20 research outputs found

    A Particle Swarm Optimisation Approach to Graph Permutations

    Get PDF

    Swarm Intelligence

    Get PDF
    Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence

    Information Sharing Impact of Stochastic Diffusion Search on Population-Based Algorithms

    Get PDF
    This work introduces a generalised hybridisation strategy which utilises the information sharing mechanism deployed in Stochastic Diffusion Search when applied to a number of population-based algorithms, effectively merging this nature-inspired algorithm with some population-based algorithms. The results reported herein demonstrate that the hybrid algorithm, exploiting information-sharing within the population, improves the optimisation capability of some well-known optimising algorithms, including Particle Swarm Optimisation, Differential Evolution algorithm and Genetic Algorithm. This hybridisation strategy adds the information exchange mechanism of Stochastic Diffusion Search to any population-based algorithm without having to change the implementation of the algorithm used, making the integration process easy to adopt and evaluate. Additionally, in this work, Stochastic Diffusion Search has also been deployed as a global optimisation algorithm, and the optimisation capability of two newly introduced minimised variants of Particle Swarm algorithms is investigated

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Development of an Entropy-Based Swarm Algorithm for Continuous Dynamic Constrained Optimization

    Get PDF
    Dynamic constrained optimization problems form a class of problems WHERE the objective function or the constraints can change over time. In static optimization, finding a global optimum is considered as the main goal. In dynamic optimization, the goal is not only to find an optimal solution, but also track its trajectory as closely as possible over time. Changes in the environment must be taken into account during the optimization process in such way that these problems are to be solved online. Many real-world problems can be formulated within this framework. This thesis proposes an entropy-based bare bones particle swarm for solving dynamic constrained optimization problems. The Shannons entropy is established as a phenotypic diversity index and the proposed algorithm uses the Shannons index of diversity to aggregate the global-best and local-best bare bones particle swarm variants. The proposed approach applies the idea of mixture of search directions by using the index of diversity as a factor to balance the influence of the global-best and local-best search directions. High diversity promotes the search guided by the global-best solution, with a normal distribution for exploitation. Low diversity promotes the search guided by the local-best solution, with a heavy-tailed distribution for exploration. A constraint-handling strategy is also proposed, which uses a ranking method with selection based on the technique for order of preference by similarity to ideal solution to obtain the best solution within a specific population of candidate solutions. Mechanisms to detect changes in the environment and to update particles' memories are also implemented into the proposed algorithm. All these strategies do not act independently. They operate related to each other to tackle problems such as: diversity loss due to convergence and outdated memories due to changes in the environment. The combined effect of these strategies provides an algorithm with ability to maintain a proper balance between exploration and exploitation at any stage of the search process without losing the tracking ability to search an optimal solution which is changing over time. An empirical study was carried out to evaluate the performance of the proposed approach. Experimental results show the suitability of the algorithm in terms of effectiveness to find good solutions for the benchmark problems investigated. Finally, an application is developed, WHERE the proposed algorithm is applied to solve the dynamic economic dispatch problem in power systems

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Evolutionary Algorithms and Computational Methods for Derivatives Pricing

    Get PDF
    This work aims to provide novel computational solutions to the problem of derivative pricing. To achieve this, a novel hybrid evolutionary algorithm (EA) based on particle swarm optimisation (PSO) and differential evolution (DE) is introduced and applied, along with various other state-of-the-art variants of PSO and DE, to the problem of calibrating the Heston stochastic volatility model. It is found that state-of-the-art DEs provide excellent calibration performance, and that previous use of rudimentary DEs in the literature undervalued the use of these methods. The use of neural networks with EAs for approximating the solution to derivatives pricing models is next investigated. A set of neural networks are trained from Monte Carlo (MC) simulation data to approximate the closed form solution for European, Asian and American style options. The results are comparable to MC pricing, but with offline evaluation of the price using the neural networks being orders of magnitudes faster and computationally more efficient. Finally, the use of custom hardware for numerical pricing of derivatives is introduced. The solver presented here provides an energy efficient data-flow implementation for pricing derivatives, which has the potential to be incorporated into larger high-speed/low energy trading systems

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    DIFFERENTIAL EVOLUTION-BASED METHODS FOR NUMERICAL OPTIMIZATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore