
Evolutionary Algorithms and
Computational Methods for

Derivatives Pricing

Samuel Palmer

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

February 20, 2019

2

samPalmer
Rectangle

I, Samuel Palmer, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

“My CPU is a neural net processor; a learning computer”

- Arnold Schwarzenegger

Abstract

This work aims to provide novel computational solutions to the problem of deriva-

tive pricing. To achieve this, a novel hybrid evolutionary algorithm (EA) based

on particle swarm optimisation (PSO) and differential evolution (DE) is introduced

and applied, along with various other state-of-the-art variants of PSO and DE, to the

problem of calibrating the Heston stochastic volatility model. It is found that state-

of-the-art DEs provide excellent calibration performance, and that previous use of

rudimentary DEs in the literature undervalued the use of these methods.

The use of neural networks with EAs for approximating the solution to deriva-

tives pricing models is next investigated. A set of neural networks are trained from

Monte Carlo (MC) simulation data to approximate the closed form solution for Eu-

ropean, Asian and American style options. The results are comparable to MC pric-

ing, but with offline evaluation of the price using the neural networks being orders

of magnitudes faster and computationally more efficient.

Finally, the use of custom hardware for numerical pricing of derivatives is

introduced. The solver presented here provides an energy efficient data-flow im-

plementation for pricing derivatives, which has the potential to be incorporated into

larger high-speed/low energy trading systems.

Impact Statement

The work presented in this thesis contributes to the applications and methodolo-

gies of evolutionary algorithms (EAs), neural networks, and other computational

methods for problems of academic and commercial interest within financial engi-

neering. As well as exploring novel ideas and improving current methods, this work

highlights potential directions for further research.

The explicit focus on specific applications in this thesis highlights the value of

this research outside of academia. The work presented shows how EAs, along with

alternative heterogeneous computing platforms, can be successfully used to enhance

the efficiency of frequent computational tasks faced by financial institutions. Apart

from potentially reducing operating costs of financial institutions, the use of more

efficient computational methods allows for less resources usage and lower power

consumption, which can further aid in reducing the industry’s ecological impact via

its carbon footprint.

In conjunction with the work presented in this thesis, conference publications

and presentations have also been leveraged to extend the reach of this research to

both academic and industry experts. Work in this thesis has been presented at the

following conferences: Computing in Economics and Finance (2015 & 2016); En-

gineering Applications of Neural Networks (2016;) and the European Symposium

on Artificial Neural Networks (2017). Furthermore, this work has received active

interest from current financial practitioners regarding further development of the

methodologies presented for use in practical applications.

Acknowledgements

I am grateful for having the opportunity to study for my PhD, and this thesis would

not have been possible without the unconditional support of my family and friends,

and the invaluable contributions of Mitzy and Monarch. It would often seem that

completing this thesis was always just out of reach, and even driving me to run off to

the Amazon rainforest to catch butterflies. It provided an easy punchline for many

of us, but despite the joking you have all been by my side, making this journey

possible.

During my studies at UCL I have met many new people and made new friends

from all over the world, all of whom have enriched my PhD experience. In particular

I would like to thank those at Bloomsbury Fitness for their camaraderie that kept

me sane throughout the years, and motivated me to better myself physically as well

as academically.

I would like to thank my supervisor for over the years coping with my erratic

trails of thought, and the many hours spent deciphering my cryptic grammar and

spelling.

Finally, I am eternally thankful to my parents, brother and partner for believing

in me every time I tell them “it’s almost there”, and for their love and support whilst

writing the most expensive book they will ever buy.

Like father, like son.

Contents

1 Introduction 1

1.1 Research Objectives . 3

1.2 Contributions to Research . 4

1.3 Thesis Structure . 5

1.4 Publications and Conference Presentations 6

2 Background 7

2.1 Evolutionary Optimisation Algorithms 7

2.1.1 Particle Swarm Optimisation 7

2.1.1.1 Topology . 13

2.1.1.2 Standard PSO 15

2.1.1.3 Further PSO Variations 16

2.1.1.4 Weaknesses in PSO 20

2.1.2 Differential Evolution . 22

2.1.2.1 Advanced Variations 29

2.1.2.2 Weaknesses in DE 32

2.1.3 DE vs PSO . 32

2.1.3.1 Structural Similarities 35

2.2 Neural Networks . 36

2.2.1 Universal Approximation Theorem 37

2.2.2 Training with Evolutionary Algorithms 38

2.3 Financial Derivatives . 40

2.3.1 Option Pricing Models . 43

x Contents

2.3.1.1 Black-Scholes Equation 43

2.3.1.2 Asian Averaging Options 45

2.3.1.3 Stochastic Volatility 46

2.3.1.4 Heston Model 47

2.3.2 Numerical Methods For Options Pricing 49

3 Breeding Particle Swarm Optimisation 51

3.1 Introduction . 51

3.1.1 Hybrid Particle Swarm Optimisation 51

3.1.2 PSO with Crossover . 54

3.1.2.1 Embedding Crossover within PSO 56

3.2 Breeding Particle Swarm Optimisation 58

3.2.1 Mutation . 61

3.3 Analysis of Crossover and Particle Behaviour 63

3.3.1 Initial Definitions . 65

3.3.2 General Properties of Discrete Crossover 67

3.3.3 Bounds For Crossover With Two Improved Parents 68

3.3.4 Bounds For Crossover With One Improved Parent 73

3.3.5 Crossover Success Rate Estimations 73

3.3.5.1 Global Cluster 76

3.3.5.2 Impact on Choice of Cr Value 77

3.3.5.3 Mutation Bias 78

3.3.6 Empirical Analysis of Mutation Parameters 79

3.3.7 Conclusion . 82

3.4 Self-Adaptive Mutation . 85

3.4.1 Self-Adaptive PSO . 85

3.4.2 BrPSO with Self-Adaptive Mutation 87

3.4.3 Benchmark Performance 88

3.5 BrPSO for Function Approximation using Neural Networks 94

3.5.1 Introduction . 94

3.5.2 Neural Network Architectures and Training 96

Contents xi

3.5.3 Data . 97

3.5.4 Prediction of Total Resistance (RT) 99

3.5.5 Prediction of Residual Resistance Coefficient (CR) 101

3.6 Conclusions . 103

4 Calibrating the Heston Model using Evolutionary Algorithms 107

4.1 Introduction . 107

4.2 Heston Model Calibration . 109

4.2.1 Heuristic Calibration Methods 111

4.3 Evolutionary Algorithms Investigated 113

4.4 Methodology . 115

4.4.1 Loss Function . 116

4.4.2 Additional Considerations 116

4.5 Results and Discussion . 118

4.5.1 Error Measures . 119

4.5.2 Global Best Estimations 120

4.5.3 Practical Parameter Estimations 127

4.6 L-SHADE Hybrids . 130

4.6.1 PSO-L-SHADE . 130

4.7 Fitness Distance Analysis . 132

4.8 Local Minima and Numerical Instability 135

4.8.1 Calibration Stability Measure 149

4.8.2 Simple Safeguard . 151

4.9 Conclusions . 152

5 Options Pricing using Neural Networks and Evolutionary Optimisation155

5.1 Introduction . 155

5.1.1 Options Pricing using Neural Networks 157

5.2 Methodology . 161

5.2.1 Data Generation and Sampling 162

5.2.1.1 Parameter Space Reduction 162

xii Contents

5.2.1.2 Latin Hyper-Cube Sampling 166

5.2.1.3 Data Transforms 166

5.2.1.4 Price Resolution and Rounding 168

5.2.2 Training . 168

5.2.2.1 Neural Network Architecture 169

5.2.2.2 Calculating option Price Sensitivities 170

5.2.2.3 Training Method 172

5.2.2.4 Weighted Training 173

5.2.3 Model Creation . 174

5.2.3.1 Ensemble Methods 175

5.2.4 Testing . 177

5.3 European option Pricing . 179

5.3.1 Comparing Price Region Error Behaviour 180

5.3.2 Exploring Network Architectures 182

5.3.2.1 Comparing Network Size 182

5.3.2.2 Comparing Architecture 185

5.3.2.3 Greeks . 186

5.3.3 Training Data Sensitivity 189

5.3.3.1 Noise . 189

5.3.3.2 Increasing Training Data Density 191

5.3.4 Model Diversity . 193

5.3.5 Ensemble Models . 199

5.3.5.1 Mean Models 199

5.3.5.2 Centre-Distance 202

5.3.5.3 Regression Models 204

5.3.5.4 Constrained Regression Using Data Transforms . 215

5.3.6 Volatility Effect and the Payoff Function 221

5.3.6.1 Approximation Error 222

5.4 Path Dependent Options - Examples 226

5.4.1 Geometric Asian options 226

Contents xiii

5.4.2 American options . 231

5.5 Conclusions . 235

6 Options Pricing using Hardware Acceleration 239

6.1 Introduction . 239

6.1.1 FPGAs . 239

6.1.2 Finite Difference Schemes and Tridiagonal Systems 240

6.1.3 Thomas Algorithm . 242

6.2 Algorithmic Optimisation and Low Level Parallelism 243

6.2.1 Pipelining . 245

6.2.2 Hardware Architecture . 246

6.3 Design Analysis . 247

6.4 Numerical Bounds . 249

6.4.1 Bounding the Thomas Algorithm 251

6.5 Hardware Implementation . 254

6.5.1 FPGA Resource Usage . 255

6.5.2 Performance . 256

6.6 Implementation for Implicit Finite Difference Schemes 257

6.6.1 Scaling For Fixed-Point Designs 257

6.6.2 Fixed-Point Solver Accuracy 258

6.7 Conclusion . 261

7 Conclusions and Future Work 263

7.0.1 Future Work . 266

A Additional Mathematical Results 269

B Benchmark Functions 271

C Additional Calibration Results 275

Bibliography 277

List of Figures

2.1 Commonly used particle swarm topologies. 14

2.2 Black-Scholes option pricing surface for a European call option

with K = 100, σ = 0.1 and r = 0.05. 45

3.1 Example particle system of breeding particle swarm optimisation. . 64

3.2 Crossover success probability estimation for F(p2),F(p1)< F(pR)

using Monte-Carlo simulation (105 samples, 50 replications, Cr =

0.5) compared to lower bounds given by Equation 3.26 with K = 0.5

and K = 0.75. 72

3.3 Crossover success probability for F(p1) > F(pR) > F(p2) with

three different crossover rates. 74

3.4 Heatmap plot for BrPSO(MP,MF) mutation parameter sets on the 8

DeJong functions, showing the logarithm of the mean value of the

fitness found (50 runs). 83

3.4 cont. Heatmap plot for BrPSO(MP,MF) mutation parameter sets on

the 8 DeJong functions, showing the logarithm of the mean value of

the fitness found (50 runs). 84

3.5 Box plot of 30 independent optimisation runs using BrPSO-SAM

on the CEC’05 functions. 89

3.6 Tri-SWACH cross-section (figure from [3]) 94

3.7 Tri-SWACH model side hull locations for towing tank tests (figure

from [177]) . 97

xvi List of Figures

3.8 Total Resistance (RT) as a function of Froude number (Fr) ; the

curve in bold is the test data (mid-mid; position E), the shape of

which was well predicted in [175] using Bayesian Regularization,

but only with two additional (Reynolds number) network inputs. . . 98

3.9 Residual Resistance Coefficient (CR) as a function of Froude num-

ber (Fr) ; the curve in bold is the test data (mid-mid; position E),

whose most significant features (the peak and side-lobes) could not

be effectively predicted in [175] using any network architecture . . . 98

3.10 Test data comparison of BrPSO prediction with actual RT 101

3.11 Test data comparison of BrPSO prediction with actual CR 102

4.1 Convergence plots of the median calibration fitness for the each of

the Heston parameter set experiments. 125

4.1 cont. Convergence plots of the median calibration fitness for the

each of the Heston parameter set experiments. 126

4.2 Fitness-Distance plots for the sets of Heston parameters used in the

artificial calibration. 131

4.3 Fitness-Distance plots for the sets of Heston parameters used in the

artificial calibration. The distance is the distance of the parameter

set from the known optimal parameter set. 133

4.3 cont. Fitness-Distance plots for the sets of Heston parameters used

in the artificial calibration. 134

4.4 Distribution of global optimum fitness values (a), and Heston pa-

rameters (b-f), found for all the calibration experiments using pa-

rameter set 2. 136

4.5 Surface and contour plot showing the interactions between
√

v0 and

ρ creating a double valley structure and regions of local minima. . . 138

4.6 Surface and contour plot showing the interactions between
√

v0 and

ρ creating a double valley structure, showing in more detail for neg-

ative values of ρ . 139

List of Figures xvii

4.7 Contour plots showing the interactions between
√

v0 and σ and a

fixed ρ and how the value of σ . 140

4.8 Contour plot showing the interactions between
√

v0 and σ for a

large positive correlation, ρ = 1. 141

4.9 Scatter plot of the found optimal parameter sets for
√

v0, σ and ρ ,

the value of
√

v0 is given by the depth using the colour bar. 142

4.10 Surface and contour plot showing the interactions between
√

v0 and

ρ creating a double valley structure, showing in more detail for neg-

ative values of ρ . 145

4.11 Scatter plot of the found optimal parameter sets for
√

v0, σ and ρ ,

the value of
√

v0 is given by the depth using the colour bar. 147

5.1 The architecture of the multi-stage network architecture. This ar-

chitecture consists of two networks with the output of the first con-

nected as an input to the second, the second network also takes in

the original inputs used in network one, the second network then

acts as a corrector on the output of the first. 170

5.2 Distribution (LHS) and cumulative distribution (RHS) of absolute

relative price errors of the 4 neural network architectures for the 5

defined regions of options prices. 183

5.2 cont. Distribution (LHS) and cumulative distribution (RHS) of ab-

solute relative price errors of the 4 neural network architectures for

the 5 defined regions of options prices. 184

5.3 Delta . 187

5.4 Vega . 188

5.5 Rho . 188

5.6 Distribution (LHS) and cumulative distribution (RHS) of absolute

relative price errors of the MLP-2L networks trained using 3 differ-

ent levels of accuracy for the training data, the exact Black-Scholes

solution, and Monte-Carlo using 1000 and 10,000 replications. . . . 190

xviii List of Figures

5.6 cont. Distribution (LHS) and cumulative distribution (RHS) of ab-

solute relative price errors of the MLP-2L networks trained using

3 different levels of accuracy for the training data, the exact Black-

Scholes solution, and Monte-Carlo using 1000 and 10,000 replica-

tions. 191

5.7 Boxplot of the acceptable error rates for neural networks trained

with 2000 and 5000 training samples. 192

5.8 Training fitness distributions. 194

5.9 Scatter plots showing the absolute relative error for the 10 median-

aggregated neural network European pricing models for each of the

neural network architectures explored, 2-Layer (20N,Res=10−6). . . 202

5.10 Absolute errors for the center weight ensemble using the wt-rand

set of neural networks. 203

5.11 Scatter plots showing the absolute error for the convex linear neural

network ensembles using the three different weighted trained meth-

ods. The volatility, σ , of each sample is represented as the colour

depth using a log1 0 scale. 206

5.12 Scatter plots showing the absolute error for the non-convex linear

neural network ensembles using the three different weighted trained

methods. The volatility, σ , of each sample is represented as the

colour depth using a log1 0 scale. 210

5.13 Bias of the neural network price approximations obtained using

Equation 5.50 for the non-convex ensemble of the unweighted-

training set of neural networks. 215

5.14 Absolute pricing error and distribution distribution of absolute rel-

ative pricing errors (ARE) for the convex neural network ensemble

trained using the inverse hyperbolic sine transform regression. . . . 220

5.15 Approximating the Heaviside function and related values using sig-

moid function approximations. 223

List of Figures xix

5.16 Scatter plots showing the absolute relative error for the 10 median-

aggregated neural network European pricing models for each of the

neural network architectures explored, 2-Layer (20N,Res=10−6). . . 228

6.1 Data dependency graph for the forward iteration of the Thomas al-

gorithm . 243

6.2 Data dependency graph for the backwards iteration of the Thomas

algorithm . 244

6.3 Data dependency graph for the proposed Thomas algorithm struc-

ture optimised for FPGA implementation. 245

6.4 Average absolute error over 5000 tridiagonal systems of the fixed-

point results using 30 fractional bits with respect to floating-point

results. -x- - estimated maximum error bound using equation 6.36. . 260

6.5 Average absolute error over 5000 tridiagonal systems of the fixed-

point results using 22 fractional bits with respect to floating-point

results. 260

6.6 Average absolute error over 5000 tridiagonal systems of the fixed-

point results using 14 fractional bits with respect to floating-point

results. 260

List of Tables

3.1 Comparing BrPSO-SAM on the CEC’05 benchmarking suite (D =

30) with state-of-the-art PSO algorithms tested by Li et al [90] . . . 90

3.2 Comparing BrPSO-SAM on the CEC’05 benchmarking suite (D =

30) with other PSO-Crossover hybrids Engelbrecht et al [154] . . . 91

3.3 The nine side hull positions considered, together with dimension-

less descriptors of the geometry (used here as ANN inputs). The 34

varying-speed measurements associated with column E will be the

test data. 97

3.4 Comparison of performance of standard and Breeding PSO

(BrPSO) on the RT training data set, in terms of Root Mean Squared

Error (RMSE) and Mean Average Error (MAE) achieved after

10,000 iterations (50 independent runs) 100

4.1 Full list of the evolutionary algorithms used in this work for cal-

ibrating the Heston model. A more detailed description of these

algorithms can be found in Section 2.1. 114

4.2 The ten parameter sets used to generate the artificial calibration sur-

face data for the Heston model, these are the same as used in [185]. 115

4.3 The 75% quantile and mean (respective standard deviations can be

found in Table C.1) of the Euclidian distances between the param-

eter sets found by the EAs and the known optimal parameter set

(1-10). 121

xxii List of Tables

4.4 Total error measures, mean, log mean and standardised log mean

(SLM) and average rank, over all the parameter sets, for both the

mean and 75% quantile errors in Table 4.3 (respective standard de-

viations can be found in Table C.2). 121

4.5 Error measures (mean, log mean, and standardised log mean; stan-

dard deviations given in Table C.3) for the 75% quantile of the Eu-

clidian distances between the parameter sets found by the EAs and

the known optimal parameter set (1-10), over 30 independent runs

for each algorithm. The number of fitness evaluations are limited to

1000 and 5000. 128

4.6 75% Quantile for the minimum number of fitness evaluations find-

ing parameter estimations, xi, of parameter, pi, with absolute error

|xi− pi| < 0.0005 for all five parameters, n/a indicates this level of

accuracy was not achieved. 129

4.7 75% Quantile for the minimum number of fitness evaluations find-

ing parameter estimations, xi, of parameter, pi, with absolute er-

ror |xi− pi| < 0.0005, n/a indicates this level of accuracy was not

achieved. 131

4.8 The average adjusted negative-mispricing ratio, Equation 4.25, for

each of the calibration parameter sets using the L-SHADE algorithm. 151

4.9 Comparing the mean and standard deviation of the parameter val-

ues found for the calibration of parameter set 2 using the LSHADE

algorithm with and without the safeguard, Equation 4.26, used in

the fitness function. 152

5.1 Proportions of price approximations within the acceptable error

boundary for each of the 5 regions. 182

5.2 Diversity measures, the regular diversity, Equation 5.36, and

relative-diversity, Equation 5.37, of the three sets of trained neural

network models: unweighted; wt-rand; wt-atm. 198

List of Tables xxiii

5.3 Mutual information, Equation 5.39, of mean-centred outputs for the

three sets of trained neural network models: unweighted; wt-rand;

wt-atm. 198

5.4 Acceptable error rates for the mean models. 201

5.5 The acceptable error rates for the best model for each of the price

regions. 201

5.6 Acceptable error rates for the center weight ensemble using the wt-

rand set of neural networks. 203

5.7 Acceptable error rates for the linear regression ensembles using

convex and non-convex linear combination weights for each of

the three sets of trained neural networks: unweighted, weighted-

random (wt-rand), and weighted-at-the-money (wt-atm). 205

5.8 Cumulative frequencies of the absolute relative errors for the non-

convex weighted ensembles. 211

5.9 Acceptable error rates for the inverse-hyperbolic-sine transform

convex ensembles . 219

5.10 Acceptable error rates for the IHS transform, Equation 5.51, linear

regression ensembles using the of the wt-atm set of neural networks.

θ is the IHS control parameter. 219

5.11 Cumulative frequencies of the absolute relative errors for the IHS

transform regression convex weighted ensemble of the wt-atm set

of neural networks. 219

5.12 Acceptable error rates for MC and neural network ensemble price

approximations. 227

5.13 Cumulative frequencies of the absolute relative errors for the non-

convex weighted neural network (NN) ensembles and Monte Carlo

(MC) price approximations for geometric Asian options. 229

5.14 American Put options tested with τ = 1, fine grid finite difference

(FD) and GPU Longstaff-Schwarz MC (LSMC) price from [235] . . 232

xxiv List of Tables

5.15 Average pricing errors of the 6 test cases for the 300 individual neu-

ral network models. 233

5.16 Price estimations comparisons for the 6 test cases for the neural

network (NN) ensembles (mean and non-convex linear weights).

The error norm is given as the RMSE with respect to the reference

price over all 6 test cases. 234

6.1 FPGA resources used for each design and percentages of resources

used on the Xilinx Zynq7020 . 255

6.2 Clock cycle latency for each of the arithmetic cores on the FPGA,

and the total latency of the Thomas solver forward and backward

cores. 255

6.3 The average time(ms) for computing the solution to tridiagonal

systems (N=100) on a desktop CPU and the implemented FPGA

Thomas solver . 256

6.4 Comparison of expected rounding error and maximum absolute er-

ror from the FPGA implementation. 259

B.1 Set of non-rotated and rotated (rot) benchmark functions used. . . . 272

C.1 Respective standard deviations for the mean Euclidian distance met-

rics given in Table 4.3. 275

C.2 Standard deviations for the total error measures, mean, log mean

and standardised log mean (SLM) given in Table 4.4. 276

C.3 Standard deviations for the total error measures, mean, log mean

and standardised log mean (SLM) given in Table 4.5. 276

C.4 Local optima where ρ > 0 found by the evolutionary algorithms for

calibrating Heston parameter 2. 277

Chapter 1

Introduction

Financial derivatives are contracts written allowing the holder of the contract to

buy or sell an underlying asset for a specified price at a given time in the future. A

popular type of derivative contract is an option. An option gives the holder the right,

but not the obligation, to buy (a call option) or to sell (a put option) the underlying

asset. Option contracts are not a modern day concept and have been around since

the 16th century, and played an important part in speculative commodity trading

by the Dutch East Indies Company and Dutch West Indies Company trading on the

Amsterdam bourse during the 17th century [1].

In modern times option contracts play a major role in the finance industry, as

well as other commodity heavy industries such as airlines and mining. Options are

used to hedge exposure to currency exchange and interest rates, and in industry to

protect against oil and commodity price fluctuations, as well as being speculative

assets profiting from potential market mispricings and exploiting arbitrage oppor-

tunities. As of June 2018 the global average daily turnover of exchange traded op-

tions for the two largest markets, interest-rates and foreign exchange options, were

$1,704 billion USD, and $16 billion USD respectively [2].

Given the vast scale of the option markets it is important to be able to properly

understand and value such contracts; even in the days of trading on the Amster-

dam bourse the basics of options pricing theory such as put-call parity were un-

derstood [3]. However, since then modern financial theory has come a long way,

introducing more elaborate mathematical models of asset price behaviour as well as

2 Chapter 1. Introduction

the use of mathematical and computational tools to try and accurately value these

contracts. Most notable is the derivation of the famous Black-Scholes solution used

to price European style options, which led in a new era of financial mathematics

and modelling. Increasingly complex models have been introduced to try and cap-

ture the observed price behaviour of observed exchange option prices, introducing

multiple stochastic factors such as stochastic volatility [4] and interest rate [5], and

jump diffusion dynamics [6]. In addition there is an increasing array of exotic op-

tion contracts, which often means that in many cases analytical forms of the price do

not exists and pricing then relies heavily on numerical and computational methods.

Since the financial crash of 2007-2008 the volume of options traded has

slightly fallen; this is due to new tighter regulations on derivatives trading being

imposed. As part of these regulations financial institutions now have to calculate

their daily exposure to manage cash reserves, and this is now a critical part of op-

erations. This leads to an increasing pressure on efficient and accurate computation

of option pricing models to measure the exposure of portfolios. To meet this de-

mand many institutions are turning to the use of high-performance-computing ar-

chitectures, in particularly GPUs, to make use of parallel computing. Monte Carlo

pricing methods are well suited for GPU implementation and allow for an acces-

sible approach to exotic option contracts and elaborate pricing models. However

relying on high-performance-computing and its development to meet the ever in-

creasing computational demands is not sustainable, and the performance is subject

to Moore’s Law; this approach also requires more hardware, more power, more

space and overall higher costs. Instead an alternative approach would be to explore

more efficient computational methods that could be used, the major topic of this

thesis.

With a globally increasing interest in machine learning, this is now becom-

ing an area of increasing interest for financial researchers. This thesis explores

how machine learning methods, more specifically evolutionary algorithms and neu-

ral networks, can be used in options pricing. One important area explored in this

thesis, which is of growing interest, is the use of neural networks to approximate

1.1. Research Objectives 3

the solution of option pricing models; compared to popular Monte Carlo GPU im-

plementations which take in the order of 10ms to price a single option, the neural

network approach explored here can take a fraction of this time and also be run on

regular desktop CPUs, with the potential of further speed-ups by then applying HPC

architectures. In addition this thesis also looks at the application of evolutionary op-

timisation algorithms for the problem of model calibration, and the implementation

of an HPC architecture for accelerating numerical methods.

1.1 Research Objectives
1) To develop a powerful problem-general evolutionary optimisation algo-

rithm.

Although current EA algorithms show good results over many problems, the issue

of local minima and trapping can slow optimisation progress down; there are also

concerns that although current algorithms may show good behaviour on contrived

mathematical benchmark functions these results may not be relevant to the land-

scape of applied problems. As an avenue for improving the performance of EAs,

elements from popular and powerful evolutionary algorithms are here combined

to produce a single hybrid algorithm. Self parameterisation mechanisms are also

introduced to eliminate the need for parameter tuning to obtain optimal algorith-

mic performance and to increase the algorithm’ reliability over all the optimisation

problems considered.

2) To compare to use of the above and other candidate EAs for the problem of

calibrating the Heston stochastic volatility model.

Current research literature using EAs for Heston model calibration has focused only

on rudimentary versions of the algorithms. This work aims to compare the use of

a number of more advanced EAs for the problem of Heston model calibration, as

well as the use of the newly develop BrPSO algorithm in a practical application.

3) To use a combination of neural networks and EAs to deliver, after training,

computationally efficient approximate solutions for exotic derivates pricing.

One issue with current numerical methods is that they only provide a one-off so-

4 Chapter 1. Introduction

lution for the specific model parameters, and hence have to be reran for every new

parameterisation. This work aims to develop a methodology using neural networks

trained by EAs to approximate the solution for option pricing models. The neural

network solution offers a closed-form approximation of the ideal solution, and once

the neural network has been trained it can be used for all model parameterisations

and thus offer highly efficient price evaluations.

4) Investigate the use of custom hardware for acceleration of financial calcu-

lations.

As an alternative approach, efficient problem specific custom hardware can be used

to accelerate existing numerical methods. Compared to GPU devices field pro-

grammable gate arrays (FPGAs) offer a platform for custom hardware design. By

implementing designs on an FPGA low level parallelisation of an algorithm can be

achieved; this can offer computational speed-ups as well as being more energy ef-

ficient. As an example a custom FPGA design for the solving tridiagonal systems

of equations is designed and implemented, which can be used as part of an implicit

finite difference solver for options pricing. The use of custom hardware has the

potential that neural network models could also be implemented on FPGA devices.

1.2 Contributions to Research
Breeding Particle Swarm Optimisation - Chapter 3

1. The introduction of a novel hybrid particle swarm optimisation algorithm us-

ing discrete crossover and dynamic self-adaptive parameterisations.

2. An analytical and empirical analysis of discrete crossover operators for global

convex optimisation.

Calibrating the Heston Model using Evolutionary Algorithms - Chapter 4

1. Improve upon current methods used in the financial literature for heuristic

calibration methods using BrPSO and other state-of-the-art differential evo-

lution and hybrid algorithms. This work also highlights important concepts

with respect to the robustness of the heuristic calibration methodology and

the numerical integration scheme used.

1.3. Thesis Structure 5

Options Pricing using Neural Networks and Evolutionary Optimisation -

Chapter 5

1. Demonstration that the function approximation of the Black-Scholes solution

can be reduced to requiring only 3 model inputs to cover the 5-dimensional

parameter space.

2. Use of linear ensembles of neural networks to provide pseudo-analytical so-

lutions to efficiently and accurately price European and exotic options.

Options Pricing using Hardware Acceleration - Chapter 6

1. A design is presented for a parallelised implementation of the Thomas algo-

rithm for solving tri-diagonal systems of equations using field-programmable-

gate-arrays.

2. Analytical bounds are provided for the range of values required for fixed-

point arithmetic implementation of LU-decomposition.

3. Application of the presented hardware design and analysis for pricing Euro-

pean options using implicit finite difference schemes.

1.3 Thesis Structure
Chapter 1 introduces the problems addressed by the thesis. Chapter 2 then gives

necessary background to the thesis: evolutionary optimisation algorithms, intro-

ducing both Particle Swarm Optimisation (PSO) and Differential Evolution (DE)

algorithms; neural networks and neural network training; financial mathematics for

derivatives pricing. In Chapter 3 Breeding Particle Swarm optimisation (BrPSO)

is introduced, a novel PSO-Crossover hybrid algorithm for optimisation, and as a

proof of concept BrPSO is successfully applied to a problem in naval engineering.

Chapter 4 reviews the currently limited applications of EAs to model calibration

in finance before demonstrating that BrPSO and other state-of-the-art EAs can be

used successfully for calibration of the Heston stochastic volatility model. In Chap-

ter 5 neural networks trained using BrPSO and other EAs are used for derivatives

6 Chapter 1. Introduction

pricing, providing accurate generalised price approximations for European, Asian,

and American options. Chapter 6 addresses a different approach to more efficient

financial computation, showing how custom hardware can be utilised, with the po-

tential to be combined in future with the EA-based approach of earlier chapters.

Chapter 7 concludes with a discussion of the work presented in the thesis together

with some suggestions for future work.

1.4 Publications and Conference Presentations
The following publications and presentations were completed over the course of

this thesis.

1. S. Palmer and D. Gorse. Pseudo-Analytical Solutions for Stochastic Options

Pricing Using Monte Carlo Simulation and Breeding PSO-Trained Neural

Networks. In ESANN 2017 Proceedings, European Symposium on Artificial

Neural Networks, 2017.

2. S. Palmer, D. Gorse, and E. Muk-Pavic. Neural Networks and Particle Swarm

Optimization for Function Approximation in Tri-SWACH Hull Design. In

Proceedings of the 16th International Conference on Engineering Applica-

tions of Neural Networks (INNS) - EANN ’15, pages 1–6, New York, New

York, USA, 2015. ACM Press.

3. S. Palmer. Options Pricing using Monte Carlo Simulations and Neural Net-

works. The Society for Computational Economics 22nd International Con-

ference Computing in Economics and Finance, 2016 .

4. S. Palmer. Accelerating Implicit Finite Difference Schemes Using a Hard-

ware Optimized Tridiagonal Solver for FPGAs. The Society for Computa-

tional Economics 21st International Conference on Computing in Economics

and Finance, 2015.

Chapter 2

Background

2.1 Evolutionary Optimisation Algorithms
Evolutionary optimisation algorithms as a method of solving real minimisation

problems

xg = argmin
x∈Rn

f (x) (2.1)

where the algorithm finds the vector, xg, that minimises the objective function or

otherwise known as the fitness function, f (). Evolutionary algorithms (EAs) are a

class of heuristic search algorithms based upon natural phenomena. The three most

popular types of EA are: genetic algorithms (GAs); differential evolution (DEs);

and particle swarm optimisation (PSO) 1. In this work the focus is primarily on the

use and development of PSO, but with a sub-context on the use of DE.

2.1.1 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a heuristic search algorithm based upon the

flocking/swarming behaviour observed in various species in nature. The routes of

PSO extend back to using particle systems in graphics modelling of fuzzy objects.

A noticeable example was Reynolds [7] boid flocking model that used a particle

system to simulate the flocking behaviour of birds. PSO was a development of

these particle flocking systems, devised by Eberhart and Kennedy [8]. Eberhart and

1although PSO is not technically ‘evolutionary’ as such, it is placed under this general umbrella
of methods which moreover covers naturally inspired algorithms.

8 Chapter 2. Background

Kennedy used the term swarm instead of flock based on systems behaviour being

coherent with the principles of swarm intelligence given by Millonas [9]. Kennedy

describes the concept of PSO as “[i]ndividuals changing their beliefs to become

more like their neighbours. Thus it is a social-psychological model of knowledge

management” [10]. In essence, PSO uses a population of particles, each particle

representing a candidate solution within the search space, each which then follow

specified dynamics to move around the search space, with all particles finally con-

verging towards the optimal solution.

An important difference between PSO and other naturally inspired/evolutionary

algorithms, such as genetic algorithms (GAs) or differential evolution (DE), is that

each particle has a memory component. Memory is an important part of PSO and

allows the particles to move back towards previously known good positions, in com-

parison to GAs or DE, for instance, where members of the population cannot move

back towards to a previously preferred solution; although some more recent DE

developments such as SHADE [11] do incorporate a type of memory component.

PSO works by intelligently searching through the n-dimensional search space

to minimise the objective function f (x). PSO uses a population, a set of P number

of particles collectively known as a swarm. Each particle, pi, is made up of three

components: The position of each particle, xi ∈ Rn, represents a candidate solution

for the objective function within the search space; the velocity, vi ∈ Rn, which is

an n-dimensional vector that describes how the particles’ position moves in the

search space for each iteration; and the personal best location, yi ∈ Rn, which is

the particles’ best known historical position that it has discovered within the search

space. The in additional to the particles the swarm has the global-best component,

ygBest ∈Rn, which keeps track of the overall best found position of all the particles;

furthermore each particle, depending on the variant of PSO used, can have a local-

best component ŷi ∈ Rn that keeps track of the best found position of a selected

subset of the swarm related to the particle pi. The use of ygBest and ŷi will be

described in more detail further on with respect to the velocity update equations.

Algorithm 2.1 gives an outline of the basic PSO algorithm.

2.1. Evolutionary Optimisation Algorithms 9

The four main stages of PSO are:

1. Initialisation : Firstly the particles of the swarm are initialised. This involves

setting up their initial starting positions within the search space and defining

an initial velocity. The simplest initialisation is to use a uniform distribution,

used in the definition of the 2007 Standard PSO [12], though Clerc [13] sug-

gests that although simple it is a poor choice to use. This is because on any

one sample of uniform initialisation the search space won’t be evenly cov-

ered, on average over many initialisations it would, but in the case of each

individual initialisation it may not provide a reasonable representation. As

such Clerc [13] suggests using a Hammersley distribution or Tessellations

method to provide a more even coverage of the search space.

2. Fitness evaluation : At the beginning of each iteration the position of each

particle is evaluated for the objective function; the value of the function at

this position is the particles fitness value. The fitness evaluation is usually the

most computationally expensive part of the PSO algorithm, and as such it is

desired to have an algorithm that converges quickly to reduce the number of

fitness evaluations required.

3. Velocity update : The velocity update is the crux of PSO and characterises

the dynamics of the particle’s movement through out the search space. The

numerous improvements and developments of the velocity update equation

are discussed in more detail later on.

4. Position update : The particle is moved in the search space by using the new

updated velocity. Typically this is simply done by addition of the velocity

xi(t) = xi(t−1)+vi(t). (2.2)

The most defining feature of PSO algorithms are the velocity update equa-

tions. The velocity vector of the particle is itself dynamic and the velocity update

equation dictates how the velocity, vi(t), is updated for every iteration (time step),

10 Chapter 2. Background

Algorithm 2.1 Pseudo code for an outline of the particle swarm optimisation algo-
rithm.

For each particle, pi, initialise the position, xi, velocity, vi, and yi = xi
while Stopping criteria not met do

for Each particle pi ; i ∈ {1 . . .P} do
Calculate the current fitness, fiti = f (xi)
Update personal best, yi = xi if fit(xi)≤ fit(yi)
Update swarm global and/or local best, ygBest = yi if fit(yi)≤ fit(ygBest)

end for
for Each particle pi ; i ∈ {1 . . .P} do

Update velocity, vi(t), according to velocity update equation
Update position, xi(t) = xi(t−1)+vi(t);

end for
end while
Output global best, ygBest = argmin f (yi) ; i = {1 . . .P}

t. The velocity update controls the search ability of PSO by determining the de-

gree of exploration and exploitation of the particles. The new velocity at time t

is a linear combination of the previous velocity, v(t− 1), which constitutes as the

exploration inducing component, and two components encouraging movement to-

wards currently known good solutions, exploitation. The original velocity update

equation, referred to as original-PSO, given by Eberhart and Kennedy is

vi(t) = vi(t−1)+C1r1� (xi−yi)+C2r2� (xi− ŷi) (2.3)

where C1 and C2 are constants, r1 and r2 are vectors of uniformly distributed random

numbers from the interval [0,1] and ŷi is the ith particles’ neighbourhoods’ best

position. The neighbourhood, Ni, of particle i is defined as the network topology

for which other particles within the swarm can share information with particle i.

The concept of topology will be discussed in more detail later on. For now, the

simplest topology is where the local best for all particles is the swarm global best,

ŷi = ygBest, PSO-gBest. In this topology all the particles can share information with

each other, each particle is fully connected, and ŷi is simply the best known position

2.1. Evolutionary Optimisation Algorithms 11

of all particles in the swarm

ygBest = argmin f (yi) ; y ∈ {y1 . . .yP} (2.4)

where then ŷi = ygBest for all i. The velocity update equation consists of three parts:

memory; social; and cognitive. The social and cognitive parts move the particle in

a weighted averaged direction between the particles personal best and the swarms

global best. The social part causes the swarm to gradually contract towards the

global best solution, ygBest. The cognitive part causes the particle to move towards

its best-known position, yi. The cognitive and social parts are weighted each by the

constants C1 and C2 respectively, and uniformly distributed random numbers, r1 and

r2. The random numbers are an important component of the velocity update rule,

Wilkes et al [14] show that without the randomness PSO results in performing a line

search, whilst having the random components creates diversity in the population.

The main issue faced in the original PSO algorithm is stability/convergence

due to the fact that it is possible for the velocity to tend towards infinity and parti-

cles to rapidly escape the search space. To try and control this the simplest method

is to use velocity clamping, which imposes fixed bounds to the velocity values,

[−vmax,vmax], though this simple approach can still negatively effect swarm con-

vergence [15]. Velocity clamping allows control of the maximum granularity of the

search and is problem specific.Velocity clamping effects the oscillatory movements

of the particles [16], too high and particles may still be too explorative, and too

small results in a lack of exploration that limits the search.

Further improvements to PSO were soon made by adding an inertia weight w

to the memory component [15], the modified velocity update equation is now

vi(t) = wvi(t−1)+C1r1� (xi−yi)+C2r2� (xi− ŷi). (2.5)

An inertia weight is used as a means of balancing the swarms’ global and local

search ability and allows the rate of swarm contraction to be controlled. A large

inertia weight (>1.2) encourages a global search by carrying the particle further

12 Chapter 2. Background

in its current direction, whilst a small inertia (<0.8) encourages a local search.

Although the second assumption is debatable, Chaun et al [17] show that a small

w only encourages a local search under certain parameter conditions. In general a

small inertia is nearly always preferred as this encourages convergence and stability

of the swarm. Rather than remaining a constant value, the inertia is commonly a

linearly decreasing functions of time, often from 0.9→ 0.4. Other approaches have

used chaotic inertia weights, where the inertia decreases whilst oscillating [18].

Alternatively a constricted velocity update equation can be used [19], this in-

troduces a constriction factor χ with the aim of increasing local-convergence. The

constricted velocity update equation is given by

vi(t) = χ(vi(t−1)+C1r1� (xi−yi)+C2r2� (xi− ŷi)),

χ =
2

2−C−
√

C2−4C

(2.6)

where C = C1 +C2,C > 4 is chosen for guaranteed convergence. Eberhart and

Shi [19] show that the constricted and unconstricted inertia velocity update rules

are algebraically equivalent. Thus swarm stability can be controlled by careful pa-

rameter selection, most commonly χ = 0.7298 with C1 =C2 = 2.05, as it has been

analytically shown that these settings lead to swarm stability [20]. Furthermore,

Eberhart and Shi [19] suggest that constriction alone is not always the best method

and can be improved by combining with velocity clamping, where vmax = Xmax,

where Xmax is the maximum range of the search space.

The values C1 and C2 affect swarm diversity and as such some approaches

look at controlling these values rather than keeping them constant [21] [22]. In

adaptive PSO (APSO) [21], C1 and C2 are increased or decreased depending on the

state of the swarm to encourage increasing diversity for exploration and decreasing

diversity for convergence, this approach is seen to have positive effect of search

performance for multimodal problems with a good ability to avoid local minima.

Although Ma et al [23] suggest that with group-decision-making-PSO (PSOGDM)

keeping a small population diversity is better; this maybe so for unimodal problems

but for multimodal problems, particularly with respect to the Schwefel function

2.1. Evolutionary Optimisation Algorithms 13

their argument is not particularly compelling.

In essence PSO can be thought of as a intelligent way of sampling the search

space, as such an alternative line of thought, and a more abstract view of PSO,

is to treat it as the sampling of an evolving probability distribution. This trail of

thought is expressed in Bare-Bones PSO (BBPSO) [24] [25], where instead of a

velocity update the position of each particle is drawn from a probability distribution

characteristic to the search properties of PSO.

The other important component of PSO which controls swarm diversity and

convergence is the topology.

2.1.1.1 Topology

It has been aforementioned that the topology of the swarm defines the connectivity

and how information is shared throughout the particles in the swarm. In PSO the

topology determines how the neighbourhood best, ŷi, in the velocity update equa-

tion, Equation 2.3, is determined. In comparison to PSO-gBest for local-best PSO

(PSO-lBest), each particle has a neighbourhood, Ni ⊂ S, limited to only a subset of

the total swarm (it was seen that PSO-gBest is a special subset of PSO-lBest where

Ni = S).The neighbourhoods for each particle are overlapping to allow for informa-

tion to eventually propagate throughout the entire swarm. Neighbourhood topolo-

gies dictate the flow of information and have a significant effect on the swarms

performance [26] [27] [28]. In general, greater connectivity speeds up convergence

but increases susceptibility to being trapped in local minima [26], although cases

for some test functions have shown that this is not a strict assumption and inverse

is possible [29]. Approaches such as unified PSO [30] (UPSO) use a combination

velocity component using different topologies.

The standard topology used in PSO-lBest is the ring topology [12], this con-

nects particles to a neighbour on either side, and as the name suggests, forms a ring

of particles.

Ni = {yi−1,yi,yi+1} (2.7)

14 Chapter 2. Background

Ring Wheel Von-Neumann (Torus) Pyramid

Figure 2.1: Commonly used particle swarm topologies.

The ring topology has been shown to perform well but exhibits the slowest conver-

gence due to the slow propagation of information around the ring [26] [28]. Figure

2.1 depicts some of the other commonly used topologies. Out of these topologies it

was found that the Von-Neumann(torus) topology was clearly superior, but that the

pyramid topology also performs well. The strength of the Von-Neumann topology

is due to the particles higher connectivity, and multiple paths for the distribution

of information [26], although its disadvantage compared to the ring topology is the

additional complexity in defining the neighbourhoods. For highly multimodal land-

scapes a wheel topology has also been shown to perform well [28], with the central

particle acting as a filter for local minima and bad solutions. The worst performing

topology with respect to finding the optima was the fully connected gBest. As a fur-

ther improvement Mendes et al [31] suggests the fully informed particle methods

(FIPs) where the particles take a weighted contribution from the neighbourhood;

here they find the wFIPs variation with a ring topology is successful over all ex-

perimental runs, whilst using a fully connected, global-best, performing the worst.

Another approach is to use random topologies, the advantage of these approaches

is that these algorithms alleviate the need for parameter selection with respect to

which topology to use.

Although there has been, and still is, and large ongoing debate about the prefer-

ence of PSO-gBest or PSO-lBest. As seen, there is a lot of support for the preference

of PSO-lBest for multimodal problems and PSO-gBest for unimodal problems. This

is further illustrated later in this work in Section 4 were it is seen that PSO-gBest

performs better than PSO-lBest for the given problem.

As a breakaway from idealisation of using a connective topology some other

2.1. Evolutionary Optimisation Algorithms 15

PSO variations have taken the approach of exemplar learning [32] [33] [34]. The

most noticeable example of this approach is Comprehensive-Learning PSO [32]

(CLPSO), . In exemplar learning there is no fixed topology and instead ŷi is defined

as a combination of elements from selected ’example’ particles. In CLPSO for the

ith particle each element (dimension) in ŷi is chosen probabilistically to be either

from the particles’ own personal best, yi, or selected via some rule to be taken from

a different particles’, j, personal best, yj. The elements of ŷi are then refreshed

periodically. As such there is no strictly defined topology within CLPSO. CLPSO

also has the interesting property that it only has a single difference component in the

velocity update, CLPSO will discussed in more detail further on in Section 2.1.1.3.

2.1.1.2 Standard PSO

In light of the historical developments of PSO since the original formulation in 1993

it is desirable to define a more relevant ‘gold standard’ of PSO algorithm [35]. This

serves its purpose as suitable reference for development and comparison for other

PSO algorithms. The first ‘modern’ standard was given in 2007, SPSO-2007, this

algorithm follows the same structure as the original PSO algorithm given in Algo-

rithm 2.1 and uses the constricted velocity update equation given in Equation 2.6.

SPSO-2007 also suggests the use of PSO-lBest with a ring topology, and swarm size

of 50 particles (although the authors do state that there was no difference observed

with the range of 20-100 particles).

At the time of writing the most recent attempt of defining a standard is SPSO-

2011 [36]. Though this standard lacks the grace and simplicity of the previously

defined standards, which is arguably one of PSOs’ most attractive traits for its im-

plementation, and may explain its less widespread popularity within the literature

as an actual standard 2. SPSO-2011 looks to improve upon certain capabilities that

were lacking in SPSO-2007, the main being rotational invariance. SPSO-2011 uses

a hypersphere to generate the velocity update equation. It has been shown that

SPSO-2011 is not affected by rotations of the search space [37] [38].

2this is assumption is based upon average citations per year at the time of writing since pub-
lication of the original articles, 93.8 for SPSO-2007 [12], and 46 from two papers for SPSO-
2011 [35] [36].

16 Chapter 2. Background

These are attempts to create a standard PSO algorithm and are not designed

with the intention of being the optimal PSO algorithm, but there are many inter-

esting and exotic PSO variations that attempt to elaborate and improve upon the

original PSO paradigm.

2.1.1.3 Further PSO Variations

There are numerous PSO variations discussed in reviews such as [39] [40] [41], a

brief introduction to some of the more prominent and conceptually interesting PSO

variants discussed in the literature and throughout this work is presented:

• CLPSO : Comprehensive-learning PSO (CLSPO) [32], is the most notable

example of exemplar learning in PSO and is an extremely popular PSO variant

with numerous applications within the literature. Its appeal is that it shows

a significant improvement over previous PSO variants whilst still retaining a

reasonably simple algorithmic structure. CLPSO has only two components in

the velocity update

vi(t) = wvi(t−1)+C1r2� (xi− ŷi) (2.8)

where in this case ŷi is the exemplar vector rather than a topologically deter-

mined best known position.

A variation of CLPSO is parallel-CLPSO [42] which uses CLPSO with dis-

tributed computing and subswarms and report significant improvements on

the algorithms performance for multi-modal problems.

• OLPSO : Orthogonal Learning PSO (OLPSO) [33], uses the same exemplar

based learning structure as CLPSO, Equation 2.8, but looks to improve upon

the quality of exemplars used in learning. The issue addressed by introduc-

ing orthogonal learning is the concept of ‘two steps forward, one step back-

wards’. Depending on the sensitivity of the objective function to a particular

dimension the search may progress in a new direction that is beneficial for

one dimension but detrimental in another whilst still minimising the objec-

2.1. Evolutionary Optimisation Algorithms 17

tive function. This type of search progression can be a source of inefficiency.

• ELPSO : Example-based Learning (ELPSO) [34], is an extension of CLPSO

and aims to provide and improved balance between swarm diversity and con-

vergence speed. The premise of ELPSO is to use multiple elite particles to

learn from and as such uses multiple ‘global bests’, ŷgBests, as well an exem-

plar vector component

vi(t) = wvi(t−1)+C1r2� (xi− ŷi)+C2r2� (xi− ŷgBests). (2.9)

The exemplar vector, ŷi, is generated in a similar fashion is CLPSO, where

each dimension is taken from a personal best of a different particle; except

the selection process is a lot simpler with the choice being made by a uniform

random number [1,N]. The new vector, ŷgBests, is created using the same

selection procedure as previously described but with the selection being taken

from a set, G of historical global bests from each iteration. Over the given

test set ELPSO does show some statistically significant improvements over

CLPSO, although the many of the cases the improvement is not of a notable

magnitude.

• CPSO : Co-operative PSO (CPSO) [43], attempts to address the problem

of ‘two steps forward one step backwards’ by suggesting that the objective

function needs to be evaluated more frequently as values of each dimension

change. It is an interesting approach as it decomposes the n-dimensional

search space using K = n number of sub-swarms; the type of PSO used to

govern the sub-swarms can be any of the other PSO algorithms discussed,

although the authors suggest using GCPSO. Each sub-swarm, k, searches in

the nth dimension, d, where a context vector, b, is used to provide the other

d− 1 dimensions to create the test vector for the objective function evalua-

tions. The context vector is composed of the dimension d from each of the

corresponding sub-swarms global best, ŷk
gbest. i.e. bd = ŷk

gbest,d , where k = d.

This original version of the algorithm is known as CPSO-S [44], CPSO-SK is

18 Chapter 2. Background

then later introduced [43] which relaxes the search space decomposition so

that K ≤ D. This allows grouping of dimensions which maybe interrelated

into the same subswarm. Though CPSO-S suffered from stagnation and trap-

ping local minima. To overcome this CPSO-HK is introduced [43]; CPSO-SK

is run in alternate iterations with another PSO algorithm, the two algorithms

can then exchange information.

• FIPS : Fully informed PSO (FIPS) [31], changes how the the neighbourhood

best vector is calculated, instead of selecting the single best position known in

the particles neighbourhood the idea of FIPs is to use all the information of the

neighbourhood, but with weighted contributions. Given that the particle now

uses all available information to it the authors say that the particle is ‘fully

informed’, but only within its local neighbourhood, and truly fully informed

particles exist only when a fully connected topology is used. The authors

introduce 5 different FIPs variations: FIPS; wFIPS; wdFIPS; Self; wSelf. The

two best performing were FIPS and wFIPS; FIPS uses a equally weighted sum

of contributions from all neighbours, whilst wFIPS uses a weighting based

on the particles fitness; with wFIPS being the best overall and successfully

finding the optima in all the of the runs over all the test functions evaluated.

• APSO : Adapative PSO (APSO) [21], uses a classification procedure to deter-

mine the swarms’ ‘evolutionary state’. Using this determined state the PSO

parameters, w, C1 and C2 are are adapted to aid the swarms performance in

it current state. Four states and adaptive strategies are: Exploration state, in-

creasing C1 and decreasing C2; slightly exploitation state, slightly increasing

C1 and slightly decreasing C2; convergence state, slightly increasing C1 and

slightly increasing C2; jumping-out state, decreasing C1 and increasing C2.

This combined with a w taken as a function of the evolutionary state factor,

f . The evolutionary state factor is calculated from the mean distance, disti, of

2.1. Evolutionary Optimisation Algorithms 19

the particles from all other particles

disti =
∑

N
j=1, j 6=i

√
∑

D
k=1(x

k
i − xk

j)
2

N−1
(2.10)

this factor is then put into one of the four states via fuzzy clustering. The ad-

vantage of this methodology is that the swarm can appropriately increase and

decrease it’s diversity depending on its current state allowing it to effectively

escape local minima and explore, but with faster convergence than normal

PSO-lBest when in the vicinity of the global optima.

• UPSO : Unified PSO (UPSO) [30], is a simple attempt to try and exploit the

different exploration and exploitation capabilities of PSO-gBest and PSO-

lBest. In the UPSO scheme it uses both the constricted global best velocity

update, vgBest
i , and the local best velocity update vlBest

i , by linearly combining

to produce the final unified velocity update

vunified
i = uvgBest

i +(1−u)vlBest
i (2.11)

where u is the unification factor and controls the balance between the global

and local best updates. Out of the variations tested u = 0.5 gave the best

performing results.

• FDR : Fitness-Distance-Ratio PSO (FDR) [45] aims to reduce particle os-

cillation and premature convergence by using an additional velocity term.

The new additional velocity update term is based on maximising the fitness-

distance-ratio for each dimension between the current ith particle and a se-

lected particle j. For each dimension a new j∗ is selected such that

j∗ = argmax
fit(xi)−fit(x j)

|xd
i − xd

j |
; j 6= i. (2.12)

The additional velocity term for dimension d is then C3(xd
i −xd

j∗), where C3 =

2. It should also be noted in FDR that for the original PSO velocity term

20 Chapter 2. Background

C1 =C2 = 1.

Other exotic variations look at improving swarm dynamics using techniques

such sub swarms, speciation, attraction-repulsion and quantum particles, for exam-

ple in Local Optima Avoidable PSO (LOAPSO) [46], two swarms are used are used

to increase overall population diversity, the first swarm moves according to regular

PSO while the second swarm moves in directions away from the current best of the

first swarm.

2.1.1.4 Weaknesses in PSO

One problem that exists for all optimisation algorithms is the no free lunch theorem,

this conjectures that there is no single algorithm that can perform well on one class

of problems without compensating for performance elsewhere. For example in PSO

it can often be seen that PSO-gBest is preferable for unimodal problems, whilst

PSO-lBest is often preferred for multimodal problems.

As previously mentioned ‘two steps forward one step backwards’ [44] can

result in an inefficient search. This is the case where to minimise the objective

function the search progresses correctly in some dimensions whilst regressing with

respect to others, this can create a zigzagging between the optimal solution vector.

Methods such as CPSO and OLPSO heave been developed in an attempt to help

resolve this issue by creating search processes that use information regarding the

search with respect to each dimension and their relationships with each other.

Another known problem, which is well a documented phenomena of parti-

cle trajectory, is oscillation. Oscillations in the particles position occur due to

the weighting of two different Euclidian distances in the traditional velocity up-

date equation. The particle will zigzag between moving towards its own personal

best and the global/local best positions. This can lead to inefficiency in the search

progress and hinder convergence, this is in part the motivation for using a damp-

ening inertia coefficient which can help reduce the particles velocity. Another way

to address this element of the dynamics is to use exemplar learning [32] [34], used

for example in CLPSO [32], in exemplar learning the velocity update equation is

reduced to using a single Euclidian distance which removes the oscillation between

2.1. Evolutionary Optimisation Algorithms 21

two points.

The appealing behaviour that PSO shows fast convergence towards the opti-

mum can also lead to issues of stagnation and premature convergence. The diver-

sity of the population can quickly shrink, reducing the explorative behaviour of the

algorithm, this is part of the exploration-exploitation tradeoff. Stagnation occurs

when all the particles have moved to the global best, and the global best does not

change. In the case of multimodal problems this can lead the problem of converg-

ing towards local minima, algorithms such as PSO-lBest reduce the connectivity to

retain more diversity and reduce the speed of global convergence. Other problems

can occur for very flat functions where eventually the velocity decreases over time

and the particles converge to sub-optimal value, this is seen in the optimisation of

the Rosenbrock benchmark function. Algorithms such as CLPSO try to increase

diversity by permuting the velocity, other algorithms such as APSO measure the di-

versity and use the jump-out state to allow the swarm to start exploring again. Other

strategies such as simple restarts, and reinitlisation of particles [47] can be used.

Challenges also exist for solving functions that are non-separable, asymmetri-

cal and have large number of local minima. These types of functions are represented

by composite functions in the known CEC test suite. These problems have been ob-

served to be extremely challenging for all different variants of PSO and even other

types of algorithm [48] [49]. One problem is due to rotational invariance of the

velocity update equation. Wilke et al [14] shows that the traditional PSO velocity

update equation, Equation 2.3, is rotationally invariant due to the coupling between

directional and magnitudinal diversity. The effects of rotating the search space can

been seen in the results of Liang et al [32] which show that for all the PSO algo-

rithms tested rotation leads to a large degradation in performance. Wilke et al [14]

go on to suggest the DRI velocity which decouples the magnitude and direction by

applying a new random rotation matrix to each the two velocity components, al-

though this results in a very computationally slow method. The issue of rotational

invariance has also be addressed in SPSO-2011 [37] and Locally convergent Rota-

tionally invariant PSO (LcRiPSO) [50]. Rotational variance has been noted to also

22 Chapter 2. Background

cause a bias in the search behaviour of PSO [51] [52]. Spears et al [52] show that

there a biases towards searching in directions parallel to axes, consequently PSO

performs much better for search spaces where the trough or basin is parallel to the

axes due to the fact the bias helps guides the particles along these features. Another

search feature PSO has been shown to have problem with are where the global min-

ima is situated far away from the local minima, this property is characteristic of the

Schwefel function. In Liang et al [32] it was found for the Schwefel function that

all the PSO variants considered, apart from CLPSO, failed to find the global minima

and fell into the deep local minima. The relative lower degree connection between

particle in CLPSO allowed particles to have greater exploration capabilities and

avoid local convergence.

As a final note, one overlooked problem in the PSO literature is the lack of a

clear direction and consensus within the literature, when compared to differential

evolution, discussed next, there is no clear current best state-of-the-art PSO algo-

rithm and a clear sense of research direction for improving and developing PSO.

As an alternative to PSO, differential evolution may be used.

2.1.2 Differential Evolution

Differential Evolution initially developed by Storn and Price [53] is based upon the

process of genetic evolution found in nature. In population based algorithms it starts

with a population of P n-dimensional vectors, xi, distributed over the search space,

differential evolution then works by taking linear combinations of these vectors to

try and create new better vectors; Algorithm 2.2 gives an outline of the Classic DE

algorithm. The three main stages of DE are:

1. Initialisation : As with PSO the population in DE is initialised by randomly

selecting a set of vectors from within the search space, most commonly a

uniform distribution is used although as previously mentioned this may not

be optimal for evenly covering the search space and other distributions or

methods may be required [13] [54].

2.1. Evolutionary Optimisation Algorithms 23

2. Mutation : In the mutation stage a donor vector, vi, is created to be used in

the proceeding crossover procedure. The donor vector is created by taking

linear combinations of scaled differences between other vectors in the popu-

lation, there are various mutation strategies which are the most characteristic

component of DE variations.

3. Crossover : Crossover creates a new trial vector, ui, by mixing the donor

vector, vi, with the target vector, xi, using the crossover operator C⊗(xi,vi).

There are three common methods used for crossover: binomial; exponential;

arithmetic.

4. Selection : The final step is selection, if the trial vectors objective function

value is lower than the target vector objective function value, f (ui) < f (xi),

then the target vector, the existing member of the population, is replaced with

the the trial vector, xi = ui, otherwise the target vector remains unchanged.

Algorithm 2.2 Pseudo code for an outline of the differential evolution.

For each xi, and fit(xi)
while Stopping criteria not met do

for Each xi ; i ∈ {1 . . .P} do
Create a donor vector vi using chosen strategy
Create trial vector ui using crossover strategy, ui =C⊗(xi,vi)
Calculate the trial vector fitness, fiti = f (ui)
Replace xi if trial vector is better, xi = ui if fit(ui)< fit(xi)
Update global best, xgBest = xi if fit(xi)≤ fit(xgBest)

end for
end while
Output global best, xgBest = argmin f (xi) ; i = {1 . . .P}

The mutation and crossover procedures are the defining stages of different

DE algorithms, in the Classic DE formulation the mutation strategy combined

with a crossover strategy produces the final DE variant and the standard nomen-

clature adopted to express the type of DE is DE/mutation/number-of-difference-

components/crossover; for example DE/rand/1/bin is Differential Evolution using

the rand/1, uses the random mutation strategy with one difference component, and

24 Chapter 2. Background

a binomial crossover. The mutation procedure for creating a donor vector vi can be

generalised

vi = x j +F
N−1

∑
n=0

xr2n−xr2n+1 (2.13)

where j is the index of the parent vector selected by the mutation scheme, N is

the number of difference components, rx are mutually exclusive random numbers,

rx ∈ [0,NP− 1] which select random members of the population to generate the

difference vectors and F is the mutation factor parameter. Three popular mutation

strategies used to create the donor vector are:

• DE/rand/1/ : The donor vector is created as linear combination of three ran-

dom vectors selected from the current population, rand/1 stands for random

vector strategy with one difference component and x j is selected as another

mutually exclusive random vector from j ∈ [0,NP−1].

• DE/best/1/ : In this case x j is selected such that it is the population member

with the best fitness at the current iteration, j = argmin fit(x j)

• DE/current-to-best/1/ : This strategy is slightly different to the others, the

number of difference components is N = 2, but r0 and r1 are replaced by

r0 = argmin fit(x j) and r1 = i. In this instance the first difference component

is the difference between the currently selected parent vector i and the current

best population member. The perturbed vector x j = xi.

Other popular variations are DE/ * /2 strategies, where two equally weighted

difference components are used in the above strategies. The mutation strategies

can be divided into four classes [55]: 1) Rand, where no information of solution is

quality is used in creating the donor vector and all the vectors are randomly selected,

for example DE/rand/1; 2) rand/best, this is defined as a chaotic local search which

uses information of a best known vector in the population, for example DE/current-

to-best/1; 3) rand/dir, these strategies slightly differ from the previous two groups

as they use values of the objective function to find a good direction in which to

2.1. Evolutionary Optimisation Algorithms 25

mutate, an example is given in [55] where the population is separated in half based

on objective function values, a difference component is then calculated using the

centres of these two groups, or for example, in trigonometric mutation [56], or

[57]; 4) rand/best/dir, which combines the use of a ‘best’ vector with a directional

difference component.

An important property of the DE algorithm is contour matching [58]. This

is a product of the mutation procedure and the difference components used. Con-

tour matching is where the algorithm self-adapts to the fitness landscape, this is

illustrated by how the distribution of the difference vectors produced clusters with

different areas of the search space. The use of difference components also promotes

basin to basin transfer, allowing members of the population to escape from local

minima and move towards the global basin.

After mutation crossover is often introduced using the crossover operator C⊗,

mutation only DE can be used but is not advised, the three main crossover strategies:

binomial, exponential and arithmetic are defined as:

• Binomial crossover : This is the simplest crossover strategy. In binomial

crossover for each dimension d the trial vector either takes on the value of the

parent vector xd
i or the donor vector vd

i .

ud
i =

xd
i , if ri < Cr

vd
i , otherwise

(2.14)

where Cr is the crossover rate parameter and ri is a uniformly distributed

random number ri ∈ [0,1]. The Crossover Rate parameter, Cr, determines

the degree of mixture and has an important effect on the search ability of the

algorithm.

• Exponential crossover : In exponential crossover the crossover rate is used

slightly differently compared to binomial crossover and determines the num-

ber of sequential elements l that are taken from the donor vector. First a

random element d is chosen as the start point for crossover in the parent vec-

26 Chapter 2. Background

tor xd
i , the elements x(d+l)%P

i l ∈ 1,2 . . .P are replaced by the donor vector

u(d+l)%P
i in a sequential and circular manner (where % is the modulus opera-

tor) until the crossover stopping criteria is met: either l = P or rl > Cr, where

rl ∈ U[0,1] is a uniformly distributed number. This is shown is Algorithm

2.3. The advantage of exponential crossover is that is preserves some of the

original structure of the two solutions.

Algorithm 2.3 Exponential crossover
ui = xi.
d = U[1 . . .P]
ud

i = vd
i , l = 1

while l < P||rl > Cr do
u(d+l)%P

i = v(d+l)%P
i

l ++
end while

• Arithmetic crossover : This is the least popular of the three strategies used

in DE, although it will be seen in Section 3.1.1 that it is popular in EA hy-

brid methods. Arithmetic crossover takes a random linear combination of the

parent and donor vector in each direction

ud
i = rdxd

i +(1− rd)ud
i (2.15)

where rd is a uniformly distributed random number rd ∈ [0,1].

The crossover rate Cr is an important parameter for binomial and exponential

strategies; although the same Cr value may be applied to different crossover strate-

gies they have considerably different effects on the value of pm [59]. Binomial

crossover is the most popular crossover method, and was seen to perform better

than exponential in the study by Montes [60]. Though, a more detailed comparative

study of crossover has been done by Zaharie [59] [61]; the observed difference in

performance for the crossover strategies for the same Cr values is due to the relation-

ship of Cr to pm. For binomial pm varies linearly whilst non-linear behaviour occurs

for exponential which results in a higher density of small pm values for Cr ∈ [0,1],

and this behaviour should be taken into account when comparing Cr values for the

2.1. Evolutionary Optimisation Algorithms 27

different strategies. When this is taken into account and the probability pm is the

same, both strategies were seen to perform very similarly, with perhaps exponential

performing slightly better on rotated due to better preservation of solution structure

but being harder to find a suitable set of parameters for high-dimensional problems.

Crossover can be thought to aid the search by introducing additional diversity

into the population but when a high amount of crossover is used, i.e a low Cr value

which means that there will be a larger mix of the donor and target vector, the im-

portant contour matching behaviour is in fact lost due to the additional randomness

introduced into the trial vector from crossover. This introduces a few problems such

as rotational variance and a search bias along the axes [62]. This can be useful for

separable functions but not so in the case of non-separable and rotated problems.

Despite this crossover is still used due to the benefit of the increased population

diversity. Without so the DE algorithm can quickly stagnate due to only a limited

set of potential donor vectors being created with mutation only.

The settings of the control parameter values, the mutation factor, F , crossover

factor, Cr, and population size. N, have a significant effect on DE performance [63].

Originally in classic DE Storn and Price [64] suggest that F should be initially set

to 0.5 and Cr should be tried first at [0.9,1] to see if quickly converging solution

can be found, and if then to try 0.1. With respect to mutation only DE it has been

observed that F is a function of the dimensionality [65] [66]. Control bounds of F

have been derived by Zaharie [67] as a means of controlling population variance,

where F is bounded by

F >

√(
1− Cr

2

)
P

. (2.16)

It should also be noted that for exponential crossover a larger F has to be used to

have the same effect on population variance [61]. Rather than useing fixed control

parameter values, dither and jitter methods use F taken from a probability distri-

bution [67] [58]. In dither F is applied as single value whilst dither F becomes a

D-dimensional vector where a new random value is chosen for each component.

28 Chapter 2. Background

This removes the need for hard setting a parameter value, and results in better

performance. A disadvantage is that jitter and dither causes mutation to become

rotationally variant, with jitter introducing an additional rotation.

With respect to the previous discussion regarding crossover negatively affect-

ing the contour matching property it can be assumed that a large Cr, resulting in

a small amount of crossover is preferable especially when the problem is non-

separable; this is in line with Ronkkonen et al [68] who suggest that Cr should

be between [0,0.2] for separable functions and [0.9,1] for non-separable func-

tions. Although the affect of Cr has also been studied by Penunuri et al [69], (for

DE/rand/1/bin with dither) which seems to show that a Cr value of [0.2,0.4] is rea-

sonable for most test functions used, separable or non-separable however this could

be due to the fact that rotational invariance is lost when using dither and search suc-

cess becomes more dependant on a large diversity to explore. In other self-adaptive

methods, for example in SaDE [70], Cr is selected from an initial probability dis-

tribution which is then updated after a given number of generations with respect

to better fitting the parameters values that have successfully generated good trial

vectors.

As well as the two control parameters population size P can also have a large

influence on DE performance, with a population too small there will be a severe lack

of diversity resulting the population to be more likely trapped sub-optima, whilst

too large will result in slower rates of convergence. Although there has been no

general concensus on the ideal population size to use, in general the population is

around 4-10D, though for high-dimensional real world problems optimal population

size is highly dependent on the problem and algorithm [71]. Adapted population

size methods are preferred [71] as they can allow for a large initial population to

encourage initial exploration and then reduce the population size to aid convergence

[72], this methodology has recently been applied to the already powerful SHADE

algorithm [73]. Penunuri et al [69] suggest an interesting method of adapting the

population with respect to the problem complexity using the Shannon entropy of

the objective function, although interestingly conceptually the authors fail to take

2.1. Evolutionary Optimisation Algorithms 29

into account the initial requirement of fitness evaluations to determine the problems

complexity in their analysis.

The main issue with Classic DE presented here is that its performance is heav-

ily dependant on finding optimal control parameters and also determining the best

mutation strategy to use, as with PSO, there are many exotic and advanced vari-

ations of the classic algorithm in an attempt to develop a better all-round robust

optimiser.

2.1.2.1 Advanced Variations

There are two main branches of research for advanced DE variations have been

identified [74]. The first branch looks at improving the DE within the existing al-

gorithmic framework, for example by improving the mutation or integration local

search features. The second branch of advancement on Classic DE, which is cur-

rently the most fruitful, is the introduction of self adaptation mechanisms to create

a robust optimiser to try and remove the weakness of parameter dependant per-

formance. An overview of a few of the most important landmark variants in the

development of DE are presented next.

• DEGL : Differential evolution global local (DEGL) [75] was developed not

with the focus of self-adaptation but is worth mentioning as it offers a novel

contribution by using a local topology similar to PSO. In the original DE

algorithm all of the population is used, in terms of the previously discussed

PSO literature it could be said that DE traditionally uses a global topology. It

has been suggested that, as with PSO, a global topology may not be optimal

in the case of multi-modal problems.

• jDE : The jDE algorithm [76] is a self-adaptive algorithm for the parameters

F and Cr. It provides the novel contribution that the two control parame-

ters F and Cr are incorporated into the search DE search process. The search

space is extended by an extra two dimensions to accommodate the two control

parameters, although they do not undergo the standard DE procedure. The pa-

rameters do not undergo mutation and during a binomial like crossover either

30 Chapter 2. Background

the parent control parameters carry over into the trial solution or with a prob-

ability of 0.1 are given new random values F ∈ [0.1,1] and Cr ∈ [0,1]. The

original jDE algorithm uses a rand/bin/1, jDE-2 uses two different mutation

strategies [77].

• JADE : JADE [78] is an important step in DE progress and provides the

template for the powerful L-SHADE algorithm. JADE introduces two new

concepts: the first is using the strategy DE/current-to-p-best/1; and the sec-

ond is using an external archive to hold some of the replaced vectors, this

allows retention of old information. DE/current-to-p-best/1 without archive

is similar to the DE/current-to-best strategy, but instead of using the global

best solution, xgBest in the first difference component it is randomly selected

from the set of the top p% of solutions

vi = xi +Fi(xp
best−xr1)+Fi(xr3−xr4). (2.17)

The archive works by storing the failed parent vectors from selection, once the

acheive reaches a set size of P solutions, randomly selected members of the

archive are deleted to keep it at size P. DE/current-to-p-best/1 with archive

modifies the second difference term, where xr4 is selected from the set P∪A

where P = {x1 . . .xP} is the current population and A is the set of archived

solutions. Finally JADE uses an adaptive parameter strategy that draws the

parameters Fi and Cri from a probability distribution with a weighted mean

using previously successful parameter sets.

• SHADE : The Success-History based Adaptive DE (SHADE) variant is con-

sidered the current state-of-the-art DE, currently dominating the international

CEC optimisation competition. In fact in the 2016 CEC competition there

were five (out of a total of nine algorithms) SHADE variations entered for the

CEC14’ benchmark competition [79] with L-SHADE-epsin winning, and for

the CEC15’ benchmark problems [49] CCLSHADE and L-SHADE44 plac-

ing 2nd and 3rd, although first place was MVMO-PHM, but MVMO-SH was

2.1. Evolutionary Optimisation Algorithms 31

beaten in 2015 by SPS-L-SHADE-EIG [48].

SHADE is an extension of the JADE algorithm and aims to increase the ro-

bustness of the parameter adaptation.The major contribution of SHADE is

adding an additional memory archive for previously good parameter settings,

the second contribution is that the greediness parameter p is initialised inde-

pendently for all population members creating additional diversity.

The history based mechanism stores H sets of the successful mean Cr and F

parameter values. For each individual the parameter values Cri and F i and

calculated by picking a random set from the history, and then drawing the

parameter values for the respective distributions.

It is worth briefly mentioning the features of SHADE extensions. L-SHADE

is a simple extension of SHADE using a linearly decreasing population [80],

the population decreasing method of Brest et al [72] was also investigated

in D-SHADE. L-SHADE was clearly superior to the basic SHADE algo-

rithm and also superior to D-SHADE for lower dimensional problems (10-

30D) whilst D-SHADE showed slightly better performance for 100D prob-

lems. Cooperative co-evolution L-SHADE (CCLSHADE) [81] uses the co-

operative approach as seen in CPSO but using L-SHADE for both the co-

operative search and sub-searches. L-SHADE44 [82] (a further develop-

ment of L-SHADE4 [83]) uses the pooling of mutation strategies, similar to

EPSDE. The four strategies 3 used in L-SHADE44 are current-to-pbest/1/bin,

current-to-pbest/1/exp, randrl/1/bin, and randrl/1/exp.

Later on in Section 4 hybrid L-SHADE algorithm, PSO-LSHADE-NM ,

where NM is the Nelder-Mead search is introduced.

Within DE there has been a reasonably clear path of development building up

from jDE→JADE→SHADE leading up to the current state-of-the-art L-SHADE

algorithms.

3it is worth mentioning that the authors have taken into account the analysis of Zaharie [59] [61]
and adapt pm rather than Cr directly when using the two different crossover strategies

32 Chapter 2. Background

2.1.2.2 Weaknesses in DE

Several areas of development for DE have been highlighted in the recent review by

Das et al [84]. The main weakness being rotational invariance which is inherently

introduced by the use of crossover. This issue has often been overlooked due to

the significant benefits. Even in the state-of-the-art L-SHADE rotational invariance

is still an issue, one remedy has been the introduction of using a rotated crossover

operator , this has been introduced into the SHADE algorithm in SPS-L-SHADE-

EIG [85]. It has also been discussed that with high rates of crossover although this

introduces population diversity it can lead to undesirable traits such as rotational

variance and axes bias.

The main weakness of DE algorithms is in search spaces similar to the decep-

tive function [86]. The deceptive function is characterised by a relatively flat area

area separated from the global optimum by a long and steep barrier. DEs are greedy

algorithms and do not let the population move to areas of worse fitness, unlike PSO,

this means that the algorithms can’t step up this barrier to search around the area

of the global optimum. It is found in the next section that even L-SHADE has a

success rate of 0%, whilst PSO algorithms can have up to 100% success.

Although performance of self-adapting DE algorithms is impressive, analysis

by Tanabe et al [87] use a Greedy Optimal Algorithm (GOADE) as a benchmark of

optimal DE performance (using a by rand/1/bin strategy) to show that the mecha-

nisms of the algorithms (jDE, EPSDE, JADE, MDE, and SHADE) still do not find

the optimal parameters and performance that may be achievable.

2.1.3 DE vs PSO

Differential Evolution and Particle Swarm Optimisation are very much two compet-

ing methods in optimisation, this has led to the growth of a competitive community

where sets of artificial benchmark functions are formulated to test and compare dif-

ferent behaviours and performance of the algorithms. Out of these benchmark stud-

ies yearly optimisation competitions at CEC and GECCO conferences have been

established.

Within the specialist heuristic and EA optimisation community, both the CEC

2.1. Evolutionary Optimisation Algorithms 33

and GECCO BBOB competitions PSO entries have wilted away over the years, in

fact since 2008 for the CEC Real-Parameter Optimisation there have only been a

handful of PSO entries, in 2013 there was SPSO2011 and fk-PSO and in 2015,

there was SaDPSO and DMSPSO, but in all cases the PSO algorithms ranking mid

to near the bottom in final results when compared the other algorithms. In the

GECCO BBOB the only PSO entries made were in 2009, and since then the field

has been dominated by variants of DE, CMA and MVMO. This begs to ask the

question of why there has been such a decline in the popularity of PSO compared

to DE within the EA research community. Even within more general literature

searches on ScienceDirect or GoogleScholar for the terms ‘particle swarm optimi-

sation’ and ‘differential evolution optimisation’ show a significantly greater interest

in DE, for example from ScienceDirect in 2016 there were 3,362 and 4,575 results

respectively, confirming a strong preference towards DE which has been an ongoing

trend since their introductions in the early 90’s.

One of the main factors is performance, and as mentioned in these renowned

competitions PSO has failed to place favourably in any, whilst in CEC variants of

DE continues to dominant the top ranks. For the BBOB problems DE is still beaten

by CMA algorithms, although Tanabe et al [87] has shown that using GOADE,

DE has the potential to further maximise performance and and produce results that

are similar if not better than other heuristic optimisation methods such as top per-

forming CMA and IPOP variations. Comparing results of L-SHADE, which here

is considered to be state-of-the-art DE, with some of more recent competitive PSO

algorithms, APSO, OLPSO and CLPSO on the CEC’14 benchmarks [86] [73] L-

SHADE is clearly the superior algorithm on all the functions considered and also

achieving the absolute minimum (mean fitness value of zero over 50 independent

runs) on a handful of the easier functions, whilst only OLPSO achieved this for F8.

Although none of the algorithms perform particularly well on the hybrid and com-

posite functions, and still prove to be the most challenging. Other studies directly

comparing PSO and DE variants on benchmark functions.

It is clear then that state-of-the-art DE is currently leagues above what might

34 Chapter 2. Background

be considered state-of-the-art PSO with respect to performance in regards to the

well known benchmarking functions, but conceptually PSO may have advantages

for certain search space landscapes when compared to DE. Langdon et al [88] show

that PSO is superior when the landscape is comprised of multiple local optima and

the global optima is located near the boundaries,this is particularly true when the ini-

tialisation space is asymmetrical and may not include the location of the global op-

tima, although in this study they are only comparing Original PSO and Classic DE.

These observations are further confirmed by the Deceptive Function [89] and Linear

Deceptive Function [86]. The difference is that PSO does not use an elitist selec-

tion strategy, this allows for PSO to temporarily move and explore through areas of

bad fitness, whilst elitist selection does not allow for this behaviour. The Decep-

tive Function and Linear Deceptive Function are generalisations of features found

in the rotated-shifted Ackely function (CEC’14 F5), for which in 30-dimensions

, CoDE, jDE, ESPDE, SaDE, JADE and L-SHADE found challenging [86] [73],

but at the same time similar poor results were also achieved for APSO, OLPSO

and CLPSO [90], suggesting that although there is preferential behaviour for PSO

in the simplified settings, the features in a more complex landscape generate an

overall challenging function for optimisation algorithms.

To better illustrate this differentiating behaviour the Linear Deceptive Function

has been implemented here and used to compare the advanced Differential Evolu-

tion SHADE and L-SHADE variants, and PSO variants: lbest-PSO; gbest-PSO;

and CLPSO. Success is measured if the algorithm manages to enter the well of the

global optimum which is located at −0.2 < x < 0, this is repeated for 200 indepen-

dent runs with 5000 FE. The results are very enlightening, with L-SHADE scoring

0% success rate and SHADE 0.5%, which is inline with the majority of the results

found for the classic DE strategies by Hu et al [86] (the best was 33% success by

DE/rand/2/bin), showing that in these cases even the state-of-the-art still suffer from

this weakness, albeit very specific. Running the experiments for PSO though lbest-

PSO achieves 100% success although gbest-PSO only achieving 1% and CLPSO

only 10%.

2.1. Evolutionary Optimisation Algorithms 35

2.1.3.1 Structural Similarities

With respect to simplicity of implementation of Original PSO and Classic DE both

algorithms are very similar and easy to implement, they only vary in how the pop-

ulation is updated. The two major differences between the paradigms of DE and

PSO is the elitist selection in DE and the inertia weighting w in PSO. As discussed

with respect to the Linear Deceptive Function, elitist selection of solutions may aid

in speeding up convergence but this strategy limits its explorative nature whilst PSO

allows for some leeway in searching through bad areas.

By removing inertia weighting from PSO velocity, the position update of a par-

ticle essentially becomes the addition of two randomly weighted difference compo-

nents which in essence are similar to the DE strategies current-to-best and current-

to-p-best. In the case of exemplar learning by removing the inertia weight the up-

date becomes similar to current-to-rand/1. Hierarchical-PSO (HPSO) [91] is in-fact

a PSO variant which does not use an inertia, w = 0, this relies upon the differ-

ence vectors alone. In HPSO-FAC, where C1 = C2 = 2 are constant the results on

the numerical benchmarks is reportedly poor, this is unsurprising if the similarity

to DE and the results regarding high a mutation parameterF are considered; once

time varying coefficients are used, HPSO-TVAC, which is now similar to a linearly

reducing F in DE, performance is considerably improved.

With respect to simplicity DE has a slight advantage over PSO. DE requires

only 3 control parameters, population size, mutation factor, F , and crossover rate,

Cr, whilst PSO requires, population size, w, C1, C2 and a topology. There is also the

issue of debate over the best PSO topology and its effects on performance, whilst

for DE, apart from the case of DEGL, it has been accepted that a global topology is

as standard. There is also less distinctive research in self-adapting PSO compared

to self-adapting DE which has taken off as the next major research direction in

the field. In PSO the research is still more orientated towards novel methods of

improving particle interactions [92].

With respect to structural bias it has previously been discussed, along with ro-

tational invariance, as an issue present in most variants of the algorithms, although

36 Chapter 2. Background

in general DE algorithms show this to a lesser effect than PSO. It has been discussed

that only crossover introduces rotational invariance but this can be controlled by us-

ing low rates of crossover, whilst in PSO the source of invariance is due to the inher-

ent nature to the velocity update equation and the random perturbations introduced.

Although in both cases it is possible to derive rotationally invariant formations of

both algorithms.

It is interesting though that a lot of the successful developments of DE have

used elements inspired by the PSO paradigm. The first is the use of the current-to-

best mutation which of course is the same as the PSO velocity update. The most

compelling is in the recent state-of-the-art SHADE algorithms which use a current-

to-p-best mutation strategy, which is very similar to PSOs’ velocity update, and

DEGL is inspired by the idea of local neighbourhoods seen in PSO-lBest. It is clear

that although DE may have some performance advantages over PSO this can’t be

said without taking into consideration the inspiration PSO has contributed to the DE

literature and the difference in their respective search behaviours, as such promising

developments for both fields may be possible with hybridisation [93].

2.2 Neural Networks
Artificial neural networks (ANNs) are known as a class of universal approximators

inspired by the connectivity of the brain. ANNs consist of simple computing units,

known as the ’neurons’, connected in a layered structure via numeric weights. The

simplest neural network is a feed forward multi-layer-perceptron (MLP) network.

Traditionally an MLP consists of an input layer, hidden layer/s, and an output layer.

Mathematically the output of a individual neuron in a feed forward MLP can be

given by

yl
i = φ

(
∑

i
∑

j
wl

i, jy
l−1
j

)
(2.18)

where yl
i is the output of neuron i in the layer l, when l = L this represents the

network output layer and when l = 0 this represents the network inputs. Each neu-

ron also has an additional input, i = 0, which is known as the bias this input stays

2.2. Neural Networks 37

constants for all neurons in all layers and is equal to one. f (x) is known as the acti-

vation or transfer function of the neuron, the activation function defines the mapping

of the weighted neuron inputs to the neuron output. A number of different activation

functions can be used, three popular choices are: the logistic sigmoid

φ(x) =
1

1+ e−x , (2.19)

hyperbolic tangent

φ(x) = tanh(x), (2.20)

and the soft-plus function

φ(x) = log(1+ ex). (2.21)

The sigmoid is the most popular choice as it has the appealing property that the

derivative φ ′(x) = 1+ φ(x), the sigmoid and hyperbolic tangent also met the cri-

teria of the universal approximation theorem that states functions should be mono-

tonically increasing and bounded, the soft-plus function is not bounded. The soft-

plus function and the soft-max function are popular in deep learning architectures

for pattern and image recognition and classification, being an unbounded function

makes the networks less susceptible to saturation problems (saturation occurs when

the neurons become heavily weighted at the asymptotic limits) [94] [95] in classifi-

cation problems.

2.2.1 Universal Approximation Theorem

The most important result relied upon in this thesis is the universal approximation

theorem [96]. The universal approximation theorem states that given a monotoni-

cally increasing bounded function, φ(.), there exists a set of weights such that

F(x) =
N

∑
i=1

viφ(wx
i +bi) (2.22)

38 Chapter 2. Background

can approximate a function f (x) arbitrarily well as lim
N→∞
|F(x)− f (x)| → 0. This

implies that for function approximation tasks, such as the ones approached in this

thesis, simple shallow neural networks using one or two hidden layers should be

capable. The theorem states that the approximation exists, but it does not state how

to find the optimal set of weights. Finding the optimal weight set relies on training

procedures for which there are numerous methods and extensive research on the

topic. One such method is using a metaheuristic based approach with evolutionary

algorithms (EAs).

2.2.2 Training with Evolutionary Algorithms

Using EAs is not new concept used for training neural networks and originally

GAs [97] were used; more recently apart from using PSO and DE other EAs such

ABC [98], Cuckoo search [99] [100] and Ant colony [101] have been used for

training. When training neural networks using EAs the objective function

g(W) = ‖F(y,W)− f (y)‖+λ (2.23)

is minimised, where W represents the weight matrix of the neural network, y are the

set of training patterns, ‖.‖ is defined as some norm, and λ is a regularisation term.

The heuristic nature of the fitness function makes it appealing in cases where for

instance: the error norm defined is non-differentiable, when using more complex

regulaziation terms or the activation functions are non-differentiable [102] [103].

Compared to back-propagation methods (BP), EAs have been shown to be

better on simple problems; for a quadratic function approximation problem PSO

was seen to achieve the same level of accuracy of BP in up to 6x less computation

[104]. Compared to more advanced gradient based methods such as Levenberg-

Marquadt (LM) the performance of EAs is debatable in some cases they have been

observed to be worse, whilst DE can often be as good as LM, Ilonen et al [103]

state that DE never performs worse than the initial optimum found by LM, but

it is highly probable that it can find better if it exists. In studies by Piotrowski

et al [105], [106] [107] using more advanced variants DEGL outperforms ALC-

2.2. Neural Networks 39

PSO and CLPSO, EPUS-PSO was seen to be only slightly worse but performed

better on larger networks. Relative performance between EAs and gradient based

methods can be problem dependant, EAs tend to perform better on problems with

prominent local minima [108] [109]; for PSO, using PSO-lBest with a pyramid

topology showed the best compromise between convergence speed and avoiding

minima [108]. One final advantage is that EAs are not sensitive to the initial guess

[109] which possibly makes them more robust and again less susceptible to falling

into local minima.

Some issues when using EAs for training neural networks have been high-

lighted. Although they can not directly susceptible to the problem of vanishing

gradients [94] some issues with saturation have been observed [110] [111], this can

also explain stagnation of DE populations during training [107], DEGL showed this

to a lesser degree than other EAs. When high weights are achieved and the trans-

fer function are at the asymptotic limits i.e. saturated, changes in the weight space

have little effect on population fitness, and although diversity can remain large the

population moves very little [107]. Saturation can occur because of the large space

EAs can explore, compared to the areas of most change in the transfer function the

area of the asymptotic limits is much larger and hence EAs are more likely to spend

time in these areas. Contrary to this for PSO it was found that larger initialisation

range [-1 1] compared to [-0.01 0.01] showed less saturation [111], this can be ex-

plained by when the initialisation range is [-1 1] the EAs are initialised over a larger

region where the transfer function still has high gradients. It was found that reduc-

ing the velocity clamping vmax parameter further helped to reduce saturation [111]

. Other issues observed is the scalability with the number of neurons, as the size

of the hidden layer increases the performance of the EAs quickly degraded; smaller

population sizes seem to be more scalable [103]. It has also be seen for function ap-

proximation that robustness is sensitive to the algorithm parameters [103], although

effect has not been tested for self-adaptive DEs.

Overall EAs provide a viable alternative to gradient-descent decent based

methods for neural network training; EAs are preferable in situations when the

40 Chapter 2. Background

objective function is complicated or non-differentialable, and when training is sus-

ceptible to local-minima.

2.3 Financial Derivatives
This section assumes little previous knowledge of finance and aims to introduce

the basic concepts of options pricing in an approachable and generalised manner,

the interested reader is referred to [112] [113] for a more in-depth introduction.

An option is a financial derivative contract that gives the holder the right but not

the obligation to purchase/sell the underlying asset [113], denoted as S, once the

contract expires or is executed at a time, T . Option contracts can either be calls or

puts; when a call option is purchased the holder is effectively long on the underlying

asset, whilst when a put is purchased the holder is short on the underlying asset.

The option is then valid until the time of contracts expiry known as maturity, and in

some special cases it maybe possible to execute the option before maturity which is

known as early exercise.

When an option is exercised it allows the party to either purchase/sell the un-

derlying asset at a pre-specified price determined in the contract. For some types

of options this is price is a fixed value K, known as the strike price. Exotic options

may employ more elaborate functions over the contracts life time for determining

the price at which the asset, ST , is purchased/sold at, this is generalised as function

g(ST). The payoff of an option is how much the contract is worth when executed, if

the contract is profitable then it has value g(ST)−K, otherwise the contract would

not be executed and it becomes worthless. The function g(ST)−K which defines

the value of an option when executed is known as the payoff function denoted here

as Ic(S,K) for call options and Ip(S,K) for put options

Ic(ST ,K) = max(g(ST)−K,0) = (g(ST)−K)+ (2.24)

Ip(ST ,K) = max(K−g(ST)−K,0) = (K−g(ST)
+ (2.25)

where x+ is introduced as a cleaner notation for the max function. The simplest type

of option is the European option (sometimes referred to as vanilla options) and only

2.3. Financial Derivatives 41

allows the option to be exercised at maturity, T . The payoff functions for European

options where g(S) = S are

Ic((ST ,K) = (ST −K)+Ip((S,T) = (K−ST)
+. (2.26)

This defines the value of the option at the time of execution T , which does not

equal the current value of a option at current time, t, with asset price St , due to the

movement of the asset price between t → T . This now defines the option valua-

tion/pricing problem, given the current asset price St what will be the future value

of the option at the time of execution given the behaviour of the asset price. The

future asset price at time T can be given as its expected value E[ST |St], from this

the current price of an option, V , can be defined as the discounted expected value at

execution

V = e−r(T−t)E[I(ST ,K)|St]. (2.27)

The discounting factor e−r(T−t) is required to take into consideration the risk-free

growth of an asset due to interest rates r. It can now be seen that the value of the

option depends on the possible future values of ST , it is the characterisation of the

behaviour of the asset price, S, that defines the future expected value of an option,

and defines the different models used to derive the option price V .

Three important terms when discussing option prices are: in-the-money, this

refers to the case that if the option was executed at the current time, t, with underly-

ing asset price, St , the option would be profitable; out-the-money, refers to the case

when if executing the option at the current time it would not be profitable and hence

worthless; at-the-money, refers to the final case when St = g(S), at this point in time

the option is worthless but it is on the boundary.

Exotic Payoff Functions

There are numerous other types of option contracts and important relationships be-

tween them, the interested reader is referred to [113], two popular path-dependant

option contracts of interest are:

42 Chapter 2. Background

American : These have the same payoff function as European options but

allow the holder to execute any time before maturity, t∗.

VAm = e−r(t∗−t)E[I(S∗t ,K)|St]. (2.28)

This corresponding to an optimal stopping stopping time problem to find the bet t∗

to maximise the value of an option, for non-dividend paying assets, q = 0, the value

of an American options is the same as a European, VAm = V ; q = 0; in addition

a lower bound for the price of American options is that they are always at least as

valuable as a European option V ≤ VAm. The additional complexity of the early

exercise problem means that these options have no known analytical solution but

can be modelled as a free-boundary problem. The valuation of American options is

found either by approximate solutions [114] or numerical methods [115].

Asian : The payoff function for an Asian option, IAsn, uses the average A(T)

of the underlying asset prices, St → ST , during the options lifetime,

IAsn
c = (A(T)−K)+. (2.29)

Two types of averaging are considered geometric (gmc) and arithmetic (art),

A(T)gmc = exp

(
1
T

T

∑
t=0

ln(St)

)
, (2.30)

A(T)art =
1
T

T

∑
t=0

St . (2.31)

In practice the averages are sampled discretely but theoretically can be treated in

the continuos case. Geometric averaging initially seems less intuitive but as will

be seen in Section 2.3.1.2 under the assumption of geometric Brownian motion this

corresponds to compounding the return series and has a analytical solution. For

arithmetic averaging there currently exists no analytical solution and approxima-

tions or numerical methods are used.

2.3. Financial Derivatives 43

2.3.1 Option Pricing Models

When modelling options prices many different approaches can be taken depending

of the branch of mathematics used, but are characterised by the behaviour defined

for the underlying asset price. The behaviour of an asset price can be thought of

as a random process, where the price fluctuates up and down. The simplest model

for the asset price behaviour is assuming it follows a Brownian motion. Rather than

modelling the asset price directly, the behaviour of the asset price can be modelled

implicitly by modelling the return series. Consider the log-return

X(u, t) = ln
(

S(t)
S(u)

)
(2.32)

where X(0, t) is random variable with mean µt and variance σ2t. From this the

stock price can be written as

S(t) = ln(S(0))eµt+σW (t) (2.33)

where W (t) is known as a Wiener process and has distribution N (0, t).This defines

the geometric Brownian motion model (GBM) of the stock price, an important prop-

erty of GBM corresponding with asset prices is that it is non-negative. Using Itos

Lemmas from stochastic calculus this can be written as the stochastic differential

equation (SDE)

dSt = µStdt +
√

σStdW (2.34)

where µ is known as the drift, σ is the volatility, and dW is Brownian noise N (0, t).

This forms the fundamental understanding of the famous Black-Scholes options

pricing model [116].

2.3.1.1 Black-Scholes Equation

The Black-Scholes equation [116], Equation 2.36, gives an analytical price for Eu-

ropean call and put options given an initial asset price S0 and parameters µ and σ .

44 Chapter 2. Background

The first assumption is that the asset price follows geometric brownian motion.

The second important assumption is there is no arbitrage in the market, this as-

sumes that no-risk free profit can be made. In options pricing to satisfy no arbitrage

conditions the asset price is changed from measure P to the risk neutral measure

Q. Risk neutrality essentially means that the stock price grows with interests rate

so that a risk free profit can not be made from selling the asset and investing the

proceeds at interest rate r.

Based on the GBM model of the asset price, Equation 2.34, using stochastic

calculus and no arbitrage arguments the Black-Scholes PDE for an option can be

derived as

∂V
∂ t

+
1
2

σ
2S2 ∂V 2

∂S2 + rS
∂V
∂ t
− rV = 0. (2.35)

Combined with the payoff function at maturity, V (T) = I(ST ,K), this forms an

initial boundary (IB) problem. The Black-Scholes IB problem can be solved ana-

lytically for the case of European options, the detailed are omitted here but as part of

the analytical solution Equation 2.35 can be reduced down via similarity transforms

to the heat equation found in fluid dynamics [112], which is a class of equations

known as diffusion equations. For most other types of exotic options the solution to

the PDE must be found numerically. The analytical Black-Scholes price, Cbs, of a

European call option is given as

Cbs(S, t) = Sφ(d1)−K exp−r(τ)φ(d2) (2.36)

where φ(.) is the cumulative normal distribution, and d1 and d2 are given by:

d1 =
ln(S/K)+(r− 1

2σ2)

σ
√

τ

d2 = d1−σ
√

τ

For a set of asset prices, S, and time-to-maturities, τ = T − t, Figure 2.2 shows

the price surface for a European call option. The tick shape at τ = 0 is the payoff

2.3. Financial Derivatives 45

function, (S−K)+, at maturity, and the surface shows how the value of the option

changes over the contracts lifetime and converges towards the final payoff function

as time gets closer towards maturity. An important point to note is the behaviour

of at-the-money-options and near out-the-money-options which become more valu-

able at the time-to-maturity increases, this is because the the uncertainty of the final

asset price ST increases and there is more chance that it will become in-the-money

when executed at expiry. The price of a European call option can be related to the

price of a European put via the Put-Call parity relationship

Cbs(S, t)−Pbs(S, t) = S−Ke−rτ . (2.37)

Figure 2.2: Black-Scholes option pricing surface for a European call option with K = 100,
σ = 0.1 and r = 0.05.

2.3.1.2 Asian Averaging Options

Asian options are a popular example of an exotic path dependant option, for Asian

options the payoff function, Equation 2.29, is a function of the average of the path

values over the option’s lifetime using either the geometric, Equation 2.30, or arith-

metic average, Equation 2.31. In the continuous case the geometric average can be

46 Chapter 2. Background

given by

A(T)gmc = exp
(

1
T

∫ T

0
ln(S(t))dt

)
. (2.38)

It can be seen that in the case of lognormal stock prices this corresponds to a com-

pounding of the return series. Under the assumption of GBM it is possible to derive

an analytical solution for geometric Asian options, given by Kemna-Vorst [117]

(KV) in Equation 2.39. As it currently stands there are no known analytical so-

lutions for arithmetic Asian options and pricing relies upon numerical methods to

calculate E[Av]. The KV solution for Asian options are

Ckv(S, t) = e−rτ(E[Av]φ(d1)−Kφ(d2)) (2.39)

where E[Av] is the expected path average, φ is the cumulative normal distribution.

For the case of geometric averaging d1 and d2 are given by:

d1 =
ln(Seaτ/K)+ 1

2σ2
Gτ

σG
√

τ

d2 = d1−σG
√

τ

a =
1
2
(r− σ2

g
)

E[Av] = Se0.5(r−
σ2

G
6 τ)

σG =
σ√

3
.

Due to the averaging behaviour Asian options tend to be cheaper than their Euro-

pean equivalents.

2.3.1.3 Stochastic Volatility

In the Black-Scholes framework the asset price is taken to be a stochastic pro-

cess, geometric Brownian motion, which has a constant volatility parameter, σ . In

the stochastic volatility approach this assumption is removed and in line with real

world observations the volatility of the asset price is itself a stochastic process. The

2.3. Financial Derivatives 47

stochastic volatility is required to be introduced into the option pricing model as it

helps explains certain pricing phenomenon known as the volatility smile [118]. The

volatility smile is the observation that the implied Black-Scholes volatility, finding

σ from option market prices, varies with time-to-maturity and strike price, where

the implied volatility increases as |St−K| increases. To derive the general stochas-

tic volatility pricing equation the two SDEs for the asset price process and volatility,

v, process are defined as

dSt = µtStdt +
√

vStdW1, (2.40)

dvt = α(St ,vt , t)dt +νβ (St ,vt , t)
√

vtdW2. (2.41)

The two processes are correlated by ρ , and where α and β are general functions

which can be parameterised in accordance with given models. In a similar way

to how the BSE is derived the pricing PDE for stochastic volatility models can be

obtained [118]

L̂ =
∂

∂ t
+

1
2

vS2 ∂ 2

∂S2 +ρνvβS
∂ 2

∂v∂S
+

1
2

µ
2vβ

2 ∂ 2

∂v2 + rS
∂

∂S
− r, (2.42)

L̂V =−(α−φβ
√

v)
∂V
∂v

(2.43)

where L is the differential operator and V is the value of the option.

2.3.1.4 Heston Model

A popular parameterisation of Equation 2.42 is the Heston model [4] which gives

rise to a semi-analytical solution for European options. The Heston model assumes

the volatility is a mean reverting process, the parameterisation used in the Heston

model is α(St ,vt , t) = κ(θ − vt)−λ (S,v, t), where λ is the price of volatility risk,

and β (St ,vt , t) = 1, these can be substituted into Equation 2.42 to get the Heston

48 Chapter 2. Background

PDE

∂V
∂ t

+
1
2

vS2 ∂ 2V
∂S2 +ρvS

∂ 2V
∂v∂S

(2.44)

− 1
2

µ
2v

∂V 2
∂v2 + rS

∂V
∂S
− rV +[κ(θ − v)−λ (S,v, t)]

∂V
∂S

= 0.

It can be shown that the Black-Scholes PDE is a special case of the the Heston

PDE [119]. Setting this up for as an initial boundary problem for European options

the price of a Heston Euronpean options can be given in a semi-analytical form that

involves the evaluation of the complex integral. For the price of a European call

option

C(S,K,τ)hstn = SP1− e−rτKP2 (2.45)

where P1 and P2 are the in-the-money probabilities Pj = Pr(ln(S) > ln(K) but ob-

tained under different measures. Writing Pj as a function of the characteristic func-

tion f j the semi-analytical price of call option is

C(S,K,τ)hstn =
1
2

Ste−qτ − 1
2

Ke−rτ (2.46)

+
1
π

∫
∞

0

eiω lnK

iω
(
Ste−qτ f1(ω;x,v)−Ke−rτ f2(ω;x,v)

)
where x = ln(S) and ω is the domain of integration. There exists an analytical form

of the characteristic function f j, meaning only the integral needs to be numerically

evaluated. The main issue with the original form of f j given by Heston [4] is that

it leads to an unstable numerical integration with jumps occurring at discontinuities

due to complex-logarithms [120]. To improve the stability of the integral many dif-

ferent forms of the characteristic function have been proposed [121] [122] [123]

[124] [125], additionally the form given by Rollin et al [126] allows for an effi-

cient evaluation of the derivatives with respect to the five model parameters which

allows for fast calibration [127] methods. For a detailed and accessible discussion

on numerical implementation of the Heston model the interested reader is referred

2.3. Financial Derivatives 49

to [119].

2.3.2 Numerical Methods For Options Pricing

It has been seen that only under a very limited set of conditions can analytical solu-

tions be found for the price of an options and instead numerical methods have to be

used. Many different numerical methods have been used to solve the resulting pric-

ing equations and initial boundary problems. Each have their own advantages and

disadvantages based on simplicity, accuracy and speed. Here only a brief overview

of the most common methods used will be given.

• Tree Methods : These are the simplest methods used and are rarely used in

practice. The most common tree method is the binomial tree which is the

starting point for most courses on options pricing [112], and models the asset

price process as either rising by probability p to price u, or falling down to

price d with probability 1− p. The pricing starts at the final option prices

based on the payoff and is then discounted backwards through the branches

of the tree with calculated probabilities of price movements. Taking the con-

tinuous time limit of the binomial tree gives the BSE.

• Monte-Carlo : Monte-Carlo methods are one of the most popular methods

used in options and derivatives pricing, with a vast amount of literature on

the subject [128]. The basic concept of Monte-Carlo is that asset-prices are

simulated using the underlying SDE over the contracts lifetime. From the

simulated path the value of the option can b determined using the payoff

function; this is then repeated many thousands of times and averaged to give

a final expected payoff of the contract. The appeal of Monte-Carlo methods,

apart from the name, is the simplicity in that no complex PDEs need to be

solved or used and that only the final payoff function is needed, this allows

complex asset price models to be used very easily. The major disadvantage is

the accuracy, the accuracy of the resulting price is proportional to the number

of asset price simulations and this number can grow very large and can result

in a very computational expensive procedure.

50 Chapter 2. Background

• Finite Difference Methods : Finite difference (FD) methods [129] [130] are

another type of discretisation similar to the tree methods. Though FD meth-

ods look at a larger range and finer granularity of asset prices and are used to

approximate the solution of the discretised pricing equations. These methods

are used due to the similarity between pricing equations and PDEs found in

computational fluid dynamics. Like tree methods FD methods are backwards

time stepping starting at the final payoff functions, known as the initial con-

ditions. These methods can become very accurate given the appropriate level

of discretization is used but can result in computational expensive linear al-

gebra and complex discretisation equations which may then favour the use of

Monte Carlo. These methods are the focus of this report and will be discussed

in more detail later.

In this work ‘less traditional’ computational methods using evolutionary algo-

rithms and customised hardware that could be used within this domain are explored.

Chapter 3

Breeding Particle Swarm

Optimisation

In this chapter mechanisms and directions of research for improving the search ca-

pability of Particle Swarm Optimisation (PSO) are investigated. A self-adapting

hybrid PSO using crossover and mutation is introduced. This hybrid PSO algo-

rithm, dubbed Breeding PSO (BrPSO), mimics a breeding population of competing

partners, and incorporates a breeding operator with mutation functions into the PSO

framework to further aid population diversity and search exploration. The utility of

BrPSO is demonstrated by comparing it against optimisation results of other power-

ful PSO algorithms over sets of well known benchmark test functions. In Chapter 4

BrPSO is then introduced as a tool for solving a challenging real world optimisation

problem in finance.

3.1 Introduction
In light of the no free lunch theorem [131] and from previous discussions in Sections

2.1.1 and 2.1.2, neither particle swarm optimisation (PSO) or differential evolution

(DE) offer the perfect all-round solution with each algorithm having different search

properties and preferences for search space landscapes [88].

3.1.1 Hybrid Particle Swarm Optimisation

DE-PSO hybridisation is an active area of research which looks to combine the

strengths of both families of algorithms to create a more robust optimiser. An in-

52 Chapter 3. Breeding Particle Swarm Optimisation

depth review of DE-PSO hybridisation is given by Xin et al [132] which defines

three families of hybridisation:

Collaboration : In this model of hybridisation the DE and PSO algorithms are

run separately retaining their original algorithmic structures but co-operate by shar-

ing information through the population. In the literature reviewed by Xin et al [132]

sequential collaboration using bi-directional information (i.e. information is shared

equally between both algorithms), was the most popular form of hybridisation. A

typical collaboration strategy is where PSO and DE operations are performed on

the population on different iterations, for example in one of the first DE-PSO hy-

brids [133] a combination parameter is used to determine the probability of PSO

or DE occurring, in other cases they maybe applied in alternate iterations [134]

or using a time dependant combination parameter. Other methods of collabora-

tion involve sharing information between sub-populations via elitist selection of

population members, such as sharing the global best with sub-populations being

evolved by different algorithms [135], or in the co-operative framework proposed

by Epitropakis et al [136] where DE is used to evolve a population taken as the set

of personal bests from the PSO population.

Assistance : In the assistance methodology the focus is on using a second

algorithm to aid in improving elements of the base algorithm, the key difference

compared to embedded hybridisation is that the components of the assisting al-

gorithm do not directly contribute to the fitness of the population. Typically the

assisting algorithm is used to improve parameters of the base algorithm, this type

of approach is seen in the adaptive PSO method DEAPSO proposed by Kannan et

al [137], where DE is used as a sub-search to dynamically optimise the PSO veloc-

ity parameters, other examples of assisted adaptive behaviour will be discussed in

Section 3.4.1.

Embedded : In embedded models components of the other algorithm are in-

corporated into the mechanisms of the base algorithm which influence the popula-

tion fitness. Using this definition DEGL could be considered an embedded hybrid

with PSO topology embedded inside DE. Other PSO inspired approaches discussed

3.1. Introduction 53

in the DE literature, such as current-to-pbest mutation could also be considered

weakly embedded approaches. Though most typically of embedded approaches DE

is used as a perturbation for either the position [138] or the velocity values [139].

A noticeable example is Differentially Perturbed Velocity PSO (PSO-DV) [139],

and PSO-DV has been further developed in Ageing-Leaders and Challengers PSO

(ALC-PSO) [140]. PSO-DV applies DE to the particles’ velocity, which is used as

a base vector for mutation and donor vector for binomial crossover. Mutation uses

two difference components, a random difference and current-to-p-best difference,

and then finally selection is applied to pick the new trial particle position.

On the other hand although hybridisation appears to be a popular area of re-

search it could be viewed that the literature with respect to hybridisation lacks a

level of depth compared other other areas of EA research [141]. It is not uncommon

for hybrids to feature as an additional ‘novelty’ to aid publication in application ar-

eas, consequently the performance of hybrid algorithms are often only tested on a

limited set of very simple benchmark problems, they are not extensively compared

with other algorithms, and their behaviour is not properly analysed. This makes it

hard to gain proper insight into successful mechanisms of hybridisation and the ad-

ditional benefits that can be produced. Furthermore, in these cases DEPSO hybrids

are usually comprised of standard PSO and DE which questions the relevance of

these hybrid methods with respect to the breadth and development of state-of-the-

art PSO and DE algorithms.

This is not to say that there is not a body of respectable and relevant research

within the topic of hybridisation. State-of-the-art algorithms have been used in the

hybrid algorithms such as jDE [142], HPSO-TVAC [139], ALC-PSO [140] and

HPSO-TVAC/SaDE [143]. A thorough analysis has been provided for the collab-

orative framework proposed by Epitropakis et al [136] and have comprehensively

tested a variety of combinations of advanced PSO and DE variants over an extensive

set of numerical benchmarks problems. In this proposed framework it was found

that CLPSO provided the best PSO algorithm and was best combined with DEGL

or JADE, however BBPSO/DE/rand/1 and FIPS:TDE/rand/1 also showed good per-

54 Chapter 3. Breeding Particle Swarm Optimisation

formance improvements. Apart from hybridising PSO with DE using both mutation

and crossover operations a popular hybrid variation is to use only the crossover op-

eration embedded within PSO.

3.1.2 PSO with Crossover

PSO with crossover only hybrids could also be considered a PSO-GA hybrid as

well as DE-PSO, and in general fall into the embedded family of hybridisation.

Crossover is embedded into PSO such that it is used to update a particles position.

This can typically be applied similarly to when used in DE where a new trial vector

is generated via crossover of members of the population to generate a new child

particle. Three popular types of crossover used within PSO hybrids are Arithmetic,

Discrete and Parent Centric.

Definition 3.1. The crossover operator, C⊗(P)→ pc, takes a set of selected parent

vectors from the swarm, P ⊂ S, |P| ≥ 2, with parent vectors pi ∈ P and produces a

child vector pc as a mixture of the parent vectors defined by the type of crossover

used.

Arithmetic : Arithmetic crossover (PSO-AX) uses a linear combination of two

parent particles, for dimensions d = {1....D}

pd
c = rd pd

1 +(1− rd) pd
2 (3.1)

where rd is a uniformly distributed random number rd = U[0,1]. The most no-

ticeable example, and often noted as the first crossover-PSO hybrid is given by

Løvbjerg et al [144]. Arithmetic crossover is applied to introduce a breeding op-

eration into the PSO algorithm, a new child particle replaces one of the parents is

created by the arithmetic combination of two particles taken from a pool of ran-

domly selected ‘breeding’ particles determined by the particles breeding probabil-

ity (crossover probability). Settles et al [145] also employs the idea of a ‘breeding’

swarm and unlike other arithmetic crossovers utilises both the velocity and posi-

tion information, dubbed VPAC. VPAC creates two children as an average of both

parents minus a random weighting of either of the parents velocity vector, by us-

3.1. Introduction 55

ing a negative contribution of the velocity vector it is aimed to increase population

diversity. Unlike the ‘breeding’ population introduced by Løvbjerg et al [144] the

population in [145] is kept constant by removing the worst NΦ particles from the

population, where Φ is a parameter called the ‘breeding ratio’, and replaced with

children bred using VPAC from the current remaining population. Chen [146] ap-

plies an arithmetic crossover where the new trial position is the mid-point between

the particles personal best and a randomly selected particles’ personal best position,

crossover is used to replace both the velocity and update operations on every xth it-

eration. In the analysis some parallels are drawn with DMS-PSO. Zhang et al [147]

uses arithmetic crossover to assist the PSO velocity update equation by generating

a new trial position x̄ to use in place of the particles’ position x in the PSO velocity

update equation. In a dynamic population PSO Miao et al [148] uses arithmetic

crossover of two current best population members to generate new particles if the

population size needs increasing.

Discrete : Discrete crossover (PSO-DX) is synonymous with binomial

crossover seen in DE, where for a dimension d the child vector is given as

pd
c =

pd
1, if rd < Cr

pd
2, otherwise

(3.2)

where Cr is the crossover rate parameter and rd is a uniformly distributed random

number rd = U[0,1]. The Crossover Rate parameter, Cr, determines the degree of

mixture of parents in crossover. Discrete crossover has been applied in few different

ways, Park et al [18] uses a discrete crossover with the particles’ updated position

and current personal best to try and create a better personal best position for the

particle, i.e. only the personal best position is used in selection and replacement.

Dong et al [149] applies a discrete crossover to update the particle positions after

the position update, and uses the particles current position and global best as the

parents. Extending on this Engelbrecht [29] [150] resets the particle velocity and

personal best if crossover is successful, but also investigates using three different

second parents: global best; personal best; an arithmetic combination of global and

56 Chapter 3. Breeding Particle Swarm Optimisation

personal best. Two different recombination schemes are also used, either equally

weighted, or one point recombination.

Parent Centric : Parent Centric Crossover (PSO-PCX) [151], could be consid-

ered similar to the operations in DE because the final offspring is actually produced

from a mutation procedure using a difference operator. The difference component

is calculated as the distance, dp = xp−g, where g is the centre of mass of a set of

µ randomly chosen parent vectors and xp is an individual parent vector randomly

selected from the set. The vector xp is then mutated as follows

xc = xp +wζ |dp|+
µ

∑
i=1,i 6=p

wηD̄ei (3.3)

where D̄ is the average of the perpendicular distance of each of the µ − 1 parent

vectors to the the distance vector dp, and ~e are the orthonormal bases that span

the perpendicular subspace. The resultant child vector xc is centred around one of

the parents, in comparison to other crossover operators which create a more uni-

formly distributed child vector in the subspace enclosed by the parents [151]. The

PCX operations have some similarities to the modified velocity update equation in-

troduced in LcRiPSO [50]. Parent centric crossover has been applied by Deb et

al [152] [153] to replace the PSO update procedure rather than as an additional

operation afterwards.

3.1.2.1 Embedding Crossover within PSO

Crossover can be embedded into PSO in different ways, in the first crossover hybrid

by Løvbjerg et al [144] the crossover occurs after all the particle position and veloc-

ity updates have occurred; each particle is first marked if it is viable for crossover

using the crossover/breeding probability Pi
Br.

Definition 3.2. The crossover/breeding probability (not to be confused with the

crossover rate Cr) is the probability assigned to a particle, Pi
Br ; i = {1...N}, that

crossover will occur.

3.1. Introduction 57

Algorithm 3.1 Pseudo code for PSO with embedded crossover

Initialise swarm of particles
Assign each particle with a crossover/breeding probability (Pi

Br)
while not stopping citera do

Update swarm
for Each particle i do

Particle position and velocity update
if U[0,1]< Pi

Br then
C⊗(P)→ pc
if fit(pc) < fit(pi) then

Replacement, pi = pc
end if

end if
end for

end while

All of the marked particles are then entered into a pool of breeding particles, until

the pool is empty two particles are selected and removed from the pool and arith-

metic crossover is applied twice (using the same random numbers ri but the order

of the parents is switched) creating two children both children then replace the first

parent of their respective crossover, i.e. p1 = pc1,p2 = pc2.

A more typical algorithmic template for embedded crossover in PSO is shown

in Algorithm 3.1 [154], this can also be applied asynchronously with respect to

the swarm update. The crossover operation occurs probabilistically with respect

to Pi
Br after each of the particle position and velocity update, if the new particle

has a better fitness then it is selected and replaces the current particle, although

as has been discussed there are many different variations as to how particles can

be selected and replaced. Another important variation is how the child velocity is

handled in this select and replace model, Løvbjerg et al [144] creates a crossover

velocity vector with respect to the two parents velocity vectors given as

vc =
v1 +v2

|v1 +v2|
v1 (3.4)

whilst in the approach by Engelbrecht the velocity is reset to 0 and in Park [18] the

velocity remain unchanged.

58 Chapter 3. Breeding Particle Swarm Optimisation

Arithmetic and discrete crossover are the most popular crossover operators em-

bedded into PSO, part of their appeal could be due to their simplicity and efficiency

for implementation; more objectively when compared to other crossover method-

ologies within Algorithm 3.1 discrete crossover with the current position and per-

sonal best (PSO-DXy) was found to be the overall most robust hybrid [154] [141].

Next a new variant of a PSO-X hybrid is introduced.

3.2 Breeding Particle Swarm Optimisation
A hybrid particle swarm optimisation which incorporates a novel breeding opera-

tor using a discrete crossover operator is presented, this hybrid PSO algorithm is

dubbed Breeding PSO (BrPSO) because biologically it imitates, to a certain degree,

the competitive breeding of alpha males/females often seen in nature. The utility of

BrPSO is then demonstrated and compared to other state-of-the-art PSO algorithms

over a sets of well known benchmark test functions.

BrPSO is inspired by the performance improvements seen in other PSO-DX

hybrids and elements of the CLPSO [32] algorithm. Compared to the PSO crossover

algorithm described in Algorithm 3.1 and PSO-DX hybrids such as [18] [149] [29]

[150] the main differences are:

1. A tournament procedure is used to select the second parent for crossover, the

tournament procedure is between two randomly selected particles’ personal

best positions.

2. A mutation operator is additionally applied to perturb the child particle posi-

tions.

3. The set of breeding parameters are given a dynamic behaviour using a self-

adaptive mechanism.

4. Crossover occurs before particle updates , the importance of this will be dis-

cussed in an analysis of particle behaviour.

Remark 3.1. Before proceeding it is worthwhile clarifying the notation used in the

proceeding discussion. The notation used is consistent with the PSO notation used

3.2. Breeding Particle Swarm Optimisation 59

in Section 2.1.1; xi is the current position of the ith particle, yi is the historical

best position of the ith particle. When discussing crossover the notation introduced

previously is used; pi is the position vector of the ith parent and pc is the resultant

child position of the crossover operation.

BrPSO uses the idea of a tournament procedure, seen in CLPSO [32], for se-

lecting a suitable parent particle from the population to be bred with the global best

using discrete crossover. Tournament selection has also previously been used in

GA crossover to apply selection pressure for the best solutions [155]. In the tour-

nament two mutually exclusive particles are randomly chosen from the population

excluding the global best particle, the particle with the best personal best position

measured by the fitness function is then chosen for crossover

p1 = min(fit(yr1) ,fit(yr2)) (3.5)

where the two random particle indexes are r1 ∈ [1,N], r2 ∈ [1,N] ; r1,r2 6= gBest,

r2 6= r1. The tournament procedure is beneficial as it filters out the potential for

breeding with a bad solution and completely removes the probability that the worst

particle in the swarm will be used for breeding and it will be seen later on in Section

3.3.5 that it increases the probability of a better child particle being created. The

child particle is then created by using the discrete crossover operator C⊗D,

C⊗D
(
{p1,ygBest}

)
→ pc. (3.6)

Once a child particle has been created mutations can additionally be applied

as a perturbation to the new child particle position, these act to extend the potential

search range of the child particle and are seen later to be an important factor in

determining the algorithms performance. Finally replacement takes place, each

particle in the swarm is assigned a crossover/breeding probability, see Definition

3.2, in the event that crossover occurs for a particle i, in BrPSO the particle is

not directly used in the crossover (unless it is randomly selected as a parent in

the crossover procedure) but it is then potentially replaced by the child particle

60 Chapter 3. Breeding Particle Swarm Optimisation

created using the crossover procedure in Equation 3.6, if the child particle has a

better fitness than the current position of the particle, xi, then the position of the

particle is replaced by the child, xi = pc if fit(pc) ≤ fit(xi). It should be noted that

if replacement is successful the velocity of the particle remains unchanged so as to

act as a random perturbation when position updates occur. If the particle is replaced

then the particle’s personal best position is updated as required, the global best can

either be updated synchronously, after all breeding has occurred, or asynchronously

after replacement, in general asynchronous updating is used. The BrPSO algorithm

is given in pseudo code shown in Algorithm 3.2, the base PSO algorithm is PSO-

gBest with position and velocity updates occurring accordingly, although the base

algorithm can easily be changed if desired.

Algorithm 3.2 Pseudo code for BrPSO

Initialise swarm as array of particles, set each particle with a random breeding probability (Pi
Br)

swarm = new ParticleArray[N]
while not stopping citera do

for every particle, particle do
if U[0,1]< Pi

Br then
Select two random particles, p1, p2
Compare the two random particles and select the particle with the best personal fitness
for each dimension, d do

if U[0,1]< Cr then
trial[d] = swarm[globalBest].bestPos[d]

else
trial[d] = swarm[selectedBest].bestPos[d]

end if
end for
if f itness(trial)< f itness(particle) then

particle.pos = trial
Update particle personal bests and swarm global best indexes

end if
end if

end for
for each Particle particle do

Update particle velocity and position
Evaluate particle fitness, update personal best and global bests if applicable

end for
end while

The use of crossover means that a set of two additional parameters, the

crossover/breeding probability ,Pi
Br see Definition 3.2, and the crossover rate, Cr,

for each particle needs to be set. These parameters control the rate of additional

3.2. Breeding Particle Swarm Optimisation 61

exploration as a result of crossover occurring and the formation of newly bred so-

lutions. The crossover/breeding probability for each particle Pi
Br i ∈ 1...N is an i.i.d

random number from the uniform distribution U[0.05,0.5]. This is again another

element borrowed from CLPSO for which the probability of an event is randomly

distributed over all the particles. This allows the algorithm to retain a mixture of

behaviours, for particles with a low Pi
Br they will behave more inline with regular

PSO behaviour whilst those with higher probabilities will be more susceptible to

crossover based behaviour. Under the condition that crossover/breeding probability

is 0 for all particles BrPSO reduces down to PSO-gBest.

It has been observed that PSO-DX is particularly sensitive to the value of Cr

[141]. The discrete crossover operator used by Dong and Yang [149], which is the

most similar to the crossover used in BrPSO, has a preference for low Cr = 0.2

and 0.4 [141], throughout this work unless mentioned otherwise Cr in BrPSO is set

fixed to 0.5 for all particles. Further analysis in Section 3.3 will shed some light as

to why low values of Cr are favoured when using gBest based crossover and a value

of 0.5 offers the best level of diversity.

3.2.1 Mutation

It is well known that mutations are an important part of DEs and genetic algorithms

(GAs) as a means of extending the search range of the population and avoiding

states of equilibrium, even a small mutation can significantly improve the quality

of results. Mutations are introduced into BrPSO, with the mutated algorithms de-

noted as BrPSO(MP,MF), where MP and MF are the two mutation parameters. The

basic BrPSO algorithm with no mutation is therefore denoted as BrPSO(0,0). The

mutation operation used in BrPSO differs from that used in the mutation stage of

DE and does not require donor vectors from the population. The scheme used here

is more analogous to the mutation functions found in GAs which use an underlying

probability distribution. The mutation functions, denoted as M(.), are embedded

into BrPSO by setting a probability, given as the mutation probability parameter

MP, that after crossover produces the child position for each dimension that the po-

sition can be perturbed by applying the mutation function. Algorithm 3.3 presents

62 Chapter 3. Breeding Particle Swarm Optimisation

how the mutation function is added to the crossover procedure in BrPSO.

Algorithm 3.3 Pseudo code for mutation added to crossover in BrPSO

for each dimension, d do
if U [0,1]< Cr then

trial[d] = swarm[globalBest].bestPos[d]
else

trial[d] = swarm[selectedBest].bestPos[d]
end if
if U [0,1]< MP then

trial[d] = M(trial[d])
end if

end for

The mutation function used is a random perturbation of the particle position.

Considering a linear mutation function M(.)L given as

ML

(
pd

c

)
= pd

c + pd
c MFrd (3.7)

where MF is the mutation factor and controls the scaling of the perturbation, rd =

U[−1,1] is a random uniformly distributed number, and pd
c is the original position

of the child particle in the dth dimension. Having a similar effect Gaussian mutation

could also be used where the random variable rd is replaced by a symmetric Normal

or Cauchy distributed random variable, as long as E[rd] = 0. In Equation 3.7 it

can be observed that the mutation is centred around the current position with the

expectation and variance (assuming rd = U[−1,1])

E
(

ML

(
pd

c

))
= pd

c (3.8)

V
(

ML

(
pd

c

))
=

1
3

(
pd

c

)2
M2

F (3.9)

The mutation factor, MF provides an additional degree of control over the range

of the mutation area, and can allow it to be more finely controlled. By using the

position pd
c as part of the variance means that the size of the range can be scaled

appropriately with respect to the current position, this assumes that in general the

magnitude of the position is representative of the scale of the search area, this as-

sumption and it’s consequences will be discussed later on. Though, it is determined

that mutation in the form of Equation 3.7 is only generally beneficial for an opti-

misation problem if MF is either a decreasing function of time or a time adaptive

3.3. Analysis of Crossover and Particle Behaviour 63

value rather than a fixed value throughout the whole optimisation. The introduction

of mutation means large jumps in the particles’ position may occur, although this

can be controlled by controlling the variance using MF, this behaviour may not be

desirable in the case where convergence is required, therefore it is suggested that

the mutation probability should also be considered as a time adaptive value.

The effectiveness of mutation parameters was also observed to vary dynami-

cally with the problem landscape. Hence a final extension to BrPSO uses an adap-

tive mechanism governed by an independent internal PSO to dynamically learn

the optimal mutation parameters for each of the particles; this method is dubbed

BrPSO-Self-Adaptive-Mutation (BrPSO-SAM) and produces the overall best re-

sults compared to BrPSO(0,0) and BrPSO(MP,MF).

3.3 Analysis of Crossover and Particle Behaviour
Particle swarm optimisation has many moving parts and stochastic components

making it hard to derive a complete rigorous analysis, therefore simplifications are

often introduced [156]. This section will attempt to provide some insight into the

behaviour of BrPSO subject to certain assumptions and simplifications ascertaining

to the probability distributions of velocity and position vectors. Examples will be

given for a 2D search space that can easily be visualised and then generalised for

n-dimensional space, this is accompanied by an empirical analysis.

The analysis will be introduced by considering Figure 3.1 which shows a sim-

ple 2D example of how BrPSO with and without mutation operates. For simplicity

the domain is given as the unit n-ball, Sn
1, it is then assumed that the fitness F() is lin-

early proportional to the distance from the centre of the space, point O, F(pi) =αri,

where ri = ‖pi‖2 is the distance of the particle from the optimum and α is a con-

stant determining the gradient. Therefore it can be seen that each particle lies on the

circumference of a circle with radius ri, therefore for any particle to be better than

another it must lie within the disc defined by ri, Spi
n.

In this examples it can be seen that F(p1)< F(p3)< F(p2)< F(p4), making

p1 the global best particle. In Figure 3.1 particle 3, p3, has been selected for re-

64 Chapter 3. Breeding Particle Swarm Optimisation

Figure 3.1: Example particle system of breeding particle swarm optimisation.

placement, therefore the child particle, pc must be created within the shaded disc,

α‖pc‖< α‖p3‖ for it to be successful. Two particles are selected to be entered into

the tournament procedure, p2 and p4, to be selected for crossover with the global

best. Given the better fitness (it shall be assumed here that current positions are also

the best historical positions) p2 is selected.

Without mutation in this example it can be seen that the child particle created

by breeding will either take on position of one of the points p1,p2,pc1,pc2 . In the

depicted scenario the parent p2 lies outside of the region enclosed by the replace-

ment particle, F(p3) < F(p2), this gives a 50% chance of improvement over p3s

current position. If p2 was inside the region enclosed by p3 then there would be at

least a 75% chance of improving the particles position.

This mechanism greatly increases the rate of convergence towards the minima

as it can be seen the child particle has a good chance of resulting in an improved

position. However using only discrete crossover means exploration is limited due to

the limited possibilities of the child. Therefore mutation is introduced as a pertur-

bation on the child particle’s position, this extends the child’s possible positions to a

continuous space, defined in Figure 3.1 as M. This is advantageous as it encourages

3.3. Analysis of Crossover and Particle Behaviour 65

additional exploration. For example it can be seen that an area of M is actually out-

side of the space S which demonstrates how mutation can aid in particles escaping

local minima. In this case for the child to be successful it must be created within

the darker shaded sector where M∩Sp3 . It can be seen that in the case of mutation

it is possible to explore better areas of search space than the c2 position created for

crossover only breeding.

In the proceeding analysis the behaviour described in this example is gener-

alised for the setting of an n-dimensional space, providing bounds for the determin-

ing the probability of crossover improving particle positions, as well as showing

how crossover effects population dynamics.

3.3.1 Initial Definitions

The example presented in Figure 3.1 can be more formally described and gener-

alised using the following definitions.

Definition 3.3. The position of the ith parent particle is denoted as the vector pi,

pd
i denotes the the dth component of pi vector. pgBest denotes the parent using the

global best position of the swarm. pc denotes the child vector that is the output of

the crossover operator.

Definition 3.4. The n-ball with radius r is denoted as Sn
r .

Definition 3.5. The n-dimensional hypercube with side length a is denoted as Hn
a.

To begin with the domain of the analysis Ωn is defined such that it allows for a

simple geometric representation of a convex optimisation problem.

Definition 3.6. The domain of the search space Ωn is a convex subset of the Eu-

clidean space Rn and is the n-dimensional closed unit ball such that

‖pi‖ ≤ 1 ; ∀pi ∈Ω
n (3.10)

Ωn = Sn
1. Consider a global or local optimum is located at the center of a well,

assuming the well is symmetric and centred at the origin the fitness function, F(.),

can simply be defined as a function of the particle’s Euclidean distance.

66 Chapter 3. Breeding Particle Swarm Optimisation

Definition 3.7. The fitness function, F(pi), of a parent particle pi ∈ ΩD, inside a

well, W , pi ∈Ωn is calculated as the distance from the center of the well w.

F (p) = α

√
i

∑
1...D

(xi−wi)
2 (3.11)

where α is a constant defining the constant gradient of the well, from hereon it is

assumed that α = 1. Considering this fitness function it is equivalent to minimising

the n-dimensional spherical benchmark function f 1, with the optimum at the origin.

It can also be viewed that the position of a particle pi in Ωn represents the contour

of a function in Ω(n+1).

Now assume there is a set Pop of N number of i.i.d particles, Pop= {x1 . . .xN} that

are uniformly distributed over Ωn.

Lemma 3.1. . The initial global best position is bounded by the contour ∑x2 = r2
g

such that F(xgbest)< rg and Pr[F(xi)≤ rg] =
1
N . Given that the particles are initially

uniformly distributed over ΩD and that ΩD is the n-dimensional unit ball

rg =

√
1
N

D

(3.12)

This ensures that probabilistically only one particle will exist on or inside this con-

tour and hence be the singular global best.

Defining Crossover

From the set Pop three particles are chosen to take part in crossover, where p1 = x j

and p2 = xk, j 6= k are the two parent particles for crossover, and pR = xR is the

particle selected for replacement by pc.

The success of crossover is measured as the event in which the child particle

has a fitness less than the replacement particle F(pc) < F(pR). Define r = F(pR),

the probability of crossover success is given as Pr[F(pc)< r].

This analysis will focus on the used of the discrete crossover operator.

3.3. Analysis of Crossover and Particle Behaviour 67

3.3.2 General Properties of Discrete Crossover

For discrete crossover between two n-dimensional vectors there is a limited set of

possible child vectors.

Lemma 3.2. Using discrete crossover with two particles in Ωn results in 2n possible

child positions, these positions form the vertices of a n-dimensional hyperrectangle.

Lemma 3.3. With a crossover rate, Cr, the probability of a child position is

Pr[pc] =
d

∏
1...D

1pd
1

(
pd

c

)
(1−Cr)+1pd

2

(
pd

c

)
Cr (3.13)

where 1A(B) is the indicator function that A = B. If z is the number of dimensions

that are taken from p2 in the child vector, then

Pr[pc] = (1−Cr)z Crn−z. (3.14)

The limiting behaviour of crossover with respect to the choice of Cr and the ex-

pected child vector.

lim
Cr→1

E[pc]→ p2 (3.15)

lim
Cr→0

E[pc]→ p1 (3.16)

finally if Cr = 0.5 then Pr[pc] =
1
Cr

n
= 2n i.e. all the possible outcomes are evenly

distributed.

Lemma 3.4. With no selection criteria if p1,p2 and pR are uniformly i.i.d in Ωn

then Pr[F(pc)< F(pR)] = 0.5 and is independent of the crossover rate .

Next, the probability of breeding a successful child will be considered for two

cases, firstly discrete crossover with two improved parents where F(p2)< F(p1)<

F(pR) and secondly discrete crossover with one improved parent F(p2)< F(pR)<

F(p1). These two scenarios are important given the selection criteria of parents

used in BrPSO crossover, if there was no selection criteria the success probability

can be simply inferred by Lemma 3.4.

68 Chapter 3. Breeding Particle Swarm Optimisation

3.3.3 Bounds For Crossover With Two Improved Parents

Here bounds and limits for the success of crossover given that F(p2) < F(p1) <

F(pR) are derived.

Lemma 3.5. Given F(p2) < F(p1) < F(pR) the child particle pc is guaranteed to

be better than the replacement candidate particle pR if both p1 and p2 exists inside

the an n-hypercube inscribed inside the hypersphere Sn
r ; r = F(pR).

Proof. Given both parent particles are inside a hypercube the child particle is also

bounded by the hypercube given that vertices of the hypercube correspond to the

maximum and minimum points that can be formed by crossover. Therefore inscrib-

ing an n-hypercube inside of Sn
r gives Pr[F(pc)< F(pR)] = 1 ; p1,p2 ∈Hn

r �

From this a loose lower bound for the probability of successful crossover

can be derived given that both parent particles need to be inside the inscribed n-

hypercube.

Lemma 3.6. The lower bound of the probability that crossover is guaranteed to be

successful given F(p2)< F(p1)< F(pR) is

Pr[F (pc)< F (pR)]≥
Vn (Hn

r)
2

Vn (Sn
r)

2 =
22nΓ

(n
2 +1

)2

n
2n
2 π

2n
2

(3.17)

where Hn
r is the maximum fully inscribed hypercube inside of the n-ball Sn

r , and

Vn(.) is the n-dimensional volume operator (see Section A).

Proof. Using Lemma 3.5 the child particle will always be bound by SR if both

parents are inside a hypercube fully inscribed in Sn
r . The probability of Pr[pi ∈Hn

r]

is the ratio between the n-volumes of the maximum n-hypercube inscribed within

the n-ball, this can be derived using Corollaries A.2 and A.1 which give the volume

of the n-ball and the maximum fully inscribed hypercube respectively. The ratio is

then squared given that both particles must be inside the hypercube. �

A nice aspect seen in this lower bound is that it is completely independent of the

radius of the n-ball and only depends on the dimensionality of the problem. It is

3.3. Analysis of Crossover and Particle Behaviour 69

worth mentioning the limiting behaviour of Equation 3.17 with respect to dimen-

sionality. Using Stirlings formula for the growth of the Gamma function it can be

shown that ∂

∂DD
D
2 > ∂

∂DΓ(D
2 +1), as such

lim
D→∞

VD (H)

VD (S)
→ 0. (3.18)

Equation 3.17 provides an extreme lower bound of specific behaviour where

crossover is guaranteed to be successful, it is possible to define a tighter more gen-

eral lower bound.

Definition 3.8. Let K(n) be defined as the minimum proportion of all possible child

particles that satisfy F(pc)< r, then

Pr[F (pc)< r]> K (n) (3.19)

Theorem 3.1. Given F(p2)< F(p1)< F(pR) the minimum proportion, K(n), of all

possible pc that satisfy F(pc)< r is given by

K (n) = 1−
n

∑
z=1

(
z
n

)
(3.20)

Proof. Consider the case where p1 = {|r|,0,0 . . .0} and define p2 such that |pd
2|> 0

∀ d = {1 . . .n}, then no matter what element d > 1 from p2 is combined with p1,

the child particle will always lie outside of Sn
r . The number of permutations of

replacing n− 1 > z > 1 elements can be defined by the binomial coefficient, but

due to symmetry of the problem if an element of p1 replaces and element in p2

then the crossover will be successful, hence the number of permutations has to be

halved. �

Taking the limits with respect to the number of dimensions n

lim
n→∞

K (n)→ 0.5, (3.21)

70 Chapter 3. Breeding Particle Swarm Optimisation

and the upper lower bound can be given in the case of n=2,

0.5 < K (n)≤ K (2) = 0.75. (3.22)

Theorem 3.2. Given F(p2) < F(p1) < F(pR) the absolute lower bound for the

crossover success rate is

Pr[F (pc)< r]> 0.5 (3.23)

Combing the results of Theorem 3.1and Lemma 3.6 the form of a tighter lower

bound is proposed.

Proposition 3.1. A tighter lower bound of successful crossover can be given in the

form of

Pr[F (pc)< r]> (1−K (n))
Vn
(
Hn

1
)2

Vn
(
Sn

1
)2 +K (n)> 0.5 (3.24)

Proof. From the condition of Lemma 3.6 crossover is guaranteed to be successful

and from Theorem 3.1the lower bound of successful crossover is given by K(n),

therefore when both parent particles are within the maximum inscribed hypercube

the probability must go to one. �

Furthermore, taking the lower bound of K(n) > 0.5 a lower bound of success rate

can be given as in Theorem 3.3.

Theorem 3.3. The lower bound of crossover being successful given F(p2),F(p1)<

F(pR) is

Pr[F (pc)< F (pR)]> 0.5
Vn
(
Hn

1
)2

Vn
(
Sn

1
)2 +0.5 (3.25)

Using the limits in Equation 3.18 and 3.21 it can be seen that the limit of the pro-

posed lower bound, Equation 3.24, with respect to dimensionality bound decays to

0.5. Hence for high-dimensional problems n > 10, crossover has at least a 50%

chance of success when both parents are better than the replacement candidate.

3.3. Analysis of Crossover and Particle Behaviour 71

A tighter approximate lower bound can be considered by assuming that the

volume for which if only one particle is inside the of Hn
r the region for which the

other particle must occupy such that the child particle lies outside of Sn
r is pro-

portionally very small and could be consider negligible and as such the following

approximation is acceptable

Pr[F (pc)< F (pR)]' (1−K (n))
Vn (Hn

r)
2

2Vn (Sn
r)

2 +K (n) . (3.26)

Empirical Tests of Bounds

To test the validity of the proposed lower bound in Equation 3.26 this has been

compared to Monte-Carlo simulations for the crossover success probability given

F(p2),F(p1) < F(pR). Figure 3.2 shows the empirical probabilities (for a fixed

Cr = 0.5) and theoretical bounds of Equation 3.26 using K(n), the lower bound

K = 0.5 and the upper lower bound K = 0.75. When K = 0.5 Equation 3.26 provides

a suitable lower bound for all dimensionality, although the rate of decay towards

the asymptote is faster than observed for the empirical results, when K = 0.75 it

can be seen that Equation 3.26 provides a tighter bound for low dimensions but

being asymptotic to 0.75 means this becomes unsuitable for higher dimensional

problems. Using K(n) as defined in Equation 3.20 shows a similar suitable bound

for when K = 0.75 for lower dimensions, but still decays towards the lower bound

of 0.5 to quickly.

This bound only takes into consideration one region where success is guaran-

teed, but by definition the volume of this region quickly decays to 0 with respect

to dimensionality, this bound does not consider all the intermediate regions where

0.5 < K(n) < 1. Further analysis within the domain of hypergeometry and combi-

natorics that are beyond the scope of this work is required to provide tighter lower

bound estimates by considering more regions of crossover behaviour.

72 Chapter 3. Breeding Particle Swarm Optimisation

Figure 3.2: Crossover success probability estimation for F(p2),F(p1) < F(pR) using
Monte-Carlo simulation (105 samples, 50 replications, Cr = 0.5) compared to
lower bounds given by Equation 3.26 with K = 0.5 and K = 0.75.

Generalising for Crossover Rate

The above bounds consider the case when Cr = 0.5 and all possible permutations

of the child vector are equally as likely. Generalising this for when Cr 6= 0.5 means

that it shall be observed that by the definitions of crossover in Equations 3.15 and

3.16, and given that F(p2),F(p1)< F(pR) then it can be seen that

lim
Cr→1

K (n) = lim
Cr→0

K (n)→ 1, (3.27)

as the child converges towards either one of the parent vectors. As a result of this

symmetry it can be observed that the minimum of K(n,Cr) must occur for when

Cr = 0.5.

Overall it can be concluded that a suitable theoretical lower bound can be

derived for the crossover success probability when F(p2),F(p1) < F(pR) and a

very accurate estimation of the behaviour can be given by using Equation 3.26 with

a K(n) given by Equation 3.20, this also provides a lower bound for all parame-

terisations of the Crossover Rate, Cr ∈ [0,1]. To complete the analysis the second

3.3. Analysis of Crossover and Particle Behaviour 73

scenario for crossover now needs to be considered.

3.3.4 Bounds For Crossover With One Improved Parent

In this scenario F(p1) > F(pR) > F(p2), the behaviour cannot be as well defined

as the previous scenario due to the fact that F(p1) is now unbounded within the

domain. To analyse this behaviour Monte-Carlo simulations have been used. The

crossover success probabilities with respect to the dimensionality and crossover rate

are shown in Figure 3.3.

It can be seen in Figure 3.3 that when Cr=0.5 the variance of the crossover

success probability is very small and remains close to 0.5 for all dimensions, it is

interesting to see that in this case the success probability peaks for d = 7 which

suggests that the probability is partially a function of the volume. However for

Cr=025 and Cr=0.75 it can be seen that the functions tend to being more mono-

tonic. For Cr=025 and Cr=0.75 the crossover success probability is more sensitive

with respect to dimensionality, but as dimensionality increases for all values of the

crossover rate the crossover success probability tends towards what is seen to be an

asymptotic limit of 0.5.

The asymptotic limit can be explained that as the dimensionality increases the

majority of the mass of the n-ball moves towards the surface and lies at the radius

O(1
d), therefore the range of radii becomes more condensed. As the two points

become closer to the surface the limiting behaviour becomes the same as seen in

Theorem 3.1.

3.3.5 Crossover Success Rate Estimations

The results from the two preceding discussions regarding the scenarios for when

F(p2)< F(p1)< F(pR) and F(p2)< F(pR)< F(p1) can now be combined to give

estimations for the overall probability of successful crossover given three particles

p2 < pR,p1, this corresponds to using gBest crossover.

Theorem 3.4. Assuming pi are uniform i.i.d the probability of successful crossover

74 Chapter 3. Breeding Particle Swarm Optimisation

(a) Cr = 0.25

(b) Cr = 0.5

(c) Cr = 0.75

Figure 3.3: Crossover success probability for F(p1)> F(pR)> F(p2) with three different
crossover rates.

3.3. Analysis of Crossover and Particle Behaviour 75

of a random particle with the gBest has the asymptotic behaviour:

lim
n→∞

Pr[F (pc)< F (pR)]→ 0.5 ∀Cr ∈ [0,1]. (3.28)

Proof. This can be seen from the limiting case of crossover success probability

in both scenarios, F(p2) < F(p1) < F(p2) and F(p2) < F(pR) < F(p1), tending

towards the limit of 0.5 as the concentration of mass of the hypersphere moves

towards the surface. �

When the tournament procedure is used for picking the first parent the proba-

bility of the the first parent being better than the replacement particle becomes

Pr[F (p1)< F (pR)] =
2
3
. (3.29)

and

Pr[F (pc)< F (pR)] =
2
3

Pr[F (pc)< F (pR) |F (p2)< F (p1)< F (pR)] (3.30)

+
1
3

Pr[F (pc)< F (pR) |F (p2)< F (pR)< F (p1)]

This therefore means that the tournament procedure increases the probability of

successful crossover by increasing the probability that F(p2)< F(p1)< F(pR). A

lower bound of crossover success using the tournament procedure considering only

the first scenario of parents is

Pr[F (pc)< F (pR)]> 0.33 ∀Cr ∈ [0,1], (3.31)

compared to a bound of > 0.25 without a tournament procedure. For high dimen-

sional problems, as previously seen, the crossover success probability tends towards

an asymptotic limit of 0.5, regardless of the crossover rate. For the case of Cr=0.5

it can be seen from previous results that

Pr[F (pc)< F (pR)]> 0.5 ; Cr = 0.5. (3.32)

76 Chapter 3. Breeding Particle Swarm Optimisation

Using a crossover rate of Cr=0.5 with a tournament procedure offers the best com-

bination of child diversity and at least a 50% chance of being successful. Higher

crossover rates will increase the probability of a successful child, but the diversity

of the solutions is reduced and becomes more bias towards the best parent, in this

case the global best, this can lead to a cluster of particles around the global best

being formed.

3.3.5.1 Global Cluster

When using a gBest based discrete crossover a cluster forms around the global

best location due to the probability that some child particles will take on the gBest

particle position with probability

Pr[pc = pgBest] = Crn, (3.33)

where crossover is defined such that limCr→0 pc→ p1 and limCr→1 pc→ pgBest with

probability 1. For each iteration of the algorithm the expected size of the global best

cluster, Ngbc, is

E[Ngbc] = NPBrCrn (3.34)

where N is the total population of the swarm, and PBr is the probability that breeding

occurs (breeding probability).

Due to the velocity component of the particle the particle then is subject to

random perturbation around the global best location. This also highlights the im-

portance of having the breeding operation occurring before the velocity update,

otherwise there would be no perturbation to the particle position and the particle

would remain at the global best location, which would significantly impact swarm

diversity and the exploration capabilities. However, given that the particle, i, moves

to the global best location the velocity update applied to the particle reduces to

vi (t) = wvi (t−1) , (3.35)

3.3. Analysis of Crossover and Particle Behaviour 77

where w is either the inertia weight or constriction coefficient. If it is assumed that

the velocity of each particle over time is a decreasing function such that vi(t−1)→

0, then it can be seen that all particles will eventually end up at the global best

location. In fact, it can be shown that when using gBest crossover the algorithm

is globally convergent, given enough iterations, regardless of particle movement.

This can be shown be observing that after a certain number of iterations all particles

would have move to the global best cluster; once within the global best cluster the

velocity update equation becomes

vi (t) = wvi (t−1)+C2r2
(
p−pgBest

)
(3.36)

given that the personal best location will be the particles current location. It can

then been seen how the particle will move towards the global best location and that

vi(t− 1)→ 0 given that |w| < 1. It can now also be seen why adding mutation is

important, even as vi(t− 1)→ 0, the mutation ensures that some exploration will

persist and preventing the swarm from stagnating.

3.3.5.2 Impact on Choice of Cr Value

From the previous analysis it has been seen that the value of Cr can impact the PSO

search dynamics, although Engelbrecht [141] provides an empirically sensitivity

analysis for the crossover parameters used in PSO with discrete crossover (PSO-

DX) hybrids, there lacks a discussion as to why different PSO-DX have a preference

for different Cr values.

It can now be seen as to why in the cases where gBest crossover is used there

is a preference for moderate/low Cr (0.2, 0.4). From the analysis presented it can be

seen that given too a large Cr a cluster will form around the global best location and

can lead to premature convergence, limiting the exploration abilities of the PSO. A

high Cr in these cases can also lead to a higher chance of falling into local min-

ima, if the incorrect minima is initially located and the global best cluster begins

to form around this point. The choice of Cr is also impacted by the dimensionality

of the problem and the size of the population. For a low dimensional problem and

78 Chapter 3. Breeding Particle Swarm Optimisation

small population size there is a higher probability that a larger percentage of the

population will move to the global cluster. This can have a negative impact on the

search capabilities of the algorithm and therefore a lower choice of Cr may instead

be preferable. Based on the findings of this analysis Cr=0.5 offers the best com-

promise for retaining population diversity and maximising the chance of successful

crossover.

Other PSO-DX using personal best crossover have a preference for high Cr

(0.6, 0.8). This is due to the fact that crossover has a smaller effect on global conver-

gence and acts only to improve the particle position within a localised area around

the particle. A higher Cr in this case encourages more search around a known better

area, and also increases the probability of crossover success in this localised area

based on the finding in Section 3.3.5 where the personal best is used instead of the

global best. A higher crossover rate will skew the child particle towards forming

around the personal best, however this is a known area of better fitness and as such

should have a high probability of creating a successful child. In this case it not

possible for a global cluster to form, as all the parents are different for each par-

ticle. One alternative may be to use a local best crossover, this has the potential

of combing the best of both elements seen for global best crossover and personal

best crossover. Local best crossover would be able to maintain population diversity

whilst creating small local clusters to more throughly explore promising areas.

3.3.5.3 Mutation Bias

Although mutation is useful for retain population diversity, one issue that can occur

due to the choice of mutation parameters is a bias towards the axes. When the

mutation function using Equation 3.7 is applied to the particles’ position it can be

moved anywhere within the linear range

pd
c (1−MF)≤ML

(
pd

c

)
≤ pd

c (1+MF) (3.37)

considering MF < 1 it can be seen that for all pd
c > 0 the range is bounded [0, pd

c],

given pd
c is uniformly distributed around this axis it can be seen that as MF ≥ 1 a

3.3. Analysis of Crossover and Particle Behaviour 79

bias forms around the axis. For MF = 1 the bias is formed at 0, this can be shown

by observing that for a set of N points pd
i ∈ R and define the set Ei = [pd

i (1−

MF), pd
i (1+MF)] = [0,2pd

c], the intersection of all sets Ei is

⋂
i=1..N

Ei = 0. (3.38)

More generally for any MF≥ 1 the bias region, B, of the search space can be defined

as

B =
⋂

i=1..N

Ei. (3.39)

This is also true for any type of random mutation where the range is unconditionally

extended over the axis. For functions where the optimum is centered somewhere

around the origin this bias can be beneficial to the search progress of the algorithm,

with a higher probability that the global minimum will be encountered. Whilst if

a local minimum is located at the origin or close to an axis this bias results in a

higher probability of finding and converging towards a sub-optimal solution. To

help resolve this bias it is suggested that in Equation 3.7 the condition MF < 1

is applied, although this implies a separate issue that particle remains bounded to

their quadrant of its position and limits the particle from exploring regions across

the axis. A better resolution may be to define that the variance of the mutation is

dependant on the overall swarm state as a means of keeping the scale relative to the

search. For example the swarm variance of positions or other diversity measures.

3.3.6 Empirical Analysis of Mutation Parameters

Following the introduction of BrPSO with mutation, BrPSO(MP,MF), the algorithm

is initially tested on the eight basic DeJong benchmark functions [157] [158]. The

effect of different mutation parameter pairs, mutation probability and mutation fac-

tor, are shown in Figure 3.4 that visualises the mean value of the minima found for

a range of parameter pairs over the eight test functions considered. From Figure

3.4 it is possible to get a visual representation of how the mutation parameters can

80 Chapter 3. Breeding Particle Swarm Optimisation

effect BrPSO(MP,MF)s performance and identify regions of favourable behaviour.

When mutation is added the algorithm’s performance is significantly improved and

in the best cases observed for each of the functions BrPSO(MP,MF) can produce

competitive optimisation results on the DeJong benchmark functions.

It can be observed that BrPSO(MP,MF) with very small/negligible values of the

mutation parameters, (the top left region of each heat-map), shows inherently very

poor performance on the benchmark functions used here, although interestingly

later on in this work, in Section 3.5 and Chapter 4, it is found that BrPSO(0,0) actu-

ally works very well in practical applications. This observation therefore throws

some questions about the nature and applicability of using artificial benchmark

functions as a valid method for measuring an algorithms respective performance.

From all of the test functions used here, the mutation factor of ≈ 0.5 seems

to be the most robust, when combined with a suitable mutation probability. For

the majority of functions, fdj1, fdj3, fdj4, fdj5 and fdj6 the best combination is MF =

0.5,MP = 1, and based on the previous analytical analysis this corresponds to

crossover dominant behaviour with extremely fast rates of global convergence, this

indicates the minima is quickly found and then isolated. On the other hand for fdj7

a more moderate approach seems to give the best performance where crossover is

only occurring occasionally, based on this it can be speculated than when crossover

occurs too often the rate of local convergence is too high and disrupts the global

search.

The effects of mutation bias, Section 3.3.5.3, are also visible, with the com-

bination of high mutation factor and high mutation probability finding the absolute

minimum at x̂ = 0 the majority of times, although it would be expected that a high

mutation factor and probability would cause too much exploration, probabilistically

it increases the chances of finding the minimum at 0, which is why this behaviour

is not observed for fdj2 and fdj8.

All the PSO algorithms used by Liang et al [32] and including BrPSO(MP,MF)

seemed to have trouble with the Rosenbrock (fdj2) function, and all but CLPSO

had problems with the Schwefel (fdj8) function. The Schwefel function [159] is

3.3. Analysis of Crossover and Particle Behaviour 81

characterised by the large separation between the deep local and global minimum

and Rosenbrock function has a large shallow valley that can lead to stagnation of

the population. The poor performance for BrPSO(MP,MF) for both the Rosenbrock

(fdj2) and Schwefel (fdj8) can be explained by the limited behaviour of the mutation

function used, Equation 3.7, when the mutation parameters are fixed. This is due to

the scaling factor used in the linear mutation function that controls the mutation’s

variance.

In Equation 3.7 the scaling factor is a combination of the particles positions and

the mutation factor, pd
c MF. In most cases for the DeJong test functions the scaling

used is appropriate for functions where the global optima, x̂, is located at ‖x̂‖∞ < 1;

as particles move towards the optima the scaling factor reduces proportionally with

the fitness, reducing the variance of the mutation to a similar magnitude as the po-

sitions and allowing for effective exploration around this smaller area. In cases

where ‖x̂‖∞ > 1, initially the large scaled variance is good for exploration, how-

ever exploitation is not effective as the value of scaled variance stays respectively

large around the global optimum hindering convergence. The assumption that the

position and MF produce a representative scaling factor is only true if the optimum

lies within ‖x̂‖∞ < 1. For the Schwefel function, the optimum lies at x̂ = 420.96,

to allow for convergence the mutation must occur in the contracting area around

this point, but under the assumption that the position and MF is representative of the

scale means that in this instance the variance of the mutation does not contract and

remains large around this point. This can further be illustrated in the results of both

the Rosenbrock (fdj2) and Schwefel (fdj8) functions; although non of the results

could be considered significantly good the worst means are seen for the large mu-

tation factor and probability values, whilst the best values are seen for the smaller

mutation factors which allow for a smaller mutation search area relative to the scal-

ing by the position.

In the case that MF is static there is a tradeoff, a small MF during the initial

search stages means that mutation provides very little benefit in terms of the size of

the relative search area it can extend, whilst a large MF limits exploitation of good

82 Chapter 3. Breeding Particle Swarm Optimisation

solutions and convergence. Therefore it can been see that MF needs to have some

sort of dynamic behaviour that allows the mutation variance to be scaled and con-

tract appropriately during the stages of convergence and expand during exploration.

For all cases though compared to BrPSO(MP,MF) with a very small mutation

factor and mutation probability adding a moderate amount of appropriately scaled

mutation to crossover produces beneficial results. From the range of mutation pa-

rameters tested in Figure 3.4 it can be seen that performance of BrPSO(MP,MF)

is sensitive to the combination of mutation parameters used. In general over the

eight functions tested the bottom right quartile is preferable, this corresponds to pa-

rameterisations with high mutation probability and mutation factor, although using

static mutation parameters leads to tradeoffs between the exploration and exploita-

tion stages. Overall BrPSO shows potential to be a powerful optimiser but it is still

subject to the no free lunch theorem with respect to mutation parameterisation.

3.3.7 Conclusion

A discrete global best crossover operator has been embedded into the PSO algo-

rithm, BrPSO, compared to previous approaches a tournament procedure and per-

turbations in the form of a mutation function are introduced.

Analytical analysis of the discrete crossover operator and torment procedure

show that this mechanism increases the probability of improving a particle’s posi-

tion. The discrete crossover operator also effects the swarm dynamics by introduc-

ing the behaviour of global clustering, where a subset of the population moves very

close around the global best position. The crossover rate has a significant effect on

this behaviour and in combination with the velocity inertia influences the swarms

overall rate of convergence.

Though, the analysis introduced can be further improved as currently the

bounds of the behaviour introduced are extremely loose when compared to empiri-

cal simulations. More accurate bounds need to take into consideration a wider range

of crossover behaviour and the success rate probability in regions where different

numbers of elements of the two parent vectors of exchanged.

Further work should also aim to analyse how different swarm topologies effect

3.3. Analysis of Crossover and Particle Behaviour 83

(a) fdj1 - Sphere (b) fdj2 - Rosenbrock

(c) fdj3 - Ackley (d) fdj4 - Griewank

(e) fdj5 - Rastrigin (f) fdj6 - Rastrigin Integer

Figure 3.4: Heatmap plot for BrPSO(MP,MF) mutation parameter sets on the 8 DeJong
functions, showing the logarithm of the mean value of the fitness found (50
runs).

84 Chapter 3. Breeding Particle Swarm Optimisation

(g) fdj7 - Rosenbrock (h) fdj8 - Schwefel

Figure 3.4: cont. Heatmap plot for BrPSO(MP,MF) mutation parameter sets on the 8 De-
Jong functions, showing the logarithm of the mean value of the fitness found
(50 runs).

the behaviours of crossover and global clustering, for example if using a local best

topology the probability of a local cluster and the size of the cluster forming around

a point and how this effected by the connectivity. One topology which may work

better is overlapping fully connected subswarms, this allows the subswarms to focus

on the local minima and locally converge, but with the overlapping particles given

the ability of contour hopping by the crossover.

The initial version of BrPSO with mutation has been tested on the set of De-

Jong benchmark functions, it was found that the addition of mutation significantly

increased the performance of the BrPSO algorithm and produced a competitive op-

timisation algorithm. However, it was also seen that the fixed mutation parameters

used introduce issue with search bias and a tradeoff between exploration and ex-

ploitation behaviour, as such it is proposed that a dynamic set of mutation parame-

ters can produce a most robust optimisation algorithm.

3.4. Self-Adaptive Mutation 85

3.4 Self-Adaptive Mutation
The search ability of BrPSO(MP,MF) was sensitive to the values of the mutation

probability and mutation factor. The manner in which performance (the minima

found) was affected by the mutation probability and probability factor varied with

uni-modal and multi-modal problems, as well as with the dimensions of the search

space. This supports the ‘no free lunch theorem’ which states that there is no ‘one

size fits all’ algorithm, and that for optimal performance tuning may be necessary.

To overcome this self-adapting mechanism for the parameters is introduced into

BrPSO(MP,MF), dubbed BrPSO-SAM, which allows the algorithm to learn the best

values for the mutation probability and mutation factor, removing the issue of pa-

rameter tuning and maximising the algorithm’s performance.

3.4.1 Self-Adaptive PSO

Self-adaptive methods in PSO are commonly used for adapting the three velocity

parameters, a common method is linearly decreasing or increasing the parameter

values throughout the search duration, such as in the linearly decreeing inertia in

PSO-TVIW, or the linearly changing C1 and C2 values in HPSO-TVAC [91] and

LPSO-TVAC [160]. This method assumes the swarm is following a linear progres-

sion of changing state, and works by aiming to increase the swarm’s exploitation

characteristic near the end of the optimisation, the risk of this assumption is that

the swarm can perform an efficient initial search locating the global basin of attrac-

tion otherwise it may bury itself deep into local minima as exploitation increases.

As such it may be desirable to allow the swarm to change its characteristics more

dynamically.

A popular dynamic approach is to monitor the swarm’s state and adapt param-

eters accordingly. A simple method by Arumugam et al [161] adapts the three pa-

rameters as functions of the ratio of the average personal best fitness and the global

best fitness. This ratio can serve as an estimate to the degree of diversity. Using a

slightly modified velocity update (the two acceleration components share the same

random number and C value), the inertia is decreased and the acceleration coeffi-

86 Chapter 3. Breeding Particle Swarm Optimisation

cient is increased to accelerate convergence as the swarms diversity decreases. The

most recognised approach is APSO [21], which, as previously discussed in Section

2.1.1, uses a measure of the swarm’s state to dictate the acceleration parameter set-

tings using a fuzzy classification method; this allows the swarm to switch between

explorative and exploitative behaviours throughout the optimisation process.

A different approach which does not require monitoring the swarm’s state

given by Kannan et al [137] introduces an adaptive method for all three velocity

parameters using a composite method involving DE as an internal search mecha-

nism. Montalvo et al [162] uses a similar method with PSO being applied to the

three parameters by extending the existing particles’ search space to include three

additional dimensions for the parameter space. This approach is again later adopted

by Ismail et al [22], where two swarms are used, one for the optimisation problem

and the other for searching the three velocity parameter space. The parameter values

for each particle in swarm one are selected using the weighted probability selection

method used by Wang et al [163], this allows the same particle to sample differ-

ent types of parameter settings compared to the integrated optimisation approaches

used by Kannan et al [137] and Montalvo et al [162] but has the disadvantage of

requiring more overall fitness evaluations.

Although it is not within the scope of this chapter, additional work has been

presented in the appendix which further investigates the concept of self-adapting

PSO algorithms with respect to the original velocity parameters. In this work an ap-

proximation to the optimal adaptation process is presented as Greedy Self-Adapting

PSO.

The previously discussed methods focus on adapting the parameters of the

standard PSO velocity update equation. In heterogeneous PSO (HTPSO) model

[164] particles are allowed to have different individual behaviours randomly chosen

from a pool, an adaptive HTPSO has been introduced by Wang et al [163] which

allows for adaptation of the velocity strategies themselves, although parameters for

the strategies remain fixed. This is based on the observation that different PSO

variants have different strengths and weaknesses for different problem types. They

3.4. Self-Adaptive Mutation 87

use the four strategies CLPSO, PSO-CL-pbest, DbV, and EbV. Each strategy has

an operating probability which is updated via a fitness based scoring system which

is evaluated at the end of each iteration. As an alternative method Nepomuceno et

al [165] use a hybrid with Ant Colony Optimisation (ACO) to select strategies from

a pool a pool of 7 strategies: Cog-PSO; Soc-PSO; BB-PSO; BBMod-PSO; QSO;

TVIW-PSO; and TVAC-PSO.

3.4.2 BrPSO with Self-Adaptive Mutation

The approach for self-adaptation used here is most similar to the extension approach

of Kannan et al [137], which is also used in DEGL-SA [75]. The search space

of PSO is extended by two dimensions which correspond to the BrPSO mutation

parameters MP and MF.

Compared to previous approaches which use an extension of the search space

it is considered that the parameter search space is a dynamic search as the optimum

parameter values change as the swarm moves and it’s behaviour evolves throughout

the main PSO search. The dynamic changing search landscape of the parameter

space as the main optimisation in the x space proceeds means that it is not desirable

to have the mutation parameters converging towards one set of values. Similar

to other dynamic PSO approaches [166] [167] it is important to retain population

diversity and to stop the swarm converging to a stationary point but also to retain

some tracking of the best current solution.

As such a PSO-augmented random search with a slightly modified velocity

update equation is designed for the mutation parameters. In this, the particles are,

as usual, initialised to random positions in the parameter space. The change is in the

PSO velocity update, where instead of using the particle’s personal best, the random

initial position x(0)i is used,

vi (t) = vi (t−1)+C1r1� (xi−x(0)i)+C2r2� (xi− ŷi) . (3.40)

This allows the parameter search to move in the direction of the global/local best,

but due to the random element of the initial position this prevents convergence, re-

88 Chapter 3. Breeding Particle Swarm Optimisation

taining the desired diversity, this is similar to the idea of jitter applied in DE. It

should be emphasised that this variant of the PSO velocity is used for the optimisa-

tion of the mutation parameters only.

Algorithm 3.4 Pseudo code for BrPSO-SAM

Initialise swarm as array of particles, set each particle with a random breeding probability (Pparticle
Br)

swarm = new ParticleArray[N]
particleParameters = new ParameterArray[N]
while not stopping citera do

for every particle, particle do
if U [0,1]< Pparticle

Br then
Select two random particles, p1 , p2
Compare the two random particles and select the particle with the best personal fitness
for each dimension, d do

if U [0,1]< PCO then
trial[d] = swarm[globalBest].bestPos[d]

else
trial[d] = swarm[selectedBest].bestPos[d]

end if
if U [0,1]< PMut then

trial[d] = M(trial[d])
end if

end for
if f itness(trial)< f itness(particle) then

particle.pos = trial
Update particle personal bests and swarm global best indexes

end if
end if

end for
for each Particle particle do

Update particle velocity and position
Update particle parameter velocity and position (using the swarm global best particle values)
Evaluate particle fitness, update personal best and global bests if applicable

end for
end while

3.4.3 Benchmark Performance

The newly introduced self-adapting mutation variant of BrPSO(MP,MF), BrPSO-

SAM, is tested on the set of CEC’05 benchmarking functions [168]. This set of

25 benchmark functions provides a more robust and challenging environment than

the original 8 DeJong functions and is widely used in the literature for comparison

of EA algorithms [169]. The fundamental functions are the same as those used in

the DeJong test set but are elaborated on by applying shift, rotation and compos-

ite operations. Shifting and rotation are key for capturing algorithms that would

otherwise rely on search biases around the axis and towards the origin, these bench-

mark functions provide a good test to see if the mutation bias issues initially present

in BrPSO(MP,MF)is resolved by using self-adapting mutation. The CEC’05 func-

tions can be divided into three main sub groups of increasing landscape complexity:

unimodal functions f’051− f’055; basic multimodal functions f’056− f’0514; and

composite functions f’0515− f’0525.

BrPSO-SAM has been run using the standard CEC’05 experimental setup,

3.4. Self-Adaptive Mutation 89

D = 30, max fitness evaluations = 300,000, number of particles = 40 and with 30

independent runs for each test function. The results of the runs are shown in Figure

3.5, the results of BrPSO-SAM obtained here are then compared to results from the

literature for other state-of-the-art PSO algorithms [90], APSO, OPSO and CLPSO

in Table 3.1, and compared against other PSO-Crossover hybrids [154] in Table 3.2.

Figure 3.5: Box plot of 30 independent optimisation runs using BrPSO-SAM on the
CEC’05 functions.

Compared against APSO, OLPSO and CLPSO, BrPSO-SAM ranks well for

the first 14 functions, and has comparable performance for the composite functions.

Most of the results show very similar performance across all the algorithms. It can

be seen from the mean ranks that in particular APSO,CLPSO and BrPSO-SAM are

very similar, but with OLPSO ranking the overall best. The most significant results

for OLPSO are for f’051 and f’059, although BrPSO-SAM is very close for f’051, the

results on f’059 shows that the OLPSO has a significant advantage for this search

landscape. Overall the PSO algorithms all have very similar performance for the

majority of the test functions considered here and BrPSO-SAM can be considered

a competitive PSO algorithm.

When compared against other PSO-DX algorithms, BrPSO-SAM ranks overall

the best for the first 14 functions, although again for the majority of functions the

90 Chapter 3. Breeding Particle Swarm Optimisation

APSO, OPSO,CLPSO BrPSO-SAM
Best Mean Std Mean Std Rank

f’051 OLPSO 0.00e+00 0.00e+00 1.91e-28 5.83e-28 2
f’052 APSO 9.97e-13 1.79e-12 8.63e-16 2.08e-15 1
f’053 APSO 3.96e+05 1.59e+05 3.82e+05 1.83e+05 1
f’054 APSO 7.23e+01 6.02e+01 9.19e+01 9.37e+01 2
f’055 OLPSO 3.28e+03 5.54e+02 5.79e+03 1.38e+03 3
f’056 CLPSO 5.10e+00 5.43e+00 4.29e+00 1.57e+01 1
f’057 APSO 4.70e+03 2.34e-04 2.16e-02 1.47e-02 1
f’058 APSO 2.00e+01 2.97e-02 2.06e+01 4.89e-01 2
f’059 OLPSO 0.00e+00 0.00e+00 2.74e+01 1.57e+01 4
f’0510 OLPSO 1.10e+02 3.12e+01 1.48e+02 4.83e+01 3
f’0511 OLPSO 2.55e+01 2.95e+00 2.87e+01 4.16e+00 4
f’0512 APSO 1.27e+04 1.70e+04 1.01e+04 1.15e+04 1
f’0513 APSO 1.54e+00 4.05e-01 3.27e+00 1.09e+00 4
f’0514 CLPSO 1.29e+01 1.72e-01 1.29e+01 6.24e-01 2
f’0515 CLPSO 1.06e+02 5.34e+01 3.34e+02 1.33e+02 3
f’0516 OLPSO 1.32e+02 3.74e+01 3.10e+02 1.31e+02 3
f’0517 OLPSO 1.89e+02 3.25e+01 2.93e+02 1.36e+02 3
f’0518 OLPSO 9.10e+02 1.82e+00 9.55e+02 2.32e+01 4
f’0519 OLPSO 9.07e+02 2.03e+01 9.54e+02 4.27e+01 4
f’0520 OLPSO 9.07e+02 2.03e+01 9.51e+02 2.93e+01 4
f’0521 OLPSO 5.00e+02 2.86e-13 7.68e+02 3.23e+02 4
f’0522 OLPSO 9.43e+02 1.35e+01 1.02e+03 4.97e+01 4
f’0523 OLPSO 5.34e+02 3.59e-04 8.08e+02 3.22e+02 3
f’0524 OLPSO 2.00e+02 2.89e-14 2.68e+02 2.59e+02 3
f’0525 OLPSO 1.64e+03 5.59e+00 3.92e+02 3.97e+02 1

Mean Rank
APSO OPSO CLPSO BrPSO-SAM
2.92 1.84 2.28 2.68

Table 3.1: Comparing BrPSO-SAM on the CEC’05 benchmarking suite (D = 30) with
state-of-the-art PSO algorithms tested by Li et al [90]

difference between the mean minima found by all the algorithms is often very small

so as to be insignificant. The results of BrPSO-SAM show that using mutation

could be beneficial for all PSO-CX algorithms. PSO-DX1
y shows significant results

for f’054 compared to all other algorithms, this is the shifted Schwefel function with

noise.

BrPSO-SAM showed significantly good relative performance when compared

to the other algorithms on f’052, 7 and 25. These functions are the unimodal shifted

Schwefel problem without bounds, the multimodal shifted-rotated Griewanks func-

3.4. Self-Adaptive Mutation 91

PSO-PX, DXu
y , DX1

y BrPSO-SAM
Best Mean Std Mean Std Rank

f’051 PCX 1.00e-14 3.35e-14 1.91e-28 5.83e-28 1
f’052 DX1Y 1.00e-13 3.67e-13 8.63e-16 2.08e-15 1
f’053 DXUY 1.15e+03 1.03e+03 3.82e+05 1.83e+05 4
f’054 DX1Y 0.00e+00 1.55e-07 9.19e+01 9.37e+01 3
f’055 DX1Y 2.43e+04 8.26e+03 5.79e+03 1.38e+03 1
f’056 DXUY 1.10e+01 1.40e+01 4.29e+00 1.57e+01 1
f’057 DX1Y 9.59e+01 2.03e+00 2.16e-02 1.47e-02 1
f’058 PCX 2.10e+01 7.85e-02 2.06e+01 4.89e-01 1
f’059 DXUY 3.90e+01 1.27e+01 2.74e+01 1.57e+01 1
f’0510 DXUY 1.13e+02 3.60e+01 1.48e+02 4.83e+01 4
f’0511 DXUY 2.70e+01 3.09e+00 2.87e+01 4.16e+00 2
f’0512 DXUY 1.81e+04 1.76e+04 1.01e+04 1.15e+04 1
f’0513 DXUY 3.00e+00 1.16e+00 3.27e+00 1.09e+00 2
f’0514 DXUY 3.06e+02 8.00e-01 1.29e+01 6.24e-01 1
f’0515 DXUY 4.11e+02 2.63e+01 3.34e+02 1.33e+02 1
f’0516 PCX 4.20e+02 1.45e+02 3.10e+02 1.31e+02 1
f’0517 DX1Y 3.70e+01 8.10e+01 2.93e+02 1.36e+02 3
f’0518 PCX 3.52e+02 2.42e+02 9.55e+02 2.32e+01 4
f’0519 PCX 3.85e+02 1.79e+02 9.54e+02 4.27e+01 4
f’0520 DX1Y 2.29e+02 5.69e-03 9.51e+02 2.93e+01 4
f’0521 DXUY 1.73e+02 1.41e+02 7.68e+02 3.23e+02 4
f’0522 DX1Y 4.22e+02 4.39e+02 1.02e+03 4.97e+01 4
f’0523 DXUY 1.94e+02 7.17e+01 8.08e+02 3.22e+02 4
f’0524 PCX 5.30e+01 2.20e+01 2.68e+02 2.59e+02 4
f’0525 PCX 1.26e+02 2.95e+01 3.92e+02 3.97e+02 4

Table 3.2: Comparing BrPSO-SAM on the CEC’05 benchmarking suite (D = 30) with
other PSO-Crossover hybrids Engelbrecht et al [154]

tion without bounds and the rotated hybrid composition function without bounds

respectively. The most noticeable of these results is for f’057 where the average min-

ima found by BrPSO-SAM is three magnitudes smaller than the best other PSO. In

the two functions where BrPSO-SAM outperforms the other PSO algorithms with-

out crossover (APSO, OPSO and CLPSO) both functions, f’057 and f’0525 have the

property that the global optima is located outside of the initialisation bounds. The

positive results on these two functions support the idea that the additional breeding

and mutation introduced in BrPSO aids additional exploration for the PSO algo-

rithm and allows the algorithm to more widely explore the search space.

Good performance is also seen for f’051 and f’056. Compared to all the other al-

92 Chapter 3. Breeding Particle Swarm Optimisation

gorithms except OLPSO, BrPSO-SAM shows a significantly better minimum found

for f’051, which is the unimodal shifted sphere function. Being a unimodal func-

tion means that the rapid convergent properties seen for gBest crossover can be

exploited, although the absolute minimum was not found, which may suggest that

the local convergence towards a point was too fast. This could suggest that a lower

crossover rate or larger population may be beneficial. From Figure 3.5 it can be

seen that for f’056, the shifted Rosenbrock function, there is a large range in val-

ues found but with a low median indicating a relatively good overall performance

on this function. The large range in minima found can be explained by observa-

tions that although the Rosenbrock function is classed as a unimodal function there

is evidence suggesting that in high dimensions it becomes multimodal [170]. The

multimodal Rosenbrock function is characterised by a narrow valley separating the

local and global optima. This is similar to the characteristic shown in the Deceptive

function [86] which has been seen to be challenging for many EAs, particularly DE

algorithms.

Relative to the other PSO algorithms BrPSO-SAM performed the worst on

f’059, the shifted Rastrigin’s function. This is otherwise known as the egg box func-

tion, which has a steep local optima, from the respectively high value of the optima

found by BrPSO-SAM and from the small interquartile range over all of the runs

shown in Figure 3.5 it can be inferred that BrPSO-SAM often got caught in this

local minima. This is possibly due to the effects of global clustering encouraging

global convergence to local minima. Furthermore, poor performance is also shown

on this function for the other PSO-CX algorithms, which further supports the propo-

sition that global clustering due to crossover hinders the algorithms search abilities

by encouraging premature convergence.

When comparing the results for the composite functions, f’0515− f’0525 show

very little significance and there is only a very small variation observed. This is due

to the inherent difficulty of these problems and consequently generally poor perfor-

mance is seen across the board. From Figure 3.5 it can be seen that there is little

variation between the magnitude of the optimum found for these functions which

3.4. Self-Adaptive Mutation 93

shows that the mean values used for comparison are not majorly skewed by one

or two bad runs. Two exceptions maybe for f’0525 and f’0524where BrPSO-SAM

and PSO-PCX respectively show one magnitude better. For f’0525 BrPSO-SAM

and other PSO-CX algorithms show better performance compared to the other PSO

algorithms without crossover. As previously mentioned crossover allows for an en-

hanced exploration which is advantageous for functions with unbounded domains.

Overall it can be seen that when compared to other PSO algorithms with and

without crossover BrPSO-SAM shows competitive search performance compared

to the other algorithms considered here. When comparing BrPSO-SAM to other

PSO algorithms on the CEC’05 benchmark functions the performance is very much

inline with the other PSO algorithms considered here. The results on the CEC’05

functions further confirm the validity of ’the no free lunch theorem’ with certain

functions highlighting advantages and disadvantages of BrPSO-SAM with respect

to different search space landscapes. The main disadvantage seen is that it is suscep-

tible to steep local optima, due to the effects of global clustering, this suggest further

research is required into the effects of the crossover rate on multi-modal landscapes

and optimising the crossover rate to reduce clustering when required.The main ad-

vantages seen for BrPSO-SAM is an increased exploratory ability due to crossover

and mutation which allows it to search unbounded domains efficiently. This prop-

erty supports its particular use in applications such as neural network training, where

the initialisation area is generally a guess and the algorithm needs to be able search

a large unbounded search space to potentially find the best set of network weights.

94 Chapter 3. Breeding Particle Swarm Optimisation

3.5 BrPSO for Function Approximation using Neu-

ral Networks
This section will describe how BrPSO can be used with neural networks to ap-

proximate complicated functions of many inputs; it also demonstrates the practical

value of BrPSO for neural network training. As an example a challenging function

approximation problem in naval architecture has been chosen. As well as demon-

strating the practical use of BrPSO, BrPSO neural networks are also able to provide

a new more accurate solution for the problem presented.

3.5.1 Introduction

There are a large number of new creative small ship designs especially involving

multi-hulled constructions. One such such design is the the Trimaran Small Water-

plane Area Centre Hull (Tri-SWACH). The Tri-SWACH hullform presents a hybrid

between the trimaran and small-water-area-twin-hull (SWATH) designs. In SWATH

catamaran designs a single hull consists of a narrow beam (strut) connected to a sub-

merged hull (bulb), the advantages of SWATH compared to regular catamaran de-

sign is it superior stability and reduced wake, this has made it popular in the design

of corvette class combat ships and experimental combat ships. The Tri-SWACH

design uses a center hull with the same design as a SWATH hull, connected to two

small side hulls, outriggers, as depicted in outline in figures 3.6 and 3.7. Initial

research shows that this vessel has outstanding motion performance allowing for

operations in very harsh weather conditions [171].

Figure 3.6: Tri-SWACH cross-section (figure from [3])

An important part of evaluating a ships performance is understanding the resis-

3.5. BrPSO for Function Approximation using Neural Networks 95

tance it makes when moving through the water. The Froude number, Fr, is a dimen-

sionless coefficient used to determine flow on a external field acting on a body. In

naval architecture the Froude number is a dimensionless form of velocity and is an

important value used for characterising a ship’s behaviour which is used to calculate

the wave making resistance (the resistance created by the ship pushing through the

surface of water) and the total resistance of ship [172]. The Froude number can then

be used in Froude scaling which allows the measurements from small tow-tank pro-

totype models to be scaled up whilst retaining the same hydrodynamic behaviour.

Using tow-tank models it is possible to determine the dimensionless total resistance

coefficient of the hullform to be used in scaling, in general it is assumed that the

majority of the total resistance is caused by the wave making resistance, the hydro-

static resistance assumed to be negligible, therefore the Froude number should be

able to provide a relation to the total resistance.

However due to the novelty of the Tri-SWACH design it presents challenges

of its own for properly evaluating its characteristics. Tow-tanks experiments are

expensive and timely to perform and consequently for a novel design there is a

lack of experimental data. In addition, there is no analytical solution or reliable

numerical method able to approximate water resistance for this hullform. This work

uses the limited tow-tank data from experiments conducted at the Stevens and Webb

Institutes and at the United States Naval Academy (USNA) as part of the ACCeSS

program, which investigate the resistance characteristics of the Tri-SWACH design

in calm water.

Under the circumstances of limited experimental data artificial neural networks

(ANNs) and other bio-inspired metaheuristic techniques such as particle swarm op-

timization offer the possibility of being able to extract the underlying physics, to

build a resistance model that can predict the dimensionless resistance coefficients

that could be used to refine and scale up the Tri-SWACH hull design.

96 Chapter 3. Breeding Particle Swarm Optimisation

3.5.2 Neural Network Architectures and Training

Neural networks have previously been applied to Tri-SWACH and similar ship de-

signs but with a limited degree of utility [173] [174]; [175].

In the experiments of [175] it was discovered better results could be obtained

from larger nets than had been used in the earlier work of [174]; although as shown

by Couser [173] too many neurons can result in overfitting and consequently poor

predictive output. Couser [173] uses a neural network with a single hidden layer

of 15 neurons. Given the interference behaviour of Tri-SWACH is more complex

than for catamarans an additional 5 neurons are used. Thus a neural network with

a single hidden layer of 20 neurons is used (3-20-1 net). Furthermore the use of a

two hidden layer network is also investigated, even though Couser [173] found a

second layer had little effect and often resulted in worse predictive output, the ad-

ditional complexity of the dynamics of Tri-SWACH warrants a deeper architecture

to try and fully capture the non-linearities. In addition using BrPSO as a power-

ful training algorithm means that it should be able to easily optimise the additional

weights added by the extra layer. To keep the number of hidden neurons constant

two hidden layers of 10 neurons are used (3-10-10-1 net). The hyperbolic tangent

(tanh) function is used as the neuron activation function, functionally equivalent to

the logistic sigmoid used in [174] [175], and all swarms used in the experiments

below consisted of 100 particles.

The neural networks are trained using particle swarm optimisation, this work

is also used to compare the training abilities of PSO-lBest and the newly developed

BrPSO algorithm for what appears to be a challenging optimisation problem.

Different measures were used for training and for test performance assessment.

It was discovered that training was most effective when the fitness function is the

root mean squared error (RMSE) between the estimated and the target function

values. However for the out-of-sample test data, the accuracy was measured in

terms of the mean absolute error (MAE), this choice being made in order to better

compare these results against previous work [175] in which the MAE was the quoted

measure.

3.5. BrPSO for Function Approximation using Neural Networks 97

3.5.3 Data

In the ACCeSS towing tank experiments nine side hull configurations were consid-

ered, comprised of three possible lateral (inboard, mid, outboard) and three longi-

tudinal (fwd, mid, aft) positions of the side hulls relative to the central hull. How-

ever not all consortium members took measurements at all positions. Among the

ACCeSS data, that from the Webb Institute [176] is the only complete set of ex-

perimental data from a single source; it was decided to follow [175] in using these

data alone for resistance predictions, since experimental setups necessarily differ

in detail, and [175] gives evidence of a discrepancy between resistance measure-

ments for the same hull configurations obtained by different institutes. The side

hull locations considered are shown in outline in figure 3.7, and relevant measure-

ments given in Table 3.3, in which %LS is a dimensionless measure of longitudinal

side hull position (the longitudinal location from the stern divided by the length

of the center hull), and %TS is a corresponding measure for the transverse side

hull position, given as the transverse location from the center hull’s center line di-

vided by ten times the beam of the center hull (the factor of 10 being a scale factor

used [174] [175] to bring %TS into line with the magnitude of %LS).

Figure 3.7: Tri-SWACH model side hull locations for towing tank tests (figure from [177])

Position A B C D E F G H I
fwd-outer fwd-mid fwd-inbd mid-outer mid-mid mid-inbd aft-outer aft-mid aft-inbd

%LS 37 37 37 47 47 47 57 57 57
%TS 10.1 12.8 15.5 10.1 12.8 15.5 10.1 12.8 15.5

Table 3.3: The nine side hull positions considered, together with dimensionless descriptors
of the geometry (used here as ANN inputs). The 34 varying-speed measurements
associated with column E will be the test data.

98 Chapter 3. Breeding Particle Swarm Optimisation

For each of these nine positions, resistance measurements were made at a range

of speeds for 34 Froude numbers between 0.1 and 0.5, which given the decision to

restrict the study to the Webb Institute data alone, results in a total of 306 available

data points for training and testing. The task in this current work will be to use

a multilayer ANN, trained with particle swarm optimization, to approximate the

resistance functions RT (Figure 3.8) and CR (3.9) for side hull position E (the mid-

mid position, selected also in [175] as the test data set). In contrast to [174] [175]

predictions will here be based only on the minimal three inputs %LS, %TS, and

Froude number (Fr) .

Figure 3.8: Total Resistance (RT) as a function of Froude number (Fr) ; the curve in bold
is the test data (mid-mid; position E), the shape of which was well predicted
in [175] using Bayesian Regularization, but only with two additional (Reynolds
number) network inputs.

Figure 3.9: Residual Resistance Coefficient (CR) as a function of Froude number (Fr) ; the
curve in bold is the test data (mid-mid; position E), whose most significant
features (the peak and side-lobes) could not be effectively predicted in [175]
using any network architecture

3.5. BrPSO for Function Approximation using Neural Networks 99

Input scaling

To further aid training the network it often helps if all the inputs are of the same

magnitude [178]; this helps to reduce the variance in the magnitude of the network

weights. The definition of the %TS parameter included a division by 10 to make it

of similar magnitude to %LS. It was decided here to divide both these inputs by an

additional factor of 10 to make them of a similar magnitude to the Froude number

input. Output scaling: none was done for the RT prediction problem, but given the

very small magnitude of CR it was decided to multiply the targets by 100 during

training to better separate the values.

Data Partitioning

When training an ANN it is usually advised that the data is split into three subsets,

training, validation and test, an advised ratio is usually around 3:1:1. Given the

size of the proposed network architectures it would be expected that a validation set

would be needed to avoid overfitting to the data. However the training error was then

unacceptably high: it appeared the reduced training set was insufficient to capture

the complexity of the underlying function, and hence it was decided not to validate.

In this case the decision was made to omit the validation set due to the scarcity of

data and to maximise the size of the training set. It is also observed that this data

should have very little noise which reduces the risk of overfitting to bad features.

The Webb Institute data set contains 306 examples overall, with 272 available for

training/validation after the mid-mid configuration data points had been extracted

as a test set. As will be seen, the lack of a validation set did not seem to harm test

data prediction; the most likely explanation is that standard procedure in towing

tank experiments is to filter the raw signal data and average the measured resistance

over the test time, thus reducing experimental noise to a minimum.

3.5.4 Prediction of Total Resistance (RT)

It can be seen in Figure 3.8 the variation of RT with Froude number Fr for all

side hull configurations is in most places a smooth function; this can be well-

approximated by a quadratic function, RT (Fr) = 25.269Fr2 + 7.525Fr− 0.7129.

100 Chapter 3. Breeding Particle Swarm Optimisation

It was thus decided to fit this function to the 272 training data examples and instead

predict the residuals, notable only in the region of the prismatic humps.

Comparing PSO Training Methods

The first series of experiments compares the performance of BrPSO with standard

PSO on the training data set, considering two alternate architectures with the same

number of hidden units, but deployed differently in terms of layers. Because of the

time-demanding nature of the experiments and the need to carry out a substantial

number of runs it was decided to restrict the number of PSO fitness evaluations to

10,000, and compare performance at that point. The results of these experiments

are shown in Table 3.4 and it is clear that BrPSO outperforms PSO-lBest for both

architectures. These initial results also contradict the conclusions of Couser [173]

and show that a two layer network can indeed provide substantially better predictive

outputs.

RMSE MAE
Training Method Architecture Mean Min Mean Min
Standard PSO 3-20-1 6.4670.713 4.878 0.2450.016 0.205
Standard PSO 3-10-10-1 3.0660.386 2.144 0.1350.015 0.100
BrPSO 3-20-1 3.6131.024 2.148 0.1520.035 0.094
BrPSO 3-10-10-1 2.1100.446 1.078 0.0940.016 0.051

Table 3.4: Comparison of performance of standard and Breeding PSO (BrPSO) on the RT

training data set, in terms of Root Mean Squared Error (RMSE) and Mean Av-
erage Error (MAE) achieved after 10,000 iterations (50 independent runs)

Test data comparison of BrPSO prediction with actual RT

The final set of training runs are carried out using BrPSO and the 3-10-10-1 ar-

chitecture, and stopping when the PSO algorithm has converged and no global

best update has been made for 1000 iterations. The global best weights are then

used to make a prediction for the RT curve for the mid-mid test data. Each run

is then used to make independent predictions. The mean MAE over the test data

was 0.118±0.026, with 190867±97662 iterations being taken (min 96061, max

419350), compared to a quoted mean MAE of 0.132 in [175]. The predicted RT

curve from an example run is shown in Figure 3.10 and it can be seen that the char-

acteristic prismic hump is correctly captured. While these MAEs are not dissimilar

3.5. BrPSO for Function Approximation using Neural Networks 101

it should again be noted that the BrPSO results are obtained using only three model

inputs, %TR, %LS, and Fr, while the work of [174] [175] requires two additional

Reynolds number inputs in order to make any reasonable prediction for the resis-

tance functions.

Figure 3.10: Test data comparison of BrPSO prediction with actual RT

3.5.5 Prediction of Residual Resistance Coefficient (CR)

As in the case of RT, 10 runs were performed, with the same convergence cri-

terion, giving in this case an average MAE of 2.424×10−4± 0.493× 10−4, with

27656±11209 iterations being taken (min 15708, max 55332). When compared to

the results of [175] it is clear from Figure 3.11 that the BrPSO model performs far

better for this function than Bayesian Regularization, which was in turn more effec-

tive than the Levenberg-Marquard training used in the Tri-SWACH work of [174].

An example prediction is shown in figure 3.11, together with a representative exam-

ple from [175]. It can be seen that the BrPSO-generated curve manages to capture

the correct general shape of Cr but does not quite hit the resistance peak around

Fr = 0.25, or show the full complexity of the side-lobes. These results are sim-

ilar to those of Couser [173] for predicting CR for catamarans, in both cases the

predictions fail to capture the small double dip interference patterns that occur at

low Froude numbers for both designs. This is due to the rest of the function be-

ing relatively smooth, and as such the NN produces a relatively smooth output for

this obscure region, one way which may be used to further enhance prediction in

this region could be to use additional localised networks to be trained in this region

102 Chapter 3. Breeding Particle Swarm Optimisation

which are aggregated with the more general network. Other approaches could use

different weightings for the training samples based on approximated gradients, this

would allow areas with a high degree of change to have more focus on in training.

Figure 3.11: Test data comparison of BrPSO prediction with actual CR

From these results it can be seen that BrPSO provides a powerful tool for train-

ing neural networks to approximate what are deemed to be challenging function

approximation problems in this example application.

Although excellent resistance prediction was achieved by the BrPSO-trained

ANN, the results obtained are limited by the experimental data to one specific Tri-

SWACH hullform, with only two parameters (%TS and %LS) varied in this config-

uration. Test predictions were also only made for the E configuration, and it would

be interesting to see how this method performs when the test data is set to another

configuration which has very different RT and CR behaviours comparatively. Fur-

thermore, more elaborate neural network training and model aggregation techniques

could be applied in an attempt to try and better capture the highly non-linear regions

where wave interactions occur.

3.6. Conclusions 103

3.6 Conclusions
This work has developed a hybrid particle swarm algorithm with a discrete

crossover operator. A particle is potentially replaced by a new child particle formed

by breeding a randomly selected member of the population with the current global

best using discrete crossover. The algorithm has been analysed analytically and

empirically and then the search capability has been compared against other relevant

PSO algorithms from the literature.

Analytical and empirical analysis in Section 3.3 shows the advantages of incor-

porating crossover operations into PSO and how it leads to a high probability of an

improved particle position being formed. A lower bound for the probability of suc-

cessful crossover is given, and it is seen that the overall behaviour of crossover suc-

cess converges towards this bound as the dimensionality of the problem increases.

It was also shown that using a tournament procedure to select parents further helps

boosts crossover success probability. With respect to overall behaviour of the swarm

it was seen that gBest crossover results in a clustering behaviour around the global

best. This can accelerate convergence and is controlled by the crossover rate pa-

rameter. Currently the analytical analysis is limited and only provides very loose

bounds for the behaviours, further work involving more complex hypergeometry

and combinatorics analysis may be able to provide tighter bounds and a more de-

tailed explanation of behaviour in all regions of the search space. It would also be

worthwhile extending the analysis with respect to the assumed underlying random

distributions, rather than assuming a uniform distribution it would be worthwhile to

see how behaviour under a normal or levy distribution would change, as these may

provide a better representation of particle behaviour.

To further enhance the ability of crossover a random mutation is added. A lin-

ear mutation is applied as a perturbation to the child particle’s position. This can

further increase the search range of crossover, although careful selection of parame-

ters, MF < 1, is required to avoid search bias around the axes. Section 3.3.6 provides

an empirical analysis on how the mutation parameters effect the search behaviour of

the BrPSO(MP,MF) algorithm. It was found that some degree of mutation signifi-

104 Chapter 3. Breeding Particle Swarm Optimisation

cantly enhances the search abilities of the BrPSO algorithm for all the test functions

considered, but using static parameter settings resulted in a tradeoff between explo-

ration and exploitation behaviour, to overcome this a dynamic adaptive mechanism

was implemented.

In Section 3.4.2 a self-adapting mechanism for the mutation parameters was

introduced. This was achieved by extending the PSO search space to encompass

these parameters, as well as using a different form of the velocity update, Equa-

tion 3.40, to handle the dynamic nature of the parameter search. Comparing the

new BrPSO-SAM algorithm against other relevant PSO algorithms on the CEC’05

benchmark problems it was seen that BrPSO-SAM is a competitive PSO algorithm.

The main advantages of BrPSO-SAM are it’s enhanced exploration capabilities and

fast convergence; this makes it particularly well suited for functions with unbounded

domains and uni-modal or low degree multi-modal landscapes.

It is worth mentioning though that when compared to minima found by state-

of-the-art DE SHADE and it’s variants for f’051− f’0514 all of the PSO algorithms

and crossover hybrids considered here are still lagging in comparison. This suggest

that there is still plenty of scope for additional work in hybridising PSO and DE

for increasing the search ability of PSO. Rather than focusing on using only the

crossover mechanism it maybe worth focusing on the elements that make SHADE

and JADE successful compared to other DE algorithms which is the adaptive pa-

rameterisation and the use of archiving parameter values.

Other routes for further improving BrPSO-SAM could involve applying

crossover operators in more advanced PSO base algorithms, similar to the analy-

sis presented by Epitropakis [136] for PSO-DE hybrids. In current implementations

BrPSO-SAM only uses the basic PSO-gBest which is known to have sub-optimal

behaviour in some cases. BrPSO-SAM may also be improved by investigating fur-

ther the effects the crossover rate and breeding probability have on the search capa-

bility for the CEC’05 benchmark functions, and perhaps extending self-adaptation

mechanism to also incorporate these parameters.

In conclusion this work has provided a successful introduction and exploration

3.6. Conclusions 105

of a new powerful PSO-crossover hybrid and has shown that further elaboration and

development of the ideas presented here can be a fruitful avenue for PSO research

in the future.

Chapter 4

Calibrating the Heston Model using

Evolutionary Algorithms

This chapter looks at the use of advanced evolutionary algorithms for the task of

calibrating the stochastic volatility Heston model. The algorithms are tested by

calibrating the Heston model for sets of artificial option price surfaces generated

using predetermined Heston model parameters, this methodology allows for a di-

rect evaluation and comparison of the algorithms performances. The algorithms

tested consist of advanced particle swarm optimisation (PSO) variants, including

the Breeding particle swarm optimisation introduced in Chapter 3, advanced differ-

ential evolution (DE) algorithms, and PSO/DE local search hybrids. In addition,

this work introduces a PSO-DE hybrid algorithm that is able to utilise the observed

strengths of both families of algorithms for the given task.

4.1 Introduction
When pricing financial derivatives it is important that the underlying models used

for asset price behaviour, see Section 2.3, are able to replicate observed market

prices as best possible. To acheive this, suitable model parameters need to be

found. Model calibration for financial derivatives pricing is the procedure of fit-

ting a parameterisable model of the underlying asset price behaviour, usually a set

of stochastic differential equations (SDEs), to a set of observed market prices.

Model calibration is as important as deriving the theoretical model itself, if it

108 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

can not properly replicate market behaviour then it cannot be reliably used. The ac-

curacy of the parameterisation of the model with respect to observed market prices

has a direct impact on the profit and risk profile of a portfolio [179]. Two ap-

proaches to calibration can be used: historical or implied. Historical parameters are

fitted to a time series of past data, whilst implied parameters are fitted to an array of

option contracts at a fixed time, usually the current time. The implied parameters

give an estimate of the market current conditions and from this the current market

price, whilst historical parameters are more useful for predicting future market con-

ditions and prices. This work is interested in implied parameters and from hereon

calibration refers to obtaining the implied parameter set.

In the case of calibrating the Black-Scholes (BS) model only one parameter

is required to be calibrated: the implied volatility, σ̂ , from the observed market

prices, and in this case a closed form solution exists by using an inverse form of the

analytical Black-Scholes solution. The issue with the BS model is it assumes that

the implied volatility is a constant which may not be an accurate assumption [180].

In fact what is often observed is a volatility smile [118], where the implied volatility

changes with resect to the moneyness and time-to-maturity of an option. To try and

capture this behaviour stochastic volatility (SV) models are used.

More complex models which incorporate stochastic volatility are given in the

form of

dSt = µtStdt +
√

vStdW (1)
t (4.1)

dvt = α(St ,vt , t)dt +νβ (St ,vt , t)
√

vtdW (2)
t , (4.2)

where dW (1)
t and dW (2)

t t are two, possibly correlated, Brownian motions. In these

cases the inverse problem for parameter estimation as simple as the BS case. These

models have more than just one parameter that needs to be estimated, additionally

these parameters can interact and influence each other, consequently this means a

unique solution for the implied parameters not may exist. The Heston model [4] is

the most popular SV model and uses a correlated mean reverting process to model

4.2. Heston Model Calibration 109

the volatility of the underlying asset:

dvt = κ(v̄− vt)dt +σ
√

vtdW (2)
t (4.3)

dW (1)
t dW (2)

t = ρdt. (4.4)

The price of a European call option, C, for asset price, S, strike price, K, and time-

to-maturity, τ , calculated by the Heston model is

C(S,K,τ) = SP1− e−rτKP2 (4.5)

where P1 and P2 are the in-the-money probabilities Pj = Pr(ln(S) > ln(K) but ob-

tained under different measures. The Heston model’s popularity stems from the fact

that this model has a known analytical form of the characteristic function [4] (cf) of

the probability distributions Pj. To evaluate the Heston option price it only requires

numerical integration of the complex integrals of Pj.

The Heston model requires five parameters to be calibrated: κ , the mean-

reversion rate; v̄, the long-term variance; σ , volatility of volatility; ρ , the correlation

between the two Brownian motions W (1)
t and W (2)

t , and finally v0, the initial value

of the volatility.

4.2 Heston Model Calibration
When calibrating the Heston model a simple analytical form of the inverse prob-

lems does not exist, therefore numerical minimisation/optimisation techniques are

required. These methods are used to minimise a loss function between a set of

observed market prices and parameterised model prices, where the algorithms are

used to search over the 5D model parameter space. Let C = {Ci(τ,K)} be the set

of observed market prices for a set of options at a fixed time with varying time to

maturity τ ∈ {τ1...τT} and strikes K ∈ {K1...Kk}, then the objective is to find the

set [v0,θ ,ρ,κ,σ] s.t.

argmin ‖Ĉ(v0,θ ,ρ,κ,σ)−C‖ (4.6)

110 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

Two assumptions are made, the first is that the market prices represent a unique

solution for the parameterisation of the Heston model, and second, in the use case

of some algorithms, is the search space is globally convex. There is debate as to

the nature of the Heston calibration surface, whether it is globally convex or not.

In some instances studies report the existence of local minima [179] [181] [182],

but whether this an artefact of inadequacies in the optimisation method used or is

characteristic of the search space is another question. Cui at al [127] use a new form

of the analytical derivative to analyse the calibration space and determine that the

structure is a narrow long valley with a flat basin for the optimal parameter set and

that there is no evidence of local optimum. In respect to the artificial benchmark

functions previously discussed this can be view as similar to the shifted Rosenbrock

function, f’052. Other factors to be considered when calibrating the Heston model

are: calibration is sensitive to the loss function; pricing method; and the initial guess

for starting values used in some minimisation algorithms [119].

When using gradient-decent based numerical optimisation approaches the

methods can be slow and inefficient because the analytical derivatives are unknown

and have to be computed numerically. Recently, Cui et al [127] has overcome the

inefficiency of calculating the derivatives by using a new formulation of the He-

ston characteristic function, this allows them to obtain an analytical form of the

Heston parameter derivatives which only requires numerical integration to be eval-

uated. This method represents the forefront of Heston model calibration in terms of

speed and efficiency. Though, the method of Cui et al [127] is limited to the Heston

model. In the case of more elaborate SV models [6] this method cannot be applied;

for theses cases numerical optimisation techniques provide a more generalised and

flexible approach for model calibration.

The other issue when using unconstrained minimisation algorithms, such as

Nelder-Mead or Levenberg-Marquadt, is that they are dependant on an initial guess

of the solution [183]; this requires past experience and judgement of the practitioner

which questions the robustness of these methods of calibration [184]. A more ana-

lytical approach is the Smart Parameter method introduced by Gauthier [183] where

4.2. Heston Model Calibration 111

an initial guess for ρ and σ are made by solving a simultaneous equation of two sim-

ilar put options, although there is no guarantee on the robustness of this approach.

In the EA-hybrid approach by Gilli et al [185] the PSO and DE population are used

to provide initial starting guesses for Nelder-Mead minimisation which eliminates

the need for any user input and proves to be more efficient and accurate than either

of the approaches used individually.

As an alternative to unconstrained minimisation techniques meta-heuristic op-

timisation algorithms, such as EAs provide an appealing alternative. Firstly they

do not require any additional information about the function i.e. derivative calcula-

tions, or rely on an initial guess of the solution, and as has been shown these algo-

rithms can efficiently explore over intricate search space landscapes. Even though

when compared to unconstrained minimisation algorithms EAs are more costly in

terms of computational runtime the parameter estimations are more accurate and

consistent [119]. Moreover, these methods provide an easy to implement and more

flexible approach for model calibration.

4.2.1 Heuristic Calibration Methods

Evolutionary algorithms such as particle swarm optimisation and differential evo-

lution have previously been used as methods to calibrate the Heston model [186]

[183] [119] [185] [185] [187]. In one of the first approaches for applying DE to He-

ston model calibration Vollrath et al [186] apply DE/rand/1/bin and use parameter

settings N = 15D, CR = 0.5, and F = 0.8. When compared against Levenberg-

Marquardt (LM) and Downhill Simplex (DS), despite the DE taking 1093s com-

pared to 76s for LM, the error norm was 1000x smaller compared to DS whilst

LM completely failed. Further experiments found it took 200 generations, which

at the time took 20 minutes on their computing architecture, for DE to converge

to a stable optima. Gauthier et al [183] find that comparing their smart parame-

ter estimation combined with LM is over 100x faster than DE to acheive the same

level of accuracy. These results suggests that DE is capable of achieving at least

the same level of accuracy as gradient-decent methods but has the disadvantage of

being computationally slower.

112 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

Gilli et al [185] further investigate the use of evolutionary optimisation algo-

rithms both DE and PSO for calibrating the Heston and Heson-Bates options pric-

ing models on artificial test data. They use DE/rand/1/bin, and PSO-gBest, and they

also investigated the use of hybrid algorithms by incorporating local Nelder-Mead

(NM) searches into the EAs. In these hybrids, after every 3 iterations members of

the population would be selected to be used as the initial guess for the NM search.

The motivation behind this approach is that although EAs have good global search

abilities, convergence can be slow and assuming there is either non or very few local

minima using NM can speed up convergence towards the global optimum. They find

that for all the number of fitness evaluations (1250, 5000 and 20000) the solutions

of all the algorithms give a pricing error of < 1% for the calibrated Heston model,

and after an extended number fitness evaluations they all converge to the exact pa-

rameter set. The hybrids outperformed the regular EAs, with PSO being the worse,

calibration using only DE was only slightly worse than using the hybrid DE-NM

algorithm. For the more elaborate Heston-Bates model [6], calibration results were

not as good as for the basic Heston model, this is due to a higher degree of interac-

tion between the Heston-Bates parameters resulting in a more heavily multi-modal

search space.

Haring [187] et al diverge from the use of either DE or PSO and focus on

using the Cuckoo Search (CS) algorithm, this is most similar to BBPSO using a

Levy distribution, for calibrating American style options under the Heston model.

They find convergence is achieved after around 400 iterations, which corresponds

to approximately 8000 fitness evaluations, although there is no context for these

results with respect to comparison against other known algorithms.

It can be seen that even with the use of hybrid algorithms the fundamental

DE and PSO algorithms used in the calibration literature are extremely rudimentary

with respect to the EA literature. Consequently EAs are not being best represented

in this application, and although previous studies show potential of EAs it may be

that more advanced variants of these algorithms can result in better performance,

i.e. higher accuracy with fewer fitness evaluations. The popularity and use of state-

4.3. Evolutionary Algorithms Investigated 113

of-the-art EAs remains largely confined to those in the field of EA research. This

work aims at comparing the use of more advanced EA algorithms that are available

from literature, as well as the newly introduced BrPSO algorithm (see Chapter 3),

for calibrating the Heston model.

4.3 Evolutionary Algorithms Investigated
There are numerous variations of PSO and DE algorithms within the literature as

has previously been discussed in Section 2.1. Here it has been choose to investi-

gate the use of some of the more popular variations which have been used in other

comparative studies [32] [73]. The full list of EAs used here is given in Table 4.3.

The PSO algorithm used for Heston calibration by Gilli et al [185] was the

basic PSO-gBest, for which they use an inertia coefficient with the velocity update

rather than a constriction factor. Constriction factors have been shown to improve

performance [19] making PSO-gBest with constriction factor (PSO-gBest-cf) one

of the algorithms tested. Further to adding a constriction factor it is known that

using local topologies can help avoid local minima (if any exist in this case) and also

test the slightly less rudimentary PSO-lbest-cf with ring topology. Furthermore, the

popular PSO variants used in the comparative study [32] are also tested.

In addition to these popular PSO variants the use of the newly introduced

Breeding particle swarm optimisation algorithm (BrPSO) is used. Given that this

problem is essentially unbounded, as only an initial domain can be guessed and the

solution may exist outside of the initial domain. BrPSO and BrPSO-SAM pro-

vide hopeful prospects as they have shown exceptional searching capability for

unbounded domains and fast global convergence for unimodal problems (Section

3.4.1).

For the DE algorithms, first of all the DE/rand/1/bin which is used by both

Vollrath [186] and Gilli [185] is tested. Given that it is known that the Heston

parameters can influence each other, this corresponds to a rotated problem, as such

the use of exponential crossover is tested using DE/rand/1/exp. Finally, from the

literature it is clear that SHADE and L-SHADE [73] are currently the best DE

114 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

Algorithm Description
Particle Swarm Optimisation (PSO)

PSO-gBest [8] Global best PSO variant used for calibration by Gilli et al [185].
PSO-gBest-cf [19] Global best PSO with constriction factor.
PSO-lBest-cf [19] Local best PSO using ring topology and constriction factor.
CLPSO [32] Comprehensive Learning PSO, using an exemplar based velocity

update equation.
CPSO [43] Cooperative PSO, uses sub-swarms for each search dimension.
wFIPS [31] Fully informed PSO uses a velocity based on weighted contribu-

tion of the whole local neighbourhood.
UPSO [30] Unified PSO uses a linear combination of global and local best

learning.
FDR [45] Fitness-distance-ratio PSO, uses a velocity term based on max-

imising the fitness-distance ratio,
BrPSO(0,0) Hybrid PSO with binomial crossover without mutation.
BrPSO-SAM Hybrid PSO using crossover with self-adaptive linear mutation.

Differential Evolution (DE)
DE/rand/1/bin [53] Basic DE with random parent mutation and binomial crossover,

used for calibration by Vollrath et al [186] and Gilli et al [185]
DE/rand/1/exp [53] Basic DE with random parent mutation and exponential

crossover.
jDE [76] DE/rand/1/bin, using an adaptive control parameter search.
JADE [78] Historical p-best mutation using an external archive.
SHADE Adaptive control parameters using a historical external archive.
L-SHADE [73] SHADE with linear decreasing population.

Local Search Hybrid
PSO-gBest-NM [185] Global best PSO with Nelder-Mead local search, used for calibra-

tion by Gilli et al [185].
DE/rand/1/bin-NM [185] Basic DE with Nelder-Mead local search, used for calibration by

Gilli et al [185].
L-SHADE-NM L-SHADE with Nelder-Mead local search, introduced in this

work.
PSO-L-SHADE-NM Initial PSO-gBest-NM with switching to L-SHADE-NM, intro-

duced in this work..

Table 4.1: Full list of the evolutionary algorithms used in this work for calibrating the He-
ston model. A more detailed description of these algorithms can be found in
Section 2.1.

4.4. Methodology 115

algorithms [188], these are used along with two other popular adaptive DE variants,

jDE [76] and JADE [78].

Following Gilli et al [185] the hybrid versions of the PSO-gbest and

DE/rand/1/bin algorithms with a Nelder-Mead (NM) local search are also used

for comparison. These hybrids use a local search are every 10 PSO/DE iterations

and use the top three fittest population members as the starting points for the local

search, these population members are then updated accordingly with respect to the

local search results. In addition to the hybrids introduced by Gilli et al, two new

hybrids are proposed in Section 4.6: L-SHADE-NM and PSO-L-SHADE-NM.

4.4 Methodology
The calibration problem is setup using an artificial data set of option prices as the

target calibration price surface, C. The target option prices of the calibration surface

are generated using the Heston model price equation with a known set of predeter-

mined model parameters. The same parameter sets and experimental setup as Gilli

et al [185] is used. Using an artificial data set makes it possible for the calibrations

to find exact parameter settings for the Heston model and allows for direct inter-

pretation of the quality of the calibration results. Table 4.2 gives the parameter sets

used for the ten Heston calibration experiments.

Set 1 2 3 4 5 6 7 8 9 10√
v0 0.3 0.3 0.3 0.4 0.2 0.5 0.6 0.7 0.8 0.3√
θ 0.3 0.3 0.2 0.2 0.4 0.5 0.3 0.3 0.3 0.2

ρ -0.3 -0.7 -0.9 -0.5 -0.5 0 -0.5 -0.5 -0.5 0.0
κ 2.0 0.2 3 0.2 0.2 0.5 3.0 2.0 1.0 3.0
σ 1.5 1.0 0.5 0.8 0.8 3.0 1.0 1.0 1.0 0.5

Table 4.2: The ten parameter sets used to generate the artificial calibration surface data for
the Heston model, these are the same as used in [185].

The calibration surface, C, is comprised of 147 call options, C(τ,K), taken over a

grid of strike prices, K, and maturity times, τ , these are again the same as used in

[185], τ ∈ { 1
12 ,

3
12 ,

6
12 ,

9
12 ,1,2,3}, K ∈ {80,82...120}, with a spot price of S0 = 100

and interest rate r = 0.02.

116 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

4.4.1 Loss Function

The objective of the optimisation algorithms is to minimise the error between the

calculated call prices using the parameterised Heston model with parameters found

from the search space and the equivalent set of known prices given by the calibration

surface, C. Following the methodology of Gilli et al [185] the fitness function of an

EA population member, xi ∈ R5, is measured as the sum of the relative errors

fit(xi) = ∑
t

∑
k

|Ct,K(xi)−Ct,K(Pp)|
|Ct,K(Pp)|

, (4.7)

where Pp, p ∈ {1,2 . . .10}, is one of the predetermined parameter sets used to gen-

erate the calibration surface for each experiment given in Table 4.2. It should be

noted that in the denominator the absolute value is taken, this is due to the possibil-

ity of negative prices occurring from the numerically generated calibration surface.

Without taking the absolute value, following the original experimental design by

Gilli et al [185], it was found here that this could lead to problems of creating neg-

ative fitness values creating unstable calibrations. In practical applications negative

prices do not occur and hence taking the absolute of the denominator is not usually

required.

The error norm, ε , of the calibrated parameter set, xopt, is given by the Euclid-

ian distance with respect to the known parameter set used to generate the calibration

surface and the optimal set found by the algorithm a,

ε(xopt)
a
p = ‖xopt−Pp‖2. (4.8)

4.4.2 Additional Considerations

With respect to pricing options under the Heston model there are many factors and

variations to consider, to provide full clarity of the experimental setup specifics of

the pricing methodology used here are noted.

4.4. Methodology 117

Heston Characteristic Function

There are many forms of the Heston characteristic function [4] [121] [122] [123]

[124] [125], the pricing in this work uses the formulation of Albrecher’s Little Trap

[123]. This is shown to give more numuerically stable results for the integration than

the original characteristic function posed by Heston [4]. Albrecher et al [123] use

a mutliplative factor to separate the characteristic function into a more numerically

stable form. The characteristic function is calculated as:

f = eA+B+C (4.9)

d =
√

(ρσ iω−κ)2 +σ2(iω +ω2)

g =
(κ−ρσ iω−d)
(κ−ρσ imω +d)

A = iω(log(S)+(r−q)τ)

B = vt
κ

σ2 ((κ−ρσ iω−d)τ−2log(
1−ge−dtau

1−g2
)

C =
v0

σ2
(κ−ρσ iω−d)(1− e−dτ)

(1−ge−dτ)

where ω is the domain of integration.

Numerical Integration

The numerical integration scheme can effect both the accuracy the runtime perfor-

mance of the optimisation algorithm. With respect to pricing method Rouah [119]

tests the fast-fourier-transform (FFT) against Gauss-Legendre integration for pa-

rameter estimation, FFT shows a marginally better errors. However, when tested

with EAs for calibration Gilli et al [185] found that there is little difference be-

tween the integrations schemes used, though, in Section 4.8 it will be seen how

observed local minima can be an artefact of the integration scheme used.

In this work a 16-point Gauss-Legendre (GL-16) scheme is used. The integra-

tion of the characteristic function is performed over the domain of ω ∈ [0,b], where

b is sufficiently large enough that the integration stabilises. To reduce the number

of calculations required during numerical integration of the probabilities P1 and P2

118 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

the Strike Vector method [189] can be used.

Strike Vector Computation

One of the major drawbacks of heuristic methods is the number of times the fit-

ness function needs to be evaluated. To speedup computation the Strike Vector

method [189] is used. This is a simple computational strategy that reduces the num-

ber of times the probability density function (PDF) needs to be computed. The PDF

is not dependant on the strike price K, hence for all options with the same matu-

rity the PDF only needs to be computed once. When using numerical integration

schemes such as Gauss-Legendre the PDF is computed once for each point of in-

tegration for each maturity time. Algorithm 4.1 shows the Strike-Vector method

applied with numerical integration for pricing a grid of options over a set of matu-

rities τ ∈ {τ1 . . .τT} and strikes k ∈ {k1 . . .kK}.

Algorithm 4.1 Strike Vector Method for Heston Call Prices

Calculate vector of integration points and weights ω ,w
for τ ∈ {τ1 . . .τT} do

Calculate vectors of characteristic function integrands, cf1(ω,w) and cf2(ω,w)
for k ∈ {k1 . . .kK} do

Calculate integrals P1(cf1,ω,w,S,k,τ,r) and P2(cf2,ω,w,S,k,τ,r)
C(τ,k) = SP1− e−rτKP22;

end for
end for

4.5 Results and Discussion
Firstly the global best parameter estimations will be discussed, this looks at the

errors of the parameter estimations achieved after an excessive 20,000 fitness eval-

uations. This gives an indication of the overall potential of how well an algorithm

can perform given an excess of time and it’s potential for much harder problems,

but in practice computation regarding the number of fitness evaluations is often lim-

ited and only a certain level of accuracy for the parameter estimations need to be

achieved. The second part of the discussion looks at the performance of the algo-

rithms from this more practical standpoint, the number of fitness evaluations are

limited to 1000 and 5000, and also how many fitness evaluations it takes to achieve

4.5. Results and Discussion 119

a practical level of accuracy for the parameter estimations. Before proceeding with

the discussions the metrics used to to evaluate the algorithms performances are in-

troduced.

4.5.1 Error Measures

To compare the performance, which here refers to the accuracy of the parameter

estimations, of the EA algorithms the error-norms of N independent runs for each

parameter set are aggregated. Two methods are used to aggregate the results of the

N runs, the first is the simple mean and the second is the 75% quantile, Q75. It

is proposed in [190] that using quantiles provides a more robust measurement of

a stochastic search algorithms performance because it gives a probability bound of

the expected algorithms performance, and unlike the mean it is less biased by large

outlier values. For algorithm a for parameter set p and with runs n ∈ {1,2 . . .N} the

overall performance is measure as:

Ea
p,mean =

1
N

N

∑
n=1

ε
a
p,n (4.10)

Ea
p,Q75

= ε s.t. Pr(εa
p,n < ε) = 0.75, (4.11)

where ε is the parameter estimation error norm given in Equation 4.8.

Three separate metrics are used to aggregate the performance of an algorithm

across all experimental parameter sets. The first is the simple mean, but given the

large range of magnitudes of the error measures across all parameter sets this value

to expected to be highly biased, although it does give an indication of overall reli-

ability if the standard deviation is low enough. The second metric is the log-mean,

which is calculated by taking the mean of the log10 error measures, this gives a more

balanced aggregation across a wide range of magnitudes. Finally, the standardised-

log-mean (SLM) is used; firstly for each experimental parameter set the log10 er-

ror measures for each algorithm are normalised such that the distribution of error

measures for each parameter set have a mean µlog10,p = 0 and standard deviation

σ2
log10,p

= 1; this gives a relative metric of how well each algorithm performs with

respect to the mean performance of all algorithms on a given parameter set. The

120 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

final metric is then the sum of the SLM over all parameter sets for the given algo-

rithm. The three metrics for the overall performance, Ma, of algorithm a over all P

number of experimental parameter sets are

Ma
mean =

1
P

P

∑
p=1

Ea
p (4.12)

Ma
log-mean =

1
P

P

∑
p=1

log10(E
a
p) (4.13)

Ma
slm =

P

∑
p=1

log10 Ea
p−µlog10,p

σ2
log10,p

. (4.14)

where the error measure Ea
p can either be the mean or 75% quantile given in Equa-

tions 4.10 and 4.11 respectively.

4.5.2 Global Best Estimations

Here the overall best performance of the algorithms are evaluated. Table 4.3 gives

the 75% quantile, Q75, and the mean error-norms for each of the algorithms over 30

independent runs for each experimental parameter set after 20,000 fitness evalua-

tions, from this the maximum capability of the algorithms can be assessed. It should

also be noted that the discussions exclude the results of parameter set 2 for which

all algorithms find large local optimum, this is discussed in more detail in Section

4.8

PSO Performance

First of all it can be seen that the DE algorithms provide far more accurate solutions

than the majority of PSO algorithms. The more advanced PSO algorithms perform

relatively poorly, whilst the simpler PSO algorithms give more accurate and con-

sistent results across all parameter sets. Of the advanced PSO algorithms it is sur-

prising to see that CLPSO, even though performing extremely well on the DeJong

and CEC benchmark functions [32] [90], fails to provide any significant results in

this application, showing respectively large error norms of order of 10−1-10−2 for

all parameter sets. CPSO and CLPSO are both the worst of all the algorithms tested

here, both show high log-means of close to 0 and SLMs close to 1, meaning that on

4.5. Results and Discussion 121

75% Quantile Euclidian distance (Ea
p,Q75

)

1 2 3 4 5 6 7 8 9 10
PSO-gB 4.72e-03 3.04e+00 6.10e-03 2.03e-04 2.58e-03 1.10e-01 6.48e-02 5.64e-02 1.15e-01 2.70e-01
PSO-gB-cf 5.45e-06 3.58e+00 1.19e-05 3.21e-09 4.50e-07 3.40e-02 1.46e-02 3.60e-03 7.49e-02 2.21e-01
PSO-lB-cf 1.69e-03 4.11e+00 1.39e-03 2.35e-06 1.53e-04 1.63e-01 7.87e-02 4.32e-02 1.26e-01 1.77e-01
BrPSO 3.58e-09 4.47e+00 4.00e-08 3.84e-12 1.91e-10 3.41e-03 8.49e-04 4.64e-05 4.20e-03 5.27e-02
BrPSOSAM 1.69e-05 2.67e+00 9.45e-06 1.32e-08 1.25e-06 3.26e-02 1.18e-02 5.14e-03 7.11e-02 2.35e-01
CLPSO 4.38e-01 4.15e+00 4.37e-01 1.95e-01 9.35e-02 7.32e-01 3.78e-01 3.58e-01 2.98e-01 5.43e-01
CPSO 1.72e+00 3.51e+00 2.39e+00 1.85e+00 2.61e-01 2.15e+00 9.46e-01 1.89e+00 1.57e+00 1.19e+00
UPSO 9.53e-03 4.44e+00 1.63e-02 2.27e-06 4.62e-04 2.55e-01 1.56e-01 8.12e-02 1.87e-01 3.31e-01
wFIPS 7.17e-02 4.89e+00 4.77e-02 1.07e-02 9.62e-03 4.69e-01 2.67e-01 9.44e-02 1.32e-01 1.64e-01
FDR 2.44e-03 3.31e+00 1.28e-03 1.94e-05 1.16e-04 1.13e-01 5.86e-02 4.49e-02 1.30e-01 2.28e-01
DE/r/1/b 6.48e-05 2.33e+01 7.92e-05 1.04e-05 5.82e-06 7.02e+01 5.01e-05 8.72e-06 1.64e-05 3.88e-05
DE/r/1/e 6.34e-05 1.39e+01 7.38e-05 1.72e-05 9.45e-06 7.00e+01 4.90e-05 2.25e-05 2.42e-05 3.84e-05
JADE 7.70e-12 3.90e+00 4.53e-12 9.02e-12 1.52e-12 2.77e-09 1.03e-11 9.84e-13 6.98e-13 2.83e-12
jDE 2.70e-08 1.66e+00 3.60e-08 1.75e-08 1.27e-08 1.11e-02 5.40e-06 2.73e-08 3.84e-08 1.11e-07
SHADE 2.31e-12 3.59e+00 5.30e-12 2.03e-12 5.93e-13 9.37e-11 7.78e-12 1.57e-12 2.59e-12 1.59e-12
L-SHADE 5.99e-13 2.77e+00 1.04e-12 4.00e-13 3.06e-14 1.22e-12 4.59e-15 2.67e-14 2.50e-14 2.71e-14
PSO-gB-NM 3.16e-05 4.26e+00 1.33e-05 3.89e-05 2.19e-05 3.06e-05 4.61e-05 2.92e-05 3.79e-05 3.23e-05
DE/r/1/b-NM 2.99e-05 7.42e+00 2.47e-05 6.86e-05 2.34e-05 2.48e-05 8.18e-05 4.13e-05 3.23e-05 4.72e-05

Mean Euclidian distance (Ea
p,mean)

1 2 3 4 5 6 7 8 9 10
PSO-gB 4.02e-03 2.61e+00 4.05e-03 1.80e-04 1.63e-03 8.52e-02 5.07e-02 3.54e-02 8.37e-02 2.07e-01
PSO-gB-cf 7.56e-05 2.77e+00 2.06e+00 2.41e-09 5.22e-07 2.65e-02 9.34e-03 3.55e-03 4.86e-02 1.40e-01
PSO-lB-cf 1.27e-03 2.64e+00 1.04e-03 2.40e-06 1.28e-04 1.33e-01 5.56e-02 3.00e-02 9.39e-02 1.04e-01
BrPSO 5.32e-07 2.62e+00 3.17e+00 2.08e-12 1.75e-10 1.80e-03 5.06e-04 4.18e-05 2.73e-03 3.38e-02
BrPSOSAM 2.20e-05 1.91e+00 1.43e-05 1.28e-08 1.27e-06 1.28e+00 7.42e-03 5.53e-03 5.77e-02 1.38e-01
CLPSO 2.73e-01 3.35e+00 3.06e-01 1.90e-01 6.51e-02 5.15e-01 3.02e-01 2.09e-01 2.21e-01 3.44e-01
CPSO 1.25e+00 2.43e+00 1.77e+00 8.03e-01 3.94e-01 1.81e+00 9.15e-01 1.45e+00 1.08e+00 7.86e-01
UPSO 6.30e-03 3.43e+00 1.47e-02 5.26e-06 4.96e-04 2.17e-01 1.06e-01 4.87e-02 1.40e-01 1.95e-01
wFIPS 5.46e-02 3.58e+00 3.80e-02 6.56e-03 6.10e-03 3.95e-01 2.19e-01 7.94e-02 9.68e-02 1.27e-01
FDR 1.81e-03 2.29e+00 8.80e-04 1.52e-05 1.40e-04 9.53e-02 4.39e-02 2.68e-02 9.18e-02 1.52e-01
DE/r/1/b 4.45e-04 1.82e+01 1.63e+01 2.23e-05 5.21e-06 5.59e+01 3.28e-05 8.40e-06 1.36e-05 2.80e-05
DE/r/1/e 1.27e-03 9.50e+00 3.11e-01 1.17e-04 8.72e-06 4.67e+01 3.79e-05 1.90e-05 1.69e-05 2.83e-05
JADE 9.47e-12 2.37e+00 4.16e-12 1.16e-11 3.98e-12 1.78e-04 1.25e-11 2.51e-12 7.63e-13 2.37e-11
jDE 2.27e-08 1.04e+00 3.05e-08 2.00e-08 8.19e-09 5.70e-03 5.39e-06 3.01e-08 1.18e-07 2.80e-07
SHADE 2.33e-12 1.69e+00 4.01e-12 1.34e-12 5.45e-13 2.36e-10 5.77e-12 9.39e-13 1.75e-12 1.78e-12
L-SHADE 4.77e-13 1.42e+00 8.35e-13 2.60e-13 1.72e-14 8.24e-13 2.31e-14 2.40e-14 1.61e-14 1.94e-14
PSO-gB-NM 1.72e-05 2.42e+00 9.31e-06 2.77e-05 1.58e-05 2.22e-05 4.07e-05 2.09e-05 2.55e-05 2.51e-05
DE/r/1/b-NM 2.24e-05 6.51e+00 1.98e-05 5.24e-05 1.62e-05 1.87e-05 6.38e-05 3.32e-05 2.48e-05 3.05e-05

Table 4.3: The 75% quantile and mean (respective standard deviations can be found in
Table C.1) of the Euclidian distances between the parameter sets found by the
EAs and the known optimal parameter set (1-10).

Mean Q75 Rank
Mean Log Mean SLM Mean Log Mean SLM Mean Std

PSO-gB 5.25e-02 -1.65 0.54 7.00e-02 -1.52 0.56 13.17 2.32
PSO-gB-cf 2.54e-01 -2.65 0.28 3.87e-02 -3.20 0.14 10.00 1.79
PSO-lB-cf 4.66e-02 -2.06 0.43 6.56e-02 -1.94 0.49 11.17 1.72
BrPSO 3.57e-01 -4.12 -0.11 6.80e-03 -4.99 -0.28 7.17 3.92
BrPSOSAM 1.65e-01 -2.94 0.17 3.96e-02 -3.06 0.13 9.33 1.75
CLPSO 2.69e-01 -0.51 0.86 3.86e-01 -0.36 0.90 16.17 1.33
CPSO 1.14e+00 0.05 0.96 1.55e+00 0.17 1.01 17.33 1.03
UPSO 8.09e-02 -1.66 0.57 1.15e-01 -1.58 0.60 13.50 1.87
wFIPS 1.14e-01 -1.06 0.73 1.41e-01 -0.94 0.78 14.83 2.04
FDR 4.58e-02 -1.99 0.43 6.42e-02 -1.87 0.48 10.83 2.32
DE/r/1/b 8.02e+00 -2.80 0.53 7.80e+00 -3.38 0.42 13.00 4.20
DE/r/1/e 5.22e+00 -2.82 0.44 7.78e+00 -3.31 0.36 12.33 3.78
JADE 1.97e-05 -9.34 -1.38 3.12e-10 -10.00 -1.51 3.00 0.00
jDE 6.34e-04 -5.94 -0.65 1.24e-03 -5.96 -0.64 4.67 1.03
SHADE 2.83e-11 -10.33 -1.69 1.30e-11 -10.26 -1.59 2.00 0.00
L-SHADE 2.77e-13 -11.74 -2.07 3.75e-13 -11.67 -1.97 1.00 0.00
PSO-gB-NM 2.27e-05 -4.17 -0.10 3.13e-05 -4.01 0.00 5.17 0.98
DE/r/1/b-NM 3.13e-05 -4.01 0.07 4.16e-05 -3.89 0.11 6.33 1.03

Table 4.4: Total error measures, mean, log mean and standardised log mean (SLM) and
average rank, over all the parameter sets, for both the mean and 75% quantile
errors in Table 4.3 (respective standard deviations can be found in Table C.2).

122 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

average they are one standard deviation worse than the average performance of all

the algorithms tested. Slightly better are UPSO, FDR and wFIPS, they all perform

very similarly but UPSO and FDR show the better performance for parameter sets

4 and 5 with error-norms of order 10−6-10−5, and FDR shows marginally better

overall performance out of the three with the lowest SLMs.

The best overall performing PSO algorithms are the two BrPSO algorithms,

with BrPSO (not mutation) being better than BrPSOSAM. Even though the mean-

error-norm metrics are high, due to one large outlier in each case skewing the re-

sults, occurring in sets 3 and 6 respectively, the negative SLM for BrPSO shows

that overall it performs better than average. BrPSO performs better than all PSO

algorithms on every parameter set, and for sets 1,3,4 and 5 it performs similar to the

state-of-the-art DE algorithms with error-norms of order 10−8−10−12, but it is seen

to find sets 9 and 10 the hardest. BrPSOSAM, shows the same pattern of perfor-

mance for each of the parameters set but is always a couple of magnitudes worse that

the BrPSO error-norms. The core BrPSO behaviour is the same for each algorithm,

this shows that in this application the self-adaptive behaviour in BrPSOSAM slows

down the convergence of the BrPSO algorithm. Comparing this observation with

previous results, when using BrPSO on benchmark optimisation function, hints that

the search landscape has a low-degree of modality and is close to being unimodal,

which favours the faster converging BrPSO with no mutation.

Surprisingly the basic PSO algorithms do extremely well compared to their

more advanced counterparts, PSO-gBest-cf for the Q75 values it has a low log-mean

of -3.20 and SLM=0.14, with the closest other PSO algorithms, excluding BrPSO,

are PSO-lBest-cf and FDR with log-means of around -1.8 and SLMs of 0.48. The

performance of PSO-gBest-cf is similar to BrPSOSAM but not as good as BrPSO;

this is not too surprising because BrPSO used PSO-gBest-cf as the base algorithm

but then enhances the exploration and exploitation by using crossover. Both PSO-

gBest and PSO-lBest-cf have similar performance with PSO-lBest-cf being slightly

better with lower log-mean. Compared to PSO-gBest-cf both of these algorithms

have slower convergence, PSO-gBest because it does not use a constriction factor,

4.5. Results and Discussion 123

and PSO-lBest-cf because of the weaker information sharing topology, this further

supports previous claims that in this application faster converging algorithms per-

form better.

Overall the PSO algorithms show relatively disappointing performance, ex-

cluding BrPSO and PSO-gBest-cf. This could partially be because the majority of

PSO algorithms have been developed for multi-modal functions, such as CLPSO,

whilst in this application there is growing evidence to support that the Heston cali-

bration search landscape has low modality and that simplicity prevails. In addition

this also shows there is a need for a more versatile and adaptive PSO algorithm

to provide a robust optimiser for all applications; BrPSOSAM provides this per-

forming well on the multi-modal test functions but also being able to adapt for

applications such as here.

DE Performance

Comparing the basic variations of the two EA families, PSO-gBest-cf and

DE/rand/1/*, looking at the mean error metrics both DE algorithms are two magni-

tudes larger than the PSO means which is caused by DE/rand/1/* poor performance

for parameter set 6, furthermore the Q75 results indicate that this is not due to an

outlier. On the other hand the log-means are comparable between DE/rand/1/* and

PSO-gBest-cf, so although DE/rand/1/* has a large error for set 6, DE/rand/1/*

achieves similar or lower error-norms than PSO on the other sets. Compared to

PSO-gBest-cf excluding set 6 DE has performs more consistently of with error-

norms of around order 10−5 whilst PSO shows better performance for sets 1,4 and

5 but is significantly worse for sets 7,8,9 and 10.with error-norms of around 10−2.

Furthermore, it can be seen from the convergence plots in Figure 4.1 that the basic

DE shows slower initial convergence than the PSOs, but it is only for a high number

of fitness evaluations, (> 10000), that its convergence accelerates past PSO. Over-

all, based on the SLM and given that it was able to successfully optimise all the sets

compared to DE/rand/1/* PSO-gbest-cf is the more reliable optimiser.

Comparing the state-of-the-art DEs used here, jDE, JADE, SHADE and L-

SHADE, it is obvious that they all outperform all of the PSO algorithms. L-SHADE

124 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

is by far the best algorithm used and shows incredibly low and consistent final mean

error norms of order 10−13-10−14 for all parameter sets. It is also worth noting

that SHADE and L-SHADE are the only DE algorithms that show high levels of

performance on set 6, whilst jDE and JADE both show a lapse in performance with

mean error-norms of order 10−4-10−5. Set 6 shows a high level of variance for both

jDE and JADE, as well causing issues for the two basic DE algorithms, all of this

suggests that this set shows some sort of characteristic that is disruptive for DE but

perhaps less so for PSO, one possible situation could be a deceptive-function [86]

type shape where the local and global minimum are separated by a flat basin with

long steep sides.

Basic Hybrids

It should first be noted that this discussion excludes the use of new L-SHADE hy-

brids which are introduced later on. It can be seen from the convergence plots,

Figures 4.1, that the hybrid algorithms initial converge considerably faster than all

the other EA algorithms considered. Compared to their un-hybridised counter-parts,

the hybrid algorithm improves on the results of the PSO-gBest algorithm showing

that this additional convergence added by the Nelder-Mead search is beneficial, but

for DE/rand/1/bin the final error norms are around the same, although there is im-

provement for set 6. Overall hybridisation improves both PSO and DE algorithms.

The hybrids works well because the explorative behaviour of the EAs provide a

good starting points for Nelder-Mead local search to then refine, given the similar-

ity between the results of the two hybrids it shows that the local-search becomes

the dominant search behaviour and that the EAs both work as well as each other to

get the local-search to within the region of the global basin of attraction. However,

there is an exploration-exploitation tradeoff, in this case the use of the local-search

algorithm limits the exploration ability of the EAs and as can be seen in Figure 4.1

this results in the algorithms prematurely converging and the population stagnat-

ing too quickly. This means that the hybrid algorithms can not take advantage of

further exploration and refinement of solutions seen in L-SHADE and BrPSO algo-

rithms for larger numbers of fitness evaluations, and as a results the final parameter

4.5. Results and Discussion 125

estimations are not as good.

Summary

Overall it is clear that for highly accurate and reliable results L-SHADE is the best

algorithm to use and the advanced DEs are significantly better for this task, but

BrPSO is still highly competitive and is the best PSO method presented. The dis-

advantage of the DE algorithms are that they are slow to initially converge and

if fitness evaluations are limited the hybrid approaches may produce quicker and

still reasonably accurate parameter estimations. Based on the performance of the

algorithms considered it can be inferred that the search landscape is dominantly

unimodal [127]. Parameter sets 2 and 6, both proved difficult for all and most algo-

rithms respectively, which implies that in some situations the search space may not

be simply convex and could be multimodal with some prominent local minima.

(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

Figure 4.1: Convergence plots of the median calibration fitness for the each of the Heston
parameter set experiments.

126 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

(e) Set 5 (f) Set 6

(g) Set 7 (h) Set 8

(i) Set 9 (j) Set 10

Figure 4.1: cont. Convergence plots of the median calibration fitness for the each of the
Heston parameter set experiments.

4.5. Results and Discussion 127

4.5.3 Practical Parameter Estimations

The previous discussion focuses on the overall capability of the search algorithms,

however in practical applications the amount of computation allowed can be lim-

ited or only a certain level of precision for the parameter estimations needs to be

achieved.

Limited Fitness Evaluations

Table 4.5 show the Q75 error-norms when using less fitness evaluations. For lower

fitness evaluations of 1000 from the log-mean and SLM values it can be seen that

PSO-gBest and FDR actually perform the best out of all the PSO and DE algorithms,

showing that PSO has better initial exploratory behaviour. The best algorithm after

1000 fitness evaluations is the PSO-gBest-NM hybrid, which is able to take advan-

tage of the exploratory behaviour of PSO-gBest but is able to more efficiently refine

the solutions via the local search.

For 1000 fitness evaluations all the DE algorithms, except the SHADE algo-

rithms, perform extremely poorly with log-mean≈ 0.5, in comparison to the PSO

algorithms with log-mean ≈ 0.3. After 5000 fitness evaluations there is very lit-

tle change in the log-means for the jDE and JADE, DE/rand/1/* algorithms, whilst

most of the PSO algorithms move to negative log-means indicating that they have

located the global basin and are beginning to converge.

After 5000 fitness evolutions the characteristics of the behaviour described in

the previous section begin to show, with the exception of the poor DE performance,

the dominance of the L-SHADE algorithms begins to become clearer with a sig-

nificantly smaller log-mean of -2.1 compared to the best PSO at the time (BrSPO)

with a log mean of -0.80. However, the basic hybrids are still the best for a low

number of fitness evaluations and the values of L-SHADE and BrPSO do not com-

pare to the to two basic hybrids with log-means of -3, but as was previously seen

this results in premature convergence and the error-norms do not improve much

comparing between 5000 and 20000 fitness evaluations.

Overall it can be seen that for smaller number of fitness evaluations PSO finds

128 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

FE = 1000 FE = 5000
Mean Log Mean SLM Mean Log Mean SLM

PSO-gB 1.504 0.186 -0.962 0.556 -0.224 0.187
PSO-gB-cf 2.302 0.361 0.207 0.370 -0.501 0.009
PSO-lB-cf 1.988 0.294 -0.235 0.436 -0.354 0.105
BrPSO 2.117 0.313 0.074 0.223 -0.813 -0.167
BrPSOSAM 2.347 0.353 0.189 0.493 -0.309 0.060
CLPSO 1.938 0.309 -0.168 1.259 0.088 0.485
CPSO 2.468 0.386 0.303 2.191 0.322 0.631
UPSO 2.249 0.366 0.298 0.468 -0.308 0.209
wFIPS 2.049 0.327 -0.041 0.870 -0.035 0.383
FDR 1.555 0.194 -0.807 0.732 -0.124 0.293
DE/r/1/b 3.464 0.531 1.207 12.540 0.300 0.946
DE/r/1/e 3.301 0.523 1.184 11.572 0.253 0.827
JADE 3.413 0.538 1.147 3.100 0.496 0.800
jDE 3.554 0.554 1.248 3.178 0.504 0.804
SHADE 1.496 0.196 -0.757 0.056 -1.279 -0.559
L-SHADE 1.524 0.193 -0.743 0.019 -2.105 -1.230
PSO-gB-NM 1.111 0.052 -1.491 0.013 -3.327 -2.017
DE/r/1/b-NM 1.607 0.173 -0.653 0.013 -3.197 -1.769

Table 4.5: Error measures (mean, log mean, and standardised log mean; standard deviations
given in Table C.3) for the 75% quantile of the Euclidian distances between the
parameter sets found by the EAs and the known optimal parameter set (1-10),
over 30 independent runs for each algorithm. The number of fitness evaluations
are limited to 1000 and 5000.

better results than DE and shows that PSO has better initial exploration. From the

results using 20,000 fitness evaluations and from the convergence plots DE begins

to find better solutions with better exploitation later on, after around 7500-10,000

fitness evaluations. But it is clear that the hybrids, especially the PSO-gBest-NM

hybrid, are the best methods for low fitness evaluations, where the local search is

able to take advantage of the exploratory power of PSO; however this does come at

a cost of premature convergence.

Parameter Estimation Tolerance

In practice achieving extreme accuracy and exact values of the parameters is not of

interest and is not usually possible due to market noise, in these controlled setups it

is of course possible, as demonstrated by the results of L-SHADE. From practical

perspective it suffices to find the parameter estimations within a certain error toler-

ance. Table 4.6 gives the 75% quantiles for the number of fitness valuations used

to achieve parameter estimation with an error tolerance of ‖xa
opt−Pp‖∞ < 0.0005,

4.5. Results and Discussion 129

Fitness Evaluations
1 2 3 4 5 6 7 8 9 10

PSO-gB-cf 12950 n/a 12800 8200 10350 n/a n/a n/a n/a n/a
BrPSO 9238 n/a 9100 6650 7563 15300 16175 14900 15800 n/a
BrPSOSAM 14050 n/a 14150 9500 12000 n/a n/a n/a n/a n/a
DE/r/1/b 15750 n/a 15600 14038 13300 n/a 15663 13813 14525 14625
DE/r/1/e 14863 n/a 16063 14950 13525 n/a 16050 14550 14500 15425
JADE 14313 n/a 14550 13100 14975 18550 15488 14575 14650 16550
jDE 15500 n/a 15950 14075 16213 n/a 17475 14900 15050 15313
SHADE 6888 15725 6850 7300 6550 9800 7675 6700 6838 6800
L-SHADE 5500 10800 5250 5500 5138 7425 6300 5313 5150 5263
PSO-gB-NM 3522 n/a 3705 3758 2704 11712 5107 2703 3674 4656
DE/r/1/b-NM 3674 n/a 4682 4701 2902 11737 5681 2903 3702 4696

Table 4.6: 75% Quantile for the minimum number of fitness evaluations finding parameter
estimations, xi, of parameter, pi, with absolute error |xi− pi| < 0.0005 for all
five parameters, n/a indicates this level of accuracy was not achieved.

i.e. each parameter is accurate up to at least three decimal places. Table 4.6 given

for a limited set of algorithms, using the best algorithms from previous discussions,

where n/a indicates that the algorithm was unable to errors within the tolerance

level.

All of algorithms are able to find acceptable parameter estimations after around

10-15,000 fitness evaluations, although for sets 6-10 PSO-gBest-cf and BrPSOSAM

are not able to acheive this level of accuracy at all. DE/rand/1*, jDE and JADE

algorithms all require around 15,000 fitness evaluations showing that these DE al-

gorithms have slow initial exploration locating the global basin to exploit. BrPSO is

better than this DE algorithms requiring only between 7-9000 fitness evolutions for

sets 1,3,4 and 5. SHADE and L-SHADE show better and more consistent perfor-

mance requiring around 7000 and 5000 fitness evaluations respectively. L-SHADE

is also the only algorithm that is able to find acceptable parameters in the Q75 for

set 2. As previously seen, the hybrid algorithms converge the fastest, and are able

to find acceptable sets after around 3500-5000 fitness evaluations, PSO-gBest-NM

requires the lowest number of only 2700 fitness evaluations for sets 5 and 8.

Overall from a practical standpoint the basic hybrids, in particular the PSO-

gBest-NM hybrids require the least amount of fitness evaluations to acheive the

same level of acceptable accuracy, but L-SHADE also shows very good and consis-

tent performance requiring only 5000 fitness evaluations for most of the parameter

130 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

sets. The three main conclusions from the results are that the basic PSO algorithms

should good initial exploration but converge slowly, the hybrid methods also show

good initial convergence but quickly stagnate, whilst the DE algorithms are slow

during initial exploration but eventually show good exploitation and convergence;

as such an ideal EA for this application would combine all of these positive aspects,

to acheive this L-SHADE hybrids are explored.

4.6 L-SHADE Hybrids
Given the success of the hybrid methods for early evaluation and the individual suc-

cess of L-SHADE for overall optimisation, the same hybridisation method using

the Nelder-Mead local search has been introduced into the L-SHADE algorithm.

The combination of the two algorithms aims to provide the speed of initial con-

vergence seen for the hybrid methods, but eliminating the problems of stagnation

by using L-SHADE which sustains population diversity using the historical index

mechanism.

4.6.1 PSO-L-SHADE

It was observed that the L-SHADE-NM hybrid showed some improvements in ini-

tial convergence with respect to the L-SHADE algorithm but was still slower than

the original PSO and DE hybrids due to the larger diversity of the L-SHADE pop-

ulation. A second hybrid using PSO and NM is proposed, this algorithm combines

all three approaches demonstrated here: PSO; DE and Nelder-Mead, and uses their

observed advantages in a co-operative hybrid approach [132].

The hybrid algorithm runs with PSO-gBest-NM for the first 10 iterations to

provide the initial exploration and allowing for one NM local search at the end of

the PSO search. The PSO population is then used in L-SHADE-NM to complete

the optimisation. This hybrid takes advantage of PSO-gBests’ fast ability to locate

the global basin, and then uses L-SHADE-NM to refine the solution and preserve

population diversity. For L-SHADE-NM the frequency of the NM is exponentially

reduced following the sequence nm1 = 10, nmk = 2nmk−1.

As an example, Figure 4.2 show the convergence of the two L-SHADE hybrid

4.6. L-SHADE Hybrids 131

(a) Set 1 (b) Set 6

Figure 4.2: Fitness-Distance plots for the sets of Heston parameters used in the artificial
calibration.

1 2 3 4 5 6 7 8 9 10
L-SHADE 4400 11163 4250 4550 4238 6850 5200 4338 4200 4300
PSO-gB-NM 2704 n/a 3702 3707 2703 10971 4703 2101 2703 3705
DE/r/1/b-NM 2704 n/a 3739 3702 2703 10719 4693 2704 3702 3715
L-SHADE-NM 5000 n/a 4713 5182 3900 7600 5240 4400 4600 4700
PSO-LSHD-NM 1654 n/a 4368 2480 2419 9738 2708 1654 1653 2504

Table 4.7: 75% Quantile for the minimum number of fitness evaluations finding parame-
ter estimations, xi, of parameter, pi, with absolute error |xi− pi| < 0.0005, n/a
indicates this level of accuracy was not achieved.

methods for parameter sets 1 and 6. Compared to regular L-SHADE as expected,

the two hybrids show faster initial convergence but then begins to stagnate at the

same fitness as the original PSO and DE hybrids. Although improvements are seen

for just the L-SHADE-NM hybrid there initial rate of convergence still is not as fast

as the original hybrids and can be seen in Table 4.7, it takes longer to find acceptable

parameter estimations where |xi− pi| < 0.0005 for all parameters. When utilising

the initial PSO-gBest convergence in PSO-LSHADE-NM this results in a significant

reduction in the amount of fitness evaluations required; the majority of cases only

requiring 2500 or less fitness evaluations. On the other hand there still exists the

exploration/exploitation tradeoff and even though initial convergence has improved

it can be seen in Figure 4.2 that it takes the hybrids longer than regular L-SHADE

to finally converge.

132 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

4.7 Fitness Distance Analysis
Fitness-distance analysis can be used to try and gain further insight into the charac-

teristics of the search space landscape. Fitness-distance analysis is a simple tech-

nique and looks at the correlation between the Euclidean distance of a solution from

the known global optimum and its respective fitness value. This can be used to de-

termine global characteristics such as convexity, possible existence of local minima,

and as a rough guide to determine how hard the optimisation problem can be.

The Fitness-Distance plots for each Set 1-10 is shown in Figure 4.3.Each plot

has been generated from a sample of 5000 uniformly i.i.d parameter sets from the

search domain, and a further set of 50 points located close to the global optimum

selected from a normal distribution around the known optimal parameter set, with a

standard deviation of 0.1. The fitness is calculated as the relative calibration error,

Equation 4.7.

From the Fitness-Distance plots, Figure 4.3, it is not possible to accurately

determine the shape of the landscape due to the large loss of information by com-

pressing all the dimensions into a single distance value, but certain characteristic

of the landscape can be inferred. Firstly it can be noticed that the search space is

not obviously convex, a strictly convex landscape would show a distinct linear re-

lationship between the distance and fitness [168]. There is some evidence of global

convexity by looking at the lower bounds of the fitness as the distance increases

which does show a subtle linear relation, this is particularly prominent for sets 9 &

10. It can also be seen that the landscape does become more convex close to the

optimum, this suggests that there is a very narrow and steep global basin.

There is also a concentration a fitness values present along a narrow range of

fitness values, this suggests that a long valley-like structure exists and based on the

surrounding but sparsely populated region of higher fitness also suggest that the

global search falls into a deep narrow valley but with a relatively shallow gradient

along inside. But from these plots it is not possible to determine if these valleys

lead to the global optimum or are separated by barriers of surrounding high fitness

solutions, thus making these areas local optimum. There are some cases for Set 7

4.7. Fitness Distance Analysis 133

(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set 6

Figure 4.3: Fitness-Distance plots for the sets of Heston parameters used in the artificial
calibration. The distance is the distance of the parameter set from the known
optimal parameter set.

134 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

(g) Set 7 (h) Set 8

(i) Set 9 (j) Set 10

Figure 4.3: cont. Fitness-Distance plots for the sets of Heston parameters used in the arti-
ficial calibration.

that suggest deep local optima given that there are lone low value fitness values at

respectively far distances from the global optimum.

What is also interesting to note is that given the different calibration surfaces

for each of the sets, is the how large the relative pricing error can range between

different sets, although the same general shape prevails for all the sets it seems the

gradient of the valleys can can greatly vary.

This analysis further supports the need to use heuristic algorithms with global

exploration abilities in order to efficiently locate the small basin of attraction around

the unique solution, whilst other minimisation algorithms (NM, LM etc.) may fall

into either the wrong valley, or if started too far away from the global optimum

converge too soon in the valley far from the global basin.

4.8. Local Minima and Numerical Instability 135

4.8 Local Minima and Numerical Instability
This section investigates how the Heston characteristic function and numerical inte-

gration can contribute towards creating local minima in the parameter search space,

this effect is most prominent for parameter set 2. From the results in Table 4.3 the

error norms for set 2 standout, the large error-norms indicate that for some reason

the calibration for this parameter set proves to be extremely difficult with deep local

minima. However, it is seen later on that the existence of such local minima is an

artefact of the numerical integration scheme used which can result in the calibra-

tion problem becoming ill posed in some circumstances; precautionary measures

are then introduced to reduce the impact of this behaviour.

Even for the L-SHADE optimisation, the error-norms are extremely large and

suggests that there may be significant local minima, furthermore L-SHADE appears

to be the only algorithm that was able at all to successfully estimate the parameters

exactly, but with less than a 50% success rate. From the convergence plot for set

2, Figure 4.1.b, it shows that this local minimum is generally found after around 3-

5000 fitness evaluations which suggests that this local minima occurs near or within

the global basin.

Figures 4.4 show the distribution of each of the fitness function value and five

parameters for set 2 found in all 30 of the calibration runs for all the algorithms

after the maximum 20,000 fitness evaluations. The known optimal parameters for

set 2 from Table 4.2 are
√

v0 = 0.3,
√

θ = 0.3,ρ =−0.7,κ = 0.2,σ = 1.

