 

Constraints (2) describe the contract commitment to a contract customer in which a 

minimum demand agreement is implied. The sales decision must satisfy the contract 

demand that is within the contract minimum amount, dminc
u, in period t. However, the 
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demand quantities, d l , that are above the contract minimum amount as well as those that 

are non-contract based, may not be satisfied within the demand period (3). In this case, the 

sales decision may decide to accept them and serve them in future period as backlogged 

sales, or reject them. In either case, the backlogged sales quantity should not exceed the 

sales quantity (4). Upon satisfaction of the contract minimum amount (2), the manufacturer 

may continue serving the contract demand up to the capacity limit, or switch to serve non-

contract demand, whichever is more profitable. 

Constraints concerning the production: 

Y(x i myiL-,-i lnt- ,- iL + iil,)+ I (W/ -A* , ) -E 5 « v />' (5> 
meM dceDC ceC 

I /,;, = I BSI v/, t (6) 
meM ceC 

X imt - N tmtPim V/,/W,f (7 ) 

G s i m l > X m l 

X Pim N imt + X S t m S i m , * K m t 
ie 1 i e l 

X l L * KIn, 
i e l 

* imO ~ * imO ~ 1 imT ~ " 

tf i,m,t (8) 

\/m,t (9) 

V m, t (10) 

V i,m (11) 

Constraints (5) are the coupling constraints that connect the production, distribution and 

sales decisions together describing the global flow conservation at the aggregated multi-site 

level. They express that the sales quantities should be satisfied by the aggregated multi-site 

production as well as the inventories from production sites and DCs. The backlogs l~ml in 

(5) are converted into backlogged sales (BSI) (6), which will be subtracted from the 

shipping quantity of period / as shown in constraints (12). Constraints (7) ensure that the 

production is always in full batches where fim is the production batch size, and constraints 

(8) are the set-up constraints. The production capacity constraints are expressed in (9) with 

pim being the capacity consumption coefficient for producing unit batch of product family i 

117 



Chapter IV. Simulation and Performance Evaluations of Partially and Fully Integrated... 

at mill m, stn, the expected set-up time, and Km l , the time-based production capacity of 

mill m in period t. Constraints (10) state that the finished goods inventory should not 

exceed the on-site inventory capacity KIm, while the beginning and ending backlog 

conditions are defined in (11). 

Constraints concerning the distribution: 

SI + BSL, -BSc
i t= Y X Z X L , Vc e C,i,t (12) 

s ^ S H r e ( R m c \ J R d c c ) ^ V 

X imt "*" •* imt - 1 _ * imt ' 2—1 2- i 2—1 '""' 
s e S H r e ( R m d c V R , , c ) v e V 

2 . 2 , 2 . x l n t +1.^,1-1 ~ii,dc,t ~ 2-i 2 . 2 . x int 
seSH reRm - d c veV seSH reR*. c veV 

N , > Y ^ L X ' 
1 1 rvt - / L j r. Iel KVV 

X N ^ < KSH 
r eR 

Vi,m,t (13) 

Vi,dc,t (14) 

i s e SH,r,v,t (15) 

\ / seSH,v, t (16) 

Vm,t (17) 
Z Z Z NL * KD 

seSH r e ( R m . * U * „ , J v e K w 

Constraints (12) connect the sales and distribution decisions describing the flow balance at 

a customer node. Constraints (13) connect the production and distribution decisions to 

illustrate the flow balance at a mill node. Constraints (14) are the flow balance constraints 

at a DC node. Constraints (15) calculate the number of truckload requirements for each 

vehicle type from each supplier with a, being the vehicle capacity absorption coefficient 

per unit of product family /', and KVV, being the vehicle capacity. Constraints (16) are the 

shipping supplier capacity constraints where KSH?, is the shipping capacity of supplier s 

(s e SH) with vehicle v. Constraints (17) define the mill dispatch capacity constraints with 

KDmvc being the mill expedition capacity for vehicle category vc, such as rails, where 

vceVvc and Vvc 3 V . 
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Constraints concerning the procurement: 

yTxs
mmt = 

^ j rm,m,l seS 

ss £ j / _ j rm.i.m^ imt / • ' • rm,m,t rm.m.l­1 
1 ie l t seS . 

[ifLrm>Omd t + L m <T) 

Z Urm.i.m X im, ~ *'rm.rn.tA + SSrm.m (otherwise) 
Jel 

Xs
nnml =max (0,TXs

mm, ) 
rm,m,l \ » rm.m,t / 

■ys _ n s 
rm.m.1 rm.m.t+L'^ 

\/rm,m,t (18) 

Vs e S,rm,m,t (19) 

eS,rm,m,t = 1,..., T ­ L'm (20) 

\/rm, m, t (21) 

V' rmc,m,t (22) 

\/seS,t = \,...,T­Ls
m (23) 

VseCS.t (24) 

Ms e S,rm,t (25) 

Y R'rmm., + I rm.m, . ~ / „ * „ , = X « rm., m X trn, ^ j rm, m, t rm, m, t­ l rm, m, t i*^ rm> , ,m i m l 

se S i e l 

/ J rm,m,t rmc,m 
rmermc 

Z HXLm, ZKSI+H. 
rmeRM meM 

Z HXLm, >qmin: 
meM rmeRM 

***y rm,l — 7 , *^rm,m,{ 
meM 

S«> X i m t < l i m f X i r v f ^i,dc,t> X L m . f ^rm.m.t ' 1rm.m., ­ ®> ~ ° ° < T X ^ m . t < ° ° 

N i m t and NL, are positive integers, S ^ e {0,1}, fmt e{0,l), \/c,i,m,t,r,vdc,rm,s (26) 

Constraints (18) connect the production and procurement decisions through raw material 

flow balancing at a mill node. As illustrated earlier, these constraints calculate the tentative 

purchase quantities with urmim being the raw material consumption coefficient for 

producing unit quantity of product family / at mill m, and s s ^ ^ , the safety stock target. To 

determine the anticipated production demand and reception quantities, lead­time L^ is 

used which is defined by L = max ^ { L ' \ • The conditional statements are required in 
* rm s Go \ rm / ■*■ 

order to adjust the model behaviour accordingly during the rolling horizon simulation. 

Constraints (19) determine the actual purchase quantity based on the tentative purchase 
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quantity. The balances of the purchasing and reception quantities are provided by (20). 

Constraints (21) are the raw material flow balancing constraints, while (22) are the raw 

material inventory capacity constraints with KIrmc m being the inventory capacity for raw 

material category rmc, where rm e rmc and rmc e RMC ~~> RM. The raw material supply 

capacity constraints are presented in (23) with KSf being the supply capacity of supplier s 

(s e S) in period t, followed by the raw material contract constraints (24), which prescribe 

that the purchase decision from a supplier should abide by the purchasing contract quantity 

qmir\. Constraints (25) describe the fixed purchasing constraints, and (26) define the 

domain of each decision variable. 

4.4 Rolling horizon framework and solution procedures 

In rolling horizon planning of an MTO system, we assume that the demand of the current 

period is known with certainty in advance. This assumption represent well the essence of 

the MTO system in which the implementations of the current period decisions are based on 

known demand. The future demand is probabilistic and is forecasted subject to forecast 

errors, which augment with time. We consider the forecast window interval is N which 

means the forecast is visible only for Af periods over the entire planning horizon T(t < N < 

T). The re-planning is conducted on a periodic (monthly or weekly) basis. 

Figure 20 illustrates the rolling horizon framework for SC-S&OP. At the beginning of a 

given period t~r, the demand forecast F ^ of customer c for product i in period / is 

estimated for N periods. The multi-period SC-S&OP model is resolved to optimality for 

the periods t-T,...,T+N-l, resulting in a set of optimal plans for sales, production, 

distribution, and procurement. Only the plans of the current period ( t=r) are implemented 

and its performance, the objective function value OFt=T is accumulated with those from the 

previously implemented periods to yield the performance to date value, j^OF ■ The system 

state is updated and the system rolls forward to the next period. The process repeats until 
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the last period of planning horizon T is implemented. The multi­site global performance 

over the planning horizon T is calculated as OF=É OF, • 
»«/ 

Initial sate: > 
r < ­ 0 , / « ­ 0 

ladJi,&j>''m.m.O'Xrmji,n 
Demand forecast 

Data updates: 
' imQ * ~ 

■ mint, 5 

' B K Z 

irm.m.z 

♦ 

Solve SC­S&OPmodd 
f o r / = ç „ , T+fi­1 

S'u.BSl 

■Arif j yrvf ' i±.t ' 
X s I 

Proem ement 
I Distribution 

, Salopian 

Implementation fot 
t=T,y 

J W 

Global perfonnance: ? O F t 
w 

Figure 20. Rolling horizon simulation model for multi­site SC­S&OP process 

In SP­S&OP approach, the rolling horizon process involves multi­stage planning and 

decision flows among the sub­models, as shown in Figure 21. The sales­production sub­

model, representing the multi­site joint sales and production planning, is solved first to 

optimality for periods t=T,...,r+N­l, deriving the site­specific sales and production plans. 

The distribution sub­model, representing the site­based distribution planning, takes the 

sales plan as input parameter and is solved to optimality resulting in the distribution plan. 

The procurement sub­model, representing the local procurement planning, receives the 

production plan as input parameter and is solved to optimality to obtain the procurement 

plan. Only the current period's plans, where / = r , are implemented and the performance 

of each functional unit is accumulated locally as £ oFml(SP)> J,OFmt(D)­> an<^ Y.OFM(B)> 
t = i m t= i m t=i 

respectively. The system states are updated within each functional unit and the system rolls 

forward to the next planning period. The process repeats until the last period of the 

planning horizon T is implemented. The local performance of each function is calculated 

for the entire planning horizon. The site performance is determined by minus the 

distribution and procurement costs from the net profit of the sales­production sub­model for 
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the site, as shown by: oF„ = z(oFml(SP)­OFml(D)­OFml(B))­ The multi­site global 
t = r 

performance can be derived by accumulating the performances of each site, QF= £ OF ■ 

Danand forecast 

_ S qg pertoftaaace: 

Figure 21. Rolling horizon simulation model for multi­site SP­S&OP process 

In DP approach, the joint sales­production sub­model is further decomposed into a sales 

sub­model and a production sub­model as shown in Figure 22. In this model, the multi­site­

based sales sub­model is first resolved to optimality resulting in a sales plan defining the 

sales decisions SL for each site m. The production sub­model, representing the site­based 

production planning takes the sales decision as input parameter and is solved to optimality 

deriving the production plan, X^.N^.lL.s^­ The backlogs will emerge to become 

backlogged sales BSC
M fr°m m e production sub­model. The sales decisions SL fr°m m e 

centralized sales planning sub­model and the backlogged sales BSL from t n e l°ca^ 

production planning sub­model are passed to the distribution sub­model which is solved to 

optimality resulting in the distribution plan. The procurement sub­model uses the 

production infonnation Ximl as input parameter and is solved to obtain the procurement 

plan. The plans are implemented only for the current period, t=r , and the performances of 
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the implemented periods are accumulated locally, as shown individually by Y.OFml(S), 
t=i 

Y.OFm[(P), £OFml(D), and Y.OFm(B). The system states are updated and the planning 
/=/ ,=i 1=1 

process is repeated until the last period of the planning horizon T is implemented. The local 

performance of each planning unit is calculated for the entire planning horizon T and the 

site performance is derived as: OFm = I,(OFml(S)­OFml(P)­OFm,(D)­OFml (B)) ■ The multi­

site performance is obtained by aggregating the performance of each site as, OF= £ OFm 
meM 

Demand forecast 

F y 
Vr+­0./«­0 ) 

I 

/ J W I « \ 
\ "­« ) 

Sue performance: 

­W K = ^OFm{S)­OFjP)­OFx(D'\­OF^{S% 
t=L _ 

Figure 22. Rolling horizon simulation model for multi­site DP process 

4.5 Simulation experiments 

To illustrate the methodology in a real industrial context, numerical studies are carried out 

in collaboration with a large Canadian based OSB manufacturer. As a prototype, the 

numerical study is focused on one of its mills using the field data obtained from the mill. 

Therefore, the multi­site models presented earlier are adapted to the single­site 
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environment, where the set of mills "M" now consists of only " 1 " mill. The aggregated 

demand (dl ) and decision variables Si and BSf, are regarded to be specific to the mill. 

In this case, the mill has a single capacitated production line. The production is conducted 

in batches using a multi-daylight hot press. It produces 11 product families, on an MTO 

basis, consumes 8 raw materials supplied by 19 raw material suppliers on contract and non-

contract basis. The raw material replenishment lead-time, L'm, varies depending on the 

suppliers and the raw materials types, being either 0 or 1 period. The production and 

shipping lead-times are assumed to be negligible. The actual raw material safety stock 

target for ssrmm is used. The mill serves 140 customers in different markets across five 

different regions. Shipments are carried out by four shipping companies, using five 

different vehicle types via two DCs, where the latter is mainly used for transhipment 

purposes. The study is conducted over a planning horizon of one year with periodic re-

planning carried out on a monthly basis. In order to retain the continuity of this study with 

Feng et al. (2008a), the same system parameters and data generation processes will be used. 