Firstly, it is most noticeable that a high majority of the calibrations result in

a negative fitness, this is due to negative prices occurring in the denominator of

the fitness function which are due to numerical instabilities in the integration. The

negative fitness functions exist as part of poor experimental design, the calibra-

tion surface is priced relative to the artificial calibration surface which can exhibit

negative prices to numerical instabilities in the integration this therefore allows for

negative contributions to the fitness function to build up.

This has a profound effect on the calibration parameters found which can be

seen from the extremely large range of magnitudes of the parameter values, es-

136 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

(a) Fitness values for Set 2 calibration. (b) Distribution of
√

v0 parameters.

(c) Distribution of
√

θ parameters (d) Distribution of ρ parameters

(e) Distribution of κ parameters (f) Distribution of σ parameters

Figure 4.4: Distribution of global optimum fitness values (a), and Heston parameters (b-f),
found for all the calibration experiments using parameter set 2.

4.8. Local Minima and Numerical Instability 137

pecially for κ and σ , which exceed any reasonable estimations, similar effects of

numerical integration on the stability of κ estimations has also be observed in [191],

although not to the same degree as observed here.

Both v0 and θ are distributed around the correct values, although v0 is slightly

more bias towards a lower value of ≈ 0.25. For ρ compared to the optimal parame-

ter set there is a higher tendency towards ρ ≈−1 than the correct the value of 0.7,

this shows that there is preferential behaviour towards this value and could be char-

acteristic of the numerical instability. To investigate the cause of the local minima

the effect of the Heston parameters on the search space landscape are empirically

explored.

Empirical Exploration

The effect of local minima for set 2 has been empirically explored using a random

search to identify search space features that can cause it to occur. The occurrence of

local minima has been identified to occur with respect to the parameters
√

v0 and ρ .

Figures 4.8 and 4.6 shows the calibration fitness function for
√

v0 and ρ whilst all

other parameters in set 2 are fixed to their known optimal values. It can be seen that

there is a distinct double-valley structure formed, the smaller local minima valley

is surrounded by high edges, and both the global and coal optimum valleys wrap

around to the basin centred at
√

v0 ≈ 0.25 and ρ ≈ −0.55. It is seen in 4.4.d that

there are some instances of ρ > 0.8 occurring, for this region it is shown in Figure

4.8 to also create an area of local minima, it can be hypothesised from this that part

of the cause of local minima is symmetric with respect to large absolute values of ρ .

When the other parameters are paired with
√

v0 (whilst the remaining parameters

remained fixed at their known optimal value) it was found that the double valley

structure existed along the whole range of the the second parameter; this is further

evidence that the double valley only occurs due to interactions between
√

v0 and ρ .

It can also be seen why the existence of this type of local minima did not effect

the optimisations of sets 4 and 5, which have very similar parameter settings, the

optimum ρ =−0.5 lies outside of the deep valley and double valley that occurs for

larger negative correlation values.

138 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

(a)

(b)

Figure 4.5: Surface and contour plot showing the interactions between
√

v0 and ρ creating
a double valley structure and regions of local minima.

4.8. Local Minima and Numerical Instability 139

(a)

(b)

Figure 4.6: Surface and contour plot showing the interactions between
√

v0 and ρ creating
a double valley structure, showing in more detail for negative values of ρ .

140 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

(a) ρ =−0.7

(b) ρ =−0.9

(c) ρ =−1

Figure 4.7: Contour plots showing the interactions between
√

v0 and σ and a fixed ρ and
how the value of σ .

4.8. Local Minima and Numerical Instability 141

Figure 4.8: Contour plot showing the interactions between
√

v0 and σ for a large positive
correlation, ρ = 1.

The value of v0 found by algorithms has the highest correlation with the σ

parameter. Figures a-c shows how the the shape and location of the local minimum

change with σ for three different correlation values, ρ = −0.7,−0.9,−1, in the

region where local minima form.

For when ρ =−0.7, which is the known optimal value for set 2, the location of

the global optimum can be seen (the of which was magnitude was truncated to allow

for the other local minima to be more visible). It can be seen here that the the global

optimum is a very small and narrow basin, which makes it hard to locate. Analogies

of this search space can be seen with the deceptive function, where a small global

basin is separated from the larger shallower local basin by a steep feature, even in

one dimension EAs, especially differential evolution struggled to locate the global

basin when trapped in the local basin. This suggests that if the EA find itself in one

of the valleys of local minima it is unlikely for it to escape and find the small global

basin.

As the magnitude of the correlation parameter, ρ , increases the local minima

becomes a more prominent feature, and it can be seen in the extreme of ρ =−1 that

a third valley of another local minima forms for high values of
√

v0. The multiple

valleys begin to show for large σ , and for all ρ it appears that only a single valley

forms for low σ ≤ 0.2, this observation also correlates with the violation of the

142 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

Feller condition which can lead to instabilities for large σ .

Figure 4.9 further confirms that this feature is the cause of the local minima

observed in the results here, it can be seen that the correlations observed in Figures

a-c between σ , ρ and
√

v0 are present in the calibration result data. High values

of
√

v0 are found to occur along with large σ and high magnitudes of negative

correlation. For the few instances of high magnitude positive correlations being

found, these values of ρ correspond to values of
√

v0 ≈ 0.2 and similarly small

σ ≈ 0.2, along with large values of κ ≈ 3 (not shown here but can be seen in Table

C.4); these found parameter sets can be observed to satisfy the Feller condition. It

can be seen in Figure 4.8 that as seen for negative ρ a similar double valley local

minima structure forms for σ < 1.5.

Figure 4.9: Scatter plot of the found optimal parameter sets for
√

v0, σ and ρ , the value of√
v0 is given by the depth using the colour bar.

Numerical Instability

The results of Cui at al [127] quite firmly suggest that the Heston search landscape

is unimodal and the results are based on a form of the analytical gradient. This

raises the question as to whether to errors in the numerical approach used here, it

4.8. Local Minima and Numerical Instability 143

is well known that instability can arise in the numerical integration of the Heston

characteristic function. It was observed that GL integration with 10 and 32 steps are

used the double value feature disappears, which shows that it is an artefact of the

GL-16 numerical integration used here. Given that the feature disappears for both

a lower and higher number of steps this indicates that this is not due an issue with

overall precision of the integration, but to do with a more general behaviour of the

integral that is maximised for GL steps of around 16.

The reason the double valley structure is observed here for very specific num-

ber of GL steps for parameter 2 is a scenario of chance given the optimal parameter

set, grid of options used and spacing of the integration points, which happen to all

interact in a very particular way to cause the observed local minima; but this is

an important observation as it highlights possible random sources of error and risk

when using such option pricing models.

Figures 4.10 shows the value of the components, A,B and C of the characteris-

tic function (CF), Equation 4.9, along the integration domain ω for the sequence of

integration points used in GL-16. It can be seen that there is inherent oscillatory be-

haviour due to component A which is independent of the Heston model parameters,

instability in the integral can therefore occur due to two behaviours:

1. How the GL sequence matches the frequency of the oscillation of compo-

nent A. If the sequence of GL integration points matches the frequency of

the oscillation in A then a large magnitude of instability will be exhibited in

the integration. The degree of the instability can be further amplified by the

integration weights. If large amounts of instability occur near the end of the

integration domain then the larger integration weights will further amplify

this effect.

2. How well the components B and C can dampen the oscillation of component

A. If the components of B and C are well behaved then the function will

monotonically decrease to 0, this therefore acts to dampen the oscillation of

component A. This can also be related to the sequence of GL integration

points, such that if oscillating values occur for A then they should correspond

144 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

to high damping regions of B and C and reduce this instability.

Figure 4.10.a shows the CF components for an observed unstable region where

local minima occur for high magnitudes of negative correlation, this is compared to

Figure 4.10.b which shows the CF components for a more stable region with a low

degree of correlation. The main difference is the decay of the B and C component,

for ρ =−0.5 this decays monotonically for 1→ 0, however for ρ =−0.9 the com-

ponents form a negative well and over the range of integration does not decay. When

combined with the A component it can be this that this leads to larger magnitude

instabilities for ρ = −0.9. It is also worth noting that for GL-16 it so happens that

the minimum of the negative well formed by B and C aligns very strongly with the

integral region of highest oscillation for component A, which also occurs near the

end of the region of integration with larger integration weights, this all accumulates

to creating a large amount of instability. It is seen that the behaviour of the B and C

components play a major part in creating the local minima due to the negative well.

Integral Oscillations

It is known that the Heston integral is not always well-behaved and can exhibit os-

cillatory behaviour. The main cause of this behaviour is often attributed to the terms

d and g in the Heston characteristic function, and how negative real values cause

branch splitting in the square-root and logarithms applied to these components. It

was shown by Albrecher et al [123] that using the forms given in Equations 4.9

result in a stable integral for all parameter sets, as d and g do not cross the nega-

tive real-axis. However, upon inspection, the behaviour observed in the calibrations

here for parameter set 2 arise from a simpler term occurring in both the B and C

components,

κ−ρσ iω−d. (4.15)

The effect of the B and C components is that they create a monotonically decreasing

function when well behaved, but can create a negative well which leads to numer-

ical integration problems as previously shown. The negative well occurs when the

4.8. Local Minima and Numerical Instability 145

(a) ρ =−0.9

(b) ρ =−0.5

Figure 4.10: Surface and contour plot showing the interactions between
√

v0 and ρ creating
a double valley structure, showing in more detail for negative values of ρ .

146 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

imaginary argument of Equation 4.15 becomes too large, and thus when taking the

exponential results in an oscillating function over the integration domain.

The degree of the effect of this oscillatory component on the integral can be

related to the sequence of points used for numerical integration, and more so when

the Feller condition is violated. This can be demonstrated for the conditions for

which the numerical instability is observed here. First of all it is useful to expand d

s.t.

d =
√

κ2 +σ2ω2−ρ2σ2ω2 + i(σ2ω−2ρσωκ) (4.16)

It will now be assumed that the Feller condition is violated such that κ << σ , and

secondly it is assumed that the degree of correlation sufficiently large, |ρ| > 0.8,

under these conditions the terms involving κ can be dropped and the approximation

can be made

d ≈ d̃ =
√

σ2ω2−ρ2σ2ω2 + iσ2ω (4.17)

= σ

√
ω2(1−ρ2)+ iω.

Secondly, under the assumption κ << σ , between components B and C, C becomes

the dominant term. Considering the case where |ρ| = 1 and κ = 0 it can be seen

that the approximation d̃ can be further reduced to

d̃ = σ
√

iω (4.18)

therefore

κ−ρσ iω−d ≈ σ iω−σ
√

iω. (4.19)

Finally, C is the dominant term giving the approximation

C̃ = v0
iω−

√
iω

σ
. (4.20)

4.8. Local Minima and Numerical Instability 147

Taking the exponential of this approximation and using the Euler identity it can be

seen that the real component oscillates with respect to the function

Re
(

eC
)
≈ a(σ ,ω)cos

(
v0

ω−0.7
√

ω

σ

)
(4.21)

where a(σ ,ω,v0) is some function determining the amplitude. The important part

of this approximation is to observe the frequency of this oscillation and that when

v0
ω−0.7

√
ω

σ
> π

2 the function becomes negative which introduces instability into the

integral. Figure 4.11 shows that this approximation is able to suitably predict the

region of the integration where negative well and instability occurs, when a small

value of κ = 0.2 is used it can be seen that it shifts the location of minimum to

the slightly to the left, but the approximation is still able to explain the observed

behaviour. This approximation also shows why there is an observed dependance

between the v0 and σ parameters found during the calibration. The cosine function

further explains why a similar double valley structure is also seen for when ρ is

found to be positive.

Figure 4.11: Scatter plot of the found optimal parameter sets for
√

v0, σ and ρ , the value
of
√

v0 is given by the depth using the colour bar.

148 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

It has been observed that numerical instability can occur as a result of integra-

tion and oscillations. Given the range of parameter sets explored by the EAs the

results here do not provide any sufficient conditions to stop oscillations occurring at

all, but steps can be taken to try and reduce oscillations.

Reducing Oscillations

A relation can now be seen with respect to how the range of integration can have an

effect on the stability of the integral. From the approximation, Equation 4.21, it can

be deduced that for the components of B and C to remain positive then

v0
ω∗−0.7

√
ω∗

σ
<

π

2
(4.22)

where ω∗ = max(ω), the maximum value of the range of integration. It can also be

seen that extremely large σ can stabilise the integrand by reducing the frequency

of the oscillation, this effect is seen in Figure 4.8.a. When |ρ| < 1 the system

becomes a damped oscillator and it can be seen in the case of GL-32 that the B and

C component stabilises so after the negative well, compared to GL-16 in GL-32 the

region of the negative well is also lower weighted in the integration causing it to

have a lesser effect.

However, it is out of the scope of this work to fully investigate the effects nu-

merical integration can have on calibration and is left to be more throughly explored

as further work.

Price Homogeneity and Damping

One simple adaptation that can be implemented to reduce oscillations in the inte-

grand is to use normalised prices, using price homogeneity the prices can be ex-

pressed in terms of spot price as S = 1

C(S,K) = SC(1,
S
K
). (4.23)

Considering the first component of the integrand, eA, it can be seen that this elimi-

nates any oscillations in the integrand due to spot price reducing the first term of A

4.8. Local Minima and Numerical Instability 149

to

Re[ei ln(S)]> Re[ei ln(1)] = 1. (4.24)

This results in a more well-behaved integrand, this is particularly effective for short

time-to-maturity options as the real part cos(ω(r−q)τ) will have a respectively low

frequency. The factor iω(r− q)τ) now becomes the main oscillating component,

and can result in high frequencies if τ becomes too large. It is out of the scope of this

work, but it would be interesting to look at methods of manipulating r, either by αr

or r+α such that it reduces the frequency of the oscillating factor iω(r−q)τ), this

would then involve a correction term with respect to α to be applied to the integrand

or option price afterwards. This idea is similar to the damping factors that have been

introduced by Carr and Madden [121]. Oscillations can also occur for the B and C

components of the integrand, the Carr-Madden damping tries to reduce the overall

oscillations by solving g(−iα)ed(−iα)τ) = 1. Again though, this does not 100%

eliminates oscillations and only damps the effects, furthermore due to the dynamic

nature of the Heston model parameters in heuristic searches a single optimal α may

not be possible for all parameter sets explored, and extra computation would be

required to compute α for each new parameter set.

4.8.1 Calibration Stability Measure

Instability in the integral can be reflected by negative prices occurring. To measure

the level of instability and robustness of the calibrations the ratio of total number of

negative prices occurring during all price evaluations within all the fitness function

evaluations is examined.

It is first of all interesting to note that for parameter sets 2 and 6 the target cali-

bration surface contains 1 and 2 instances of negative prices respectively, however a

perfect calibration should still be able to match all the prices including the negative

prices given that the price evaluation calculations (GL-16) are the same for both

generating the target calibration surface and the fitness function evaluations; though

this already does hint that there may be some inherent instability in these problems.

150 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

All other parameter sets have no negative prices occurring in the target surface.

To adjust for the number of negative prices inherent to the problem this is sub-

tracted from the negative price count for each fitness function evaluation to give an

adjusted scale of negative-mispricings, the absolute value of the adjusted negative

price count for each price count is then taken. The adjusted negative-mispricing

ratio, r, is more formally given as

r =
1

NCMaxFE

MaxFE

∑
i=1
|Mi− Ip|, (4.25)

where Mi is the negative price count, Ip is the problem inherent negative price count,

NC is the number of price evaluations for the calibration surface (which for the ex-

periments presented here NC = 147), and MaxFE is the number of fitness evalua-

tions evaluated per calibration run.

Table 4.8 gives the average ratio of negative-mispricings, Equation 4.25, from

the 30 independent calibrations for each parameter set using the L-SHADE algo-

rithm. It can be seen that for the stable parameter sets the average ratio is an order

of magnitude of around 10−4-10−5, whilst parameter sets 2 and 6 show ratios of

an order of magnitude of 10−3. Parameter set 2 shows the highest ratio, as may be

expected, and is twice as large as the ratio for parameter 6. This shows that there is

a significant amount of instability occurring in the prices during the calibration of

parameter set 2, which corresponds to the observed high rate of calibration failure.

However it is interesting that although parameter set 6 shows an inherently higher

number of negative prices in the target surface and a larger ratio compared to other

stable parameter sets it still exhibited stable behaviour with respect to accurately

calibrating the parameters; although it should be noted that other algorithms did

struggle significantly more compared to L-SHADE when calibrating this parameter

set and sometimes did fail.

Overall the ratio of adjusted negative-mispricings gives a good indication with

respect to the stability and robustness of the calibration results, and a larger ratio

indicates a higher measure of instability. Methods can be applied in an attempt to

4.8. Local Minima and Numerical Instability 151

1 2 3 4 5
Mean 4.73e-04 3.14e-03 9.02e-04 4.13e-04 1.88e-04
Std 7.90e-05 6.33e-04 1.72e-04 7.91e-05 3.93e-05

6 7 8 9 10
Mean 1.50e-03 8.28e-05 6.36e-05 3.96e-05 3.38e-05
Std 2.15e-04 2.68e-05 2.46e-05 1.49e-05 1.50e-05

Table 4.8: The average adjusted negative-mispricing ratio, Equation 4.25, for each of the
calibration parameter sets using the L-SHADE algorithm.

reduce the oscillations and instability of the integrand but there is no guarantee over

the parameter search space this will hold, as such a simple safeguard built into the

fitness function is recommended.

4.8.2 Simple Safeguard

A simple safeguard to implement to protect against these anomalous situations is to

use a filter for negative prices in the fitness function. This has the major advantage

of using heuristic optimisation methods such as EAs as they allow flexibility in

defining the fitness function which does not have to be continuous or differentiable.

The simple solution can be calculated using binary weights wt,K to indicate if the

calculated price is negative (unstable) or not:

fitness(x) =
1

∑t,K wt,K
∑
t,K

wt,K
|Ĉt,K(x)−Ct,K(P)|

Ct,K(P)
; (4.26)

wt,K =

1 if Ĉt,K(x)≥ 0

0, otherwise
.

This has been used for the calibration of parameter set 2 using L-SHADE, and

results are shown in Table 4.9 for the parameter values found averaged over 30 in-

dependent runs. It can be seen that despite the numerical instability the optimisation

is now able to accurately proceed when using the safeguard. The mean values espe-

cially for κ and
√

θ have been significantly improved, where without the safeguard

the mean values found are largely incorrect which is due to high variance over all

of the runs, whilst when using the safeguard they are now correct up to 4 decimal

places with extremely low variance. For all five of the Heston parameters the val-

152 Chapter 4. Calibrating the Heston Model using Evolutionary Algorithms

√
v0

√
θ ρ κ σ

No Safeguard
Mean 0.29856 0.43075 -0.70155 0.13462 0.98249
Std 0.00351 0.20664 0.00951 0.07807 0.05274
Safeguard
Mean 0.30002 0.30064 -0.70007 0.19916 1.00053
Std 0.00001 0.00017 0.00002 0.00022 0.00014

Table 4.9: Comparing the mean and standard deviation of the parameter values found for
the calibration of parameter set 2 using the LSHADE algorithm with and without
the safeguard, Equation 4.26, used in the fitness function.

ues found using the safeguard are a lot more stable, with extremely low variance,

and more accurate, showing that this simple procedure can be highly effective in

improving robustness.

4.9 Conclusions
This chapter has looked at the use of advance variations of evolutionary algorithms

for use in Heston model calibration. It is seen that out of the PSO algorithms con-

sidered here the BrPSO algorithm, developed in Chapter 3, finds significantly better

model parameters. However, in comparison to advanced differential evolution al-

gorithms it is clear that the LSHADE variants produced the overall most robust and

accurate parameter estimations.

It was observed that the simple PSO-gbest algorithm performed surprisingly

well for low numbers of fitness evaluations, showing that PSO had strong initial

exploration capabilities, but lacked efficient exploitation. The converse was seen

for the DE algorithms, and as such a PSO-LSHADE hybrid was proposed. This

hybrid algorithm takes advantage of PSO-gbest initial exploration to then provide

a population to be refined by the LSHADE algorithm, furthermore this was then

hybridised with a local Nelder-Mead (NM) local search, to give the PSO-LSHADE-

NM algorithm. It was seen that this hybrid algorithm was able effectively take

advantage of the strengths of the three algorithms used in the hybrid, the hybrid

algorithm showed good initial exploration capabilities as well as fast exploitation

but managing to retain population diversity and not converging early.

4.9. Conclusions 153

An interesting observation was made for the calibration experiments for param-

eter set 2, and it was found that all the algorithms struggle to find the known optimal

parameter set. It was found that prominent local minima, in the form of a double

valley like structure, was created as a result of numerical instability resulting from

the numerical integration. This effect was caused due to a combination of parameter

values and the numerical integration scheme used which was Gauss-Legendre using

16 steps (GL-16). A brief analysis showed that numerical instabilities occurred in

the integral due to regions of negative real values occurring in the integral terms

B and C in Equation 4.9, and the choice of the numerical integration points fur-

ther amplified this effect. This is an important observation as it highlights the risks

of using numerical methods for calibration and how random sources of error can

significantly impact results. However, the use of a simple safeguard in the fitness

function, Equation 4.26, was able to significantly reduce errors in the calibration

results and improve robustness.

Overall this work shows that current use of EAs in the model calibration liter-

ature undervalues the power of these algorithms by only considering the basic vari-

ations. Using more advanced variants and hybrids the calibration results in terms

of efficiency and accuracy can be significantly improved, and shows potential for

using these algorithms in more complex model calibration problems.

Chapter 5

Options Pricing using Neural

Networks and Evolutionary

Optimisation

This chapter investigates the use of neural networks for approximating option pric-

ing functions. Neural networks are trained using Breeding-PSO to learn the option

pricing functions from numerical training data. The training data consists of nu-

merical prices (priced using Monte Carlo) sampled over the parameter space of σ ,

r and moneyness, the neural networks are then trained to learn the price functions

with respect to these inputs. Ensemble methods are investigated and used to ob-

tain higher degrees of accuracy for the neural network based price approximations,

and results in competataive pricing accuracy when compared to Monte Carlo prices.

The neural network methodology presented here is tested for European, Asian and

American style options.

5.1 Introduction
The pricing of options and derivatives contracts is an important part of operations

for financial institutions, one approach is to use stochastic differential equations

(SDEs) to model the dynamics of the underlying asset and then derive the corre-

sponding partial differential equation (PDE) to solve for pricing the options con-

tract. In the simplest case for European options and when the underlying asset

156 Chapter 5. Options Pricing using Neural Networks

is assumed to follow Brownian motion the PDE can be analytically solved by the

Black-Scholes solution [116], but either when more complex models for the under-

lying asset , for example introducing multiple stochastic factors, or exotic options

with path dependent payoffs, the analytical solution is often unobtainable and as a

result numerical methods have to be employed. In this work traditional numerical

methods are classed as those which are already well established approaches within

the literature and industry, such as Trees, Finite Difference (FD) and Monte Carlo

(MC). These methods enjoy popularity due to the vast amount of literature on the

topics, and the relative ease of implementation. In particular Monte-Carlo meth-

ods are popular due to the methods flexibility and ease of implementation, Monte-

Carlo being a simulation based method makes it an approachable method when

complex models or exotic payoff are used. The major disadvantage of Monte-Carlo

pricing is that due to the large number of independent simulation runs required to

achieved reasonable accuracy makes it computationally inefficient and slow, this

is illustrated via the extensive modern literature on improving such methods using

high-performance computing devices such as GPUs, Multi-Core CPUs and spe-

cialised hardware. Another issue with ’traditional’ numerical methods is that they

do not provide a generalised solution for the model with respect to the model pa-

rameters, the solution is case specific, this means that the numerical computation

has to be reran for every new parameter set, which in the environment of todays

dynamic markets can lead to large amounts of computation.

The motivation of this work is to provide a fast and accurate approximation to

the parameterised analytical solution for cases when otherwise numerical methods

would have to be used. The aim of this work is to present a methodology that

provides accuracy as good as current numerical methods employed, but is easily

parameterisable and more computationally efficient.

It is proposed to use neural networks combined with ’traditional’ numerical

methods to produce an approximation of the analytical solution for stochastic op-

tions pricing models. In essence this methodology uses numerous numerical sim-

ulations sampled over the parameter space to train a neural network which then

5.1. Introduction 157

operates as a function approximator over the parameter space. Similar techniques

have been used in other engineering domains, such as in structural engineering to

model structural integrity and stress testing [192] [193] [194]. This approach is

used due to the computationally intensity of rerunning complex simulations for ev-

ery reparametersition of the design.

This works provides an empirical study of using neural networks to price op-

tion contracts. To begin with the initial methodology is tested for the simple case

of European call options, having the known Black-Scholes solution, and being the

simplest type of payoff, the proposed methodology can be analysed and refined.

The second case then increases the complexity by introducing geometric Asian call

options which have a path dependent payoff, but also have an known analytical so-

lution. By validating this methodology for geometric Asian options means that it

could also then be used to price similar Arithmetic Asian options for which there

currently is no known analytical solution. Finally, the case for American put options

is looked at, the introduction of early exercise makes these the most challenging type

of option to price and there currently is no known analytical solution, the accuracy

of this methodology is compared to a test set of highly accurate numerical prices

from the literature.

5.1.1 Options Pricing using Neural Networks

Using neural networks to solve SDEs and PDEs have some appealing advantages:

• Once trained a neural network can be used to approximate the generalised

solution for the PDE, this is coined here as a pseudo-analytical solution. The

major advantage of this solution means that the method does not have to be

reran for any parametric changes and can provide quick offline results on

demand.

• Feedforward computation of a neural network is relatively simple providing

fast results.

• The structure of neural networks can be easily parallelised and implemented

of high-performance computing devices to further enhance performance.

158 Chapter 5. Options Pricing using Neural Networks

Using the neural network as an indirect approximators/interpolator, it is pro-

posed to use neural networks combined with traditional numerical methods to pro-

duce an approximation for the generalised solution of stochastic options pricing

models. In essence this methodology uses traditional numerical pricing results, ob-

tained using Monte-Carlo pricing, sampled over the model parameter space, Ω, to

train a neural network which then operates as a function approximator over the pa-

rameter space to approximate the generalised solution. Using a single layer neural

network, N1(), the price approximation for a call option, C̃, with model parameters,

ω ∈Ω, is thus given by

C̃ (ω,K,St) = N (W,ω,K,St) = f

(
∑

i
∑

j
wl

i, jy
l−1
j

)
(5.1)

where yl
i is the output of neuron i in the layer l, when l = L this represents the

network output layer and when l = 0 this represents the network inputs, and W is

the weight matrix found for the network via training.

The training procedure of this method may be in the short-term relatively com-

putationally intensive compared to solving a single parameter setting of a given

model, but in the long term this method can be seen to be extremely efficient as it

produces a single neural network model that can be used for all parameter settings

over the given parameter space. The solution can be provide in O(1) complexity re-

quiring one simple forward pass through the neural network, which is considerably

less computationally expensive than rerunning numerical computations for every

new parameterisations.

The major difference in this work compared to other neural network option

pricing approaches is that a generalised solution for any parameter set ω ∈Ω is

attempted to be learnt, whilst other approaches tend to keep the model parameters

fixed and only vary the time to maturity, τ , and moneyness ratio S
K .

One of the first attempts for options pricing with neural networks is by Hut-

tichinson [195], and the majority of the literature focuses on using neural networks

5.1. Introduction 159

as a non-parametric approach for pricing options, the options price model is trained

from actual market data [196] [197] [198] [199]. This may not work for illiquid

exotic derivatives/options where there is not enough data to fully capture the mar-

ket dynamics. Models trained on market data are also black box solutions with no

knowledge of the underlying market models and dynamics, in the current regulatory

climate models with certain unknown behaviour may not be preferable, whereas the

approach in this work uses well defined stochastic models which allows implicit

control over the neural networks behaviour. Other approaches use neural networks

to assist/add corrections to parametric models for example [200].

The previously mentioned approaches are non-parametric and use market data,

for this work it is more of interested in capturing the behaviour of the parametric

stochastic models used in theoretical pricing. A parametric model based neural

network pricing approach has been implemented by Morelli et al [201] for pricing

European options. They use the Black-Scholes model where the asset price is gov-

erned by GBM, and approximate the parametric solution using single layer MLPs

and RBFs with 50 neurons. In this approach the neural network is modelling the

discounted expectation i.e. the stochastic integral, of the GBM stochastic process

N (τ,σ ,r,S,K) = e−rτE[f (ST)] = e−rτ

∫ inf

0
max(St−K)+ ds. (5.2)

They used a fast path integrals approach to numerically derive the training data

for European options. This work only provided a brief exploratory study and does

and concludes that RBFs and MLPs could provide reasonably accurate pricing for

European options, with pricing error of the order of 10−2 and 10−3 respectively. It

should be noted that training the MLP took 4hrs whilst the RBF only took minutes.

Results for exotic American options were not encouraging and as a result were

omitted by the authors in publication [202]. It was concluded that further training

methods, such as evolutionary algorithms may improve results, and the pricing of

exotic contracts and complex models should be further investigated.

Das et al [203] introduce a hybrid parametric model which uses a similar

methodology, neural networks, in this case extreme learning machines, are trained

160 Chapter 5. Options Pricing using Neural Networks

from model generated options prices. In this case the training data is comprised of

the three different traditional numerical methods to take advantage of their strengths

and weaknesses. But again, the model generated is not the full generalised solution,

as r and σ are not taken into consideration as model inputs. This therefore means

the model would have be retrained for every new parameterisation.

One more example where neural networks have been applied directly to es-

timate the properties of stochastic processes in options pricing is by Kohler et

al [204]. Kohler et al use neural network regression to compute the conditional ex-

pectation for the continuation values for pricing multi-dimensional American Bas-

ket options. To the best of our understanding the neural network is training on

simulated sample paths and is use to learn and approximate the regression problem

qt (x) = E[max{ ft+1 (Xt+1) ,qt+1 (Xt+1)}|Xt = x] (t = 0,1, . . . ,T −1) . (5.3)

Kelly [205] attempted to price American put options using neural networks,

although this approach was based on using real market data as the training source.

Though high errors were found in the case of higher priced options in-the-money

options, although this could be partially due to the low liquidity of in-the-money

options in the market which was noted later on by Hospedales et al “[w]e discard

in-the-money option quotes because trading is very inactive for those options thus

their prices are not reliable” [206]. Limitations of similar approaches for American

options using MLPs and SVMs for pricing American options was again later found

by Pires et al [207].

Improvements to neural network pricing methods have involved using modular

neural networks, Gradojevic et al [199] decomposes the model into 9 modules us-

ing moneyness and time-to-maturity as factors, when trained on data. Furthermore,

in [208] Gradojevic et al take a different approach compared to modelling the price

directly as a single function of the input parameters, but instead uses a decompo-

sition and classification based on three factors: moneyness; implied volatility and

time-to-maturity. Hospedales [206] uses a multi-model gated approach, here the

output is a weighted sum of outputs from individual models where the weighting is

5.2. Methodology 161

learnt by a second network with inputs being τ and K
S .

In other domains neural networks have been used as approximators to solve

differential equations, partial differential equations and stochastic differential equa-

tion [209]. Such methods have been used in the finance literature, under the name

of meshless methods (the interested reader is referred to [210]), to solve models

such as the Black-Scholes equation, but this does require the problem to be well

defined and again the approach is non-parametric with respect to model parameters.

As such we look to provide a more flexible novel hybrid numerical method for solv-

ing stochastic models allowing for more complex pricing models, and a parametric

solution.

5.2 Methodology
In this work neural networks are used to price financial options by approximating

the integral of the underlying stochastic process [201], for European style options

the price of a call option is estimated using a neural network N() as

N (ω) = e−rtE[f (ST)] = e−rt
∫ inf

0
max(St−K)+ ds (5.4)

where ω ∈ Ω is the set of the call option model parameters, one of the main dif-

ferences compared to [201] is that a reduced parameter space from 5→ 3 inputs is

used, in the case of the Black-Scholes model ωi = {Mi,σi,ri}.

The proposed pricing methodology consists of four main stages:

1. Data Generation and Sampling : Sample the model parameter space and

generate the options pricing training and validation data using a reliable nu-

merical method for solving the SDE derived from the pricing model.

2. Training : Train the neural networks with the sampled parameters as inputs

to learn the option pricing model from the numerical training data. Z number

of independent neural network models are trained. Neural network training

here is done using the BrPSO algorithm to find the neural network weights. A

novel data transform, and two part fitness function are used to aid the learning

162 Chapter 5. Options Pricing using Neural Networks

of the neural networks.

3. Model Creation : Ensemble the neural networks into a single model. In this

work it is investigated for using either the mean or linear regression meth-

ods to obtain the set of linear weights for the outputs of the neural network

models.

4. Testing : Input desired parameters into the network to obtain the price ap-

proximations from the neural network model. The errors of the neural net-

work price approximations are then measured against known solutions for Eu-

ropean and geometric Asian options, and compared against numerical Monte-

Carlo price approximations.

5.2.1 Data Generation and Sampling

Monte-Carlo methods are used as the numerical method to generate the training

price data, Monte-Carlo Pricing provides a flexible framework, and is particularly

useful for the case of path dependent exotic options, and high-dimensional models.

Although in the preceding discussion Monte-Carlo and other numerical methods are

critiqued as being computational inefficient, the use of numerical methods is justi-

fied in the case of offline training. The offline training procedure is only required

once, and although generating the data may be respectively costly, it is a one off

cost, and once the neural network model is trained it can be used online without the

requirement for such costly computation, only requiring a simple forward pass of

the network. The MC pricing data has been produced using the Monte-Carlo model

(using the Longstaff-Schwarz method for American options) built into the MatLab

Finance toolbox [211], for each pricing run 10,000 replications and 365 periods are

used; the corresponding analytical solutions/approximations are also calculated for

each sampled point to provide a benchmark reference for comparison.

5.2.1.1 Parameter Space Reduction

The neural network methods used within the literature fail to fully exploit the gen-

eralisation abilities of a neural network. If the geometric Brownian motion model is

5.2. Methodology 163

considered the options price is given as a parameterised function of the five param-

eters, St , K, r, σ and τ , and a generalised solution should be considered one that is

dependent on the complete span of the parameter space, but what is commonly seen

is the simplification to considering only three parameters St .K,τ , although these

methods then present an approximate solution it is only limited to the fixed pa-

rameter value of σ and r. Given that the financial markets are a highly dynamic

environment the values of σ and r are subject to constant change, therefore still

resulting in the approximated solution to be recalculated for these new values, thus

the solutions approximated by these methods are not a fully generalised solution of

the problem. It will be shown that a better choice of three input parameters allows

the complete range of parameterised option prices to be represented.

This work looks at the ability of neural networks to approximate a fully gen-

eralised solution with respect to the five model parameters of the Black-Scholes

PDE model. To maximise performance it is possible to apply some mathemati-

cal relations of Black-Scholes options prices to reduce the neural network model

space from the original five parameters to use only three and still generate a fully

generalised solution.

Firstly the strike price K can be removed as a parameter by using homogeneity

of an options price

Theorem 5.1. (Merton [212], Theorem 8.9) If the return distribution is independent

of the stock price then the options price V (S,K) is homogenous to degree one for

both S and K, this implies that for a constant α ∈ R

V1 (αS,αK) =
1
α

V2 (S,K) . (5.5)

The use of the moneynes ratio, m = S
K , within the literature is a special case of

Theorem when α = 1
K .

Corollary 5.1. Given Theorem 5.2.1.1 holds it is possible to set K as a constant,

164 Chapter 5. Options Pricing using Neural Networks

K = 1 by using α = 1
K and derive all option prices for S,K ∈ R as

V (S,K) = KV
(

S
K
,1
)
. (5.6)

The use of Corollary 5.1 is the first simplification of the neural network model

input space by using the moneyness ratio and reduces five parameters down to four.

The final simplification is using the time scaling property of Brownian motion be-

low.

Lemma 5.1. Given two different diffusion times τ1 and τ2 and assuming no drift

, µ1 = µ2 = 0 two Brownian motions are equivalent given that B1(σ1,τ1) =

B2

(
σ1

√
τ1√
τ2
,τ2

)
.

Proof. The proof is elementary following from the definition of Brownian motion,

it can be seen that for two Brownian motions with µ = 0, it must hold that σ1
√

t1 =

σ2
√

t2 for equivalence. �

Following from this and assuming that the underlying price process follows

geometric Brownian motion it is possible to derive below an equivalence relation

based on time-scaling properties of the price process allowing for the final reduction

of the neural network model input space.

Theorem 5.2. Assuming the underlying price dynamics of St follow a geometric

Brownian motion for an option given by V (S,K,τ,σ ,r) the price can be calculated

using a function of only three parameters M,σ and r

V (S,K,τ,σ ,r) =
1

K1
V
(
M,1,1,σ

√
τ,rτ

)
(5.7)

where M is the moneyness of the option given as M = S
K .

Proof. The proof follows from first combining Corollary 5.1 and Lemma 5.1. Un-

der the risk-free measure Q it can be seen that the interest rate scales linearly with

τ . �

5.2. Methodology 165

This work will focus on approximating the function option price of the function

V (M,1,1,σ ,r), where K = 1 and τ = 1 for compactness this will be abbreviated to

Ṽ (M,σ ,r).

The implication of Theorem 5.2 is that if prices over the whole parameter space

for Ṽ (M,σ ,r) are known then it is possible to use the equivalence relation to obtain

the price for any option V (S,K,τ,σ ,r). Therefore it is possible to reduce the input

parameter space of the neural network model from five to three and still approximate

a fully generalised solution for the option price.

Theorem 5.3. Given time-scaling relationship in Lemma 5.1 the unique map-

ping V (S,K, t1,σ ,r)→ V (S,K, t2 =
(

1,σ
√

t1
−1,rt−1

1

)
is unidirectional. Given a

fixed σ and r it is not possible to find the unique time mapping g(t) such that

V (S,K, t1,σ ,r)→V (S,K,g(t1),1,1)

Proof. The proof is relatively simple. Assuming Brownian motion the relationships

of t1 and t2 are given by

σ1
√

t1σ
−1
2 =

√
t2

r1t1r−1
2 = t2

under the assumption of the theorem σ1 and r1 and fixed and can be assumed to be 1,

and σ2 and r2 are two separate independent variables. Thus it can be observed that

two solutions for t2 exist: t2 = t1σ−2 given r = σ2 which violates the independence

of σ2 and r2; or t2 = 0 given σ2
2 − r 6= 0. �

The implication of Theorem 5.3 is that it is not possible to approximate the

complete span of options prices in the space Ω∈ [S,K,τ,σ ,r] by approximating the

two dimensional function V (M,τ,1,1), but it is possible by approximating the hree

dimensional function V (M,1,σ ,r) which represents the most compact representa-

tion of the options pricing function. This also supports our initial claims that current

neural network methods that only approximate the price as V (S,τ) cannot represent

a fully generalised solution with respect to all the model parameters.

166 Chapter 5. Options Pricing using Neural Networks

5.2.1.2 Latin Hyper-Cube Sampling

Compared to most other neural network methods in the literature which use only

use two basic inputs, in this work the space is sampled over the three dimensional

parameter space: interest rate, r; volatility, σ ; moneyness, M = S
K .

The training data is partitioned into three sets, one for training, one for valida-

tion and one for out of sample testing. For each type of option we generate 2000

samples for training, and 1000 samples for both validation and test data sets. The

range of the parameter space used is: r ∈ [0.01,0.1]; σ ∈ [0.1,0.5]; S ∈ [0,100]; and

K ∈ [0,100].

The crux of the proposed methodology relies upon efficiently sampling over

the stochastic model parameter space. The issue faced by naive sampling methods,

such as grid sampling, is that they suffer from the curse of dimensionality and do

not scale well with increasing dimensions in the parameter space; as such a scal-

able random sampling method is required. Latin hypercube sampling (LHS) is a

stratified random sampling method which gives a better distributed representation

of the parameter space than just naive random sampling. In LHS each parameter is

divided up into equally probable intervals, there is then equal probability that the

sample will be chosen from within each interval.

5.2.1.3 Data Transforms

When using neural networks of options pricing one of the issues encountered is the

large range of magnitudes of prices from deep out-of-the-money options to deep

in-the-money-options. The large range of magnitudes therefore makes it very hard

for neural networks to effectively output this range of values; in general neural net-

works work best when all the targets are a similar magnitude in value. Other work

has overcome this problem by using multiple network architectures, such as gated

neural nets where an initial classification process is used to pass the parameters to a

secondary specialised neural network for that pricing range. This can lead to elab-

orate network architectures that can take longer to train and produce a less compact

representation of the solution.

To resolve this issue a data transform is introduced and applied to the target

5.2. Methodology 167

output values; the neural network is therefore learning to output the transformed

value of the target values,

N (ω)→ T (V (ω)) . (5.8)

An approximation to the actual target value, V̂ , can then be retrieved by inverting

the applied transform

V̂ (ω) = T−1 (N (ω)) . (5.9)

Using a transform for the training values is desirable due to the magnitude differ-

ences between in and out of the money options, otherwise the network training

would become strongly biased towards the larger in-the-money options, therefore

a log based transform is used as below (it was found that using strictly log only

transform was not beneficial).

The transform chosen aids the network’s learning by transforming the target

training values to approximately similar magnitudes; this is done via a log10 type

transform

Tsp10 (x) = log10 (10x−1) , x 6= 0, (5.10)

T−1
sp10 (z) = log10 (10z +1)z 6= 0. (5.11)

This is dubbed a softplus-base10 (sp10) transform due to its similarity to the softplus

function. The softplus-base10 transform transforms all values x < 1 using a log10

transform, mapping these x values to larger magnitude negatives values, but remains

close to linearity for values x > 1. This function is bijective given that for all x >

0, and hence is applicable in the case of options pricing which does not involve

negative values x.

A final set of linear transforms are applied to the asset price, St and strike price,

K input parameters. Neural network training can be aided by ensuring that the inputs

are all of roughly equal magnitude; the asset price and strike price input parameters

168 Chapter 5. Options Pricing using Neural Networks

are therefore multiplied by 0.01 so they become similar to the magnitudes of the

interest rate and volatility.

5.2.1.4 Price Resolution and Rounding

A threshold for the smallest representable price is applied, Vmin, to create a lower

bound for the sp10-transformed space. A threshold value for the lower bound is

required due to the fact that the price range for options in the continuous space,

V ∈ [0,Smax]; this means that Tsp10(V) is unbounded, limV→0 Tsp10(V)→−∞, whilst

for upper bounds it is known that the option price can never exceed the maximum

asset price. Therefore the threshold makes the range of values for the neural net-

work to approximate more compact. The threshold is simply applied within the

sp10-transform as an addition of the constant Vmin, the transformed domain is now

bounded by

log10 (Vmin)≤ Tsp10 (V +Vmin)< Smax. (5.12)

Although this may seen to limit the methodology’s range for representing and

accurately pricing deep-out-of-the-money options, as long as a small enough thresh-

old is used within the practical limits of an option price quote this should not present

an issue after rounding the output to a magnitude larger than the threshold. In the

exchange, prices are quoted to a limited number of decimal places making the need

for extremely small resolutions redundant when practically applied. Throughout

this work a threshold value of 10−8 is applied for training, and the outputs of the

neural network are then rounded to six decimal places.

5.2.2 Training

It should be reemphasised at this point that while this process is necessary time

consuming the benefit of the methodology is to be seen in the much acerbated times

the pricing can be achieved for test data.

5.2. Methodology 169

5.2.2.1 Neural Network Architecture

The neural networks considered here are feed forward multi-layer perceptron

(MLP) networks; two different MLP architectures are investigated. The first is a

simple two layer feedforward network shown and can be defined as

N (I) = ∑wi, j,L f
(
g(I,W)L−1

)
L ∀l = 1 . . .L (5.13)

g(I,W)l = ∑wi,k,l f
(
g(I,W)l−1

)
l (5.14)

g(I,W)0 = ∑wi,k,0Ik l = 0 (5.15)

where l is the layer index and l = 0 corresponds to the network inputs, in the case

of an MLP with two hidden layers L = 2.

The second neural network architecture investigated is a two step multi-stage

network, similar to the gated networks used in [206]. In this network architecture

two smaller networks are connected, where the output/s of the first network and the

original inputs are both passed in as inputs into the second network,

NMSCN = N2 (N1 (I) , I) . (5.16)

This second network, N2, then acts as an additional corrector for errors generated by

the first network; a similar network construction was used for example in the suc-

cessful PSIPRED protein structure predictor [213]. The architecture implemented

here uses two networks both with two hidden layers of ten neurons.

170 Chapter 5. Options Pricing using Neural Networks

...

...
...

...
y0

1

y0
2

y0
n

y1
1

y1
n

yL
1

yL
1

y0
0 y0

0

y0
1

y0
n

Network 1 Network 2

Figure 5.1: The architecture of the multi-stage network architecture. This architecture con-
sists of two networks with the output of the first connected as an input to the
second, the second network also takes in the original inputs used in network
one, the second network then acts as a corrector on the output of the first.

The transfer function, f (a), used in the hidden units for all network architec-

tures is the sigmoid

f (a) =
1

1+ e−a (5.17)

where a is the activation value of the neuron, previously defined as the function

g(I).

5.2.2.2 Calculating option Price Sensitivities

To find the option price sensitivity values, known as the Greeks (∆, ρ , κ), the deriva-

tive of the network’s output with respect to the desired input, ∂N(I1...IM)
∂ Ik

, needs to be

calculated. For a single layer MLP network the derivative is simply given using the

chain rule by

∂N (I1 . . . IM)

∂ Ik
= ∑wi,1

∂ f
(
∑wi, jI j

)
i

∂ Ik
(5.18)

= ∑wi,1wk,i f ′
(
∑wi, jI j

)
i .

5.2. Methodology 171

For an arbitrary MLP network with 0 . . .L layers, the chain rule has to be iteratively

applied

∂N (I1 . . . IM)

∂ Ik
=

∂ f
(

∑wi,k,l−1 f (. . .)i,l−1

)
L

∂ Ik
. (5.19)

Given that in this network design f (g(I))L = ∑w(i,k,L) f (g(I))L−1

∂ f
(

∑wi,k,l−1 f (. . .)i,l−1

)
L

∂ Ik
= ∑wi,k,L−1

∂ f (g(I))i,L−1

∂ Ik
(5.20)

= ∑wi,k,L−1
∂ f (g(I))i,L−1

∂g(I)
g(I)
∂ Ik

where g(I)l is the activation value of the neuron and is expanded out as

∑wi,k,l−1 f (g(I)l−l)l−1; hence the chain rule is recursively applied as

g(I)l
∂ Ik

= ∑wi,k,l−1
∂ f
(
g(I)l−1

)
i,l−1

∂g(I)l−1

g(I)l−1

∂ Ik
(5.21)

g(I)l−1

∂ Ik
= wi,k,0 l = 1.. (5.22)

With respect to the multistage network also investigated, given by NMSN =

N2(N1(I), I), the above recursive formula for the derivative continues from the sec-

ond network into the first network N1(I)

g(I)l−1

∂ Ik
= wi,k,0 +wi,k,1

∂N1 (I)
∂ Iz

l = 1. (5.23)

where ∂N1(I)
∂ Iz

is given by Equation 5.22.

Finally given that transformations are applied to the input and output values of

the neural networks these also need to be incorporated via the chain rule into the

derivative of the neural network. In the case of the linear transforms TL(x) = Cx

172 Chapter 5. Options Pricing using Neural Networks

applied to the inputs this gives

g(I)l−1

∂ Ik
= wi,k,0V l = 1. (5.24)

For the inverse soft-plus-base-10 transform applied to the output of the network the

final derivative for the model of the option price is thus given by

V̂ ′ = N′ (I)T ′−1
sp10 (N (I)) (5.25)

5.2.2.3 Training Method

The neural networks are trained using the evolutionary Breeding Particle Swarm

Optimisation (BrPSO) algorithm [214]. BrPSO was observed to produce superior

neural network training results compared to standard PSO. As explained in Section

2.2.2, when applying particle swarm optimisation for neural network training the

position of each particle represents a vector in the search space where in this case

the search space is the neural network weights, W. The quality of the position

for each particle is evaluated to give a fitness value fit(x); for every iteration the

particles then move throughout the search space to find the optimum vector.

In this application the fitness value is calculated as a sum of the mean absolute

error of the neural network approximation for the transformed option prices and

the mean relative error of the inverse transform of the network output compared

to the raw training values of the option price; this is given in Equation 5.30. The

two-component fitness value is used because it was observed when using just the

transformed option price that small errors in the compressed log transform values

resulted in significantly larger errors when the inverse transform was then applied

to obtain the final price approximation; this can be illustrated when considering a

log transform applied to the target values y,

N (ω) = log(y)+ ε (5.26)

ŷ = elog(y)+ε = yeε (5.27)

5.2. Methodology 173

where ε is the training error and ŷ is the inverted approximation of y; it can be seen

that when the transform is inverted the training error grows exponentially.

When using no transform, or training with the inverse transform applied to

the network output, results were poor as this fails to capture the range of output

magnitudes. The combination of components in the two part fitness function allows

the network to efficiently output a wide range of price magnitude via the transform

but also minimise the errors that occur during the inverse transform to the final

price given that this involves an exponential function. Looking back at Equation

5.26 the fitness function minimises both ε and eε . The fitness for each particle in

the optimisation can thus be given by

fit(Wi) = EMAE

(
N
(

Wi,Y0
)
,Tsp10 (V)

)
(5.28)

+EMRE

(
T−1

sp10

(
N
(

Wi,Y0
))

,V
)

where Wi is the matrix of neural network weights represented by particle i, Y0 is the

vector of training input parameter sets i.e. Y0 = {{y0
1,y

0
2...y

0
n}1, ...{y0

1,y
0
2...y

0
n}J}, V

is the corresponding vector of target prices for input parameter sets, and N(W,Y0)

is the vector of neural network approximation outputs for each input parameter set

given in Y0, and where EMAE(x,y) and EMRE(x,y) are the mean absolute and mean

relative errors, respectively, of the numerical approximations xn compared to targets

yn.

5.2.2.4 Weighted Training

Weighted training is introduced for two reasons to increase ensemble diversity (see

methodology outline) and to create experts for specific regions.

Instead of bootstrapping the data, which has the issue that it risks that some

models may lose the ability to generalise in areas where the data is not densely

sampled, weightings are added to the training data. In this procedure networks

are initialised to specialise in particular parameter regions in ways to be described

in more detail below. Selected points within these regions are given the highest

weighting with surrounding points given low weightings determined by distance.

174 Chapter 5. Options Pricing using Neural Networks

Two weighted training methods are implemented, wt-rand and wt-atm dsiti-

gusihed by the where the most strongly weighted training points are selected. In

wt-rand the most strongly weighted point, the weighting center CN , is chosen ran-

domly for each network in the ensemble, whereas in wt-atm all the networks en-

semble have the same center which determined to be the most difficult region to

approximate (at-the-money-options).

The moneyness is the most influentual input with the respective to determining

the output price, therefore the weighting used here will be based on the moneyness

of the sample. The weighting for a training sample yi = {Mi,σi,ri} is

qi = log10 (|Mi−CN |+ p) (5.29)

where CN is the chosen center for the neural network model N with respect to the

moneyness, and p is a constant that controls the maximum size of weighting, this

is set to 0.01, which limits the weighting to 100. The fitness function using the

weighted samples is now given as

fit(Wi) = q ·EMAE

(
N
(

Wi,Y0
)
,Tsp10 (V)

)
(5.30)

+q ·EMRE

(
T−1

sp10

(
N
(

Wi,Y0
))

,V
)

where q is the sample weighting vector.

5.2.3 Model Creation

The above methodology is repeated to created a set of neural network models, N,

where Ni() is used to denote the ith neural network. This set of models can then

be used to produce a final pricing model. This can be achieved one of two ways,

either by selecting a single best model as dictated by some selection criteria, or by

using an ensemble based model by taking a combination of outputs from a subset of

the original models n⊂ N. Based on the ambiguity theorem [215] probabilistically

ensembling a model will be statistically at least as good as selecting a single model

[216].

5.2. Methodology 175

5.2.3.1 Ensemble Methods

There are two classes of ensemble methods, training and post-training [217]. In

training based methods the neural networks are trained with the intention of being

in an ensemble and the ensemble output is optimised; examples of such methods

are boosting [218], stacked regression [219], or negative correlation learning [220].

Training based methods have the disadvantage that the training process will be

slower as a number of networks have to be trained at the same time which results

in an extremely large search space considering all the weights of all the networks.

Post-training methods use a set of pre-trained neural networks and then look at how

to optimally combine them; which is often done using a second training set; these

sets of methods have the favourable characteristic that all the neural networks can

be trained independently, although the disadvantage is that it may require a larger

set of networks to produce enough diversity. The work of this thesis focuses on the

use of post-training ensemble methods as in addition this form of training can be

efficiently parallelised.

In this work post-training linearly weighted combinations of the trained neural

network models are used, this can be written as

N(x)β = v (5.31)

where N(ω) is the output matrix of the trained neural network over the sets of test

set inputs x (where xi = {σi,ri,Mi}), β is the linear weight vector of the ensemble

for each neural network model. There are many different ways of finding the set of

linear weights [217], in this work two popular methods are used.

Mean: The simplest ensemble method is to take an equal weighting, i.e. the

mean, Nmean, for each of the test set parameter inputs, xi = {σi,ri,Mi} the aggre-

gated model output is

Nmean (xi) =
∑

Z
j=1 N j (xi)

Z
. (5.32)

where Z is the number of trained neural network models. The mean can be a very

176 Chapter 5. Options Pricing using Neural Networks

robust ensemble method, it is a convex combination such that the ensemble out-

puts are bounded by the individual outputs of the neural networks. When using the

mean is that it assumes the errors for each network, εi within the ensemble at ev-

ery output is symmetrically distributed such that they effectively cancel each other

out, or probabilistically the distributions is such that E[εi] = 0. For neural network

options pricing using the mean ensemble has been seen to improved option price

predictions [221].

Linear Regression: Rather than using an equal weighting which may not be

desirable if the error distribution is skewed or there is a high degree of collinearity,

linear regression using a second set of training data, with targets y2 and inputs x2,

can be used to find the optimal set of weights. Linear regression is used to find a

weight vector β such that it minimises N(x2)β − y2. The linear regression can be

achieved in two ways:

• Using unconstrained regression where the weights are found by solving β =

y2N(x2)
−1, using the Moore-Penrose pseudoinverse N(x2)

+. The advantage

of this method is that it allows a good fit to the data to be found, but has the

disadvantage that it may result in a non-convex linear combination involving

negative weights or not summing to one. This can sometimes lead to out-of-

sample predictions becoming unreliable.

• Using constrained non-negative least squares [222], this has the advantage

that the linear combination will be convex and therefore more reliable than

non-convex linear combinations, and that it can also result in a smaller final

ensemble where non-significant models are given a weight of zero. The dis-

advantages are that the non-negative least squares algorithms are slower, and

may not be able to fit as well to the data given the constraints. This is seen

later on, and in the case of high collinearity the convex linear combinations

are unable to acheive the same level of accuracy of non-convex linear com-

binations, however it is possible to increase the accuracy of the non-negative

weighted ensemble by using data transforms, Section 5.3.5.4.

5.2. Methodology 177

5.2.4 Testing

The pricing errors discussed, unless mentioned otherwise, are with regards to the

out-of-sample test set inputs, ωi = {σi,ri,Mi}. The errors of the neural network

price approximations for each test sample, ωi, are measured by the absolute error

(AEi) and absolute relative error (AREi) of the neural network price approximation,

N(ωi), with respect to the analytical Black-Scholes solution for a call option CBS

AEi = |N (ωi)−CBS| (5.33)

AREi = |
N (ωi)−CBS

CBS
|. (5.34)

The same respective error measures (AE and ARE) are calculated for the test set

Monte-Carlo price estimations with respect to the Black-Scholes solution. It should

be noted as previously mentioned, see Section 5.2.1.4, that the output of the neu-

ral network approximation is rounded to six decimal places, as such all other prices

discussed, the analytical Black-Scholes solution and Monte-Carlo price estimations,

have all been rounded to six decimal places as a suitable level of accuracy for com-

parison.

The acceptable practical pricing boundary is defined such that the numerical

price is accurate with respect to the known analytical solution up to 2 decimal places

.i.e AEi < 0.005. This is in regards to real world market price quotes, based on

the Chicago Board of options Exchange prices [223], which are quoted up to two

decimal places. This boundary is shown as a red line in the AE and ARE error

plots presented, any error below this line is determined as an acceptable error for

practical usage.

A measure of accuracy used to compare models is the acceptable error rate

which is related to the acceptable practical pricing boundary. Assuming that the

input samples are i.i.d, the acceptable error rate is an estimation of AER = P(|ĉ−

c| < 0.005). As well as creating a model that is accurate, it is important in this

application that it generalised well over the whole input domain, therefore the final

178 Chapter 5. Options Pricing using Neural Networks

model aims to maximise,

arg maxP(|ĉ− c|< 0.005)−E[|ĉ− c|] (5.35)

this will result in a tradeoff between accuracy in certain regions of the input space,

measured by the absolute error, and the overall acceptable generalisation over the

whole input space.

To breakdown the pricing capability of the methodology five distinct regions of

options price behaviour with regards to the size of the moneyness ratio are defined.

Definition 5.1. The five price regions are defined as:

1. Deep-Out-The-Money : Deep-Out-The-Money (DOTM) are defined as op-

tions where the strike price is less than half of the asset price, M < 0.5 or

log10(M) ≤ 0.30. The options in this region lie within the degenerative re-

gion of the payoff function, and tend to have very small prices which are

close to 0.

2. Out-The-Money : In this work Out-The-Money (OTM) options are defined

as those where the moneyness lies within the region 0.5 < M ≤ 0.80 or

0.30 < log10(M) ≤ 0.1. In this region the options become more valuable

and the behaviour becomes more non-linear as the payoff approaches the dis-

continuity.

3. At-The-Money : At-The-Money (ATM) options are usually defined as those

where the moneyness M = 1, but because this work looks at a distribution

of M values ATM is defined here as those options within a narrow region

around M = 1, this encompasses ATM options and close-to ATM options,

0.80 < M < 1.25 or −0.1 < log10(M) < 0.1. This region shows the highest

degree of non-linearity as the payoff around the discontinuity begins to be-

come valuable as the probability that the contracts will become valuable at

expiry increases.

5.3. European option Pricing 179

4. In-The-Money : In-The-Money (ITM) options are where the moneyness

M > 1, this means that the options are currently valuable, and have a higher

probability of becoming valuable at expiration. Here ITM is defined within

the region 1.25≥M < 2 or 0.1 < log10(M)< 0.30.

5. Deep-In-The-Money : Deep-In-The-Money (DITM) are defined as options

where the moneyness 2 ≤M or 0.30 ≤ log10(M). In this regions it is highly

likely that the options will be valuable at expiration, and behaviour tends to

becoming linear with respect to the asset price.

Benchmark comparisons are made against Monte-Carlo numerical methods.

Monte-Carlo prices are generated as part of the test set as a means of comparing the

neural network price approximation against the popular numerical method to assess

this methods practical applicability. Given that the neural network approximations

are trained on MC generated data it is expected that the errors of the neural network

price approximations should be at least or almost as good as MC price estimations.

Monte-Carlo prices inherently have some error present in the form of random noise

[128], it is speculated that the neural networks may even be able to produce more

accurate prices than MC by being able to smooth out the noise present in the training

data.

The methodology is tested on three different types of options, European, Asian

and American, each adding a progressive degree of complexity to the problem.

5.3 European option Pricing
European call options are first explored, these options have the simplest form of

the payoff function at maturity given as (ST −K)+, and when the underlying asset

price behaviour follows geometric Brownian motion the analytical Black-Scholes

solution can be used to give an exact price. The availability of an analytical solution

allows the errors and accuracy of the neural network price approximations to be

precisely evaluated and compared, from these results initial limitations and ways

to improve the methodology can be determined before being applying it to more

complex cases.

180 Chapter 5. Options Pricing using Neural Networks

For the case of European call options the methodology is first investigated

using two different neural network architectures, multi-layer-perceptron with 2-

hidden layers (MLP-2L) and 2-stage multi-stage network (MSN), each architecture

is also implemented with two different numbers of total neurons used in the hid-

den layers, 20 and 40 neurons, evenly distributed over the hidden layers for each

architecture, this results in a total of four different architectures that have been ini-

tially explored. For each one of these four architectures a total of 300 independently

trained neural networks models are learnt. The neural networks are trained using the

evolutionary algorithm BrPSO [214] (for more details see Chapter 3). The neural

network training, validation and test data is generated using MC price estimations

(10,000 replications and 365 steps) sampled from the input space Ω.

The selection of the best model will be a time consuming process, with many

factors to be considered, which will be dealt with sequentially in Sections 5.3.2 -

5.3.4. Before this however, there will be a short discussion of behaviours within

different price regions as they elucidate the general problems faced by the neural

networks in this option pricing task.

5.3.1 Comparing Price Region Error Behaviour

To highlight the general behaviour of the neural network approximations observed

in each price region Figure 5.2 shows the distributions of the magnitudes of the

AREs, given as log10(AREi), for each one of the four network architectures in-

vestigated within each of the price behaviour regions, DOTM, OTM, ATM, ITM

and DITM; the log is taken because of the wide range of magnitudes of the AREs.

In general the overall error behaviours for all network architectures considered here

are very similar for each within each of the price regions; however the errors behave

very differently when regions are compared.

The most distinct behaviour, when regions are compared, is the error distri-

bution for DOTM options, Figure 5.2.a, which strikingly bimodal, combining very

good performance (errors of order 10−8) with very bad (errors of the order 1). How-

ever it should be noted that most cases in which the error is 0 are ones in which the

option was priced close to 0 i.e. it was worthless. Overall therefore the practical

5.3. European option Pricing 181

value of the models in this region is debatable because only low valued options can

be priced accurately.

The peak at ARE≈ 100% for DOTM options is caused by the rest of the low

valued options in the price range 10−6 < CBS < 0.01, in these instances the neu-

ral networks approximate these prices as Ĉ = 0 and undervalue the options. This

suggests that the gradient of the degenerative slope of the neural network approxi-

mation to the solution is too steep and prices decay too rapidly.

Moving onto the OTM region a much less noticeable bimodal behaviour is

observed; this region has the highest frequency for ARE> 100% , and is because

this region has the highest frequency of prices in the range10−6 <CBS < 0.01 and

therefore suffers the same problem as described for DOTM options. There is also

a second behaviour for which there are some extremely high AREs. In these cases

the neural network approximations are considerably overestimating the prices, this

occurs for low priced options with a small σ and this issue can be further illustrated

later on when looking at the accuracy of the Vega. This is due to the discontinuity

of the option payoff function, in this case a small σ is equivalent to a smaller τ and

the option price function more closely resembles the final payoff condition.