Due to the confidentiality agreement, the detailed data will not be presented. 

4.5.1 Demand generation 

Our analysis shows that contract demands usually arrive at a regular frequency. Although 

the exact demand quantity is stochastic and is affected by the seasonality, it generally 

abides by the contract minimum amount. The non-contract demand, on the other hand, is 

more opportunistic and may arrive randomly with some influences from the market 

seasonality. Its demand quantity is also stochastic influenced by seasonality and price 

anticipation. Based on the distinct demand behaviours of the contract and non-contract 

customers, Feng et al. (2008a) presented two algorithms for their demand generations. To 

facilitate the rolling horizon simulation in this study, we generate the demand using the 

same algorithms based on the same parameters as described in Feng et al. (2008a). The 

generation process is performed using an agent-based simulator built within the FORAC 

experimental platform that allows customer demands to be generated according to their 
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defined behaviours (Lemieux et al. 2008). We assume these generated demands are the real 

demands that will reveal as time approaches the current period. 

4.5.2 Forecast generation 

Before the real demands are eventually revealed, demand forecast is used, which for 

empirical analysis purposes, can be expressed as the real demand with some forecast errors, 

as shown in formula (27). This method of generating forecast has been used by numerous 

authors, including Sridharan and Berry (1990), Zhao et al. (2002), Xie et al. (2004), Clark 

(2005). It is simple and intuitively sensible allowing one to evaluate how a planning model 

performs under varying degrees of forecast inaccuracies. Early study identified three 

components of forecast errors, the forecast bias, forecast deviation, and the increasing rate 

of forecast deviation with time. The patterns of the increasing rate were studied for linear, 

concave, and convex functions. Since the results showed little significance from the 

different patterns, it attracted little further attention (Zhao et al. 2002). 

F/r
c = d l + A Vc,i,t (27) 

Based on these ideas, we assume the forecast errors are normally distributed and consist of 

forecast bias e , forecast deviation a , and a linear increasing rate of forecast deviation 

characterized by r. Taking into consideration the contract demand commitment, the 

forecast, thus, can be expressed by formula (28), where e is standardized normal random 

variable. 

F,fT) = max[dmm%, df t ( l+(e+ae) ( t -T) / r )} Vc,i,t=T,...,T+N-l (28) 

According to this formula, the forecast, F y ' , should not be less than the contract 

minimum amount dmin,0,, which is "0" for the non-contract demand. F y ' = dft, when 

t=r, implying the demand is known at the current period. As t>r, the forecast error 

(inaccuracy) increases with time, where ( t—r) / r sets the increasing rate. For empirical 
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purpose, we set r = 1. When s=a=0, F y ' = dc
it, representing the case where demand is 

deterministic. 

4.5.3 Experimental plan 

As explained in the introduction, the experiments are designed to: 

i. Compare the performances of each planning model in fixed and rolling horizon 

environment; 

ii. Examine the benefits of SC-S&OP and SP-S&OP over DP in fixed and rolling 

horizon environments; 

iii. Evaluate the impact of forecast errors on model performances. 

For these evaluations, we define, in each experiment, OF(D,M,<E) being the objective 

function value of the experiment with a set of demands <D , for a planning model !M, in a 

planning environment <E. To determine (1), an experiment in fixed horizon environment T 

is first conducted to establish the benchmark value, which derives the objective function 

value OF(D,;M,T). With the same set of demands <D , and model M, an experiment is 

carried out in rolling planning environment 4{, with a forecast deviation a , and bias £, 

yielding the objective function value OF(D,M,<RS<X,E)). The performance gap of model M 

for this instance can be measured by relative performance ratio, denoted as 

RPR(D,!M,<lL(a,s)), and calculated by (29). j^n RPR value of " 1 " indicates that the model 9d 

performs equally well in rolling and fixed horizon environments for the instance, and a 

lower RPR value implies an inferior performance in rolling horizon environment. 

™ „ , r . , v, OF(D,M,<kl(a,£)) 
RPR(D, <M, <H(a, £)) = v v " 

(29) 

For evaluating (2), the benefit of SC-S&OP and SP-S&OP over DP in both fixed and 

rolling horizon environments are calculated by (30). 
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Beneflt = (QF(D,SCor StP,<E)-OF(D,<D<P,<E) 
OF(D,CDV,<E) ( 3 0 ) 

The experiments are conducted with three levels of forecast deviations, a (0%, 10%, 

20%), and three levels of forecast biases, e (-10%, 0%, 10%), respectively, with four 

replicates, D(Di, D2, D3, D4) yielding a total of 108 experiments. 

Given the sub-optimal performance related to the rolling horizon procedure, earlier studies 

suggested that optimal solutions in rolling horizon environment depend largely on whether 

optimal terminal inventory level is incorporated into the model. Since no general procedure 

has been found to calculate the optimal terminal inventory level, a common practice used is 

to assume no terminal inventory at all (Stadtler 2000). While "0" terminal inventory serves 

well to reduce system cost for the planning horizon, it may not represent the reality of the 

steady state manufacturing system and imposing such unrealistic terminal condition(s) may 

leave the system in an abnormal state. Some research sets the terminal inventory to a 

specific value according to the solutions found in the fixed-horizon model (McClain and 

Thomas 1977, Baker 1981). However, when the arrived demand for a product is lower than 

what has been anticipated earlier and consumes a lesser amount than the remaining 

inventory could serve, setting either a "0" or a specific terminal inventory value can result 

in infeasible solution. 

In this study, we set the terminal inventories (for products and raw materials) unspecified, 

which is restricted only by production and inventory capacities. In contrast, we introduce a 

warm-up period in the procedure and examine the length of the warm-up period required to 

stabilize the planning performance. In the preliminary study, seven warm-up periods, W(0, 

1, 2, 3, 4, 5, 6), were examined for each model under different forecast window intervals, 

N(3, 5, 8), and selected forecast error settings, ( a , s ) being (0, 0), (20, 0), and (10, 10) 

percent. From the results, it demonstrated that insufficient warm-up length would affect the 

planning performances considerably causing their performances in rolling horizon 

environment to be significantly inferior (Figure 23). For the models to reach their full 

performance potentials in each given instance, a warm-up period of at least "2" periods is 

required. Furthermore, inaccurate forecast as well as different forecast window intervals 
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have little effect on the length of the warm-up period. As a result, we set warm-up period 

W as "2" periods for the entire simulation study. 

0.9000 

Figure 23. The effect of the warm-up period on RPR under different forecast errors and 

forecast window intervals, where FD: forecast deviation, and FB: forecast bias 

Similarly, four forecast intervals, N(3, 5, 8, 10), were examined for each model with three 

levels of forecast deviations, a (0%, 10%, 20%), and three levels of forecast biases, s (-

10%, 0%, 10%), respectively. The results show that with the given case, a forecast window 

interval of at least "5" periods is necessary to ensure the performances of all the models 

reach their maximum potentials, respectively. Lengthening the forecast window interval 

has little further significance to the performance improvement. Thus, we set the forecast 

window interval N as "5" periods for the rest of the study. 

The MIP models and scripts are written using Optimisation Programming Language OPL 

5.0 and solved by CPLEX 10.0 optimiser. The simulations are run on Windows Platform 

using Intel Pentium 4 workstation with CPU 2.40 GHz, 512 MB of RAM, and Windows 

XP Home Edition Version 2002. 

4.6 Results and discussions 

In this section, the performance difference of each model between the fixed and rolling 

horizon environments is first examined. With the selected warm-up period and forecast 
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window interval described in Section 4.5.3, the mean RPR values of SC-S&OP and SP-

S&OP models are capable of reaching " 1 " , especially when forecast deviation and bias are 

"0%" (Figure 24). This result indicates that optimal performances can be reached by SC-

S&OP and SP-S&OP models in rolling horizon environment if demand can be forecasted 

accurately. The lower RPR values for the DP model imply its consistent inferior 

performance in rolling horizon environment. 

FDO_FBO 
FD10_FB0 
FD20_FBO 
FD10_FB10<-) 
FD10_FB10<+) 
FD20_FB10<-) 
FD20_FB10<+) 

Figure 24. The mean RPR of DP, SP-S&OP, and SC-S&OP under different forecast errors 

Figures 25a and 25b present the periodic performance of DP model in fixed and rolling 

horizon environments. While the periodic performances of the rolling horizon model 

follow well those of the fixed horizon model in most of the periods throughout the year, the 

performances of the fixed horizon model fluctuate considerably at the beginning and ending 

periods. Note that in the fixed horizon model, the initial and ending product inventories are 

assumed to be "0"; the raw material inventories are the safety stock amount; and the 

purchase quantities that will be received at the beginning of the first period are assumed to 

be the minimum contract amount (qmin'). The demand is known for the finite T periods 

and any demand in the periods beyond the period T is not anticipated in the decisions of the 

period T. These assumptions are typical for MTO system in the deterministic models. It 

indicates that the solutions from the fixed horizon model are optimal only for the given 

assumptions. The fluctuations reflect the self-adjustments in the early periods and sharp 

termination of the operation at the end up on the lack of future demand anticipation. In 
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rolling horizon model, on the other hand, with the introduction of the warm up periods, the 

initial and ending product and raw material inventories are decision variables. They are 

solved, with the other decision variables, based on the actual demand and forecast including 

the ones beyond the current planning horizon from T+1 to T+N­l (i.e., the anticipated 

future demand within the forecast window interval, AO­ Rolling horizon model, thus, 

results in more stable solutions across the planning horizon. Similar phenomena are 

observed in SC­S&OP and SP­S&OP models as shown in Figures 25(c) to (f). These two 

models have been able to find improved solutions on periodic basis through better trade­

offs and/or compensatory offsets upon partially and fully integrated planning with sales 

decisions. 
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Figure 25. The monthly performances of DP, SP-S&OP, and SC-S&OP in fixed and rolling 

horizon environments with 0% forecast errors 

It is important to mention that these studies are focused on the case where demand is 

dynamic with seasonality. An intuitive extension from these observations indicates that if 

trend is presented, i.e., if the anticipated demands in the periods [T+1, T+N-l] were 

substantially higher than those in the early periods [/, N], the decisions of the periods [T-

N+1,T\ would tend to increase the production, inventory, and raw material purchase 

amount, when possible, to prepare the system to cope with the anticipated demand increase. 

The implementations of these decisions would result in an increased total costs and reduced 

net profit for the current planning horizon. On the other hand, if the anticipated demand in 

the periods [T+1, T+N-l] were substantially lower than that in periods [7, N], a reduced 

total cost and increased net profit would be possible. These dynamics suggest that although 

fixed horizon deterministic models provide important fundamentals for theoretical studies, 

they are insufficient for real business applications. A rolling horizon simulation procedure 

is necessary to provide more realistic solutions and performance evaluations. 

The performances of rolling horizon models are evaluated under different forecast 

deviations and biases. Earlier studies on the effect of forecast errors generally concluded 

that even small forecast variance could cause increase in production cost. (De Bodt and 

Van Wassenhove 1982, Wemmerlov and Whybark 1984). Significant cost increase is 

found when the forecast deviation increases up to 10%, which levels off as deviation 

increases further (Jeunet 2006). While both forecast deviation and bias affect the MRP 
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(material requirement planning) performance, bias has greater impact comparatively (Lee 

and Adam 1986, Ritzman and King 1993). In our study, the effects of forecast errors on 

the financial performances of the DP, SP-S&OP, and SC-S&OP models are studied based 

on the complete factorial design to examine the statistical significance of the two factors. 

The results suggested that forecast bias has significant impact on model performances 

while forecast deviations and the interactions of the forecast bias and deviation are 

insignificant as shown in Table 6. The detailed ANOVA tables for each of the DP, SP-

S&OP, and SC-S&OP models are presented in Appendix C. 

Table 6. Summary of ANOVA results on the effects of forecast inaccuracies 

F-values 
Source DP model SP-S&OP model SC-S&OP model 
Forecast bias 4.52** 10.42* 23.28* 
Forecast deviation 1.48"s 0.16ns 0.57"s 

Interaction 0.3 ln s 0.30ns 0.38ns 

Note: * significant at 99% confidence level; ** significant at 95% confidence level; n.s. 
non-significant. 

Similar conclusions can be observed in Figure 24. This finding is believed to be partially 

owing to the MTO policy and partially owing to the embedded sales decisions that 

rationalize and screen out excessive demand upon high capacity tightness of the case. The 

results also show that while it is important to reduce forecast bias as much as possible, 

negative bias seems to be more favourable than positive bias, particularly for the DP and 

SC-S&OP models. Positive bias tends to cause over-production and excessive inventories, 

including excessive terminal inventories, which increases cost and reduces system net 

profit for the current planning horizon. 

The benefit evaluation of SP-S&OP and SC-S&OP models over DP model is first 

conducted by comparing the annual profit, revenue, costs, and sales in rolling horizon 

environment assuming the demands are perfectly forecasted, as shown in Table 7. The 

results show that the SP-S&OP model performs superior to the DP model with increased 

profit from the higher sales amount which, although it augments the total cost, the total 

revenue is augmented. The higher sales amount indicates that the SP-S&OP model has the 
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ability to improve productivity through sales decisions and thus improves the capacity 

utilization. The SC-S&OP model provides further profit increase through significant cost 

reductions, particularly transportation costs. By integrating the sales, production, 

distribution, and procurement decisions together, the model is able to readjust sales 

decisions taking into account the entire supply chain costs and productivity efficiency. 

Although the decisions cause a reduction in revenue, reducing the total cost more 

significantly results in further net profit increase. Upon these sales decisions, the company 

may reject those costly demands, or negotiate the prices, or accept the demands as is, with 

full awareness of the financial implications. 

Table 7. The benefit analysis in rolling horizon environment with perfect forecast 

% diff profit revenue production 
cost 

transportation 
cost 

procurement 
cost 

sales 

SP-S&OP over DP 3.5% 3.4% 3.2% 5.1% 3.1% 3.5% 
(0.4%) (0.3%) (0.7%) (1.1%) (0.4%) (0.3%) 

SC-S&OP over DP 4.5% 3.0% 2.8% -1.6% 1.6% 3.1% 
(0.4%) (0.3%) (0.6%) (0.8%) (0.5%) (0.4%) 

Note: the mean values are shown in bold and the standard deviations are shown in brackets. 

The comparisons of the benefits in fixed and rolling horizon environments under different 

forecast deviations and biases are shown in Figure 26. In general, the SP-S&OP and SC-

S&OP provide greater benefit in rolling horizon environment due to the lower DP 

performance as explained earlier. As the forecast deviations and biases are presented, the 

benefit reduces. Forecast deviations have less impact on the benefits of SC-S&OP and SP-

S&OP models compared to the bias, which is consistent with the results from the model 

performance studies as shown in Figure 24. With regard to the forecast bias, greater 

benefits emerge when positive bias is presented. 
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SP-S&OP over DP SC-S&OP over DP 

FDO 
FD10 
FD20 
FD10-FB100) 
FD10-FB10(+) 
FD20-FB10(-) 
FD20-FB10(+) 
FH 

Figure 26. The mean benefit of SP-S&OP and SC-S&OP over DP under different forecast 

errors, where FH: fixed horizon 

4.7 Conclusions 

In this article, we presented three rolling horizon simulation models to evaluate the 

performances of partially and fully integrated S&OP against traditional decoupled planning 

in a multi-site MTO based OSB manufacturing supply chain. The performances of these 

models are evaluated against those of the fixed horizon deterministic models. The study 

shows that although the deterministic models are important for fundamental theoretical 

studies, they are insufficient for decision support and performance evaluations in real 

business environment. A rolling horizon simulation procedure is required when addressing 

planning issues in practice. The model performances and the benefits of SC-S&OP and SP-

S&OP models over DP model under different forecast errors are examined. In general, 

forecast deviations have little impact on the performances of the models. Greater efforts 

should be made to reduce forecast bias. In all cases, fully integrated SC-S&OP model 

performs consistently superior to the SP-S&OP and DP models. Greater benefits are 

expected in rolling horizon environment. 

In the study, the models are limited to the aggregated tactical level assuming the optimal 

sales decisions can be implemented at the given market dynamics and prices. In reality, as 
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manufacturer facing day-to-day orders, customer reactions to the products, services, and 

pricing strategies need to be taken into account. To this end, the value of coordinating 

S&OP and marketing promotions, order acceptance decisions, and dynamic pricing 

possibilities present challenging areas for future research. Furthermore, supplier-

manufacturer and manufacturer-customer relationships through contracting and 

collaboration in S&OP context present other interesting areas of research. 
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Résumé 

Cet article propose une approche de programmation stochastique pour la coordination de 

l'élaboration des contrats, de l'allocation de la ressource et de la prise de décisions du point 

de vue du manufacturier dans un contexte de chaîne logistique divergente à trois acteurs. 

Dans un système de production industrielle sur commande à capacité limitée, le 

manufacturier désire offrir différentes options de contrats pour satisfaire les besoins de ses 

clients, accepter les contrats qui optimisent l'allocation de la ressource disponible, et 

choisir correctement les contrats avec les fournisseurs pour garantir la satisfaction de la 

demande venant des contrats et du marché spot au plus bas coût d'approvisionnement 

possible. Avec l'utilisation d'un modèle de programmation stochastique à deux niveaux 

avec recours complet, l'économie, le marché, l'approvisionnement et le système dans un 

environnement stochastique sont anticipées pour examiner les décisions. Les résultats 

obtenus démontrent que le modèle de programmation stochastique fournit des solutions 

plus réalistes et robustes, avec une amélioration de la performance prévue de 12% par 

rapport aux solutions du modèle déterministe en nombre entiers. 
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Abstract 

This article proposes a stochastic programming approach for coordinated contract design, 

allocation and selection decisions, from a manufacturer's point of view, in a three-tier 

manufacturing supply chain. In a capacitated make-to-order manufacturing system, the 

manufacturer wishes to offer different customer-contracts to satisfy their needs, to accept 

the contracts that optimize resource capacity allocations, and to select supplier-contracts 

that guarantee the satisfaction of the demand in order to maximize profits. Using a two-

stage stochastic programming model with recourse, these decisions are addressed under a 

stochastic economic, market, supply, and system environment. The computational results 

show that the proposed model provides more realistic and robust solutions, with expected 

12% performance improvement over the solutions provided by a deterministic mixed 

integer programming model. 
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5.1 Introduction 

Effective supply chain management requires collaboration and coordination between 

independently managed business entities along the supply chain. This function is generally 

governed by supply chain contracts (or agreements). There is a growing body of research 

on supply chain contracts defining relationships between supply chain partners. Most of the 

existing literature focuses on two-tier supplier-buyer contracts, with few exceptions that 

expend the contract decisions to a general supply chain network context (D'Amours et al. 

2000). We consider a three-tier manufacturing supply chain, as illustrated in Figure 27, 

where a multi-site manufacturer purchases various raw materials from multiple suppliers, 

and produces different specialty and commodity products for a random demand and price 

market. Thus, there are contract relationships at both demand and supply ends of the supply 

chain. 

Contract decisions Contract decisions 

Suppliers 

Contract decisions 

Manufacturer 

Contract decisions 

Customers Suppliers Manufacturer Customers Suppliers Manufacturer Customers 

Stochastic supply . . . . . , __ , and market price and cost „ Resource capacity 
uncertainties 

Figure 27. Three-tier supply chain in a stochastic environment 

Generally, contract decisions are made at the beginning of the planning horizon. In a 

capacitated make-to-order manufacturing system, this decision involves selecting the 

contract customers so that their demand satisfaction is guaranteed and selecting the contract 

suppliers so that the raw material supplies are guaranteed while the manufacturer's 

financial objectives are reached. The manufacturer signs a contract with a customer only if 

there is enough capacity to satisfy the customer's demand. Hence, the manufacturer would 

typically allocate a certain proportion of the capacity to contract customers, keeping a 

capacity buffer for unexpected demand increases and/or to serve spot markets possibly for 

greater profitability. From a financial point of view, if the market becomes stronger, 

preserving or increasing contract sales would possibly cause contract demand backlogs and 

limit the opportunities for greater profitability. However, if the market weakens, reducing 
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contract sales would potentially put the manufacturer at risk of incurring lower profits. 

Similar scenarios apply to the supply end where the manufacturer has the options to 

purchase raw materials through contract suppliers or from the open market (spot market) 

where greater discounts may be possible. 

Once the demand contracts are signed with the customers, both contract and capacity 

allocations are determined, which blocks a proportion of the capacity for the entire contract 

duration term. Consequently, sub-optimal contract decisions would have significant 

impacts on both contract and spot sales, production and logistic performances, as well as 

raw material supply. Therefore, the demand contract decisions cannot be made in isolation. 

They must be coordinated both horizontally across different functions of the supply chain 

and vertically anticipating the impacts on the down stream operational decisions. This is a 

typical hierarchical planning problem where one has a decision time hierarchy. The 

objective of this article is to develop an optimization model to help the manufacturer to 

coordinate contract decisions at both demand and supply ends, and to allocate capacity, in 

such a way as to maximize the manufacturer's profitability while hedging against 

uncertainty. 

In reality, during the course of the contract period, many uncertain events may happen 

related to economic conditions, market prices, customer demand, supply availability, and 

system capacity due to machine failures. This renders the decision-makers under significant 

risks when making contract decisions. In order to make robust contract decisions that are 

capable of coping with various uncertainties, a mathematical model that can anticipate the 

system performances under different plausible futures is required. In this article, we 

propose a stochastic programming approach to address coordinated contract design, 

allocation and selection decisions in a three-tier manufacturing supply chain. The research 

was carried out based on a real case in the Oriented Strand Board (OSB) industry. 

OSB is a wood based structural panel widely used in North America as building material 

for wall, roof, and floor sheathings as well as I-joists. It is made of wood strands mixed 

with synthetic resins and wax compressed under high temperature and pressure in a hot 

press. The production is carried out on a highly automated production line, either in batch 
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or in a continuous manner, depending on the type of hot press used. The production line is 

capable of making a wide range of OSB products including specialty and commodity 

products with different physical and mechanical properties. The products are mainly sold 

on contract and non-contract basis, in different markets, to four categories of customers: 

manufacturers (producing houses or house components), distributors, wholesalers, and 

retailers. The demand is highly seasonal with strong correlations with the activities in the 

residential building construction industry, whereas the supply, particularly for wood logs 

from forests, is affected by seasonal harvesting operations and long replenishment lead-

times. 

We address the three-tier supply chain contract design, allocation, and selection problem 

from the manufacturer's point of view. The manufacturer wishes to offer different contracts 

to suit the customers' needs and effectively allocate its resource capacities to the right 

customers, products, and locations. Among different types of contracts found in the 

literature and practice, we consider four types of contracts that the manufacturer may offer: 

i) price-only, ii) periodical minimum quantity commitment, iii) periodical commitment 

with order band, iv) periodical stationary commitment. The manufacturer also needs to 

determine which supply contract to accept from which suppliers in order to guarantee the 

satisfaction of the contract and non-contract demand at lowest procurement cost. In this 

study, we limit the supply contracts to total minimum quantity commitments with different 

terms and prices from different suppliers. 

We begin the article with a literature review in Section 5.2 to establish the foundation for 

this research. In Section 5.3, the problem is defined and supply chain characteristics, 

economic trends, market conditions, and customer-contract choice analysis are described. 

The two-stage stochastic programming model is presented in Section 5.4, followed by the 

solution approach in Section 5.5. Scenario sampling and model implementation are 

discussed in Section 5.6 with computational results being presented in Section 5.7. Section 

5.8 provides the concluding remarks and future research directions. 
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5.2 Literature review 

Since the 1990s, extensive work has been carried out in the general area of supply chain 

contracts. Tsay et al. (1999) and Cachon (2003) presented detailed reviews of various forms 

of contracts. Among them, the price-only contract is probably one of the simplest dominant 

forms of contracts used in practice. In this type of contract, a manufacturer quotes a unit 

wholesale price to a customer, and the customer has the flexibility to order any quantity in 

each period during the contract duration term. Lariviere (1999) pointed out that in price 

only contracts, suppliers tend to sell at a wholesale price above the production marginal 

cost, which induces the retailer to set a retail price above what an integrated firm would 

charge (also known as double marginalization), which could result in lower sales and 

profits than what an integrated channel would achieve. Lariviere and Porteus (2001) studied 

the price-only contract in a two-echelon distribution channel with a supplier selling to a 

single retailer facing a single-period newsvendor problem. It was concluded that price-only 

contracts cannot provide supply chain coordination. 

Another widely applied form of contract is quantity discount contract. This type of contract 

introduces price incentives so as to stimulate sales and maximize supplier's profits. 

Monahan (1984) studied a single period quantity discount contract between a buyer and a 

supplier assuming the buyer is likely to react to any supplier's discount proposal. Weng 

(1995) investigated the effects of a single period quantity discount model on channel 

coordination and profit maximization. The analysis shows that quantity discount contracts 

do not guarantee joint profit maximization. However, channel coordination can be reached 

by employing quantity discounts and franchise fees simultaneously. Munson and 

Rosenblatt (2001) studied a quantity discount model in a three-echelon supply chain with 

the middle echelon being the decision maker offering different discount schemes. Clearly, 

discounts can be offered in combination with different contract forms where price 

incentives are necessary. 

Under total minimum quantity commitment contracts, while a supplier offers a discounted 

price, a total minimum quantity commitment is required and, as the total minimum 

commitment increases, the unit price decreases. The buyer commits to purchase, during the 
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entire contract horizon, at least the minimum quantity at the discounted price. There is no 

restriction on the maximum amount that can be purchased, nor requirement on the exact 

amount purchased in each period. Observations found that in a stochastic demand 

environment, the buyer inclines to purchase exactly its demand requirement, thus passing 

its demand uncertainties onto the supplier. Nevertheless, total minimum commitment 

contracts have been widely used as suppliers wish to increase market share by locking-in 

buyers to commit to purchase in a longer term. On the other hand, if there is any 

uncertainty in the supply process, a buyer may wish to enter into such a contract to ensure 

long term supply (Anupindi and Bassok 1999). Bassok and Anupindi (1997) provided early 

work on supply contracts with total minimum quantity commitment for a single-product 

periodical review inventory problem with random demand. By studying a multi-period 

setting, Anupindi and Bassok (1999) argue that although the total minimum quantity 

commitment provides buying flexibility at discounted price, it may lead to supplier loss. 