As the price behaviour become more linear in the ITM and DITM regions the

the distributions tend towards being more normally distributed; it should again be

noted that this is the distribution of the magnitude of ARE. This is because the as the

price behaviour becomes more linear, and for ITM options the range of magnitude

of prices becomes a lot smaller, as well as the SP10 transform has less on effect the

learning of these prices is easier.

Although the AREs are seen to decrease as the region moves from

DOTM→DITM, this does not mean that the price approximations in the regions

become more accurate with respect to the acceptable pricing boundary. Because

option prices also increase as the region moves from DOTM→DITM in order to

maintain acceptable performance the ARE should correspondingly decrease. While

from Figure 5.2 shows evidence of this happening i.e. the mean ARE is decreasing,

the effect is not sufficient to provide adequate overall price regions.

182 Chapter 5. Options Pricing using Neural Networks

Table 5.1 show the the acceptable error rate, which proportion of prices that

lie within the acceptable price range.The results of Table 5.1 highlight the issue

of consistency of the neural network model approximations for ITM and DITM

options by showing that only a small percentage of the prices generated by all the

models are acceptable. This therefore leads to the question of model selection, how

can the models that generate the acceptable prices be recognised and selected for

the test cases, this will be addressed later on when considering model diversity and

aggregation methods.

DOTM OTM ATM ITM DITM
MLP-2L(20) 0.728 0.135 0.012 0.013 0.017
MLP-2L(40) 0.727 0.133 0.012 0.012 0.017
MSN(20) 0.729 0.139 0.010 0.009 0.012
MSN(40) 0.729 0.141 0.010 0.010 0.013

Table 5.1: Proportions of price approximations within the acceptable error boundary for
each of the 5 regions.

5.3.2 Exploring Network Architectures

5.3.2.1 Comparing Network Size

The effect of the number of neurons used in the hidden layers is briefly investi-

gated for both of the neural network architectures, MLP-2L and MSN, used here

to establish if a sufficient number of neurons has been used for the neural network

approximations. Both 20 and 40 hidden neurons have been explored; for MLP-2L

this corresponds to networks of the form 3-10-10-1 and 3-20-20-1, and for MSN

3-10-1-4-10-1 and 3-20-1-4-20-1, respectively.

From the RHS of Figure 5.2 the observed effect of the number of neurons on

cumulative frequency is more significant for the MSN architectures than for the

MLP architectures; for all of the regions it can be seen that the 40 neuron MSN

architecture has a higher percentage of smaller AREs compared to 20 neurons for

each of the price behaviour regions: DOTM and OTM have a higher percentage

of ARE< 10% and for ATM and ITM ARE< 1% and DITM ARE< 0.1%. In

addition from Table 5.1 it can be seen that the 40 neuron MSN has a marginally

5.3. European option Pricing 183

(a) Deep-Out-The-Money (b) Deep-Out-The-Money (cumulative dist’)

(c) Out-The-Money (d) Out-The-Money (cumulative dist’)

(e) At-The-Money (f) At-The-Money (cumulative dist’)

(g) In-The-Money (h) In-The-Money (cumulative dist’)

Figure 5.2: Distribution (LHS) and cumulative distribution (RHS) of absolute relative price
errors of the 4 neural network architectures for the 5 defined regions of options
prices.

184 Chapter 5. Options Pricing using Neural Networks

(i) Deep-In-The-Money (j) Deep-In-The-Money (cumulative dist’)

Figure 5.2: cont. Distribution (LHS) and cumulative distribution (RHS) of absolute relative
price errors of the 4 neural network architectures for the 5 defined regions of
options prices.

better acceptable practical error rate for OTM, ITM and DITM options.

Although the overall distribution of errors for the smaller 20 neuron MLP-

2L architecture seems marginally more accurate, the maximum error compared to

40 neurons is a lot larger. With this in mind the 40 neuron architecture could be

considered more reliable. From hereon the discussion will focus on the larger 40

neuron networks due to their slightly better reliability determined by the maximum

AREs observed.

The analysis of the effect of network size only looks at two different numbers

of hidden neurons. This work is sufficient to confirm that more neurons can produce

a more accurate/reliable model and that a sufficient number of neurons are used

to closely represent the upper bound of approximation ability. For future work it

would be insightful to investigate a wider range of neuron numbers to see if there

is any further improvement in the approximation ability of the networks or if there

is an asymptotic limit to the approximation accuracy with regards to the number

of neurons. It would also be interesting to the find the best network settings with

respect to complexity and accuracy; for this purpose it would be sufficient to use

an evolving network architecture to find the optimal design with respect to network

complexity and approximation accuracy.

5.3. European option Pricing 185

5.3.2.2 Comparing Architecture

With respect to each of the price behaviour regions, at first glance the neural network

architectures, MLP-2L and MSN, show very similar patterns of error behaviour.

However looking at the behaviours of the two architectures in more detail brings

to light some important differences and shows that the MLP-2L here has a better

overall function approximation ability. (As decided above, the discussion continues

with a focus only on the larger 40 neuron networks.)

The differences to accuracy between MLP-2L and MSN for DOTM and OTM

are respectively smaller than for ATM, ITM and DITM options. Hence while MSN

performs better for DOTM and OTM options MLP-2L is preferable.

For DOTM and OTM options the MSN architecture shows a better level of

accuracy. For DOTM options the MSN has around a 2% higher frequency of exact

price solutions and respectively has around a 2% lower frequency of ARE>100%;

this indicates that the MSN networks are better at classifying worthless options

where CBS = 0. A similar behaviour can be seen for OTM options where there

is a higher frequency of ARE<100%, this further supports that the MSN is better

for approximating low-valued options albeit only slightly. The MLP-2 has a better

overall mean ARE, although there are some cases of extremely high average errors

caused by outlier outputs, whilst MSN has a lower rate of these outliers for DITM

and OTM options.

The more significant differences in the AREs can be seen for the ATM, ITM

and DITM options. For ATM options MLP-2L only has a greater frequency of

ARE≤1% by 3%, in addition MSN has a higher rate of ARE≥100% by around 1%.

For ITM options MLP-2L has a greater frequency of ARE≤1% by 12% compared

to MSN and for DITM MLP-2L has a greater frequency of ARE≤0.1% by 10%.

These differences are also noticeable when looking at the acceptable pricing error

rates, although not as significant as the differences in the ARE distributions, MLP-

2L(40) has better acceptable error rates compared to MSN(40) by 0.002, 0.002 and

0.004 for ATM, ITM and DITM options respectively.

Although the differences in price approximation when comparing MLP-2L and

186 Chapter 5. Options Pricing using Neural Networks

MSN are rather small, but still favourable to MLP-2L, apart from the price output

it is important to see if the networks are properly learning the correct overall be-

haviour of the option pricing function and not over-fitting to just the price. In fact

it is possible that the price unction could be approximated quite accurately while

it derivatives an insufficiently predicted. This can be validated by looking at the

derivatives of the neural network outputs with respect to inputs, which correspond

to the option values known as the Greeks.

5.3.2.3 Greeks

Figures 5.3, 5.4 and 5.5 show the absolute relative error for the option price sensi-

tivities known as the Greeks, Delta (∆), Vega (ν) and Rho (ρ), for the MLP-2L(40)

and MSN(40) architectures respectively; these figures show the log10(ARE) for all

the separate independent networks. The AREs for the MC test set pricing (Figure

a in each case) are also shown to provide a benchmark for comparison with respect

to the numerical calculation.

The most important Greek value is the Delta, as this is most commonly used

to hedge portfolios. The MLP-2L(40) shows the more robust Delta calculation,

with only a few examples exceeding a 100% relative error. The profile of these

Delta values closely resembles that of the MC data, and in fact in some cases for

ATM and some ITM options shows more accurate Delta values. The story is quite

different for the MSN network and it can be seen that the Delta calculations are very

unreliable in comparison to the 2-Layer MLP.

For the Vega both architectures show comparatively poor performance with

respect to the MC values.The MC Vega has a maximum error of around order 102,

whilst it is seen that the error for ITM options for both neural networks lie at around

a magnitude between 105-108. For OTM options the MLP-2L(40) shows slightly

better errors with less frequent extremely high errors. In addition some cases for

options around ATM there are instances where the error is significantly better than

MC, with a best error of around order 10−3.

In the case of the Rho both MSN and MLP struggle to acheive the level of

error given by MC. For Rho the MSN(4) architecture shows overall larger errors,

5.3. European option Pricing 187

especially for OTM options compared to the MLP(40).

Even though the MSN network produces more reliable pricing outputs for

DOTM and OTM options, the accuracy and nature of the solution is questioned

given the errors of the derivatives. The MLP-2L network produces more robust

derivative approximations, which is an indication that it has more accurately learnt

the overall pricing function. As a result the MLP-2L(40) network is chosen to be

used throughout the rest of this work. The following section will look at training

data issues for this chosen network.

(a) MC (Res=10−6)

(b) 2-Layer (20N,Res=10−6) (c) MSN (20N,Res=10−6)

Figure 5.3: Delta

188 Chapter 5. Options Pricing using Neural Networks

(a) MC (Res=10−6)

(b) 2-Layer (20N,Res=10−6) (c) MSN (20N,Res=10−6)

Figure 5.4: Vega

(a) MC (Res=10−6)

(b) 2-Layer (20N,Res=10−6) (c) MSN (20N,Res=10−6)

Figure 5.5: Rho

5.3. European option Pricing 189

5.3.3 Training Data Sensitivity

5.3.3.1 Noise

One source of potential error is in the noise from the training data, using MC

simulations as the training data means there will inherently be some noise in the

data, and this could effect the final function approximation. To test for effects of

noise in the training data two additional sets of 300 MLP-2L(40) networks were

trained, one set using the exact Black-Scholes solution and the other set using a

more corse MC(1000,365) for the same training data samples previously used for

the MC(10000,365) training data.

The ARE distributions are shown in Figure 5.6. The most interesting result is

that the BS trained models are actually worse with a lower cumulative frequency of

lower AREs than the MC(10000,365) trained models for all but DOTM options. In-

fact even for ITM and ATM options it can be seen from the cumulative distributions

that MC(1000,365) also has a higher frequency of lower AREs than the BS training

data, this in contrary to what may be expected in that increasing the accuracy of the

training data leads to more accurate approximations.

There are a few possible explanations for this behaviour, essentially when

training with MC data it is similar to the technique known as output smearing [224]

where gaussian noise is added to the target training values. The concept behind out-

put smearing is similar to other ensemble methods with respect to the bias-variance

decomposition which aims to increase the variance without effecting the bias and

thus increasing model diversity. In output smearing it is shown that the variance can

be decomposed into two parts: VO(f), the variance due to the output, and VI(f), the

variance due to the sample inputs. It was observed that the output variance was the

dominant source of prediction error.

From the bias-variance decomposition it can be deduced that given the training

data is exact there is low variance but as the trade-off would suggest, results in a

high bias. Feedforward neural networks are a bias estimator [225], and given the

presence of no-noise in the training data the bias component is the most prevalent.

This implies that shape of the BS surface is difficult for a single neural networks

190 Chapter 5. Options Pricing using Neural Networks

(a) Deep-Out-The-Money Options (b) Deep-Out-The-Money Options

(c) Out-The-Money Options (d) Out-The-Money Options

(e) At-The-Money Options (f) At-The-Money Options

(g) In-The-Money Options (h) In-The-Money Options

Figure 5.6: Distribution (LHS) and cumulative distribution (RHS) of absolute relative price
errors of the MLP-2L networks trained using 3 different levels of accuracy
for the training data, the exact Black-Scholes solution, and Monte-Carlo using
1000 and 10,000 replications.

5.3. European option Pricing 191

(i) Deep-In-The-Money Options (j) Deep-In-The-Money Options

Figure 5.6: cont. Distribution (LHS) and cumulative distribution (RHS) of absolute relative
price errors of the MLP-2L networks trained using 3 different levels of accuracy
for the training data, the exact Black-Scholes solution, and Monte-Carlo using
1000 and 10,000 replications.

to estimate the entire generalised function, in particular the non-linear behaviour

of the ATM and ITM options, if the bias of the estimator is too high it will be

hard for it to correctly capture the curvature present in these regions. Whilst when

using noisy MC data although this increases the variance the additional diversity

as a result allows some neural networks to more accurately interpolate in specific

regions of the data which gives rise to the better ARE distributions.

It has been observed that although one may expect the most accurate train-

ing data to result in the best function approximations due to the complexity of the

function being approximated the bias of the neural network estimations become too

dominant, as a compromise a low level of noise is required in the data to reduce

the bias at the cost of adding some variance, another way of reducing the bias is to

increase the density of the training data.

5.3.3.2 Increasing Training Data Density

To try and further improve the precision of the price approximations the size of the

training data has been increased to 5000 training samples over the domain Ω. Us-

ing this new training data 100 independent MLP-2L(40) neural networks have been

trained. Although using more training samples has the disadvantage that it consid-

erably increases the training time of neural networks, the significant improvements

192 Chapter 5. Options Pricing using Neural Networks

in the accuracy of the approximations more than compensates for this.

The improvements by increasing the size of the training data most obviously

been seen when comparing the acceptable error rates for each region, Figure 5.7,

with significant increases in accuracy over all regions. In particular there is a large

overall improvement for all networks within the DOTM and OTM regions where the

minimum acceptable error rate for the neural networks trained using 5000 samples

are 0.99 and 0.6500 respectively, compared to the maximum acceptable error rate

in the same regions using 2000 samples which are 0.72 and 0.26 respectively. For

ATM, ITM and DITM options the acceptable error rates are all below 0.05 when

using 2000 training samples, whilst for 5000 training samples the range is a lot

larger for all regions and extending well above 0.1, in particular the ATM rates

extend up to around 0.45.

(a) 2K training samples (b) 5K training samples

Figure 5.7: Boxplot of the acceptable error rates for neural networks trained with 2000 and
5000 training samples.

These results empirically show that it is more beneficial to increase the num-

ber of training samples rather than increasing the accuracy of the training data as

previously discussed. This can most simply be illustrated by approximating a curve

with piece-wise linear functions, using one linear function formed from two training

points approximates this as a straight line no-matter the accuracy of the two train-

ing points with respect to the curve, then as the number of training points increases

more of the curvature can be captured. With respect to the bias-variance tradeoff

using more training samples reduces the bias of the model, but eventually this will

need to be compensated by a reduction in the variance via smoothing between the

5.3. European option Pricing 193

noise of the points.

In light of this marked improvement in accuracy, as shown in Figure 5.7, the fi-

nal methodology presented here uses the MLP-2L(40) networks trained using 5000

samples to create the final neural network model, the final model is created either

by model selection or ensemble methods.

5.3.4 Model Diversity

Ensemble models provide a significant improvement over single models but the

diversity of the neural network models is important. Low diversity would mean

that the variance of the models around the bias is low, which gives rise to a set of

very similar and highly biased set of models. There needs to be a tradeoff between

diversity and accuracy, with sufficient diversity and accuracy the neural network

outputs should be compactly well distributed around the target value [226].

Training Fitness

The main source of variance of the neural network models is generated by the

stochastic search algorithm (BrPSO) used for learning the parameters; assuming

that there exists a unique solution of the parameters; to model the neural network

the variance would exist as noise around the global optimum.

Figure 5.8 shows the distribution of fitness values for the three training meth-

ods: unwieghted; weighted-random; and weighted-atm. It can be seen that the

un-weighted training follows a lognormal-like distribution, this shows that there is

a higher concentration of models around the better fitness values, which based on

the above assumption of convergence to a global optimum should occur. Despite

this showing good convergence it indicates a limitation in the diversity of the mod-

els and there is no guarantee that a model with a low training error will have the

best generalisation [227]; this has previously been shown in the lack of correlation

between training fitness and the acceptable error rate of each region.

The two other training methods, weighted-random (wt-rand) and weighted-atm

(wt-atm), show a higher variance in the magnitude of fitness values, and as may be

expected wt-rand exhibits the overall largest degree of variance. For wt-atm the

194 Chapter 5. Options Pricing using Neural Networks

distribution exhibits some degree of lognormality, with a mean at log(fit) = −2.5,

but still shows than even though the optimisation is more constrained by weighting

around a specific region there is still a large enough degree of freedom to train a

wide range of models. This supports the idea that the weighted training encourages

diversity and expertise in different regions.

However, using the fitness value as a measure of diversity presumes this is

correlated to the distribution of the outputs which may not be true, for example

consider how the same fitness value can be achieved by minimising the error of

different target values but to the same magnitude; this creates one fitness value but

a set of highly diverse models. As such more robust measures of diversity can be

used.

Figure 5.8: Training fitness distributions.

5.3. European option Pricing 195

Diversity and Mutual Information

Two other measures based on the output values of the neural networks can be used to

evaluate the diversity of the neural network models. Diversity can be measured with

respect to mutual information between the ensemble members [228]; in negative

correlation learning (NCL) [220] the diversity of the ensemble is measured as

DM = ∑
i

∑
j

(
ŷ j

i − ŷ j
M

)
∑
k 6=i

(
ŷ j

k− ŷ j
M

)
(5.36)

where ŷ j
i is the output of the ith ensemble member for the jth training sample output,

and ŷ j
M is the ensemble output for training sample j taken using the mean. This

can be interpreted in the sense that DM measures the balance of the mean for an

ensemble estimator; for an individual component a large negative value will only

occur if the signs of the two components are different and signifies that the there is a

balance between positive and negative errors centred around the mean output. It has

been shown that this quantity can be related to the ambiguity decomposition [229].

One issue with this measure, DM, is the assumption the variance is constant;

this data includes, as has been pointed out, a vast range of magnitudes, and to try

and give a more balanced view of diversity over this data set the relative-diversity

is introduced

Drel = ∑
i

∑
j

(
ŷ j

i − ŷ j
)

∑k 6=i

(
ŷ j

k− ŷ j
)

ŷ j + res
(5.37)

where the resolution of the model training is added to compensate for any rounding

up to zero made.

Closely related to the preceding diversity measures, DM and Drel, is the mutual

information between two ensemble members. Assuming the outputs are Gaussian

random variables this is measured as

I
(
Ni;N j

)
=−1

2
log
(
1−ρ

2
i j
)

(5.38)

196 Chapter 5. Options Pricing using Neural Networks

where ρi, j is the correlation coefficient. The domain of the mutual information

is I(Ni;N j) ∈ [∞,0], where positive values indicate there is a significant degree of

mutual information I > 0.5 implies ρ2 > 0.9, moderate values of I ≈ 0.10 imply

ρ2 ≈ 0.5, whilst a value of 0 indicates no mutual information. From this the mean

mutual information of the set of neural networks can be measured as

I (N) =
∑i ∑ j>i I

(
Ni;N j

)
0.5Z2−Z

(5.39)

where Z is the number of neural networks in the set. Methods such a NCL aim to

minimise the mutual information; minimising the mutual information is the same

as minimising Cov(Ni,N j)
2, to produce a set of uncorrelated models. One issue

as noted by Clemen et al [230] is that the mutual information does not take into

consideration negative correlation, in the case of ensembling negative correlation is

a positive behaviour that can assist the ensemble by reducing the variance.

Diversity of Trained Models

Table 5.2 shows the diversity measures for the sets of neural networks (unweighted,

wt-rand, and wt-atm) within each price region (DOTM, OTM, ATM, ITM and

DITM) and all the regions combined (ALL). As expected the wt-rand networks

show the largest degree of diversity over all regions for both diversity measures,

whilst wt-atm networks show the smallest overall diversity. The wt-atm and un-

weighted networks are generally quite similar; for ITM and DITM wt-atm has a

larger diversity, the relative-diversity helping to make the difference more explicit.

The relative-diversity measures are more balanced over all regions, compared to the

regular diversity measures, DM, which are dominated by the ATM, ITM and DITM

values.

The MI was measured with respect to the mean-centered residues to make

the outputs for each network more distinguishable. Table 5.3 gives the measured

mutual information for each of the sets of neural network models for each of the

price regions. For the whole domain of price regions all sets of networks show a

high degree of MI, with the wt-atm being marginally lower; this could be attributed

5.3. European option Pricing 197

to the significantly lower MI for DOTM and DITM options which make up a large

proportion of instances. In general it can be seen that there is a moderate/high

level of mutual information in the OTM, ATM and ITM regions, whilst DOTM

shows a high degree of MI, and DITM shows a lower degree of MI. Given the

degenerate nature of the option price function within DOTM a high degree of MI

is to be expected, wt-atm shows the lowest degree of MI in this region, which for

an unbiased estimator should imply a more accurate approximation when using the

mean to create an ensemble. In addition, the wt-atm set has the lowest MI for OTM

and DITM; for OTM options it is similar to the unweighted-training set.

An interesting observation is that ATM options show a higher degree of mutual

information than ITM and DOTM. ATM options have the highest level of function

convexity and sensitivity to the input parameters and therefore should be the hardest

area to approximate, this is expected to give rise to a lower degree of mutual infor-

mation and more diversity compared to other price regions. In the case observed for

ATM options a higher degree of diversity combined with a higher degree of mutual

information shows that there is a higher degree of negative correlation within ATM

options, which may make ensemble methods more accurate in this region.

Overall the results shown in Table 5.2 and 5.3 indicate that there is some di-

versity within the sets of neural networks (unweighted, wt-rand, and wt-atm) but

the relative diversity measures show that it is still very small. The small measure of

diversity combined with the high and moderately high values of mutual information

shows that the models are mostly positively correlated which can make finding the

optimal ensemble a harder problem, but at the same time that similar functions have

been learned by the networks which raises confidence in the approximation ability

of the networks.

198 Chapter 5. Options Pricing using Neural Networks

Diversity (DM)
DOTM OTM ATM

Unweighted -1.14e-07±3.25e-07 -1.90e-05±8.93e-06 -3.66e-04±8.15e-05
wt-rand -6.37e-07±5.62e-06 -9.35e-05±1.82e-04 -1.09e-03±4.58e-04
wt-atm -1.02e-07±2.31e-07 -9.41e-06±6.09e-06 -3.40e-04±1.20e-04

ITM DITM ALL
Unweighted -1.10e-03±1.75e-04 -1.26e-03±2.20e-04 -5.90e-04±1.63e-04
wt-rand -4.75e-03±1.32e-03 -7.52e-03±2.42e-03 -3.22e-03±1.66e-03
wt-atm -2.77e-03±5.43e-04 -6.10e-03±5.99e-03 -2.45e-03±3.58e-03

Relative-Diversity (Drel)
DOTM OTM ATM

Unweighted -1.61e-05±2.60e-05 -5.03e-04±1.78e-04 -2.02e-03±3.85e-04
wt-rand -6.01e-05±3.21e-04 -1.91e-03±2.96e-03 -5.73e-03±2.15e-03
wt-atm -2.26e-05±2.24e-05 -3.11e-04±1.23e-04 -1.50e-03±4.64e-04

ITM DITM ALL
Unweighted -1.82e-03±3.03e-04 -4.36e-04±8.59e-05 -5.93e-04±1.97e-04
wt-rand -7.27e-03±1.87e-03 -2.30e-03±7.18e-04 -2.32e-03±1.48e-03
wt-atm -4.34e-03±8.62e-04 -1.79e-03±1.20e-03 -1.25e-03±8.06e-04

Table 5.2: Diversity measures, the regular diversity, Equation 5.36, and relative-diversity,
Equation 5.37, of the three sets of trained neural network models: unweighted;
wt-rand; wt-atm.

Mutual Information (MI)
DOTM OTM ATM

Unweighted 4.31e-01±4.74e-03 2.00e-01±2.20e-03 1.72e-01±1.89e-03
wt-rand 4.50e-01±5.62e-03 3.13e-01±3.92e-03 1.32e-01±1.66e-03
wt-atm 2.83e-01±4.35e-03 1.89e-01±2.91e-03 1.97e-01±3.03e-03

ITM DITM ALL
Unweighted 1.41e-01±1.55e-03 6.38e-02±7.02e-04 5.26e-02±5.78e-04
wt-rand 1.23e-01±1.54e-03 6.95e-02±8.69e-04 5.12e-02±6.40e-04
wt-atm 1.43e-01±2.20e-03 5.74e-02±8.83e-04 4.74e-02±7.30e-04

Table 5.3: Mutual information, Equation 5.39, of mean-centred outputs for the three sets of
trained neural network models: unweighted; wt-rand; wt-atm.

5.3. European option Pricing 199

5.3.5 Ensemble Models

For each of the sets of trained neural network models (unweighted, wt-rand, and

wt-atm) ensemble methods are used to produce an overall approximation of the op-

tions pricing function. Three ensemble methods are investigated here: mean/equally

weighted ensemble; dynamic centre-distance; linear regression. It is found that lin-

ear regression produces the most robust overall approximation and is adopted as the

final ensemble method used here.

5.3.5.1 Mean Models

The simplest ensemble strategy is to use the mean, which is equivalent to taking

equal linear weights of each neural network model in the set. The absolute error

(AE) for the three sets of trained neural network models are illustrated in Figure 5.9

and the respective acceptable error rates (AER) are given in Table 5.4. Compared

to the individual models, Table 5.5 gives the AERs for the best selected individual

model for each price region, even this simple ensemble methods shows significant

improvements on the robustness and overall accuracy of the price approximations.

For individual models the best DOTM AER is around 0.7 (70%), which is

similar for most of the other models in all of the sets; for the mean ensemble this

increases to an AER of 100%. For all the sets of neural networks there is a sig-

nificant increases in the AER for OTM options, increasing from around 18% up to

over 75%, with wt-atm showing the best AER of 100%. This vast improvement by

taking the mean shows that the outputs of the neural network in each set are well

distributed around the mean. However, it should be noted that the magnitude of the

AER relative to the magnitude of prices in the DOTM and OTM regions are respec-

tively large so this does not necessarily imply that the mean is very accurate and the

neural networks may still be a set of biased estimators.

Increases in the AER are also seen for all the other other price regions, where

for the individual best models the AER is around 5% for ATM, ITM and DITM,

which is seen to increase to around 20% for the unweighted and wt-rand ensembles.

The wt-rand ensemble is slightly worse than the unweighted ensemble showing a

200 Chapter 5. Options Pricing using Neural Networks

lower AER for ITM options. It can be seen in Figure 5.9 that the unweighted and

wt-rand show large peaks for OTM, ATM, and ITM prices with respect to the MC

price approximations.

The wt-atm ensemble shows the best results, unsurprisingly the wt-atm model

shows an extremely good AER of 89% for the ATM region. This illustrates that

training a set of expert models in a selected region can results in better performance;

though it would then be expected that wt-rand would perform as well as wt-atm,

which is not the case here; this is due to too much diversity in the wt-rand set and

there being not enough models specialising around particular regions for the benefits

of the localised expert models to show. For the wt-atm training it can be seen that

this also improves the performance for the OTM and ITM results either side of the

ATM price region, this is due to the weighting at ATM helping to reduce the the

degrees of freedom of the function approximations in the surrounding regions. For

the regions further away, DOTM and DITM is can be seen that the performance of

all three ensembles are very similar.

For ATM options the unweighted and wt-atm sets, both show similar degrees of

diversity with respect to the measures presented in Section 5.3.4, but wt-atm shows

significantly better accuracy within this region. The good performance of wt-atm

along with the lower diversity and larger mutual information of the set implies that

the wt-atm neural networks are better unbiased estimators within the ATM region,

and least bias estimators throughout the other price regions.

Although there is an overall a significant increase in accuracy for all the mean

ensemble models it can be seen in Figure 5.9 that there is a distinct cluster of very

high errors within the ATM region. This is due to the effects of small time-to-

maturity and the discontinuous payoff function, this area was seen to exhibit the

highest variance, and the issues within this area will be discussed in more detail

later on in Section 5.3.6.

The mean in simple method and when combined with the right set of models

can produce a very accurate approximation. The issue when using the mean is that

it follows the bias of the training data, so it is unlikely that it will perform better

5.3. European option Pricing 201

DOTM OTM ATM ITM DITM
MC 1.00 1.00 0.96 0.77 0.46
unweighted 1.00 0.76 0.23 0.38 0.25
wt-rand 1.00 0.73 0.20 0.14 0.23
wt-atm 1.00 1.00 0.89 0.51 0.22

Table 5.4: Acceptable error rates for the mean models.

Price Region
Best model DOTM OTM ATM ITM DITM
Min Fit 0.735 0.182 0.018 0.023 0.016
DOTM(43) 0.739 0.149 0.009 0.015 0.004
OTM(251) 0.735 0.182 0.018 0.023 0.016
ATM(271) 0.727 0.149 0.045 0.008 0.016
ITM(144) 0.727 0.128 0.009 0.045 0.016
DITM(78) 0.731 0.122 0.009 0.000 0.047

Table 5.5: The acceptable error rates for the best model for each of the price regions.

than the MC approximations, as this would imply that the neural network models

begin to deviate from the training data. This issue was partly addressed with respect

to training data noise, where it was suggested that more noise can allow for better

interpolation of the training data due an increase in the degrees of freedom. Another

manner for reducing error post-training is using regression techniques to add extra

corrections to the ensemble outputs.

202 Chapter 5. Options Pricing using Neural Networks

(a) Unweighted Training (b) Random Center Training

(c) ATM Center Training

Figure 5.9: Scatter plots showing the absolute relative error for the 10 median-aggregated
neural network European pricing models for each of the neural network archi-
tectures explored, 2-Layer (20N,Res=10−6).

5.3.5.2 Centre-Distance

The center-distance weighting model, in contrast to the other two methods used, is

a dynamic aggregation method; instead of a static set of weights that is generated

a-priori, for center-distance weighting the linear weights are generated dynamically

based on the test inputs given (M,σ ,r). This method is only applied for the wt-rand

models because all the networks were trained with difference centers distributed

across the range of monyeness inputs.

For the center-distance weighting model the set of weights, βi for an input in-

stance i, is generated as the normalised distance between the neural network model

5.3. European option Pricing 203

Figure 5.10: Absolute errors for the center weight ensemble using the wt-rand set of neural
networks.

DOTM OTM ATM ITM DITM
0.993 0.720 0.315 0.130 0.174

Table 5.6: Acceptable error rates for the center weight ensemble using the wt-rand set of
neural networks.

center CN and the test input of the moneyness Mi. For a neural network model N

βi,N =
(‖CN−Mi‖+a)−2

∑
Z
j=0
(
‖C j−Mi‖+a

)−2 . (5.40)

where a is constant for determining the radius of influence, i.e. for all ‖CN−Mi‖<

a it reduces the variance in the magnitude of the weights, such that they are all

approximately equal; this stops one model having an overwhelming contribution

if it is extremely close to the given center Mi, as some diversity is still required.

This results in the neural network with the closest center to the input, subject to

the radius of influence, having the highest weighting as it is expected that during

training it specialised most in this area and produces the best expert model for the

given input instance.

204 Chapter 5. Options Pricing using Neural Networks

However, it can be seen from Table 5.6 and Figure 5.10 that the centre-distance

ensemble model exhibits disappointing results, and shows performance worse than

the mean ensemble, especially for OTM and ATM options. This is either due to

the neural networks not specialising well enough for the given training centers,

although it was observed for the wt-atm set that the neural networks specialised

well for the given region of interest (ATM), which then implies that a larger number

of networks is required to provide a sufficient number of experts for the input region

of interest. It may also be worth reducing the range of the centers, instead of having

a continuous range over the whole input space, a discrete set of particular areas of

interest are chosen for each network to then be randomly assigned as the center, this

will also allow for a larger number of experts to be trained for each given region.

5.3.5.3 Regression Models

Linear regression methods are used to try and create improved linear ensembles;

both convex βi > 0, and non-convex βi ∈ R weights are considered. Shortest-path

linear least-squares (non-convex) and constrained linear-least squares (convex) have

been used to generate the linear ensemble weights for each set of neural network

models (unweighted, wt-atm and wt-rand), see Section 5.2.3.1 for more details.

This variant proved to be the most effective of the three ensemble methods consid-

ered, and the discussion in this section be correspondingly more detailed.

Table 5.7 gives the acceptable error rates (AER) for both convex and non-

convex weights and the absolute error plots are given in Figures 5.11 and 5.12 re-

spectively. First of all it is noticeable that the non-convex weights result in consid-

erably better acceptable error rates, and from this, it can be implied, overall errors.

Convex Weights

Compared to the mean/equally weighted ensembles the convex weights show in-

creases for all but the unweighted-ITM and wt-atm ATM acceptable error rates.

This shows that in general either the approximation errors are not symmetrically

distributed around the mean and/or that the neural networks are biased estimators.

The wt-atm ensemble performs the best, compared to the other two sets of

5.3. European option Pricing 205

DOTM OTM ATM ITM DITM
Unweighted
Convex 1.000 0.990 0.970 0.955 0.577
Non-Convex 1.000 0.830 0.635 0.295 0.446
wt-rand
Convex 1.000 0.995 0.910 0.915 0.570
Non-Convex 0.999 0.730 0.410 0.670 0.516
wt-atm
Convex 1.000 0.920 0.895 0.955 0.554
Non-Convex 1.000 0.990 0.780 0.700 0.411

Table 5.7: Acceptable error rates for the linear regression ensembles using convex and non-
convex linear combination weights for each of the three sets of trained neural
networks: unweighted, weighted-random (wt-rand), and weighted-at-the-money
(wt-atm).

neural networks, when using convex weights; as previously suggested this implies

that the neural network estimators are less bias and the overall approximations to

the target function are more accurate. It also implies that there is more diversity

and less collinearity between the all the models in the wt-atm set, or at least for a

selected subset, than for the two other sets of neural networks. It is also interesting

to see that wt-atm ATM AER is lower using the linear regression weights compared

to the equally weighted mean; this further supports the notion that wt-atm neural

networks are less biased and that the error distributions are close to symmetric with

a zero mean for ATM price approximations.

The wt-atm convex ensemble show AERs that are very similar to Monte Carlo,

however from Figure 5.11 it can be seen that the convex-linear ensemble struggles

with larger errors for OTM with high volatility and ATM with low volatility; this

is a similar trend for all of the sets of neural networks, and effects of volatility

will be discussed in more detail later on. The results for wt-atm show that the

convex ensemble has good potential to match or outperform Monte Carlo price

approximations, in Section 5.3.5.4 data transforms will be used to further increase

the accuracy of the convex weighted models.

206 Chapter 5. Options Pricing using Neural Networks

(a) Unweighted Training

(b) Random Center Training

(c) ATM Center Training

Figure 5.11: Scatter plots showing the absolute error for the convex linear neural network
ensembles using the three different weighted trained methods. The volatility,
σ , of each sample is represented as the colour depth using a log1 0 scale.

5.3. European option Pricing 207

Non-Convex Weights

For the non-convex weights the acceptable error rates outperform or are very close

to the MC price approximations considered here for all price regions. It is interest-

ing to see that the presence of negative weights among the non-convex weights is

able to considerably increase the accuracy of the ensemble models; a more detailed

analysis further on will justify why negative weights, not usually recommended,

are applicable in this situation. From the acceptable error rates shown in Table 5.7

it is hard to distinguish which ensemble model is the best; in terms of generalised

performance across all prices regions with respect to the level of accuracy of the

acceptable error boundary (AEB), they are all exceptional, but as mentioned this

generalisation comes at the cost of lower specific accuracy if focusing on a particu-

lar price region.

To give a more detailed look at each of the ensemble models performance

Table 5.13 gives the cumulative distributions of the absolute relative price errors

(ARE) for each region; in addition the column of the relative error approximately

corresponding to the AEB for each region is highlighted. Beginning with DOTM

and OTM options it can be seen that with respect to the ARE the MC results are

more accurate, especially for OTM options. For OTM options the same percentage

of prices have an accuracy of ≤ 1% for MC as the neural network models have for

≤ 10%, it is only in the case of ARE≤ 30% that the MC and neural networks are

comparable in accuracy. These differences are not apparent in the acceptable error

rates, but are significant, which is why it is important to now consider this finer level

of detail to decide how well the ensemble models compare with MC.

The main improvements in the AER when comparing the non-convex ensem-

bles to the convex and mean ensembles are for the ATM and ITM price regions.

For ATM options the non-convex neural network ensembles show a similar degree

of accuracy, with respect to the AER, as MC, although wt-atm is the worse with

an AER of only around 90%. Even though the AERs are only slightly lower than

MC it can be seen for the AREs that the ensembles are overall more accurate. For

ARE≤ 0.1% MC has frequency of 13.5% whilst the neural networks are still over

208 Chapter 5. Options Pricing using Neural Networks

50%, with the best being the unweighted network with 70%. For ARE≤ 0.03%

the unweighted network and wt-atm neural network are around the same. It is in-

teresting to see that even at this high degree of accuracy the unweighted network

is more accurate than the wt-atm network for the non-convex combinations whilst

for the mean ensembles the wt-atm vastly outperformed the other two sets; this

shows that the non-convex weightings are able to correct a strong bias present in

the unweighted models and will be further illustrated later on when considering the

principle components.

For ITM options the AER is considerable better for all the ensembles than

MC. Looking at the AREs for high degrees of accuracy, ARE≤ 0.1%, all the neural

networks and MC are roughly the same; for ARE ≤ 0.03% the neural networks

become more accurate at this performance level still retaining around 10% of prices

errors, whilst the MC degrades to zero. The wt-atm performs the best overall in the

ITM region, especially for the higher degrees of accuracy.

Finally, for DITM options the neural networks are slightly more accurate than

MC, and even for high degrees of accuracy, ARE≤ 0.1%, the neural networks still

have over 60% compared to 50% for MC, although this degrades very quickly when

moving to ARE≤ 0.03% to only around 17% for the neural networks but MC falls

to 8%; for even higher levels of accuracy, ARE≤ 0.03%, MC reduces to zero whilst

neural network still retain around 5% of price errors.

Overall the neural network ensembles lack the same high degrees of accuracy

for DOTM and OTM as seen for MC price approximations, but this is more than

made up for in the accuracy of ATM and ITM options where the neural networks are

seen to vastly outperform MC. Given the neural network ensembles follow roughly

the same pattern of accuracy for each price region looking at the overall AREs

(ALL) the unweighted performs slightly better overall and is comparable to MC

(although this is due to good and bad performance in the different regions balanc-

ing), the wt-atm and wt-rand models have around the same performance although

the wt-atm is more preferable for ATM and ITM options.

The most controversial finding here is that using a non-convex linear combi-

5.3. European option Pricing 209

nation with negative weights vastly outperforms a convex linear combination; the

negative weights are able to extract information from the ensemble that a convex

combination cannot, contrary to the literature consensus negative weights can be

extremely beneficial in certain situations.

Negative Weights

The use of negative weights is a controversial topic. They are often avoided not only

because they are theoretically harder to justify but often result in less reliable ensem-

bles [219]. The main theoretical argument against negative weights is that the space

of the ensemble approximation becomes unbounded. First of all consider the con-

strained convex weights ∑β = 1, βi ≥ 0; in this case the ensemble approximation,ŷ,

is bounded by the outputs of the individual models of the ensemble ŷi,

min{ŷ0, ŷ1, . . .} ≤ ŷ≤max{ŷ0, ŷ1, . . .}. (5.41)

Now consider a non-convex linear weighting, even if the weights are constrained

such that ∑β = 1, it means that the absolute size of the weights is now unbounded

and it is possible to have βi > 1 which can lead to the ensemble approximation now

becoming unbounded. Consider a set of unbiased estimators, such that ŷi = y+ εi,

for a negative set of weights to remain bounded over the entire space it assumes

that the conditional error distributions of Pr(εi|ε j) is the same over whole space of

the approximation, if this changes the cancelation of errors by the combination of

negative and positive weights will not be the same and could result in explosive

errors for the ensemble output, whilst in the convex case the worst case is limited

by the worst of the individual models.

There are some advocates of negative weights [231], if the ensemble weights

are related to the correlation coefficient then under the condition

ρ >
σ1

σ2
; σ

2
1 = min

(
σ

2
i ,σ

2
j
)

(5.42)

negative weights can be justified, this condition is indicative of high levels of

collinearity. If assuming there is collinearity between members of the ensemble

210 Chapter 5. Options Pricing using Neural Networks

(a) Unweighted Training

(b) Random Center Training

(c) ATM Center Training

Figure 5.12: Scatter plots showing the absolute error for the non-convex linear neural net-
work ensembles using the three different weighted trained methods. The
volatility, σ , of each sample is represented as the colour depth using a log1 0
scale.

5.3.
E

uropean
option

Pricing
211

Absolute Relative Error
≤ 0.001% ≤ 0.003% ≤ 0.01% ≤ 0.03% ≤ 0.1% ≤ 0.3% ≤ 1% ≤ 3% ≤ 10% ≤ 30% ≤ 100%

DOTM
MC 0.774 0.774 0.774 0.774 0.774 0.777 0.796 0.870 0.930 0.990 1.000
unwt 0.683 0.684 0.684 0.684 0.693 0.696 0.707 0.741 0.827 0.934 0.997
wt-rand 0.617 0.617 0.619 0.619 0.619 0.619 0.633 0.693 0.834 0.976 1.000
wt-atm 0.597 0.597 0.597 0.600 0.600 0.609 0.626 0.677 0.806 0.977 1.000
OTM
MC 0.195 0.195 0.195 0.200 0.235 0.335 0.635 0.920 0.980 1.000 1.000
unwt 0.080 0.080 0.080 0.080 0.090 0.115 0.190 0.365 0.600 0.915 0.970
wt-rand 0.025 0.025 0.025 0.025 0.035 0.040 0.115 0.350 0.690 0.920 0.960
wt-atm 0.060 0.060 0.060 0.060 0.065 0.080 0.135 0.240 0.580 0.915 0.975
ATM
MC 0.005 0.005 0.020 0.045 0.130 0.510 0.815 1.000 1.000 1.000 1.000
unwt 0.005 0.010 0.050 0.210 0.705 0.980 1.000 1.000 1.000 1.000 1.000
wt-rand 0.010 0.010 0.025 0.125 0.525 0.915 0.990 1.000 1.000 1.000 1.000
wt-atm 0.015 0.045 0.070 0.210 0.560 0.925 0.985 1.000 1.000 1.000 1.000
ITM
MC 0.000 0.000 0.000 0.000 0.305 0.745 0.940 1.000 1.000 1.000 1.000
unwt 0.005 0.010 0.035 0.110 0.370 0.890 1.000 1.000 1.000 1.000 1.000
wt-rand 0.005 0.015 0.050 0.135 0.405 0.790 0.995 1.000 1.000 1.000 1.000
wt-atm 0.000 0.020 0.085 0.165 0.425 0.900 1.000 1.000 1.000 1.000 1.000
DITM
MC 0.000 0.000 0.000 0.081 0.541 0.827 1.000 1.000 1.000 1.000 1.000
unwt 0.007 0.016 0.044 0.179 0.653 0.997 1.000 1.000 1.000 1.000 1.000
wt-rand 0.010 0.019 0.069 0.181 0.663 0.994 0.999 1.000 1.000 1.000 1.000
wt-atm 0.006 0.020 0.047 0.161 0.657 0.996 1.000 1.000 1.000 1.000 1.000
ALL
MC 0.291 0.291 0.293 0.324 0.528 0.721 0.868 0.947 0.974 0.997 1.000
unwt 0.250 0.254 0.268 0.323 0.527 0.724 0.785 0.834 0.896 0.967 0.996
wt-rand 0.222 0.227 0.248 0.297 0.499 0.669 0.739 0.812 0.906 0.983 0.996
wt-atm 0.217 0.225 0.243 0.293 0.499 0.688 0.741 0.799 0.886 0.983 0.998

Table 5.8: Cumulative frequencies of the absolute relative errors for the non-convex weighted ensembles.

212 Chapter 5. Options Pricing using Neural Networks

then the conditional error distributions will be consistent over the approximation

space which means that the errors can be reliably canceled throughout, for the sit-

uation of two models one model is being used to fit as a corrector term. In essence

this is what the MSN architecture aimed to achieve by providing a second corrector

function with respect to bias in the first neural network, although this proved to be

not as successful as the simple MLP architecture.

The use of negative weights can particularly be justified in the case of a set

of bias estimators, E[ŷ] = y+ b < y, although this should not be a problem if ŷi =

y+ bi ; bi ∈ R, as higher weightings can be given to the members with bi > 0.

The compelling case occurs when all members of the ensemble are consistently

under/overestimating, in this case bi < 0 ; ∀i, thus the optimal solution is βi = 1 ;

bi = max(b).

The justification for negative weights can be seen for a very particular set of

conditions: a) the set of estimators have a consistent direction of bias i.e. the models

are always over or underestimating; b) there exists a high degree of positive corre-

lation and collinearity between at least two members of the ensemble to allow for

reliable cancelation of errors using negative weights.

Principle Components

Using principle component regression (PCR) it is possible to see the importance

of collinearity and negative weights in the options pricing ensemble. PCR is used

to reduce the collinearity by forming a regression using the principle components

with the highest variance, however it was found that for the PCR ensemble to out-

perform the MC price approximations the maximum number of components are

required. PCR is related to shortest path least-squares regression by the singular-

value-decompostion. The pseudoinverse, B+, of a matrix X is

B+ =
(
XT X

)−1 XT = VΣ
−1UT . (5.43)

5.3. European option Pricing 213

With respect to the set of linear weights, β , using shortest-path least-squares and

PCR

β =
(
XT

d Xd
)−1 XT

d y (5.44)

β = VT
d Σ
−1
d Udy =

d

∑
i=1

uT
i y
λi

vi (5.45)

where d is the number of principle components used, and Xd is the appropriately

truncated matrix. Therefore when using all the principle components PCR is the

same as the shortest-path least-squares.

Upon examination of the first principle component, PC1, for the three sets of

neural network models it is interesting to see that this component corresponds to

taking the mean

v1 j ∝
1
Z
∀ j = {1 . . .Z}. (5.46)

All other components correspond to extremely small variance i.e. there is a high de-

gree of collinearity. However, some of these low variance components may include

important information [232] about the structure, as is the case here; when includ-

ing more of the low variance components the price approximation improves. The

addition of the collinearity in these components works as a corrector for the bias

from the MC training data and improves the ensemble performance; this shows that

the non-convex linear regression is able to extract additional information about the

function being approximated and that when using the mean of creating ensembles

this information is not included.

Although it can be argued that this may possibly be avoided by creating more

diversity within the ensemble, the collinearity and strong presence of a bias can

also be present as an artefact of the training data; this is shown to be the case when

looking at the bias of the estimation in more depth.

214 Chapter 5. Options Pricing using Neural Networks

Bias Decomposition

It is interesting to see that the a linear combination can be achieved when the weights

are non-convex. An important point to note is that for the weight vectors obtained

here it was seen that ∑βi = 1; using this fact it is possible to extract more informa-

tion about the neural network approximation.

For a given target value y there is a regression approximation ŷ, assuming for

each ith member of the ensemble the given approximation of y can be decomposed

into a bias approximation of the target value, ỹi, plus an error term, ŷi = ỹi + εi, the

linear combination of the ensemble can be decomposed as

ŷ = ∑
i

βiŷi = ∑
i

βiỹi +∑
i

βiεi. (5.47)

Given ∑i βi = 1 this implies that for ŷ to produce an accurate estimation of y then

the estimators are unbiased and ỹi = y, ∀i. The ensemble approximation reduces

down to

ŷ = y+∑
i

βiεi, (5.48)

implying that for an exact approximation there is a linear dependance between the

errors, εi, of each regressor to minimise ∑βiεi. Assuming that εi is the sole source

of error then for an accurate unbiased ensemble it must hold that

ŷ− y−∑βiεi = 0. (5.49)

When applying this to the non-convex linear model obtained here it was found in

contrast that ‖ŷ−y−∑βiεi‖= 0.13, which indicates that there is a secondary source

of error. This second source of error is assumed to be present as the bias of the

regressors for the target value i.e. ỹi = y+b, adding a bias term, b, to the decompo-

sition now gives

ŷ = y+b+∑βiεi (5.50)

5.3. European option Pricing 215

and rearranging, an expression for the bias, b, can now be found. This decompo-

sition has been applied to the non-convex linear model. The bias for each point

with respect to the moneyness is given in Figure 5.13; from this it can be seen that

neural networks have a negative bias which constantly underestimate the prices,

moreover the bias has a functional form similar to the option price function being

approximated and further suggests that the bias is a structural part of the model and

not just due to noise. A possible source of the bias could be from the Monte Carlo

training data, sources of bias are from discretisation error and non-linear function of

means [128]. If a similar pattern of negative bias is present in the MC training data

used for both the neural network training and the linear weight training then this

can explain some of the origins of the observed bias in the neural networks model.

Figure 5.13: Bias of the neural network price approximations obtained using Equation 5.50
for the non-convex ensemble of the unweighted-training set of neural net-
works.

5.3.5.4 Constrained Regression Using Data Transforms

One major concern remains, that the unconstrained non-convex linear models with

negative weightings still perform the best with regards to the acceptable error rates,

216 Chapter 5. Options Pricing using Neural Networks

although they perform extremely well the use of negative weights causes some con-

cern over their reliability. Similar to the motivation for using a transform during the

neural network training another transform is here applied to the ensemble regres-

sion data. The aim of this transform is to make certain regions more important. All

the ensembles models looked at so far tend do well for DOTM and OTM options

with respect to the acceptable error rate, the constrained convex linear weighting

ensembles begin to struggle more when accurately pricing ATM, ITM and DITM

options. The focus here is on boosting the ATM prices as in practice this tends to

be the most important region.

To achieve the desired boosting the log-like Inverse-Hyperbolic-Sine (IHS)

transform is used, 1

IHS(x,θ) =
sinh−1 (θx)

θ
; θ > 0 (5.51)

where θ is the control parameter. This transformation is often applied within econo-

metrics in the case of proportional variance in the data [233]. The features that

make IHS suitable to this application are: the degree of the range of magnitude

boosting can be controlled by the θ parameter; the mapping is bijective for x ≥ 0

and IHS(0) = 0.

The ensemble regression to obtain the weight set, β , is now done using the

elementwise transformations of the neural network outputs N and target values y

for the ensemble training data

β = IHS(N,θ)+ IHS(y,θ) ; θ > 0. (5.52)

IHS Ensemble Results

The IHS transform constrained regression has been applied, using θ = 1, to the three

sets of neural networks (unweighted, wt-rand, and wt-atm), the acceptable error

rates (AER) are shown in Table 5.9. In comparison to the convex ensembles obtain

1The SP10-transform was additionally tested but resulted in worse pricing error and are not
reported here.

5.3. European option Pricing 217

without the IHS transform it can be seen that the IHS transform is able to improve

the AER for all of three sets of neural networks, the most significant improvements

are for ATM and ITM options. Based on the results previously seen for the mean

and convex ensembles it is unsurprising that wt-atm performs the best when using

the IHS transform, the wt-atm set will be used throughout the rest of this discussion.

The effect of the IHS parameter, θ , is shown in Table 5.10. The effect of θ

in the IHS transform is that the larger θ becomes the larger the values with smaller

magnitudes become, θ can be viewed as controlling how small of magnitude a log-

like transform is applied to the value. It can be seen in Table 5.10 that as θ increases

the AER of ITM and DITM decreases due to the significance of the magnitude of

these prices being reduced, however the decrease in AER for ITM and DITM is

disproportionate for the increase seen for the AER for ATM options. in regards to

this tradeoff between ATM, ITM and DITM accuracy the value of θ = 1 is chosen

to give the best balance. Compared to the AER of the non-convex ensemble for

wt-atm there are improvements for OTM and ATM AER, from 0.92 up to 1.00 and

0.89 up to 0.94 respectively, in fact the OTM AER of 1.00 obtained here is better

than the best OTM AER out of all of the previously discussed ensembles. However,

the tradeoff is that there is about a 4% and 10% drop for ITM and DITM AERs.

Table 5.11 gives the cumulative distributions of the absolute relative error

(ARE) for the IHS transform regression θ = 1 for the wt-atm set of neural net-

works. The distribution shows that for OTM options the cumulative frequency of

instances for ARE < 10% is 57% and this decreases to only 12% for < 1%, whilst

for MC it is 98% and 64% respectively. However, it was seen previously that all

the non-convex weighted ensembles also struggled for OTM options, and the results

here for the convex IHS transform are similar to the non-convex weighted ensem-

bles. This highlights that there is still a lot of room for improvement with respect to

accurately pricing low valued options, this is not reflected in the high AER given the

relative high level of tolerance in the absolute error boundary with respect to these

option prices. In a generalised setting with realistic error tolerances these prices

suffice; although improvements may be able to be achieved by using a larger θ is

218 Chapter 5. Options Pricing using Neural Networks

increase the relevance of these low prices, but as seen this comes at the larger cost

of disproportionately worse ITM and DITM performance.

The two regions of improvement in comparison to the convex ensembles with-

out the IHS transform are the ITM and ATM options. For ITM for ARE¡0.3% the

performance is slightly better than MC by about 5%, and becomes a lot better than

MC when considering other higher degrees of accuracy. Though, when compared

to the non-convex ensembles the performance is not as good as either wt-atm or the

unweighted set with the IHS transform convex ensemble being around 10% worse

for ARE¡0.3%, but for higher degrees of accuracy the performance between the en-

sembles becomes the same. This shows that for a small percentage of ITM options

that although the AER is only around 5% worse an additional 5% are also not priced

as accurately as the non-convex ensembles.

Compared to MC IHS transform convex ensemble show a significantly better

degree of accuracy with 94% of instances having ARE< 0.3% and still over half

the prices acheive ARE< 0.1%, and around a quarter acheive ARE< 0.03%. Com-

pared to the non-convex ensembles the IHS transform convex ensemble is better

for the wt-atm set, although it is slightly worse than the non-convex ensemble for

the unweighted set, but using a slightly larger θ may be able to acheive the same

level accuracy. These results show that the IHS transform convex ensemble exhibits

extremely good accuracy for what may be considered the most important region.

However, it can be seen from Figure 5.14.a that a set of large outlier errors still exist

within this region and showing that there are still cases, in particular low volatility

(see Section 5.3.6), that need improvement.

Applying the IHS transform to the constrained regression significantly in-

creases the accuracy of OTM, ATM and ITM option price approximations. This

increase in accuracy also comes with the welcomed advantage of providing a more

reliable and robust model in the sense that the weights are non-negative and the

range of the approximation is now bounded, Equation 5.41, by the individual neu-

ral network outputs. Using convex weights also allows for significant pruning and

here the ensemble only required 20% of the available neural networks from the set,

5.3. European option Pricing 219

DOTM OTM ATM ITM DITM
unwted 1.00 0.85 0.82 0.60 0.48
wt-rand 0.99 0.78 0.68 0.79 0.47
wt-atm 1.00 1.00 0.94 0.91 0.44

Table 5.9: Acceptable error rates for the inverse-hyperbolic-sine transform convex ensem-
bles

DOTM OTM ATM ITM DITM
wt-atm
No Transform 1.00 0.99 0.78 0.70 0.41
θ = 1 1.00 1.00 0.94 0.92 0.44
θ = 2 1.00 1.00 0.94 0.93 0.43
θ = 5 1.00 1.00 0.94 0.95 0.37
θ = 10 1.00 1.00 0.95 0.85 0.27

Table 5.10: Acceptable error rates for the IHS transform, Equation 5.51, linear regression
ensembles using the of the wt-atm set of neural networks. θ is the IHS control
parameter.

θ = 1 Absolute Relative Error
≤ 0.01% ≤ 0.03% ≤ 0.1% ≤ 0.3% ≤ 1% ≤ 3% ≤ 10% ≤ 30% ≤ 100%

DOTM 0.636 0.636 0.637 0.637 0.661 0.710 0.836 0.987 1.000
OTM 0.085 0.085 0.090 0.095 0.120 0.270 0.575 0.940 0.985
ATM 0.105 0.245 0.645 0.935 0.970 1.000 1.000 1.000 1.000
ITM 0.025 0.120 0.370 0.790 0.995 1.000 1.000 1.000 1.000
DITM 0.059 0.163 0.464 0.966 1.000 1.000 1.000 1.000 1.000
ALL 0.256 0.305 0.445 0.683 0.753 0.813 0.894 0.989 0.999

Table 5.11: Cumulative frequencies of the absolute relative errors for the IHS transform
regression convex weighted ensemble of the wt-atm set of neural networks.

whilst the non-convex models rely on the full set. Though, the considerable gains

in accuracy were only seen for the wt-atm neural networks, the lower mutual infor-

mation and higher diversity of this set of neural networks makes it more suitable for

the constrained regression compared to the other sets of neural networks. Overall

the IHS constrained regression applied to the wt-atm neural networks presents a

more accurate, robust and smaller generalised function approximator than previous

methods discussed.

220 Chapter 5. Options Pricing using Neural Networks

(a) Absolute errors.

(b) Absolute relative error distribution

Figure 5.14: Absolute pricing error and distribution distribution of absolute relative pricing
errors (ARE) for the convex neural network ensemble trained using the inverse
hyperbolic sine transform regression.

5.3. European option Pricing 221

5.3.6 Volatility Effect and the Payoff Function

One aspect that has been so far neglected in the preceding discussions is the effects

of the volatility and interest rate inputs, the focus has primarily been on the mon-

eyness as this is the principle factor. Even though the accuracy has been mainly

discussed with respect to the moneyness there still exists respectively large outliers

within the ATM region. From Figures 5.11 and 5.12 it has been seen that a cluster

of large errors occur for high volatility ATM options.

As the time-to-maturity, in this case measured by the volatility and interest

rates, become smaller, in particular the volatility, there is less diffusion in the asset

price and in the limiting case of σ = 0 the price C takes on the form of the final

payoff function, I(S) = (S−K)+,

C = e−r (S−K)+ (5.53)

Therefore the difficulty arises when approximating the discontinuity, which occurs

for low volatility at ATM options S = K or with respect to moneyness m = 1.

Considering the neural network model used here where Ĉ = T−1[N(Ω)], where

T−1 denotes the inverse transform of the neural network output. Using the money-

ness, m, the payoff function is approximated as

I (S) = T−1[T [(m−1)+]]. (5.54)

Firstly note that

x+ = xH (x) (5.55)

where H() is the Heaviside step function. Writing g(m) = (m−1) the payoff func-

tion can be written as

I (S) = T−1[T [g(m)H (g(m))]]. (5.56)

222 Chapter 5. Options Pricing using Neural Networks

Assuming the neural network is aiming to approximate this functional form of the

payoff function, it can be seen that the neural network needs to be able to accurately

approximate the Heaviside function. It is the error of approximating the Heaviside

function that can cause the observed errors for the ATM and OTM options.

5.3.6.1 Approximation Error

Based on a neural network with a sigmoid transfer function, the Heaviside function

will have to be approximated using a sigmoid function, φ(x,κ) = 1
1+e−κx , where κ

is the rate parameter and determines the gradient of the sigmoid at x = 0. Figure

fig:happrox.a shows the value of the sigmoid function for different rate parameters

compared to the Heaviside function. The error of the sigmoid approximation to

the Heaviside function can result in significant errors in the price output. Consider

an OTM option, where H(g(m)) = 0 and g(m) < 0; in the sigmoid approximation

however, φ(g(m),κ)> 0, and it can then be seen that as a result it is possible to ob-

tain negative values, g(m)φ(g(m),κ)< 0, this is illustrated in Figure fig:happrox.b.

Furthermore, when the sigmoid approximation is inverted via the output transform,

T−1, to obtain the price approximation this can result in a positive price and a high

relative error. This also shows that without a suitable output transform it would be

possible to obtain negative price approximation.

Definition 5.2. Define the error of the sigmoid approximation of the Heaviside

function H(x) as εH(x) where

εH (x) = φ (x,κ)−H (x) . (5.57)

The error for approximating the payoff function g(m)H(g(m)) can be seen to

be g(m)εH(g(m)); it can be observed from this that for exact ATM options where

g(m) = 0, and assuming that g(m) is accurately approximated, then the approxi-

mation error of the sigmoid has no impact. The approximation errors occur for

small increments around g(m) = 0, which explains the small cluster of large errors

observed for high volatility options around log(m) = 0.

A further insight into the error behaviour can be derived. For simplicity it shall

5.3. European option Pricing 223

(a) Sigmoid functions, φ(x,κ), with different rate parameters κ compared to the Heavi-
side function H(x).

(b) Calculating the function g(x)φ(x) using sigmoid functions, φ(x,κ), with different rate
parameters κ , compared to using the Heaviside function H(x).

Figure 5.15: Approximating the Heaviside function and related values using sigmoid func-
tion approximations.

224 Chapter 5. Options Pricing using Neural Networks

be assumed that the output transform function T is the function log(x+a) where a

is small positive constant, this is a reasonable assumption as limx→0 Tsp10→ log(x).

Using the Heaviside form of the payoff function the approximation error, EN(m), can

be given as

EN(m) = log(g(m)φ (g(m)+a))− log(g(m)H (g(m))+a) (5.58)

= log
(

g(m)(H (g(m))+ εH)+a
g(m)H (g(m))+a

)
(5.59)

for OTM options where H(g(m)) = 0 this becomes

EOTM
N(m) = log

(
g(m)εH +a

a

)
(5.60)

and for ITM options where H(g(m)) = 1

EITM
N(m) = log

(
g(m)(1+ εH)+a

g(m)+a

)
. (5.61)

This shows that with respect to the threshold value a used, errors for OTM prices

can quickly explode if the sigmoid approximation to the Heaviside function is not

sufficient, whereas for ITM options g(m) becomes the dominant term and the errors

are more stable. This can also explain why the OTM options were seen to be harder

to accurately price than other regions.

This shows that there is an inherent issue when approximating the initial pay-

off function using sigmoid transfer functions, especially for OTM options as they

can be given a small price value. One possible solution could be to explicitly add

Heaviside transfer functions or using the piecewise linear-rectifier function to add

discrete behaviour and to remove the approximation error, when using gradient-

based training methods this introduces additional challenges but does not pose any

issues when using heuristic optimisation based training methods.

5.3. European option Pricing 225

Approximation Error Bounds

A loose upper bound for εH(x) can be given as

|εH (x) |< 0.5, ∀x ∈ R (5.62)

given that H(0)=0, whilst φ(0,κ) = 0.5. But this will largely overestimate the error

as the value of |g(m)| > 0, it is more appropriate to use an upper bound for the

known smallest increment of |g(m)|. It is also possible to use the bounds of the

Hausdorff distance between the sigmoid approximation and the Heaviside function

given by by Kyurkchiev [234]

dl =
1

κ

2 +2
< d (κ)<

ln(κ +1)
κ +1

+
ln ln(κ +1)

(κ +1) ln ln(κ+1)
1−ln(κ+1) −1

= dr (κ) . (5.63)

Using the results of Kyurchiev the Heaviside approximation error can be bounded

by

dl

2
< |εH (g(m)) |< dr

2
(5.64)

Although it is possible to here to see theoretically here how price approxi-

mation errors can occur due to issue of approximating the discontinuous payoff

function it is not possible to accurately calculate the actual observed effect of this

error due to the fact that it is unclear which neuron or neurons are being used to

approximate this part of the function. For a sigmoid neural network the quantity

−κx is determined by the weighted inputs into the neuron. For the sigmoid to ac-

curately approximate the Heaviside component large weights are required to give

a large κ . Instead of relying upon the neural network to approximate these type

of discontinuous functions it is possible to instead embed them directly into the

solution.