One of the remedy to this problem is the periodical commitment contract. Unlike the total 

minimum commitment contract, the periodical commitment contract imposes restrictions 

on periodical purchases and, thus, reduces the uncertainty in the order process. This 

contract may take various forms depending on the nature of periodical commitments and 

the flexibility offered. Broadly, the commitments could be stationary or dynamic. 

Stationary commitment contracts were analysed by Moinzadeh and Nahmias (2000) and 

Anupindi and Akella (1997). With a stationary commitment, a buyer is required to purchase 

a fixed minimum amount in each period. Discounts are given based on the level of 

minimum commitment. Additional units can be purchased but at an extra cost and the 

delivery may be delayed. This contract provides a greater level of demand certainty for the 

supplier and just-in-time delivery for the customer. With dynamic commitments, the 

minimum amount can be updated periodically in a rolling horizon manner. The use of 

rolling horizon procedures in contract based planning was investigated by D'Amours et al. 

(2000) in a manufacturing supply chain context. More recently, Lian and Deshmukh (2009) 

studied a rolling horizon planning contract with dynamic commitment and quantity 

flexibility between a buyer and a supplier for a single product. The flexibility in the 

contract can be offered in the form of an order band, where all order quantities are required 
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to be within stationary lower and upper limits. Order-band contracts were initially studied 

by Kumar (1992) and Anupindi (1993) in a game-theoretic setting. Scheller-Wolf and 

Tayur (1998) extended the study in a Markovian demand environment. These contracts can 

also offer quantity flexibility through changing minimum and maximum limits revised in 

percentages that vary in accordance with the number of periods away from the delivery 

(Anupindi and Bassok 1999). Earlier studies on quantity flexibility contracts were 

published by Bassok and Anupindi (1997), Tsay (1999), and Tsay and Lovejoy (1999). 

In supply chain contract design, a decision-maker has to determine what types of contract 

to offer, with what terms and conditions, and what reactions are possible from the 

customers. To tackle these questions, most of the researchers adopted an agent-based 

approach focusing on a contract between a buyer and a supplier. The buyer's optimization 

problem is solved first to determine his optimal order quantity according to the contract 

offered by the supplier. Then the supplier's optimization problem is solved for the buyer's 

optimal order quantity to determine the optimal supply contract. A Nash-equilibrium is 

reached and the costs (profits) of the buyer and supplier are examined to determine the 

optimal contract setting (Corbett and Tang 1999, Schneeweiss et al. 2004). When a 

manufacturer serves several customer-product-locations competing for its limited capacity, 

such as in our case, contract decisions becomes more complex. Unfortunately, such 

concerns have not yet been considered in most of the literature. One of the difficulties of 

addressing the coordinated contract design and allocation problem in a single supplier 

serving multiple customers is the ability to understand the possible reactions of the 

customers to the contract(s) offered. Consider that, instead of addressing the supplier's 

contract design problem based on a single-factor customer cost structure, like what has 

been assumed in most of the contract analysis and design problems, it is possible that the 

customer's choice of a contract is affected by several factors, the combined attributes of the 

contract policy, for instance. In this context, whether or not the customer will choose an 

offered contract policy is a probabilistic discrete choice problem, depending on the 

economic evaluation of the customer, as well as his perceived product qualities, the 

services provided, and socio-economic considerations. According Ben-Akiva and Lerman 

(1994) and Vila et al. (2007), such probability may be determined based on random utility 
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theory using a logit discrete choice model. Vila et al. (2007) applied this method to 

determine the customer-contract choice probabilities for several customers, where the 

customers' reactions to the contracts offered are anticipated in a strategic supply chain 

design model. Similar approaches are adopted in bidding problems for a manufacturer 

facing multiple customer classes, as shown in Easton and Moodie (1999) and Watanapa 

and Techanitisawad (2004). 

Furthermore, in the contract analysis and design problems, most of the models proposed 

assume a deterministic structure, with a few exceptions found in van Delft and Vial (2001), 

Zou et al. (2008), and Xu and Nozick (2008). Van Delft and Vial (2001) presented a 

stochastic programming approach for multi-period supply contract analysis between a 

buyer and a supplier. Zou et al. (2008) proposed a stochastic dynamic programming 

approach to design a supply contract between an assembler and two suppliers in an 

assembly system. Xu and Nozick (2008) proposed a two-stage stochastic model for facility 

location and network design with the possibility of using option contracts to hedge against 

uncertain events which could cause capacity loss at one or several suppliers in a geographic 

area. 

In this study, the contract design and allocation problem at the demand end is addressed, 

and the possible customer reactions to a contract offer are anticipated through probabilistic 

customer-contract choice analysis. The stochastic programming model presented in the 

following section is based on the deterministic model for multi-site supply chain sales and 

operations planning (SC-S&OP) developed by Feng et al. (2008) and the case therein. 

5.3 Problem definition 

5.3.1 Supply chain characteristics 

In this study, we consider a manufacturing supply chain network, consisting of a 

manufacturer, and several customers, suppliers and third-party distribution centres (DCs), 

as shown in Figure 28. The manufacturer has many production sites scattered in different 

regions. We define V = (S,M,D,C) as the set of network nodes (vertices), where S, M, D, 
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and C are subsets associated to raw material suppliers, manufacturing sites, DCs, and 

customers respectively. Let <H. = <[SxM,MxD,MxC,DxC) be the set of inbound and 

outbound arcs, corresponding to ordered pairs of elements of V'. The manufacturer 

produces both specialty and commodity products. The specialty products (/ e Ispe ) are sold 

through contract agreements, and commodity products (/€/„„,) can be sold through 

contract agreements or on the spot market. Both contract and spot market demands are 

highly seasonal. Customers ordering specialty products prefer a contract relationship in 

order to secure their supply. If the contract is not awarded, the customer is likely to seek 

other sources from competitors. A customer ordering commodity products may also choose 

a contract relationship, however he may purchase from the manufacturer through spot sales 

when a contract is not signed. The spot market is considered as a recourse which can absorb 

any production amount. 

Each manufacturing site m e M has a single capacitated production line producing a set 

/ = / ^ u / ^ of product families1 on an MTO basis with small on-site inventory capacity. 

Every manufacturing site can produce all products i e l and everyone can contribute to 

satisfy a given contract subject to capacity constraints. However a contract may be satisfied 

more economically by one site than others due to its efficiency and location. We assume 

that production capacity is affected by unexpected machine down time, and hence, for plant 

m in planning period t e T, it is an independent random variable Kmt with cumulative 

distribution function FK (.). 

1 In the reminder of the text, the word "product" should be interpreted as "product family". 
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Figure 28. Contract relationships in a three-tier manufacturing supply chain network 

The production of each product i e l consumes a set of J raw materials with different 

ratios defined by a product recipe. The manufacturer purchases these raw materials from 

suppliers s e S, including several potential contract suppliers ( CS cz S ) as well as non-

contract spot market suppliers ( NS cz S ). Suppliers have different procurement lead-times 

LSj for raw material j e J . Raw materials are classified into different categories and stored 

using different storage technologies. Let G be the set of storage technologies and g, a 

particular technology with storage capacity KI for mill m. Also, let Jg cz J be the subset 

of raw materials that can be stored with technology g. The raw material inventory is 

managed internally complying with safety stock policies. We assume that inbound raw 

material shipments are carried out by the suppliers, and that their shipping costs are 

included in the procurement costs. 

The outbound shipments of the products from the manufacturing sites to the customers are 

carried out by third party logistic (3PL) providers, either directly or indirectly via a DC 

d e D . The manufacturer has an access to several third party DCs which are assumed to 

have unlimited capacity. We assume a shipment cost is incurred for the flows on each 

outbound arc with a unit variable rate. 
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5.3.2 Economic trends 

At the time of making contract decisions, the manufacturer faces uncertainties in market 

prices, customer demand (both contract and non-contract), customer-contract preferences, 

raw material prices, and raw material supply availability. These uncertainties are related to 

the actions of competitors and, in particular, to the state of the economy. In order to take 

this into account, we assume that the random variables used to model these exogenous 

factors depend on a finite set E of plausible economic trends over the planning horizon 

considered. The probability P(e) that economic trend e e E will prevail over the horizon is 

estimated subjectively by a panel of industry experts. More specifically, we assume that the 

probability distribution of the random variables associated to planning period t e T depends 

on the prevailing economic trend e e S . The trend is defined by a function of the period 

index t e T and it is applied to the value of the original random variables. A typical case 

would be the consideration of expanding, stable and weakening economic trends defined by 

multiplying a given random variable by a linearly increasing (decreasing) per-period 

inflation (deflation) factor. 

5.3.3 Customer contract policies 

As described in Section 5.1, we examine four potential forms of contracts that the 

manufacturer may offer to customers: price-only, periodical minimum quantity 

commitment, periodical commitment with an order band, and periodical stationary 

commitment. These forms of contracts provide different levels of quantity commitments 

and flexibilities. For each form of contract, the manufacturer may develop different policies 

with different contract duration terms and price incentives. Let Kc be the entire set of 

potential customer contract policies the manufacturer offers. Each contract policy k e K c 

is characterized by a number of distinguishing attributes that influence customer decisions. 

Without loss of generality, such attributes may include a price discount factor </>k, a fixed 

contract charge ak, a quantity flexibility expressed by minimum and maximum quantities 

lbk and ubk, a contract starting period tk, and a contract duration term Nk (in periods). 

These attribute values may be determined by the manufacturer's observations of the 
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historical customer ordering behaviours, contract strategies, and pricing experiences. 

Obviously, the price-only contract provides the greatest quantity flexibility with lbk being 

"0" and ubk being a sufficient large number, while periodical stationary commitment has 

the least flexibility with lbk = ubk. 

Given the contract commitments and flexibilities, since contract demand may vary 

randomly, it may be impossible to satisfy the entire contract demand in each period with 

the finite capacity available. Hence, backlogs are allowed for contract demand. Different 

backlog penalty costs are used for different forms of contracts, so that backlog, should it 

become necessary, is more likely to occur for contracts with greater quantity flexibilities 

(such as price-only contract). 

5.3.4 Customer-contract choice analysis 

A manufacturer's decision to offer a contract to a customer does not guarantee that the 

contract will be signed, but implies that it is feasible and economically advantageous for the 

manufacturer. Whether or not a customer c will accept a contract k offered, under economic 

trend e, is modelled using a discrete choice random variable ££. In an industrial 

environment, this choice is affected by many factors such as prices, commitment 

requirements, customer demand, contract duration terms, product quality, service standards, 

location, and socio-economic considerations. It is also affected by the competitors' offers 

available in the market. Let K be the universal contract set offered to some customer 

population, including all the contract policies offered by the manufacturer, the competitors, 

as well as the virtual contract (k = 0) offered by the spot market, (À^Z>ÀTC). Each 

customer c in the customer population has a preference to a subset of the contracts ?C czK. 

According to Ben-Akiva and Lerman (1994) and Vila et al. (2007), the customer's 

preferences for one contract over the alternative subset of contracts can be modeled based 

on economic consumer theory, assuming that the customer has the ability to compare all 

possible contracts, using discrete choice analysis. 
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In discrete choice analysis, the attractiveness of each alternative contract can be evaluated 

by a vector of the attribute values, such as vk = [<pk, lbk, ubk, Nk, id(k)), where id(k) provides 

the identity of the manufacturer who is making the offer. Based on random utility theory, 

the choice preference of customer c for a contract k under economic trend e can be modeled 

as a linear utility function: 

Uc
e(k) = P J k + fi2Jbk + P3eubk + B4eNk + J3Jd(k) + ecek, c e C . e e S , k e % ' 

where PIe, ..., P5e are parameters to be estimated, and ecek is an independent Gumbel 

distributed random disturbance. This random disturbance is introduced to take into account 

any unexpected influences. 

Customer c will likely choose a contract policy k e t C that has the highest utility value. 

Thus, the probability that customer c chooses a contract k under economic trend e can be 

expressed by: 

P?(k) = P(uc
e(k)>Uc

e(l), V l e l C , I * k ) 

Note that for a given contract horizon Tk = [tk,...,tk + Nk - i j , the manufacturer could only 

offer a single contract policy k e K c to a customer. In order to calculate the probability 

Pe
c (k) , only offer k and offers of the competitors should be considered. Let %f (k) a %? 

be the set of these offers. When using a Multinomial Logit discrete choice model, the 

probability that the contract k would be signed if offered to customer c under economic 

trend e can be calculated using the expression: 

eHP,. A +A A +/W + A A +A. '<W) 
P e ( k ) = la j . p ,u p u B M a . m l » C G C , É? G E , k G % f ( k ) 

Li^tc(k) e 

where p is a positive scale parameter. 
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In order to calculate these probabilities, it is necessary to estimate the parameter values P l e , 

. . . ,P5 e , e e E . This can be done using revealed preference data (Ben-Akiva and Lerman, 

1994) or stated preference data (Louviere et al., 2000). The former is derived from the 

analysis of each customer's behaviour based on the demand observations available. The 

later is obtained from a questionnaire with hypothetical offers submitted to a sample of 

customers. With this data, maximum likelihood estimators are used to obtain the parameter 

values. This can be implemented, for example, with the BIOGEME software developed by 

Bierlaire and available on the Web at http://roso.epfl.ch/biogeme. Alternatively, with 

insufficient customer preference data, subjective preference probabilities/*/(£), e e E, may 

be assigned by the company sales force to each customer c for each contract k. 

5.3.5 Customer demand 

When a customer c chooses a contract kelC2 , his demand must comply with the contract 

duration terms and quantity commitments. We assume that the requirements of customer 

ceC for product i e l during period t e T , under economic trend e e E , is an independent 

random variable dc
ite with cumulative distribution function F (.). Taking into account the 

contract terms, quantity commitments, and customer choices, the contract demand of 

customer c under contract k for product /' in periods / is defined by: 

d L J m m ( m a x ( l b k , d l e ) , u b k ) , i f ^ ^ l vi,e,keKc ,teTk 
[0, otherwise 

Note that the contract demand therefore depends on three random variables: the economic 

trend e, the discrete choice ££, and the customer requirementsdc
lle. When no contract is 

signed with customer c for period t, the potential spot demand is assumed to be equal to the 

customer requirements d L for commodity products i e l ^ , and to "0" for specialty 

products i e l . 
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5.3.6 Contract and spot market pricing 

In the OSB industry, the manufacturers' contract and spot sales price are influenced by a 

market reference price, which depends on the economic trend e e E . In order to win 

customer contracts, manufacturer may use different pricing strategies. For contract pricing, 

we assume the manufacturer uses an «-period backward moving average of the market 

reference price, adjusted by an appropriate contract discount factor <f>k. The contract price 

of product i for customer c under contract k in period t and economic trend e can thus be 

defined by pc
kile = <f>k2Z',~l,-nPu*f / "> Vc,k,i,t,e, where p c

u " f is the market reference 

price in the customer's market under economic trend e, which is an independent random 

variable having cumulative distribution function F cM (.). For spot sales pricing, we 
Pitt 

assume the manufacturer uses the market reference price, i.e. pc
Ue = p-,'"f, Vc,i,t,e . 

5.3.7 Supply contract and spot market alternatives 

At the procurement end, the manufacturer may purchase raw materials from contract 

suppliers (s e CS) or on the spot market (s e NS). At the beginning of each planning 

horizon, potential contract suppliers offer several supply contracts. Let Ks be the entire set 

of potential contract policies offered by the suppliers. We assume that suppliers offer only 

"total minimum quantity commitment" contracts, where each contract policy k e K s is 

characterized by a unique pair of unit purchase cost c^, and total minimum quantity 

commitment requirement lbk . Alternatively, the manufacturer may purchase raw materials 

from the spot market at price cs
JU , subject to the market availability KS' e . The spot 

market prices and availabilities are assumed to be independent random variables affected 

by the plausible economic trends, and with cumulative distribution functions F , (.) and 
c j te 

F y-
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5.4 Stochastic programming formulation 

The superposition of specific realizations of the random variables defined previously gives 

rise to a set Q of plausible future scenarios. This is the set of all the scenarios that may 

occur over the planning horizon under the different plausible economic trends considered. 

As explained later (in Section 5.6.2), scenarios can be generated using Monte Carlo 

methods, and a scenario coeQ is associated to the following set of specific random 

variable realizations 

We assume that all the contract decisions must be taken at the beginning of the planning 

horizon, which enables us to model the problem as a two-stage stochastic program with 

fixed recourse. In the model, the contract decisions (for both demand and supply) are first 

stage decision variables. In the second stage, future operational decisions and performances 

are anticipated for given first stage contract decisions, under a given scenario CD e Q.. The 

objective of the model is to find efficient and robust solutions, (1) for the selection of 

customer demand contracts according to perceived customer choice probabilities, in order 

to best allocate the manufacturer's capacities; and (2) for the selection of supplier contracts 

in order to guarantee the satisfaction of the demand. The model maximizes the 

manufacturer's expected global profitability while hedging against uncertainty. 

5.4.1 Mathematical notation 

The following notations are required to formulate the model: 

Indexes and sets 

meM Set of manufacturing mills 

ceC Set of customers 

s e S Set of contract (CS) and spot (NS) raw material suppliers ( S = CSKJNS) 

deD Set of distribution centres (DCs) 

i e I Set of specialty ( Ispc ) and commodity ( 7cora ) products ( / = 7spe u 7com ) 
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j e J Set of raw materials 

g e G Set of raw material storage technologies 

J g Set of raw materials requiring storage technology g (Jg<zzJ) 

r e<*- Set of outbound arcs from mills to customers (<R^ = M x C ) 

r e ^ ° Set of outbound arcs from mills to DCs (%M D=MxD) 
DC 

rs(%> Set of outbound arcs from DCs to customers ( Gtf* = D x C ) 
r e < ^ ° Set of all outbound arcs (<H° = <R.MC u <HMD u <HDC ) 

keKc Set of contract policies the manufacturer offers to customers 

^ € i ^ s Set of contract policies offered by the raw material suppliers 

e e E Set of plausible economic trend over the planning horizon 

' e T Set of planning periods 

Tk Set of planning periods covered by contract k(T k ç z T ) 

Parameters 

Sales 

Çk (of) Binary choice parameter of customer c for contract policy k e K c under scenario 

co 

ak Fixed charge of a demand contract policy k e K c 

(fk Fixed cost of a supply contract with supplier s under contract policy k e K s 

pL [CO) Sales price of product i for customer c with contract policy k in period t for 

scenario co 

pc
it (a>) Spot sales price of product *' for customer c in period / for scenario co 

d l , (<*>) Contract demand of product / from customer c choosing contract policy k in 

period / for scenario co 

d l [co) Spot demand of product i from customer c in period t for scenario co 
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n k Multiplicative penalty factor for contract k e K c demand backlogs 

Product ion 

cmi Unit production cost for product i at mill m 

hmi Unit inventory holding cost for product / at mill m 

am i Capacity consumption coefficient for product i at mill m 

Kml (co) Production capacity of mill m in period t for scenario œ 

umJj Quantity of raw material j required to produce one unit of product i at mill m 

h ^ Unit inventory holding cost of raw materialy' at mill m 

ssmJ Safety stock of raw mater ia l / at mill m 

KIm Finished product storage capacity at mill m (expressed in terms of an upper 

bound on the inventory level) 

A!7 Raw material storage capacity of technology g e G at mill m (expressed in terms 

of an upper bound on the inventory level) 

Distribution 

c„ Unit shipping cost for product /' on arc r 

hm Unit inventory holding cost for product /' at distribution centre d 

trdi Unit t ranshipment cost for product / through distribution centre d 

Procurement 

CQ, Unit raw material j purchase cost from supplier s e C S in period t under contract 

k e K s 

c'„ (co ) Unit raw ma te r i a l / spot purchase cost from supplier s e NS in period t for 

scenario co 
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lbs
k Minimum purchase quantity defined by contract policy k e K s offered by 

supplier s e CS 

KSf Supply capacity of contract supplier s e CS in period t 

K S ' (co) Supply capacity of spot supplier s e NS in period t for scenario co 

L'j Procurement lead-time of raw mate r ia l / provided by supplier s e S 

Decision variables 

F i rs t s tage variables 

Z k Binary variable equal to " 1 " if sale contract policy k e K c is offered to customer 

c, and " 0 " otherwise 

Z [ Binary variable equal to " 1 " if procurement contract k e K s is signed with 

supplier s, and " 0 " otherwise 

Sales recourse variables 

SI (co) Spot sales of product i to customer c in period / for scenario co 

zc
kil (co) Product i backlog for the demand of customer c under contract k at the end of 

period t for scenario co 

Product ion recourse variables 

Xmtt (f0) Production quantity of product /' at mill m in period t for scenario co 

I ma ( m ) Inventory of product i in mill m at the end of period t for scenario cv 

Imj,(co) Inventory of raw mate r ia l / at mill m at the end of period / in scenario co 

Distribution recourse variables 

X m C00) Quantity of product i shipped on arc r in period / for scenario co 
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Idu (co) Inventory of product i in distribution centre d at the end of period t for scenario 

co 

Procurement recourse variables 

x L t i*0) Amount of raw material/ purchased by mill m from contract supplier s e C S 

under contract k e K s in period / for scenario co 
Xmj, i®) Amount of raw material/ purchased by mill m from spot supplier s e NS in 

period t for scenario co 

îg- \G)J Raw material/ procurement underage with respect to the minimum commitment 

quantity imposed by contract k e K s with supplier s e CS for scenario co 

5.4.2 Scenario based stochastic programming model 

The first stage program is formulated as follows: 

max / (Z) = jEn[£(Z,<y)]- £ £ a\Z[ (4.1) 
seCS keK s 

subject to 

I r k < \ Vc,t (4.2) 
<Cc\teTk 

J ] Z s
k <l s&CS (4.3) 

keK c \ teT k 

keK* 

Z c
k e{0 , l} ,Vc ,keK c ; Z[ e {0, l}yS ,k e K s (4.4) 

In the objective function (4.1), En[.] denotes expected value over all scenarios coeQ, 

and Z the vector of all first stage decision variables Zk and Z[ . The function Q(Z,co), 

provides the value of the optimal solution of the second stage program for a given Z and 

co e Q . Constraints (4.2) state that the manufacturer cannot have more than one contract 

with a customer in any period t. Constraints (4.3) state that the manufacturer cannot have 

more than one contract with a supplier and (4.4) define the domain for the demand and 

supply contract decision variables. 
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The objective function of the second stage program is following: 

0 ( M = ™**(Z.Y(*)) Y(<u)£0 
(4.5) 

q(z,Y(œ))=h z «(«H^Wz Z YLPÏ* («KM^+ZZZ/^) W 
V.ceC jt<E£c / l ^ c e C j t e ^ <e/ ï€r t 

ceC ie/ fe7" 

ZZZ^-W+^-W) 
\ m e M iel teT 

ZZfz «-*-(•)+ s «**,.(•)+Zv-W 
^r6*° /•e«(~ rfeD 

-ZZZ ZZ(4^W+4r«W)+Z4W^W+V*W 
meM y e / rei" \ s e C S keK s 

f \ 

seNS 

^ c e C / t e K c fe / t e r t 

(4.6) 

where Y(<y) is the vector of all the second stage decision variables for scenario co. The 

function q() defines the net profit calculated by summing the revenues from the fixed 

contract charge, as well as contract and spot sales, as shown in the first two sets of brackets, 

minus the total cost of production, distribution, procurement, and any penalties as 

expressed by the third, forth, fifth, and sixth sets of brackets. In the first set of brackets, the 

fixed contract charge is applied only when the contract is accepted by both parties 

K^ (co) -Z c
k =l \ . In the third set of brackets, the production cost includes the costs of 

making and inventory holding at the mills. The backlog penalty cost is considered in the 

last set of brackets. The distribution cost, as shown in the forth set of brackets, consists of 

the total cost of shipping, transhipment, and inventory holding at the DCs. The procurement 

cost, as shown in the fifth set of brackets, includes the costs of both contract and non-

contract raw material purchases, the inventory holding, as well as the raw material purchase 

underage z' (co), with respect to the contract minimum quantity commitment. The last set 

of the brackets provides the penalty cost for the backlogs of the contract demand zc
ht(co). 
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The recourse variables, zc
bl (co) and z* (co), ensure the feasibility of the second stage 

program for all Z 

The second stage program includes the following constraints: 

Constraints concerning sales: 

I ^ ( « ) = S ( ^ E . W + 4 H I W - 4 W ) + ^ W V*'.'.« (4-7) 

z<, ( « ) < Zc
kdc

kil (co) Vc,i,t,co,keKc (4.8) 

Sl(œ)<(\-Zc
k)dl(o>) \ / c , t , c o , k e K c , i e I c o m (4.9) 

Constraints (4.7) describe the flow balance at a customer node, stating that the shipments to 

the customer must be equal to the contract sales quantity (if a contract is provided) plus the 

backlog in the previous period minus the backlog at the end of the current period, or 

otherwise, the spot sales quantity. Constraints (4.8) provide the bound for the contract 

demand backlog. Constraints (4.9) state that, when a customer is not served by a contract, 

spot sales should not exceed the customer's non-contract demand dl(co). 

Constraints concerning production and distribution: 

Xmi,(o>) + L,,-M-Im,,(<»)= Z **(*) Vm,i,t,a> (4.10) 

Z Xritn + Id„-lH-Idl,n= Z Xri,H Vd,i,t,(0 (4.11) 

Z lam iXm i t(co)<Km t(co) Vm,t,co (4.12) 
i e l 

Z'.«(«)£*'. Vm,t,o> (4.13) 
i e l 

Constraints (4.10) and (4.11) are the flow conservation constraints at the mills and the DCs. 