226 Chapter 5. Options Pricing using Neural Networks

Trial Solutions

It is worth briefly mentioning here, although out of the scope of implementation

of this current work, the possibility of reducing errors of this type by using trial

solutions. In the trial solution approach the neural network N(ω) is used as part of

a solution, U(ω), that automatically satisfies some of the boundary conditions. For

example a simple trial solution of

U (ω) = e−r
(
(S−K)++σN (ω)2

)
, (5.65)

would be able to automatically satisfy the payoff function without the neural net-

work having to approximate any discontinuous functions.

5.4 Path Dependent Options - Examples
To further demonstrate the applicability of the discussed methodology it is now

applied to exotic path dependent option contacts. Given the notably high accuracy

of the non-convex linear weighting this method is therefore demonstrated here.

5.4.1 Geometric Asian options

The unweighted-training methodology along with unconstrained shortest-path lin-

ear regression to produce of the final ensemble price approximation used for Euro-

pean style options will now been applied to geometric Asian options. Asian options

present the next level in complexity where the payoff is now path dependent. The

payoff is a function of the geometric mean of the asset price path over the time-to-

maturity (for more details see Section 2.3, Equation 2.30). Additionally, for geo-

metric Asian options there is a known analytical solution which allows for direct

testing of the neural network’s performance.

Results and Discussion

The acceptable error rate for geometric Asian options, Table 5.12, is less informa-

tive than for European options, as it can be seen that nearly all regions, except for

neural network ATM, have an acceptable error rate of 100% for both the neural

network model and MC. This is partially due to the overall lower prices of Asian

5.4. Path Dependent Options - Examples 227

DOTM OTM ATM ITM DITM
MC 1.00 1.00 1.00 1.00 1.00
NN 1.00 1.00 0.99 1.00 1.00

Table 5.12: Acceptable error rates for MC and neural network ensemble price approxima-
tions.

options, but also due to the smaller effects of volatility on the price which make the

options easier to approximate; using a function of the mean asset price in the payoff

reduces the effect of the volatility and in turn results in lower prices in comparison

to European options. It can be seen from Figure 5.16 that the ATM AER of 99%

for the neural network ensemble is only due to two high volatility instances. This

is similar to what has been observed for European options where for ATM options

high volatility options prove to be more difficult to price due to the increased func-

tional convexity. It can also been seen similar to European options that lower value

options (DOTM and OTM) with low volatility have larger errors than those with

high volatility. Due to the geometric averaging these volatility effects occur to a

lesser extent than seen for European options.

For DOTM both the neural network and MC were able accurately price all the

low valued options, the majority of these prices tend towards zero and hence for the

neural network the function approximation becomes more of a classification prob-

lem. Both MC and the neural network ensemble have more difficultly with OTM

options, although up until ARE< 30% MC has twice as many instances than the

neural network. MC has 50% of instances for ARE < 0.3% whilst the neural net-

work only achieves this same percentage of instances for ARE < 10%. Compared

to European options both MC and the neural network perform a lot better for higher

degrees of OTM accuracy ARE< 1%, this likely due to a higher proportion of OTM

options being valued as zero for the Asian options.

For ATM options the neural network ensemble is significantly more accurate

than MC, the neural network approximations has ARE < 0.1% = 94% whilst MC

is only 50% for the same ARE, and then only achieves a percentage of instances

< 90% for ARE< 1%. Down to ARE < 0.01% both methods have a similar error

228 Chapter 5. Options Pricing using Neural Networks

Figure 5.16: Scatter plots showing the absolute relative error for the 10 median-aggregated
neural network European pricing models for each of the neural network archi-
tectures explored, 2-Layer (20N,Res=10−6).

5.4.
Path

D
ependentO

ptions
-E

xam
ples

229

Absolute Relative Error
≤ 0.001% ≤ 0.003% ≤ 0.01% ≤ 0.03% ≤ 0.1% ≤ 0.3% ≤ 1% ≤ 3% ≤ 10% ≤ 30% ≤ 100%

DOTM
MC 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.979 0.983 1.000 1.000
NN 0.941 0.946 0.946 0.946 0.946 0.946 0.951 0.959 0.967 0.990 1.000
OTM
MC 0.475 0.475 0.475 0.475 0.480 0.515 0.705 0.875 0.950 0.995 1.000
NN 0.255 0.255 0.255 0.255 0.265 0.270 0.295 0.360 0.515 0.890 1.000
ATM
MC 0.140 0.165 0.220 0.300 0.500 0.780 0.980 0.990 1.000 1.000 1.000
NN 0.025 0.105 0.240 0.605 0.940 0.990 1.000 1.000 1.000 1.000 1.000
ITM
MC 0.155 0.365 0.600 0.870 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NN 0.015 0.050 0.155 0.450 0.835 0.995 1.000 1.000 1.000 1.000 1.000
DITM
MC 0.240 0.464 0.809 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NN 0.083 0.243 0.597 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ALL
MC 0.503 0.605 0.754 0.856 0.890 0.921 0.960 0.979 0.989 1.000 1.000
NN 0.382 0.445 0.582 0.742 0.807 0.847 0.878 0.907 0.933 0.983 1.000

Table 5.13: Cumulative frequencies of the absolute relative errors for the non-convex weighted neural network (NN) ensembles and Monte Carlo (MC)
price approximations for geometric Asian options.

230 Chapter 5. Options Pricing using Neural Networks

rate of around 20%, although below this MC becomes better for a small number of

cases.

For ITM options both methods have a high percentage of instances for a high

degree of accuracy of ARE < 0.3% and still for ARE < 0.1%, although compared

to ATM options at this level of accuracy the MC has improved whilst the neural

network ensemble is slightly worse. Furthermore, for higher degree of accuracy,

ARE < 0.03%, the number of neural network instances drops by almost 40% down

to 45%, whilst MC only drops by around 13% down to 87%, at an even higher

degree of accuracy for ARE < 0.01% the neural networks drops further to only

15% whilst MC remains quite high at 60%. It is similar for DITM where both

show similarly high frequencies for ARE < 0.03%, but below this the NN accuracy

degrades faster than the MC. Looking at the overall AREs (ALL), MC shows a

higher degree of overall accuracy, however for an ARE> 0.1% for all price regions,

apart from OTM, the neural network and MC are comparable. It was seen that

for ATM options the neural network ensemble is significantly better, for overall

generalised performance MC may be the better the choice, but given there is a high

weighting on the practical significance of ATM prices the NN options may instead

be preferable.

These results show that the current methodology is able to produce viable

prices for geometric Asian options, and for the case of ATM options the neural net-

work ensemble used here is better than MC with respect to the absolute relative er-

rors, although for other regions there is room for further refinement, in particular for

OTM and ITM options. Knowing that this method can produce reliable geometric

option prices this method should also be able to provide an accurate pricing model

for Arithmetic Asian options which do not yet have a known analytical solution, and

this methodology could provide a useful desktop tool for traders. For Asian options

further investigations should be made using the wt-atm training methodology, it was

seen for European options this method showed significant increases in accuracy for

the approximations OTM and ITM options by being a less biased estimator of the

pricing function, which is needed here for the neural network to be truly competitive

5.4. Path Dependent Options - Examples 231

against the MC methods in the sense of overall precision.

5.4.2 American options

American options present another level of difficulty because of the early exercise

feature of the payoff function; the early exercise property means that there currently

no known analytical solution for this type of option contract, therefore relying heav-

ily upon numerical pricing methods. It should be noted that for American options

it is assumed the time-to-maturity is constant, τ = 1, as Theorem 5.2 has not been

proven for the case of American options, the difficulty arises because the discount-

ing term is dependent on the time of early execution. The expectation term can be

scaled, but without knowing the time of early execution it is not possible to deter-

mine the discount factor; further work can explore how to extract this information

from the neural network as a second output, or find a functional form to predict

the time of early exercise τ∗. The second modification to the main methodology

is that because unnormalised prices are being obtained with respect to the strike

price the training data is multiplied by a factor of 10, so that the unnormalised price

approximation will retain the same level of accuracy as the unnormalised prices.

Due to the fact there is no known analytical solution to compare prices to re-

sults for the American put options priced here are compared to a small set of 6

highly accurate numerical prices from the literature [235] given in Table 5.14. Op-

tions 1-4 are ITM options whilst options 5 and 6 are OTM, for the same strike prices

the volatility σ is also varied for either low, 0.2, or high, 0.4, volatility regimes.

Table 5.14 compares two different numerical methods, fine-grain finite difference

and the high performance GPU based Longstaf-Schwarz Monte Carlo model imple-

mented by NVIDIA, the precision of the methods being measured up to 3 decimal

places.

232 Chapter 5. Options Pricing using Neural Networks

σ r S K FD Price GPU LSMC
1 0.2 0.06 36 40 4.473 4.478
2 0.4 0.06 36 40 7.098 7.101
3 0.2 0.06 38 40 3.248 3.250
4 0.4 0.06 38 40 6.138 6.148
5 0.2 0.06 44 40 1.112 1.110
6 0.4 0.06 44 40 3.944 3.948

Table 5.14: American Put options tested with τ = 1, fine grid finite difference (FD) and
GPU Longstaff-Schwarz MC (LSMC) price from [235]

To create the neural network ensemble model 300 independent neural networks

are trained on low resolution MC simulations (5000 replications, 365 periods) using

the Longstaff-Schwarz method [115] for the early exercise price; less replications

compared to European options are used for the American training data due to the

additional computational time required by the Longstaff-Schwarz method, as well

as the previously mentioned benefits of having slightly noisy training data.

Results and Discussion

The average absolute error and absolute relative errors of all 300 trained networks

for the 6 test options are given in Table 5.4.2, it can be seen that on average the

neural networks largely deviate from the reference price by between 1-10%, and in

particular for option 5 the neural network prices deviates around 75%. With respect

to the mean absolute error the average pricing errors exceed the acceptable pricing

error boundary (AEB) of 0.005, and from looking at the mean model in Table 5.16 it

can be seen that for ITM options the average price approximation is an overestimate

whilst for OTM options the neural networks underestimate. The larger errors occur

for the low volatility options, and in particular the low volatility OTM option, this

is the same previously seen for European and Asian options and is related to how

well the neural network call model the discontinuous payoff function. Though, it

can be seen from the minimum absolute error that there is potential for the neural

network models to accurately estimate the price within the AEB, and hopefully the

linear regression ensemble method can extract this information.

5.4. Path Dependent Options - Examples 233

Ref Price MAE Std Min MRE Std
1 4.473 0.464 0.155 0.001 0.104 0.035
2 7.098 0.201 0.116 0.001 0.026 0.019
3 3.248 0.229 0.138 0.000 0.058 0.058
4 6.138 0.151 0.109 0.000 0.016 0.026
5 1.112 0.846 0.233 0.013 0.762 0.210
6 3.944 0.446 0.390 0.003 0.064 0.136

Table 5.15: Average pricing errors of the 6 test cases for the 300 individual neural network
models.

Table 5.16 gives the prices generated by mean and non-convex weighted linear

ensembles for the 6 test options. The overall error-norm of the ensemble prices for

the the 6 test cases are measured as the Euclidean distance between the price ap-

proximations and the reference prices. The error-norm shows that the non-convex

linear ensemble significantly improves the overall price approximations compared

to the mean ensemble. The non-convex ensemble tends to overestimate the majority

of the prices as is also seen for the mean ensemble, this shows that there is a strong

positive bias present in the neural network models. The largest improvements com-

pared to the mean ensemble are for option 1, ITM with low volatility, and option

5, OTM with low volatility; for all the low volatility options the linear ensemble

has improved the prices indicating that the regression was able to improve the fit to

the final payoff function (S−K)+). The linear ensemble is still most accurate for

the for deeper ITM options which are typically the easier region to fit due it being

the most linear function, the option 6 would have the highest degree of functional

convexity which is reflected in it having the largest absolute error.

With respect to the relative errors they are all low between 1-4%, although

when compared to European options for ITM options the majority of prices approx-

imations had relative errors of < 0.3%, which this level is only seen for option 2

for American options. For OTM options European price approximations were only

significantly accurate for relative errors < 10% whilst a level of relative errors of

around 3% were achieved for the two OTM American samples. Although it is not

possible to draw any firm conclusions due to the small sample size of American

options it may be speculated that the higher value of American options may make it

234 Chapter 5. Options Pricing using Neural Networks

Ref Price Mean NN Lin NN AE (Lin) RE (Lin)
1 4.473 4.942 4.543 0.070 0.016
2 7.098 7.287 7.120 0.022 0.003
3 3.248 3.441 3.288 0.040 0.012
4 6.138 6.244 6.051 -0.087 -0.014
5 1.112 0.264 1.155 0.043 0.039
6 3.944 3.694 4.068 0.124 0.031

Error Norm 1.042 0.178

Table 5.16: Price estimations comparisons for the 6 test cases for the neural network (NN)
ensembles (mean and non-convex linear weights). The error norm is given as
the RMSE with respect to the reference price over all 6 test cases.

easier for neural networks to price American OTM options compared to Europeans

OTM options, the larger values means it is less likely for the neural networks to

make large relative errors and misclassification for near zero valued options. Al-

though the relative errors seem to be good, the larger magnitude of the normalised

prices presented here means that the absolute errors are still outside of the exchange

quote AEB by at least one decimal place, in this respect when compared to Eu-

ropean options the American options are not as accurately priced, for which nearly

100% of the European price approximations were within the AEB. Further improve-

ments such as using more training samples or using wt-atm weighted training may

be able to sufficiently improve the neural network model for American options.

Overall more work needs to be done to further explore this method for Amer-

ican style options, and the neural network models need to be compared to more

samples of high accuracy numerical pricing results to fully understand the limita-

tions and strengths of this methodology. Even though the accuracy of this method

still needs to be improved with respect to the numerical methods used for the 6 test

cases, the speed and processing power advantages of the neural network method are

obvious; the numerical results for the 6 test cases required a GPU whilst evaluating

a neural network can be done easily and quickly on any ordinary CPU. The results

presented show that there is a lot of potential for this method to produce compara-

bly accurate option prices to numerical methods, but with a fraction of the speed for

evaluating the model once trained, and provides a fruitful avenue for research.

5.5. Conclusions 235

5.5 Conclusions
This work presented an empirical study of the use of neural networks to approxi-

mate the parameterised option price V (S,K,σ ,r,τ). Firstly it was shown that using

known relations between the variables the input parameter space of the neural net-

work model can be reduced from the original five to three. One current limitation

of this dimensional reduction is for the case of American options, where the output

price cannot be fully generalised to any time-to-maturity due to the unknown early

execution discount factor e−rτ∗ .

The methodology developed involved training a set of neural networks on

Monte-Carlo generated price data, and then ensembling the set of neural network

models into one single approximate. It was concluded that a simple multi-layer-

percetron (MLP) network gave a better function approximation than the more elab-

orate multi-stage architecture; the MLP was able to learn the overall shape of the

function better, shown by the approximation of the Greeks, whilst the more elabo-

rate multi-stage architecture over-trained on just the price output.

In addition to normal unweighed MLP training two other sets of neural net-

works were trained using two different weighted-training methods (wt-rand and

wt-atm) aimed at increasing the diversity and localised accuracy. The normal un-

weighted trained MLPs showed overall better accuracy for European options, al-

though the wt-atm trained neural networks showed better accuracy for the targeted

ATM region. The wt-atm training also had a second advantage that the neural net-

works interpolated the pricing function better and gave rise to a less biased estimator

than the unweighted trained neural networks; this allowed the wt-atm networks to

produce considerably more accurate convex weighted ensembles that can be con-

sidered a more reliable, and, due to pruning, in addition a smaller final model.

Considering that the domain of the inputs is closed, and the neural networks are

not being used to extrapolate outside of this domain, the non-convex linear weights

are considered as the most accurate method presented without too much risk to the

reliability being introduced by the associated negative weights. For European op-

tions it was seen that this method rivalled the Monte-Carlo (10000 replications, 365

236 Chapter 5. Options Pricing using Neural Networks

time steps) numerical prices. With respect to exchange quoted accuracy of two dec-

imal places both neural network and MC methods were equally accurate for deep-

out-the-money options (DOTM), out-the-money options (OTM) and at-the-money

options (ATM); the neural network was more accurate for in-the-money (ITM) and

deep-in-the-money (DITM) options. Looking at higher degrees of accuracy, with

respect to the absolute relative error, it was seen that the neural network was worse

for OTM and DOTM options, but showed significantly more accurate prices for

ATM and ITM options. While for both methods there was a trade-off between ac-

curacy for either DOTM and OTM or ATM and ITM, in practice it could be argued

that ATM are the most important and the neural network method could therefore be

the more favourable.

The neural network method has additionally been demonstrated for path depen-

dent options (geometric Asian call options, and American put options), for which

similar studies [201] had significant issues with. In the work here it was shown

that the neural network methodology is able to produce acceptable prices for these

exotic options. For the geometric Asian options the MC and NN prices provided

similar degrees of accuracy with respect to exchange quoted prices but and for over-

all absolute relative errors of > 0.1%, furthermore the neural network method was

considerably more accurate for ATM option prices. American options proved to be

more difficult and for the cases examined although the neural network method was

able to generate reasonable price approximations, unlike [201], the relative error

of the price approximations were between 1-4%, however additional work is re-

quired to improve the method that bring the errors down by one decimal place to be

within the exchange quoted prices, but this work is able to show that it is possible

to accurately price American options using neural networks.

One element not yet emphasised it the computational speed-up and efficiency

of the neural network method. Generating the MC prices requires a heavy com-

putational load, as illustrated by the amount of work within the literature focusing

of parallelisation and high performance computing methods applied to MC. On the

other hand, the neural network model, once trained, provides fast and computation-

5.5. Conclusions 237

ally efficient prices as it only requiries forward passes through shallow MLP neural

networks, with the same or better levels of accuracy than provided by MC. This pro-

vides a compelling case for the neural network methodology to be further refined

and investigated, and this work has provided a successful exploration supporting the

use of neural networks for accurately pricing options contracts.

Final Remark

This work has shown the practicality of applying novel numerical methodologies

for improving the accuracy and efficiency of derivatives pricing. The following

chapter looks at how rather than better software, specialised hardware can instead

be utilised to improve the computational efficiency of numerical methods for deriva-

tives pricing.

Chapter 6

Options Pricing using Hardware

Acceleration

This chapter presents the design and implementation of the Thomas algorithm opti-

mised for hardware acceleration on an FPGA. The hardware based algorithm com-

bined with the custom data flow and low level parallelism available in an FPGA re-

duces the overall complexity from 8N down to 5N serial arithmetic operations and

almost halves the overall latency by parallelising the two costly divisions, and mem-

ory costs for reduced down to 2N. Using a data streaming interface, the Thomas

Core developed allows for multiple independent tridiagonal systems to be continu-

ously solved in parallel, providing an efficient accelerator for many computations.

Finally the Thomas solver core is applied for derivatives pricing problems using

implicit finite difference schemes on an FPGA accelerated system and investigates

the use and limitations of fixed-point arithmetic.

6.1 Introduction

6.1.1 FPGAs

Field programmable gate arrays (FPGAs) provide an integrated circuit that can be

reconfigured on the fly or ’in the field’ in the form of a chip. FPGAs provides a

flexible and cost effective way to develop and implement custom hardware designs.

The core component that allows an FPGA to be reconfigurable is a look-up table

(LUT). A LUT produces an output/outputs as a function on the digital inputs, these

240 Chapter 6. Options Pricing using Hardware Acceleration

functions are determined when the FPGA is configured and provides the desired

logic by the inputs controlled via the programmable cells. The other key compo-

nent that helps to increase the performance of FPGAs are on-chip block memory

(BRAM) which can provide fast local memory caches. Some FPGA chips may also

offer other additional features such as high speed digital signal processors (DSP)

and multipliers. The FPGA chip is then usually placed on a circuit board and con-

nected to additional peripherals such as DDR memory, USB ports, ethernet, PCI

express and VGA ports to provide the complete heterogeneous computing system.

6.1.2 Finite Difference Schemes and Tridiagonal Systems

Finite difference (FD) schemes are an important tool for solving parabolic par-

tial differential equations (PDEs) numerically. In financial engineering FD meth-

ods [129] [210] are commonly employed to solve PDEs that are used to model

derivatives, such as the famous Black-Scholes equation (BSE).

Finite difference schemes begin by discretising the problem domain into a

mesh/grid over the time interval [0,1] and in basic cases, the asset price interval

[0,Smax]. The domain is discretised into N asset price steps and M time steps, given

by:

∆S =
Smax

N
, (6.1)

∆t =
1
M
. (6.2)

The spatial derivative terms are approximated using central difference and backward

difference for the time derivative. These discretizations are then substituted into the

PDE to produce the discrete difference equation, for example the BSE equation

gives:

V m
n = anV m−1

n−1 +bnV m−1
n + cnV m−1

n+1 , (6.3)

with problem dependant stencil coefficient values an, bn, cn. This is the basic im-

plicit scheme used for one dimensional problems, the resultant system of equations

6.1. Introduction 241

can be written in matrix form and needs to be solved the for the price vector at the

current time-step,V t−1, where the vector V t is known from the previous implicit

step,

AVt−1 = Vt . (6.4)

This can be more generally written as the matrix inversion problem Ax = y, where

the coefficient matrix A takes on the banded tridiagonal form shown below:

A =



b0 c0 0 0 0 ...

a1 b1 c1 0 0 ...

0 a2 b2 c2 0 ...

0 0 a3 b3 c3 0 ...

.

.

.

0 ... 0 aN bN



. (6.5)

Furthermore, when introducing numerical schemes for pricing multidimensional

derivatives, such as basket options or under stochastic volatility, another class of fi-

nite difference schemes known as alternating-direction-implicit schemes [236] may

be used. These schemes solve the PDE in an implicit manner within multiple di-

mensions. These methods can be computational challenging as they require the

solution to multiple tridiagonal systems at each time step, thus a lot of effort has

gone into creating fast parallel solvers on devices such as GPUs [237] [238].

242 Chapter 6. Options Pricing using Hardware Acceleration

6.1.3 Thomas Algorithm

Algorithm 6.1 Thomas Algorithm (a,b,c,y) Pseudo Code

d[0] = b[0]
z[0] = y[0]
for i = 1 to N do

prev = i - 1
li = a[i]/d[prev]
d[i] = b[i]-li*c[prev]
z[i] = y[i] - li*z[prev]

end for
z[N] = z[N]/d[N]
for i = N-1 to 0 do

x[i] = (z[i]-c[i]*x[i+1])/d[i]
end for
return x[i]

The Thomas algorithm [239] is the simplest method used to solve a tridiagonal

system of equations and is commonly employed on serial devices such as a CPU.

The Thomas algorithm is a specialised case of gaussian elimination and can be

derived from the LU decomposition of the matrix A. This reduces the system down

to the solution of two bi-diagonal systems which can then be solved via gaussian

elimination. The first system is solved via forward substitution and the second

system is solved via backward substitution. These two stages will be referred to as

the forwards and backwards iterations. The Thomas algorithm is given in Algorithm

6.1, it has a complexity of O(N) and requires a total of 8N arithmetic operations to

solve an N-tridiagonal system.

In parallel computing the Thomas algorithm is usually less favoured than algo-

rithms such as recursive-doubling [240], cyclic-reduction [241] and parallel cyclic-

reduction [242], since although these algorithms have a larger number of arithmetic

operations some of the operations be can parallelised on devices such as GPUs [243]

resulting in an overall lower algorithmic complexity. With a recent increased inter-

est in FPGA acceleration attempts have been made to port tridiagonal solvers onto

FPGAs [244] [245] [246] [247]; in this application the simplicity of the Thomas

algorithm makes it well suited to the task when compared to cyclic-reduction which

6.2. Algorithmic Optimisation and Low Level Parallelism 243

maybe too complex for efficient data flow FPGA implementation.

6.2 Algorithmic Optimisation and Low Level Paral-

lelism
Figures 6.1 and 6.2 depict the data dependency of the Thomas algorithm; it can be

observed that in the forward iteration there are two separate branches of compu-

tation, one for calculating dn and the other for zn and hence this provides the first

level of parallelism extracted. A similar approach has been taken by both Oliveira

et al [244] and Warne et al [245]. This optimisation reduces the effective serial

arithmetic operations down from 8N to 6N.

The problem with this simple optimisation is that although there is a reduction

in serial operations, it has only reduced a multiply and a subtract which are compu-

tational cheap when compared to divisions. Consequently a competitive speed-up

over faster clocking devices such as CPUs may not be obtained [245]. We thus

introduce a simple algorithmic rearrangement that can allow for the two divisions

Figure 6.1: Data dependency graph for the forward iteration of the Thomas algorithm

244 Chapter 6. Options Pricing using Hardware Acceleration

Figure 6.2: Data dependency graph for the backwards iteration of the Thomas algorithm

from the backwards and forward iterations to be effectively parallelised. Equation

6.6 shows the factorisation of the backwards iteration calculation where we now

treat the divisions of zn and cn by dn individually.

zn− cnVn+1

dn
=

1
dn

zn− (
1
dn

cn)Vn+1 (6.6)

In a serial implementation this would add an extra division to the total number

of arithmetic operations, which is not usually desirable, but as shown in figure 6.3

the data dependence is in fact here reduced, we can now treat these two divisions

in parallel with each other whilst also performing them in parallel with the forward

iteration calculations. This reduces the serial arithmetic operations down from the

original 8N to 5N.

For FPGA implementations this rearranged algorithm has two advantages:

1. Total latency of the algorithm is almost halved by parallelising the two

lengthy divisions.

6.2. Algorithmic Optimisation and Low Level Parallelism 245

Figure 6.3: Data dependency graph for the proposed Thomas algorithm structure optimised
for FPGA implementation.

2. Memory requirements are reduced from the need to save three intermediate

data vectors (c, z and d) to two (c/d and z/d).

6.2.1 Pipelining

Further to the low level algorithmic optimisations higher level parallelism can be

achieved in two ways: pipelining the data through the computation of the forward

and backward iterations; and pipelining the sets of data between the forward and

backward iterations, which has commonly been implemented for multiple CPU ver-

sions to parallelise the Thomas algorithm [248].

Firstly the computational units themselves can be deeply pipelined, an ap-

proach used by Olivera et al [244], which allows for multiple independent tridi-

246 Chapter 6. Options Pricing using Hardware Acceleration

agonal systems to be computed in the same iteration cycle. For example, if the

forward iteration computational unit has PF pipeline stages then throughout one it-

eration it is possible to fill each stage of the pipeline with a computation allowing

for PF independent tridiagonal systems to be computed.

The second type of pipelining of the algorithm means that given a set T of

pipelined tridiagonal systems for either iteration, as discussed above, we can simul-

taneously compute the forward and backwards iterations of the two different sets

(given the first set has already been through the forward iterations) independently in

one Thomas solver. In [246] they look at using OpenCL and Xilinix HLS to build

the Thomas solvers, but do not obtain this level of parallelism due to the complex

scheduling involved for the pipelines. As such this design has been made in VHDL

allowing this desired low level control to be obtained.

6.2.2 Hardware Architecture

The input to the solver core consists of 5 data items a,b,y and id where id is the local

id of the system to be solved, this acts as a thread id and is important for addressing

the correct memory stacks in the solver. The hardware architecture consists of four

main components, the forward iteration core, the d-divider, the backwards iteration

core and the stack array. The forward and backward cores contain the pipelined

arithmetic for the stages of the algorithm, and the d-divider consists of two dividers

to carry out the c/d and z/d computations. The stack array is used for storing

the intermediate variables c/d and z/d, a stack can be used due to the nature of the

problem which is that the backwards iterations first require the last values calculated

by the d-divider, this saves unnecessary complications with memory addressing.

Connecting the forward iterations to the backwards iterations is a queue. This

queue allows the problem index to be passed onto the backwards core for com-

putation once the forward iterations have finished, this system allows for efficient

independent operation of the forwards and backward iterations. The backwards

core checks for space in the pipeline, and reads in the problem to begin computing

if there is space, otherwise it remains queued.

In addition to the main Thomas algorithm core, the core has been placed in

6.3. Design Analysis 247

a wrapper allowing for easy usability. The wrapper consists of fifo queues for the

input data and output results , allowing for variable write and read times to and from

the core, as well as the option for floating-point to fixed-point converters for input

data and vice-versa for results.

When changing the arithmetic only the arithmetic cores are changed, and the

architecture remains constant. The only variability with the arithmetic cores is the

pipelining due to the differing latencies, but this is managed via adjustable parame-

ters within the solver VHDL.

6.3 Design Analysis
Here we theoretically analyse the performance of the solver for solving multiple

independent tridiagonal systems T = {T N1
1 ,T N2

2 ,,T Nm
M }, where M is the total

number of independent tridiagonal systems to be solved and Nm is the size of the

mth system. The notation is used in this work is as follows:

• T Nm
m is the size of the mth tridiagonal system to be solved of size Nm.

• TN is a special case where for all Tm ∈ T, Nm = N.

• CD
{+,−,/,×} is the number of clock cycles taken for that arithmetic operation

using data format D.

• CF,B,A is the number of clock cycles taken for a single forwards, F , and back-

wards, B, iteration and administration costs A.

• f is the clock frequency of the FPGA system.

248 Chapter 6. Options Pricing using Hardware Acceleration

The number of cycles taken for the iteration stages are:

CF =CD
/ +CD

×+CD
− (6.7)

CB =CD
×+CD

++CD
/ (6.8)

with CA being a constant determined by the programming of the algorithm.

To fully harness the power of the pipelined design it is desired that maximal

throughput should be achieved by scheduling groups of independent computa-

tions.

Definition 6.1. The number of computational blocks, B, is defined as the number of

subsets of independent tridiagonal systems to be solved. The set of of blocks given

by B = {bm1
1 ,bm2

2 , ...bmB
B }, where bmi

i ⊂ T of size mi such that:

∪B
i=1bmi

i = T ; ∩B
i=1 bmi

i = /0 (6.9)

Thus for a given M the time to compute TN is then given by:

tTN =
NB(CF +CA)+BC/+NCB +2∑

B
b=1 (mb−1)

f
(6.10)

The partitioning of T into the set of blocks B can be effected by the data transfer

rate rd between the solver and the host system. The rate of computation, rc, of the

Thomas solver is given by:

rc =
5D
f

(6.11)

where D is the number of bits used to represent a number in the given format. This

value is the rate at which data can be processed by the Thomas solver, the solver

requires 5 inputs, a,b,c,y and id and can process a row every clock cycle.

The optimal number of blocks B can be obtained if the rate of transfer is

quicker than the rate of computation, i.e. the solver can receive all the 5 values in

6.4. Numerical Bounds 249

one clock cycle or less:

Bopt = f loor
(

M
CF

)
; rd ≥ rc (6.12)

It maybe the case that the data transfer rate is slower than the rate of computation

and hence the solver has to be stalled whilst waiting for the data. It is therefore

desirable to compute the maximum number of tridiagonal systems in a block b in

the pipeline without stalling for data. The number of blocks B is given by:

mopt = ceil
(

rc

rd

)
; rd < rc (6.13)

B = f loor
(

M
mopt

)
(6.14)

Maximum throughput for the solver can be obtained if the set of tridiagonal systems

to be solved completely fills the pipeline of the solver:

M%CF = 0 (6.15)

B > 1 (6.16)

6.4 Numerical Bounds
To maximise performance it maybe required that custom data formats are used in

the FPGA design. Fixed-Point arithmetic often provides faster and smaller FPGA

designs, for example [249] [250], but at the cost of the loss of some precision in the

results and a higher risk arithmetic overflow. Therefore it is important to know the

range of values the solver is expected to use in the algorithm to allow for the custom

data formats to be optimised for the problem. The preceding theorems presented re-

quire additional conditions that b(n) is a positive monotonically increasing function

of the row index, n i.e. bn < bn+1 and |an| < 1 and |cn| < 1 ∀i ≤ N. These theo-

rems will be useful later for range bounding the implicit pricing problem. In these

250 Chapter 6. Options Pricing using Hardware Acceleration

following results the L-Infinity norm of the set of coefficients a, b or c, denoted by

‖x‖∞, is used, the value of this norm is the largest absolute value in a set.

Theorem 6.1. Given A is diagonally dominant by row or columns, and let A have

LU factorisation A = LU. Then ‖d‖∞ ≤ 3‖b‖∞

Proof. Given in the proof of |L||U | ≤ 3|A| found in [251] pg.175 the following

result is used:

|lncn−1|+ |dn| ≤ 3|bn| (6.17)

Simple rearrangement and the observation that the max will occur at the maximum

absolute value gives the result of Theorem 6.1 �

Theorem 6.2. Given A is diagonal dominant by row, and let A have LU factorisa-

tion A = LU then |dn| > |b0− ‖a‖∞|b0| ‖c‖∞| ∀n, given that b(n) is a positive mono-

tonically increasing function of the row index, i and ∆b≤ ‖c‖∞.

Proof.

d0 = b0 (6.18)

d1 = b1−
a1

b0
c0 (6.19)

b1−
‖a‖∞

|b0|
‖c‖∞ ≤ d1 (6.20)

Under the assumption that b(n) is a positive monotonically increasing function then

b0−
‖a‖∞

|b0|
‖c‖∞ ≤ b1−

‖a‖∞

|b0|
‖c‖∞ ≤ d1 (6.21)

finally for this to hold over all cases it must enforced that ‖l‖∞≤ ‖a‖∞

|b0| , which implies

that:

b0 ≤ b1−
‖a‖∞

|b0|
‖c‖∞ (6.22)

6.4. Numerical Bounds 251

thus for this for hold ∆b≤ ‖c‖∞, given that ‖a‖∞ < |b0|.

�

A more general theorem for all functions of b(n) will be investigated, though

Theorem 6.2 currently suffices for this work as will be seen later. The approach

for finding a more general theorem should look at conditions for when a certain

sequence of b provides a minimum for d0 when compared to all other possible

permutations.

Theorem 6.3. Given A is diagonal dominant by row, and let A have LU factorisa-

tion A = LU then ‖l‖∞ < ‖a‖∞

|b0− ‖a‖∞|b0|
‖c‖∞|

< ‖a‖∞

|b0| , given that b(n) is a positive mono-

tonically increasing function of the row index, n, and ∆b≤ ‖c‖∞.

Proof. Using Theorem 6.2, the maximum value of l must be achieved when the

largest value of a is divided by the smallest value of d.

�

In fact, although Theorem 6.1 provides an upper bound for the value of d, using

the previous theorems a tighter more accurate bound can now be defined.

Theorem 6.4. Given A is diagonal dominant by row, and let A have LU factorisa-

tion A = LU then d ≤‖b‖∞+‖l‖∞‖c‖∞, given that b(n) is a monotonically increas-

ing function of the row index, n.

6.4.1 Bounding the Thomas Algorithm

The first section describes various bounds for the LU decomposition of a matrix

A. This forms the basis of the well known Thomas Algorithm used for solving

tridiagonal inversion problems of the form T x = y, where T is a tridiagonal matrix.

The first stage of the algorithm is to apply LU decomposition to the matrix and then

solve to auxiliary equations using forwards and backwards substitution.

Theorem 6.5. Given a tridiagonal matrix T is diagonally dominant by row and

let T have LU factorisation T = LU with ‖l‖∞ < 1, then solving the first auxiliary

equation of the inversion problem Lz = y ;z =Ux, then ‖z‖∞ < ‖y‖∞

(
1

1−‖l‖∞

)

252 Chapter 6. Options Pricing using Hardware Acceleration

Proof. First the term for zN is expanded and using Theorem 6.3 it is possible to

replace the individual li terms with the upper bound ‖l‖∞,

‖z‖∞ ≤ |y|N +
N−1

∑
k=1
‖l‖k

∞|yk|. (6.23)

It is then possible to compact the telescopic sum into a geometric sequence,

which has a maximum value when i = N i.e using all of the terms. Given that the

index of the the largest y value may not be known a larger bound can be formed by

including this in the geometric sum as the final term.

In fact we can further loosen the bound by assuming that all values are the max, so

‖z‖∞ ≤ |yN |+
N−1

∑
k=1
‖l‖k

∞|yk| ≤ ‖y‖∞

(
1+

N−1

∑
k=1
‖l‖k

∞

)
(6.24)

using the formulas for the sum of a geometric sequence the max bound becomes

‖z‖∞ ≤ ‖y‖∞

(
1+
‖l‖∞

(
1−‖l‖N−1

∞

)
1−‖l‖∞

)
(6.25)

and finally in the case that ‖l‖∞ < 1 a simpler form using the infinite geometric sum

can be used:

‖y‖∞

(
1+
‖l‖∞

(
1−‖l‖N−1

∞

)
1−‖l‖∞

)
< ‖y‖∞

(
1

1−‖l‖∞

)
. (6.26)

�

The hardware optimised algorithm presented here requires the calculation of

two additional intermediates c
d and z

d .

Theorem 6.6. Given a tridiagonal matrix T is diagonally dominant by row and let

T have LU factorisation T = LU with ‖l‖∞ < 1, and previously stated conditions

the intermediate value | cd | ≤
‖c‖∞

|b0| .

Theorem 6.7. Given a tridiagonal matrix T is diagonally dominant by row and let

6.4. Numerical Bounds 253

T have LU factorisation T = LU with ‖l‖∞ < 1 the intermediate value | zd | ≤
‖z‖∞

|b0| .

Finally it is possible to then derive the bounds for the final values.

Theorem 6.8. Given a tridiagonal matrix T is diagonally dominant by row and let

T have LU factorisation T = LU with ‖l‖∞ < 1, and previously stated conditions

with bn > 1 and cn < 1 ∀n≤ N then ‖v‖∞ < ‖z‖∞

|b0|−1

Proof.

vN =
z
d

(6.27)

|vN |<
‖z‖∞

|b0|
(6.28)

the recursion begins at vN−1, it is possible to see that

|vN−1|<
‖z‖∞

|b0|
+VN

‖c‖∞

|b0|
<
‖z‖∞

|b0|
+
‖z‖∞

|b0|
‖c‖∞

|b0|
(6.29)

expanding the recursion in this manner the result for a sequence given by

|vn|<
N−n

∑
i=0

‖c‖i
∞‖z‖∞

|b0|i+1 (6.30)

254 Chapter 6. Options Pricing using Hardware Acceleration

then assuming |b0|> 1 and ‖c‖∞ < 1 the limit of this sequence is given by:

|vn|<
N−n

∑
i=0

‖c‖i
∞‖z‖∞

|b0|i+1 <
‖z‖∞

|b0|−1
(6.31)

�

Combing the previous theorems it is now possible to define a set of conditions

that can ensure the absolute value of any variable in the algorithm does not exceed

a certain bound. This will prove extremely useful when applying the fixed-point

designs to given problems.

Theorem 6.9. For a given integer Z ; 0 < Z there exists a set of conditions such that

all intermediate variables in the Thomas algorithm can be bounded by Z, given that

b(n) is a positive monotonically increasing function of the row index, and |an| <

1, |cn| < 1 and |bn| > 1 ∀n ≤ N. The following conditions are sufficient but not

necessary:

1. ‖l‖∞ < 1 this implies ‖a‖∞ < |b0|

2. ‖y‖∞ < Z |b0|−‖a‖∞

|b0|+1

3. ‖c‖∞ < |b0|

4. ∆b≤ ‖c‖∞

6.5 Hardware Implementation
The Thomas Solver hardware will be tested using the ZedBoard Xilinx Zynq7020

Evaluation Kit. The Zynq7020 is a system-on-chip which consists of two ARM-A9

processors connected to Xilinx Artix-7 FPGA fabric, allowing a high-speed inter-

face between CPU and FPGA. Using the Zynq7020 the system of equations will be

formulated in floating-point on the ARM-A9 CPU, these will then be transferred

to the FPGA via AXI interfaces and solved using the FPGA Thomas solver. The

fixed-point results are then converted back to floating-point and compared to the re-

sults for the same problem solved using floating-point arithmetic. A driver was also

6.5. Hardware Implementation 255

Arithmetic
Resource Floating Fixed[2,30] Fixed[2,22] Fixed[2,14]
Flip-Flops 25721 (24%) 15369 (14%) 17224 (16%) 10711 (10%)
LUT 27204 (51%) 20722 (39%) 16998 (32%) 11894 (22%)
Mem-LUT 10547 (61%) 8683 (50%) 6174 (35%) 4294 (25%)
BRAM 35 (25%) 3 (2%) 3 (2%) 3 (2%)
DSP 6 (3%) 15 (7%) 9 (4%) 6 (3%)
Buft 1 (3%) 1 (3%) 1 (3%) 1 (3%)
Clock 100MHz 200MHz 200MHz 200MHz
Power (W) 1.932 1.788 1.648 1.568

Table 6.1: FPGA resources used for each design and percentages of resources used on the
Xilinx Zynq7020

Arithmetic
Operation Floating Fixed[2,30] Fixed[2,22] Fixed[2,14]
Div (Radix-2) 28 61 52 36
Multiplier 12 6 6 6
Subtractor 4 2 2 2
Core
Thomas Forward 44 69 60 44
Thomas Backward 16 8 8 8
Administration 3 3 3 3

Table 6.2: Clock cycle latency for each of the arithmetic cores on the FPGA, and the total
latency of the Thomas solver forward and backward cores.

developed in Python to allow for the use of the FPGA device via a serial connection,

although a serial connection is slow it provides a proof of concept that with further

development this hardware could be connected via PCI-express.

6.5.1 FPGA Resource Usage

The results in table 6.1 were obtained post-implementation from the Vivado De-

sign Suite, the base design used has Nmax = 512 with 10 threads (Mmax = 10), and

variable arithmetic. A floating point design and three fixed-point solvers with the

following data representation, [integer bits, fractional bits], are tested, 32bit[2,30],

24bit[2,22], 16bit[2,14]. For the arithmetic cores the provided Xilinx base IP cores

were used, and set to make maximum usage of DSPs, and the Radix-2 divider algo-

rithm is used for as part of the fixed-point divider.

Each of the solver designs have the same magnitude of latency, with the

256 Chapter 6. Options Pricing using Hardware Acceleration

Max Throughput Min Throughput
CPU(2.6GHz) 0.02000ms(1x) 0.020(ms)(1x)
Floating 0.00120ms(16x) 0.063ms(0.31x)
Fixed[2,30] 0.00055ms(36x) 0.040ms(0.50x)
Fixed[2,22] 0.00055ms(36x) 0.036ms(0.55x)
Fixed[2,14] 0.00057ms(35x) 0.028ms(0.72x)

Table 6.3: The average time(ms) for computing the solution to tridiagonal systems (N=100)
on a desktop CPU and the implemented FPGA Thomas solver

floating-point design providing the lowest total latency, although the fixed-point

designs maybe sped up by using higher radix divider algorithms. The disadvantage

of the higher radix divider algorithms is that the maximum through-put is reduced

due to the iterative nature of the algorithms, but this is useful if it is not possible to

achieve maximum throughput of processing on tridiagonal system per clock. The

main advantage of the fixed point solvers is the reduced resource usage, which pro-

vides the opportunity to maximise coarse grain parallelism by allowing more solver

cores to fit onto a device and also increasing the maximum number of pipelined

tridiagonal systems each core can solve. As can be expected the amount of memory

resources is proportional to the total data width used for the fixed-point designs,

whilst the floating-point solver, although 32bits wide, uses significantly more mem-

ory resources (BRAM and memory LUTs).

6.5.2 Performance

The latency performance of the solver can be evaluated using Equation 6.10 once

the implemented FPGA clock speed is known. The floating-point was only able

to achieve a maximum clock frequency of 100MHz whilst the fixed-point designs

where able to achieve double this at 200MHz. Therefore although the fixed-point

designs may have slightly higher latency in terms of clock cycles, the speed of

computation is considerably faster due to this higher clock rate.

The average time in milliseconds per tridiagonal system is shown in Table 6.3

for minimum throughput, a single tridiagonal system, and maximum throughput,

where the pipeline is completely full. These results are compared to the average

time taken for a 2.6GHz on a top of the range desktop machine. If the solver was

6.6. Implementation for Implicit Finite Difference Schemes 257

to be used for single tridiagonal systems the speed is fractionally less than a top

of the range 2.6GHz CPU, but this is not taking advantage of the pipelined design.

At maximum throughput it is possible to achieve up to a 36x speed-up and 16x

speed-up over a 2.6GHz CPU for FPGA fixed-point and floating-point designs re-

spectively. In terms of cost of computing power the basic $200 FPGA board used

here can outperform, in terms of speed, a $1000+ desktop computer, as well as also

using considerably less power. This is due to the deep pipelining and custom data

paths possible on an FPGA.

6.6 Implementation for Implicit Finite Difference

Schemes
Here it is intended to evaluate the accuracy of the fixed-point Thomas solvers within

the context of options pricing. When pricing options via implicit finite difference

methods it often results in a tridiagonal or many systems of tridiagonal equations

to be solved. As an example the solver will be used for solving tridiagonal systems

arising in implicit finite difference scheme for european options using the Black-

Scholes model.

6.6.1 Scaling For Fixed-Point Designs

The motivation is to use fixed-point arithmetic as previously discussed is that it re-

sults in smaller and faster designs when compared to floating-point. The tridiagonal

coefficients for pricing a European option via implicit finite difference are given by:

an =−(n2
σ

2−nr)dt

bn = 1+(n2
σ

2 + r)dt

cn =−(n2
σ

2 +nr)dt

aN = Nrdt

bN = 1− (Nr− r)dt

yn = (Sn−K)+

258 Chapter 6. Options Pricing using Hardware Acceleration

where y is defined by the initial boundary condition of the problem, in this case the

payoff function of the option.

Observing the coefficients bn > 1 ∀i≤ N, as such two integer bits will be used

for the fixed-point representation and a Z = 2 to ensure no arithmetic overflow.

Using proposition 1 it is possible to show that the coefficients of implicit Black-

Scholes pricing the algorithm can be bounded so that Z = 2 after applying and basic

grid constraint to bound coefficient values and an appropriate transformation for the

y values to meet condition 2 of Theorem 6.9. This is more formally expressed in

Theorem 6.10.

Theorem 6.10. Given a Black-Scholes Implicit pricing problem, AI , it is possi-

ble to ensure that the supremum of the algorithm i.e. all values calculated in the

algorithm, sup(|AI|) < Z, given the following grid constraint and suitable linear

transform on the problem domain.

dt <
1

σ2N2 (6.32)

ŷn = f (yn) (6.33)

f (yn) = ynZ
|b0|−‖a‖∞

(|b0|+1)‖y‖∞

(6.34)

6.6.2 Fixed-Point Solver Accuracy

The fixed-point solver designs are tested over a sample of 5000 randomly selected

tridiagonal equations generated by random option pricing problems. The two mar-

ket dependant parameters, interest rate r and volatility σ , are randomly chosen for

each option sample to generate a new sample of tridiagonal equations to solve;

r = U [0.01,0.05], σ = U [0.10,0.30]. The finite difference grid parameters are se-

lected to meet the constraint in equation 6.32 in the case of maximum market pa-

rameter values, this resulted in dt = 0.001. Finally to meet the final for ‖y‖ a linear

transform constant of 0.45Z
‖y‖∞

was used, calculated using equation 6.34, to meet this

condition the problem was chosen so that SN = 2 and K = 1.

Table 6.4 gives the expected rounding error for the number of fractional bits

used in the fixed-point design. The expected rounding error ernd(x, f), where ernd

6.6. Implementation for Implicit Finite Difference Schemes 259

Fractional Width
30 22 14

Expected Rounding Error 2.33E-10 5.95E-08 1.52E-05
Maximum FPGA Error 4.06E-08 4.88E-07 1.23E-04

Table 6.4: Comparison of expected rounding error and maximum absolute error from the
FPGA implementation.

is the rounding error and f is the number of fractional bits, for rounding a floating-

point number x to a fixed-point representation is given by:

E(ernd(x, f)) =
2 f−1

2
; x ∈U [0,∞] (6.35)

It has been assumed that the rounding error is uniformly distributed white noise

over x ∈ R [252]. If an error obtained is smaller than this value indicates that the

fixed-point value was rounded to 0, and the actual value is smaller than is possible

to represent in the fixed-point representation. Errors within a similar magnitude as

the magnitude of the expected error indicate that the fixed-point result is on average

as accurate as is possible for the given fixed-point representation.

Figure 6.4 shows the absolute error with respect to the floating point result

for the fixed-point solver using 30 fractional bits. The most striking feature of this

plot is how the error resembles the shape of the payoff function indicating that the

magnitude of the option price plays a role in the error function. A worst case error

function has been derived from the observation that an option price, V , V < Sn, i.e

the european option price must be at least less than the asset price due the the effect

of the strike. The maximum error is then a function of the asset price, minimum

expected rounding error and n to take into account error prorogation factors through

the iterations.

E(Sn) = nSn
2 f−1

2
(6.36)

Figures 6.5 and 6.6 show the absolute errors for the fixed-point solver with

22 and 14 fractional bits respectively. Unlike the 30 fractional bits both of sets of

errors show a shape differing from the one observed for 30 fractional bits, with a

260 Chapter 6. Options Pricing using Hardware Acceleration

Figure 6.4: Average absolute error over 5000 tridiagonal systems of the fixed-point results
using 30 fractional bits with respect to floating-point results. -x- - estimated
maximum error bound using equation 6.36.

Figure 6.5: Average absolute error over 5000 tridiagonal systems of the fixed-point results
using 22 fractional bits with respect to floating-point results.

Figure 6.6: Average absolute error over 5000 tridiagonal systems of the fixed-point results
using 14 fractional bits with respect to floating-point results.

6.7. Conclusion 261

peak near the strike price and then descending again. Although they both show and

different shape to the 30 fractional bits, their respective absolute errors with respect

to their minimum fractional resolution is a lot better, with the largest magnitude of

error being of the same order, this is up to 100 times smaller in magnitude than the

error predicted by equation 6.36.

These results show that the the fixed-point arithmetic is accurate up to a given

decimal place, which then after the accuracy begins to degrade. This explains why

the 30 fractional bit errors were a lot larger than its respective minimum fractional

resolution and not so for the 22 and 14 fractional bits.

6.7 Conclusion
This work has proposed and introduced a prototype design for a high performance

FPGA based tridiagonal solver. Fixed-point designs can be used to minimise re-

source usage and obtain higher clock rates compared to floating point designs.

When compared to a 2.6GHz CPU on a top of the range desktop it was possible

to achieve up to a 36x speed-up and 16x speed-up for the fixed-point and floating-

point designs respectively. For the fixed-point designs the errors introduced in the

results due to the limited fractional resolution was investigated. Overall in the im-

plicit option pricing example the errors were well behaved with the maximum for

the 22 and 14 bit fractional representations only being 10x that of the expected

rounding error, and 50x for 30 fractional bits. It is intended that this work is further

integrated into a larger FPGA based implicit pricing system to achieve a high speed

and low cost solution for accelerating options pricing.

Chapter 7

Conclusions and Future Work

This thesis has addressed a number of problems in computational finance, charac-

terised by their high demand for computation time and resources. The aim of the

work has been to offer alternative methodologies to solve these problems, apply-

ing a combination of evolutionary algorithms (EAs) and neural networks, with a

possibility of further acceleration using custom hardware.

In Chapter 3, Breeding Particle Swarm Optimisation (BrPSO), a novel variant

of particle swarm optimisation (PSO) using mutation, was introduced. This pro-

vided a competitive optimisation algorithm when compared to other state of the

art EAs on sets of benchmark functions. BrPSO was further shown, when com-

bined with neural networks, to be a powerful function approximator, as evidenced

by its performance on a problem in marine engineering (approximating the func-

tion that describes the water resistance offered to a ship with a novel hull-form).

Thus BrPSO would appear competitive as a candidate algorithm for optimisation

problems in computational finance

In Chapter 4 various forms of PSO and state of art differential evolution algo-

rithms (DEs, a form of EA) were used for calibration of the Heston model. BrPSO

was seen to be the best of the PSO algorithms, though L-SHADE, a form of DE,

proved to be by far the most accurate optimiser. Strengths and weaknesses were

however seen in both categories of algorithm, DEs displaying good final exploita-

tion behaviour whilst PSO showed good initial exploration, so being more likely to

locate the global basin. Nelder-Mead (NM) local search was added, with the hope

264 Chapter 7. Conclusions and Future Work

that this would enhance final exploitation, being combined in a PSO-L-SHADE-

NM hybrid; this was by far the most efficient algorithm, in terms of fitness function

evaluations to achieve a given level of accuracy. This Chapter also contained an im-

portant observation pertaining to the use of numerical integration, which can create

apparent local minima, a topic which in relation to the Heston model calibration

problem has been highly debated. The work here concludes that the calibration sur-

face is in fact an inherently unimodal valley, as previously shown by Cui et al [127],

but that local minima can be introduced as an artefact by the numerical integration

scheme. It is therefore recommended that safeguards are used to protect against

possible instability in the fitness function.

Chapter 5 applied BrPSO and neural networks to the problem of providing ap-

proximate solutions for options pricing. A two-layer MLP was used, with linear

regression to create ensembles. Initial investigation focused on European options

because the results of the approximator could be compared not only to MC but also

to the analytic solution provided by Black-Scholes. The mean prices obtained from

the ensembles were better than prices from their component networks but there was

room for improvement as the results were not yet competitive with the MC used

here. An improvement was obtained by using linear regression to derive the ensem-

ble weights. Two forms of linear regression were considered: shortest path least

squares, which produces non-convex weights; and constrained non-negative least

squares, which leads to convex weights. Non-convex weights provided most the

accurate results and were more competitive with MC (in fact being better than MC

for ATM options); however the presence of negative weights causes some concerns

as to the method’s robustness (the range of the ensemble output being unbounded).

The convex weights were less competitive; however with the use of the inverse hy-

perbolic sine transform their performance was improved. Convex weights have the

benefit that because the ensemble output is bounded they are more robust, and in

addition the ensembles using them can be pruned so as to make them smaller. How-

ever it should be noted that despite these advantages ensembles with convex weight;

are still not as accurate for this options pricing problem as ones using non-convex

265

weights. Ensembles with non-convex weights were therefore chosen to be applied

to exotic (path-dependent) options, specifically Asian and American options, with

good pricing results, though small improvements are still needed in the case of

American options in order to reach acceptable error tolerances.

Chapter 6 explored the use of custom hardware for accelerating numerical op-

tions pricing, in particular the application of finite difference methods. Tridiagonal

systems of equations very frequently occur in finite difference calculations and are

the main computational bottleneck of these methods. One algorithm used to solve a

tridiagonal system of equations is the Thomas algorithm. Using field programmable

gate arrays (FPGAs) a low level parallelised implementation of the Thomas algo-

rithm was developed. Using a data flow design paradigm and fixed-point arithmetic

the FPGA implementation of the Thomas algorithm was able to calculate the so-

lution of many tridiagonal systems simultaneously. A mathematical analysis was

able to provide bounds for the fixed-point arithmetic calculations involved in the

Thomas algorithm allowing the accuracy of the solver to be maximised with respect

to the number of bits used. The accuracy of the FPGA Thomas solver was tested for

sets of example tridiagonal systems generated from implicit finite different schemes

for European options pricing; it was seen that the FPGA implementation was able

to accurately and efficiently solve these systems of equations.

The primary result of this thesis that was presented in Chapter 5, shows that

neural networks and EAs can be used, after a one-time, offline training period, to

provide very fast approximate solutions to options pricing problems, with accura-

cies comparable to traditional Monte Carlo methods. Overall the work presented

here has shown promise in the application of new methodologies to computation-

ally demanding problems in finance, though there is scope for further work, as will

be briefly discussed below.

266 Chapter 7. Conclusions and Future Work

7.0.1 Future Work

The work presented in this thesis offers many opportunities for further development

and exploration; these will be considered on a chapter-by-chapter basis.

Chapter 3. It would be valuable to explore improving BrPSO by applying

crossover operators hybridised with more advanced PSO algorithms. It is also

worthwhile investigating the effects the crossover rate and breeding probability have

on the search capability for artificial benchmark function optimisation problems,

and potentially incorporating these parameters into the self adaptation mechanism.

Further research for the self-adaptation mechanism could look to use elements in-

spired from the historical archive mechanisms used in the SHADE algorithms [73].

Chapter 4. In addition to calibrating the Heston model, more complex multi-

factor models such as Heston-Bates model [6] should be investigated. The Heston-

Bates model is sensitive to the jump parameters, and gradient-descent methods often

struggle, the power of BrPSO and L-SHADE can be used to better search this highly

multimodal search space. Further investigation should also be pursued in the under-

standing of how local minima structures form in the parameter search space as an

artefact of numerical integration, and explore the use of other numerical integration

and pricing methods.

Chapter 5. The work here showed that neural networks accurately price Euro-

pean and Asian options, however the methodology presented showed further scope

for improvement with regards to American options. Further work should investi-

gate how these early exercise features can be better learnt or incorporated into the

neural network models. Other types of multi-factor options such a basket options

should also be investigated. Basket options rely on multiple asset price simulations

and hence an accurate neural network solution can provide even greater gains in

efficiency. Apart from investigating different types of options contracts more com-

plex multi-factor models such as the Heston model should be further explored. To

enhance the presented methodology evolving of self-adapting neural network archi-

tectures should be investigated, this will allow optimal architectures with respect to

size and approximation accuracy to be found. It may also be worthwhile investing

267

the use of training methods such as negative correlation learning [220] to increase

ensemble diversity. Another important avenue is to explore how the use of trial

solutions could further assist the neural network learning by reducing the complex-

ity of the target function and automatically satisfying boundary conditions. Finally

work looking at how neural networks can be used to directly solve the resultant ini-

tial boundary partial differential equations should be explored, as this removes any

dependancy on other numerical methods.

Chapter 6. This work can be advanced by exploring FPGA implementa-

tions of the more inherently parallel cyclic reduction algorithms used for solving

tridiagonal systems, and overall efficiency when tested as part of a 3D alternate-

direction-implicit (ADI) solver. Finally one could build the neural network models

from Chapter 5 on the custom hardware devices to provide efficient specialised

pricing hardware.

These extensions to the work of the thesis would be of value to pursue. How-

ever the work presented here already suggests there is a promising future for the

use of EAs, neural networks - and possibly, in combination with these algorithmic

methodologies, custom hardware - in computational finance.

Appendix A

Additional Mathematical Results

The well known results, used in Section 3.3, for the volume of an n-ball, and the

length of a side of the maximum inscribed hypercube inside the n-ball are given

bellow:

Corollary A.1. The maximum side length L for an n-hypercube HL fully inscribed

inside an n-ball with radius r is

L =
r√
n
. (A.1)

This gives a maximum n-volume of

Vn(H) = (
2r√

n
)n (A.2)

Corollary A.2. The the n-volume of an n-ball with radius r is

Vn(Sr) =
π

D
2

Γ(D
2 +1)

rn (A.3)

Appendix B

Benchmark Functions

The test functions used here are a set of well known unimodal, f 1− f 2, and mul-

timodal problems, f 3− f 8; the complexity of the set of test functions is increased

by adding a set of rotated-multimodal problems, f 9− f 14 [253]. The rotated set

of test functions are created for functions f 3− f 8, applying random orthogonal ro-

tations to the input vectors generating test functions f 9− f 14. The rotations are

applied using an orthogonal matrix, M. This is then applied to the x vector which

now creates dependancies between the xi values in each dimension in terms of the

new input vector y whilst retaining the shape and minima of the original function.

fR(y) = fk(Mx). (B.1)

The addition of the inter-dimensional dependancies due to rotation makes the prob-

lems much harder due to the fact that the D-dimensional search problem can now

not be directly solved using D independent searches.

In the CEC’05 [253] set of benchmark functions, the rotated functions are

additionally shifted such that the minimum no longer lies at 0; this stops any center

biased algorithms or algorithms that may naturally converge to 0 having an inbuilt

advantage. In addition, composite functions are used to introduce a set of random

multimodal functions; the composite functions are formed as a mixture of basic

functions, such as the sphere function, f 1, with shifted optima. These produce

272
A

ppendix
B

.
B

enchm
ark

Functions

Name Function Search range Initialisation range x̂
f1 Sphere ∑

D
i=1 x2

i [-100, 100] [-100, 50] 0
f2 Rosenbrock f2(x) = ∑

D−1
i=1 (100(x2

i − xi+1)
2 +(xi−1)2) [-2.048, 2.048] [-2.048, 2.048] 1

f3 Ackely −20exp(−0.2
√

1
D ∑

D
i=1 x2

i)

−exp(1
D ∑

D
i=1 cos(2πxi))+20+ e

[-32.768, 32.768] [-32.768, 16] 0

f4 Griewank 1+ 1
4000 ∑

n
i=1 x2

i −∏
n
i=1 cos

(
xi√

i

)
[-600, 600] [-600, 200] 0

f5 Weistrass ∑
D
n=1
(
∑

kmax
k=0

(
ak cos

(
2πbk(xn +0.5)

)))
−D∑

kmax
k=0

(
ak cos

(
2πbk(xn +0.5)

))
a = 0.5b = 3,kmax = 20

[-0.5, 0.5] [-0.5, 0.2] 0

f6 Rastrigin ∑
D
n=1
(
x2

n−10cos(2πxn)+10
)

[-5.12, 5.12] [-5.12, 2] 0
f7 Non.Cont. Rastrigin ∑

D
n=1
(
y2

n−10cos(2πyn)+10
)

yn =

{
xn, |xn|< 0.5
round(2xn)

2 , |xn|>= 0.5

[-5.12, 5.12] [-5.12, 2] 0

f8 Schwefel 418.9829D−∑
D
n=1 xn sin

(
|xn|0.5

)
[-500, 500] [-500, 500] 420.96

f9 Rot Ackely f 3(Mx) [-32.768, 32.768] [-32.768, 16] 0
f10 Rot Griewank f 4(Mx) [-600, 600] [-600, 200] 0
f11 Rot Weistrass f 5(Mx) [-0.5, 0.5] [-0.5, 0.2] 0
f12 Rot Rastrigin’s f 6(Mx) [-5.12, 5.12] [-5.12, 2] 0
f13 Rot NCnt. Rastrigin f 7(Mx) [-5.12, 5.12] [-5.12, 2] 0
f14 Rot Schwefel 418.9829D−∑

D
n=1 zn

zn =

{
yn sin

(
|yn|0.5

)
|yn|<= 500

0.001(|yn|−500)2 |yn|> 500
y = Mx

[-500, 500] [-5.12, 5.12] 420.96

Table B.1: Set of non-rotated and rotated (rot) benchmark functions used.

273

a multi-modal function with one randomly placed global optimum and numerous

deep local optima. The functions were designed with a local optimum placed at

x = 0; this is important for catching algorithms that converge towards 0, which may

be seen to work well on the standard set of test functions but may not work so well

in more complex search spaces.