Constraints (4.12) and (4.13) are capacity constraints for production and inventory, 

respectively. 
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Constraints concerning procurement: 

Z Z ^ W + Z ^ W + ^ W - / - , W = Z v « ' - W ^j^i+E^xco (4.14) 
seCSkef? sefiS iel 

Z f Z z Z x L A o > ) + z l J ( c o ) \ > Z ' k l b l VseCS,keK s , co (4.15) 
j e J \ m e M t e T ) 

Z Z J L X ' i p ) ^ Z G E S : V s e C S ^ l + B , , . . . , ^ (4.16) 
k e K s m e M j e J ' k e K s 

ZZn»^<» VseNS,t,a> (4.17) 

me A/ j e J 

Z ^ H ^ ^ m g V M , g , ^ (4-18) 

A* ( » ) * » * Vm,j,t,G> (4.19) 

Constraints (4.14) are the flow balance constraints for raw material requirements at mills, 

taking into account the supplier lead times. Constraints (4.15) impose the total minimum 

quantity commitment the manufacturer must comply with when a supply contract is signed. 

Constraints (4.16) and (4.17) are capacity constraints for the contract and spot suppliers, 

respectively. Constraints (4.18) are raw material inventory capacity constraints. Safety 

stock requirement constraints are given by (4.19). 

Valid cuts: 

In order to improve the solution time, the following cuts are added to the model: 

zfrw+w^-^wj+H^w-^wj-sfz^w+^w-^wj+^w 
meM deD eeC\keJyf 

Vi, t,o> (4.20) 

These cuts define the aggregate flow balance over the manufacturing sites, DCs and 

customers. They are valid since they are a linear combination of constraints (4.7), (4.10) 

and (4.11). Our preliminary tests have shown that the cuts reduce computation time by a 

factor of about 6. 
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5.5 Sample average approximation 

In most applications, the set fi includes an infinite number of scenarios, which makes the 

proposed stochastic programming model impossible to solve. The Sample Average 

Approximation (SAA) method can however be used to obtain near optimal solutions. This 

method has been theoretically analysed by several authors (Mak et al., 1999; Sharpiro, 

2003) and applied to solve various stochastic supply chain design problems (Santoso et al., 

2005; Vila et al., 2007). It involves solving the problem using samples of scenarios 

randomly selected from the population fi. For this purpose, B random samples 

fi" =\a)\,...,(0*}, b = l,...,B, of N scenarios are generated using Monte Carlo methods. 

For a sample b, the true problem (4.1) - (4.19), with the expected value function 

En I Q(Z,co)\ in (4.1), is replaced by the following SAA program: 

m a x / / ( Z ) = i - Z ? ( Z > Y « ) ) - Z Z < Z l (5-1) 
A n=\ seCSkeK5 

subject to constraints (4.2) - (4.4) and (4.7) - (4.19). 

Note that in this program, the second stage constraints (4.7) - (4.19) are defined over the 

scenarios coeÇfb of the sample considered. Program (5.1) is solved for the B samples 

generated and the best solution found is selected. The SAA program (5.1) is a large mixed 

integer program (MIP) but, for a moderate sample size N, it can be solved using 

commercial solvers such as CPLEX. Even if a moderate sample size is used, we expect that 

the contract decisions made using this approach are considerably more robust than the 

solutions provided by a deterministic model. Clearly, as the number of scenarios N 

increases, the quality of the decisions improves. As shown by Shapiro (2003), under mild 

regularity conditions, the solution of the SAA model converges with probability one to the 

optimal solution of the true problem, as sample size N increases. Also, using B independent 

random samples of size N increases the probability of finding the true optimal solution. 

An important issue is how to select the best solution among the B solutions found, and how 

close this solution is to the optimal solution of the true problem. The quality of a candidate 
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solution can be evaluated by estimating a statistical optimality gap and confidence 

intervals. In the following paragraphs, we present the SAA solution algorithm developed to 

solve our model. Similar procedures are found in Santoso et al. (2005) and Vila et al. 

(2007). 

SAA Algorithm: 

Step 1. Generate B independent samples of N scenarios fi", b = \,...B . For each sample, 

solve the SAA model (5.1). Let vb and ZA be the corresponding optimal 

objective value and optimal solution, respectively. 

Step 2. Compute the statistical upper bound and variance estimators. 

^ « T f Z t f (5-2) 
B *=i 

It can be shown that U N B > v , where v denotes the optimal value of the true 

problem (Mak et al. 1999). Thus UN B provides a statistical upper bound. Since 

the B samples generated, and hence vf ,...,v% , are independent, the variance of 

UNB is given by: 

& 2 ^ = l ( F ^ ^ ~ 0 f f ^ (5-3) 

Step 3. Compute the statistical lower bound and variance estimators. 

For each distinct candidate solution ZiA obtained in Step 1, estimate the true 

objective function value f \ y b \ as follows: 

/iv1(zr)=^-iô(zr,o>")- z z <^sx w 
1*1 n=l V ' seCS keK s 
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where co\...,coN' is a sample of size Af/ » N generated independently of the 

samples used to obtain Z é in Step 1. Note that fN (Z") is an unbiased estimator 

of f l Z " ) . Since ZA is a feasible solution to the true problem, we have 

/ ( Z M < v * . Thus, fN(Z,1) provides a lower statistical bound on v . Since we 

have an independent sample, the variance of this estimator is given by: 

ff, 
â2 

Step 4. Calculate the optimality gap and the confidence interval. 

Having determined the statistical upper and lower bounds from Step 2 and 3, the 

optimality gap of solution ZA can be estimated by: 

GapNBNi ( z ; ) = max {o,UN<B - / „ (zf )} (5.6) 

The estimated variance of the gap is given by: 

âc°P= âk.B
+ â)N l(zî) <5-7> 

An approximate 100(7-a) percent confidence interval for the optimality gap at 

Z4 is given by: 

0 ,Gap N B N i (z : )+ 2 + — (5.8) 

assuming random variables v^ and Q\Z,Nb,co"\ follow a ^-distribution with 5 - 1 

and N, - 1 degrees of freedom, respectively (Mak et al. 1999). 
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Step 5. Select the solution ZJJ , b = 1, ... B, with the highest estimated true objective 

function value fNl \Z b J. 

Having selected the best contract solution, its quality can be evaluated by examining the 

gap and confidence interval. If the gap and confidence interval are not acceptable, a larger 

number of samples B and/or sample size N must be used in order to find better solutions. 

5.6 Application to an OSB industrial case 

5.6.1 Case description 

In order to validate the methodology, the two-stage stochastic programming model 

proposed was applied to the real industrial case context presented in Feng et al. (2008). The 

numerical tests were based on the field data obtained from a single OSB mill. The mill has 

a single capacitated production line. Production is carried out in batches using a multi-

daylight hot press. The production line produces 11 products, on an MTO basis, and it 

consumes 8 raw materials supplied by 11 raw material suppliers. The products are sold to 

140 customers across 5 different regions in North America. In order to effectively apply the 

methodology, following a Pareto analysis, 20 customers, accounting for 80% of the sales in 

the 5 regions, were explicitly considered. The rest of the customers and their demands were 

aggregated to form the spot market in each of the regions. The shipping unit costs to each 

of the customers are known, and for the spot markets they were estimated based on the 

weighted cost to each of the customers within the region. On the raw material procurement 

side, the lead time varies depending on the suppliers and raw material types, being either 0 

or 1 period. For demand contracts, 4 forms of contract were offered to the customers, as 

described in Section 5.3.3, with different discount, fixed charges, minimum/maximum 

quantities, and contract horizons, yielding 28 contract policies. For procurement contracts, 

we considered 7 supply contract offers from 7 suppliers all with yearly contract duration 

term. The study was conducted with monthly planning periods and a planning horizon of 

one year. The scope of the case is outlined in Table 8. 
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Table 8. The scope of the OSB case 

Indexes Sizes 

Mills 1 
Facilities 1 
Distribution centers 2 
Products 11 
Customers 20 
Spot market 
Raw material suppliers 

5 
11 

Raw materials 8 
Demand contract potential offers 
Supply contract offers 
Planning horizon 

28 
■7 
12 months 

In this study, the deterministic parameters were derived from field data as explained in 

Feng et al. (2008). For the random parameters, probability distributions were estimated 

respectively, using five year market data for the reference price, and one year's data for 

customer demand, production capacity, raw material spot price, and raw material spot 

capacity. The best fit for the market reference price, demand, raw material spot price and 

raw material spot capacity was a Normal distribution, and the standard deviations were 

obtained by multiplying the historic means by an estimated coefficient of variation (0.05, 

0.20, 0.05, and 0.20, respectively). The best fit for the manufacturing capacity, based on 

down time analysis, was a Uniform distribution. Three possible economic trends were 

considered: stable (S), expanding (E), or weakening (W). The corresponding estimated 

probabilities were P(S) = 70%, P(E) = 20%, P(W) = 10% and the trends were defined 

by linearly increasing (decreasing) annual inflation (deflation) factors Ael =(ae/T)t + l 

with ae, being 0%, 10%, and -10%, respectively, for all e e E = {S,E,W], over the 

planning horizon of T— 12 monthly periods. The distributions for the random variables and 

corresponding inflation (deflation) factors are shown in Table 9. 
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Table 9. Random variables, their probability distributions and inflation (deflation) factors 

Random Distributions inflation/deflation  
Variables factors 

Market reference price pc
ite"

f F ^ (.)= Normal [p(pl e
r e /),cr { p l f ) ) Kt 

Demand dc
itt F<. (.)= Normal(p ( < . ) , o ­ {dL)) 

Raw material spot price c * F , (.) = Normal (p (cs
jle \ , a (c'JU J j Â( 

Raw material spot capacity KS'U FKS, (.) = Normal (p (KS'U ), a (KS'U )) X™ = ­ ^ ­ t + l 

Production capacity Km FKm (.) = Uniform (0fm, 0­fml ) 

The notations // (.) and a (.) are the mean and standard deviation of the Normal variables, 

Of", Oj" are the lower and upper bounds of the Uniform variables ( 85% and 98% of the 

standard production capacity, respectively). Due to the sensitivity of the contract issues on 

customer­manufacturer­supplier relationships, and a confidentiality agreement, the detailed 

data is not presented. 

The SJ^A model generator was written using Optimization Programming Language OPL 

6.3, with a Microsoft Access database connection to automatically read data input and write 

solution output. The MIPs were solved using CPLEX 11.2. The program was run on a Intel 

Core 2 Duo workstation with CPU 2.00GHz, 4.00GB of RAM, and Windows Vista Home 

Edition Version 2007. 

5.6.2 Scenario generat ion 

Plausible scenarios are generated using the following Monte Carlo procedure, which is 

based on the stochastic processes defined in Section 5.3. In the procedure, u denotes a 

uniformly distributed pseudo random number in [0,1]. The procedure starts by selecting an 

economic trend. It then sequentially generates demands and prices for the customers, 

capacities and prices for the spot raw material suppliers, and manufacturing capacities. In 

order to obtain a sample of N scenarios, one simply runs the procedure Af times. 
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Scenario co Generation Procedure: 

Step 1. Select an economic trend e randomly using P (e), e e E 

Step 2. For all customers c e C, do: 
Generate customer-contract choices 

1 ifue[0,Pe
c(k)\ 

1 e W J , VkeK c 

0 otherwise 
Generate customer requirements and market reference prices 

dl(co) = XelFfl(u), p<r'(a>) = AelF-lre/(u), Vi.teT 
"ite 

Derive contract and spot demands from customer requirements 

^ H = I™(max( /*'^W)'Mft*)» i f^W = 1, \/i,teTk,keK? 
[0, otherwise 

<(e») = | < W , V / e / ,teT 
"K ' [0 otherwise ™ 

Derive contract and spot prices from market reference prices 

n t'=t-n 

PC
U(G>) = pc

tt
M(a>) , V / € / _ , / e T , 

Step 3. For all spot suppliers 5 e AŒ, and all periods f e 71, do: 
Generate the spot supplier's raw material capacity and prices 

KS;(oj) = Z ? F ^ ( u ) , c ) t ( c o ) = X e t F ; : ( u ) V / e J 

Step 4. For all mills m e M , and all periods r e T, do: 
Generate the manufacturing capacity 

Km,(co) = F-Kl(u) 
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5.7 Computational results 

In order to investigate the solvability of the SAA program (5.1), and the quality of the 

solutions obtained, experiments were initially carried out using 5 samples of scenarios 

(B = 5), each of size N = 1, 5, 10, 15, 20 and 25. Table 10 shows that as the sample size N 

increases, the SAA program size and the computational times grow significantly. Figure 29 

illustrates the time variance in solving the problem for the 5 different samples of the 

varying sample sizes. Obviously there is a trade­off between the problem size, 

computational efforts, and solution quality. To obtain good quality solutions while 

preserving the solvability of the model, we used 5 = 10 samples of N = 25 scenarios in our 

calculations, yielding 10 candidate solutions. 

Table 10. Comparison of model complexity with different sample size N 

Sample size (N) Continuous variables Binary variables Constraints Time (sec) 
1 6952 177 8570 3 
5 40687 245 5338 18 
10 84417 264 112189 55 
15 140246 294 193378 758 
20 204442 354 290038 377 
25 270500 385 390118 2223 
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Figure 29. Computation time variation 
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The statistical validation of the solutions is carried out by evaluating the objective function 

values with respect to each of the candidate solutions using N, =100, 200,300 sampled 

scenarios. Table 11 presents the statistics for three candidate solutions, denoted Z, , Z2, 

and Z3 . Among the three candidate solutions, the performances are very similar. The 

objective function values increase and the optimality gaps and confidence intervals become 

very tight as the sample size A7, increases. This result indicates that the stochastic modeling 

method can produce robust solutions with good performances in various uncertain 

environments. The candidate solution Z, provides slightly superior results among the three 

solutions. Note that when Â  =300, we observed fN ( z " \ > U N B resulting in a negative 

gap. This negative gap is known to be caused by the separate sampling approach used to 

estimate the statistical upper and lower bounds, and the relatively smaller values of B and 

N,. A similar phenomenon was observed by Mak (1999), where a common random 

number (CRN) sampling approach was proposed. In the CRN sampling approach, instead 

of developing a confidence interval of the optimality gap by estimating the upper- and 

lower- bounds separately using independent sample scenarios, the same set of sample 

scenarios is used. It was reported that using CRN sampling can eliminate the negative gap 

with improved confidence interval without significantly increasing the sample sizes. 
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In order to investigate the necessity of applying stochastic programming in solving contract 

design, allocation, and selection problems, the problem is also solved using MIP 

deterministic model. The performances of the contract solutions derived using the two 

models are then compared. In me deterministic model, the random variables such as 

demand, market price, raw material supplier price and capacity, as well as the 

manufacturing capacity, are replaced by mean values under a stable economic environment. 

The customer-contract choice parameters are generated randomly and independently. Ten 

replicates of customer-contract choice parameters are generated and the MIP model is 

solved for each replicate yielding ten candidate solutions. These solutions are also 

evaluated using N, = 100, 200,300 sampled scenarios. The performances with respect to 

the deterministic contract solutions are compared with those obtained from the stochastic 

contract solutions as shown in Figure 30. The contract solutions obtained from the 

stochastic programming model perform significantly better than those obtained from the 

deterministic model with a 12% performance improvement on average equivalent to $ 7 

million dollar increase in profit. The performances from the ten candidate solutions 

obtained using stochastic programming model are consistent with little variations, while 

those from the candidate solutions obtained using deterministic model vary considerably, 

ranging from $53 to $64 million dollars. 

8000 

70.00 

50.00 

-T 30.00 

000 

SP300 MIP 100 MIP 200 MIP 300 

Model types and number of scenarios 

Figure 30. Comparison of objective function values from stochastic and deterministic 

contract solutions with Ni = 100, 200, 300 samples, respectively 
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Table 12 present the statistics for three candidate solutions from the deterministic model, 

denoted Z w p , , Z M n , and ZMi,3. Note mat in deterministic case, contract decisions that 

yield high objective function values do not necessarily perform well in uncertain business 
A 

situations. As shown in Table 12, particularly candidate solution Z m P i , despite an objective 

function value higher than the upper bound UNB obtained from the stochastic 

programming model, has a low fN (zMIPi ) value and a large gap. Contract decisions are 

affected by many factors, such as, market price, customer demand and customer-contract 

choices, among other factors, which are rarely known with certainty. Since in deterministic 

models, mean parameter values are used and a single customer choice scenario is 

considered, the decisions made would perform well only in that particular scenario. As 

other plausible scenarios occur, they would adapt poorly resulting in disappointing 

performances. Thus, decisions provided by deterministic models are less robust, and often 

inadequate. Stochastic programming is therefore a more appropriate modeling approach for 

contract decision problems, and the SAA solution approach can be practically applied. 

Table 13 presents statistics on the contract decisions provided by the three stochastic and 

deterministic candidate solutions, respectively. It can be observed that the demand contract 

decisions vary in terms of contract forms, policies, allocations, and the number of contract 

customers. This indicates that the decisions are sensitive to the sample scenarios, 

particularly the customer-contract choices, customer demand, and market prices. This is 

particularly true for the contract decisions obtained from the deterministic model as shown 

by the larger variations observed. With the scenarios generated, not all 20 potential high 

volume customers have been offered a contract. The models have suggested reserving a 

proportion of the capacity to absorb the contract demand variation and/or serve the spot 

market. The manufacturer may choose an alternative contract decisions based on particular 

contract relationship considerations with full awareness of the financial implications. For 

the supply contract decisions, the results are rather consistent. Six distinct supply contracts 

are selected from the 7 contract offers in most of the cases. This indicates that the contract 

decisions are relatively insensitive for the level of raw material market price and 

availability changes studied in this case. 
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Table 13. Candidate solutions 

Candidate No. of contract No of contract Contract demand No of contract No of supply 

solution forms policies allocation customers contract 

z, 2 6 63% 16 6 

z2 2 7 60% 16 6 

^ 3 3 7 63% 15 6 

7 
^ M I P I 

2 9 67% 17 7 

7 
' - 'MIP2 

1 7 67% 18 6 

7 
' - 'MIP} 

4 11 73% 17 6 

5.8 Conclusions and future research opportunities 

In this article, we present a two-stage stochastic programming model for coordinated 

contract design, allocation, and selection decisions from a manufacturer's point of view, in 

a divergent three-tier manufacturing supply chain, under stochastic economic, market, 

supply, and system environments. In this capacitated make-to-order manufacturing system, 

the manufacturer wishes to offer different contracts to satisfy customers' needs, to accept 

the contract that optimize the resource capacity allocation, and to select the right contracts 

from the suppliers that guarantee the satisfaction of the contract and non-contract demand 

at lowest procurement cost. Four forms of contracts are evaluated for the demand contract 

design including the price-only, periodical minimum quantity commitment, periodical 

commitment with order band, and periodical stationary commitment contracts, each with 

different duration terms and price incentives. Stochastic customer-contract choices are 

incorporated in the scenarios generated in order to provide meaningful solutions for the 

demand contract decisions. The two-stage stochastic programming model with fixed 

recourse proposed is solved using the SAA approach. Feasible solutions are obtained in all 

cases. Computation analysis shows that by using stochastic programming model, more 

realistic and robust solutions can be obtained, with expected 12% superior financial 

performances, on average, to those obtained using a MIP deterministic model. 
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This research has been focused on two-stage stochastic programming to solve a contract 

decision problem in which all contract decisions are made at the beginning of the planning 

horizon. In real industrial environments, customer may choose a short term contract, for 

example, a three month contract, and leave the decisions on future contracts to a later date. 

A multi-stage stochastic programming approach could thus be investigated to address 

multiple contract decision points during the planning horizon. Note however that, given the 

additional complexity introduced by a multi-stage stochastic programming approach, using 

our model on a rolling horizon basis provides a practical way to reach contract decisions 

that are near optimal. A comparison of these two approaches would certainly be interesting, 

despite the fact that the multi-stage models would be much more difficult to solve. 
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Chapter VI 

Conclusions 

This research is carried out in the context where technologies and advanced management 

methodologies are emerging, and the traditional S&OP process are evolving towards 

supply chain based S&OP, with the supply chain management philosophy and collaborative 

supply chain planning as the guiding principle. In this thesis, we analyse two S&OP 

approaches, the traditional partially-integrated sales-production planning based S&OP (SP-

S&OP) and the fully-integrated supply chain based S&OP (SC-S&OP), identified in the 

literature and practice. Our objectives are to evaluate quantitatively these two S&OP 

approaches in a real industrial case, present insightful analysis on their value creation 

opportunities and provide decision support for their selection and implementations. The 

research is conducted in collaboration with a large OSB company in an MTO 

manufacturing supply chain system. The supply chain consists of a manufacturer, several 

customers, suppliers and third-party DCs. The manufacturer has multiple alternative 

production sites, each with a capacitated facility, capable of producing different specialty 

and commodity products with different efficiencies. It has a centralized sales office being 

responsible for multi-site sales and demand allocation decisions while the production, 

distribution, and procurement decisions are carried out separately and locally at each mill. 

The manufacturer serves its customers on contract and non-contract bases and purchases 

raw materials from many contract and non-contract suppliers. In this large and complex 

supply chain environment, the quantitative evaluations are carried out through a pre-

implementation modeling approach where the two S&OP are evaluated against the current 

decoupled planning (DP) assuming best decision making practice can be established for 

each of the planning approaches. The research is carried out in three steps, an initial 

evaluation using deterministic method, a comprehensive evaluation through simulation, and 

a decision support for contract decisions. This chapter presents the general conclusions for 

the thesis and highlights many research opportunities for future development. 
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6.1 General Conclusions 

In this thesis, we define that an SC-S&OP is the planning process where the cross 

functional planning of sales, production, distribution and procurement is carried out jointly 

and centrally; an SP-S&OP is the one in which the sales and production planning are 

carried out jointly and centrally while the distribution and procurement are planned 

separately and locally at each mill; and a DP is the one in which the sales planning is 

carried out centrally while the planning of production, distribution and procurement is 

performed separately and locally. 

In the initial evaluation, the current decision-making process of the multi-site 

manufacturing supply chain is analysed and three sets of MIP based mathematical 

programming models are proposed representing, respectively, the SC-S&OP, SP-S&OP 

and DP approaches. In these models, sales decisions are introduced as decision variables 

allowing them be determined optimally within each of the planning scope. Hence, the 

importance of integrated sales and the supply chain production, distribution and 

procurement decisions can be demonstrated numerically. The results show that both SP-

S&OP and SC-S&OP provide superior performances to the DP with expected 1% and 2% 

profit improvement, respectively. The results are very sensitive to market conditions. As 

market prices reduce or demand increases, greater benefits can be achieved. The solution 

time for the SC-S&OP model is 219 seconds on average (ranging from 179 to 332 seconds) 

with solution gap being 0.27% on average ranging from 0.19% to 0.42%. 

In the comprehensive evaluation, the periodic on-going planning characteristics of the 

S&OP is implemented through rolling horizon simulation allowing more realistic 

evaluations to be carried out taking into account the potential effects of demand 

uncertainties and forecast inaccuracies. In this regard, three sets of rolling horizon 

simulation models are developed representing, respectively, the SC-S&OP, SP-S&OP, and 

DP processes. From the results, it is observed that greater benefits can be obtained from the 

SP-S&OP and SC-S&OP in rolling horizon environment with expected 3.5% and 4.5% 

profit improvements, respectively, comparing to the DP approach. The research also shows 

that the performances of the three planning approaches as well as the benefits of the two 
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S&OP approaches can be affected by forecast biases. The forecast deviations, on the other 

hand, have insignificant effects within the scope of this study, which indicates that greater 

efforts should be made to reduce forecast biases. 

As S&OP is affected considerably by the contract decisions, the third step of the research 

addresses the coordinated contract decision problem in a three-tier stochastic supply chain 

environment. Specifically, a coordinated contract design, allocation, and selection model is 

developed from the manufacturer point of view. The model allows the manufacturer to 

design the right contract policies to be offered to the customers, make the right allocation 

decisions for the constrained system capacity, and select the right supply contracts from the 

suppliers so that the manufacturer's profit can be maximized. Four forms of contracts are 

proposed, including price-only, periodic minimum quantity commitment, periodic 

commitment with order band, and periodic stationary commitment, each with different 

contract terms, commitment requirements, and price incentives defining the specific 

contract policies. Probabilistic customer-contract choices are established based on discrete 

choice analysis assuming that a customer-contract choice is affected not only by its cost 

structure, but also by the combined attributes of the contract policies as well as social and 

economic influences. The model is formulated as a two-stage stochastic programming 

model with recourse. Thus, robust contract decisions can be obtained that profitably 

coordinate the contract and spot sales with the supply chain capabilities while hedging 

against various system and environmental uncertainties. The stochastic programming 

model is solved using SAA approach. Feasible solutions are obtained in all cases. 

Computation results show that the contract solutions obtained by the stochastic 

programming model perform significantly better than those obtained using an MIP based 

model with expected 12% profit improvements. 

6.2 Future Research Opportunities 

This research is carried out in the MTO manufacturing system. One of the natural 

extensions of the research is to apply the same principle and modeling approaches to the 

make-to-stock (MTS) manufacturing system. Some of the models developed in this thesis 

may be adopted directly into the MTS system with minimum modifications, such as the 
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SC-S&OP model and the contract decision model. Other model, such as SP-S&OP, may 

require more adjustments to properly illustrate the MTS practice. In general, greater 

benefits are expected in MTS system, as by implementing SP-S&OP or SC-S&OP, not only 

the demand and supply capabilities can be effectively balanced, but also the supply chain 

inventory management can be substantially improved. 