Appendix C

Additional Calibration Results

Standard deviations for mean Euclidian distances
1 2 3 4 5 6 7 8 9 10

PSO-gB 3.64e-03 1.04e+00 5.22e-03 1.84e-04 1.77e-03 5.80e-02 3.24e-02 2.20e-02 6.00e-02 1.31e-01
PSO-gB-cf 3.92e-04 1.19e+00 7.94e+00 4.93e-09 8.83e-07 1.71e-02 7.88e-03 4.31e-03 3.73e-02 1.04e-01
PSO-lB-cf 1.77e-03 4.60e-01 9.92e-04 3.31e-06 1.58e-04 4.47e-02 3.19e-02 3.26e-02 8.99e-02 1.03e-01
BrPSO 2.16e-06 2.06e+00 1.08e+01 2.13e-12 3.06e-10 1.74e-03 5.60e-04 7.51e-05 2.83e-03 3.18e-02
BrPSOSAM 6.78e-05 9.71e-01 2.52e-05 2.29e-08 2.08e-06 6.57e+00 6.41e-03 9.66e-03 5.28e-02 1.08e-01
CLPSO 1.97e-01 4.11e-01 1.84e-01 2.24e-01 3.76e-02 3.87e-01 1.66e-01 1.47e-01 1.36e-01 2.11e-01
CPSO 1.04e+00 1.56e+00 1.06e+00 9.35e-01 4.64e-01 1.62e+00 1.11e+00 8.39e-01 7.28e-01 4.28e-01
UPSO 5.96e-03 5.69e-01 2.22e-02 1.31e-05 1.02e-03 6.50e-02 6.10e-02 3.63e-02 1.07e-01 1.82e-01
wFIPS 5.41e-02 6.01e-01 2.92e-02 6.23e-03 3.91e-03 1.51e-01 1.03e-01 7.70e-02 7.22e-02 1.01e-01
FDR 1.75e-03 1.33e+00 7.54e-04 1.67e-05 2.03e-04 4.11e-02 2.58e-02 1.88e-02 5.81e-02 9.93e-02
DE/r/1/b 2.16e-03 5.04e+01 5.19e+01 7.73e-05 5.33e-06 5.24e+01 2.28e-05 8.34e-06 1.24e-05 3.11e-05
DE/r/1/e 4.87e-03 3.31e+01 1.61e+00 4.80e-04 1.07e-05 3.35e+01 3.41e-05 2.82e-05 1.54e-05 1.96e-05
JADE 2.62e-11 1.81e-01 4.31e-12 2.84e-11 1.58e-11 9.71e-04 2.37e-11 6.40e-12 1.16e-12 1.17e-10
jDE 3.23e-08 9.83e-02 4.92e-08 3.80e-08 9.58e-09 7.42e-03 8.42e-06 6.15e-08 4.95e-07 7.98e-07
SHADE 4.63e-12 1.67e-01 2.63e-12 1.21e-12 8.12e-13 5.51e-10 7.71e-12 1.02e-12 1.94e-12 3.22e-12
L-SHADE 1.64e-13 2.16e-01 6.95e-13 3.36e-13 2.26e-14 6.20e-13 6.02e-14 2.71e-14 1.76e-14 2.49e-14
PSO-gB-NM 1.36e-05 1.73e+00 7.67e-06 2.44e-05 8.69e-06 1.19e-05 4.27e-05 1.19e-05 1.36e-05 1.89e-05
DE/r/1/b-NM 1.11e-05 2.74e+00 1.09e-05 5.17e-05 7.36e-06 1.20e-05 5.84e-05 1.48e-05 1.38e-05 2.13e-05

Table C.1: Respective standard deviations for the mean Euclidian distance metrics given in
Table 4.3.

276 Appendix C. Additional Calibration Results

Mean Q75
Mean Std Log Mean Std SLM Std Mean Std Log Mean Std SLM Std

PSO-gB 5.25e-02 -1.66 0.61 7.00e-02 -1.53 0.69
PSO-gB-cf 2.54e-01 -2.69 0.28 3.87e-02 -3.27 0.14
PSO-lB-cf 4.66e-02 -2.14 0.40 6.56e-02 -2.03 0.44
BrPSO 3.57e-01 -4.14 -0.05 6.80e-03 -5.00 -0.20
BrPSOSAM 1.65e-01 -2.97 0.22 3.96e-02 -3.11 0.20
CLPSO 2.69e-01 -0.59 0.80 3.86e-01 -0.45 0.86
CPSO 1.14e+00 0.06 1.06 1.55e+00 0.18 1.15
UPSO 8.09e-02 -1.72 0.54 1.15e-01 -1.65 0.59
wFIPS 1.14e-01 -1.13 0.68 1.41e-01 -1.02 0.74
FDR 4.58e-02 -2.01 0.50 6.42e-02 -1.88 0.59
DE/r/1/b 8.02e+00 -2.78 0.51 7.80e+00 -3.35 0.44
DE/r/1/e 5.22e+00 -2.81 0.45 7.78e+00 -3.39 0.22
JADE 1.97e-05 -9.43 -1.44 3.12e-10 -10.10 -1.57
jDE 6.34e-04 -6.00 -0.59 1.24e-03 -6.03 -0.56
SHADE 2.83e-11 -10.45 -1.76 1.30e-11 -10.39 -1.69
L-SHADE 2.77e-13 -11.84 -2.09 3.75e-13 -11.76 -1.99
PSO-gB-NM 2.27e-05 -4.20 -0.06 3.13e-05 -4.09 -0.03
DE/r/1/b-NM 3.13e-05 -4.10 -0.05 4.16e-05 -4.00 -0.02

Table C.2: Standard deviations for the total error measures, mean, log mean and standard-
ised log mean (SLM) given in Table 4.4.

FE = 1000 FE = 5000
Mean Std Log Mean Std SLM Std Mean Std Log Mean Std SLM Std

PSO-gB 0.54 0.18 0.67 0.28 0.32 0.37
PSO-gB-cf 0.80 0.18 0.40 0.56 0.59 0.35
PSO-lB-cf 0.77 0.17 0.44 0.54 0.42 0.30
BrPSO 1.03 0.26 0.58 0.74 0.85 0.47
BrPSOSAM 0.96 0.21 0.79 0.85 0.38 0.57
CLPSO 0.46 0.14 0.39 0.34 0.30 0.24
CPSO 0.78 0.13 0.65 0.65 0.20 0.41
UPSO 0.85 0.19 0.54 0.55 0.45 0.15
wFIPS 0.70 0.17 0.42 0.49 0.30 0.25
FDR 0.59 0.20 0.42 0.49 0.34 0.30
DE/r/1/b 1.33 0.19 0.51 1.07 0.79 0.80
DE/r/1/e 1.22 0.18 0.45 0.82 0.75 0.61
JADE 0.56 0.07 0.59 0.41 0.09 0.33
jDE 0.51 0.06 0.65 0.40 0.10 0.35
SHADE 0.50 0.20 0.39 0.35 0.76 0.16
L-SHADE 0.66 0.23 0.44 0.49 1.07 0.09
PSO-gB-NM 0.60 0.28 0.72 0.58 1.75 0.75
DE/r/1/b-NM 1.24 0.32 1.05 0.80 1.79 1.20

Table C.3: Standard deviations for the total error measures, mean, log mean and standard-
ised log mean (SLM) given in Table 4.5.

277

√
v0

√
θ ρ κ σ Fitness

0.190 0.134 0.938 2.270 0.179 28.166
0.195 0.141 0.983 3.197 0.199 27.011
0.179 0.539 0.959 0.000 0.143 37.232
0.190 0.150 0.865 3.197 0.211 28.144
0.187 0.145 0.689 3.554 0.312 31.865
0.189 0.166 0.715 8.389 0.342 30.788
0.188 0.147 0.798 3.063 0.224 29.153
0.189 0.152 0.850 3.468 0.209 28.380
0.190 0.135 0.981 2.324 0.168 28.109
0.194 0.158 0.889 4.889 0.231 27.382
0.185 0.154 1.000 2.593 0.152 29.306
0.194 0.000 0.860 0.463 0.253 36.530
0.194 0.154 0.897 4.750 0.219 27.254
0.201 0.141 0.940 4.557 0.246 26.506
0.196 0.162 0.762 7.965 0.328 28.726
0.193 0.161 0.908 5.455 0.218 27.371

Table C.4: Local optima where ρ > 0 found by the evolutionary algorithms for calibrating
Heston parameter 2.

Bibliography

[1] G. Poitras. The Early History of Option Contracts. In Vinzenz Bronzin’s

Option Pricing Models, pages 487–518. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009.

[2] BIS. Statistical Release: OTC Derivatives Statistics at End-June 2018. Tech-

nical report, 2018.

[3] I. de Pinto. An Essay on Circulation and Credit, in Four Parts, and a Letter

on the Jealousy of Commerce;. page 248, 1774.

[4] S. L. Heston. A Closed-Form Solution for Options with Stochastic Volatil-

ity with Applications to Bond and Currency Options. Review of Financial

Studies, 6(2):327–343, apr 1993.

[5] L. A. Grzelak and C. W. Oosterlee. On the Heston Model with Stochastic

Interest Rates. SIAM Journal on Financial Mathematics, 2(1):255–286, jan

2011.

[6] D. S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Im-

plicit in Deutsche Mark Options. Review of Financial Studies, 9(1):69–107,

jan 1996.

[7] C. W. Reynolds. Flocks, Herds and Schools: A Distributed Behavioral

Model. ACM SIGGRAPH Computer Graphics, 21(4):25–34, aug 1987.

[8] R. Eberhart and J. Kennedy. A New Optimizer Using Particle Swarm The-

ory. In MHS’95. Proceedings of the Sixth International Symposium on Micro

Machine and Human Science, pages 39–43. IEEE.

280 Bibliography

[9] M. M. Millonas. Swarms, Phase Transitions, and Collective Intelligence.

Addison-Wesley, 1992.

[10] J. Kennedy. The Particle Swarm: Social Adaptation of Knowledge. In Pro-

ceedings of 1997 IEEE International Conference on Evolutionary Computa-

tion (ICEC ’97), pages 303–308. IEEE.

[11] R. Tanabe and A. Fukunaga. Success-History Based Parameter Adaptation

for Differential Evolution. In 2013 IEEE Congress on Evolutionary Compu-

tation, pages 71–78. IEEE, jun 2013.

[12] D. Bratton and J. Kennedy. Defining a Standard for Particle Swarm Opti-

mization. In 2007 IEEE Swarm Intelligence Symposium, pages 120–127.

IEEE, apr 2007.

[13] M. Clerc. Initialisations for Particle Swarm Optimisation. Technical report,

2008.

[14] D. N. Wilke, S. Kok, and A. A. Groenwold. Comparison of Linear and

Classical Velocity Update Rules in Particle Swarm Optimization: Notes on

Scale and Frame Invariance. International Journal for Numerical Methods

in Engineering, 70(8):985–1008, may 2007.

[15] Y. Shi and R. Eberhart. A Modified Particle Swarm Optimizer. In 1998 IEEE

International Conference on Evolutionary Computation Proceedings. IEEE

World Congress on Computational Intelligence (Cat. No.98TH8360), pages

69–73. IEEE.

[16] R. Poli and D. Broomhead. Exact Analysis of the Sampling Distribution for

the Canonical Particle Swarm Optimiser and Its Convergence During Stag-

nation. In Proceedings of the 9th Annual Conference on Genetic and Evolu-

tionary Computation - GECCO ’07, page 134, New York, New York, USA,

2007. ACM Press.

Bibliography 281

[17] L. Chuan and F. Quanyuan. The Standard Particle Swarm Optimization Algo-

rithm Convergence Analysis and Parameter Selection. In Third International

Conference on Natural Computation (ICNC 2007), pages 823–826. IEEE,

2007.

[18] Jong-Bae Park, Yun-Won Jeong, Joong-Rin Shin, and K. Lee. An Improved

Particle Swarm Optimization for Nonconvex Economic Dispatch Problems.

IEEE Transactions on Power Systems, 25(1):156–166, feb 2010.

[19] R. Eberhart and Y. Shi. Comparing Inertia Weights and Constriction Factors

in Particle Swarm Optimization. In Proceedings of the 2000 Congress on

Evolutionary Computation. CEC00 (Cat. No.00TH8512), volume 1, pages

84–88. IEEE.

[20] M. Clerc and J. Kennedy. The Particle Swarm - Explosion, Stability, and

Convergence in a Multidimensional Complex Space. IEEE Transactions on

Evolutionary Computation, 6(1):58–73, 2002.

[21] Zhi-Hui Zhan, Jun Zhang, Yun Li, and H.-H. Chung. Adaptive Particle

Swarm Optimization. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 39(6):1362–1381, dec 2009.

[22] A. Ismail and A. P. Engelbrecht. Self-Adaptive Particle Swarm Optimization.

pages 228–237. Springer, Berlin, Heidelberg, 2012.

[23] J. Ma, J. Zhang, and L. Xu. Staying Together Maybe Better for Particles. In

2015 IEEE Congress on Evolutionary Computation (CEC), pages 204–211.

IEEE, may 2015.

[24] J. Kennedy. Bare Bones Particle Swarms. In Proceedings of the 2003 IEEE

Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), pages 80–87.

IEEE.

282 Bibliography

[25] R. A. Krohling and E. Mendel. Bare Bones Particle Swarm Optimization

with Gaussian or Cauchy Jumps. In 2009 IEEE Congress on Evolutionary

Computation, pages 3285–3291. IEEE, may 2009.

[26] D. Schor, W. Kinsner, and J. Anderson. A Study of Optimal Topologies in

Swarm Intelligence. In CCECE 2010, pages 1–8. IEEE, may 2010.

[27] J. Kennedy. Small Worlds and Mega-Minds: Effects of Neighborhood Topol-

ogy on Particle Swarm Performance. In Proceedings of the 1999 Congress on

Evolutionary Computation-CEC99 (Cat. No. 99TH8406), pages 1931–1938.

IEEE.

[28] J. Kennedy and R. Mendes. Population Structure and Particle Swarm Perfor-

mance. In Proceedings of the 2002 Congress on Evolutionary Computation.

CEC’02 (Cat. No.02TH8600), volume 2, pages 1671–1676. IEEE.

[29] A. Engelbrecht. Particle Swarm Optimization: Global Best or Local Best?

In 2013 BRICS Congress on Computational Intelligence and 11th Brazilian

Congress on Computational Intelligence, pages 124–135. IEEE, sep 2013.

[30] K. Parsopoulos and M. Vrahatis. Unified Particle Swarm Optimization for

Tackling Operations Research Problems. In Proceedings 2005 IEEE Swarm

Intelligence Symposium, 2005. SIS 2005., pages 53–59. IEEE.

[31] R. Mendes, J. Kennedy, and J. Neves. The Fully Informed Particle Swarm:

Simpler, Maybe Better. IEEE Transactions on Evolutionary Computation,

8(3):204–210, jun 2004.

[32] J. Liang, A. Qin, P. Suganthan, and S. Baskar. Comprehensive Learning

Particle Swarm Optimizer for Global Optimization of Multimodal Functions.

IEEE Transactions on Evolutionary Computation, 10(3):281–295, jun 2006.

[33] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi. Orthogonal Learning Parti-

cle Swarm Optimization. IEEE Transactions on Evolutionary Computation,

15(6):832–847, dec 2011.

Bibliography 283

[34] H. Huang, H. Qin, Z. Hao, and A. Lim. Example-Based Learning Particle

Swarm Optimization for Continuous Optimization. Information Sciences,

182(1):125–138, 2012.

[35] M. Clerc. Standard Particle Swarm Optimisation. 2012.

[36] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas. Standard Particle Swarm

Optimisation 2011 at CEC-2013: A Baseline for Future PSO Improvements.

In 2013 IEEE Congress on Evolutionary Computation, pages 2337–2344.

IEEE, jun 2013.

[37] M. R. Bonyadi and Z. Michalewicz. SPSO 2011. In Proceedings of the 2014

Conference on Genetic and Evolutionary Computation - GECCO ’14, pages

9–16, New York, New York, USA, 2014. ACM Press.

[38] M. R. Bonyadi and Z. Michalewicz. Analysis of Stability, Local Conver-

gence, and Transformation Sensitivity of a Variant of the Particle Swarm

Optimization Algorithm. IEEE Transactions on Evolutionary Computation,

20(3):370–385, jun 2016.

[39] Eberhart and Yuhui Shi. Particle Swarm Optimization: Developments, Appli-

cations and Resources. In Proceedings of the 2001 Congress on Evolutionary

Computation (IEEE Cat. No.01TH8546), volume 1, pages 81–86. IEEE.

[40] A. Banks, J. Vincent, and C. Anyakoha. A Review of Particle Swarm

Optimization. Part I: Background and Development. Natural Computing,

6(4):467–484, oct 2007.

[41] N. K. Jain, U. Nangia, and J. Jain. A Review of Particle Swarm Optimization.

Journal of The Institution of Engineers (India): Series B, pages 1–5, mar

2018.

[42] . Gülcü and H. Kodaz. A Novel Parallel Multi-Swarm Algorithm Based on

Comprehensive Learning Particle Swarm Optimization. Engineering Appli-

cations of Artificial Intelligence, 45:33–45, 2015.

284 Bibliography

[43] F. VandenBergh and A. Engelbrecht. A Cooperative Approach to Parti-

cle Swarm Optimization. IEEE Transactions on Evolutionary Computation,

8(3):225–239, jun 2004.

[44] F. V. den Bergh and A. P. Engelbrecht. Cooperative Learning in Neural Net-

works Using Particle Swarm Optimizers. South African Computer Journal,

2000(26):84–90, 2000.

[45] T. Peram, K. Veeramachaneni, and C. Mohan. Fitness-Distance-Ratio Based

Particle Swarm Optimization. In Proceedings of the 2003 IEEE Swarm In-

telligence Symposium. SIS’03 (Cat. No.03EX706), pages 174–181. IEEE.

[46] S. Salehizadeh, P. Yadmellat, and M. Menhaj. Local Optima Avoidable Par-

ticle Swarm Optimization. In 2009 IEEE Swarm Intelligence Symposium,

pages 16–21. IEEE, mar 2009.

[47] S. Kessentini and D. Barchiesi. A New Strategy to Improve Particle Swarm

Optimization Exploration Ability. In 2010 Second WRI Global Congress on

Intelligent Systems, pages 27–30. IEEE, dec 2010.

[48] J. J. Liang, B. Y. Qu, P. N. Suganthan, and Q. Chen. CEC 2015 Competi-

tion on Learning-Based Real-Parameter Single Objective Optimization —-

Including 15 Benchmark Functions. 2015.

[49] N. H. A. P.N. Suganthan, Mostafa Z. Ali. CEC 2016 Competition on

Learning-Based Real-Parameter Single Objective Optimization —-Including

15 Benchmark Functions. 2016.

[50] M. R. Bonyadi and Z. Michalewicz. A Locally Convergent Rotationally

Invariant Particle Swarm Optimization Algorithm. Swarm Intelligence,

8(3):159–198, sep 2014.

[51] S. Janson and M. Middendorf. On Trajectories of Particles in PSO. In 2007

IEEE Swarm Intelligence Symposium, pages 150–155. IEEE, apr 2007.

Bibliography 285

[52] W. M. Spears, D. Green, and D. F. Spears. Biases in Particle Swarm Optimi-

sation.

[53] R. Storn and K. Price. Differential Evolution a Simple and Efficient Heuris-

tic for Global Optimization over Continuous Spaces. Journal of Global Op-

timization, 11(4):341–359, 1997.

[54] B. Kazimipour, X. Li, and A. K. Qin. A Review of Population Initializa-

tion Techniques for Evolutionary Algorithms. In 2014 IEEE Congress on

Evolutionary Computation (CEC), pages 2585–2592. IEEE, jul 2014.

[55] V. Feoktistov and S. Janaqi. Generalization of the Strategies in Differential

Evolution. In 18th International Parallel and Distributed Processing Sympo-

sium, 2004. Proceedings., pages 165–170. IEEE.

[56] H.-Y. Fan and J. Lampinen. A Trigonometric Mutation Operation to Differ-

ential Evolution. Journal of Global Optimization, 27(1):105–129, 2003.

[57] A. W. Iorio and X. Li. Incorporating Directional Information Within a Dif-

ferential Evolution Algorithm for Multi-Objective Optimization. In Proceed-

ings of the 8th Annual Conference on Genetic and Evolutionary Computation

- GECCO ’06, page 691, New York, New York, USA, 2006. ACM Press.

[58] K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution : A

Practical Approach to Global Optimization. Springer, 2005.

[59] D. Zaharie. A Comparative Analysis of Crossover Variants in Differential

Evolution. pages 171–181.

[60] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello. A Com-

parative Study of Differential Evolution Variants for Global Optimization.

In Proceedings of the 8th Annual Conference on Genetic and Evolutionary

Computation - GECCO ’06, page 485, New York, New York, USA, 2006.

ACM Press.

286 Bibliography

[61] D. Zaharie. Influence of Crossover on the Behavior of Differential Evolution

Algorithms. Applied Soft Computing, 9(3):1126–1138, 2009.

[62] R. Storn. Differential Evolution Research Trends and Open Questions. In

Advances in Differential Evolution, pages 1–31. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008.

[63] R. Gamperle and S. D. Uller. A Parameter Study for Differential Evolution.

[64] R. Storn and K. Price. Differential Evolution a Simple and Efficient Heuris-

tic for Global Optimization over Continuous Spaces. Journal of Global Op-

timization, 11(4):341–359, 1997.

[65] K. V. Price and J. I. Ronkkonen. Comparing the Uni-Modal Scaling Perfor-

mance of Global and Local Selection in a Mutation-Only Differential Evo-

lution Algorithm. In 2006 IEEE International Conference on Evolutionary

Computation, pages 2034–2041. IEEE.

[66] C. J. F. T. Braak. A Markov Chain Monte Carlo Version of the Genetic Algo-

rithm Differential Evolution: Easy Bayesian Computing for Real Parameter

Spaces. Statistics and Computing, 16(3):239–249, sep 2006.

[67] D. Zaharie. Critical Values for the Control Parameters of Differential Evolu-

tion Algorithms. 2002.

[68] J. Ronkkonen, S. Kukkonen, and K. V. Price. Real-Parameter Optimization

with Differential Evolution. In 2005 IEEE Congress on Evolutionary Com-

putation, volume 1, pages 506–513. IEEE.

[69] F. Peñuñuri, C. Cab, O. Carvente, M. A. Zambrano-Arjona, and J. A. Tapia.

A Study of the Classical Differential Evolution Control Parameters. Swarm

and Evolutionary Computation, 26:86–96, 2016.

[70] A. Qin and P. Suganthan. Self-Adaptive Differential Evolution Algorithm for

Numerical Optimization. In 2005 IEEE Congress on Evolutionary Compu-

tation, volume 2, pages 1785–1791. IEEE.

Bibliography 287

[71] A. P. Piotrowski. Review of Differential Evolution Population Size. Swarm

and Evolutionary Computation, 32:1–24, 2017.

[72] J. Brest and M. Sepesy Maučec. Population Size Reduction for the Differen-

tial Evolution Algorithm. Applied Intelligence, 29(3):228–247, dec 2008.

[73] R. Tanabe and A. S. Fukunaga. Improving the Search Performance of

SHADE Using Linear Population Size Reduction. In 2014 IEEE Congress on

Evolutionary Computation (CEC), pages 1658–1665, Tanabe2014, jul 2014.

IEEE.

[74] F. Neri and V. Tirronen. Recent Advances in Differential Evolution: A Sur-

vey and Experimental Analysis.

[75] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar. Differential Evolu-

tion Using a Neighborhood-Based Mutation Operator. IEEE Transactions on

Evolutionary Computation, 13(3):526–553, jun 2009.

[76] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. Self-Adapting

Control Parameters in Differential Evolution: A Comparative Study on Nu-

merical Benchmark Problems. IEEE Transactions on Evolutionary Compu-

tation, 10(6):646–657, dec 2006.

[77] J. Brest, B. Bošković, S. Greiner, V. Žumer, and M. S. Maučec. Perfor-

mance Comparison of Self-Adaptive and Adaptive Differential Evolution Al-

gorithms. Soft Computing, 11(7):617–629, feb 2007.

[78] Jingqiao Zhang and A. Sanderson. JADE: Adaptive Differential Evolution

with Optional External Archive. IEEE Transactions on Evolutionary Com-

putation, 13(5):945–958, oct 2009.

[79] CEC 2016 Competition CEC’14 Test Suite Part a - Including 30 Benchmark

Functions Unimodal Functions. 2016.

[80] J. L. J. Laredo, C. Fernandes, J. J. Merelo, and C. Gagné. Improving Ge-

netic Algorithms Performance Via Deterministic Population Shrinkage. In

288 Bibliography

Proceedings of the 11th Annual Conference on Genetic and Evolutionary

Computation - GECCO ’09, page 819, New York, New York, USA, 2009.

ACM Press.

[81] M. El-Abd. Cooperative Co-Evolution Using LSHADE with Restarts for the

CEC15 Benchmarks. In 2016 IEEE Congress on Evolutionary Computation

(CEC), pages 4810–4814. IEEE, jul 2016.

[82] R. Polakova, J. Tvrdik, and P. Bujok. L-SHADE with Competing Strategies

Applied to CEC2015 Learning-Based Test Suite. In 2016 IEEE Congress on

Evolutionary Computation (CEC), pages 4790–4796. IEEE, jul 2016.

[83] P. Bujok and J. Tvrdik. Enhanced SHADE and Real-World Optimization

Problmes.

[84] S. Das, S. S. Mullick, and P. N. Suganthan. Recent Advances in Differential

Evolution an Updated Survey. Swarm and Evolutionary Computation, 27:1–

30, 2016.

[85] S.-M. Guo, J. S.-H. Tsai, C.-C. Yang, and P.-H. Hsu. A Self-Optimization

Approach for L-SHADE Incorporated with Eigenvector-Based Crossover

and Successful-Parent-Selecting Framework on CEC 2015 Benchmark Set.

In 2015 IEEE Congress on Evolutionary Computation (CEC), pages 1003–

1010. IEEE, may 2015.

[86] Z. Hu, Q. Su, X. Yang, and Z. Xiong. Not Guaranteeing Convergence of

Differential Evolution on a Class of Multimodal Functions. Applied Soft

Computing, 41:479–487, 2016.

[87] R. Tanabe and A. Fukunaga. How Far Are We from an Optimial AdaptiveDE.

[88] W. B. Langdon and R. Poli. Evolving Problems to Learn About Particle

Swarm Optimizers and Other Search Algorithms. IEEE Transactions on Evo-

lutionary Computation, 11(5):561–578, oct 2007.

Bibliography 289

[89] J.-y. Yan, Q. Ling, and D.-m. Sun. A Differential Evolution with Simulated

Annealing Updating Method. In 2006 International Conference on Machine

Learning and Cybernetics, pages 2103–2106. IEEE, 2006.

[90] Y.-F. Li, Z.-H. Zhan, Y. Lin, and J. Zhang. Comparisons Study of APSO

OLPSO and CLPSO on CEC2005 and CEC2014 Test Suits. In 2015 IEEE

Congress on Evolutionary Computation (CEC), pages 3179–3185. IEEE,

may 2015.

[91] A. Ratnaweera, S. Halgamuge, and H. Watson. Self-Organizing Hierarchi-

cal Particle Swarm Optimizer with Time-Varying Acceleration Coefficients.

IEEE Transactions on Evolutionary Computation, 8(3):240–255, jun 2004.

[92] M. R. Bonyadi and Z. Michalewicz. Particle Swarm Optimization for Single

Objective Continuous Space Problems: A Review. Evolutionary Computa-

tion, 25(1):1–54, mar 2017.

[93] A. Banks, J. Vincent, and C. Anyakoha. A Review of Particle Swarm

Optimization. Part II: Hybridisation, Combinatorial, Multicriteria and Con-

strained Optimization, and Indicative Applications. Natural Computing,

7(1):109–124, mar 2008.

[94] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-Term Dependencies

with Gradient Descent Is Difficult. IEEE transactions on neural networks,

5(2):157–66, 1994.

[95] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier Nonlinearities Improve

Neural Network Acoustic Models. ICML Workshop on Deep Learning for

Audio, Speech and Language Processing, 2013.

[96] K. Hornik. Approximation Capabilities of Multilayer Feedforward Net-

works. Neural Networks, 4(2):251–257, jan 1991.

[97] D. J. Montana and L. Davis. Training Feedforward Neural Networks Using

Genetic Algorithms. Technical report.

290 Bibliography

[98] D. Karaboga, B. Akay, and C. Ozturk. Artificial Bee Colony (ABC) Opti-

mization Algorithm for Training Feed-Forward Neural Networks. In Mod-

eling Decisions for Artificial Intelligence, pages 318–329. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2007.

[99] X.-S. Yang and S. Deb. Cuckoo Search: Recent Advances and Applications.

Neural Computing and Applications, 24(1):169–174, jan 2014.

[100] E. Valian, S. Mohanna, and S. Tavakoli. Improved Cuckoo Search Algorithm

for Feedforward Neural Network Training. International Journal of Artificial

Intelligence & Applications (IJAIA), 2(3), 2011.

[101] K. Socha and C. Blum. An Ant Colony Optimization Algorithm for Contin-

uous Optimization: Application to Feed-Forward Neural Network Training.

Neural Computing and Applications, 16(3):235–247, may 2007.

[102] M. Mandischer. A Comparison of Evolution Strategies and Backpropagation

for Neural Network Training. Neurocomputing, 42(1-4):87–117, jan 2002.

[103] J. Ilonen, J.-K. Kamarainen, and J. Lampinen. Differential Evolution Train-

ing Algorithm for Feed-Forward Neural Networks. Neural Processing Let-

ters, 17(1):93–105, 2003.

[104] V. Gudise and G. Venayagamoorthy. Comparison of Particle Swarm Opti-

mization and Backpropagation As Training Algorithms for Neural Networks.

In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03

(Cat. No.03EX706), pages 110–117. IEEE.

[105] A. P. Piotrowski, M. J. Napiorkowski, M. Kalinowska, J. J. Napiorkowski,

and M. Osuch. Are Evolutionary Algorithms Effective in Calibrating Dif-

ferent Artificial Neural Network Types for Streamwater Temperature Predic-

tion? Water Resources Management, 30(3):1217–1237, feb 2016.

[106] A. P. Piotrowski, M. Osuch, M. J. Napiorkowski, P. M. Rowinski, and J. J.

Napiorkowski. Comparing Large Number of Metaheuristics for Artificial

Bibliography 291

Neural Networks Training to Predict Water Temperature in a Natural River.

Computers & Geosciences, 64:136–151, 2014.

[107] A. P. Piotrowski. Differential Evolution Algorithms Applied to Neural Net-

work Training Suffer from Stagnation. Applied Soft Computing, 21:382–406,

aug 2014.

[108] R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle Swarms for Feedfor-

ward Neural Network Training. In Proceedings of the 2002 International

Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290),

pages 1895–1899. IEEE.

[109] F. G. E. Alfassio Grimaldi. PSO As an Effective Learning Algorithm for Neu-

ral Network Applications. In Proceedings. ICCEa 2004. 2004 3rd Interna-

tional Conference on Computational Electromagnetics and Its Applications,

2004., pages 557–560. IEEE.

[110] A. Rakitianskaia and A. Engelbrecht. Training High-Dimensional Neural

Networks with Cooperative Particle Swarm Optimiser. In 2014 International

Joint Conference on Neural Networks (IJCNN), pages 4011–4018. IEEE, jul

2014.

[111] A. Rakitianskaia and A. Engelbrecht. Saturation in PSO Neural Network

Training: Good or Evil? In 2015 IEEE Congress on Evolutionary Computa-

tion (CEC), pages 125–132. IEEE, may 2015.

[112] P. Wilmott, J. Dewynne, and S. Howison. Option Pricing : Mathematical

Models and Computation. Oxford Financial Press, Oxford, 1993.

[113] J. Hull. Options, Futures, and Other Derivatives. Pearson/Prentice Hall,

Upper Saddle River N.J., 6th ed. edition, 2006.

[114] G. Barone-Adesi and R. E. Whaley. Efficient Analytic Approximation of

American Option Values. The Journal of Finance, 42(2):301–320, jun 1987.

292 Bibliography

[115] F. A. Longstaff and E. S. Schwartz. Valuing American Options by Sim-

ulation: A Simple Least-Squares Approach. Review of Financial Studies,

14(1):113–147, jan 2001.

[116] J. B. Cohen, F. Black, and M. Scholes. The Valuation of Option Contracts

and a Test of Market Efficiency. The Journal of Finance, 27(2):399–417,

may 1972.

[117] A. Kemna and A. Vorst. A Pricing Method for Options Based on Average

Asset Values. Journal of Banking & Finance, 14(1):113–129, mar 1990.

[118] J. Gatheral. The Volatility Surface : A Practitioner’s Guide. John Wiley &

Sons, 2006.

[119] F. D. Rouah. The Heston Model and Its Extensions in Matlab and C#. John

Wiley & Sons, Inc., Hoboken, NJ, USA, aug 2013.

[120] R. Lord and C. Kahl. Complex Logarithms in Heston like Models. Mathe-

matical Finance, 20(4):671–694, sep 2010.

[121] P. Carr. Option Valuation Using the Fast Fourier Transform. Technical report,

1999.

[122] M. Attari. Option Pricing Using Fourier Transforms: A Numerically Effi-

cient Simplification. SSRN Electronic Journal, 2004.

[123] H. Albrecher, P. Mayer, W. Schoutens, and J. Tistaert. The Little Heston

Trap. Technical report.

[124] C. Kahl and P. Jäckel. Not-So-Complex Logarithms in the Heston Model.

Technical report.

[125] A. L. Lewis. Option Valuation Under Stochastic Volatility II with Mathemat-

ica Code.

[126] S. d. B. Rollin, A. Ferreiro-Castilla, and F. Utzet. A New Look at the Heston

Characteristic Function. feb 2009.

Bibliography 293

[127] Y. Cui, S. del Baño Rollin, and G. Germano. Full and Fast Calibration of

the Heston Stochastic Volatility Model. European Journal of Operational

Research, 263(2):625–638, dec 2017.

[128] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer,

New York, 2004.

[129] D. Tavella and C. Randall. Pricing Financial Instruments : The Finite Dif-

ference Method. John Wiley & Sons, 2000.

[130] D. J. Duffy. Finite Difference Methods in Financial Engineering : A Partial

Differential Equation Approach. John Wiley, Chichester, England ;;Hobo-

ken, NJ :, 2006.

[131] D. Wolpert and W. Macready. No Free Lunch Theorems for Optimization.

IEEE Transactions on Evolutionary Computation, 1(1):67–82, apr 1997.

[132] B. Xin, J. Chen, J. Zhang, H. Fang, and Z. H. Peng. Hybridizing Differential

Evolution and Particle Swarm Optimization to Design Powerful Optimizers:

A Review and Taxonomy. IEEE Transactions on Systems, Man and Cyber-

netics Part C: Applications and Reviews, 42(5):744–767, 2012.

[133] T. Hendtlass. A Combined Swarm Differential Evolution Algorithm for Op-

timization Problems. pages 11–18. Springer, Berlin, Heidelberg, 2001.

[134] S. Sarkar and S. Das. A Hybrid Particle Swarm with Differential Evolution

Operator Approach (DEPSO) for Linear Array Synthesis. pages 416–423.

Springer, Berlin, Heidelberg, 2010.

[135] B. Niu and L. Li. A Novel PSO-DE-Based Hybrid Algorithm for Global Op-

timization. In Advanced Intelligent Computing Theories and Applications.

with Aspects of Artificial Intelligence, pages 156–163. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2008.

294 Bibliography

[136] M. Epitropakis, V. Plagianakos, and M. Vrahatis. Evolving Cognitive and

Social Experience in Particle Swarm Optimization Through Differential Evo-

lution: A Hybrid Approach. Information Sciences, 216:50–92, 2012.

[137] S. Kannan, S. R. Slochanal, P. Subbaraj, and N. P. Padhy. Application of Par-

ticle Swarm Optimization Technique and Its Variants to Generation Expan-

sion Planning Problem. Electric Power Systems Research, 70(3):203–210,

2004.

[138] Xing Xu, Yuanxiang Li, Shenlin Fang, Yu Wu, and Feng Wang. A Novel Dif-

ferential Evolution Scheme Combined with Particle Swarm Intelligence. In

2008 IEEE Congress on Evolutionary Computation (IEEE World Congress

on Computational Intelligence), pages 1057–1062. IEEE, jun 2008.

[139] S. Das, A. Konar, and U. K. Chakraborty. Improving Particle Swarm Opti-

mization with Differentially Perturbed Velocity. In Proceedings of the 2005

Conference on Genetic and Evolutionary Computation - GECCO ’05, page

177, New York, New York, USA, 2005. ACM Press.

[140] A. Moharam, M. A. El-Hosseini, and H. A. Ali. Design of Optimal PID

Controller Using Hybrid Differential Evolution and Particle Swarm Opti-

mization with an Aging Leader and Challengers. Applied Soft Computing,

38:727–737, 2016.

[141] A. P. Engelbrecht. Particle Swarm Optimization with Crossover: A Review

and Empirical Analysis. Artificial Intelligence Review, 45(2):131–165, feb

2016.

[142] X. Yu, J. Cao, H. Shan, L. Zhu, and J. Guo. An Adaptive Hybrid Algorithm

Based on Particle Swarm Optimization and Differential Evolution for Global

Optimization. TheScientificWorldJournal, 2014:215472, 2014.

[143] B. Tang, Z. Zhu, and J. Luo. Hybridizing Particle Swarm Optimization and

Differential Evolution for the Mobile Robot Global Path Planning. Interna-

tional Journal of Advanced Robotic Systems, 13(3):86, jun 2016.

Bibliography 295

[144] M. Løvbjerg, T. Kiel Rasmussen, and T. Krink. Hybrid Particle Swarm Op-

timiser with Breeding and Subpopulations.

[145] M. Settles and T. Soule. Breeding Swarms. In Proceedings of the 2005

Conference on Genetic and Evolutionary Computation - GECCO ’05, page

161, New York, New York, USA, 2005. ACM Press.

[146] S. Chen. Particle Swarm Optimization with Pbest Crossover. In 2012 IEEE

Congress on Evolutionary Computation, pages 1–6. IEEE, jun 2012.

[147] T. Zhang, T. Hu, X. Guo, Z. Chen, and Y. Zheng. Solving High Dimen-

sional Bilevel Multiobjective Programming Problem Using a Hybrid Particle

Swarm Optimization Algorithm with Crossover Operator. Knowledge-Based

Systems, 53:13–19, 2013.

[148] Y. Miao, Z. Cui, and J. Zeng. Dynamic Population-Based Particle Swarm Op-

timization Combined with Crossover Operator. In 2009 Ninth International

Conference on Hybrid Intelligent Systems, pages 399–404. IEEE, 2009.

[149] Y. Dong and H. Yang. A New Approach for Reactive Power/Voltage Opti-

mization Control of Regional Grid. In 2010 Asia-Pacific Power and Energy

Engineering Conference, pages 1–5. IEEE, 2010.

[150] A. P. Engelbrecht. Asynchronous Particle Swarm Optimization with Discrete

Crossover. In 2014 IEEE Symposium on Swarm Intelligence, pages 1–8.

IEEE, dec 2014.

[151] K. Deb, D. Joshi, and A. Anand. Real-Coded Evolutionary Algorithms with

Parent-Centric Recombination. In Proceedings of the 2002 Congress on Evo-

lutionary Computation. CEC’02 (Cat. No.02TH8600), volume 1, pages 61–

66. IEEE.

[152] K. Deb and N. Padhye. Development of Efficient Particle Swarm Optimiz-

ers by Using Concepts from Evolutionary Algorithms. In Proceedings of

296 Bibliography

the 12th Annual Conference on Genetic and Evolutionary Computation -

GECCO ’10, page 55, New York, New York, USA, 2010. ACM Press.

[153] K. Deb and N. Padhye. Improving a Particle Swarm Optimization Algorithm

Using an Evolutionary Algorithm Framework. 2010.

[154] A. Engelbrecht. Particle Swarm Optimization with Discrete Crossover.

In 2013 IEEE Congress on Evolutionary Computation, pages 2457–2464.

IEEE, jun 2013.

[155] B. L. M. Ille, D. E. Goldberg, B. L. Miller, and D. E. Goldb. Genetic Al-

gorithms , Tournament Selection, and the Effects of Noise. pages 193–212,

1995.

[156] I. C. Trelea. The Particle Swarm Optimization Algorithm: Conver-

gence Analysis and Parameter Selection. Information Processing Letters,

85(6):317–325, mar 2003.

[157] D. Jong and K. Alan. An Analysis of the Behavior of a Class of Genetic

Adaptive Systems., 1975.

[158] R. Salomon. Re-Evaluating Genetic Algorithm Performance Under Coordi-

nate Rotation of Benchmark Functions. a Survey of Some Theoretical and

Practical Aspects of Genetic Algorithms. Biosystems, 39(3):263–278, jan

1996.

[159] T. Bäck and H.-P. Schwefel. An Overview of Evolutionary Algorithms for

Parameter Optimization. Evolutionary Computation, 1(1):1–23, mar 1993.

[160] M. Gang, Z. Wei, and C. Xiaolin. A Novel Particle Swarm Optimization

Algorithm Based on Particle Migration. Applied Mathematics and Compu-

tation, 218(11):6620–6626, feb 2012.

[161] M. S. Arumugam and M. Rao. On the Improved Performances of the Par-

ticle Swarm Optimization Algorithms with Adaptive Parameters, Cross-over

Bibliography 297

Operators and Root Mean Square (RMS) Variants for Computing Optimal

Control of a Class of Hybrid Systems. Applied Soft Computing, 8(1):324–

336, jan 2008.

[162] I. Montalvo, J. Izquierdo, R. Pérez-Garcı́a, and M. Herrera. Improved Per-

formance of PSO with Self-Adaptive Parameters for Computing the Optimal

Design of Water Supply Systems. Engineering Applications of Artificial In-

telligence, 23(5):727–735, 2010.

[163] Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, and Q. Tian. Self-Adaptive

Learning Based Particle Swarm Optimization. 181(20):4515–4538, oct 2011.

[164] A. P. Engelbrecht. Heterogeneous Particle Swarm Optimization. pages 191–

202. Springer, Berlin, Heidelberg, 2010.

[165] F. V. Nepomuceno and A. P. Engelbrecht. A Self-Adaptive Heterogeneous

PSO Inspired by Ants. pages 188–195. Springer, Berlin, Heidelberg, 2012.

[166] T. M. Blackwell and P. J. Bentley. Dynamic Search with Charged Swarms.

Technical report.

[167] T. Blackwell and J. Branke. Multiswarms, Exclusion, and Anti-Convergence

in Dynamic Environments. IEEE Transactions on Evolutionary Computa-

tion, 10(4):459–472, aug 2006.

[168] C. L. Müller and I. F. Sbalzarini. Global Characterization of the CEC

2005 Fitness Landscapes Using Fitness-Distance Analysis. pages 294–303.

Springer Berlin Heidelberg, 2011.

[169] C. Garcı́a-Martı́nez, P. D. Gutiérrez, D. Molina, M. Lozano, and F. Herrera.

Since CEC 2005 Competition on Real-Parameter Optimisation: A Decade of

Research, Progress and Comparative Analysis’s Weakness. Soft Computing,

pages 1–11, jan 2017.

[170] Y.-W. Shang and Y.-H. Qiu. A Note on the Extended Rosenbrock Function.

Evolutionary Computation, 14(1):119–126, mar 2006.

298 Bibliography

[171] T. P. McDonald, R. W. G. Bucknall, and A. R. Greig. Comparing Trimaran

Small Waterplane Area Center Hull (TriSWACH), Monohull, and Trimaran

Hullforms: Some Initial Results. Journal of Ship Production and Design,

29(4):211–220, nov 2013.

[172] E. C. Tupper. Introduction to Naval Architecture. Elsevier, Butterworth

Heinemann, Amsterdam ;;Boston :, 2004.

[173] P. Couser, A. Mason, G. Mason, C. R. Smith, and B. R. Von Konsky. Artifi-

cial Neural Networks for Hull Resistance Prediction.

[174] A. Carter, E. Muk-Pavic, and T. McDonald. Resistance Prediction Using Ar-

tificial Neural Networks for Preliminary Tri-SWACH Design. Transactions

of the Royal Institution of Naval Architects Part A: International Journal of

Maritime Engineering , Vol. 156 (2013), 2013.

[175] N. Chaggar. Tri-SWACH Resistance Prediction Using Artificial Neural Net-

works. Msc thesis, University College London, 2014.

[176] J. Klag and I. McMahon. Calm Water Resistance Study of a Novel Trimaran.

Doctoral thesis, Webb Institute, Glen Cove, USA, 2007.

[177] R. A. Royce, A. Mouravieff, and A. Zuzick. Trimaran Resistance Artificial

Neural Network. 2011.

[178] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient BackProp.

pages 9–48. Springer, Berlin, Heidelberg, 2012.

[179] F. Guillaume and W. Schoutens. Calibration Risk: Illustrating the Impact of

Calibration Risk Under the Heston Model. Review of Derivatives Research,

15(1):57–79, apr 2012.

[180] BLACK and F. Studies of Stock Market Volatility Changes. 1976 Proceed-

ings of the American Statistical Association Bisiness and Economic Statistics

Section, 1976.

Bibliography 299

[181] J. Pospı́šil, M. Mrázek, and T. Sobotka. On Optimization Techniques for

Calibration of Stochastic Volatility Models StochGrid View Project on Opti-

mization Techniques for Calibration of Stochastic Volatility Models. 2014.

[182] S. Mikhailov and U. Nögel. Heston’s Stochastic Volatility Model Implemen-

tation, Calibration and Some Extensions. Technical report.

[183] P. Gauthier and P.-Y. H. Rivaille. Fitting the Smile, Smart Parameters for

SABR and Heston. SSRN Electronic Journal, oct 2009.

[184] F. Guillaume and W. Schoutens. Use a Reduced Heston or Reduce the Use

of Heston? Wilmott Journal, 2(4):171–192, aug 2010.

[185] M. Gilli and E. Schumann. Calibrating Option Pricing Models with Heuris-

tics. pages 9–37. Springer Berlin Heidelberg, 2011.

[186] I. Vollrath and J. Wendland. Calibration of Interest Rate and Option Models

Using Differential Evolution. SSRN Electronic Journal, mar 2009.

[187] S. Haring and R. Hochreiter. Efficient and Robust Calibration of the Hes-

ton Option Pricing Model for American Options Using an Improved Cuckoo

Search Algorithm. jul 2015.

[188] R. Polakova, J. Tvrdik, and P. Bujok. Evaluating the Performance of L-

SHADE with Competing Strategies on CEC2014 Single Parameter-Operator

Test Suite. In 2016 IEEE Congress on Evolutionary Computation (CEC),

pages 1181–1187. IEEE, jul 2016.

[189] F. Kilin. Accelerating the Calibration of Stochastic Volatility Models. 2007.

[190] N. Ivkovic. Measuring Performance of Optimization Algorithms in Evolu-

tionary Computation Representation of Big Data (case Study of Text Mining)

View Project. 2016.

[191] F. Le Floc’h. Fourier Integration and Stochastic Volatility Calibration. SSRN

Electronic Journal, feb 2013.

300 Bibliography

[192] M. Papadrakakis, V. Papadopoulos, and N. D. Lagaros. Structural Reliabil-

ity Analyis of Elastic-Plastic Structures Using Neural Networks and Monte

Carlo Simulation. Computer Methods in Applied Mechanics and Engineer-

ing, 136(1-2):145–163, sep 1996.

[193] M. Papadrakakis and N. D. Lagaros. Reliability-Based Structural Optimiza-

tion Using Neural Networks and Monte Carlo Simulation. Computer Meth-

ods in Applied Mechanics and Engineering, 191(32):3491–3507, 2002.

[194] J. B. Cardoso, J. R. de Almeida, J. M. Dias, and P. G. Coelho. Structural

Reliability Analysis Using Monte Carlo Simulation and Neural Networks.

Advances in Engineering Software, 39(6):505–513, 2008.

[195] J. M. HUTCHINSON, A. W. LO, and T. POGGIO. A Nonparametric Ap-

proach to Pricing and Hedging Derivative Securities Via Learning Networks.

The Journal of Finance, 49(3):851–889, jul 1994.

[196] J. Bennell and C. Sutcliffe. Black-Scholes Versus Artificial Neural Networks

in Pricing FTSE 100 Options. Intelligent Systems in Accounting, Finance &

Management, 12(4):243–260, oct 2004.

[197] R. Garcia and R. Gençay. Pricing and Hedging Derivative Securities with

Neural Networks and a Homogeneity Hint. Journal of Econometrics, 94(1-

2):93–115, jan 2000.

[198] R. Gencay and Min Qi. Pricing and Hedging Derivative Securities with Neu-

ral Networks: Bayesian Regularization, Early Stopping, and Bagging. IEEE

Transactions on Neural Networks, 12(4):726–734, jul 2001.

[199] N. Gradojevic, R. Gencay, and D. Kukolj. Option Pricing with Modular

Neural Networks. IEEE Transactions on Neural Networks, 20(4):626–637,

apr 2009.

Bibliography 301

[200] X. Liang, H. Zhang, J. Xiao, and Y. Chen. Improving Option Price Forecasts

with Neural Networks and Support Vector Regressions. Neurocomputing,

72(13-15):3055–3065, aug 2009.

[201] M. J. Morelli, G. Montagna, O. Nicrosini, M. Treccani, M. Farina, and P. Am-

ato. Pricing Financial Derivatives with Neural Networks. Physica A: Statis-

tical Mechanics and its Applications, 338(1-2):160–165, jul 2004.

[202] M. M. Pires. American Option Pricing Using Computational Intelligence

Methods. 2005.

[203] S. P. Das and S. Padhy. A New Hybrid Parametric and Machine Learn-

ing Model with Homogeneity Hint for European-Style Index Option Pricing.

Neural Computing and Applications, 28(12):4061–4077, dec 2017.

[204] M. Kohler, A. Krzy Zak, and N. Todorovic. Pricing of High-Dimensional

American Options by Neural Networks. 2006.

[205] D. L. Kelly. Valuing and Hedging American Put Options Using Neural Net-

works. 1994.

[206] Y. Yang, Y. Zheng, and T. M. Hospedales. Gated Neural Networks for Option

Pricing: Rationality by Design. Thirty-First AAAI Conference on Artificial

Intelligence, feb 2017.

[207] M. Pires and T. Marwala. American Option Pricing Using Multi-Layer Per-

ceptron and Support Vector Machine. In 2004 IEEE International Confer-

ence on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), vol-

ume 2, pages 1279–1285. IEEE.

[208] N. Gradojevic. Multi-Criteria Classification for Pricing European Options.

Studies in Nonlinear Dynamics & Econometrics, 0(0):123–139, jan 2015.

[209] N. Yadav, A. Yadav, and M. Kumar. An Introduction to Neural Network

Methods for Differential Equations. SpringerBriefs in Applied Sciences and

Technology. Springer Netherlands, Dordrecht, 2015.

302 Bibliography

[210] D. J. Duffy. Finite Difference Methods in Financial Engineering : A Partial

Differential Equation Approach. John Wiley, Chichester, England ;;Hobo-

ken, NJ :, 2013.

[211] Financial Toolbox - MATLAB.

[212] R. C. Merton. Continuous-Time Finance. B. Blackwell, Cambridge Mass.,

1990.

[213] L. J. McGuffin, K. Bryson, and D. T. Jones. The PSIPRED Protein Structure

Prediction Server. Bioinformatics, 16(4):404–405, apr 2000.

[214] S. Palmer, D. Gorse, and E. Muk-Pavic. Neural Networks and Particle Swarm

Optimization for Function Approximation in Tri-SWACH Hull Design. In

Proceedings of the 16th International Conference on Engineering Applica-

tions of Neural Networks (INNS) - EANN ’15, pages 1–6, New York, New

York, USA, 2015. ACM Press.

[215] A. Krogh and J. Vedelsby. Neural Network Ensembles, Cross Validation and

Active Learning, 1994.

[216] G. Brown and J. Wyatt. The Use of the Ambiguity Decomposition in Neural

Network Ensemble Learning Methods. Technical report, 2003.

[217] J. Mendes-Moreira, C. Soares, A. M. Jorge, and J. F. D. Sousa. Ensemble

Approaches for Regression. ACM Computing Surveys, 45(1):1–40, nov 2012.

[218] Y. Freund and R. E. Schapire. Experiments with a New Boosting Algorithm.

Technical report, Machine Learning: Proceedings of the Thirteenth Interna-

tional Conference, 1996.

[219] L. Breiman. Stacked Regressions. Technical report, 1996.

[220] Y. Liu and X. Yao. Ensemble Learning Via Negative Correlation. Neural

Networks, 12(10):1399–1404, dec 1999.

Bibliography 303

[221] Z. A. Dindar and T. Marwala. Option Pricing Using a Committee of Neural

Networks and Optimized Networks.

[222] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. SIAM,

1995.

[223] Cboe Global Markets.

[224] L. Breiman. Randomizing Outputs to Increase Prediction Accuracy. Machine

Learning, 40(3):229–242, 2000.

[225] S. Geman, E. Bienenstock, and R. Doursat. Neural Networks and the

Bias/Variance Dilemma. Neural Computation, 4(1):1–58, jan 1992.

[226] A. Chandra, H. Chen, and X. Yao. Trade-off Between Diversity and Accu-

racy in Ensemble Generation. In Multi-Objective Machine Learning, pages

429–464. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[227] A. Chandra and X. Yao. DIVACE: Diverse and Accurate Ensemble Learning

Algorithm. pages 619–625. Springer, Berlin, Heidelberg, 2004.

[228] Y. Liu and X. Yao. Learning and Evolution by Minimization of Mutual In-

formation. pages 495–504. Springer, Berlin, Heidelberg, 2002.

[229] G. Brown, J. L. Wyatt, and P. Tio. Managing Diversity in Regression Ensem-

bles. Journal of Machine Learning Research, 6(Sep):1621–1650, 2005.

[230] R. T. Clemen and R. L. Winkler. Limits for the Precision and Value of Infor-

mation from Dependent Sources. Operations Research, 33(2):427–442, apr

1985.

[231] D. W. Bunn. Statistical Efficiency in the Linear Combination of Forecasts.

International Journal of Forecasting, 1(2):151–163, jan 1985.

[232] I. T. Jolliffe. A Note on the Use of Principal Components in Regression.

Applied Statistics, 31(3):300, 1982.

304 Bibliography

[233] J. B. Burbidge, L. Magee, and A. L. Robb. Alternative Transformations to

Handle Extreme Values of the Dependent Variable. Journal of the American

Statistical Association, 83(401):123–127, mar 1988.

[234] N. Kyurkchiev and S. Markov. On the Hausdorff Distance Between the Heav-

iside Step Function and Verhulst Logistic Function. Journal of Mathematical

Chemistry, 54(1):109–119, jan 2016.

[235] M. Fatica and E. Phillips. Pricing American Options with Least Squares

Monte Carlo on GPUs. In Proceedings of the 6th Workshop on High Perfor-

mance Computational Finance - WHPCF ’13, pages 1–6, New York, New

York, USA, 2013. ACM Press.

[236] D. Peaceman and H. Rachford, Jr. The Numerical Solution of Parabolic

and Elliptic Differential Equations. Journal of the Society for Industrial and

Applied Mathematics, 3(1):28–41, 1955.

[237] D. M. Dang, C. Christara, and K. Jackson. A Parallel Implementation on

GPUs of ADI Finite Difference Methods for Parabolic PDEs with Applica-

tions in Finance. Available at SSRN 1580057, 2010.

[238] D. Egloff. GPUs in Financial Computing Part III: ADI Solvers on GPUs

with Application to Stochastic Volatility. Wilmott mag., March, pages 51–

53, 2011.

[239] L. Thomas. Elliptic Problems in Linear Differential Equations over a Net-

work. Watson Sci. Lab Report. Columbia University, New York, 1949.

[240] H. S. Stone. An Efficient Parallel Algorithm for the Solution of a Tridiagonal

Linear System of Equations. J. ACM, 20(1):27–38, January 1973.

[241] R. W. Hockney. A Fast Direct Solution of Poisson’s Equation Using Fourier

Analysis. J. ACM, 12(1):95–113, January 1965.

[242] R.W.Hockney and C.R.Jesshope. Parallel Computers. Adam Hilger, 1981.

Bibliography 305

[243] Y. Zhang, J. Cohen, and J. D. Owens. Fast Tridiagonal Solvers on the GPU.

ACM Sigplan Notices, 45(5):127–136, 2010.

[244] F. Oliveira, C. Santos, F. Castro, and J. Alves. A Custom Processor for a

TDMa Solver in a CFD Application. In R. Woods, K. Compton, C. Bouganis,

and P. Diniz, editors, Reconfigurable Computing: Architectures, Tools and

Applications, volume 4943 of Lecture Notes in Computer Science, pages 63–

74. Springer Berlin Heidelberg, 2008.

[245] D. Warne, N. A. Kelson, and R. F. Hayward. Solving Tri-Diagonal Linear

Systems Using Field Programmable Gate Arrays. 2012.

[246] D. J. Warne, N. A. Kelson, and R. F. Hayward. Comparison of High Level

FPGa Hardware Design for Solving Tri-Diagonal Linear Systems. Procedia

Computer Science, 29:95–101, jan 2014.

[247] G. Chatziparaskevas, B. Kienhuis, and J. Walters. An FPGA-Based Par-

allel Processor for Black-Scholes Option Pricing Using Finite Differences

Schemes. In Design, Automation Test in Europe Conference Exhibition

(DATE), 2012, pages 709–714, 2012.

[248] I. S. Duff and H. A. van der Vorst. Developments and Trends in the Parallel

Solution of Linear Systems. Parallel Computing, 25(13 14):1931 – 1970,

1999.

[249] Q. Jin, T. Becker, W. Luk, and D. Thomas. Optimising Explicit Finite Dif-

ference Option Pricing for Dynamic Constant Reconfiguration. In Field Pro-

grammable Logic and Applications (FPL), 2012 22nd International Confer-

ence On, pages 165–172, 2012.

[250] X. Tian and K. Benkrid. High-Performance Quasi-Monte Carlo Financial

Simulation: FPGa Vs. GPP Vs. GPU. ACM Transactions on Reconfigurable

Technology and Systems (TRETS), 3(4):26, 2010.

306 Bibliography

[251] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for

Industrial and Applied Mathematics, Philadelphia, 1996.

[252] C. Barnes, B. Tran, and S. Leung. On the Statistics of Fixed-Point Round-

off Error. Acoustics, Speech and Signal Processing, IEEE Transactions on,

33(3):595–606, 1985.

[253] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and

S. Tiwari. Problem Definitions and Evaluation Criteria for the CEC 2005

Special Session on Real-Parameter Optimization. 2005.

	Introduction
	Research Objectives
	Contributions to Research
	Thesis Structure
	Publications and Conference Presentations

	Background
	Evolutionary Optimisation Algorithms
	Particle Swarm Optimisation
	Topology
	Standard PSO
	Further PSO Variations
	Weaknesses in PSO

	Differential Evolution
	Advanced Variations
	Weaknesses in DE

	DE vs PSO
	Structural Similarities

	Neural Networks
	Universal Approximation Theorem
	Training with Evolutionary Algorithms

	Financial Derivatives
	Option Pricing Models
	Black-Scholes Equation
	Asian Averaging Options
	Stochastic Volatility
	Heston Model

	Numerical Methods For Options Pricing

	Breeding Particle Swarm Optimisation
	Introduction
	Hybrid Particle Swarm Optimisation
	PSO with Crossover
	Embedding Crossover within PSO

	Breeding Particle Swarm Optimisation
	Mutation

	Analysis of Crossover and Particle Behaviour
	Initial Definitions
	General Properties of Discrete Crossover
	Bounds For Crossover With Two Improved Parents
	Bounds For Crossover With One Improved Parent
	Crossover Success Rate Estimations
	Global Cluster
	Impact on Choice of Cr Value
	Mutation Bias

	Empirical Analysis of Mutation Parameters
	Conclusion

	Self-Adaptive Mutation
	Self-Adaptive PSO
	BrPSO with Self-Adaptive Mutation
	Benchmark Performance

	BrPSO for Function Approximation using Neural Networks
	Introduction
	Neural Network Architectures and Training
	Data
	Prediction of Total Resistance (RT)
	Prediction of Residual Resistance Coefficient (CR)

	Conclusions

	Calibrating the Heston Model using Evolutionary Algorithms
	Introduction
	Heston Model Calibration
	Heuristic Calibration Methods

	Evolutionary Algorithms Investigated
	Methodology
	Loss Function
	Additional Considerations

	Results and Discussion
	Error Measures
	Global Best Estimations
	Practical Parameter Estimations

	L-SHADE Hybrids
	PSO-L-SHADE

	Fitness Distance Analysis
	Local Minima and Numerical Instability
	Calibration Stability Measure
	Simple Safeguard

	Conclusions

	Options Pricing using Neural Networks and Evolutionary Optimisation
	Introduction
	Options Pricing using Neural Networks

	Methodology
	Data Generation and Sampling
	Parameter Space Reduction
	Latin Hyper-Cube Sampling
	Data Transforms
	Price Resolution and Rounding

	Training
	Neural Network Architecture
	Calculating option Price Sensitivities
	Training Method
	Weighted Training

	Model Creation
	Ensemble Methods

	Testing

	European option Pricing
	Comparing Price Region Error Behaviour
	Exploring Network Architectures
	Comparing Network Size
	Comparing Architecture
	Greeks

	Training Data Sensitivity
	Noise
	Increasing Training Data Density

	Model Diversity
	Ensemble Models
	Mean Models
	Centre-Distance
	Regression Models
	Constrained Regression Using Data Transforms

	Volatility Effect and the Payoff Function
	Approximation Error

	Path Dependent Options - Examples
	Geometric Asian options
	American options

	Conclusions

	Options Pricing using Hardware Acceleration
	Introduction
	FPGAs
	Finite Difference Schemes and Tridiagonal Systems
	Thomas Algorithm

	Algorithmic Optimisation and Low Level Parallelism
	Pipelining
	Hardware Architecture

	Design Analysis
	Numerical Bounds
	Bounding the Thomas Algorithm

	Hardware Implementation
	FPGA Resource Usage
	Performance

	Implementation for Implicit Finite Difference Schemes
	Scaling For Fixed-Point Designs
	Fixed-Point Solver Accuracy

	Conclusion

	Conclusions and Future Work
	Future Work

	Additional Mathematical Results
	Benchmark Functions
	Additional Calibration Results
	Bibliography