In this thesis, the research scope is limited to the supply chain cross-functional planning 

and integration at the aggregated tactical level. The hierarchical functionalities of 

coordinating the operational planning with strategic planning in a supply chain context, and 

the benefits of such coordination remain to be investigated. Furthermore, in our 

performance evaluations, we have assumed that the optimal sales as well as supply chain 

production, distribution and procurement decisions can be implemented at the operational 

level. In reality, as manufacturer facing day-to-day orders influenced by the market and 

price dynamics, order acceptance and allocation decisions as well as pricing strategies need 

to be taken into account and operational variability need to be anticipated. In this regard, 

hierarchical coordination of S&OP with the operational planning, interfacing with order 

acceptance and dynamic pricing decisions, present other challenging areas for future 

research. 

With respect to the cross-functional planning of the supply chain S&OP, this thesis has 

focused on the integrated planning of sales, production, distribution and procurement. 

Marketing decisions on promotion strategies as well as financial planning, budget 

allocations, and cash flow availability constraints were not included in the scope. In many 

applications, marketing promotions and pricing decisions are critical and challenging part 

of the decisions. Integrated marketing and supply chain planning, thus, presents an 

important research opportunity for the research community. Furthermore, as many supply 

chain has imposed financial constraints, financial planning and budget allocation decisions 

should also be considered in the formulation. 

In the contract decision problem, we have used stochastic programming approach to 

anticipate the environmental and system uncertainties so as to derive robust contract 

solutions. Recent development has shown that robust optimization can be another effective 
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methodology to handle optimization problems with uncertainties and generate robust 

solutions. It, thus, present another interesting option for the contract decision applications. 

On the other hand, in this thesis, the contract decision problem has been formulated as a 

two-stage decision model assuming all contract decisions are made at the beginning of the 

planning horizon as the first-stage decisions. In real industrial environment, customer may 

choose a short contract term, such as, a three month contract, and leaving future contract 

decisions to a later stage when the time is approaching closer. In this case, a multi-stage 

stochastic programming or robust optimization approach can be investigated to address 

multiple contract decision points during the planning horizon. From this regard, rolling 

horizon procedure may be implemented to simulate the decision process. Solution 

techniques to handle large stochastic programming / robust optimization problems are 

another challenging area for future research. 

Lastly but not least, as the integrated S&OP models are implemented in large supply chain 

systems with increased problem sizes and complexities, advanced solution methodologies, 

for example, Benders' decomposition, Dantzig-Wolfe decomposition, Lagrangian methods 

etc. present many interesting research directions. 
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Appendix A 
Table A-1 . The benefit (%) of SC-S&OP model over DP model. 

Non- Rm 
Factors Levels Profit Revenue Contract contract Production Transport Procurement inventory 

revenue revenue cost cost cost cost 
Demand -20% 1.1% 0.2% 0.3% -0.5% 0.1% -5.0% 0.3% -2.0% 

-10% 2.0% 1.0% 0.4% 5.5% 0.8% -3.9% 1.0% -0.9% 

0% 2.1% 0.9% 1.2% -1.2% 0.6% -5.7% 0.9% -0.6% 

10% 3.3% 2.3% 1.9% 5.5% 1.1% -2.6% 2.7% 0.0% 

20% 4.7% 4.1% 2.3% 23.0% 3.1% 1.4% 4.8% 0.1% 

Spot price -20% 4.5% -0.8% 1.2% -16.2% -3.6% -12.6% -1.6% -0.8% 

-10% 2.4% 0.3% 1.1% -6.0% -0.3% -8.0% 0.0% -0.7% 

0% 2.1% 0.9% 1.2% -1.2% 0.6% -5.7% 0.9% -0.6% 

10% 1.9% 1.0% 1.1% 0.3% 0.8% -5.0% 1.1% -0.6% 

20% 1.8% 1.1% 1.0% 1.7% 1.0% -4.1% 1.2% -0.6% 

Unit production -20% 2.0% 1.0% 1.2% -0.4% 0.6% -5.0% 1.0% -0.6% 

cost -10% 2.0% 1.0% 1.2% -0.6% 0.6% -5.1% 1.0% -0.6% 

0% 2 .1% 0.9% 1.2% -1.2% 0.6% -5.7% 0.9% -0.6% 

10% 2.3% 0.8% 1.2% -1.7% 0.4% -6.6% 0.8% -0.6% 

20% 2.3% 0.8% 1.1% -1.2% 0.4% -6.9% 0.9% 0.5% 

Unit shipping -20% 2 .1% 1.1% 1.0% 1.1% 0.8% -5.9% 1.1% -0.6% 

cost -10% 2.2% 1.0% 1.1% 0.4% 0.7% -6.7% 1.0% -0.7% 

0% 2.1% 0.9% 1.2% -1.2% 0.6% -5.7% 0.9% -0.6% 

10% 2.1% 0.8% 1.2% -1.8% 0.6% -6.0% 0.8% -0.6% 

20% 2 .1% 0.8% 1.3% -3.3% 0.5% -6.6% 0.9% 0.5% 

Unit purchase -20% 2.0% 1.0% 1.1% -0 .1% 0.5% -5.2% 1.2% -0.6% 

cost -10% 2.0% 1.0% 1.1% -0.3% 0.6% -4.9% 0.9% -0.3% 

0% 2.1% 0.9% 1.2% -1.2% 0.6% -5.7% 0.9% -0.6% 

10% 2.2% 0.9% 1.1% -1 .1% 0.5% -5.9% 0.9% -0.6% 

20% 2.3% 0.8% 1.2% -2.2% 0.5% -6.3% 0.7% -0.6% 

Unit raw material -20% 2.0% 1.0% 1.2% -0.9% 0.6% -5.0% 1.0% -0.6% 

inventory cost -10% 1.9% 0.8% 1.1% -1 .1% 0.6% -5.4% 0.9% -0.6% 

0% 2.1% 0.9% 1.2% -1.2% 0.6% -5.7% 0.9% -0.6% 

10% 2.0% 0.9% 1.1% -0.6% 0.7% -5.2% 0.9% -0.6% 

20% 2.1% 0.8% 1.2% -2 .1% 0.3% -6.1% 0.7% -0.7% 
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Table A- 2. The benefit (%) of SC-S&OP model over SP-S&OP model. 

Non- Rm 
Factors Levels Profit Revenue Contract contract Production Transport Procurement inventory 

revenue revenue cost cost cost cost 
Demand -20% 0.7% -0.5% 0.2% -4.3% -0.6% -6.6% -0.5% -2.5% 

-10% 0.7% -0.3% -0.1% -2.3% -0.4% -6.4% -0.4% -1.8% 

0% 0.8% -0.5% 1.0% -10.8% -0.4% -9.1% -0.7% -0.7% 

10% 0.7% -0.4% 0.3% -6.0% -0.5% -7.6% -0.4% 0.0% 

20% 0.9% -0.3% 0.9% -9.9% -0.2% -8.9% -0.1% 0.0% 

Spot price -20% 2.2% -2.2% 1.0% -24.3% -2.8% -15.5% -3.1% -0.8% 

-10% 1.2% -1.1% 0.9% -15.1% -1.3% -11.5% -1.6% -0.8% 

0% 0.8% -0.5% 1.0% -10.8% -0.4% -9.1% -0.7% -0.7% 

10% 0.6% -0.4% 0.9% -9.3% -0.2% -8.2% -0.6% -0.7% 

20% 0.5% -0.3% 0.8% -8.1% -0.1% -7.5% -0.5% -0.7% 

Unit production -20% 0.8% -0.4% 1.0% -10.0% -0.3% -8.6% -0.6% -0.7% 

cost -10% 0.8% -0.5% 1.0% -10.2% -0.3% -8.7% -0.6% -0.7% 

0% 0.8% -0.5% 1.0% -10.8% -0.4% -9.1% -0.7% -0.7% 

10% 0.9% -0.6% 1.0% -11.2% -0.5% -9.2% -0.8% -0.8% 

20% 0.8% -0.6% 0.9% -10.8% -0.5% -9.1% -0.6% 0.3% 

Unit shipping -20% 0.5% -0.4% 0.8% -8.7% -0.3% -7.6% -0.5% -0.7% 

cost -10% 0.7% -0.4% 0.8% -9.3% -0.3% -8.4% -0.6% -0.8% 

0% 0.8% -0.5% 1.0% -10.8% -0.4% -9.1% -0.7% -0.7% 

10% 1.0% -0.6% 1.0% -11.2% -0.4% -9.5% -0.8% -0.8% 

20% 1.0% -0.7% 1.1% -12.6% -0.5% -10.2% -0.7% 0.3% 

Unit purchase -20% 0.7% -0.4% 0.9% -9.8% -0.3% -8.5% -0.5% -0.7% 

cost -10% 0.8% -0.5% 0.9% -9.9% -0.3% -8.5% -0.8% -0.5% 

0% 0.8% -0.5% 1.0% -10.8% -0.4% -9.1% -0.7% -0.7% 

10% 0.9% -0.5% 0.9% -10.6% -0.5% -9.2% -0.7% -0.7% 

20% 1.1% -0.6% 1.0% -11.6% -0.6% -9.4% -0.9% -0.8% 

Unit raw material -20% 0.8% -0.5% 1.0% -10.5% -0.4% -8.6% -0.7% -0.7% 

inventory cost -10% 0.7% -0.6% 0.9% -10.6% -0.5% -8.9% -0.8% -0.7% 

0% 0.8% -0.5% 1.0% -10.8% -0.4% -9.1% -0.7% -0.7% 

10% 0.8% -0.5% 0.9% -10.3% -0.4% -8.6% -0.6% -0.7% 

20% 0.8% -0.6% 1.0% -11.6% -0.6% -9.5% -0.9% -0.8% 
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Appendix B 
B-l. Multi-site SP-S&OP model 

Sales-production joint sub-model 

Max:2ZI.I.(mSL-cJClm-
iel meM teT \ ceC 

sc s._ —h V, -bo I 
m imt i m uni un uni 

(SPI) 

Subject to following constraints plus (7) - (I I): 

z2{SL-BSlml)>d min', 
Vc e CC,i,t 

I SL * dl 
m e M VceC,i,t 
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Distribution sub-model 

Min: I S S I Z ( a ; + / X ) + Z tri4cX[ 
seSH i e l veV t e T \ r e R x ' reR, M 

Vm (Dl) 

Subject to following constraints plus (15) - (17): 
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Procurement sub-model 

Min.i I I 'Lmi.R^y £ £ ! < / » , + I I W - J Vm (Bl) 
\ rmeRM seS leT rmeRM t e S leT rmeRM teT 1 

Subject to constraints (18) - (22) plus: 

Y X ' m < KSS „ 
^ ^ rm ,m ,t t + L 

m e R M VseS,m,t = \,. . . ,T-Um (B23) 

Z x™,».> - ? m i n - .« 
" " * » ' MseCS,m,t (B24) 

<2>Vl ^ Rn».m.t V 5 G 5 , r/M,OT,/ (B25) 

rm.m.n rm.m,,' rm,m,t ^ rm,m,t J rm) I ' J ^ \fSeS,rm,m,t (B26) 
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B-2. Multi-site DP model 

Sales sub-model 

zzzzfe-/^fe 
MaX: 'e/ «e^'er eeC (SI) 

Subject to following constraints plus (SP3): 

Z SL * d min ; 
««" VceCC,i , t (S2) 

ZZ5~**« 
fc/ eeC Vin,/ (S9) 

SL ^ 0 \/ceC,i,m,t (S26) 

Production sub-model 

Afin : I ( z ( c ^ , + « L A , + K.II, + h-J-m) - I (KwlBS'mWl -bLBSiT )) V/n (PI) 

Subject to constraints (SP4) - (SP6), (7) - (10), plus: 

Z (**+ c -. - 7« -i h zZdmin I 
meM eeCC V/,f (P2) 

B S L X M , Fimt,Iim, > 0 ̂  s^, € {0,1}^ AT,m/ i s p o s i t i v e integer. ; vc e C,i,m,t (P26) 
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Appendix C 

Table C-l Analysis of Variance for DP model 

Source of Variation SS df MS F P-value F crit 

Forecast bias 0.00011 2 0.00006 4.52085 0.02026 3.35413 

Forecast deviation 0.00004 2 0.00002 1.48084 0.24534 3.35413 
Interaction 0.00002 4 0.00000 0.30536 0.87182 2.72777 

Within 0.00033 27 0.00001 

Total 0.00050 35 

Table C-2 Analysis Variance for SP-S&OP model 

Source of Variation SS df MS F P-value F crit 

Forecast bias 0.00038 2 0.00019 10.41701 0.00044 3.35413 

Forecast deviation 0.00001 2 0.00000 0.15516 0.85703 3.35413 

Interaction 0.00002 4 0.00001 0.29559 0.87824 2.72777 

Within 0.00049 27 0.00002 

Total 0.00090 35 

Table C-3 Analysis of Variance for SC-S&OP model 

Source of Variation SS df MS F P-value F crit 

Forecast bias 0.00054 2 0.00027 23.28021 0.00000 3.35413 

Forecast deviation 0.00001 2 0.00001 0.56513 0.57486 3.35413 

Interaction 0.00002 4 0.00000 0.38293 0.81886 2.72777 

Within 0.00031 27 0.00001 

Total 0.00088 35 
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